《电工与电子技术》教案
电工电子技术 教案
电工电子技术教案第一章:电工基础1.1 电流、电压和电阻的概念电流:电荷的定向移动形成电流,单位是安培(A)。
电压:电势差,单位是伏特(V)。
电阻:阻碍电流流动的性质,单位是欧姆(Ω)。
1.2 欧姆定律欧姆定律公式:U = IR,其中U表示电压,I表示电流,R表示电阻。
应用示例:给定电压和电阻,计算电流;给定电流和电阻,计算电压等。
1.3 串并联电路串联电路:电流在各个元件中相同,电压分配。
并联电路:电压在各个元件中相同,电流分配。
第二章:电子元件2.1 半导体基础知识半导体:导电性能介于导体和绝缘体之间的材料,如硅(Si)、锗(Ge)。
PN结:P型半导体和N型半导体接触形成的结构,具有单向导电性。
2.2 二极管结构、符号和性质。
应用:整流、滤波、稳压等。
2.3 晶体管结构、符号和类型(NPN、PNP)。
放大作用和应用。
第三章:基本电路分析3.1 交流电路交流电:电压和电流随时间变化的电信号。
交流电路的特点和应用。
3.2 频率和相位频率:单位是赫兹(Hz),表示单位时间内周期性变化的次数。
相位:表示电压或电流波形的时间关系。
3.3 谐振电路谐振条件:L和C的组合使电路的阻抗最小,电流最大。
应用:滤波、选频等。
第四章:电子测量技术4.1 测量仪器和工具示波器、万用表、信号发生器、毫安表等。
4.2 测量方法和注意事项测量电阻、电容、电感、电压、电流等。
注意事项:正确选择测量范围、避免测量误差等。
4.3 故障诊断与维修常用诊断方法:观察、测量、替换元件等。
维修技巧:查找故障原因、排除故障、修复电路等。
第五章:电力电子技术5.1 电力电子器件晶闸管、GTO、IGBT等。
5.2 电力电子电路应用交流调速、变频调速、电力控制等。
5.3 节能技术和环保电力电子技术在节能和环保领域的应用。
第六章:电机原理与应用6.1 直流电机构造、原理和分类(永磁直流电机、励磁直流电机)。
特性:转速、扭矩与电流的关系。
6.2 交流电机构造、原理和分类(异步电机、同步电机)。
电工电子技术教案(完整版)
第 二 讲教学章节:第一章 电路和电路元件 1.3~1.4 独立电源元件,二极管教学要求:1、熟悉电压源和电流源;2、掌握两种电源模型的等效;3、熟练掌握二极管的特性;4、掌握稳压二极管、发光二极管和光电二极管的特点。
教学重点:两种电源模型的等效,二极管的特性,稳压二极管、发光二极管和光电二极管的特点。
教学难点:两种电源模型的等效;二极管的特性;稳压二极管工作状态。
教学方法与手段:启发式讲授,联系实际,多媒体,板书。
教学内容与进程:一、引入:电压源和电流源 1、电压源⑴ 两端的电压仅由自身决定,与流过的电流及外电路无关。
⑵ 流过的电流由外电路决定。
电压源置零,等效于两端短路。
电压源不允许外电路短路。
2、电流源⑴ 电流源的电流仅由自身决定,与两端的电压无关。
⑵ 两端的电压由外电路决定。
电流源置零,等效于两端开路。
电流源不允许外电路开路。
二、实际电源的模型 1、电压源模型2、电流源模型3、两种电源模型的等效1.4 二极管 三、PN 结及其单相导电性二极管的结构和电路符号如图所示,VD 是文字符号。
R -+U +U s -R -+U I s四、二极管的主要特性和主要参数(1)正偏导通(2)反偏截止(3)二极管的伏安特性正向特性:二极管正向电压超过某一数值时电流开始快速增长,对应的电压称为死区电压,也称阈值电压或开启电压,记作U T ,二极管导通时的正向电压称为二极管导通电压或管压降,记作U D 。
方向特性:二极管反向电流一般很小,小功率硅管为几μA ,锗管为几十μA 。
反向击穿特性:反向电压增高到一定数值U (BR)时,二极管反向电流急剧增大,这种现象称为反向击穿。
五、二极管的工作点和理想特性六、稳压二极管稳压二极管是应用在反向击穿区的特殊硅二极管。
稳压二极管的符号、伏安特性和典型应用电路。
七、发光二极管和光电二极管 发光二极管工作在正向偏置状态。
光电二极管又称光敏二极管,它工作在反向偏置状态。
电工与电子技术-基本放大电路电子教案
电工与电子技术-基本放大电路电子教案一、教学目标1. 让学生了解放大电路的原理和作用,掌握放大电路的基本组成部分。
2. 使学生熟悉晶体管放大电路的工作原理,能够分析简单的放大电路。
3. 培养学生运用所学知识解决实际问题的能力。
二、教学内容1. 放大电路概述介绍放大电路的定义、作用和基本组成部分。
2. 晶体管放大电路讲解晶体管的基本工作原理,分析晶体管放大电路的组成和特点。
3. 放大电路的静态工作点讲解放大电路静态工作点的概念,分析静态工作点对放大电路性能的影响。
4. 放大电路的动态分析讲解放大电路动态分析的方法,分析输入、输出信号和负载关系。
5. 放大电路的应用实例介绍放大电路在实际应用中的例子,分析其工作原理。
三、教学方法1. 采用讲授法,讲解放大电路的基本概念、原理和分析方法。
2. 利用多媒体辅助教学,展示放大电路的工作原理和实际应用。
3. 进行课堂讨论,鼓励学生提问、发表见解,提高学生的参与度。
4. 安排课后实践,让学生动手搭建简单的放大电路,巩固所学知识。
四、教学资源1. 多媒体课件:包括放大电路的原理图、工作原理动画演示等。
2. 实验器材:晶体管、电阻、电容等基本元件,放大电路实验板。
3. 参考资料:相关教材、学术论文、网络资源。
五、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问和回答问题的情况。
2. 课后作业:检查学生完成的课后练习,评估其对放大电路知识的掌握。
3. 实验报告:评价学生在实验过程中的动手能力、问题分析和解决能力。
4. 期末考试:设置有关放大电路的题目,检验学生对本章节知识的总体掌握。
六、教学内容6. 反馈电路介绍反馈电路的概念、类型和作用。
分析反馈电路对放大电路性能的影响,讲解负反馈和正反馈的区别。
7. 放大电路的设计与调试讲解如何根据需求设计放大电路,包括选择晶体管、确定静态工作点、选择电阻等。
介绍放大电路的调试方法,分析如何调整元件参数以优化电路性能。
8. 频率响应讲解放大电路的频率响应概念,分析放大电路的带宽、增益和失真。
《电工与电子技术 C》教学大纲
《电工与电子技术C》教学大纲一、课程基本信息课程名称电工与电子技术C英文名称Electrical and electronic technology C开课单位电气与信息工程学院课程负责人课程代码3DXD754C学分3课程类别专业教育课程适用专业安全工程,材料成型及控制工程,油气储运工程,复合材料与工程,过程装备与控制工程,海洋油气工程,建筑环境与能源应用工程,勘查技术与工程,矿物加工工程,能源与动力工程,汽车服务工程,石油工程,无机非金属材料工程,物联网工程,消防工程,冶金工程,应用化学等课内学时48课外学时30先修课程《高等数学》、《大学物理》课程简介《电工与电子技术C》课程是安全工程等非电类专业的一门专业教育必修课。
本课程主要介绍“电路基础”和“模拟电子技术”二个模块。
主要内容有直流电路、正弦交流电路、三相交流电路、常用半导体器件、基本放大电路、直流稳压电源等。
通过本课程的学习,使学生获得电工与电子技术的基本理论、基本知识和基本技能,了解电工与电子技术的应用和我国电工与电子技术发展的概况,为学生学习后续课程《传感器与测试技术基础》等并为将来从事工程技术工作和科学研究打下一定的理论基础。
二、课程教学目标通过本课程教学,使学生系统掌握电工与电子技术中的基本概念、基本原理和方法,培养学生的科学思维能力,树立理论联系实际的工程观点,提高学生分析问题与解决问题的能力。
结合非电类专业特点,介绍相关专业应用电工与电子技术方面的情况,提高学生对本课程的重视。
教学过程中多采用动画及视频介绍电工与电子技术相关内容。
为本专业的深化学习及知识的拓宽打下基础。
具体细化为:课程目标1:能够正确理解电路基础知识和基本概念,了解复杂电路和简单电路的区别,看懂常用电路符号。
(对应毕业要求指标点1.4)课程目标2:掌握电路的分析方法-基尔霍夫定律、支路电流法、叠加原理和戴维南定理,能够运用数学知识解决交直流的计算。
(对应毕业要求指标点1.4)课程目标3:掌握常用半导体器件的特点和使用方法,能够计算基本放大电路的静态工1390作点和动态参数,了解静态工作点对输出波形的影响。
电工电子技术教案
电工电子技术教案一、教学目标1.了解基本电工电子原理的知识,包括电流、电压、电阻等基本概念。
2.掌握电流、电压、功率的计算方法。
3.了解电路中的串联、并联、混联等连接方式。
4.能够使用基本的电工电子工具进行电路的搭建和调试。
5.掌握一些基本的电工电子元器件和电路的实际应用。
二、教学内容1.引言通过介绍电工电子技术在现代社会中的应用,激发学生的学习兴趣,并提出本节课的学习目标。
2.电流、电压和电阻介绍电流、电压和电阻的基本概念和单位,并结合实际生活中的例子进行解释。
3.电压、电流的计算讲解电压和电流的计算方法,并通过一些实例进行练习。
4.串联、并联和混联介绍电路中的串联、并联和混联等连接方式,以及它们的特点和应用。
5.电工电子工具和仪器介绍常见的电工电子工具和仪器,如万用表、示波器等,并讲解它们的使用方法。
6.电工电子元器件介绍常见的电工电子元器件,如电阻、电容、电感等,并讲解它们的基本原理和应用。
7.电路的搭建和调试讲解电路搭建的基本步骤和注意事项,并进行实际操作演示。
8.实际应用案例通过介绍一些常见的电工电子应用案例,如电源、放大器等,让学生了解电工电子技术在实际生活中的应用。
9.总结与小结总结本节课的重点内容,并进行一次简要的小结。
三、教学方法1.教师讲解法:结合PPT和示意图进行理论讲解。
2.实践操作法:通过实际操作电工电子元件和工具,进行电路的搭建和调试。
3.案例分析法:通过实际案例进行分析和讨论,加深学生的理解和应用能力。
四、教学资源1.PPT和示意图:用于讲解电工电子技术的基本原理和实际应用。
2.实验仪器和元件:用于学生进行实际操作和调试。
五、教学评价1.课堂参与度:评估学生在课堂上的主动性和积极性。
2.实际操作能力:评估学生在实验操作中的准确性和独立性。
3.理论知识掌握:评估学生对电工电子技术的基本原理和应用的理解程度。
六、教学延伸2.实践应用:组织学生参与一些电工电子技术相关的实际项目或比赛,提高他们的实际操作能力和团队合作能力。
电工与电子技术完整版课件全套电子教案
包括梯形图(LD)、指令表(IL)、功能块图(FBD)、顺序功能图(SFC)和结构化文 本(ST)五种编程语言。其中,梯形图是最常用的一种编程语言,具有直观易懂的优点 。
PLC编程步骤
分析控制要求,确定输入输出设备;选择合适的PLC型号和编程语言;设计梯形图程序并 进行仿真调试;将程序下载到PLC中进行实际运行调试。
设计方法
分析控制要求,确定控制方案;选择 适当的低压电器和电动机;设计主电 路和控制电路;进行电路的保护和配 线设计。
PLC基本原理和编程方法
PLC基本原理
PLC采用可编程的存储器,用于其内部存储程序,执行逻辑运算、顺序控制、定时、计数 与算术操作等面向用户的指令,并通过数字或模拟式输入/输出控制各种类型的机械或生 产过程。
频率响应特性。
功率放大电路
阐述功率放大电路的特点、分类 以及甲乙类功率放大器的工作原
理、性能指标及优缺点比较。
数字电路基础知识
数字信号与数字电路
介绍数字信号的特点、数字电路的基本概念和分 类,以及数字集成电路的优缺点。
逻辑代数基础
介绍逻辑代数的基本运算、逻辑函数的表示方法 及化简方法,包括逻辑代数的基本公式和定理、 卡诺图化简法等。
电机选择与使用注意事项
电机选择
在选择电机时,需要考虑负载特性、工作环境、电源条件等因素,选择合适的电 机类型和规格。同时,还需要注意电机的绝缘等级、防护等级等性能指标。
使用注意事项
在使用电机时,需要注意电机的安装、接线、调试等操作,确保电机的正常运行 。同时,还需要注意电机的维护保养,定期检查和更换磨损部件,确保电机的长 期稳定运行。
07
实验与课程设计指导
实验目的和要求
《电工电子技术与技能》教案
《电工电子技术与技能》教案第一章:电工电子技术基础1.1 电流、电压和电阻的概念1.2 欧姆定律的应用1.3 电路的基本元件1.4 电路的基本连接方式1.5 电路的基本测量工具及使用方法第二章:直流电路分析2.1 直流电路的基本概念2.2 电压源和电流源的等效变换2.3 基尔霍夫定律的应用2.4 电路的简化方法2.5 电路的故障检测与排除第三章:交流电路分析3.1 交流电路的基本概念3.2 交流电的相位和频率3.3 交流电路的电阻、电抗和容抗3.4 交流电路的功率计算3.5 交流电路的谐振现象第四章:电子元器件4.1 电阻、电容和电感的作用及应用4.2 半导体器件的二极管和三极管4.3 晶体管放大电路的基本原理4.4 场效应晶体管和功率晶体管4.5 集成电路的基本概念与应用第五章:基本放大电路5.1 放大电路的基本原理5.2 放大电路的分类及特点5.3 放大电路的设计与调试5.4 放大电路的应用实例5.5 放大电路的故障检测与排除第六章:电源和稳压电路6.1 电源的分类及工作原理6.2 稳压电源的设计与应用6.3 电源滤波电路的作用与设计6.4 电源保护电路的设计与实现6.5 电源电路的故障检测与排除第七章:电动机及其控制7.1 电动机的分类和工作原理7.2 电动机的启动和制动方法7.3 电动机的保护与维修7.4 常用电动机控制电路的设计与实现7.5 电动机控制电路的故障检测与排除第八章:继电接触器控制系统8.1 继电器和接触器的原理与结构8.2 继电器和接触器控制系统的设计与实现8.3 常用继电器和接触器控制电路的应用实例8.4 继电器和接触器控制系统的故障检测与排除8.5 继电器和接触器控制系统的优化与改进第九章:数字电路基础9.1 数字电路的基本概念9.2 逻辑门电路的设计与实现9.3 逻辑电路的设计与分析9.4 数字电路的仿真与实验9.5 数字电路在电工电子技术中的应用第十章:数字电路应用实例10.1 数字电路在通信技术中的应用10.2 数字电路在计算机技术中的应用10.3 数字电路在测量技术中的应用10.4 数字电路在自动控制系统中的应用10.5 数字电路应用实例的故障检测与排除第十一章:传感器与信号处理11.1 传感器的分类与工作原理11.2 传感器的选用与安装11.3 信号处理电路的设计与实现11.4 信号调理电路的应用实例11.5 传感器与信号处理电路的故障检测与排除第十二章:电气控制与PLC编程12.1 电气控制系统的基本组成与原理12.2 继电器控制系统的设计与实现12.3 可编程逻辑控制器(PLC)的基本原理与应用12.4 PLC编程软件的使用与编程实践12.5 电气控制与PLC编程的故障检测与排除第十三章:变频器与调速控制13.1 变频器的工作原理与选用13.2 变频器控制电路的设计与实现13.3 电动机的变频调速技术13.4 变频器在工业应用中的案例分析13.5 变频器与调速控制系统的故障检测与排除第十四章:电力电子技术14.1 电力电子器件的原理与应用14.2 电力电子变换器的设计与实现14.3 电力电子技术在电力系统中的应用14.4 电力电子设备的故障与保护14.5 电力电子技术的未来发展趋势第十五章:电工电子项目的实践与创新15.1 电工电子项目的设计与实施流程15.2 项目实践中的安全注意事项15.3 创新性项目的选题与设计思路15.5 项目实践与创新的经验分享重点和难点解析第一章:电工电子技术基础重点:电流、电压和电阻的概念,欧姆定律的应用,电路的基本元件和基本连接方式。
《电工电子技术与技能》教案8
授课主要内容或板书设计
课堂教学安排
图4.1直流电和交流电的波形
)直流电和交流电的表示:直流电的物理量用大写字母表示,例如:等;交流电的物理量用小写字母表示,例如e、i、
4.2交流电的参考方向
图4.3正弦交流电的波形
.角频率:单位时间内变化的角度(以弧度为单位)。
角频率与周期T、频率f之间的关系为
ω = 2πf
(a)0 < ϕ< π
(c) ϕ=0 图4.4正弦交流电的相位差
正弦交流电的表示法
图4.5正弦交流电的波形表示法
图中直观的表达出被表示的正弦交流电压的最大值U m,初相 f)。
正弦交流电的矢量表示
图中矢量的长度表示正弦交流电的最大值(也可表示有效值)
> 0在横轴的上方,ϕ
图附图 4.4附图
分别选定22和3在横轴上方
3
π
和6π角度作矢量,。
《电工电子技术》教案
《电工电子技术》教案一、教学目标1. 知识与技能:(1)了解电工电子技术的基本概念、原理和应用。
(2)掌握电路的基本组成部分和电路定律。
(3)学会使用常见的电工电子仪器仪表。
(4)能够分析简单的电路并进行故障排除。
2. 过程与方法:(1)通过实验和实践活动,培养学生的动手能力和实验技能。
(2)运用案例分析和问题解决的方法,提高学生解决实际问题的能力。
3. 情感态度与价值观:(1)培养学生对电工电子技术的兴趣和好奇心。
(2)培养学生的团队合作意识和勇于探索的精神。
二、教学内容1. 电路的基本概念与定律(1)电流、电压、电阻的概念及其相互关系。
(2)欧姆定律、基尔霍夫定律的应用。
2. 电路的组成部分(1)电源、负载、导线、开关等基本元件。
(2)串联电路、并联电路、混联电路的分析方法。
三、教学方法1. 讲授法:通过讲解电工电子基本概念、原理和应用,引导学生理解相关知识。
2. 实验法:安排实验室实践,让学生亲自动手进行电路连接和实验操作,培养动手能力。
3. 案例分析法:提供实际案例,让学生运用所学知识进行分析,提高解决实际问题的能力。
四、教学评价1. 课堂问答:通过提问和回答,检查学生对电工电子基本概念的理解。
2. 实验报告:评估学生在实验中的操作技能和对实验结果的分析能力。
3. 期末考试:全面测试学生对电工电子知识的掌握程度。
五、教学资源1. 教材:《电工电子技术》教科书。
2. 实验设备:电路实验板、电源、仪表、元器件等。
3. 多媒体教学:PPT课件、视频教程等。
六、教学内容3. 电工元件(1)电阻、电容、电感的作用和特性。
(2)变压器、电动机的工作原理和应用。
4. 模拟电路(1)放大器、滤波器、整流器的原理和应用。
(2)常用半导体器件(如二极管、晶体管)的特性及应用。
七、教学方法4. 小组讨论法:组织学生分组讨论电工电子技术在实际生活中的应用,促进学生思考和交流。
5. 项目驱动法:设计相关项目,让学生结合所学知识进行实际操作,提高学生的综合应用能力。
《电工技术与电子技术》教案
《电工技术与电子技术》教案第一章:电工技术基础1.1 电流、电压和电阻的概念电流:电荷的定向移动形成电流,单位是安培(A)。
电压:电路两点间的电势差,单位是伏特(V)。
电阻:阻碍电流流动的性质,单位是欧姆(Ω)。
1.2 电路的基本元件电源:提供电能的设备,如电池、发电机。
负载:消耗电能的设备,如灯泡、电动机。
导线:连接电源和负载,传输电能。
开关:控制电路通断的设备。
1.3 电路的两种状态通路:电流能够顺畅流动的状态。
开路:电流无法流动的状态,即电路中断。
第二章:电子技术基础2.1 电子和原子电子:原子核外的负电荷粒子。
原子:由原子核和核外电子组成,原子核由质子和中子组成。
2.2 半导体的性质导电性能:介于导体和绝缘体之间。
掺杂:向半导体中加入微量杂质,改变其导电性能。
PN结:P型半导体和N型半导体接触形成的结。
2.3 简单的电子电路放大电路:放大微弱信号的电路,如放大器。
整流电路:将交流电转换为直流电的电路,如整流器。
稳压电路:保持输出电压稳定的电路,如稳压器。
第三章:交流电路3.1 交流电的基本概念交流电:电流方向和大小周期性变化的电流。
频率:交流电周期性变化的次数,单位是赫兹(Hz)。
电压和电流的相位差:电压和电流波形之间的相位差。
3.2 交流电路的功率有功功率:电路中实际做功的功率,如灯泡发光产生的功率。
无功功率:电路中不做功的功率,如电容器和电感器消耗的功率。
视在功率:电路中总的功率,等于有功功率和无功功率的平方和的开方。
3.3 交流电路的测量和保护电压表和电流表:测量交流电路的电压和电流。
保护装置:如熔断器、漏电保护器,用于保护电路和人身安全。
第四章:磁路与变压器4.1 磁路的概念磁路:磁力线所通过的路径。
磁通量:磁场穿过磁路的磁力线数量。
磁阻:磁力线通过磁路时的阻碍程度。
4.2 变压器的基本原理变压器:通过电磁感应原理,改变交流电压的设备。
一次绕组和二次绕组:变压器的两个互相绝缘的绕组。
电工与电子技术基础教案
02《电工与电子技术基础》教案(共7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2【教学过程】第1章直流电路的基本概念~123环节教师活动学生活动备注(3)能综合运用学过的知识解决简单的电功问题。
由于初中阶段研究的都是纯电阻电路,所以结合欧姆定律,电功公式还可写为,。
(4)电功的单位:电功的国际单位是J,常用单位kW·h(俗称度),IkW·h=×106J。
(5)电能表(又叫电度表)是测量电功的仪表。
把电能表接在电路中,电能表的计数器上先后两次读数的数差,就是这段时间内用电的度数。
二、电功率(P15)学生讨论或互动板书:二、电功率。
电功率:单位时间内电流所做的功.是表示电流做功快慢的物理量.定义:电流在单位时间内所作的功,用符号P表示单位:瓦(W),伏安(VA),换算关系说明:①表达式的物理意义:一段电路上的电功率等于这段电路两端的电压和电路中电流的乘积。
第1章直流电路的基本概念(35’)一、焦耳-楞次定律(P16)学生讨论或互动板书:焦耳-楞次定律一、焦耳-楞次定律又称“焦耳定律”。
定量确定电流热效应的定律。
电流通过导体时产生的热量q,跟电流强度i的平方、电阻r以及通电时间t成正比,即q=i2rt。
式中i、r、t 的单位分别为安培、欧姆、秒,则热量q的单位为焦耳。
在任何电路中电阻上产生的热量称焦耳热。
二、负载的额定值(P16)学生讨论或互动板书:二、负载的额定值45【预期效果】1、通过这节课,使学生了解什么欧姆定律、电功与电功率及电路的三种状态。
2、希望通过这节课,使学生能够以图片讲解及互动的方式,认真地完成本章节。
【后记】6。
《电工电子技术与技能》教案
《电工电子技术与技能》教案第一章:电工电子技术基础1.1 电流、电压和电阻的概念1.2 电路的基本元件1.3 电路的基本定律1.4 电路的简单分析方法第二章:直流电路2.1 直流电路的基本概念2.2 直流电路的基本定律2.3 直流电路的简单分析方法2.4 常用电路元件的识别与检测第三章:交流电路3.1 交流电路的基本概念3.2 交流电路的基本定律3.3 交流电路的简单分析方法3.4 交流电路的功率计算第四章:磁路与变压器4.1 磁路的基本概念4.2 变压器的基本原理4.3 变压器的结构与分类4.4 变压器的检测与维护第五章:电子元器件5.1 半导体基础知识5.2 常用半导体元器件5.3 集成电路的基本概念与分类5.4 常用集成电路的功能与应用第六章:电器设备与控制6.1 常用家用电器的结构与原理6.2 常用工业电器设备6.3 电器设备的控制原理与方法6.4 电器设备的安装与维护第七章:电机与变频器7.1 电机的基本原理与结构7.2 电机的分类与应用7.3 变频器的基本原理与功能7.4 变频器的应用与调试第八章:电力电子技术8.1 电力电子器件的基本原理与特性8.2 电力电子变换器的基本电路与控制8.3 电力电子技术的应用实例8.4 电力电子设备的安装与调试第九章:通信电子技术9.1 通信系统的基本原理与组成9.2 模拟通信技术9.3 数字通信技术9.4 通信电子设备的应用与维护第十章:电工电子技术综合应用10.1 电工电子技术在电力系统中的应用10.2 电工电子技术在工业控制中的应用10.3 电工电子技术在日常生活中的应用10.4 电工电子技术的创新与发展趋势重点和难点解析一、电流、电压和电阻的概念:电流、电压和电阻是电路分析的基础,理解这些基本概念对于后续电路分析至关重要。
二、电路的基本元件:电路的基本元件包括电源、导线、开关、电阻、电容和电感等,了解它们的特性和功能对于设计电路至关重要。
三、电路的基本定律:欧姆定律、基尔霍夫电压定律和基尔霍夫电流定律是分析电路的基础,掌握这些定律对于解决电路问题至关重要。
(完整版)课程教案电工电子技术
山东协和学院课程教案使用教材《电工与电子技术》出版社人民邮电出版社适用专业机械设计制造及其自动化层次本科总学时80 授课教师马磊教研室自动化教研室授课学年15-16学年学期第一学期课程教案课程教案附页内容时间分配第1章电路的基本概念与基本定律电路:电流流通的路径。
直流电路:由直流电源供电的电路。
一、电路的组成及作用电路就是电流通过的闭合路径,它是由各种电气器件按一定方式用导线连接组成的总体。
电路的结构形式和所能完成的任务是多种多样的,从日常生活中使用的用电设备到工、农业生产中用到的各种生产机械的电器控制部分及计算机、各种测试仪表等,从广义说,都是电路。
最简单的电路如图所示的手电筒电路。
1、组成:电路主要由三部分组成。
(1)电源是供应电能的设备。
在发电厂内将化学能或机械能等非电能转换为电能,如电池、蓄电池、发电机等。
(2)负载是使用电能的设备,又称用电器。
作用是将电能转换成其它形式的能量,如电灯、电炉、扬声器、电动机等。
(3)中间环节用于连接电源和负载。
起传输和分配电能或对电信号进行传递和处理的作用,如变压器、输电线等。
2、电路模型和电路图实际电路元件电磁性质较为复杂。
为便于对实际电路进行分析,需用能够代表其主要电磁特性的理想电路元件或它们的组合来表示。
理想电路元件就是指只反映某一个物理过程的电路元件,包括电阻、电感、电容、电源等。
用理想电路元件所组成的电路即为电路模型,手电筒电路的电路模型如图所示。
R L C干电池电源开关导线中间环节白炽灯负载ELRoRS课程教案附页内容时间分配3、作用(1)进行电能的传输和转换,如照明电路、动力电路等。
典型电路是电力系统。
发电机升压变压器降压变压器输电线电动机电灯电炉负载电源中间环节(2)实现信息的传输和处理,如测量电路、扩音机电路、计算机电路等。
典型电路是扩音机。
晶体管放大电路扬声器中间环节电源负载二、电流1、电流的形成电荷的定向移动形成电流。
2、电流的大小电流的大小是指单位时间内通过导体横截面的电荷量。
电工与电子技术教案
电工与电子技术教案教案标题:电工与电子技术教案教学目标:1. 了解电工与电子技术的基本概念和原理。
2. 掌握电工与电子技术的基本工具和设备的使用方法。
3. 培养学生的动手实践能力和问题解决能力。
4. 培养学生的团队合作和沟通能力。
教学内容:1. 电工基础知识a. 电流、电压和电阻的概念及其关系b. 电路的基本组成和分类c. 电阻、电容和电感的特性和应用2. 电子技术基础知识a. 半导体材料和二极管的基本原理b. 三极管和场效应管的工作原理和应用c. 集成电路和数字电子技术的基本概念3. 电工与电子技术实验a. 电路实验:串联电路、并联电路和混合电路的搭建与测量b. 电子器件实验:二极管、三极管和集成电路的测试与应用c. 电子电路设计与制作:设计简单的放大电路或计数器电路并进行实际制作4. 应用案例分析a. 电工与电子技术在电子产品、通信、能源等领域的应用案例分析b. 学生根据实际案例进行问题分析和解决方案设计教学方法:1. 讲授法:通过教师讲解和演示,向学生介绍电工与电子技术的基本知识和原理。
2. 实验探究法:组织学生进行电工与电子技术的实验,培养学生动手实践和问题解决能力。
3. 讨论交流法:组织学生进行小组讨论和交流,促进学生的团队合作和沟通能力。
4. 案例分析法:引导学生分析和讨论电工与电子技术在实际应用中的问题和解决方案。
教学评估:1. 实验报告评估:根据学生的实验报告评估其对电工与电子技术的理解和实践能力。
2. 课堂表现评估:通过课堂讨论和问题解答,评估学生对电工与电子技术知识的掌握情况。
3. 项目设计评估:评估学生在电子电路设计与制作项目中的创新能力和实际操作能力。
4. 案例分析评估:评估学生对电工与电子技术应用案例的分析和解决问题的能力。
教学资源:1. 电工与电子技术教材和参考书籍2. 电工与电子技术实验器材和设备3. 多媒体教学课件和模拟软件4. 实际应用案例材料教学时间安排:本教案建议分为10节课进行教学,每节课45分钟。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
XX教案课程名称:电工与电子技术授课专业:授课教师:教务处制本章教学步骤设计讲述:电路的基本概念和分析方法例题分析:通过例题讲解和分析,加深学生对电路概念和分析方法的掌握和理解。
实验实训本章教学内容一、专业课介绍介绍本课程的学习方法,课程内容和大致课时分配二、电路的基本概念1. 介绍电路的基本概念和类型,电路元件模型介绍常用理想元件及符号集总参数模型2. 电路的基本物理量:电压、电流、功率的定义介绍词头代号因数词头代号因数中文英文中文英文兆(mega) 兆M 106 厘(centi) 厘 c 10-2千(kilo) 千k 103 毫(milli) 毫m 10-3百(hecto) 百h 102 微(micro) 微µ10-6十(deca) 十Da 10 皮(pico) 皮p 10-12常用单位3. 参考方向:定义和分析例题三、电路的基本定律1. 欧姆定律1. 基尔霍夫定律(a)电流定律 (b)电压定律四、电路的连接和工作状态1. 电源有载工作时的电流、电压和功率2. 电源开路时的电流、电压和功率3. 电源短路时的电流、电压和功率4. 电阻串并联的等效变换(a) 电阻串联特点(b) 电阻并联特点(c) 混联举例五、电流源的等效变换1. 两种电源模型2. 两种电源等效变换六、电路分析基本方法1.Y形联接图2.三相电源的相电压与线电压之间存在以下关系:3.对称三相电源还存在以下关系:结论:1.三相电源星形联接时,线电压有效值为相电压的有效值的倍,即;同时,在相位上线电压超前相应的相电压,如线电压超前相电压。
2. 对称三相电源联接成星形时,可以对外提供两组不同的对称电源。
二 . 三角形联结1.Δ形联接图2.三相电源的相电压与线电压之间存在以下关系:在对称三相电源三角形联结时,必须注意正确联接每相电源的极性。
第三节三相负载的连接三相负载的连接方式也有星形和三角形两种。
一、星形联结(Y联结)1. Δ形联接图如右2. 线电流与相电流的关系:二、三角形联结(联结)1. Δ形联接图2. 线电流和相电流之间存在以下关系:3.三个相电流为一组对称三相正弦量时有结论:1.Δ联接时,若负载相电流对称,则线电流有效值为相电流有效值的倍;在相位上,线电流滞后相应的相电流30。
2.若将三角形连接的三相负载看成一个广义节点,则存在,此结论与电流是否对称无关,可应用于所有三相三线制电路。
第四节对称三相电路的计算一、负载星形联结的对称三相电路对称三相负载联成星形时有以下特点:导体。
此时将在N型半导体和P型半导体的结合面上形成PN结。
1. PN结的单向导电性PN结具有单向导电性,若外加电压使电流从P区流到N区,PN结呈低阻性,所以电流大;反之是高阻性,电流小。
如果外加电压使:PN结P区的电位高于N区的电位称为加正向电压,简称正偏;PN结P区的电位低于N区的电位称为加反向电压,简称反偏。
2、PN结加正向电压时,呈现低电阻;PN结加反向电压时,呈现高电阻。
由此可以得出结论:PN结具有单向导电性。
三、半导体二极管1.结构在PN结上加上引线和封装,就成为一个二极管。
二极管按结构分有点接触型、面接触型和平面型三大类。
(1) 点接触型二极管--PN结面积小,结电容小,用于检波和变频等高频电路。
(2) 面接触型二极管--PN结面积大,用于工频大电流整流电路。
(3) 平面型二极管-往往用于集成电路制造工艺中。
PN结面积可大可小,用于高频整流和开关电路中。
2. 伏安特性及主要参数(1)伏安特性曲线P半导体二极管的伏安特性曲线如图4-10所示。
处于第一象限的是正向伏安特性曲线,处于第三象限的是反向伏安特性曲线。
图4-.10 二极管的伏安特性曲线●正向特性当U>0,即处于正向特性区域。
正向区又分为两段:当0<U<Uth时,正向电流为零,Uth称为死区电压或开启电压。
当U>Uth时,开始出现正向电流,并按指数规律增长。
硅二极管的死区电压Uth=0.5 V左右,锗二极管的死区电压Uth=0.1 V左右。
● 反向特性当U<0时,即处于反向特性区域。
反向区也分两个区域:当UBR<U<0时,反向电流很小,且基本不随反向电压的变化而变化,此时的反向电流也称反向饱和电流IS;当U≥UBR时,反向电流急剧增加,UBR称为反向击穿电压。
(2)主要参数①最大整流电流ID:二极管长期连续工作时,允许通过二极管的最大正向平均电流。
②反向工作峰值电压URWN:保证二极管不被反向击穿而规定的电压。
在实际工作时,定为反向击穿电压的一半。
③反向峰值电流IRM:是二极管加上反向工作峰值时的反向饱和电流。
硅二极管的反向电流一般在纳安(nA)级;锗二极管在微安(mA)级。
四、稳压二极管稳压二极管是应用在反向击穿区的特殊硅二极管。
稳压二极管的伏安特性曲线与硅二极管的伏安特性曲线完全一样,稳压二极管伏安特性曲线的反向区、符号和典型应用电路如图4-11所示。
(a) 符号 (b) 伏安特性(c) 应用电路图4-11 稳压二极管的伏安特性稳压管的主要技术参数。
(1) 稳定电压UZ --在规定的稳压管反向工作电流IZ下,所对应的反向工作电压。
(2)最大稳定工作电流IZmax 和最小稳定工作电流IZmin—IZmax~IZmin是稳压管正常时的电流范围。
若IZ<IZmin,则不能稳压;若IZ>IZmax,管子会因过热而损坏。
(3)动态电阻rZ—其概念与一般二极管的动态电阻相同,只不过稳压二极管的动态电阻是从它的反向特性上求取的。
rZ愈小,反映稳压管的击穿特性愈陡。
rz =△UZ /△IZ三、半导体三极管1.基本结构和类型2. 晶体管的特性曲线及主要参数以共射NPN型晶体管放大电路为例。
输入特性曲线—— IB=f(UBE)|UCE常数输出特性曲线—— IC=f(UCE)|IB=常数(1)输入特性曲线共发射极接法的输入特性曲线见图4-14。
图4-14 共发射极接法输入特性曲(2)输出特性曲线饱和区--IC受UCE显著控制的区域,该区域内UCE的数值较小,一般UCE<0.7 V(硅管)。
此时发射结正偏,集电结正偏或反偏电压很小。
截止区--IC接近零的区域,相当iB=0的曲线的下方。
此时,发射结反偏,集电结反偏。
放大区--IC平行于UCE轴的区域,曲线基本平行等距。
此时,发射结正偏,集电结反偏,电压大于0.7 V左右(硅管)。
四、整流电路利用二极管的单向导电性可以将交流电转换为直流电,这一过程称为整流,这种电路就称为整流电路。
常见的整流电路有半波整流电路和全波整流电路。
五、单相桥式整流电路的结构和特点单相桥式整流电路利用整流二极管的单向导电性,将交流电变成单向脉动直流电,其组成结构如图7-1所示。
图7-1单相桥式整流电路图7-1中,Tr表示电源变压器,作用是将交流电网电压u1变成整流电路要求的交流电压;RL是直流供电的负载电阻;4只整流二极管VD1~VD4依次接成电桥的形式,故称桥式整流电路。
桥式整流电路的特点是:输出电压的直流成分得到提高,脉冲成分被降低,每只整流二极管承受的最大反向电压较小,变压器的利用效率高,因此被广泛使用。
在实际应用中,单相桥式整流电路可以用四个独立的整流二极管实现,也可以用集成器件“桥堆”来实现。
图7-2所示为单相桥式整流电路的习惯简化画法。
图7-2单相桥式整流电路的习惯简化画法六、单相桥式整流电路的工作原理图7-3单相桥式整流电路波形在图7-3单相桥式整流电路波形中,在u的正半周时,u2>0时,VD1、VD4导通,VD2、VD3截止,故有图示i D1(i D4)的波形;本章教学步骤设计讲述:放大电路及运算放大器的基本概念。
分析:详细讲解放大电路及运算放大器的原理。
例题分析:通过例题讲解和分析,加深学生对应用的掌握和理解。
实验实训本章教学内容一.共射组态基本放大电路的组成共射组态基本放大电路如图5-1所示。
图5-1 共射组态交流基本放大电路(1) 基本组成三极管T--起放大作用。
负载电阻RC,RL--将变化的集电极电流转换为电压输出。
偏置电路UCC(Vcc),RB--使三极管工作在线性区。
耦合电容C1,C2—起隔直作用,输入电容C1保证信号加到发射结,不影响发射结偏置。
输出电容C2保证信号输送到负载,不影响集电结偏置。
(2) 静态和动态静态—u i=0 时,放大电路的工作状态,也称直流工作状态。
动态—u i≠0时,放大电路的工作状态,也称交流工作状态。
放大电路建立正确的静态,是保证动态工作的前提。
分析放大电路必须要正确地区分静态和动态,正确地区分直流通路和交流通路。
(3) 直流通路和交流通路放大电路的直流通路和交流通路如图5-2中(a),(b)所示。
直流通路,即能通过直流的通路。
从C、B、E向外看,有直流负载电阻、 Rc 、RB。
交流通路,即能通过交流的电路通路。
如从C、B、E向外看,有等效的交流负载电阻、 Rc//RL、RB。
直流电源和耦合电容对交流相当于短路。
因为按迭加原理,交流电流流过直流电源时,没有压降。
设C1、 C2 足够大,对信号而言,其上的交流压降近似为零,在交流通路中,可将耦合电容短路。
(a)直流通路(b)交流通路2.静态分析(1)静态工作状态的计算分析法根据直流通路可对放大电路的静态进行计算IB、IC和UCE这些量代表的工作状态称为静态工作点,用Q表示。
(2)用图解法求静态工作点(略)3. 动态分析:微变等效电路法和图解法是动态分析的基本方法。
(1) 微变等效电路的建立①三极管等效为一个线性元件。
②对于低频模型可以不考虑结电容的影响。
晶体管的输入、输出特性曲线见图5-4(a)、图5-4(b)。
其输入回路的等效电路如图5-5所示。
(2)动态性能指标计算共发射极交流基本放大电路如图5-6(a)所示。
(a) 共射基本放大电路 (b)微变等效电路电压放大倍数AvAv = = -βRL' / rbe输入电阻rir i = = rbe // Rb1// Rb2≈rbe = rbb' +(1+β)26 / IE =300Ω+(1+β)26/ IE 输出电阻RoRo = rce∥Rc≈Rc二、多级放大电路多级放大电路的连接,产生了单元电路间的级联问题,即耦合问题。
放大电路的级间耦合必须要保证信号的传输,且保证各级的静态工作点正确。
直接耦合——耦合电路采用直接连接或电阻连接,不采用电抗性元件。
直接耦合电路可传输低频甚至直流信号,因而缓慢变化的漂移信号也可以通过直接耦合放大电路。
阻容耦合和变压器耦合——级间采用电容或变压器耦合。
电抗性元件耦合,只能传输交流信号,漂移信号和低频信号不能通过。
1.阻容耦合放大电路如下图所示。
两级间的连接通过耦合电容C将前级的输出电压家在后级的输入电阻上。
由于电容的隔直作用,两级放大电路的静态工作点互不相关,各自独立。