2014年广东高考数学试题及答案解析(理)

合集下载

2014年高考理科数学试题(广东卷)及参考答案

2014年高考理科数学试题(广东卷)及参考答案

2014年普通高等学校招生全国统一考试(广东卷)理科数学及参考答案一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,0,1}M =-,{0,1,2}N =,则M N =A.{1,0,1}-B.{1,0,1,2}-C.{1,0,2}-D.{0,1}2.已知复数Z 满足(34)25i z +=,则Z= A.34i -B.34i +C.34i --D.34i -+3.若变量,x y 满足约束条件121y x x y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为m 和n ,则m n -=A.8B.7C.6D.54.若实数k 满足09k <<,则曲线221259x y k-=-与曲线221259x y k -=-的 A.离心率相等B.虚半轴长相等C.实半轴长相等D.焦距相等5.已知向量()1,0,1a =-,则下列向量中与a 成60︒夹角的是 A.(-1,1,0)B.(1,-1,0)C.(0,-1,1)D.(-1,0,1)6.已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别是A.200,20B.100,20C.200,10D.100,107.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则下面结论一定正确的是A.14l l ⊥B.14//l lC.14,l l 既不垂直也不平行D.14,l l 的位置关系不确定小学生 3500名初中生4500名 高中生 2000名小学初中30 高中10 年级50 O近视率/%8.设集合(){}12345=,,,,{1,0,1},1,2,3,4,5i A x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为 A.60B.90C.120D.130二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.不等式521≥++-x x 的解集为 。

2014年高考理科数学广东卷-答案

2014年高考理科数学广东卷-答案
【解析】由题意得, ,又 ,
所以 = = = = .
【提示】直接由等比数列的性质结合已知得到 ,然后利用对数的运算性质化简后得答案.
【考点】等比数列的性质,数列的前n项和,对数的运算
14.【答案】
【解析】曲线 即 ,故其直角坐标方程为: ,曲线 为 ,则其直角坐标方程为 ,所以两曲线的交点坐标为 .
【解析】由图1可得出样本容量为 .
抽取的高中生近视人数为 ,故选A.
【提示】根据图1可得总体个数,根据抽取比例可得样本容量,计算分层抽样的抽取比例,求得样本中的高中学生数,再利用图2求得样本中抽取的高中学生近视人数.
【考点】频率分布直方图,分层抽样
7.【答案】D
【解析】由 , ,将四条直线放入正方体中,如图所示, , , , 面 ,满足已知条件, 为平面 中的任意一条直线,即可得出结论, 的位置关系不确定.
由①②知,当 时, .
【提示】(Ⅰ)在数列递推式中取 得一个关系式,再把 变为 得另一个关系式,进而可求 ,然后把递推式中n取1,再结合 可求得 .
(Ⅱ)由(Ⅰ)中求得的 的值猜测出数列的一个通项公式,然后利用数学归纳法证明.
【考点】数列的项,数学归纳法求数列的通项公式
20.【答案】(Ⅰ)
(Ⅱ)
【解析】(Ⅰ)可知 ,又 ,
所以 ,
所以 .
(Ⅱ)由(Ⅰ)可知 ,
所以 ,
所以 ,
, .
又 ,
所以 ,
.
【提示】(Ⅰ)由函数 的解析式以及 ,求得 的值.
(Ⅱ)由(Ⅰ)可得 ,根据 ,求得 的值,再由 ,求得 的值,从而求得 的值.
【考点】三角函数求值,同角三角函数的基本关系
17.【答案】
(Ⅰ)由题意可得 =7, =2, =0.28, =0.08.

2014年广东高考理科数学真题及答案

2014年广东高考理科数学真题及答案

图1高中生2000名小学生3500名初中生4500名图2近视率/ %301050O 小学 初中 高中 年级2014年广东高考理科数学真题及答案一、选择题: 本大题共8小题,每小题5分,满分40分, 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则{1,0,1}M =-{0,1,2}N =M N = A . B . C . D .{0,1}{1,0,2}-{1,0,1,2}-{1,0,1}-2.已知复数满足,则z (34)25i z +=z =A . B . C . D .34i -+34i --34i +34i -3.若变量满足约束条件, 且的最大值和最小值分别为和,则,x y 11y x x y y ⎧⎪+⎨⎪-⎩≤≤≥2z x y =+m n m n -=A .5 B .6 C .7 D .84.若实数满足, 则曲线与曲线的 k 09k <<221259x y k -=-221259x y k -=-A .焦距相等 B .实半轴长相等 C .虚半轴长相等 D .离心率相等5.已知向量,则下列向量中与成夹角的是(1,0,1)-a =a 60 A . B . C . D .(1,1,0)-(1,1,0)-(0,1,1)-(1,0,1)-6.已知某地区中小学生人数和近视情况分别如图1和图2所示. 为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2 %的学生进行调查,则样本容量和抽取的高中生近视人数分别为A .200,20B .100,20C .200,10D .100,10 7.若空间中四条两两不同的直线,满足,,,则下列结论一定正确的是1234,,,l l l l 12l l ⊥23l l ⊥34l l ⊥A . B . C .与既不垂直也不平行 D .与的位置关系不确定14l l ⊥14//l l 1l 4l 1l 4l 8.设集合,那么集合中满足条件 (){}{}12345,,,,|1,0,1,1,2,3,4,5iA x x x x x x i =∈-=A “”的元素个数为1234513x x x x x ++++≤≤A .60 B .90 C .120 D .130二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.A F E D C B图3(一)必做题(9 ~ 13题)9.不等式的解集为 .125x x -++≥10.曲线在点处的切线方程为 .25+=-x e y )3,0(11.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为 .12.在中,角所对应的边分别为. 已知,则ABC ∆C B A ,,c b a ,,b B c C b 2cos cos =+ . =ba 13.若等比数列的各项均为正数,且,则{}n a 512911102e a a a a =+ .1220ln ln ln a a a +++= (二)选做题(14 ~ 15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,曲线和的方程分别为和1C 2C 2sin cos ρθθ=.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,则曲线和sin 1ρθ=x 1C 2C 交点的直角坐标为 .15.(几何证明选讲选做题)如图3,在平行四边形中,点在上且,与ABCD E AB 2EB AE =AC DE交于点,则= . F CDF AEF ∆∆的面积的面积三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知函数,,且. ()sin()4f x A x π=+x ∈R 23)125(=πf (1)求的值;A (2)若,,求. 23)()(=-+θθf f )2,0(πθ∈)43(θπ-f图4P A BC ED F17.(本小题满分12分)随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根据上述数据得到样本的频率分布表如下:分组 频数频率 [25,30] 30.12 (30,35] 50.20(35,40]8 0.32(40,45] 1n 1f (45,50] 2n2f (1)确定样本频率分布表中和的值;121,,n n f 2f (2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间的(30,35]概率.18.(本小题满分14分)如图4,四边形为正方形,平面, ABCD PD ⊥ABCD ,于点,∥,交于点.30DPC ∠= AF PC ⊥F FE CD PD E (1)证明:平面;CF ⊥ADF (2)求二面角的余弦值.D AFE --19.(本小题满分14分)设数列的前项和为,满足,,且. {}n a n n S n S 21234n n S na n n +=--*n ∈N 315S =(1)求的值;123,,a a a (2)求数列的通项公式.{}n a20.(本小题满分14分)已知椭圆的一个焦点为,离心率为. 2222:1x y C a b +=(0)a b >>(5,0)53(1)求椭圆的标准方程;C (2)若动点为椭圆外一点,且点到椭圆的两条切线相互垂直,求点的轨迹方00(,)P x y C P C P 程.21.(本小题满分14分)设函数,其中.2221()(2)2(2)3f x x x k x x k =+++++-2k <-(1)求函数的定义域(用区间表示);()f x D (2)讨论在区间上的单调性;()f x D (3)若,求上满足条件的的集合(用区间表示).6k <-D ()(1)f x f >xx2014年普通高等学校招生全国统一考试(广东卷)数 学(理科)参考答案一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.题号1 2 3 4 5 6 7 8 答案 C D B A B A D D二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9 ~ 13题)9. 10. 11.12. 2 13.50 (,3][2,)-∞-+∞ 530x y +-=16(二)选做题(14 ~ 15题,考生只能从中选做一题)14. 15.9(1,1)三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)16. 解:(1),解得. 55233()sin()sin 12124322f A A A ππππ=+===3A =(2)由(1)得, ()3sin()4f x x π=+所以 ()()3sin()3sin()44f f ππθθθθ+-=++- 222233(cos sin )3(cos sin )6cos 22222θθθθθ=++-==所以,又因为,所以, 6cos 4θ=)2,0(πθ∈210sin 1cos 4θθ=-=所以. 331030()3sin()3sin()3sin 344444f ππθπθπθθ-=-+=-==⨯=17.(本小题满分12分)17. 解:(1),,,. 17n =22n =170.2825f ==220.0825f ==(2)所求的样本频率分布直方图如图所示:频率组距0.0400.0240.0160.0560.064P A B C E D F G H P A B C E DF x yz(3)设“该厂任取4人,至少有1人的日加工零件数落在区间”为事件, (30,35]A ,即至少有1人的日加工零件数落在区间概率为.4()1(10.2)0.5904P A =--=(30,35]0.590418.(本小题满分14分)18.(1)证明:因为平面,平面,所以.PD ⊥ABCD AD ⊂ABCD PD AD ⊥因为在正方形中,又,所以平面.ABCD CD AD ⊥CD PD D = AD ⊥PCD 因为平面,所以.CF ⊂PCD AD CF ⊥因为,,所以平面.AF CF ⊥AF AD A = CF ⊥ADF (2)方法一:以为坐标原点,、、分别为、、轴建立空间直角坐标系D DP DC DA x y z 设正方形的边长为1,ABCD 则. 333(0,0,0),(0,0,1),(0,1,0),(3,0,0),(,0,0),(,,0)444D A C P E F 由(1)得是平面的一个法向量.(3,1,0)CP =- BCDE 设平面的法向量为, AEF (,,)x y z =n ,, 3(0,,0)4EF = 3(,0,1)4EA =- 所以. 304304EF y EA x z ⎧⋅==⎪⎪⎨⎪⋅=-+=⎪⎩ n n 令,则,,所以是平面的一个法向量. 4x =0y =3z =(4,0,3)=n AEF 设二面角的平面角为,且D AFE --θ(0,)2πθ∈所以, 43257cos 19219CP CP θ⋅===⨯⋅ n n 所以二面角的平面角的余弦值为. D AF E --25719方法二:过点作于,过点作于,连接.D DG AE ⊥G D DH AF ⊥H GH 因为,,,所以平面.CD PD ⊥CD ED ⊥ED AD D = CD ⊥ADE 因为∥,所以平面.FE CD FE ⊥ADE 因为平面,所以.DG ⊂ADE FE DG ⊥因为,所以平面.AE FE E = DG ⊥AEF 根据三垂线定理,有, GH AF ⊥所以为二面角的平面角. DHG ∠D AF E --设正方形的边长为1,ABCD 在△中,,,所以. Rt ADF 1AD =32DF =217DH =在△中,因为,所以,所以. Rt ADE 1124FC CD PC ==1344DE PD ==5719DG =所以, 226133133GH DH DG =-=025 30 35 40 45 50 日加工零件数所以, 257cos 19GH DHG DH ∠==所以二面角的平面角的余弦值为. D AF E --2571919.(本小题满分14分)19. 解:(1)当时,,2n =2123420S a a a =+=-又,所以,解得.312315S a a a =++=3342015a a -+=37a =当时,,又,解得.1n =11227S a a ==-128a a +=123,5a a ==所以.1233,5,7a a a ===(2) ①21234n n S na n n +=--当时, ②2n ≥212(1)3(1)4(1)n n S n a n n -=-----①②得.-12(22)61n n n a na n a n +=----整理得,即. 12(21)61n n na n a n +=-++1216122n n n n a a n n +-+=+猜想,. 以下用数学归纳法证明:21n a n =+*n ∈N 当时,,猜想成立;1n =13a =假设当时,,n k =21k a k =+当时,, 1n k =+21216121614161(21)232(1)122222k k k k k k k k a a k k k k k k k k+-+-+-++=+=++==+=++猜想也成立,所以数列的通项公式为,. {}n a 21n a n =+*n ∈N20.(本小题满分14分)20. 解:(1)依题意得,, 5c =53c e a ==所以,,3a =2224b a c =-=所以椭圆的标准方程为 C 22194x y +=(2)当过点的两条切线的斜率均存在时,P 12,l l 设,则 100:()l y y k x x -=-2001:()l y y x x k-=--联立, 2200194()x y y y k x x ⎧+=⎪⎨⎪-=-⎩得,2220000(49)18()9()360k x k y kx x y kx ++-+--=所以,22220000(18)()4(49)[9()36]0k y kx k y kx ∆=--+--=整理得,2200()49y kx k -=+即,2220000(9)240x k x y k y --+-=因为,所以, 12l l ⊥201220419y k k x -==--整理得; 220013x y +=当过点的两条切线一条斜率不存在,一条斜率为0时,P 12,l l 为或,均满足. P (3,2)±(3,2)-±220013x y +=综上所述,点的轨迹方程为.P 2213x y +=21.(本小题满分14分)21. 解:(1), 221()(23)(21)f x x x k x x k =+++++-由,得或,22(23)(21)0x x k x x k +++++->223x x k ++<-221x x k ++>即或,2(1)2x k +<--2(1)2x k +>-+所以或或,其中.1212k x k ----<<-+--12x k <---+12x k >-+-+2k <-所以函数的定义域.()f x (,12)(12,12)(12,)D k k k k =-∞---+⋃-----+--⋃-+-++∞(2)令,则, 222()(2)2(2)3g x x x k x x k =+++++-1()()f xg x =x D ∈,22()2(2)(22)2(22)4(1)(21)g x x x k x x x x x k '=+++++=++++令,解得,,,其中.()0g x '=11x k =---21x =-31x k =-+-2k <-因为,131********k x k k x k ---+<<----<-<-+--<<-+-+所以随的变化情况如下表:(),()g x g x 'xx (,12)k -∞---+ (12,1)k ----- 1-(1,12)k --+-- (12,)k -+-++∞()g x ' - +0 - + ()g x ↘ ↗ 极大值↘ ↗ 因为函数与在区间上的单调性相反,()y f x =()y g x =D 所以在和上是增函数,()f x (,12)k -∞---+(1,12)k --+-- 在和上是减函数.(12,1)k -----(12,)k -+-++∞(3)因为,所以,(1)(1)g x g x --=-+(1)(1)f x f x --=-+所以函数与的图象关于直线对称,()y f x =()y g x =1x =-所以.(1)(3)f f =-因为,所以.6k <-123112k k ----<-<<-+--①当时,(12,12)x k k ∈-----+--要使,则;()(1)f x f >(12,3)(1,12)x k k ∈-----⋃-+--②当时,(,12)(12,)x k k ∈-∞---+⋃-+-++∞令,即,,()(1)f x f =()(1)g x g =22(23)(21)(6)(2)x x k x x k k k +++++-=++令,则,22t x x k =++(1)t >(3)(1)(6)(2)t t k k +-=++整理得,即,222(815)0t t k k +-++=[(3)][(5)]0t k t k -+++=因为且,所以,即,1t >6k <-(5)t k =-+225x x k k ++=--所以,解得, 22250x x k +++=124x k =-±--(,12)(12,)k k ∈-∞---+⋃-+-++∞所以.()(1)(124)f x f f k ==-±--要使,则.()(1)f x f >(124,12)(12,124)x k k k k ∈-------+⋃-+-+-+--综上所述, 当时,在上满足条件的的集合为 6k <-D ()(1)f x f >x .(124,12)(12,3)(1,12)(12,124)k k k k k k -------+⋃-----⋃-+--⋃-+-+-+--。

2014年广东高考数学(理科)试题及答案

2014年广东高考数学(理科)试题及答案

绝密★启用前试卷类型:A2014年普通高等学校招生全国统一考试(广东卷)数学 (理科)本试卷共4页,21小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,…。

一、选择题:….1.已知集合M ={− 1,0,1},N ={0,1,2},则M ∪N =( ) A .{− 1,0,1} B .{− 1,0,1,2} C .{− 1,0,2}D .{0,1}【B 】2.已知i 为虚数单位,复数z 满足(3 + 4i )z = 25,则z =( ) A .3 − 4i B .3 + 4i C .− 3 − 4i D .− 3 + 4i【A 】3.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x x + y ≤1y ≥− 1且z = 2x + y 的最大值和最小值分别为M 和m ,则M − m =( ) A .8 B .7 C .6 D .5【C 】4.若实数k 满足0<k <9,则曲线x 225 − y 29 − k = 1与曲线x 225 − k − y 29 = 1的( )A .离心率相等B .虚半轴长相等C .实半轴长相等D .焦距相等【D 】5.已知向量a =(1,0,− 1),则下列向量中与a 成60°夹角的是( ) A .(− 1,1,0) B .(1,− 1,0)C .(0,− 1,1)D .(− 1,0,1)【B 】6.已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )A .200,20B .100,20C .200,10D .100,10【A 】7.若空间中四条两两不同的直线l 1,l 2,l 3,l 4,满足l 1⊥l 2,l 2⊥l 3,l 3⊥l 4,则下列结论一定正确的是( ) A .l 1⊥l 4B .l 1∥l 4C .l 1,l 4既不垂直也不平行D .l 1,l 4的位置关系不确定【D 】8.设集合A ={(x 1,x 2,x 3,x 4,x 5)|x i ∈{− 1,0,1},i = 1,2,3,4,5},那么集合A 中满足条件“1≤|x 1|+|x 2|+|x 3|+|x 4|+|x 5|≤3”的元素个数为( ) A .60B .90C .120D .130【D 】二、填空题:….(一) 必做题(9~13题)9.已知x ∈R ,则不等式|x − 1|+|x + 2|≥5的解集为____________________. 【(− ∞,− 3]∪[2,+ ∞)(也可以写成{x ∈R |x ≤− 3,或x ≥2})】10.曲线y = e − 5x + 2在点(0,3)处的切线方程为_____________________. 【5x + y − 3 = 0】小学生 3500名高中生 2000名初中生 4500名图1 图2级53111.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为_____________________.【1 6】12.在△ABC中,角A,B,C所对应的边分别为a,b,c,已知b cos C + c cos B = 2b,则ab= ______________________.【2】13.若等比数列{a n}的各项均为正数,且a10a11 + a9a12 = 2e5,则ln a1 + ln a2 + …+ ln a20 = ______________________.【50】(二) 选做题(14~15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,曲线C1和C2的方程分别为ρ sin2θ= cos θ和ρ sin θ = 1.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1和C2交点的直角坐标为______________.【(1,1)】15.(几何证明选讲选做题)如图3,在平行四边形ABCD中,点E在AB上且EB =2AE,AC与DE交于点F,则△CDF的面积△AEF的面积= ______________.【9】三、解答题:….A BCDEF图316.(本小题满分12分)已知函数f(x)= A sin(x +π4),x∈R,且f(5π12)=32.(1)求A的值;(2)若f(θ)+ f(−θ)=32,θ∈(0,π2),求f(3π4−θ).【(1)3;(2)30 4.】解:(1)f(5π12)= A sin(5π12+π4)= A sin2π3= A sin(π−π3)= A sinπ3=32A =32,解得A =3.(2)f(θ)+ f(−θ)=3sin(θ +π4)+3sin(−θ +π4)=3sin(θ +π4)+3cos(θ +π4)=6[sin(θ +π4)·22+3cos(θ +π4)·22]=6sin[(θ +π4)+π4]=6sin(θ +π2)=6cos θ =32,解得cos θ =6 4.又θ∈(0,π2),则sin θ = 1 − cos 2 θ=104.故f(3π4−θ)=3sin(π−θ)=3sin θ =304.17.(本小题满分13分)随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根据上述数据得到样本的频率分布表如下:分组频数频率[25,30] 3 0. 12(30,35] 5 0. 20(35,40]8 0. 32(40,45]n1f1(45,50]n2f2(1)确定样本频率分布表中n1,n2,f1和f2的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂(工人人数较多)任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.【(1)n1 = 7,n2 = 2,f1 = 0. 28,f2 = 0. 08;(2)如图所示;(3)0. 5904.】件数解:(1)依题意n1 = 7,n2 = 2,f1 = n1÷25 = 0. 28,f2 = n2÷25 = 0. 08.(2)绘制的频率分布直方图如图所示;(3)设在该厂任取4人中日加工零件数落在区间(30,35]有ξ人.则ξ服从二项分布B,且n = 4,p = 0. 2,即ξ~B(4,0. 2).故所求概率为P(ξ≥1)= 1 −P(ξ = 0)= 1 − C400. 20(1 − 0. 2)4= 1 − 0. 4096 = 0. 5904.18.(本小题满分13分)如图4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC = 30°,AF⊥PC于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF;(2)求二面角D−AF−E的余弦值.【(1)…;(2)25719.】 法二:(向量法,坐标系)解证:依题意AD ⊥CD ,又PD ⊥平面ABCD ,则PD ⊥AD ,PD ⊥CD ,则以DP →,DC →,DA →分别为x ,y ,z 轴建立空间直角坐标系,如图所示,设CD = 2.(1)依题意 PC = 4,PD = 23,AD = AB = BC = 2.DA →=(0,0,2),PC → =(0,2,0)−(23,0,0)=(− 23,2,0),则 PC →·DA → = … = 0, 即PC →⊥DA →,故PC ⊥DA .又PC ⊥AF ,故PC ⊥平面ADF . (2)设 PF → = t PC →,则 PF → = t PC →= t [(0,2,0)−(23,0,0)]=(− 23t ,2t ,0),AF → = AP → + PF →=[(23,0,0)−(0,0,2)]+(− 23t ,2t ,0) =(23(1 − t ),2t ,− 2).又AF ⊥PC ,则 AF →·PC →=(23(1 − t ),2t ,− 2)·(− 23,2,0)= … = 0, 即4t − 3 = 0,解得t = 34,AF → =(32,32,− 2).由(1)知 PC →=(− 23,2,0)是平面ADF 的一个法向量. 设m =(a ,b ,c )是平面AEF 的一个法向量,则m ⊥平面AEF , 即m ⊥AF →,m ⊥EF →,又EF ∥DC ,则m ⊥DC →, 故 ⎩⎨⎧m ·AF → = 3a 2 + 3b 2 − 2c = 0m ·DC →= 2b = 0,令c =3 得m =(4,0,3).则cos <m ,PC →> = … = − 83419= − 25719,显然所求二面角为锐角,故cos ∠D − AF − E =|cos <m ,PC →>|= 25719.19.(本小题满分14分)设数列{a n }的前n 项和为S n ,满足S n = 2na n + 1 − 3n 2 − 4n ,n ∈N *,且S 3 = 15. (1)求a 1,a 2,a 3的值; (2)求数列{a n }的通项公式.【(1)a 1 = 3,a 2 = 5,a 3 = 7;(2)a n = 2n + 1.】解:(1)令n = 1,2得a 1 = S 1 = 2a 2 − 3 − 4,a 1 + a 2 = S 2 = 4a 3 − 12 − 8, 又a 1 + a 2 + a 3 = S 3 = 15,联立求解得a 1 = 3,a 2 = 5,a 3 = 7.(2)法一:(数学归纳法)由(1)猜想通项公式a n = 2n + 1,然后用数学归纳法证明.….20.(本小题满分14分)已知椭圆C :x 2a 2 + y 2b 2 = 1(a >b >0)的一个焦点为(5,0),离心率为 53. (1)求椭圆C 的标准方程;(2)若动点P (x 0,y 0)为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.【(1)x 29 + y 24= 1;(2)x 2 + y 2 = 13.】解:(1)依题意 ⎩⎪⎨⎪⎧c = 5e 2 = ⎝ ⎛⎭⎪⎫c a 2= ⎝ ⎛⎭⎪⎫532= 59a 2 = b 2 + c 2,解得 ⎩⎪⎨⎪⎧a 2 = 9b 2 = 4c 2 = 5,故C 方程为x 29 + y 24 = 1.(2)设过点P 且与C 相切的两直线为l 1和l 2. ① 若l 1和l 2中有一条斜率不存在(垂直于x 轴),则依题意另一条斜率为0(平行于x 轴),显然切点分别为椭圆长轴和短轴顶点, 此时点P 坐标为(±3,±2).② 若l 1和l 2的斜率均存在,设l 1和l 2的斜率分别为k 1和k 2,过点P 与C 相切的直线l 斜率为k ,则l :y − y 0 = k (x − x 0),即y = k (x − x 0)+ y 0, 代入C 得4x 2 + 9[k (x − x 0)+ y 0]2 = 36,即(9k 2 + 4)x 2 + 18(y 0 − kx 0)kx + 9[(y 0 − kx 0)2 − 4]= 0,由l 与C 相切知Δ = 182(y 0 − kx 0)2 − 4(9k 2 + 4)9[(y 0 − kx 0)2 − 4]= 0, 对k 整理得(x 02− 9)k 2 − 2x 0y 0k +(y 02− 4)= 0(x 02≠±3)…(❀), 依题意方程(❀)的两根即为k 1和k 2, 由一元二次方程根与系数关系得k 1·k 2 = y 02− 4x 02 − 9,又l 1⊥l 2,则k 1·k 2 = − 1,即 y 02− 4x 02 − 9= − 1,整理得x 02 + y 02 = 13(x 02≠±3).综合①②并检验得所求点P 的轨迹方程为x 2 + y 2 = 13.21.(本小题满分14分)设函数f(x)=1(x2 + 2x + k)2 + 2(x2 + 2x + k)− 3,其中k<− 2.(1)求函数f(x)的定义域D(用区间表示);(2)讨论函数f(x)在D上的单调性;(3)若k<− 6,求D上满足条件f(x)>f(1)的x的集合(用区间表示).【(1)(−∞,− 1 − 2 −k)∪(− 1 −− 2 −k,− 1 +− 2 −k)∪(− 1 + 2 −k,+ ∞);(2)f(x)在(−∞,− 1 − 2 −k)和(− 1,− 1 +− 2 −k)上单调递增,在(− 1 −− 2 −k,− 1)和(− 1 + 2 −k,+ ∞)上单调递减;(3)(− 1 −− 2k− 4,− 1 − 2 −k)∪(− 1 −− 2 −k,− 3)∪(1,− 1 +− 2 −k)∪(− 1 + 2 −k,− 1 +− 2k− 4).】解:(1)依题意得(x2 + 2x + k)2 + 2(x2 + 2x + k)− 3>0,即[(x2 + 2x + k)− 1][(x2 + 2x + k)+ 3]>0,则x2 + 2x + k<− 3,或x2 + 2x + k>1,即(x + 1)2<− 2 −k,或(x + 1)2>2 −k,则|x + 1|<− 2 −k,或|x + 1|> 2 −k,故− 1 −− 2 −k<x<− 1 +− 2 −k,或x<− 1 − 2 −k,或x>− 1 + 2 −k,又2 −k>− 2 −k,则 2 −k>− 2 −k,即− 1 − 2 −k<− 1 −− 2 −k<− 1 +− 2 −k<− 1 + 2 −k,故所求定义域D为(−∞,− 1 − 2 −k)∪(− 1 −− 2 −k,− 1 +− 2 −k)∪(− 1 + 2 −k,+ ∞).(2)法一:(导数法)依题意f'(x)= −2(x2 + 2x + k + 1)(x + 1) [(x2 + 2x + k)2 + 2(x2 + 2x + k)− 3]3令f '(x)>0得(x2 + 2x + k + 1)(x + 1)<0,即[(x + 1)2−(−k)2](x + 1)<0,则(x + 1 +−k)(x + 1 −−k)(x + 1)<0,由数轴穿根法如图得x <− 1 − − k ,或− 1<x <− 1 + − k ,结合定义域得f (x )在(− ∞,− 1 − 2 − k )和(− 1,− 1 + − 2 − k )上单调递增, 在(− 1 − − 2 − k ,− 1)和(− 1 + 2 − k ,+ ∞)上单调递减.法二:(复合函数单调性:同增异减)设v (t )= t 2 + 2t − 3,t (x )= x 2 + 2x + k ,则y (v )= 1v,显然y (v )是减函数. v (t )和t (x )的的对称轴分别为t = − 1和x = − 1,令t >−1得x 2 + 2x + k >− 1,即x 2 + 2x + 1>− k ,则(x + 1)2>− k , 即|x + 1|>− k ,解得x <− 1 − − k ,或x >− 1 + − k ,如图,根据复合函数的单调性复合法则及定义域得f (x )在(− ∞,− 1 − 2 − k )和(− 1,− 1 + − 2 − k )上单调递增, 在(− 1 − − 2 − k ,− 1)和(− 1 + 2 − k ,+ ∞)上单调递减. (3)令f (x ) = f (1)得1(x 2 + 2x + k )2 + 2(x 2 + 2x + k )− 3 =1(3 + k )2+ 2(3 + k )− 3则(x 2 + 2x + k )2 + 2(x 2 + 2x + k )− 3 =(3 + k )2 + 2(3 + k )− 3 整理得[(x + 1)2 −(− 2k − 4)](x + 2x − 3)= 0,即[x + 1 + − 2k − 4][x + 1 − − 2k − 4](x + 3)(x − 1)= 0解得x = − 1 + − 2k − 4,或x = − 1 − − 2k − 4,或x = − 3,或x = 1.tv (t ) ↗ ↘ ↘ ↗ v (x ) ↘ ↗ ↘ ↗ y (v ) ↘ ↘ ↘ ↘ y (x ) ↗↘ ↗ ↘由k<− 6知−k>6,则− 2 −k>2, 2 −k<− 2k− 4,故1∈(− 1,− 1 +− 2 −k),− 3∈(− 1 −− 2 −k,− 1),− 1 −− 2k− 4<− 1 − 2 −k,− 1 +− 2k− 4>− 1 + 2 −k,结合定义域及单调性知f(x)>f(1)的解集为(− 1 −− 2k− 4,− 1 − 2 −k)∪(− 1 −− 2 −k,− 3)∪(1,− 1 +− 2 −k)∪(− 1 + 2 −k,− 1 +− 2k− 4).。

2014全国统一高考数学真题及逐题详细解析(理科)—广东卷

2014全国统一高考数学真题及逐题详细解析(理科)—广东卷

2014年普通高等学校招生全国统一考试(广东卷)数学(理科)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,0,1},{0,1,2},M N =-=则M N ⋃= A .{1,0,1}- B. {1,0,1,2}- C. {1,0,2}- D. {0,1}2.已知复数Z 满足(34)25,i z +=则Z= A .34i - B. 34i + C. 34i -- D. 34i -+3.若变量,x y 满足约束条件121y x x y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为M 和m ,则M-m=A .8 B.7 C.6 D.54.若实数k 满足09,k <<则曲线221259x y k-=-与曲线221259x y k -=-的 A .离心率相等 B.虚半轴长相等 C. 实半轴长相等 D.焦距相等 5.已知向量()1,0,1,a =-则下列向量中与a 成60︒夹角的是A .(-1,1,0)B. (1,-1,0)C. (0,-1,1)D. (-1,0,1)6.已知某地区中小学生人数和近视情况分别如图1和图2所示,为了该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别是A.200,20B.100,20C.200,10D.100,107.若空间中四条两两不同的直线1234,,,,l l l l 满足122334,,,l l l l l l ⊥⊥⊥则下面结论一定正确的是 A .14l l ⊥ B .14//l l C .14,l l 既不垂直也不平行 D .14,l l 的位置关系不确定小学 初中 高中 年级O8.设集合(){}12345=,,,,1,0,1,1,2,3,4,5iA x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为A .60 B90 C.120 D.130二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.不等式521≥++-x x 的解集为 。

2014年广东省高考数学试卷(理科)答案与解析

2014年广东省高考数学试卷(理科)答案与解析

2014年广东省高考数学试卷(理科)参考答案与试题解析一、选择题:本小题共8小题,每小题5分,共40分.z===3 3.(5分)(2014•广东)若变量x,y满足约束条件,且z=2x+y的最大值和最小,解得,,解得,4.(5分)(2014•广东)若实数k满足0<k<9,则曲线﹣=1与曲线﹣=1﹣=1﹣=15.(5分)(2014•广东)已知向量=(1,0,﹣1),则下列向量中与成60°夹角的是()解:不妨设向量为.若==,不满足条件..若==.若=,不满足条件..若==6.(5分)(2014•广东)已知某地区中小学学生的近视情况分布如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为(),7.(5分)(2014•广东)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,8.(5分)(2014•广东)设集合A={(x1,x2,x3,x4,x5)|x i∈{﹣1,0,1},i={1,2,3,+二、填空题:本大题共5小题,考生作答6小题,每小题5分,满分25分.(一)必做题(9~13题)9.(5分)(2014•广东)不等式|x﹣1|+|x+2|≥5的解集为(﹣∞,﹣3]∪[2,+∞).,可得10.(5分)(2014•广东)曲线y=e﹣5x+2在点(0,3)处的切线方程为y=﹣5x+3..11.(5分)(2014•广东)从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为.中任取七个不同的数,有种方法,不同的数即可,有=故答案为:.12.(5分)(2014•广东)在△ABC中,角A,B,C所对应的边分别为a,b,c,已知bcosC+ccosB=2b,则=2.=213.(5分)(2014•广东)若等比数列{a n}的各项均为正数,且a10a11+a9a12=2e5,则lna1+lna2+…lna20=50.=(二)、选做题(14~15题,考生只能从中选作一题)【坐标系与参数方程选做题】14.(5分)(2014•广东)在极坐标系中,曲线C1和C2的方程分别为ρsin2θ=cosθ和ρsinθ=1,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1和C2交点的直角坐标为(1,1).【几何证明选讲选做题】15.(2014•广东)如图,在平行四边形ABCD中,点E在AB上且EB=2AE,AC与DE交于点F,则=9.可得=.∴=∴(三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤. 16.(12分)(2014•广东)已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)+f(﹣θ)=,θ∈(0,),求f(﹣θ).),求得sin)﹣x+(+)=A=A=sin)sin+=2sin cos= =).(=﹣+==.17.(13分)(2014•广东)随机观测生产某种零件的某工作厂25名工人的日加工零件个数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根据上述数据得到样本的频率分布表1212(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.为事件的概率为=,),的概率为.18.(13分)(2014•广东)如图,四边形ABCD为正方形.PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF;(2)求二面角D﹣AF﹣E的余弦值.PD=AF=,,又∴EF=CD=,(,(=,∴,∴=,的一个法向量为(<>=19.(14分)(2014•广东)设数列{a n}的前n项和为S n,满足S n=2na n+1﹣3n2﹣4n,n∈N*,且S3=15.(1)求a1,a2,a3的值;(2)求数列{a n}的通项公式.,,∴20.(14分)(2014•广东)已知椭圆C:+=1(a>b>0)的右焦点为(,0),离心率为.(1)求椭圆C的标准方程;(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P 的轨迹方程.)依题意知+++21.(14分)(2014•广东)设函数f(x)=,其中k<﹣2.(1)求函数f(x)的定义域D(用区间表示);(2)讨论函数f(x)在D上的单调性;(3)若k<﹣6,求D上满足条件f(x)>f(1)的x的集合(用区间表示).>x+1>解得﹣<,即﹣1+综上函数的定义域为(﹣)x+1+)﹣或﹣1+﹣1+﹣x+1+)1+1+)∈﹣1+1+)﹣1+。

2014年高考广东理科数学试题及答案(word解析版)

2014年高考广东理科数学试题及答案(word解析版)

2014年高考广东理科数学试题及答案(word解析版)2014年普通高等学校招生全国统一考试(广东卷)数学(理科)一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2014年广东,理1,5分】已知集合{1,0,1}M =-,{0,1,2}N =,则M N =U ( ) (A ){1,0,1}- (B ){1,0,1,2}- (C ){1,0,2}- (D ){0,1} 【答案】B【解析】{1,0,1,2}M N =-U ,故选B . (2)【2014年广东,理2,5分】已知复数z 满足(34i)25z +=,则z =( ) (A )34i - (B )34i + (C )34i -- (D )34i -+ 【答案】A【解析】2525(34i)25(34i)=34i 34i (34i)(34i)25z --===-++-,故选A . (3)【2014年广东,理3,5分】若变量,x y 满足约束条件121y xx y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为M 和m ,则M m -=( ) (A )8 (B )7 (C )6 (D )5 【答案】C 【解析】画出可行域,易知在点(2,1)与(1,1)--处目标函数分别取得最大值3M =,与最小值3m =-,6M m ∴-=,故选C .(4)【2014年广东,理4,5分】若实数k 满足09k <<,则曲线221259x y k-=-与曲线221259x y k -=-的( ) (A )离心率相等 (B )虚半轴长相等 (C )实半轴长相等 (D )焦距相等 【答案】D【解析】09k <<Q ,90k ∴->,250k ->,从而两曲线均为双曲线,又25(9)34(25)9k k k +-=-=-+,两双曲线的焦距相等,故选D .(5)【2014年广东,理5,5分】已知向量()1,0,1a =-,则下列向量中与a 成60︒夹角的是( ) (A )()1,1,0- (B )()1,1,0- (C )()0,1,1- (D )()1,0,1- 【答案】B【解析】2222221210(1)1(1)0=++-⋅+-+,即这两向量的夹角余弦值为12,从而夹角为060,故选A . (6)【2014年广东,理6,5分】已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( ) (A )200,20 (B )100,20 (C )200,10 (D )100,10 【答案】A【解析】样本容量为(350045002000)2%200++⋅=,抽取的高中生近视人数为:20002%50%20⋅⋅=,故选A .(7)【2014年广东,理7,5分】若空间中四条两两不同的直线1234,,,l l l l ,满足12l l ⊥,23l l ⊥,34l l ⊥则下列结论一定正确的是( )(A )14l l ⊥ (B )14//l l (C )14,l l 既不垂直也不平行 (D )14,l l 的位置关系不确定 【答案】D【解析】平面中的四条直线,14l l ⊥,空间中的四条直线,位置关系不确定,故选D .(8)【2014年广东,理8,5分】设集合(){}12345=,,,,{1,0,1},1,2,3,4,5iA x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为( )(A )60 (B )90 (C )120 (D )130 【答案】D【解析】12345x x x x x ++++可取1,2,3,和为1的元素个数为:1125C 10C =;和为2的元素个数为:122255C 40C A +=;和为3的元素个数为:1311225254C C C 80C C +=,故满足条件的元素总的个数为104080130++=,故选D .二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13) (9)【2014年广东,理9,5分】不等式125x x -++≥的解集为 .【答案】(][),32,-∞-+∞U【解析】数轴上到1与2-距离之和为5的数为3-和2,故该不等式的解集为:(][),32,-∞-+∞U . (10)【2014年广东,理10,5分】曲线52xy e -=+在点(0,3)处的切线方程为 .【答案】530x y +-=【解析】'55xy e -=-,'5x y =∴=-,∴所求切线方程为35y x -=-,即530x y +-=.(11)【2014年广东,理11】,5分从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为 . 【答案】16【解析】要使6为取出的7个数中的中位数,则取出的数中必有3个不大于6,另外3个不小于6,故所求概率为3671016C C=. (12)【2014年广东,理12,5分】在ABC ∆中,角,,A B C 所对应的边分别为,,a b c ,已知cos cos 2b C c B b +=,则a b = . 【答案】2【解析】解法一:由射影定理知cos cos b C c B a +=,从而2a b =,2ab ∴=. 解法二:由上弦定理得:sin cos sin cos 2sin B C C B B +=,即sin()2sin B C B +=,sin 2sin A B ∴=,即2a b =,2ab ∴=. 解法三:由余弦定理得:222222222a b c a c b b bab ac+-+-⋅+=,即224a ab=,2a b ∴=,即2ab =.(13)【2014年广东,理13,5分】若等比数列{}na 的各项均为正数,且510119122a a a a e +=,则1220ln ln ln a a a +++=L L .【答案】50【解析】1011912a a a a =Q ,51011a a e ∴=,设1220ln ln ln S a a a =+++L ,则20191ln ln ln S a a a =+++L , 51201011220ln 20ln 20ln 100S a a a a e ∴====,50S ∴=.(二)选做题(14-15题,考生只能从中选做一题)(14)【2014年广东,理14,5分】(坐标系与参数方程选做题)在极坐标系中,曲线1C 和2C 的方程分别为2sin cos ρθθ=和sin 1ρθ=,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 和2C 的交点的直角坐标为 .【答案】(1,1)【解析】1C 即2(sin )cos ρθρθ=,故其直角坐标方程为:2y x =,2C 的直角坐标系方程为:1y =,1C ∴与2C 的交点的直角坐标为(1,1).(15)【2014年广东,理15,5分】(几何证明选讲选做题)如图3,在平行四边形ABCD 中,点E 在AB 上且2EB AE =,AC 与DE 交于点,则CDF AEF ∆=∆的面积的面积. 【答案】9【解析】显然CDF AEF ∆∆:,∴22()()9CDF CDEB AE AEF AEAE∆+===∆的面积的面积.三、解答题:本大题共6题,共80分.解答应写出文字说明,证明过程或演算步骤. (16)【2014年广东,理16,12分】已知函数()sin(),4f x A x x R π=+∈,且53()122f π=. (1)求A 的值;(2)若3()()2f f θθ+-=,(0,)2πθ∈,求3()4f πθ-. 解:(1)5523()sin()sin 1212432f A A ππππ=+==,3323A ∴=⋅=. (2)由(1)得:()3sin()4f x x π=+,()()3sin()3sin()44f f ππθθθθ∴+-=++-+33(sin cos cos sin )3(sin()cos cos()sin )23cos sin 6cos 444442πππππθθθθθθ=++-+-===,6cos θ∴=,(0,)2πθ∈Q ,10sin θ∴=,331030()3sin()3sin()3sin 3444f πππθθπθθ∴-=-+=-==⨯=.(17)【2014年广东,理17,12分】随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根据上述数据得到样本的频率分布表如下:分组 频数 频率 [25,30] 3 0.12 (30,35] 5 0.20 (35,40] 8 0.32 (40,45] 1n 1f (45,50] 2n 2f(1)确定样本频率分布表中121,,n n f 和2f 的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(]30,35的概率.解:(1)17n =,22n =,170.2825f ==,220.0825f ==. (2)频率分布直方图如下所示:(3)根据频率分布直方图,可得工人们日加工零件数落在区间(]30,35的概率为0.2,设日加工零件数落在区间(]30,35的人数为随机变量ξ,则(4,0.2)B ξ:,故4人中,至少有1人的日加工零件数落在区间(]30,35 的概率为:0441(0.2)(0.8)10.40960.5904C -=-=.(18)【2014年广东,理18,14分】如图4,四边形ABCD 为正方形,PD ⊥平面ABCD ,30DPC ∠︒=,AF PC ⊥于点F ,//FE CD ,交PD 于点E . (1)证明:CF ⊥平面ADF ;(2)求二面角D AF E --的余弦值. 解:(1)PD ⊥平面ABCD ,PD PCD ⊂,∴平面PCD ⊥平面ABCD ,平面PCD I 平面ABCD CD =,AD ⊂平面ABCD ,AD CD ⊥,AD ∴⊥平面PCD ,CF ⊂平面PCD ,CF AD ∴⊥,又AF PC ⊥,CF AF ∴⊥,,AD AF ⊂平面ADF ,AD AF A =I ,CF ∴⊥平面ADF .(2)解法一:过E 作//EG CF 交DF 于G ,CF ⊥Q 平面ADF ,EG ∴⊥平面ADF ,过G 作GH AF ⊥于H ,连EH则EHG ∠为二面角D AF E --的平面角,设2CD =,030DPC ∠=Q ,30CDF ∴∠=,从而1==12CF CD , 4CP =,EF DC Q ∥,DE CFDP CP∴=,即12=223,3DE ∴=,还易求得32EF =,3DF =,从而3332243DE EF EG DF ⋅⋅===,易得19AE =,7AF =,32EF =,19331922747AE EF EH AF ⋅⋅∴===,故22319363()()44747HG =-=,6347257cos 47319GH EHG EH ∴∠==⋅=.解法二:分别以DP ,DC ,DA 为x ,y ,z 轴建立空间直角坐标系,设2DC =,则(0,0,2)A ,(0,2,0)C ,(23,0,0)P ,设CF CP λ=u u u r u u u r ,则(23,22,0)F λλ-,DF CF ⊥u u u r u u u r Q ,可得14λ=,从而33(,0)2F ,易得 3(E ,取面ADF 的一个法向量为11(3,1,0)2n CP ==-u u r u u u r,设面AEF的一个法向量为2(,,)nx y z =u u r, 利用20n AE ⋅=u u r u u u r ,且20n AF ⋅=u u r u u u r ,得2n u u r可以是3),从而二面角的余弦值为121243257||||219n n n n ⋅==⋅⨯u u r u u r u u r u u u r . (19)【2014年广东,理19,14分】设数列{}na 的前n 和为nS ,满足2*1234,n n S na n n n N +=--∈,且315S =. (1)求123,,a a a 的值;(2)求数列{}na 的通项公式.解:(1)211222314127a S a a ==-⨯-⨯=- ①2122331212+=432424()204(15)20a a S a S a a a a =-⨯-⨯=---=---,12+8a a ∴= ②联立①②解得1235a a =⎧⎨=⎩,33121587a S a a ∴=--=-=,综上13a =,25a =,37a =.(2)21234nn Sna n n +=-- ③ ∴当2n ≥时,212(1)3(1)4(1)n n Sn a n n -=----- ④-③④并整理得:1216122n n n n aa n n+-+=+,由(1)猜想21nan =+,以下用数学归纳法证明:(ⅰ)由(1)知,当1n =时,13211a ==⨯+,猜想成立; (ⅱ)假设当n k =时,猜想成立,即21ka k =+,则当1n k =+时,212161211411(21)33232(1)1222222k k k k k k a a k k k k k k k k k+-+--=+=⋅+++=++=+=++,这就是说1n k =+时,猜想也成立,从而对一切n N *∈,21na n =+.(20)【2014年广东,理20,14分】已知椭圆2222:1(0)xy C a b ab+=>>的一个焦点为(5,0)5.(1)求椭圆C 的标准方程;(2)若动点0(,)P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.解:(1)5c =,55c e a ==3a ∴=,222954b a c =-=-=,∴椭圆C 的标准方程为:22194x y +=.(2)若一切线垂直x 轴,则另一切线垂直于y 轴,则这样的点P 共4个,它们的坐标分别为(3,2)-±,(3,2)±.若两切线不垂直与坐标轴,设切线方程为()y y k x x -=-,即0()y k x x y =-+,将之代入椭圆方程22194x y+=中并整理得:222(94)18()9()40k x k y kx x y kx ⎡⎤++-+--=⎣⎦,依题意,0∆=,即222200(18)()36()4(94)0k y kx y kx k ⎡⎤----+=⎣⎦,即224()4(94)0y kx k--+=, 2220000(9)240x k x y k y ∴--+-=,Q 两切线相互垂直,121k k∴=-,即2020419y x -=--,220013xy ∴+=,显然(3,2)-±,(3,2)±这四点也满足以上方程,∴点P 的轨迹方程为2213x y +=.(21)【2014年广东,理21,14分】设函数222()(2)2(2)3f x x x k x x k =+++++-2k <-.(1)求函数()f x 的定义域D (用区间表示);(2)讨论()f x 在区间D 上的单调性;(3)若6k <-,求D 上满足条件()(1)f x f >的x 的集合(用区间表示).解:(1)222(2)2(2)30x x k x x k +++++->,则221x x k ++> ① 或 223x x k ++<- ②由①得:2210x x k ++->,144(1)4(2)0k k ∆=--=->(2)k <-Q , ∴方程2210x x k ++-=的解为12k --,∴由2210x x k ++->得12x k <--12x k >--由②得2230x x k +++<,方程2230x x k +++=的判别式244(3)4(2)0k k ∆=-+=-->(2)k <-Q ,∴该方程的解为12k ---,由2230x x k +++<得1212k x k ----<-+--2k <-Q ,121211212k k k k ∴--<-----<-----(,12)(12,12)(12,)D k k k k ∴=-∞--------+---+-+∞U U .(2)设222(2)2(2)30u x x k x x k +++++->, 则3'221()2(2)(22)2(22)2f x u x x k x x -⎡⎤=-⋅⋅++⋅+++⎣⎦ 3222(1)(21)u x x x k -=-+⋅+++, (ⅰ)当(,12)x k ∈-∞--时,10x +<,221110x x k +++>+>,'()0f x ∴>;(ⅱ)当(12,1)x k ∈-----时,10x +<,221310x x k +++<-+<,'()0f x ∴<; (ⅲ)当(1,12)x k ∈--+--时,10x +>,221310x x k +++<-+<,'()0f x ∴>; (ⅳ)当(12,)x k ∈-+-+∞时,10x +>,221110x x k +++>+>,'()0f x ∴<. 综上,()f x 在D 上的单调增区间为:(,12),(1,12)k k -∞-----+--,()f x 在D 上的单调减区间为:(12,1),(12,)k k -----+-+∞.(3)设222(x)(2)2(2)3g x x k x x k =+++++-,由(1)知,当x D ∈时,()0g x >; 又2(1)(3)2(3)3(6)(2)g k k k k =+++-=++,显然,当6k <-时,(1)0g >, 从而不等式()(1)()(1)f x f g x g >⇔<,2222()(1)[(2)2(2)3][(3k)2(3)3]g x g x x k x x k k -=+++++--+++-22222[(2)(3k)]2[(2)(3)](3)(1)(225)x x k x x k k x x x x k =++-++++-+=+-+++,6k <-, 1421212311212142k k k k k k ∴--------<-<<----+--+--(ⅰ)当12x k <--时,(3)(1)0x x +->,∴欲使()(1)f x f >,即()(1)g x g <,亦即22250x x k +++<,即142142k x k ---<<---14212k x k ∴---<---(ⅱ)123k x ---<-时,(3)(1)0x x +->,22225(2)(5)3(5)0x x k x x k k k +++=++++<-++<,此时()(1)g x g <,即()(1)f x f >;(ⅲ)31x -<<时,(3)(1)0x x +-<,22253(5)0x x k k +++<-++<()(1)g x g ∴>不合题意;(ⅳ)112x k <<-+--时,(3)(1)0x x +->,22253(5)0x x k k +++<-++<,()(1)g x g ∴<,不合题意;(ⅴ)12x k >--时,(3)(1)0x x +->,∴欲使()(1)g x g <,则22250x x k +++<,即142142k x k ---<<---,从而12142k x k --<-+--.综上所述,()(1)f x f >的解集为: (()()(142,1212,31,1212,142k k k k k k ----------+-----+--U U U .。

2014广东高考理科数学试卷及答案

2014广东高考理科数学试卷及答案

2014年普通高等学校招生全国统一考试(广东卷)数学(理科B 卷)解析一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知集合{1,0,1},{0,1,2},M N =-=则M N ⋃=( )A .{1,0,1}- B. {1,0,1,2}- C. {1,0,2}- D. {0,1} 2、已知复数z 满足(34)25,i z +=则z =( )A .34i - B. 34i + C. 34i -- D. 34i -+3、若变量,x y 满足约束条件121y x x y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为m 和n ,则m n -= ( )A .8 B.7 C.6 D.54、若实数k 满足09,k <<则曲线221259x y k-=-与曲线221259x y k -=-的( ) A .离心率相等 B.虚半轴长相等 C. 实半轴长相等 D.焦距相等 5、已知向量()1,0,1,a =-则下列向量中与a 成60︒夹角的是( ) A .(-1,1,0) B. (1,-1,0) C. (0,-1,1) D. (-1,0,1)6、已知某地区中小学学生人数和近视情况分别如图1和如图2所示,为了解该地区中下学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )A. 100,10B. 200,10C. 100,20D. 200,20小学 初中 高中 年级O7、若空间中四条两两不同的直线1234,,,,l l l l 满足122334,,,l l l l l l ⊥⊥⊥则下面结论一定正确的是( )A .14l l ⊥B .14//l lC .14,l l 既不垂直也不平行D .14,l l 的位置关系不确定 8、设集合(){}12345=,,,,1,0,1,1,2,3,4,5iA x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为( ) A.130 B.120 C.90 D.60二、填空题:本大题共7小题.考生作答6小题.每小题5分,满分30分. (一)必做题(9~13题)9、不等式125x x -++≥的解集为10、曲线52x y e -=+在点(0,3)处的切线方程为11、从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为 12、在ABC ∆中,角C B A ,,所对应的边分别为c b a ,,,已知b B c C b 2cos cos =+, 则ab= 13、若等比数列{}n a 的各项均为正数,且512911102e a a a a =+, 则1220ln ln ln a a a +++=(二)选做题(14、15题,考生只能从中选做一题)14、(坐标系与参数方程选做题)在极坐标系中,曲线1C 和2C 的方程分别为2sin cos ρθθ=和sin 1ρθ=,以极点为平面直角坐标系的原点,极轴为x 轴正半轴,建立平面直角坐标系,则曲线1C 和2C 交点的直角坐标为_________15、(几何证明选讲选做题)如图3,在平行四边形ABCD 中, 点E 在AB 上且AE EB 2=,AC 与DE 交于点F , 则=∆∆的面积的面积AEF CDF三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16、(本小题满分12分)已知函数R x x A x f ∈+=),4sin()(π,且53122f π⎛⎫= ⎪⎝⎭, CABF D(1)求A 的值; (2)若23)()(=-+θθf f ,)2,0(πθ∈,求)43(θπ-f 。

2014高考广东卷理科数学真题及答案解析 .doc

2014高考广东卷理科数学真题及答案解析 .doc

2014高考广东卷理科数学真题及答案解析新东方在线举国瞩目的2014高考数学科目的考试已结束,新东方在线高考名师团队第一时间对2014全国高考各科真题进行了点评,希望能对考生、家长有所帮助,也希望对2015高考考生提供借鉴。

以下是广州新东方高考名师团队对广东卷理科数学真题提供的参考答案及解析,供广大考生参考。

一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{1,0,1},{0,1,2},M N =-=则M N ⋃= 【答案】BA .{1,0,1}- B. {1,0,1,2}- C. {1,0,2}- D. {0,1} 2.已知复数Z 满足(34)25,i z +=则Z=AA .34i - B. 34i + C. 34i -- D. 34i -+ 【答案】A3.若变量,x y 满足约束条件121y x x y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为M 和m ,则M-m=A .8 B.7 C.6 D.5 【答案】C4.若实数k 满足09,k <<则曲线221259x y k-=-与曲线221259x y k -=-的 A .离心率相等 B.虚半轴长相等 C. 实半轴长相等 D.焦距相等【答案】D5.已知向量()1,0,1,a =-则下列向量中与a 成60︒夹角的是A .(-1,1,0) B. (1,-1,0) C. (0,-1,1) D. (-1,0,1) 【答案】B6、已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为A 、200,20B 、100,20C 、200,10D 、100,10 【答案】A7、若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,,l l l l l l ⊥⊥⊥,则下列结论一定正确的是 A .14l l ⊥ B .14//l l C .14,l l 既不垂直也不平行 D .14,l l 的位置关系不确定33255.23)125(),4sin()(=+=f x A x f ππ且Θ【答案】D 8.设集合(){}12345=,,,,1,0,1,1,2,3,4,5iA x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为A .60 B90 C.120 D.130 【答案】D二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.不等式521≥++-x x 的解集为 。

(广东省)2014年高考真题数学(理)试题

(广东省)2014年高考真题数学(理)试题

2014年普通高等学校招生全国统一考试(广东卷)数学(理科)一、选择题:本大题共8小题,每小题5分,满分40分.学科网在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,0,1}M =-,{0,1,2}N =,则M N =A. {0,1}B. {1,0,2}-C. {1,0,1,2}-D. {1,0,1}-2.已知复数Z 满足(34)25i z +=,则Z=A. 34i -+B. 34i --C. 34i +D. 34i -3.若变量,x y 满足约束条件121y x x y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值学科网和最小值分别为m 和n ,则m n -=A.5B.6C.7D.84.若实数k 满足09k <<,则曲线221259x y k -=-与曲线221259x y k -=-的 A. 焦距相等 B. 实半轴长相等 C. 虚半轴长相等 D. 离心率相等5.已知向量()1,0,1a =-,则下列向量中与a 成60︒夹角的是A.(-1,1,0)B.(1,-1,0)C.(0,-1,1)D.(-1,0,1) 6.已知某地区中小学生人数和近视情况分别如图1和图2所示,学科网为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别是A.200,20B.100,20C.200,10D.100,107.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则学科网下面结论一定正确的是A.14l l ⊥B.14//l lC.14,l l 既不垂直也不平行D.14,l l 的位置关系不确定8.设集合(){}12345=,,,,{1,0,1},1,2,3,4,5iA x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为A.60B.90C.120D.130二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)小学生 3500名 初中生4500名 高中生2000名 小学 初中 30 高中 10 年级 50 O 近视率/%9.不等式521≥++-x x 的解集为 。

2014广东高考数学试卷及答案(理科)

2014广东高考数学试卷及答案(理科)

2014高考广东卷理科数学真题及答案解析一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{1,0,1},{0,1,2},M N =-=则M N ⋃= 【答案】BA .{1,0,1}- B. {1,0,1,2}- C. {1,0,2}- D. {0,1} 2.已知复数Z 满足(34)25,i z +=则Z=AA .34i - B. 34i + C. 34i -- D. 34i -+ 【答案】A3.若变量,x y 满足约束条件121y x x y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为M 和m ,则M-m=A .8 B.7 C.6 D.5 【答案】C4.若实数k 满足09,k <<则曲线221259x y k -=-与曲线221259x y k -=-的 A .离心率相等 B.虚半轴长相等 C. 实半轴长相等 D.焦距相等【答案】D5.已知向量()1,0,1,a =-则下列向量中与a 成60︒夹角的是A .(-1,1,0) B. (1,-1,0) C. (0,-1,1) D. (-1,0,1) 【答案】B6、已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为A 、200,20B 、100,20C 、200,10D 、100,10 【答案】A7、若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,,l l l l l l ⊥⊥⊥,则下列结论一定正确的是 A .14l l ⊥ B .14//l l C .14,l l 既不垂直也不平行 D .14,l l 的位置关系不确定 【答案】D 8.设集合(){}12345=,,,,1,0,1,1,2,3,4,5iA x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为A .60 B90 C.120 D.130 【答案】D二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题).3.232332sin )4125sin()125(.23)125(),4sin()(=∴=⋅==+=∴=+=A A A A f f x A x f ππππππ且 9.不等式521≥++-x x 的解集为 。

2014年广东高考理科数学试题含答案(Word版)

2014年广东高考理科数学试题含答案(Word版)
B.7 C.6 D.5
答案: C 提示 : 画出可行域(略), 易知在点(2,1) (−1, −1)处目标函数 最小值m = −3,∴ M − m = 6, 选 C.
4.若实数 k 满足 0 < k < 9, 则曲线 A 离心率相等
别取得最大值M = 3,
x2 y2 x2 y2 − = 1 曲线 − = 1的 25 9 − k 25 − k 9
B.
a 成 60° 夹角的是
C. 0,-1,1 D. -1,0,1
-1,1,0
1,-1,0
答案 : B 提示 : 1 = ,即 12 + 02 + (−1) 2 ⋅ 12 + (−1) 2 + 0 2 2 (1, 0, −1) ⋅ (1, −1, 0) 两向 1 的夹角余弦值为 , 从而夹角为600 ,∴ 选 B. 2
6、已知某地区中小学生人数和近视情况 别如 1 和 用 层抽样的方法抽取 2%的学生进行调查 则样本容 A. 200,20 B. 100,20 C. 200,10 D. 100,10
2 所示 为了解该地区中小学生的近视形成原因 和抽取的高中生近视人数 别为
答案 : A 提示 : 样本容 为(3500 + 4500 + 2000) ⋅ 2% = 200,
.
+ 2 在点 (0,3) 处的 线方程为 答案 : 5 x + y − 3 = 0
提示 : y ' = −5e −5 x ,∴ y '
x =0
= − 5,∴ 所求 线方程为y − 3 = −5 x,即5 x + y − 3 = 0 .
.
11.从 0,1,2,3,4,5,6,7,8,9 中任取七个 的数 则 七个数的中位数是 6 的概率为 1 答案 : 6 提示 : 要使6为取出的7个数中的中位数, 则取出的数中必有3个 大于6,

2014年广东卷数学试题及答案(理)

 2014年广东卷数学试题及答案(理)

2014年普通高等学校招生全国统一考试(广东卷)数学理一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{1,0,1},{0,1,2},M N =-=则M N ⋃=A .{1,0,1}- B. {1,0,1,2}- C. {1,0,2}- D. {0,1}2.已知复数Z 满足(34)25,i z +=则Z=A .34i - B. 34i + C. 34i -- D. 34i -+3.若变量,x y 满足约束条件121y x x y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为M 和m ,则M-m=A .8 B.7 C.6 D.54.若实数k 满足09,k <<则曲线221259x y k -=-与曲线221259x y k -=-的 A .离心率相等 B.虚半轴长相等 C. 实半轴长相等 D.焦距相等5.已知向量()1,0,1,a =-则下列向量中与a 成60︒夹角的是A .(-1,1,0) B. (1,-1,0) C. (0,-1,1) D. (-1,0,1)6、已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为A 、200,20B 、100,20C 、200,10D 、100,107、若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,,l l l l l l ⊥⊥⊥,则下列结论一定正确的是A .14l l ⊥B .14//l lC .14,l l 既不垂直也不平行D .14,l l 的位置关系不确定8.设集合(){}12345=,,,,1,0,1,1,2,3,4,5i A x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为A .60 B90 C.120 D.130二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.不等式521≥++-x x 的解集为 。

2014年高考理科数学广东卷

2014年高考理科数学广东卷

数学试卷 第1页(共4页) 数学试卷 第2页(共4页)绝密★启用前2014年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21小题,满分150分.考试用时120分钟. 注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,0,1}M =-,{0,1,2}N =,则M N = ( ) A .{0,1} B .{1,0,2}- C .{1,0,1,2}-D .{1,0,1}- 2.已知复数z 满足(34i)25z +=,则z =( )A .34i -+B .34i --C .34i +D .34i -3.若变量x ,y 满足约束条件,1,1,y x x y y ⎧⎪+⎨⎪-⎩≤≤≥且2z x y =+的最大值和最小值分别为m 和n ,则m n -=( )A .5B .6C .7D .84.若实数k 满足9k 0<<,则曲线221259x y k -=-与曲线221259x y k -=-的( )A .焦距相等B .实半轴长相等C .虚半轴长相等D .离心率相等5.已知向量(1,0,1)=-a ,则下列向量中与a 成60 夹角的是( )A .(1,1,0)-B .(1,1,0)-C .(0,1,1)-D .(1,0,1)-6.已知某地区中小学生人数和近视情况分别如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )A .200,20B .100,20C .200,10D .100,10 7.若空间中四条两两不同的直线1l ,2l ,3l ,4l ,满足12l l ⊥,23l l ⊥,34l l ⊥,则下列结论一定正确的是( )A .14l l ⊥B .14l l ∥C .1l 与4l 既不垂直也不平行D .1l 与4l 的位置关系不确定8.设集合12345{(,,,,)|{1,0,1},1,2,3,4,5}i A x x x x x x i =∈-=,那么集合A 中满足条件“12345||||||||||3x x x x x ++++1≤≤”的元素个数为( )A .60B .90C .120D .130二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.不等式|1||2|x x -++≥5的解集为 . 10.曲线52x y e -=+在点(0,3)处的切线方程为 .11.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为 .12.在ABC △中,角A ,B ,C 所对应的边分别为a ,b ,c ,已知cos cos 2b C c B b +=,则ab= . 13.若等比数列{}n a 的各项均为正数,且510119122e a a a a +=,则1220ln ln ln =a a a +++… .姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共4页) 数学试卷 第4页(共4页)(二)选做题(14-15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,曲线1C 和2C 的方程分别为2sin cos ρθθ=和sin 1ρθ=.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 和2C 的交点的直角坐标为 . 15.(几何证明选讲选做题)如图,在平行四边形ABCD 中,点E 在AB 上且2EB AE =,AC 与DE 交于点F ,则CDF AEF ∆=∆的面积的面积 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数π()sin()4f x A x =+,x ∈R ,且5π3(122f =.(Ⅰ)求A 的值; (Ⅱ)若3()()2f f θθ+-=,π(0,)2θ∈,求3π()4f θ-.17.(本小题满分13分)随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36. 根据上述数据得到样本的频率分布表如下:分组 频数 频率 [25,30] 3 0.12 (30,35] 5 0.20 (35,40] 80.32(40,45] 1n 1f (45,50]2n2f(Ⅰ)确定样本频率分布表中1n ,2n ,1f 和2f 的值; (Ⅱ)根据上述频率分布表,画出样本频率分布直方图;(Ⅲ)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,50]的概率.18.(本小题满分13分)如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,30DPC ∠ =,AF PC ⊥于点F ,FE CD ∥,交PD于点E .(Ⅰ)证明:CF ⊥平面ADF ; (Ⅱ)求二面角D AF E --的余弦值.19.(本小题满分14分)设数列{}n a 的前n 项和为n S ,满足21234n n S na n n +=--,*n ∈N ,且315S =. (Ⅰ)求1a ,2a ,3a 的值; (Ⅱ)求数列{}n a 的通项公式.20.(本小题满分14分)已知椭圆C :22221(0)x y a b a b+=>>的一个焦点为.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若动点00(,)P x y 为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.21.(本小题满分14分)设函数()f x =,其中2k <-.(Ⅰ)求函数()f x 的定义域D (用区间表示); (Ⅱ)讨论函数()f x 在D 上的单调性;(Ⅲ)若6k <-,求D 上满足条件()(1)f x f >的x的集合(用区间表示).。

2014年广东高考理科数学答案

2014年广东高考理科数学答案
2014年的广东高考真题会在考后发布出国留学网高考频道小编紧密关注2页面显示
2014年广东高考理科数学答案
摘玫瑰,就要先折掉刺枝;想走坦途,就要斩除那些荆棘;想看到天明,就要勇敢闯夜寂;厚德载物,天道酬勤,小编先祝所有考生高考顺利!2014年的广东高考真题会在考后发布,高考频道小编紧密关注2014年广东高考数学真题及答案,试题一旦公布,将会第一时间在此页面显示。同时还有更多2014广东高考科目真题及答案会在考后的第一时间公布,建议您收藏本网站(ctrl+D收藏即可)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年普通高等学校招生全国统一考试(广东卷)数学理一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{1,0,1},{0,1,2},M N =-=则M N ⋃= A .{1,0,1}- B. {1,0,1,2}- C. {1,0,2}- D. {0,1}2.已知复数Z 满足(34)25,i z +=则Z=A .34i - B. 34i + C. 34i -- D. 34i -+3.若变量,x y 满足约束条件121y x x y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为M 和m ,则M-m=A .8 B.7 C.6 D.54.若实数k 满足09,k <<则曲线221259x y k-=-与曲线221259x y k -=-的 A .离心率相等 B.虚半轴长相等 C. 实半轴长相等 D.焦距相等 5.已知向量()1,0,1,a =-则下列向量中与a 成60︒夹角的是A .(-1,1,0) B. (1,-1,0) C. (0,-1,1) D. (-1,0,1)6、已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为A 、200,20B 、100,20C 、200,10D 、100,107、若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,,l l l l l l ⊥⊥⊥,则下列结论一定正确的是A .14l l ⊥B .14//l lC .14,l l 既不垂直也不平行D .14,l l 的位置关系不确定 8.设集合(){}12345=,,,,1,0,1,1,2,3,4,5iA x x x x x x i ∈-=,zxxk 那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为A .60 B90 C.120 D.130二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.不等式521≥++-x x 的解集为 。

10.曲线25+=-xey 在点)3,0(处的切线方程为 。

11.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为 。

12.在ABC ∆中,角C B A ,,所对应的边分别为c b a ,,,已知b B c C b 2cos cos =+, 则=ba。

13.若等比数列{}n a 的各项均为正数,且512911102e a a a a =+,则=+++n a a a 221ln ln ln 。

(二)选做题(14~15题,考生从中选做一题)14、(坐标与参数方程选做题)在极坐标系中,曲线C 1和C 2的方程分别为2sin cos ρθθ=和sin ρθ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1和C 2的交点的直角坐标为__ 15、(几何证明选讲选做题)如图3,在平行四边形zxxkABCD 中,点E 在AB 上且EB =2AE ,AC 与DE 交于点F ,则CDF AEF ∆∆的面积的面积=___三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16、(12分)已知函数R x x A x f ∈+=),4sin()(π,且23)125(=πf , (1)求A 的值; (2)若23)()(=-+θθf f ,)2,0(πθ∈,求)43(θπ-f 。

17、(13分)随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:根据上述数据得到样本的频率分布表如下:(1)确定样本频率分布表中121,,n n f 和2f 的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,zxxk 至少有1人的日加工零件数落在区间(30,50]的概率。

18、(13分)如图4,四边形ABCD 为正方形,PD ⊥平面ABCD ,∠DPC =30,AF ⊥式PC 于点F ,FE ∥CD ,交PD 于点E 。

(1)证明:CF ⊥平面ADF ;(2)求二面角D -AF -E 的余弦值。

19. (14分)设数列{}n a 的前n 和为n S ,满足22*1234,n n S na n n n N +=--∈,且315S =。

(1)求123,,a a a 的值; (2)求数列{}n a 的通项公式;20. (14分)已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点为,离心率为3,(1)求椭圆C 的标准方程;(2)若动点00(,)P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程。

21.(本题14分)设函数()f x =2k <-,(1)求函数()f x 的定义域D ;zxxk (用区间表示) (2)讨论()f x 在区间D 上的单调性;(3)若6k <-,求D 上满足条件()(1)f x f >的x 的集合。

2014年普通高等学校招生全国统一考试(广东卷)数学(理科)参考答案1-8:BACD BADD;8.解:A 中元素为有序数组()12345,,,,x x x x x ,题中要求有序数组的5个数中仅1个数为1±、仅2个数为1±或仅3个数为1±,所以共有123555222222130C C C ⨯+⨯⨯+⨯⨯⨯=个不同数组;9.(,3)(2,)-∞-+∞; 10.53y x =-+; 11.16; 12.2; 13.50; 14.(1,1); 15.9;11.解:6之前6个数中取3个,6之后3个数中取3个,336331016C C P C ⋅==; 16.解:(1)553()sin()121242f A πππ=+=,32A ∴=,A =()f -θ()f θ(2)3()()))442f f +-=++-+=ππθθθθ,3cos )sin cos )]2++-+=θθθθ,32=θ,cos =θ,又)2,0(πθ∈,sin∴==θ,)43(θπ-f )=-==πθθ.17. 解:(1)127,2n n ==,120.28,0.08f f ==; (2)样本频率分布直方图为(3)根据样本频率分布直方图,每人的日加工零件数落在区间(30,35]的概率0.2, 设所取的4人中,日加工零件数落在区间(30,35]的人数为ξ,则~(4,0.2)B ξ,4(1)1(0)1(10.2)10.40960.5904P P ξξ≥=-==--=-=,所以4人中,至少有1人的日加工零件数落在区间(30,50]的概率约为0.5904.18.(1)PD ⊥平面ABCD ,PD AD ∴⊥,又CD AD ⊥,PD CD D =, AD ∴⊥平面PCD ,AD PC ∴⊥,又AF PC ⊥,PC ∴⊥平面ADF ,即CF ADF ⊥平面;(2)设1AB =,则Rt PDC ∆中,1CD =,又DPC ∠=2PC ∴=,PD =,由(1)知CF DF ⊥DF ∴=AF ==,12CF ∴==,又//FE CD ,14DE CF PD PC ∴==,DE ∴=,同理3344EF CD ==, 如图所示,以D 为原点,建立空间直角坐标系,则(0,0,1)A E ,3,0)4F ,P ,(0,1,0)C ,设(,,)m x y z =是平面AEF 的法向量,则m AE m EF ⎧⊥⎨⊥⎩,又3(3(0,,0)4AE EF ⎧=⎪⎨=⎪⎩,所以30304m AE x z m EF y ⎧⋅=-=⎪⎨⋅==⎪⎩,令4x =,得z =(4,0,3)m =,由(1)知平面ADF 的一个法向量(PC =, 设二面角D AF E --的平面角为θ,可知θ为锐角,||cos |cos ,|||||m PCm PC m PC ⋅=<>==⋅θ=19.解:23420S a =-,3233520S S a a =+=-,又315S =,37a ∴=,234208S a =-=,又212222(27)37S S a a a a =+=-+=-, 25a ∴=,112273a S a ==-=,综上知13a =,25a =,37a =;(2)由(1)猜想21n a n =+,下面用数学归纳法证明. ①当1n =时,结论显然成立;②假设当n k =(1k ≥)时,21k a k =+, 则3(21)357(21)(2)2k k S k k k k ++=++++=⨯=+,又21234k k S ka k k +=--, 21(2)234k k k ka k k +∴+=--,解得1246k a k +=+, 12(1)1k a k +∴=++,即当1n k =+时,结论成立;由①②知,*,21n n N a n ∀∈=+.20.解:(1)可知c =c a =3a ∴=,2224b a c =-=,椭圆C 的标准方程为22194x y +=; (2)设两切线为12,l l ,①当1l x ⊥轴或1//l x 轴时,对应2//l x 轴或2l x ⊥轴,可知(3,2)P ±±②当1l 与x 轴不垂直且不平行时,03x ≠±,设1l 的斜率为k ,则0k ≠,2l 的斜率为1k-,1l 的方程为00()y y k x x -=-,联立22194x y +=,得2220000(94)18()9()360k x y kx kx y kx ++-+--=,因为直线与椭圆相切,所以0∆=,得222200009()(94)[()4]0y kx k k y kx --+--=,2200364[()4]0k y kx ∴-+--=,2220000(9)240x k x y k y ∴--+-=所以k 是方程2220000(9)240x x x y x y --+-=的一个根,同理1k-是方程2220000(9)240x x x y x y --+-=的另一个根,1()k k ∴⋅-=202049y x --,得220013x y +=,其中03x ≠±, 所以点P 的轨迹方程为2213x y +=(3x ≠±),因为(3,2)P ±±满足上式,综上知:点P 的轨迹方程为2213x y +=.21.解:(1)可知222(2)2(2)30x x k x x k +++++->,22[(2)3][(2)1]0x x k x x k ∴+++⋅++->,223x x k ∴++<-或221x x k ++>,2(1)2x k ∴+<--(20)k -->或2(1)2x k +>-(20)k ->,|1|x ∴+<|1|x +>,1∴-<1x <-+或1x <--或1x >-+ 所以函数()f x 的定义域D 为(,1-∞-(1-1-+(1)-++∞;(2)232(2)(22)2(22)'()x x k x x f x +++++=-2(21)(22)x x k x ++++=-,由'()0f x >得2(21)(22)0x x k x ++++<,即(111)0x x x ++-+<,1x ∴<-11x -<<-1x <--11x -<<-所以函数()f x的单调递增区间为(,1-∞--,(1,1--,同理递减区间为(11)--,(1)-+∞;(3)由()(1)f x f =得2222(2)2(2)3(3)2(3)3x x k x x k k k +++++-=+++-,2222[(2)(3)]2[(2)(3)]0x x k k x x k k ∴++-++++-+=, 22(225)(23)0x x k x x ∴+++⋅+-=,(11(3)(1)0x x x x ∴+++⋅+-=,1x ∴=--1x =-+或3x =-或1x =,6k <-,1(1,1∴∈--+,3(11)-∈--,11--11-+>-+ 结合函数()f x 的单调性知()(1)f x f >的解集为(11----(13)---(1,1-+(11--+.。

相关文档
最新文档