2006_414高等代数(参考答案)
高等代数__课后答案__高等教育出版社
高等代数习题答案(一至四章)第一章 多项式 习题解答1、(1)由带余除法,得17(),39q x x =-262()99r x =--(2)2()1q x x x =+-,()57r x x =-+2、(1)2100p m q m ⎧++=⎨-=⎩ , (2)由22(2)010m p m q p m ⎧--=⎪⎨+--=⎪⎩得01m p q =⎧⎨=+⎩或212q p m =⎧⎨+=⎩。
3、(1)432()261339109,q x x x x x =-+-+()327r x =- (2)q (x )=22(52)x ix i --+,()98r x i =--4、(1)有综合除法:2345()15(1)10(1)10(1)5(1)(1)f x x x x x x =+-+-+-+-+- (2)234()1124(2)22(2)8(2)(2)f x x x x x =-+++-+++(3)234()24(75)5()(1)()2()()f x i x i i x i i x i x i =+-++--+-+++5、(1)x+1 (2)1 (3)21x -- 6、(1)u (x )=-x-1 ,v (x )=x+2 (2)11()33u x x =-+,222()133v x x x =-- (3)u (x )=-x-1, 32()32v x x x x =+--7、02u t =⎧⎨=⎩或23u t =-⎧⎨=⎩8、思路:根具定义证明证:易见d (x )是f (x )与g (x )的公因式。
另设()x ϕ是f (x )与g (x )的任意公因式,下证()()x d x ϕ。
由于d (x )是f (x )与g (x )的一个组合,这就是说存在多项式s (x )与t (x ),使 d (x )=s (x )f (x )+t (x )g (x )。
从而()()x f x ϕ,()()x g x ϕ,可得()()x d x ϕ。
高等代数真题答案
⾼等代数真题答案第六章习题册1. 检验下述集合关于所规定的运算是否构成实数域R 上的线性空间? (a) 集合{()[]deg()}f x R x f n ∈|=关于多项式的加法和数乘.(b) 集合{()}T n A M R A A ∈|=关于矩阵的加法和数乘.(c) 集合0{{}}n n n x x R ∞=|∈关于数列的加法和数乘.2. 设V 是数域F 上的线性空间, 证明(αβ)αβk k k ?=?, 这⾥αβV k F ,∈,∈.3. 下述集合是否是()n M R 的⼦空间 (a) {()}T n V A M R A A =∈|=?(b) {()()[]}V f A f x R x =|∈, 这⾥()n A M R ∈是⼀个固定⽅阵.4. 叙述并证明线性空间V 的⼦空间1W 与2W 的并12W W ∪仍为V 的⼦空间的充分必要条件.5. 设1S 与2S 是线性空间V 的两个⾮空⼦集, 证明: (a) 当12S S ?时, 12()()Span S Span S ?.(b) 1212()()()Span S S Span S Span S =+∪.(c) 1212()()()Span S S Span S Span S ?∩∩.6. 如果123f f f ,,是实数域上⼀元多项式全体所成的线性空间[]R x 中三个互素的多项式, 但其中任意两个都不互素, 那么它们线性⽆关.试证之.7. 设S 是数域F 上线性空间V 的⼀个线性⽆关⼦集, α是V 中⼀个向量, αS ?, 则{α}S ∪线性相关充分必要条件α()Span S ∈.8. (a)证明{|()}ij ji E E i j +≤是()n M F 中全体对称矩阵组成的⼦空间的⼀个基.(b). 求3()M F 的⼦空间{()()[]}f A f x F x |∈的⼀个基和维数, 这⾥010001000A=9. 在4R 中, 求向量ξ在基1234(εεεε),,,下的坐标, 其中 12341210111112εεεεξ0301311014 =,=,=,=,=10. 求⼀个⾮零向量ξ, 使得它在基1234(εεεε),,,下的坐标和它在基1234(ηηηη),,,下的坐标相同, 这⾥1234εεεε,,,与第9题相同, 123420101121ηηηη22112111=,=,=,=11. 在4R 中, 求由向量 123421111211αααα30311101=,=,=,= 所张成的⼦空间的⼀个基与维数12. 设123411111146αααα11351122=,=,=,=???????????? ,123411311111ββββ11115131=,=,=,=????????11234{αααα}W Span =,,,, 21234{ββββ}W Span =,,,, 请分别求12W W +和12W W ∩的⼀个基13. 设12{()01},{()1}ij n n ij ij n n ij ji V a a i j n V a a a i j n ××=|=,≤≤≤=|=?,≤,≤是矩阵空间()n M R 的两个⼦空间, 证明12V V ?14. 设3323212322233222g x x g x x x g x x x =?+,=??+,=+?,是[]F x 的⼦空间V ⼀个基, 3321232122f x x f x x f x x =++,=?+,=+.请问123f f f ,,中哪些是属于V ,哪些是不属于V , 如果属于请给出它在基123()g g g ,,下的坐标.15. 4R 中, 求由基1234(αααα),,,到基1234(ββββ),,,的过渡矩阵, 并求向量ξ在指定基1234(αααα),,,下的坐标. 其中1α(1111)=,,,, 2α(1111)=,,?,?, 3α(1111)=,?,,?, 4α(1111)=,?,?,; 1β(1101)=,,,, 2β(2131)=,,,,3β(1100)=,,,, 4β(0111)=,,?,?. ξ(1001)=,,,?.16. 设123()A A A ,,和123()B B B ,,是矩阵空间2()M R 的⼦空间V 的两个基, 其中123123100111450321,111000113112A A A B B B =,=,==,=,=??????求 (a) 基123()A A A ,,到123()B B B ,,的过渡矩阵.(b) 3631C ??=在基123()A A A ,,的坐标(c) C 在基123()B B B ,,的坐标17. 设W 是全体实函数关于函数的加法和函数的数乘所成的实数域上的线性空间, 1W 是全体偶函数所成的⼦集, 2W 是全体奇函数所成的⼦集.证明:1W 与2W 是W 的⼦空间且12W W W =⊕.18. 设1W 与2W 分别是齐次线性⽅程组120n x x x +++= 与 12n x x x === 的解空间.证明12n R W W =⊕, 这⾥R 是实数域.19. 如果12V V V =⊕, ⽽11112V V V =⊕, 证明:11122V V V V =⊕⊕.第七章习题册1. 判别下列变换是否线性变换?(a) α是线性空间V 中⼀个固定向量定义(β)βαβT V :=+,?∈(b) 在3R 中, 定义221231233()()T x x x x x x x ,,:=,+,.(c) 在3R 中, 定义12312231()(22)T x x x x x x x x ,,:=?,+,.(d) 在[]F x 中, 定义(())(1)T f x f x =+2. 设V W ,分别是数域F 上的n 维与m 维线性空间, 12{ααα}n ,,, 是V 的⼀个基, ⽽12{βββ}n ,,, 是 W 中 n 个向量.证明存在唯⼀的线性映射T V W :→使得(α)β12i i T i n =,=,,, .3. 设V W ,是数域F 上的两个线性空间, ()L V W ,是V 到W 的所有线性映射所组成的集合.证明 ()L V W ,关于线性映射的加法与数量乘法, 成为数域F 上的⼀个线性空间.4. 在[]F x 中, 定义 12()(())(())()df x T f x T f x xf x dx:=,:=, 证明: 1221TT T T E ?=5. 设T 是V 的线性变换, 向量αV ∈, 存在⼀个正整数k ,使得1(α)0k T ?≠但(α)0k T =. 证明: 21α(α)(α)(α)k T T T ?,,,, 线性⽆关.6. 证明: 设12T T , 是V 的可逆线性变换, 则12TT 也是可逆线性变换, 并且1111221()TTT T =.7. 设T 是V 的线性变换, 证明T 是单射线性变换的充分必要条件是T 把线性⽆关的向量组变为线性⽆关的向量组.8. 设V W ,是数域F 上的两个线性空间, ⽽T V W :→是线性映射. 证明ker T 与()T V 分别是V 与W 的⼦空间. ⼜若dim V 有限, 证明: dimker dim ()dim T T V V +=.9. 在线性空间2()M F 定义线性变换()T X AX XA =?, 其中1234A ??=, 求T 在基11122122()E E E E ,,,下的矩阵.10. 设1234{}V Span f f f f =,,,为函数空间的4维⼦空间, 其中1cos f bx =, 2sin f bx =, 3cos f x bx =, 4sin f x bx =, 求微分变换D 在基1234()f f f f ,,,下的矩阵.11. T 是n 维线性空间V 上的⼀个线性变换, 如果存在αV ∈使得1(α)0n T ?≠, 但(α)0n T =.证明在V 中存在⼀个基, 使得 T 在该基下的矩阵为 0000100001000010A=.12. 设V 是n 维线性空间, 求dim ()L V V ,, 并找出()L V V ,的⼀个基.13. 证明与n 维线性空间V 的所有线性变换可交换的线性变换是数乘变换. 14.设123131η1η2η1211=,=,=??????是3R 的⼀个基, 定义线性变换为123505(η)0(η)1(η)1369T T T =,=?,=?,???? 求T 在基123(ηηη),,下的矩阵并求(α)T , 其中2α15??=15. 设AP PB =, 其中1581026900370004P =,??0234002300020000B=,求10A16. 若A 可逆, 证明AB 与BA 相似.17. 若A 与B 相似, C 与D 相似, 证明00A C ??与00B D ??相似18. 设A 与B 相似, C 与D 相似, 请举反例说明AC 与BD 不⼀定相似, A C +与B D +不⼀定相似.19. 设123103η0η1η1210=,=,=?,123100010001e e e =,=,=, 在定义为15(η)03T =,?20(η)16T=?,35(η)19T=?, 已知3R 中线性变换T 在基()123ηηη,,下的矩阵为100110002,求T 在基123()e e e ,,下的矩阵.20. 设12n e e e ,,, 是线性空间V 的⼀个基, 11αβnnj ij i j ij i i i a e b e ===,=∑∑, ()()ij ij A a B b =,=, 已知12αααn,,, 线性⽆关. T 是V 上的线性变换使得(α)β12i i T i n =,=,,, .(a) 证明T 在基12(ααα)n ,,, 下的矩阵为1A B ?.(b) T 在基12()n e e e ,,, 下的矩阵为1BA ?.21. 证明: 1212(λ,λ,,λ)~(λ,λ,,λ)n n i i i diag diag , 其中12()n i i i ,,, 是(12)n ,,, 的⼀个排列.22. 设V 为数域F 上的线性空间, T 是V 的线性变换, 若0λ是T 的特征值, 则对任意(λ)[λ]f F ∈, 0(λ)f 是 ()f T 的特征值, 且T 的属于0λ的特征向量也是()f T 的属于0(λ)f 的特征向量.23. 设12λλ,是线性变换T 的两个不同的特征值, 12αα,分别是属于12λλ,的特征向量, 证明12αα+不是T 的特征向量24. 设T 是V 的线性变换. 证明:T 是可逆线性变换充要条件零不是T 的特征值, 并且若λ是T 的特征值, 则1λ?是1T ?的特征值25. 设A B ,是n 阶⽅阵. 证明若1B P AP ?=, 则()()Tr B Tr A =26. 设V 是复数域上的线性空间, 123(ααα),,是V 的有序基, T 是V 上线性变换它在有序基123(ααα),,下的矩阵为 310410482A=, 求T 的特征值与特征向量.27. 求1111111111111111A=的特征值与特征向量.28. 证明不可能存在n 阶⽅阵A 和B 使得AB BA E ?=29. 求下⾯矩阵1212111211121211121124242A=的特征值30. 设A 是⼀个n 阶下三⾓矩阵. 证明若A 的对⾓线元素1122nn a a a === , 且A 不是对⾓阵, 则A 不可对⾓化.31. 设A 是3阶⽅阵, 112,?,是A 的三个特征值, 101111011,,是分别属于特征值112,?,的三个特征向量,求A .32. 设142034043A=?;求可逆矩阵P 使得1P AP ?为对⾓阵, 并求k A .33. 设A 是⼀个n 阶下三⾓矩阵. 证明若A 的对⾓线元素ii jj a a ≠, (i j ≠), 则A 可对⾓化34. 已知T 在⼀个基下的矩阵为 310410482A=??,试问T 是否可以对⾓化35. 对于n 阶⽅阵A , 定义(){()}n C A D M F AD DA :=∈|= (a) 证明()C A 是()n M F 的⼦空间(b) 设1B P AP ?=, 定义映射1()f D P DP ?:=, 证明f 是()C A 到()C B 的同构映射(c) 设A 是n 阶对⾓矩阵, 它的特征多项式为 1212?(λ)(λ)(λ)(λ)s c c c D s d d d =, 其中12s d d d ,,, 两两不同, 证明22212dim ()s C A c c c =+++.36. 设()n A M F ∈, 证明()n M F 的⼦空间{()()[]}V f A f x F x =|∈的为数等于(λ)A m 的次数.37. 设A 为准对⾓矩阵12()s diag A A A ,,,, 其中i A 为i n 阶⽅阵, 它的最⼩多项式为(λ)12i m i s ,=,,,. 证明: 12(λ)[(λ)(λ)(λ)]A s m m m m =,,, (即A 的最⼩多项式是12s A A A ,,, 的最⼩多项式的最⼩公倍式).38. 设101011112A=,求A 的最⼩多项式.39.求矩阵01011010*******0A=的最⼩多项式, 并判断它们是否可对⾓化.40. 证明:A 是幂零矩阵的充分必要条件是A 的特征值全为零41. 设T 是矩阵空间()n M F 上的线性变换定义为()T T A A :=. 证明: T 是否可对⾓化42. 若W 是V 的⼀维⼦空间, T 是V 的线性变换, 则W 是T -⼦空间充分必要条件W 中任⼀⾮零向量都是属于同⼀特征值的特征向量.43. 设V 是复数域上n 维线性空间, 1T ,2T 是V 的线性变换, 且1221TT T T =. 证明:1T , 2T ⾄少有⼀个公共特征向量44. 设T 是线性空间V 的线性变换, W 是T -⼦空间, 证明(λ)(λ)WT T m m |45. 设T 是线性空间V 的可逆线性变换, W 是T -⼦空间, 证明W 也是1T ?-⼦空间.46. 设A 是实⽅阵, 则存在实可逆⽅阵P 使得1P AP ? 为上三⾓阵的充分必要条件是A 的特征值全为实数.47. 设T 是3维线性空间V 的线性变换, 它在基123(ααα),,下的矩阵为 210021002A=,(a) 证明如果W 是T 的⾮零不变⼦空间, 则1αW ∈,(b) 证明不存在两个T -⼦空间12W W ,, 使得12V W W =⊕48. 设12T T ,是n 维线性空间V 的两个线性变换, 并且11221T TT T T =?, αV ∈是属于λ的1T 特征向量, 证明2{α012}i W Span T i =|=,,, 是2T -⼦空间, 也是1T -⼦空间.49. 设T 是n 维线性空间V 的两个线性变换, ()()[]f x g x F x ,∈, ()(()())d x f x g x =,, ()[()()]h x f x g x =, (a) 证明如果()()f x g x |, 则ker ()ker ()f T g T ?(b) ker ()ker ()ker ()f T g T d T =∩(c) ker ()ker ()ker ()h T f T g T =+第⼋章习题册1. 试求下列各λ-矩阵的秩, 并判别哪些矩阵是可逆的, 如可逆, 求出其逆矩阵.(a) 22λ2λ111λ1λ1λ1λλ+++??(b) 21010λ1λλ1λ?(c) 5λ125λλ5λ1+??.2. ⽤初等变换求λ-矩阵λ2100λ2100λ2的标准形, 和不变因⼦:。
高等代数习题答案
目录第一章 多项式 第二章 行列式 第三章 线性方程组 第四章 矩阵 第五章 二次型 第六章 线性空间 第七章 线性变换 第八章 λ—矩阵第九章 欧氏空间第十章 双线性函数与辛空间注:答案分三部分,该为第二部分,其他请搜索,谢谢!12.设A 为一个n 级实对称矩阵,且0<A ,证明:必存在实n 维向量0≠X ,使0<'A X X 。
证 因为0<A ,于是0≠A ,所以()n A rank =,且A 不是正定矩阵。
故必存在非退化线性替换Y C X 1-=使()BY Y ACY CY AX X '=''='-12222122221n p p p y y y y y y ----+++=++ΛΛ,且在规范形中必含带负号的平方项。
于是只要在Y C Z 1-=中,令p y y y ===Λ21,1,021=====++n p p y y y Λ则可得一线性方程组⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+++=+++=+++=++++++11002211,122,111,122111212111n nn n n n n p p p n pn p p n n x c x c x c x c x c x c x c x c x c x c x c x c ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ,由于0≠C ,故可得唯一组非零解()ns s s s x x x X ,,,21Λ=使()0111000<--=----+++='p n AX X s sΛΛ, 即证存在0≠X ,使0<'A X X 。
13.如果B A ,都是n 阶正定矩阵,证明:B A +也是正定矩阵。
证 因为B A ,为正定矩阵,所以BX X AX X '',为正定二次型,且 0>'A X X , 0>'B X X ,因此()0>'+'=+'BX X AX X X B A X , 于是()X B A X +'必为正定二次型,从而B A +为正定矩阵。
2006年北京大学高等代数真题解答
2006年北京大学研究生入学考试高等代数与解析几何试题解答高等代数部分(100分)1.(16分)(1) 设,A B 分别是数域K 上,s n s m ××矩阵,叙述矩阵方程AX B =有解的充要条件,并且给予证明。
解: 方程AX B =有解的充分必要条件是: ()(,)r A r A B =. 令1(,,)m B ββ=", 其中k β为列向量. 则矩阵方程AX B =有解⇔方程组12,,,,k k Ay k m β=="有解. ⇔A 的列向量组构成的向量组与(,)A B 的列向量组构成的向量组等价. ⇔()(,)r A r A B =.注: 方程有解的一个等价含义是可由列向量线性表示, 从而转化为等价向量组上来.(2) 设A 是数域K 上s n ×列满秩矩阵,试问:方程n XA E =是否有解?有解,写出它的解集;无解,说明理由。
解:方程n XA E =有解. 理由: 因为A 列满秩, 所以()()Tr A r A n ==.又(,)Tn r A E n =, 因此()(,)TTn r A r A E =,从而Tn A Y E =有解,两边取转置可知方程n XA E =有解.我个人觉得本题似乎考察的是:广义逆矩阵方面的知识, 如果大家对这部分知识不熟悉, 建议大家去看看丘维声老先生编著的<<高等代数>>.矩阵方程AXA A =的解X A −=一般称为A 的广义逆矩阵. 广义逆是存在的, 对于本题因为A 是列满秩的, 故由相抵标准型知,存在可逆矩阵,P Q 满足n E PAQ O ⎛⎞⎟⎜⎟⎜=⎟⎜⎟⎟⎜⎝⎠, 则可以取(,)n A Q E O P −=. 此时X 的所有解为: (),n sn X A Z E AA KZ −−×∈=+−∀.因为 11(,)n n nE A Q E O PP Q A E O −−−⎛⎞⎟⎜⎟⎜==⎟⎜⎟⎟⎜⎝⎠, 所以A −是矩阵方程n A A E −=的特解. 下面证明XA O =的全部通解为: (),n sn X Z E AA Z K−×∈=−∀.首先, 由()()n Z E AA A Z A A O −−=−=,知()n Z E AA −−是方程的解. 其次, 任取XA O =的一个解0X , 则由0000()n X E AA X X AA X −−−=−=, 取0Z X =即可.由矩阵方程解的结构定理可知, (),n sn X Z E AA Z K −×∈=−∀(3) 设A 是数域K 上s n ×列满秩矩阵,试问:对于数域K 上任意s m ×矩阵B ,矩阵方程AX B =是否一定有解?当有解时,它有多少个解?求出它的解集。
2006-13年杭州师范大学高等代数考研试题
学科专业: 学科专业: 基础数学、应用数学 研究方向: 研究方向:
"#(25 $) 12345 (6 f(x)=g(x) h(x) 78 h(x) 9Z[x] @ ' 1 %& f(x) (g(x) )Z[x] (g(x) 0 BC 7DEF f(x)=x6+x3+1 GHIPQ Q RSTU @ 2A VW(20 X) Y`abF
3、 (20 分)设 A 是 n × (n + 1) 矩阵, I n 是 n 阶单位矩阵,证明:存在 (n + 1) × n 矩 阵 B 使 AB = I n 成立的充分必要条件是 秩A = n 。
fghg i pqrstu
814
pqrs 2 1 pqrsvw xy
defgh
2 2 已知二次型 f(x1,x2,x3)=5 x12 +5 x 2 +t x3 -2x1x2+6x1x3-6x2x3 的秩为 2,
1) 确定参数 t; 2) 用正交变换把二次型化为标准形,并给出所用的正交阵; 3) 指出方程 f(x1,x2,x3)=1 表示何种二次曲面。
rstuvwxy wxtu wx
五、 (15 分) a 为何值时,下列线性方程组有惟一解?无解?无穷多解?并给出一般解。
(a + 3) x1 + x 2 + 2 x3 = a ax1 + (a − 1) x 2 + x3 = a 3(a + 1) x + ax + (a + 3) x = 3 1 2 3
六、(20 分) σ 是向量空间 F4 上的线性变换,对于任意 ξ∈F4,有 σ(ξ)=Aξ;其中
《高等代数》各章习题+参考答案 期末复习用
1A = 1000 ,B = 0001 ,|A +B |=1,|A |=0,|B |=0.|A +B |=|A |+|B |.2A = 0100,A 2=0,A =0.3A (E +A )=E A 4A = 0100 ,B = 1000,AB =0,rank (A )=1,rank (B )=1,A,B 2.1B 2A 3C 4A 5D 6B 7B 8C 9D 10A 11D 12A 13C 14D 15D 16B 17C 18C 19C 20D 21C 22C 23D 24C 25C 26A 27A 28A 1−135,93m ×s,n k =1a jk b ki 4 1b 0001612012001a n1a 20···00...···············000 (1)910411(−1)mn ab12213I n2单元练习:线性方程组部分一、填空题 每空 1分,共 10分1.非齐次线性方程组 AZ = b (A 为 m ×n 矩阵)有唯一解的的充分必要条件是____________。
2.n +1 个 n 维向量,组成的向量组为线性 ____________ 向量组。
3.设向量组 3 2 1 , ,a a a 线性无关,则常数 l , m 满足____________时,向量组 3 1 2 3 1 2 , , a a a a a a -- - m l 线性无关。
4.设 n 阶矩阵 A 的各行元素之和均为零, 且 r (A ) = n -1则 Ax = 0 的通解为________。
5.若向量组 3 2 1 , , a a a 线性无关,则向量组 3 1 2 3 1 2 , , a a a a a a + + + ____________。
高等代数 部分答案
第一节基础知识一、质数、合数以及拆分问题真题再现1.解析:如下图所示,要求木条的面积,必须知道正方形木板的边长.把108分解质因数.108(cm)2平方分米3分米108=2×2×3×3×3=12×9由此可见,9加3正好等于12,所以正方形木板边长是12分米.所以,木条面积是12×3=36(平方分米)2.解析:先把14,20,21,28,30分解质因数,看这六个数中共有哪几个质因数,再分摊在两组中,使两组数乘积相等.14=7×2 20=2×2×521=3×7 28=2×2×730=2×3×5 7从上面五个数分解质因数来看,连7在内共有质因数四个7,六个2,二个3,二个5,因此每组数中一定要含三个2,一个3,一个5,二个7.六个数可分成如下两组(分法是唯一的):第一组: 7、28、和30第二组:14、21和20且7×28×30=14×21×20=5880满足要求.[注]解答此题的关键是审题,抓住题目中的关键性词语:“使两组数的乘积相等”.实质上是要求两组里所含质因数相同,相同的质因数出现的次数也相同.随堂练习1. 【答案】D。
231=3*7*11,所以a=131。
2.解析:把1430分解质因数得1430=2×5×11×13根据题目的要求,应在2、5、11及13中若选用干个数,使它们的乘积在100到200之间,于是得三种答案:(1)2×5×11=110;(2)2×5×13=130;(3)11×13=143.所以,有三种分法:一种是分为13队,每队110人;二是分为11队,每队130人;三是分为10队,每队143人.3.解析:1152=2×3 ,约数为8*3=24 所以拼法12种7 24.解析:由于每只瓶都称了三次,因此记录数之和是4瓶油(连瓶)重量之和的3倍,即4瓶油(加瓶)共重(8+9+10+11+12+13)÷3=21(千克)而油重之和及瓶重之和均为质数,所以它们必为一奇一偶,而质数中是偶数的质数只有2,故有(1)油重之和为19 千克,瓶重之和为2 千克,每只瓶重1千克,最重的两瓶内的油为21×13-2 2=12(千克).(2)油重之和为2 千克,瓶重之和为19 千克,每只瓶重19千克,最重的两瓶内的油为419× 713-4 2=2(千克),这与油重之和为2千克矛盾,不合要求,删去.5.解析:1440=2×3×5,a={0,1,2,3,4,5},b={0,1,2},c= {0,1}5 2=> 约数为2×3×6=366.解析:依题意,将232323分解质因数得232323=23×10101=23×3×7×13×37从而,全部不同质因数之和AB=23+3+7+13+37=83所以,A×B×AB=8×3×83=1992.二、奇偶数真题再现1.解析:特值法或者直接看选项分析。
《高等代数》习题与参考答案
《高等代数》习题与参考答案数学系第一章 多项式1. 用)(x g 除)(x f ,求商)(x q 与余式)(x r : 1)123)(,13)(223+-=---=x x x g x x x x f ; 2)2)(,52)(24+-=+-=x x x g x x x f 。
解 1)由带余除法,可得92926)(,9731)(--=-=x x r x x q ; 2)同理可得75)(,1)(2+-=-+=x x r x x x q 。
2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1, 2)q px x mx x ++++242|1。
解 1)由假设,所得余式为0,即0)()1(2=-+++m q x m p ,所以当⎩⎨⎧=-=++0012m q m p 时有q px x mx x ++-+32|1。
2)类似可得⎩⎨⎧=--+=--010)2(22m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=--m p 时,代入(2)可得1=q 。
综上所诉,当⎩⎨⎧+==10q p m 或⎩⎨⎧=+=212m p q 时,皆有q px x mx x ++++242|1。
3.求()g x 除()f x 的商()q x 与余式:1)53()258,()3f x x x x g x x =--=+; 2)32(),()12f x x x x g x x i =--=-+。
解 1)432()261339109()327q x x x x x r x =-+-+=-;2)2()2(52)()98q x x ix i r x i=--+=-+。
4.把()f x 表示成0x x -的方幂和,即表成2010200()()...()n n c c x x c x x c x x +-+-++-+的形式:1)50(),1f x x x ==;2)420()23,2f x x x x =-+=-;3)4320()2(1)37,f x x ix i x x i x i =+-+-++=-。
高等代数习题参考答案
第七章线性变换1.判别下面所定义的变换那些是线性的,那些不是:1)在线性空间V 中,A ,其中 V 是一固定的向量;4) 在 P 3 中,A (X I ,X 2,X 3) (2X 15) 在 P[ X ]中,A f (x) f (x 1)6) 在P[ X ]中,A f (X) f(X o ),其中X o P 是一固定的数;7) 把复数域上看作复数域上的线性空间, A8)在P nn 中,A X=BXC 其中B,C P n n 是两个固定的矩阵.解1)当 0时,是;当 0时,不是。
2)当o 时,是;当 o 时,不是。
3)不是•例如当(1,0,0), k 2 时,k A ( ) (2,0,0) , A (k ) (4,0,0),A (k )k A()。
4)是•因取(X 1,X 2,X 3),(y 1, y 2, y 3),有A()= A(X 1y 「X 2 y 2 ,X 3 y 3)= (2X 1 2y 1 X 2 y 2,X 2 y= (2X 1X 2, X 2 X 3,X 1) (2y 1=A+ A ,A (k ) A (kX 1, kX 2, kX 3)(2kx 1kx 2, kx 2=k A (), 3故A 是P 上的线性变换。
5)是.因任取 f(x) P[x], g(x) P[ X],并令u(x) f(x) g(x)则A ( f (x)g(x)) = A u(x)=u(x 1) = f(x 1) g(x 1)=A f(x) + A (g(x)),再令 v( x) kf (x)则 A (kf (x)) A (v( x)) v(x 1) kf (x 1) k A ( f (x)),故A 为P[x]上的线性变换。
6)是.因任取 f (x)P[x], g(x) P[ x]则.A (f(x) g(x))=f(x 0) g(X 0 ) A ( f (x)) A (g(x)),2) 3) 在线性空间V 中,A 在 P 3 中,A(X l ,X 2,X 3)其中(X I 2,X 2V 是一固定的向量;2、X 3,X 3 ); X 2, X 2 X 3,X I ).X 3 y 3,X 1 yj y 2,y 2 y 3,y 1)(2kx 1kx 2, kx 2kx 3,kxjkx 3,kxjA(kf (x)) kf (x0) k A( f (x))。
高等代数习题答案.doc
高等代数(北大第三版)答案目录第一章多项式第二章行列式第三章线性方程组第四章矩阵第五章二次型第六章线性空间第七章线性变换第八章—矩阵第九章欧氏空间第十章双线性函数与辛空间注:答案分三部分,该为第二部分,其他请搜索,谢谢!12.设A 为一个 n 级实对称矩阵,且 A0 ,证明:必存在实 n 维向量 X 0 ,使X AX 0 。
证因为 A0,于是 A0 ,所以 rank An ,且 A 不是正定矩阵。
故必存在非退化线性替换 XC 1Y 使XAX YC 1ACYY BYy 12 y 22y p 2y p 21y p 2 2y n 2 ,且在规范形中必含带负号的平方项。
于是只要在Z C 1Y 中,令 y y2 yp10, y p 1 y p2y n 1, 则可得一线性方程组c 11x 1c 12x2c 1n xnc p 1x1c p 2 x2c pnx n,c p 1,1x1c p 1, 2 x2c p1,nxn1c n1x 1c n 2 x2c nn xn1由于 C 0 ,故可得唯一组非零解X s x 1s , x 2s , , x ns 使X s AX s 0 00 1 11n p 0 ,即证存在 X 0,使 X AX0 。
13 .如果 A, B 都是 n 阶正定矩阵,证明:A B 也是正定矩阵。
证 因为 A, B 为正定矩阵,所以 X AX , X BX 为正定二次型,且X AX 0 ,X BX 0 ,因此X A B X X AX X BX 0 ,于是 XA B X 必为正定二次型,从而A B 为正定矩阵。
14 .证明:二次型 f x 1 , x 2 , , x n 是半正定的充分必要条件是它的正惯性指数与秩相等。
证 必要性。
采用反证法。
若正惯性指数p 秩 r ,则 pr 。
即f x 1 , x 2 , , x ny 2 y 2y 2y 2y 2 ,12pp 1r若令y1 y2 y p 0 , y p 1 y r 1 ,则可得非零解x1 , x2 , , x n 使 f x1, x2 , , x n 0 。
高等代数__课后答案__高等教育出版社
高等代数习题答案(一至四章)第一章 多项式 习题解答1、(1)由带余除法,得17(),39q x x =-262()99r x =--(2)2()1q x x x =+-,()57r x x =-+2、(1)2100p m q m ⎧++=⎨-=⎩ , (2)由22(2)010m p m q p m ⎧--=⎪⎨+--=⎪⎩得01m p q =⎧⎨=+⎩或212q p m =⎧⎨+=⎩。
3、(1)432()261339109,q x x x x x =-+-+()327r x =- (2)q (x )=22(52)x ix i --+,()98r x i =--4、(1)有综合除法:2345()15(1)10(1)10(1)5(1)(1)f x x x x x x =+-+-+-+-+- (2)234()1124(2)22(2)8(2)(2)f x x x x x =-+++-+++(3)234()24(75)5()(1)()2()()f x i x i i x i i x i x i =+-++--+-+++5、(1)x+1 (2)1 (3)21x -- 6、(1)u (x )=-x-1 ,v (x )=x+2 (2)11()33u x x =-+,222()133v x x x =-- (3)u (x )=-x-1, 32()32v x x x x =+--7、02u t =⎧⎨=⎩或23u t =-⎧⎨=⎩8、思路:根具定义证明证:易见d (x )是f (x )与g (x )的公因式。
另设()x ϕ是f (x )与g (x )的任意公因式,下证()()x d x ϕ。
由于d (x )是f (x )与g (x )的一个组合,这就是说存在多项式s (x )与t (x ),使 d (x )=s (x )f (x )+t (x )g (x )。
从而()()x f x ϕ,()()x g x ϕ,可得()()x d x ϕ。
《高等代数》习题与参考答案
《高等代数》习题与参考答案数学系第九章 欧氏空间1.设()ij a =A 是一个n 阶正定矩阵,而),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β,在n R 中定义内积βαβα'A =),(,1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量)0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε,的度量矩阵;3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。
解 1)易见βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =,(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑='A =ji j i ijy x a,),(αααα,由于A 是正定矩阵,因此∑ji j i ij y x a,是正定而次型,从而0),(≥αα,且仅当0=α时有0),(=αα。
2)设单位向量)0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε,的度量矩阵为)(ij b B =,则)0,1,,0(),()(ΛΛi j i ij b ==εε⎪⎪⎪⎪⎪⎭⎫⎝⎛nn n n n n a a aa a a a a a ΛM O MM ΛΛ212222211211)(010j ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛M M =ij a ,),,2,1,(n j i Λ=, 因此有B A =。
4) 由定义,知∑=ji ji ij y x a ,),(βα,α==β==故柯西—布湿柯夫斯基不等式为2.在4R 中,求βα,之间><βα,(内积按通常定义),设: 1) )2,3,1,2(=α, )1,2,2,1(-=β, 2) )3,2,2,1(=α, )1,5,1,3(-=β, 3) )2,1,1,1(=α, )0,1,2,3(-=β。
2006年福州大学419高等代数考研真题
(2) 求 f(x)的所有根。
17、设 A 为一个实可逆矩阵,证明 :存在正定矩阵 B1, B2 和正交矩阵 Q1, Q2 使得
A B1Q1 Q2B2
共 3页 第 2页
18、设 n 阶方阵 A 的秩为 r,且满足 A2 A ,
(1)证明
A
相似于
Er 0
0 0
,其中
Er
福州大学 2006 年招收硕士研究生入学考试试卷(B)
招生学院 数学与计算机科学学院 考试科目 高等代数
招生专业 应用数学、信息与计算数学
科目编号
419
一、简答题(每小题 3 分,满分 30 分)
1、已知矩阵
A
1 0
0 2
,求所有与
A
乘积可交换的矩阵。
2、已知 A 和 B 分别是 3 阶与 2 阶矩阵且|A|=1,|B|=2,求 0 A 。 B0
4 ),2
1 2
(1
2
3
4 ),
3
1 2
(1
2
3
4 ),4
1 2
(1
2
3
4)
也是 V 的一组标准正交基。
14、证明向量组1,2 ,3 线性无关当且仅当1 2 ,2 3,3 1 线性无关。
15、证明秩为 r 的对称矩阵可表为 r 个秩为 1 的对称矩阵之和。
共3 页 第1 页
{1, x, x2 ,..., xn1}下的度量矩阵。
二、解答题(第 11—16 题每题 10 分,第 17—20 题每题 15 分):
3 5 2 1 11、设 D 1 1 0 5 ,
06年考研数四真题及答案解析
2006年全国硕士研究生入学考试数学(四)一、填空 1.(1)1lim()nn n n-→∞+= 2.设函数()f x 在2x =的某邻域内可导,且()()(2)1f x f x e f '-⋅=,则法(2)f '=3.设函数()f u 可微,且1()2f u '=,则22(4)z f x y =-在点(1,2)处的全微分 (1,2)|dz =4.已知12,a a 为2维列向量,矩阵1212(2,)A a a a a =+-,12(,)B a a =。
若行列式||6A =,则||B =5.设矩阵2112A ⎡⎤=⎢⎥-⎣⎦,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则B 。
6.设随机变量X 与Y 相互独立,且均服从区间[1,3]上的均匀分布,由{max(,)1}P x y ≤=二、选择7.设函数()y f x =具有二阶导数,且()0f x '>,()0f x ''>,x 为自变量x 在点0x 处的增量y 与dy 分别为()f x 在点0x 处对应的增量与微分,若0x > ,则( ) (A )0dy y << (B )0y dy << (C )0y dy <<(D )0dy y <<8.设函数()f x 在0x =处连续,且220()lim 1n f n n→==,则( ) (A )(0)0f =且(0)f '存在 (B )(0)1f =且(0)f '存在 (C )(0)0f =且(0)f +'存在(D )(0)1f =且(0)f +'存在9.设函数()f x 与()g x 在[0,1]上连续,且()()f x g x ≤,且对任何(0,1)C ∈( ) (A )1122()()c cf t dtg t dt ≥⎰⎰(B )1122()()c cf t dtg t dt ≤⎰⎰(C )11()()ccf t dtg t dt ≥⎰⎰(D )11()()ccf t dtg t dt ≤⎰⎰10.设非齐次线性微分方程()()y P x y Q x '+=有两个不同的解1()y x ,2()y x ,C 为任何常数,则该方程通解是( ) (A )12[()()]C y x y x - (B )112()[()()]y x C y x y x +- (C )12[()()]C y x y x +(D )112()[()()]y x C y x y x ++11.设(,)f x y 与(,)G x y 均为可微函数,且(,)0G x y '≠,已知00(,)x y 是(,)f x y 在约束条件(,)0G x y =下的一个极值点。
高等代数问题解答1-40
即A的特征值只能为−1, −2, −3.由A的阶数为偶数知|A| > 0.(因为行列式为所有特征值的
乘积).A−1的特征值
只能为−1,
−
1 2
,
−
1 3
.而A∗
=
|A|A−1.易知A∗实对称.从而A∗的特征值都
是负的.
2.设V 是数域P 上的线性空间,V = W1 ⊕ W2. A1, A2分别为W1, W2上的线性变换.定义 法则A 如下:
P −1BP = Br1 . . .
Brt
而由B 也是实对称矩阵,从而也能够对角化,即Bri 可对角化,故存在正交阵Pri 使得
µi1
Pr−i 1Bri Pri =
...
, i = 1, · · · , t
µiri
令
Q = Pr1 . . .
, H = P Q
A [k(α1 + α2)] = A (kα1 + kα2) = 2A1(kα1) − 3α = k(2A1(α1) − 3A2(α2)) = 2A (α1 + α2)
故结论成立.
2)∀α1 ∈ W1,则
α1 = α1 + 0, α1 ∈ W1, 0 ∈ W2
于是
A (α1) = 2A1(α1) − 3A2(0) = 2A1(α1) ∈ W1
A [(α1 + α2) + (β1 + β2)] = A [(α1 + β1) + (α2 + β2)] = 2A1(α1 + β1) − 3A2(α2 + β2) = 2A1(α1) + 2A1(β1) − 3A2(α2) − 3A2(β2) = A (α1 + α2) + A (β1 + β2)
高等代数(王萼芳石生明著)课后答案高等教育出版社
高等代数习题答案(一至四章)第一章 多项式 习题解答1、(1)由带余除法,得17(),39q x x =-262()99r x =--(2)2()1q x x x =+-,()57r x x =-+2、(1)2100p m q m ⎧++=⎨-=⎩ , (2)由22(2)010m p m q p m ⎧--=⎪⎨+--=⎪⎩得01m p q =⎧⎨=+⎩或212q p m =⎧⎨+=⎩。
3、(1)432()261339109,q x x x x x =-+-+()327r x =- (2)q (x )=22(52)x ix i --+,()98r x i =--4、(1)有综合除法:2345()15(1)10(1)10(1)5(1)(1)f x x x x x x =+-+-+-+-+- (2)234()1124(2)22(2)8(2)(2)f x x x x x =-+++-+++ (3)234()24(75)5()(1)()2()()f x i x i i x i i x i x i =+-++--+-+++5、(1)x+1 (2)1 (3)21x --6、(1)u (x )=-x-1 ,v (x )=x+2 (2)11()33u x x =-+,222()133v x x x =-- (3)u (x )=-x-1, 32()32v x x x x =+-- 7、02u t =⎧⎨=⎩或23u t =-⎧⎨=⎩ 8、思路:根具定义证明证:易见d (x )是f (x )与g (x )的公因式。
另设()x ϕ是f (x )与g (x )的任意公因式,下证()()x d x ϕ。
由于d (x )是f (x )与g (x )的一个组合,这就是说存在多项式s (x )与t (x ),使 d (x )=s (x )f (x )+t (x )g (x )。
从而()()x f x ϕ,()()x g x ϕ,可得()()x d x ϕ。
高等代数(王萼芳石生明著)课后答案高等教育出版社
高等代数习题答案(一至四章)第一章 多项式 习题解答1、(1)由带余除法,得17(),39q x x =-262()99r x =--(2)2()1q x x x =+-,()57r x x =-+2、(1)2100p m q m ⎧++=⎨-=⎩ , (2)由22(2)010m p m q p m ⎧--=⎪⎨+--=⎪⎩得01m p q =⎧⎨=+⎩或212q p m =⎧⎨+=⎩。
3、(1)432()261339109,q x x x x x =-+-+()327r x =- (2)q (x )=22(52)x ix i --+,()98r x i =--4、(1)有综合除法:2345()15(1)10(1)10(1)5(1)(1)f x x x x x x =+-+-+-+-+- (2)234()1124(2)22(2)8(2)(2)f x x x x x =-+++-+++ (3)234()24(75)5()(1)()2()()f x i x i i x i i x i x i =+-++--+-+++5、(1)x+1 (2)1 (3)21x --6、(1)u (x )=-x-1 ,v (x )=x+2 (2)11()33u x x =-+,222()133v x x x =-- (3)u (x )=-x-1, 32()32v x x x x =+-- 7、02u t =⎧⎨=⎩或23u t =-⎧⎨=⎩ 8、思路:根具定义证明证:易见d (x )是f (x )与g (x )的公因式。
另设()x ϕ是f (x )与g (x )的任意公因式,下证()()x d x ϕ。
由于d (x )是f (x )与g (x )的一个组合,这就是说存在多项式s (x )与t (x ),使 d (x )=s (x )f (x )+t (x )g (x )。
从而()()x f x ϕ,()()x g x ϕ,可得()()x d x ϕ。
高等代数真题答案
⎜⎝ 5 ⎟⎠
⎛1 5 8 1⎞
⎛0 2 3 4⎞
15.
设 AP = PB,
其中
P
=
⎜ ⎜ ⎜
0 0
2 0
6 3
9 7
⎟ ⎟ ⎟
,
B
=
⎜ ⎜ ⎜
0 0
0 0
2 0
3 2
⎟
⎟ ⎟
,
求 A10
⎜⎜⎝ 0 0 0 4⎟⎟⎠
⎜⎜⎝ 0 0 0 0 ⎟⎟⎠
16. 若 A 可逆, 证明 AB 与 BA 相似.
姓名
15. R4 中, 求由基 (α1, α2, α3, α4 ) 到基 (β1,β2,β3,β4 ) 的过渡矩阵, 并求向量 ξ 在指定基 (α1, α2, α3, α4 ) 下的坐 标 . 其 中 α1 = (1,1,1,1), α2 = (1,1, −1, −1), α3 = (1, −1,1, −1), α4 = (1, −1, −1,1); β1 = (1,1, 0,1), β2 = (2,1,3,1), β3 = (1,1, 0, 0), β4 = (0,1, −1, −1). ξ = (1, 0, 0, −1) .
(b) V = { f ( A) | f (x) ∈ R[x]}, 这里 A∈ M n (R) 是一个固定方阵.
4. 叙述并证明线性空间V 的子空间W1 与W2 的并W1 ∪W2 仍为V 的子空间的充分必要条件.
5. 设 S1 与 S2 是线性空间V 的两个非空子集, 证明: (a) 当 S1 ⊆ S2 时, Span(S1) ⊆ Span(S2 ) .
证明V1 ≅ V2
14. 设 g1 = 2x3 − 2x + 2, g2 = x3 − 3x2 − x + 3, g3 = 2x3 + 2x2 − 2x, 是 F[x] 的 子 空 间 V 一 个 基 , f1 = x3 + 2x +1, f2 = x3 − x + 2, f3 = 2x2 + x . 请问 f1, f2, f3 中哪些是属于V , 哪些是不属于V , 如果属于请给 出它在基 (g1, g2, g3) 下的坐标.