土壤中氮的形态和转化

合集下载

土壤全氮的测定(精)

土壤全氮的测定(精)

在H2SO4-HClO4消煮中,如果对测定的要求不太 高时,可在同一试液中测N、P,但要求精度高时 不宜作N、P联合测定。 因为二者矛盾在于: 为了完全回收P,HClO4用量应多些; 而为了完全回收N,则要求HClO4用量少些, 所以联合测定时只好折中处理,使回收率达到 95%即可。
在N、P、K联测中,土壤K只是近似于全K, 因许多粘土矿物硅酸盐晶格上的K在开氏消煮中 不会被释放出来,而P容易释放,而植物中K本 来成离子态,所以,植物中的K可以完全被转到 溶液中。
(2)测定NH4+的条件: ①H3BO3的用量: H3BO3是一元弱酸,在溶液中呈弱酸性,pKa=9.2, 吸收NH3后溶液的pH是8.6,即H3BO3(加指示剂 调节pH后的)吸收NH3后pH由4.5上升到8.6,溶液 已呈碱性,不能再吸收NH3了。
1% H3BO3 约等于0.16 mol/L 1ml 1% H3BO3吸收的NH3量为 0.46 mg N 1ml 2% H3BO3吸收的NH3量为 0.92 mg N
一、概述
(一)土壤全氮存在的形态
有机态N:占90%以上,大多数是腐殖物质态氮, 如蛋白质、氨基酸、氨基糖、腐殖质等。
无机态N:占1-5%,主要有NH4-N、NO3-N、 NO2-N(少量)(不包括固定态氮), 一般小于100mg.kg-1。
(二)土壤全氮含量:
1 我国大部分耕地土壤全N含量不高,且变幅
现在普遍采用Cu-Se与盐按比例配成的加速剂,它
既起到缩短消煮时间,又能防止N素损失的作用。
加速剂的比例为:
组成 K2SO4(或无水Na2SO4) :CuSO4·5H2O :Se粉
重量比
100

10
:1
按比例混合,研细后使用。

三种氮素形态

三种氮素形态

1.硝态氮和铵态氮如,栽培在淹水环境中的水稻或水生植物,以吸收还原态的铵态氮为主要氮源;生长在旱地上的玉米、小麦等旱作物,则较多利用氧化态的硝态氮。

又如,对北方大多数呈碱性反应的石灰性土壤,以及保护地表层土壤,由铵转化成硝态氮的硝化作用旺盛,硝态氮是其优势氮源;即使对其施用铵态氮肥(铵盐、尿素以及有机氮),也都很易在土壤中转化成硝态氮,因而种植在其上的旱作物、喜硝作物等生长良好,并可用硝态氮的含量作为评价其速效氮水平的指标。

而对南方酸性土壤,尤其是pH值<5.0的土壤,硝化作用很弱,常态下能保持的硝态氮量较低,铵态氮是这类土壤的优势氮源,水稻等作物将生长较好;若种植喜硝态的旱作物,往往生育不理想,或需要在施用较多硝态氮源下才能更好生育,因而那些含有一定量硝态氮的复合肥的肥效常较好而更受欢迎,定价也较高。

2.硝态氮肥和铵态氮肥各有何优点?酰铵、氨基酸等不经过进一步分解,不能成为营养氮源。

硝态氮和铵态氮能够被植物直接吸收利用,他们施入土壤后的行为以及进入植物体内的代谢是不同的,因此作为植物氮源也各有利弊。

首先,硝酸根带负电荷,不易被带负电荷为主的土壤胶体吸附;铵离子带正电荷,容易被土壤吸附,不仅吸附在土壤表面,还可进入粘土矿物的晶体中,成为固定态铵离子,因此,硝态氮主要存在于土壤溶液中,移动性大,容易被植物吸收利用,也容易随雨水流失。

而安泰但主要被吸附和固定在土壤胶体表面和胶体晶格中,移动性较小,比较容易被土壤“包存”。

其次,不同形态的氮在土壤中会相互转化。

在适宜的温度、水分和通气条件下,在土壤微生物和酶的作用下,尿素水解为铵态氮,铵态氮氧化为硝态氮。

因此,早春低温季节尿素和铵态氮的转化比较慢,夏季高温季节转化快。

在旱地土壤中硝态氮往往多于铵态氮,而在水田土壤中硝态氮很少。

第三,在土壤湿度过大。

通气不良和有新鲜有机物存在的情况下,硝态氮在微生物作用下可还原成氧化亚氮,氧化氮和氮气,这种反硝化作用是硝态氮损失的主要途径之一。

土壤有机氮分类

土壤有机氮分类

土壤有机氮分类
土壤中氮的形态有有机态和无机氮之分,二者合称为土壤全氮。

其中土壤有机氮占土壤全氮量的98%以上。

第一类为水溶性有机氮(包括一些结构简单的游离氨基酸、胺盐及酰胺类化合物),是速效氮源,易被作物吸收利用,但其含量不超过土壤全氮量5%;第二类是水解性有机氮,它包括蛋白质类(占全氮量的40%~50%)、核蛋白质(占全氮量的20%)、氨基糖类(占全氮的5%~10%)等,它们经微生物分解后均可成为作物氮源。

水解性有机氮占全氮量的50%~70%,所以在植物营养上具重要意义;第三类为非水解性氮,主要有胡敏酸氮、富里酸氮和杂环氮等,其含量约占土壤全氮的30%~50%,它很难水解。

土壤无机态氮也称矿质氮,它包括铵态氮、硝态氮、亚硝态氮和气态氮(N2)。

常说的土壤无机氮主要是指铵态氮和硝态氮。

土壤的无机氮一般只占土壤全氮量的1%~2%,而且波动性大。

虽然是土壤中的速效氮,但其含量不能代表作物整个生育期或某一生育期内作物从土壤中吸收氮的总量,也不能把上年或上季所测得的无机氮含量直接作
为下年或下季作物施用氮肥的依据。

铵态氮能被带负电荷的土壤胶体吸附,亦能被2∶1型的黏土矿物所固定,在土壤中比较稳定,不易流失。

硝态氮不易为土壤胶体吸附,不太稳定,易于流失。

4第四章 土壤、肥料、植物中N的测定

4第四章 土壤、肥料、植物中N的测定

一、土壤氮的测定
(二)TN的测定
4.测定方法:
2)具体方法 ① 样品的分解(前处理) 称样量 全N含量 <0.2%,应称样(土样)1 g, 0.2-0.4%,应称0.5-1.0 g; >0.4%,应称0.5 g。 此法不包括NO3-N,但(NO3-N)可在一般土壤中可忽略
一、土壤氮的测定
(二)TN的测定
a.氨氮 通过Na+交换作用进入溶液 b.硝氮 淋洗作用(soil负电,NO3-易淋出) c.水溶有机氮 碱性条件下,将以上溶液用FeSO4和Zn还原 FeSO4 + 2NaOH → Fe(OH)2↓+ Na2SO4 8Fe(OH)2↓+ NaNO3 + 6H2O → 8Fe(OH)3↓ + NaOH + NH3↑ Zn + 2NaOH → Zn(ONa)2 + H2↑ H2 + 2Fe(OH)3↓→ 2Fe(OH)2↓+ H2O H2 + NaNO3 → NaNO2 + H2O 6Fe(OH)2↓ + NaNO2 + 5H2O → 6Fe(OH)3↓+ NaOH + NH3↑
催化剂
煮分解,使其中的氮转化为氨,与H2SO4结合成(NH4)2SO4。
一、土壤氮的测定
(二)TN的测定
A).半微量开氏法(H2SO4—混合盐消煮):国标法 操作过程
目风干样 0.51.0 g .85 g 称样 100 湿润土样 加几滴水 加混合催化剂加入混合催化剂 1 于开氏瓶或消化管中 ml ,在 600 1000W电炉上加热微沸或消化 器 加浓H 2 SO4 5 消化 盖上小漏斗 冷却 转移 摇匀 呈淡蓝色后再消煮 30 60 min 共需11.5 h 20 ml 水 用 定容(待测液) 转入 50 ml 容量瓶

土壤碱解氮和土壤全氮的关系

土壤碱解氮和土壤全氮的关系

土壤碱解氮和土壤全氮的关系1.引言1.1 概述土壤碱解氮和土壤全氮是土壤肥力和养分状况的两个关键指标。

土壤碱解氮是指土壤中以氮碱解的形式存在的氮元素的含量,包括土壤中氨态氮和亚硝酸态氮的含量。

而土壤全氮则是指土壤中所有形态的氮元素的总含量。

土壤碱解氮和土壤全氮之间存在紧密的关系。

首先,土壤碱解氮是土壤中有机氮、尿素等化合物经过微生物分解作用后形成的一种形态,而土壤全氮则包括有机氮、无机氮和元素氮等多种形态的氮元素。

因此,土壤碱解氮是土壤全氮的一个组成部分。

其次,土壤碱解氮和土壤全氮的变化趋势一般是一致的。

研究表明,土壤碱解氮和土壤全氮的含量在大部分情况下呈正相关关系,即土壤碱解氮含量增加,土壤全氮含量也随之增加。

这是因为土壤碱解氮是土壤供氮能力的一个重要指标,碱解氮含量越高,土壤中的有效氮元素就越多,从而有利于植物的生长和发育,增加了土壤全氮含量。

最后,土壤碱解氮和土壤全氮的关系还受到一些因素的影响。

例如,土壤pH值的变化对土壤碱解氮和土壤全氮含量的影响较大。

碱解氮和全氮含量在酸性土壤中通常较低,而在中性或碱性土壤中则较高。

此外,土壤的有机质含量、温度、湿度等因素也会对土壤碱解氮和土壤全氮的含量造成一定影响。

综上所述,土壤碱解氮和土壤全氮密切相关,碱解氮是全氮的一个组成部分,并且两者的变化趋势一般一致。

了解土壤碱解氮和土壤全氮之间的关系以及受到的影响因素,对于科学合理地调控土壤中氮元素的供应,提高土壤肥力和农作物产量具有重要意义。

1.2文章结构文章结构部分可以介绍文章的章节组成和内容安排,具体内容如下:本文主要分为三个部分,分别是引言、正文和结论。

引言部分主要包括概述、文章结构和目的。

在概述中,将对土壤碱解氮和土壤全氮的关系进行简要介绍,引发读者对该话题的兴趣。

在文章结构中,将详细阐述本文的章节和内容安排,以便读者能够清晰地了解文章的整体结构。

在目的部分,将明确本文的研究目的和意义,说明为什么要研究土壤碱解氮和土壤全氮的关系。

作物吸收氮素的主要形态

作物吸收氮素的主要形态

作物吸收氮素的主要形态引言氮素(N)是植物生长发育中必需的营养元素之一。

它在植物体内参与许多重要的代谢过程,如蛋白质合成和核酸合成等。

作物吸收氮素的形态多样,包括无机氮和有机氮两种形态。

本文将详细介绍作物吸收氮素的主要形态及其特点。

无机氮形态氨态氮(NH4+)氨态氮是作物吸收的一种重要无机氮形态。

当土壤中含有较高水平的铵态氮时,作物可以直接通过根系吸收。

它具有以下特点: - 吸收速度快:由于其带正电荷,能够与根系间隙中负电荷的离子交换复杂,从而加快了吸收速度。

- 吸附能力强:在土壤中,铵态氮很容易被粘附在土壤颗粒表面,从而减少了铵态氮流失的可能性。

硝态氮(NO3-)硝态氮是另一种主要无机氮形态,也是作物吸收的重要来源。

它具有以下特点: - 吸收速度相对较慢:硝态氮需要通过根系被还原为无机氮形态后才能被作物吸收,因此其吸收速度相对较慢。

- 易于流失:硝态氮在土壤中容易发生淋溶和硝化作用,从而导致流失,增加了环境污染的风险。

亚硝态氮(NO2-)亚硝态氮是一种不稳定的无机氮形态,在自然环境中很少存在。

但在某些特殊情况下(如水logged土壤),亚硝态氮可以产生并被一些作物吸收。

有机氮形态蛋白质蛋白质是植物体内最主要的有机氮形态。

它由多个氨基酸组成,是植物体内重要的代谢产物。

作物通过分泌酶类将蛋白质分解为氨基酸,再通过根系吸收。

氨基酸氨基酸是蛋白质的组成单元,也是一种重要的有机氮形态。

它在土壤中很少存在,但通过根系分泌的酶类可以将蛋白质分解为氨基酸,然后被作物吸收。

氨基酸盐氨基酸盐是一种有机氮形态,在土壤中比较常见。

它由氨基酸与无机盐(如钠盐、钾盐等)结合而成,可以被作物直接吸收利用。

形态转化在土壤中,无机氮和有机氮之间存在相互转化的过程。

这些转化过程主要由微生物介导,包括硝化、还原和脱氨等。

通过这些转化过程,不同形态的氮素可以相互转换,为作物提供不同形式的营养。

•硝化:微生物将铵态氮氧化为硝态氮,从而使植物能够吸收。

氮在土壤中的迁移转化

氮在土壤中的迁移转化

氮在土壤中的迁移转化(一)植物对土壤中氮的汲取植物从土壤中汲取氮的过程很复杂,就形态而言多为铵态氮和硝态氮。

普通旱作土壤中硝态氮比铵态氮浓度高,简单通过质流而蔓延到根部,因此硝态氮(NO3--N)是旱地植物养分主要的氮源之一;而对于水田,如种植水稻的水稻土其氮养分主要是铵态氮(NH4+-N)。

(1)硝态氮植物汲取NO3-量高,且为主动汲取;土壤pH 低时更易汲取NO3-,而NH4+可与之竟争削减植物汲取NO3-。

植物施用大量NO3-时,体内合成的有机阴离子数量增强,无机阳离子Ca2+、Mg2+和K+的堆积也相应增强,从而促使根际的pH升高。

(2)铵态氮 NH4+是植物一种抱负的氮源,在蛋白质合成中若利用NH4+则比NO3-更为节能。

NO3-结合进蛋白质以前必需还原,这是一种消耗能量的过程,还原1分子NO3-需2分子NADH(二磷酸吡啶核苷酸),而且NH4+在上壤中既不易淋失,也不易发生反硝化作用,损失较少。

当pH为7时,植物汲取NH4+较多,酸度增强则汲取量降低。

根汲取NH4+后,植物组织中无机阳离子Ca2+,Mg2+和K+浓度下降,而无机阴离子PO43-,SO42-和Cl-浓度增强,从而促使根际pH下降。

无论是根际pH升高或下降对根际中营养有效性、生物活性以及污染物的行为都有重要影响。

(二)土壤中氮素转化的重要过程 1.土壤无机氮的微生物固持和有机氮的矿化土壤无机氮的微生物固持,是指进入土壤的或土壤中原有的NH4+和NO3-被微生物转化成微生物体的有机氮。

它不同于土壤的NH4+的矿物固定,也不同于NH4+和NO3-被高等植物的同化。

土壤有机氮的矿化,是指土壤中原有的或进入到土壤中的有机肥和动植物残体中的有机氮被微生物分解改变为氨,因此,这一过程又叫氨化过程。

有机氮的矿化和矿质氮的微生物固持是土壤中同时举行的两个方向相反的过程,这两者的相对强弱受到许多因素,特殊是可供微生物利用的有机碳化物(即能源物质)的种类和数量的影响。

土壤中的氮素及其转化

土壤中的氮素及其转化

土壤中的氮素及其转化1•土壤中氮素的来源和含量1.1来源①施入土壤中的化学氮肥和有机肥料;②动植物残体的归还;③生物固氮;④雷电降雨带来的N03—N。

1.2含量我国耕地土壤全氮含量为0.04%~0.35%之间,与土壤有机质含量呈正相关2.土壤中氮素的形态3.土壤中氮素的转化3.1有机氮的矿化作用定义:在微生物作用下,土壤中的含氮有机质分解形成氨的过程。

过程:有机氮'氨基酸k NH4J N +有机酸结果:生成NH4+-N (使土壤中有机态的氮有效化)3.2 土壤粘土矿物对NH4+的固定定义:①吸附固定(土壤胶体吸附):由于土壤粘土矿物表面所带负电荷而引起的对NH4 +的吸附作用②晶格固定(粘土矿物固定):NH4 +进入2:1型膨胀性粘土矿物的晶层间而被固定的作用过程:结果:减缓NH4+的供应程度(优点?缺点?3.3氨的挥发定义:在中性或碱性条件下,土壤中的NH4+转化为NH3而挥发的过程过程:结果:造成氮素损失 3.4硝化作用定义:通气良好条件下,土壤中的NH4+在微生物的作用下氧化成硝酸盐的现象过程:结果:形成NO-N禾I」:为喜硝植物提供氮素弊:易随水流失和发生反硝化作用3.5无机氮的生物固定定义:土壤中的铵态氮和硝态氮被植物体或者微生物同化为其躯体的组成成分而被暂时固定的现象。

过程:结果:减缓氮的供应,可减少氮素的损失3.6反硝化作用定义:嫌气条件下,土壤中的硝态氮在反硝化细菌作用下还原为气态氮从土壤中逸失的现象过程:结果:造成氮素的气态挥发损失,并污染大气3.7硝酸盐的淋洗损失NO3-不能被土壤胶体吸附,过多的硝态氮容易随降水或灌溉水流失。

结果:氮素损失,并污染水体4.小结:土壤有效氮增加和减少的途径增加途径:①施肥(有机肥、化肥);②氨化作用;③硝化作用(喜硝作物力④生物固氮;⑤雷电降雨降低途径:①植物吸收带走;②氨的挥发损失;③硝化作用(喜铵作物弱④ 反硝化作用;⑤硝酸盐淋失;⑥生物和吸附固定(暂时)氮肥的种类、性质和施用氮肥的种类很多,根据氮肥中氮素的形态,常用的氮肥一般可分为三大类。

土壤氮元素实验报告

土壤氮元素实验报告

土壤氮元素实验报告一、实验目的本实验旨在通过对土壤中氮元素含量的测定,了解土壤的氮素供应状况,并研究土壤氮素含量与作物生长之间的关系。

二、实验原理土壤中的氮素主要有有机氮和无机氮两种形态。

有机氮主要存在于土壤中的有机质中,如腐殖质和微生物体。

无机氮包括铵态氮(NH4+)和硝态氮(NO3-),它们是植物直接吸收和利用的氮素形态。

实验中,采用盐酸钠铁法测定土壤中的铵态氮含量,采用硫酸亚铁还原-蒸馏法测定土壤中的硝态氮含量。

三、实验步骤1. 取一定量的土壤样品,将其空气干燥后研磨成细粉末。

2. 取0.5g土壤样品,加入100ml盐酸钠铁溶液中,摇匀,蒸发至干燥。

3. 将干燥后的土壤样品与蒸馏水混合,过滤后用盐酸钠铁溶液进行洗涤,将洗涤液集中收集。

4. 取一定量的洗涤液,加入硫酸亚铁溶液,并加入硫酸溶液进行酸化,使其产生反应生成亚铁离子。

5. 将生成的亚铁离子与硝态氮反应生成氨气,通过导热管送入酸性缓冲溶液中。

6. 用盐酸进行滴定,直到溶液颜色变为橙黄色,记录滴定消耗的盐酸体积。

7. 根据滴定消耗的盐酸体积推算出硝态氮的含量。

四、实验结果和分析根据实验数据,计算出土壤样品中的铵态氮和硝态氮的含量,并计算土壤总氮的含量。

通过与对照组进行比较,可以评估土壤中的氮素供应状态。

五、实验结论根据实验结果分析,得出结论并总结实验中的发现。

并可以进一步展望与讨论。

六、实验改进和优化对于实验过程中存在的问题和不足之处提出改进建议,并分析可能的改进方法,以提高实验结果的准确性和可重复性。

七、实验应用和展望根据实验结果,探讨土壤氮素含量与作物生长之间的关系,以及对农业生产的应用价值。

并展望未来对土壤氮素研究的发展方向。

八、参考文献列出实验中所参考的文献和资料。

以上为土壤氮元素实验报告的基本结构和要点。

根据具体实验内容和结果,进行相应的补充和扩展。

实验报告要包含实验目的、原理、步骤、结果、结论等内容,并进行全面的分析与讨论。

碱解氮 有效氮

碱解氮 有效氮

碱解氮,也称作水解性氮或有效氮,是土壤中一种重要的氮素形态。

它是指土壤中能够被作物直接吸收利用的氮素,主要包括无机态氮(如铵态氮、硝态氮)以及易水解的有机态氮(如氨基酸、酰胺和易水解蛋白质)。

碱解氮的含量能够反映土壤近期内氮素的供应情况,是评价土壤肥力的重要指标之一。

碱解氮的转化过程是一个复杂的生物化学反应过程,主要通过微生物的分解作用将有机氮转化为无机氮。

这些微生物包括细菌、真菌和放线菌等,它们通过分泌胞外酶来分解有机氮,从而释放出无机氮供植物吸收利用。

此外,植物根系也能分泌一些酸性物质,促进土壤中有机氮的水解,提高碱解氮的含量。

碱解氮的转化速度受到多种因素的影响,如温度、湿度、土壤pH值、土壤质地、有机质含量等。

一般来说,温度升高会促进碱解氮的转化,而土壤湿度过高或过低都不利于碱解氮的转化。

此外,土壤pH值对碱解氮的转化也有重要影响,适宜的pH值范围能够促进碱解氮的转化和植物吸收。

在农业生产中,了解土壤碱解氮的含量和转化规律,对于指导施肥、提高作物产量具有重要意义。

一般来说,碱解氮含量较高的土壤,其氮素供应能力较强,可以适当减少氮肥的施用量;而碱解氮含量较低的土壤,则需要增加氮肥的
施用量,以满足作物生长的需要。

总之,碱解氮是土壤中一种重要的氮素形态,其转化和利用过程受到多种因素的影响。

了解碱解氮的含量和转化规律,对于指导农业生产、提高作物产量具有重要意义。

土壤中氮的形态

土壤中氮的形态

土壤中氮的形态一、引言氮是植物生长中最为关键的元素之一,它在土壤中存在多种形态。

了解土壤中氮的形态对于合理施肥、提高农作物产量和保护环境具有重要意义。

本文将从土壤中氮的无机形态和有机形态两个方面进行介绍。

二、无机形态1. 氨态氮氨态氮是土壤中最容易被植物吸收利用的形态之一。

它主要以铵盐的形式存在于土壤中,如氨氮、铵氮等。

铵盐在土壤中较为稳定,不易流失,同时也不易转化为其他形态的氮。

土壤中的氨态氮含量高低对农作物的生长有直接影响,过高或过低的氨态氮含量都会对植物的生长产生负面影响。

2. 硝态氮硝态氮是土壤中另一种重要的无机氮形态。

它主要以硝酸盐的形式存在于土壤中,如硝酸铵、硝酸钾等。

硝态氮对于大部分农作物的吸收利用较为重要,尤其是对于谷类作物和豆类作物。

硝态氮在土壤中的含量受到土壤温度、湿度、通气性和微生物活动等因素的影响,因此其含量的变化较为复杂。

三、有机形态1. 有机氮有机氮是土壤中的一种重要氮源,主要来自于植物和动物的残体、粪便以及微生物的代谢产物等。

有机氮的含量较高的土壤通常具有较好的肥力,因为有机氮能够提供植物所需的养分,并且能够通过微生物的作用逐渐转化为无机氮形态,为植物的生长提供源源不断的氮素供应。

2. 氨基酸和蛋白质氨基酸和蛋白质是土壤中重要的有机氮化合物。

它们是植物和动物体内的蛋白质分解产物,同时也是土壤中微生物代谢产物的重要组成部分。

氨基酸和蛋白质在土壤中的分解过程中会释放出氨态氮和硝态氮,为植物提供养分。

四、土壤中氮的转化过程土壤中的氮转化是一个复杂的过程,包括氮的固定、硝化、脱氮等。

固定作用是指将大气中的氮气转化为土壤中的无机氮形态,主要是通过植物根际的共生菌和自由生活菌的作用实现的。

硝化是指将氨态氮转化为硝态氮的过程,主要由硝化细菌完成。

脱氮是指土壤中硝态氮转化为氮气的过程,主要是通过反硝化细菌的作用实现的。

五、土壤中氮的管理合理施肥是土壤中氮管理的关键。

根据农作物对氮素的需求和土壤中氮的供应情况,科学施肥可以提高氮的利用效率,减少氮的损失。

土壤氮循环实验研究方法

土壤氮循环实验研究方法

土壤氮循环是生态系统中一个至关重要的过程,涉及氮在无机和有机形态之间的转化以及生物体内的吸收、同化与矿化等步骤。

进行土壤氮循环实验研究时,通常会采用以下几种主要方法:
1. 测定土壤氮含量:
- 总氮量(TN):通过凯氏定氮法或其他化学提取法来测定土壤中的总氮含量。

- 无机氮(IN):包括铵态氮(NH₄₄-N)和硝态氮(NO₄₄-N),可通过离子色谱法、分光光度法等进行测定。

2. 微生物活性分析:
- 酶活性测定:例如测量参与氮循环关键步骤的酶,如氨单加氧酶(amoA)和亚硝酸盐氧化还原酶(NXR)编码基因的相关活性。

- 功能微生物群落结构分析:利用高通量测序技术分析参与氮固持、矿化、硝化、反硝化等过程的微生物种群。

3. 氮素转化动力学实验:
- 氮矿化率测定:通过添加标记的氮源(如¹₄N)并追踪其转化为植物可吸收形式的过程。

- 硝化与反硝化潜力测试:在厌氧或好氧条件下培养土壤
样本,以评估其硝化与反硝化作用的能力。

4. 生态氮足迹实验:
- 氮收支平衡计算:估算农田、森林、草地等生态系统单位面积内氮素的输入(肥料施用、大气沉降等)和输出(作物收获、径流流失等)。

5. 模型模拟:
- 利用数学模型模拟不同环境条件和管理措施对土壤氮循环的影响。

这些方法综合运用有助于深入理解土壤氮循环的各个环节,为农业施肥管理、环境污染控制和生态系统健康提供科学依据。

土壤氮素的形态及其转化过程

土壤氮素的形态及其转化过程

土壤氮素的形态及其转化过程土壤氮素是指土壤中存在的不同形态的氮元素化合物。

氮素是植物生长和发育所必需的主要营养元素之一,在土壤中通常以无机氮和有机氮的形式存在。

土壤中的无机氮形态主要包括铵态氮(NH4+)和硝态氮(NO3-)。

铵态氮是由土壤中有机物分解产生的,也可以通过氮肥的施用或者转化过程中产生。

硝态氮则是由土壤中的氨氧化细菌通过氧化铵态氮产生。

硝态氮相对更容易被植物吸收,因为它具有更高的溶解度和更低的电荷密度,可以通过土壤水分迁移更容易到达植物根系。

土壤中的氮素转化过程主要包括氨化、硝化和脱氮三个过程。

氨化是将有机氮转化为铵态氮的过程,这一过程主要由分解有机物的微生物参与。

在氨化过程中,微生物通过分解有机物产生氨,并进一步转化为铵离子。

硝化是将铵态氮转化为硝态氮的过程,这一过程主要由氨氧化细菌参与。

在硝化过程中,氨氧化细菌氧化铵态氮为硝酸盐,产生硝态氮。

脱氮是将土壤中的硝态氮转化为氮气并释放到大气中的过程,这一过程主要由脱氮细菌参与。

土壤中氮素形态和转化过程对植物的生长和发育具有重要影响。

由于铵态氮和硝态氮的溶解度和化学活性不同,它们对植物的吸收和利用方式也不同。

铵态氮主要通过质子泵和电中性离子转运到达植物根系并被吸收,而硝态氮则主要通过硝酸胺盐共转运体转运到达植物根系并被吸收。

土壤中的氮素转化也会影响土壤中的养分循环、植物种群结构以及氮素肥料的利用效率等。

综上所述,土壤中的氮素主要存在于铵态氮、硝态氮和有机氮的形式。

氮素在土壤中通过氨化、硝化和脱氮等转化过程进行相互转化。

氮素的形态和转化过程对植物的生长和发育具有重要影响,也对土壤养分循环和植物种群结构等生态系统功能产生影响。

土壤中氮的转化过程

土壤中氮的转化过程

土壤中氮的转化过程硝态氮(NO3-) 与铵态氮(NH4+)土壤中氮的转化过程农业中氮的3个主要来源是尿素、铵态氮和硝态氮。

铵转化成硝态氮的生物氧化过程一般称为硝化作用。

此过程由自养型好气性细菌引起,如图中所示。

在淹水土壤中,铵的氧化会受到抑制。

尿素在尿酶的作用下或化学水解成氨和二氧化碳。

在氨化过程中,氨被铵氧化菌转化成铵,接下来,铵被硝化菌转化成硝酸盐(硝化作用)。

氮的转化率取决于一些条件---当前土壤中存在的硝化细菌。

在以下条件下,NH4+ 向NO3的转换才能顺利进行:有硝化菌存在。

土壤温度&gt; 20 °C土壤的pH 值在5,5 - 7,5之间土壤中有足够的水分和氧气若土壤出现以下一个或多个情况时,氮的转化受限制或完全停止,可能会造成铵在土壤中的积累(Mengel and Kirkby, 1987):低pH值大大的抑制了微生物对铵离子的氧化。

缺氧(比如,淹水土壤)缺少有机质(它是细菌的碳来源)土壤干燥土壤温度低引起土壤的微生物的活性降低,从而抑制硝化。

在26 °C是硝化作用最佳温度,而铵化的最佳温度高达50 °C。

所以,在热带的土壤中,即使在中性pH的条件下,由于硝化率低,也会导致铵的聚积。

图1. 土壤中氮转化的过程(点击图放大, 点击这里打开和打印图表)含硝态氮的肥料较之含铵肥料的优点硝态氮是作物最佳氮源:不挥发性:与铵不同,硝态氮不挥发,所以不要求必需土施,还可以用作追肥和叶面施肥,便于操作。

在土壤中可移动-直接被植物吸收,效率最高。

硝态氮协同促进阳离子的吸收,如钾、钙、镁。

而铵与这些离子竞争吸收位点。

硝态氮可以被植物立即吸收,而不需要任何的转化,而尿素和铵在被植物吸收之前都要经过转化。

施用硝态-氮肥,不会导致土壤酸化。

硝态氮限制对有害物的大量吸收,比如氯化物。

硝态氮转化成氨基酸的过程在叶片上发生,以太阳能为能源,是个节能过程。

铵必须在根部被转化成有机氮化合物。

氮肥在土壤中的变化

氮肥在土壤中的变化

氮肥的种类不同,在土壤中的转化特点不同。

硫铵、碳铵和氯化铵中NH4+的转化相同,除被植物吸收外,一部分被土壤胶体吸附,另一部分通过硝化作用将转化为NO3-;硫铵和氯化铵中阴离子的转化相似,只是生成物不同,酸性土壤中两都分别生成硫酸和盐酸,增加土壤酸度;石灰性土壤中则分别生成硫酸钙和氯化钙,使土壤孔隙堵塞或造成钙的流失,使土壤板结,结构破坏;二者在水田中的转化亦有所不同,氯化铵的硝化作用明显低于硫铵,且不会像硫铵一样产生水稻黑根,因此在水田中往往氯化铵的肥效高于硫铵;碳铵中的碳酸氢根离子则除了作为植物的碳素营养之外,大部可分解为CO2和H2O,因此,碳铵在土壤中无任何残留,对土壤无不良影响。

硝态氮肥如硝酸铵施入土壤后,NH4+和NO3-均可被植物吸收,对土壤无不良影响。

NH4+除被植物吸收外,还可被胶体吸附,NO3-则易随水淋失,在还原条件下还会发生反硝化作用而脱氮。

酰胺态氮肥如尿素施入土壤后,首先以分子的形式存在,在土壤中有较大的流动性,且植物根系不能直接大量吸收,以后尿素分子在微生物分泌的脲酶的作用下,转化为碳酸铵,碳酸铵可进一步水解为碳酸氢铵和氢氧化铵。

所以尿素施在土壤的表层也会有氨的挥发损失,特别在石灰性土壤和碱性土壤上损失更为严重。

尿素的转化速度主要取决于脲酶活性,而脲酶活性受土壤温度的影响最大,通常10℃时尿素转化需7-10天,20℃时需4-5天,30℃时只需2天。

因为尿素在土壤中需要转化为铵态氮以后,才能大量被植物吸收利用,故尿素作追肥时,要比其它铵态氮肥早几天施用,具体早几天为宜,应视温度状况而定。

氮肥合理施用的基本目的在于减少氮肥损失,提高氮肥利用率,充分发挥肥料的最大增产效益。

由于氮肥在土壤中有氨的挥发、硝态氮的淋失和硝态氮的反硝化作用三条非生产性损失途径,氮肥的利用率是不高的,据统计,我国氮肥利用率在水田为35%-60%,旱田为45%-47%,平均为50%,约有一半损失掉了,既浪费了资源,又污染了环境,所以合理施用氮肥,提高其利用率,是生产上亟待解决的一个问题。

氮的周期性变化

氮的周期性变化

氮的周期性变化氮是地球上最丰富的元素之一,在自然界中存在多种形式。

氮的周期性变化对于地球上的生物和生态系统起着重要作用。

本文将介绍氮的周期性变化及其对地球的影响。

首先,氮的周期性变化主要包括氮固定、氮蓄积和氮释放三个过程。

氮固定是指将大气中的氮气转化为植物可利用的形式。

这一过程由细菌完成,包括氮气还原和氨氧化两个步骤。

氮蓄积是指植物和土壤中氮的积累过程,包括植物吸收土壤中的氮和土壤中的有机氮的转化。

氮释放是指土壤中的氮转化为氨和硝酸盐等植物可利用的形式,这一过程由细菌和其他微生物完成。

其次,氮的周期性变化对于地球上的生态系统起着重要作用。

在自然界中,氮是植物生长和生态系统中的生物多样性的关键因素之一。

氮的适量供应可以促进植物的生长,增加农作物的产量,改善土壤质量。

然而,当氮的供应过剩时,会导致土壤和水体的污染,影响生物多样性并对人类健康造成风险。

氮的周期性变化还与全球气候变化密切相关。

氮气是地球大气中的主要成分之一,它的浓度对于全球气候起着重要作用。

过去几十年来,随着工业化和农业发展,人类活动不断增加大气中的氮气浓度,导致气候变暖和酸雨等环境问题。

除了自然因素外,人类活动也对氮的周期性变化产生了影响。

农业是氮循环中最重要的人为因素之一。

农业生产过程中使用的化肥和农药会增加土壤中的氮含量,当这些化合物进入水体后,会引起水体富营养化,导致水体蓝藻和浮游植物的过度生长,造成水体富氧和生态系统崩溃。

为了解决氮的周期性变化带来的环境问题,可以采取一系列措施。

首先,控制农业生产过程中的氮输入量,减少化肥和农药的使用。

其次,加强水体监测和治理,提高水体质量。

此外,推广循环经济和可持续发展理念,提高资源的利用效率,减少废弃物的产生。

总之,氮的周期性变化对于地球上的生物和生态系统起着重要作用。

在自然界中,氮通过氮固定、氮蓄积和氮释放三个过程进行循环。

然而,人类的活动加剧了氮的循环,并对环境产生了负面影响。

为了解决这一问题,应该采取措施减少氮的过度排放,实现可持续发展。

土壤中氮的形态和转化

土壤中氮的形态和转化

土壤中氮的形态和转化徐斌一、土壤中氮的形态土壤中的氮素形态分无机态及有机态两大类,但以有机态为主,按其溶解度大小和水解难易分为3类:第一,水溶性有机氮;第二,水解性有机氮;第三,非水解性有机态氮;它们在一般酸碱处理下不能水解,但可在各种微生物的作用下逐渐分解矿化。

土壤无机态氮很少,一般表土不超过全氮的1%-2%。

土壤无机态氮主要是铵态氮和硝态氮。

它们都是水溶性的,都能直接为植物吸收利用。

铵态氮为阳离子,能为土壤胶体所吸收成为交换性阳离子,但也有一部分在进入粘粒矿物晶架结构中后,被闭蓄于晶层间的孔穴内成为固定态铵。

1.有机态氮按其溶解度大小和水解难易分为3类:第一、水溶性有机氮一般不超过全氮的5%。

它们主要是一些游离的氨基酸、胺盐及酰胺类化合物,分散在土壤溶液中,很容易水解,释放出离子,是植物速效性氮源。

第二、水解性有机氮占全氮总量的50%-70%。

主要是蛋白质多肽和氨基糖等化合物。

用酸碱等处理时能水解成为较简单的易溶性化合物。

第三、非水解性有机态氮占全氮的30%-50%。

它们在一般酸碱处理下不能水解,但可在各种微生物的作用下逐渐分解矿化。

2.无机态氮土壤无机态氮很少,一般表土不超过全氮的1%-2%。

土壤无机态氮主要是铵态氮和硝态氮及亚硝态氮。

它们都是水溶性的,都能直接为植物吸收利用。

第一,硝态氮土壤中硝态氮主要来源于施人土壤中的硝态氮肥和微生物的硝化产物。

第二,铵态氮土壤中的铵态氮又分为三种,铵态氮为阳离子,能为土壤胶体所吸收成为交换性阳离子,但也有一部分在进入粘粒矿物晶架结构中后,被闭蓄于晶层间的孔穴内成为固定态铵。

第三,亚硝态氮土壤中的亚硝态氮是硝化作用的中间产物。

二、土壤中氮的转化土壤氮素形态较多,各种形态的氮素处于动态变化之中,不同形态的氮素互相转化,对于有效氮的供应强度和容量有重要意义。

1.有机态氮的转化土壤中的有机态氮是较复杂的有机化合物,必须要经过各种矿化过程,变为易溶的形态,才能发挥作物营养的功能。

土壤中氮主要形态

土壤中氮主要形态

土壤中氮主要形态土壤中的氮是植物生长所必需的重要元素之一,它在土壤中以不同的形态存在。

本文将介绍土壤中氮的主要形态,并探讨其对植物生长的影响。

一、无机氮形态1. 氨态氮:土壤中的氨态氮主要来自有机物的分解以及氨肥的施用。

氨态氮对植物生长影响较大,能直接被植物吸收利用。

然而,氨态氮在酸性土壤中容易转化为铵态氮,进而被土壤颗粒吸附,降低其有效性。

2. 铵态氮:铵态氮是土壤中常见的无机氮形态之一,主要来自有机物的分解和氮肥的施用。

铵态氮在土壤中容易与土壤颗粒结合,形成不易被植物吸收的“铵态氮-铵态氮铵盐”复合物。

此外,铵态氮还容易被硝化细菌氧化成硝态氮。

3. 硝态氮:硝态氮主要来源于土壤中的硝化作用,即氨态氮经过硝化细菌的作用被氧化成硝态氮。

硝态氮是植物吸收的主要形态,对植物生长起着重要作用。

然而,硝态氮也容易被淋溶和流失,造成氮素的浪费和环境污染。

4. 亚硝态氮:亚硝态氮是硝化过程中的中间产物,其含量较低且不稳定。

亚硝态氮的积累可能是硝化作用受到抑制或硝化细菌活性下降的结果。

二、有机氮形态1. 蛋白质:蛋白质是土壤中重要的有机氮形态,其含量较高。

蛋白质通过微生物的分解作用逐渐转化为氨态氮、铵态氮和硝态氮,为植物提供氮源。

2. 腐殖质:腐殖质是土壤中的稳定有机质,其中包含的氮以有机形态存在。

腐殖质对氮的固持和释放起着重要的调节作用,对土壤肥力和植物生长具有重要影响。

3. 植物残体:植物残体中的有机氮主要以有机形态存在,随着植物的凋落和分解,有机氮逐渐释放为无机氮,为后续作物提供养分。

4. 微生物体:土壤中丰富的微生物也是重要的有机氮来源,微生物体中的氮含量较高,通过微生物的分解作用可以释放为无机氮,为植物提供养分。

土壤中氮的形态对植物生长具有重要影响。

氨态氮和铵态氮对植物生长有直接促进作用,但容易被土壤吸附和硝化细菌氧化,降低其有效性。

硝态氮是植物吸收的主要形态,但容易被淋溶和流失,需合理施肥和管理以减少氮素的损失。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

土壤中氮的形态和转化
1、土壤中氮的形态
土壤中的氮素形态分为无机态氮和有机态氮两类,二者合为土壤全氮。

1.有机态氮
水溶性有机氮 : 一般不超过全氮的5%。

它们主要是一些游离的氨基酸、胺盐及酰胺类化合物,分散在土壤溶液中,很容易水解,释放出离子,是植物速效性氮源。

水解性有机氮 : 占全氮总量的50%-70%。

主要是蛋白质多肽和氨基糖等化合物。

用酸碱等处理时能水解成为较简单的易溶性化合物。

非水解性有机态氮 : 占全氮的30%-50%。

它们在一般酸碱处理下不能水解,但可在各种微生物的作用下逐渐分解矿化。

2.无机态氮
土壤无机态氮很少,一般表土不超过全氮的1%-2%。

土壤无机态氮主要是铵态氮和硝态氮及亚硝态氮。

它们都是水溶性的,都能直接为植物吸收利用。

硝态氮:土壤中硝态氮主要来源于施人土壤中的硝态氮肥和微生物的硝化产物。

铵态氮:土壤中的铵态氮又分为三种,铵态氮为阳离子,能为土壤胶体所吸收成为交换性阳离子,但也有一部分在进入粘粒矿物晶架结构中后,被闭蓄于晶层间的孔穴内成为固定态铵。

亚硝态氮:土壤中的亚硝态氮是硝化作用的中间产物。

二、土壤中氮素的转化
铵态氮硝态氮吸附态铵或
固定态铵水体中的硝态氮
氨化作用硝化作用
生物固定硝酸还原作用NH 3
N 2、NO 、N 2O 挥发损失反硝化作用
吸附固定淋洗损失


氮有机氮
生物
固定
土壤氮素形态较多,各种形态的氮素处于动态变化之中,不同形态的氮素互相转化,对于有效氮的供应强度和容量有重要意义。

1.有机态氮的转化
土壤中的有机态氮是较复杂的有机化合物,必须要经过各种矿化过程,变为易溶的形态,才能发挥作物营养的功能。

它的矿化量和矿化速率就成为决定土壤供氮能力的极其重要的因素。

土壤有机氮的矿化过程是包括许多过程在内的复杂过程。

① 氨化过程 氨基酸在多种微生物作用下分解成氨的过程称为氨化过程。

氨化作用可在多种多样条件下进行。


论水田、旱田,只要微生物活动旺盛,氨化作用都可以旺盛进行。

氨化作用产生的铵可被植物和微生物吸收利用,是农作物的优良氮素营养。

未被作物吸收利用的铵,可被土壤胶体吸收保存。

但在旱地通气良好的条件下,铵态氮可进一步为微生物转化。

②硝化过程指氨或铵盐在微生物作用下转化成硝酸态
氮化合物的过程。

它是由两组微生物分两步完成的。

第一步铵转化成亚硝酸盐,紧接着亚硝酸盐又转化成硝酸盐,其反应为:硝态氮也是为植物吸收利用的优良氮源,所以可以利用土壤硝化作用强度来了解旱地土壤的供氮性能。

③反硝化作用指土壤中硝态氮被还原为氧化氮和氮气,扩散至空气中损失的过程。

反硝化作用主要由反硝化细菌引起。

在通气不良的条件下,反硝化细菌可夺取硝态氮及其某些还原产物中的化合氧,使硝态氮变为氮气损失。

相关文档
最新文档