高三数学复习模拟试卷
2024年高考数学模拟试题与答案解析
2024年高考数学模拟试题与答案解析一、选择题1.设集合A={x|x=2k,k∈Z},B={x|x=3k,k∈Z},则A∩B={()}A.{x|x=6k,k∈Z}B.{x|x=2k,k∈Z}C.{x|x=3k,k∈Z}D.{x|x=k,k∈Z}【答案】B解析:集合A包含所有2的倍数,集合B包含所有3的倍数。
A ∩B表示同时属于A和B的元素,即同时是2和3的倍数的数,也就是6的倍数。
所以A∩B={x|x=6k,k∈Z},故选B。
2.若函数f(x)=x²-4x+c的图像的对称轴是x=2,则c的值为()A.4B.3C.2D.1【答案】A解析:函数f(x)=x²-4x+c的图像的对称轴是x=-b/2a,即x=2。
根据对称轴的公式,得到-(-4)/(21)=2,解得c=4。
故选A。
3.已知等差数列的前n项和为Sn=n(a1+an)/2,若S3=18,S6-S3=24,则a4的值为()A.6B.8C.10D.12【答案】B解析:根据等差数列的前n项和公式,得到S3=3(a1+a3)/2=18,即a1+a3=12。
又因为S6-S3=24,得到a4+a5+a6=24。
由等差数列的性质,a3+a6=a4+a5。
将a3+a6替换为a4+a5,得到3a4+3a5=48,即a4+a5=16。
解方程组a1+a3=12和a4+a5=16,得到a4=8。
故选B。
二、填空题4.若|x-2|≤3,则|x+1|的取值范围是______【答案】-2≤x≤5解析:由|x-2|≤3,得到-3≤x-2≤3,即-1≤x≤5。
再由|x+1|的图像可知,当-3≤x≤5时,|x+1|的取值范围是-2≤x≤5。
5.已知函数f(x)=2x²-3x+1,求f(1/2)的值。
【答案】3/4解析:将x=1/2代入函数f(x),得到f(1/2)=2(1/2)²-3(1/2)+1=2/4-3/2+1=3/4。
三、解答题6.(1)求证:对任意正整数n,都有n²+2n+1≥n+2。
高三数学模拟试题及答案
高三数学模拟试题及答案一、选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 已知函数f(x) = 2x^2 - 4x + 3,求f(2)的值。
A. 1B. 3C. 5D. 7答案:C2. 求下列数列的通项公式:数列:1, 1/2, 1/3, 1/4, ...A. a_n = nB. a_n = 1/nC. a_n = n^2D. a_n = 1/(n+1)答案:B3. 已知圆x^2 + y^2 = 9,点P(1, 2),求点P到圆心的距离。
A. 2B. 3C. 4D. 5答案:C4. 已知向量a = (3, -4),向量b = (-2, 3),求向量a与向量b的夹角θ。
A. 30°B. 45°C. 60°D. 90°答案:B5. 已知函数y = x^3 - 3x^2 + 4x,求导数y'。
A. 3x^2 - 6x + 4B. 3x^2 - 6x + 5C. 3x^2 - 6x + 3D. 3x^2 - 6x + 2答案:A6. 已知等差数列的第5项为15,第8项为25,求公差d。
A. 2B. 3C. 4D. 5答案:B7. 已知三角形ABC的三边长分别为a = 3,b = 4,c = 5,求三角形ABC的面积。
A. 6B. 9C. 12D. 15答案:A8. 已知函数f(x) = sin(x) + cos(x),求f(π/4)的值。
A. √2B. √3C. 2D. 1答案:A9. 已知复数z = 1 + i,求z的共轭复数。
A. 1 - iB. 1 + iC. -1 + iD. -1 - i答案:A10. 已知函数y = x^2 - 6x + 9,求函数的最小值。
A. 0B. 3C. 6D. 9答案:A二、填空题(本题共5小题,每小题4分,共20分。
)11. 已知函数f(x) = x^3 - 3x + 1,求f''(x)的值。
数学高考模拟试题及答案
数学高考模拟试题及答案一、选择题(每题4分,共40分)1. 下列函数中,为奇函数的是:A. y = x^2B. y = |x|C. y = sin(x)D. y = cos(x)2. 若f(x) = 2x - 3,求f(5)的值:A. 1B. 4C. 7D. 103. 已知等差数列的前三项为2, 5, 8,求第10项的值:A. 21B. 22C. 23D. 244. 圆的半径为5,求其面积:A. 25πB. 50πC. 75πD. 100π5. 直线y = 2x + 3与x轴的交点坐标是:A. (-1, 0)B. (0, 3)C. (3, 0)D. (1, 0)6. 函数y = x^3 - 6x^2 + 9x + 2的极值点是:A. x = 1B. x = 2C. x = 3D. x = 47. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∪B:A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 4}8. 抛物线y^2 = 4x的焦点坐标是:A. (1, 0)B. (2, 0)C. (0, 2)D. (0, -2)9. 已知三角形ABC,∠A = 60°,AB = 2,AC = 3,求BC的长度:A. 1B. 2√3C. 3D. 410. 根据题目所给的二项式定理,求(a + b)^5展开式的通项公式:A. T_n = C_5^n a^n b^(5-n)B. T_n = C_5^n a^(5-n) b^nC. T_n = C_5^n a^(4-n) b^nD. T_n = C_5^n a^n b^(4-n)二、填空题(每题4分,共20分)11. 已知等比数列的首项为2,公比为3,求第5项的值:________。
12. 若sin(θ) = 0.6,求cos(θ)的值:________。
13. 已知函数f(x) = x^2 - 4x + 3,求其对称轴:________。
高三年级模拟试卷数学
一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 函数f(x) = 2x - 3的图像是:A. 一次函数的图像,是一条直线B. 二次函数的图像,是一个抛物线C. 指数函数的图像,是一条曲线D. 对数函数的图像,是一条曲线2. 若复数z满足|z - 1| = 2,则复数z在复平面内的轨迹是:A. 以点(1, 0)为圆心,半径为2的圆B. 以点(1, 0)为圆心,半径为1的圆C. 以点(1, 0)为焦点,长轴为2的椭圆D. 以点(1, 0)为焦点,长轴为4的椭圆3. 已知数列{an}满足an = an-1 + 2,且a1 = 1,则数列{an}的通项公式是:A. an = 2n - 1B. an = 2n - 2C. an = 2nD. an = 2n + 14. 下列各式中,不是等差数列的是:A. 1, 4, 7, 10, ...B. 1, 3, 5, 7, ...C. 1, 2, 4, 8, ...D. 1, 3, 6, 10, ...5. 若a, b, c是等比数列,且a + b + c = 14,ab + bc + ca = 48,则abc的值是:A. 16B. 64C. 128D. 2566. 函数f(x) = x^3 - 3x在区间[-2, 2]上的最大值是:A. -8B. -2C. 2D. 87. 若函数f(x) = ax^2 + bx + c在x = 1时取得极值,则a, b, c之间的关系是:A. a ≠ 0,b = 0B. a ≠ 0,b ≠ 0C. a = 0,b ≠ 0D. a = 0,b = 08. 已知直线l的方程为2x - y + 1 = 0,则直线l的斜率是:A. 2B. -2C. 1/2D. -1/29. 下列各式中,不是对数函数的是:A. y = log2xB. y = log10xC. y = logx(x > 0)D. y = log1x10. 若等差数列{an}的前n项和为Sn,且S5 = 25,S10 = 100,则数列{an}的公差d是:A. 1B. 2C. 3D. 4二、填空题(本大题共10小题,每小题5分,共50分。
高三数学零模试卷及答案
一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 已知函数f(x) = x^3 - 3x + 1,若f(x)在x=1处取得极值,则此极值为:A. 1B. -1C. 0D. 32. 下列函数中,在定义域内单调递增的是:A. y = x^2B. y = 2^xC. y = -x^3D. y = log2x3. 若复数z满足|z - 1| = |z + 1|,则z的取值范围是:A. z = 0B. z = 1C. z = -1D. z = ±14. 已知数列{an}满足an = 2an-1 + 1,且a1 = 1,则数列{an + 1}是:A. 等差数列B. 等比数列C. 指数数列D. 上述都不对5. 若直线l:x - 2y + 3 = 0与圆x^2 + y^2 = 4相交于A、B两点,则弦AB的中点坐标为:B. (2, 1)C. (1, 2)D. (2, 2)6. 已知函数f(x) = ax^2 + bx + c(a≠0)的图象开口向上,且顶点坐标为(1, -1),则:A. a > 0,b = -2,c = -1B. a > 0,b = 2,c = -1C. a < 0,b = -2,c = -1D. a < 0,b = 2,c = -17. 已知函数y = sinx + cosx,其最小正周期为:A. πB. 2πC. 3πD. 4π8. 若向量a = (1, 2),向量b = (2, 3),则向量a·b的值为:A. 5B. 7C. 9D. 119. 在直角坐标系中,点P(2, 3)关于直线y = x的对称点为:A. (2, 3)B. (3, 2)C. (3, 3)10. 已知等差数列{an}的前n项和为Sn,若a1 = 1,S5 = 25,则公差d为:A. 2B. 3C. 4D. 5二、填空题(本大题共5小题,每小题10分,共50分。
高三数学模拟试题试卷答案
一、选择题(每题5分,共50分)1. 若函数f(x) = 2x + 1在区间[1, 3]上单调递增,则函数g(x) = x^2 - 2x + 1在区间[1, 3]上的单调性为:A. 单调递增B. 单调递减C. 先增后减D. 先减后增答案:A2. 已知等差数列{an}的前n项和为Sn,若a1 = 2,S5 = 25,则公差d为:A. 1B. 2C. 3D. 4答案:B3. 若复数z = 1 + bi(b∈R)在复平面上对应的点为P,则|OP|的值为:A. 1B. √2C. √(1+b^2)D. √(1-b^2)答案:C4. 函数y = log2(x+1)的图像在以下哪个象限:A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:A5. 已知三角形ABC的三个内角A、B、C满足A + B + C = π,若sinA = 1/2,sinB = √3/2,则cosC的值为:A. 1/2B. √3/2C. 1/4D. 3/4答案:D6. 已知数列{an}满足an = an-1 + 2(n≥2),且a1 = 1,则数列{an}的前n项和Sn为:A. n^2 + nB. n^2 + 2nC. n^2 + n + 2D. n^2 + 2n + 1答案:A7. 已知函数f(x) = x^3 - 3x + 2,若f'(x) = 0的解为x1、x2,则f(x)的极值点为:A. x1、x2B. x1C. x2D. 无极值点答案:A8. 若函数f(x) = ax^2 + bx + c(a、b、c为常数)的图像开口向上,且顶点坐标为(1, -2),则a、b、c的取值范围分别为:A. a > 0,b = -2,c = -2B. a > 0,b = -2,c ≠ -2C. a ≠ 0,b = -2,c = -2D. a ≠ 0,b = -2,c ≠ -2答案:A9. 已知数列{an}满足an = 2an-1 + 1(n≥2),且a1 = 1,则数列{an}的通项公式为:A. an = 2^n - 1B. an = 2^n + 1C. an = 2^n - 2D. an = 2^n + 2答案:A10. 若函数f(x) = |x-1| + |x+2|在x = -1处的导数存在,则f(-1)的值为:A. 0B. 1C. 2D. 3答案:C二、填空题(每题5分,共25分)11. 函数f(x) = (x-1)/(x+1)的对称轴方程为______。
高三模拟考数学试卷答案
一、选择题(每题5分,共50分)1. 答案:C解析:根据指数函数的性质,当x增大时,函数值单调递增,故选C。
2. 答案:B解析:由题意得,函数的对称轴为x=1,故选B。
3. 答案:D解析:利用导数的定义,求出函数的导数,再令导数等于0,解得x=1,故选D。
4. 答案:A解析:根据三角函数的周期性,得T=π,故选A。
5. 答案:C解析:利用二项式定理展开,得C(10,3)×(-1)^3=-120,故选C。
6. 答案:B解析:由题意得,方程的解为x=±√2,故选B。
7. 答案:A解析:由题意得,点P到直线l的距离为1,故选A。
8. 答案:D解析:根据三角函数的性质,得sinθ=cos(π/2-θ),故选D。
9. 答案:C解析:利用向量的数量积公式,得a·b=|a||b|cosθ,故选C。
10. 答案:B解析:根据二次函数的性质,得对称轴为x=1,故选B。
二、填空题(每题10分,共40分)11. 答案:1/2解析:根据等比数列的性质,得a1/a2=a2/a3,解得a1/a3=1/2。
12. 答案:π/3解析:根据正弦定理,得sinA/sinB=a/b,解得A=π/3。
13. 答案:-1解析:根据导数的定义,得f'(x)=lim(h→0)(f(x+h)-f(x))/h,代入x=1,得f'(1)=-1。
14. 答案:4解析:根据复数的乘法运算,得(2+3i)(2-3i)=4+9=13,故选4。
15. 答案:π/4解析:根据余弦定理,得c^2=a^2+b^2-2abcosC,代入a=1,b=1,C=π/4,得c=√2。
三、解答题(每题20分,共80分)16. 答案:(1)令f(x)=x^3-3x^2+4x,则f'(x)=3x^2-6x+4。
令f'(x)=0,解得x=2/3。
(2)当x<2/3时,f'(x)>0,函数单调递增;当x>2/3时,f'(x)<0,函数单调递减。
2025年高考数学模拟试题
高考数学试卷一、单选题 1.命题:00x ∃≤,20010x x -->的否定是( )A .0x ∀>,210x x --≤B .00x ∃>,20010x x -->C .00x ∃≤,20010x x --≤ D .0x ∀≤,210x x --≤2.2020年,一场突如其来的“肺炎”使得全国学生无法在春季正常开学,不得不在家“停课不停学”.为了解高三学生居家学习时长,从某校的调查问卷中,随机抽取n 个学生的调查问卷进行分析,得到学生可接受的学习时长频率分布直方图(如下图所示),已知学习时长在[9,11)的学生人数为25,则n 的值为( )A .40B .50C .80D .103.已知由小到大排列的4个数据1、3、5、G,若这4个数据的极差是它们中位数的2倍,则这4个数据的第75百分位数是( )A.9B.7C.5D.3 4.要得到函数2sin xy e=的图像,只需将函数cos2xy e=的图像( )A .向右平移4π个单位B .向右平移2π个单位 C .向左平移4π个单位 D .向左平移2π个单位5.设32x y +=,则函数327x yz =+的最小值是( )A.12B.6C.27D.306.已知函数()2,01ln ,0x x f x x x -⎧≤⎪=⎨>⎪⎩,()()g x f x x a =--.若()g x 有2个零点,则实数a的取值范围是( )A.[)1,0-B.[)0,∞+C.[)1,-+∞D.[)1,+∞7.袋中有2个白球,2个黑球,若从中任意摸出2个,则至少摸出1个黑球的概率是( )A .16B .13C .34D .568.已知函数()f x 的定义域为[0,2],则(2)()1f x g x x =-的定义域为( )A.[)(]0,11,2B.[)(]0,11,4C.[0,1)D.(1,4] 9.下列计算正确的是A.()22x y x y +=+ B.()2222x y x xy y -=--C.()()2111x x x +-=-D.()2211x x -=-10.已知角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线3y x =上,则sin 4πα⎛⎫+=⎪⎝⎭( ) A.2525 5 D.511.平面α与平面β平行的充要条件是( )A. α内有无数条直线与β平行B. α,β垂直于同一个平面C. α,β平行于同一条直线D. α内有两条相交直线与β平行 二、选择题:在每小题给出的选项中,有多项符合题目要求。
高三数学模拟试题及答案
高三数学模拟试题及答案一、选择题1. 已知集合A={x | x² - 1 = 0},则A的元素个数为()A. 1B. 2C. 3D. 4答案:B2. 若a > 0,b < 0,则a与b的和的符号为()A. 正B. 负C. 零D. 无法确定答案:D3. 设函数f(x) = √(x²-2x+1),则f(3)的值为()A. 0B. 1C. 2D. 3答案:B4. 在△ABC中,角A = 60°,边AC = 5cm,边BC = 4cm,则边AB 的长度为()A. 3.5cmB. 4cmC. 4.5cmD. 5cm答案:C5. 某商店对现金支付的商品提供10%的折扣,小明购买了一件原价500元的商品,他需要支付多少元?()A. 45元B. 50元C. 450元D. 500元答案:C二、计算题1. 已知函数f(x) = |x - 3| + 2,求f(5)的值。
解:当x = 5时,f(x) = |5 - 3| + 2 = 4答案:42. 解方程:3x + 5 = 2(x - 1) + 7解:展开得:3x + 5 = 2x - 2 + 7移项得:3x + 5 = 2x + 5化简得:x = 0答案:03. 已知函数f(x) = x² - 4x + 5,求f(3)的值。
解:当x = 3时,f(x) = 3² - 4 × 3 + 5 = 9 - 12 + 5 = 2答案:24. 某商品在经过两次10%的折扣后,售价为270元,求其原价。
解:设原价为x元,则经过第一次折扣后为0.9x元,经过第二次折扣后为0.9 × 0.9x元。
根据题意,0.9 × 0.9x = 270,解方程得:x = 300答案:300三、应用题1. 一辆自行车上午以每小时20公里的速度向南骑行,下午以每小时15公里的速度向北骑行。
如果来回共耗时8小时,求行程的总长度。
必刷题高三数学模拟试卷
一、选择题(本大题共10小题,每小题5分,共50分)1. 已知函数f(x) = x^3 - 3x + 2,则f(x)的图像关于点(0,2)对称,正确吗?A. 正确B. 错误2. 下列函数中,f(x) = |x|在x=0处连续的是:A. f(x) = xB. f(x) = 1/xC. f(x) = x^2D. f(x) = |x^2|3. 已知数列{an}满足an = 3an-1 - 2an-2,且a1 = 1,a2 = 3,则数列{an}的通项公式是:A. an = 2^n - 1B. an = 3^n - 2^nC. an = 2^n + 1D. an = 3^n + 2^n4. 若a、b、c为等差数列,且a + b + c = 9,a^2 + b^2 + c^2 = 27,则b的值为:A. 3B. 4C. 5D. 65. 已知等比数列{an}的公比q = 2,且a1 + a2 + a3 = 24,则数列{an}的第五项是:A. 64B. 128C. 256D. 5126. 函数f(x) = (x^2 - 4x + 3) / (x - 1)的图像的渐近线方程是:A. x = 1B. y = x + 1C. y = x - 1D. x = 37. 在△ABC中,a = 5,b = 6,c = 7,则sinA + sinB + sinC的值为:A. 9B. 10C. 11D. 128. 已知复数z满足|z - 1| = |z + 1|,则复数z在复平面上的轨迹是:A. 线段[-1, 1]B. 直线y = 0C. 线段[0, 2]D. 圆心在原点,半径为1的圆9. 下列不等式中,正确的是:A. 2x > 3xB. x^2 > xC. x > x^2D. x^2 > 2x10. 函数f(x) = e^x - x在x = 0处的导数是:A. 1B. eC. e - 1D. 0二、填空题(本大题共5小题,每小题10分,共50分)11. 已知函数f(x) = x^3 - 3x + 2,则f(x)的图像的拐点是()。
高三数学模拟试题及答案
高三数学模拟试题及答案一、选择题(每题4分,共40分)1. 下列函数中,哪一个是奇函数?A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) = sin(x)2. 已知集合A={1, 2, 3},B={2, 3, 4},求A∪B。
A. {1, 2, 3, 4}B. {1, 3, 4}C. {2, 3, 4}D. {1, 2, 3}3. 若sin(α) = 1/2,且α为锐角,求cos(α)的值。
A. √3/2B. -√3/2C. 1/2D. -1/24. 已知等差数列{an}的首项a1=2,公差d=3,求其第5项a5。
A. 17B. 14C. 11D. 85. 圆的方程为(x-3)^2 + (y-4)^2 = 25,求圆心坐标。
A. (3, 4)B. (-3, -4)C. (0, 0)D. (4, 3)6. 函数f(x) = x^2 - 4x + 4的最小值是多少?A. 0B. -4C. 4D. 17. 已知直线y = 2x - 3与抛物线y^2 = 4x相交于两点,求这两个点的坐标。
A. (1, -1), (3, 3)B. (1, 1), (3, -1)C. (1, 1), (3, 3)D. (1, -1), (3, -1)8. 已知向量a = (2, 3),b = (-1, 2),求a·b。
A. 4B. -1C. 1D. -49. 已知三角形ABC,∠A = 60°,a = 5,b = 7,求c的长度。
A. 3B. 4C. 6D. 810. 已知函数f(x) = x^3 - 3x^2 - 9x + 5,求f'(x)。
A. 3x^2 - 6x - 9B. x^2 - 6x - 9C. 3x^2 - 6x + 5D. x^3 - 3x^2 - 9二、填空题(每题4分,共20分)11. 已知等比数列{bn}的首项b1=8,公比q=2,求其第4项b4的值。
高三数学试卷模拟十五套
一、选择题(本大题共15小题,每小题5分,共75分)1. 若函数f(x) = ax^2 + bx + c在x=1时取得极值,则a+b+c的值为()A. 0B. 1C. -1D. 无法确定2. 已知等差数列{an}的首项为2,公差为3,则第10项与第15项的和为()A. 50B. 60C. 70D. 803. 在△ABC中,角A、B、C的对边分别为a、b、c,若a=3,b=4,c=5,则角C的余弦值为()A. 1/2B. 1/3C. 2/3D. 3/44. 下列函数中,在定义域内单调递增的是()A. y = x^2B. y = 2^xC. y = log2xD. y = x^35. 已知等比数列{an}的首项为2,公比为1/2,则第n项an的值为()A. 2^nB. 2^(n-1)C. 2^(n+1)D. 2^(1-n)6. 若复数z满足|z-1|=|z+1|,则复数z的实部为()A. 0B. 1C. -1D. 无法确定7. 下列不等式中,恒成立的是()A. x^2 + 1 > 0B. x^2 - 1 > 0C. x^2 + 1 < 0D. x^2 - 1 < 08. 若函数f(x) = x^3 - 3x在区间[0,3]上的最大值为2,则f(x)在区间[-3,0]上的最小值为()A. -2B. 0C. 2D. 无法确定9. 在直角坐标系中,点P(2,3)关于直线y=x的对称点为()A. (2,3)B. (3,2)C. (3,-2)D. (-2,3)10. 若复数z满足z^2 + z + 1 = 0,则复数z的虚部为()A. 1B. -1C. iD. -i11. 下列数列中,不是等比数列的是()A. 1, 2, 4, 8, ...B. 1, 3, 9, 27, ...C. 1, -2, 4, -8, ...D. 1, 3, 5, 7, ...12. 若函数f(x) = ax^2 + bx + c在x=2时取得最小值,则a、b、c之间的关系为()A. a > 0, b > 0, c > 0B. a > 0, b < 0, c > 0C. a < 0, b > 0, c < 0D.a < 0,b < 0,c < 013. 已知函数f(x) = x^2 - 4x + 3,则f(x)的图像的对称轴为()A. x = 1B. x = 2C. x = 3D. x = 414. 若等差数列{an}的首项为3,公差为2,则第10项与第15项的差的绝对值为()A. 18B. 20C. 22D. 2415. 下列数列中,不是等差数列的是()A. 1, 4, 7, 10, ...B. 2, 5, 8, 11, ...C. 3, 6, 9, 12, ...D. 4, 7, 10, 13, ...二、填空题(本大题共15小题,每小题5分,共75分)16. 已知函数f(x) = 2x - 3,则f(-1)的值为______。
(完整版)高三数学模拟试题及答案
高三数学模拟试卷(满分150 分)一、选择题(每题 5 分,共 40 分)1.已知全集 U={1,2,3,4,5} ,会集 M ={1,2,3} , N = {3,4,5} ,则 M ∩ ( e U N)=()A. {1,2}B.{ 4,5}C.{ 3}D.{ 1,2,3,4,5} 2. 复数 z=i 2(1+i) 的虚部为()A. 1B. iC.- 1D. -i3.正项数列 { a } 成等比, a +a =3, a +a =12,则 a +a 的值是()n1 23445A. - 24B. 21C.24D. 484.一组合体三视图如右,正视图中正方形 边长为 2,俯视图为正三角形及内切圆, 则该组合体体积为()A.2 34B.3C.2 3 4 54 3 4 3+D.2735.双曲线以一正方形两极点为焦点,另两极点在双曲线上,则其离心率为( )A. 2 2B.2 +1C.2D. 1uuur uuur6. 在四边形 ABCD 中,“ AB =2 DC ”是“四边形ABCD 为梯形”的()A. 充足不用要条件B. 必要不充足条件C.充要条件D. 既不充足也不用要条件7.设 P 在 [0,5] 上随机地取值,求方程x 2+px+1=0 有实根的概率为( )A. 0.2B. 0.4C.0.5D.0.6y8. 已知函数 f(x)=Asin( ωx +φ)(x ∈ R, A>0, ω>0, |φ|<)5f(x)的解析式是(2的图象(部分)以下列图,则)A .f(x)=5sin( x+)B. f(x)=5sin(6 x-)O256 66xC. f(x)=5sin(x+)D. f(x)=5sin(3x- )366- 5二、填空题:(每题 5 分,共30 分)9. 直线 y=kx+1 与 A ( 1,0), B ( 1,1)对应线段有公共点,则 k 的取值范围是 _______. 10.记 (2x1)n 的张开式中第 m 项的系数为 b m ,若 b 32b 4 ,则 n =__________.x311 . 设 函 数 f ( x) xx 1x 1、 x 2、 x 3、 x 41 2的 四 个 零 点 分 别 为 , 则f ( x 1 +x 2 +x 3 +x 4 );12、设向量 a(1,2), b (2,3) ,若向量a b 与向量 c (4, 7)共线,则x 111. lim______ .x 1x 23x 414. 对任意实数 x 、 y ,定义运算 x* y=ax+by+cxy ,其中a、 b、c 常数,等号右的运算是平时意的加、乘运算 .已知 2*1=3 , 2*3=4 ,且有一个非零数m,使得任意数x,都有 x* m=2x, m=.三、解答:r r15.(本 10分)已知向量 a =(sin(+x), 3 cosx),b =(sin x,cosx),f(x)=⑴求 f( x)的最小正周期和增区;2⑵若是三角形 ABC 中,足 f(A)=3,求角 A 的.216.(本 10 分)如:直三棱柱(棱⊥底面)ABC — A 1B1C1中,∠ ACB =90°, AA 1=AC=1 , BC= 2,CD ⊥ AB, 垂足 D.C1⑴求: BC∥平面 AB 1C1;A1⑵求点 B 1到面 A 1CD 的距离 .PCA D r r a ·b .B 1B17.(本 10 分)旅游公司 4 个旅游供应 5 条旅游路,每个旅游任其中一条.( 1)求 4 个旅游互不一样样的路共有多少种方法;(2)求恰有 2 条路被中的概率 ;(3)求甲路旅游数的数学希望.18.(本 10 分)数列 { a n} 足 a1+2a2 +22a3+⋯+2n-1a n=4 n.⑴求通a n;⑵求数列 { a n} 的前 n 和S n.19.(本 12 分)已知函数f(x)=alnx+bx,且 f(1)= - 1, f′(1)=0 ,⑴求 f(x);⑵求 f(x)的最大;⑶若 x>0,y>0, 明: ln x+lny≤xy x y 3.220.(本 14 分) F 1, F 2 分 C :x2y 21(a b 0) 的左、右两个焦点,若 Ca 2b 2上的点 A(1,3124.)到 F , F 两点的距离之和等于2⑴写出 C 的方程和焦点坐 ;⑵ 点 P ( 1,1)的直 与 交于两点 D 、 E ,若 DP=PE ,求直 DE 的方程 ;4⑶ 点 Q ( 1,0)的直 与 交于两点 M 、N ,若△ OMN 面 获取最大,求直 MN 的方程 .21. (本 14 分) 任意正 数 a 1、 a 2、 ⋯ 、an ;求1/a 1+2/(a 1 +a 2)+⋯ +n/(a 1+a 2+⋯ +a n )<2 (1/a 1+1/a 2+⋯ +1/a n )9 高三数学模 答案一、 :. ACCD BAD A二、填空 :本 主要考 基 知 和基本运算.每小 4 分,共 16 分 .9.[-1,0] 10.5 11.19 12. 2 13.1 14. 35三、解答 :15.本 考 向量、二倍角和合成的三角函数的公式及三角函数性 ,要修业生能运用所学知 解决 .解:⑴ f(x)= sin xcosx+3 + 3 cos2x = sin(2x+ )+ 3⋯⋯⋯2 23 2 T=π, 2 k π - ≤ 2x+≤ 2 k π +, k ∈ Z,232最小正周期 π, 增区[ k π -5, k π + ], k ∈ Z.⋯⋯⋯⋯⋯⋯⋯⋯1212⑵由 sin(2A+ )=0 , <2A+ <7 ,⋯⋯⋯⋯⋯33 或533∴ 2A+ =π或 2π,∴ A=⋯⋯⋯⋯⋯⋯⋯⋯33616.、本 主要考 空 、 面的地址关系,考 空 距离角的 算,考 空 想象能力和推理、 能力, 同 也可考 学生灵便利用 形, 建立空 直角坐 系, 借助向量工具解决 的能力. ⑴ 明:直三棱柱ABC — A 1B 1C 1 中, BC ∥ B 1C 1,又 BC 平面 A B 1C 1,B 1C 1 平面 A B 1C 1,∴ B 1C 1∥平面 A B 1C 1;⋯⋯⋯⋯⋯⋯⑵(解法一)∵ CD ⊥ AB 且平面 ABB 1A 1⊥平面 AB C,C 11 1 1∴ CD ⊥平面 ABBA ,∴ CD ⊥AD 且 CD ⊥A D ,∴∠ A DA 是二面角 A 1— CD —A 的平面角,1A 1B 1在 Rt △ ABC,AC=1,BC= 2 ,PC∴ AB= 3 , 又 CD ⊥ AB ,∴ AC 2=AD × ABADB∴ AD=3, AA1131=1,∴∠ DA 1B 1=∠ A DA=60 °,∠ A 1 B 1A=30°,∴ A B 1 ⊥A D又 CD ⊥ A 1D ,∴ AB 1⊥平面 A 1CD , A 1D ∩ AB 1=P, ∴ B 1P 所求点 B 1 到面 A 1CD 的距离 . B P=A 1 B 1cos ∠ A 1 B 1A= 33cos30 =° .12即点 B 1 到面 A 1 CD 的距离 3.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯21 × 3 1 z ( 2)(解法二) 由 V B 1- A 1CD =V C - A 1B 1D =C 132×6 = 2,而 cos ∠ A 1 CD= 2 × 6 = 3 ,AB13 6 2 3 31△A 1CD1 ×2 ×6 ×6 =2,B 1 到平面CS=3 332A ByA 1CD 距离 h, 1×22, 得 h= 3所求 .Dx h=33 6 2⑶(解法三)分 以CA 、CB 、CC 1 所在直 x 、y 、z 建立空 直角坐 系(如 )A ( 1,0, 0), A 1( 1, 0, 1),C (0, 0, 0), C 1( 0, 0, 1),B (0,2 , 0), B 1( 0, 2 , 1),uuurr∴ D ( 2 , 2, 0) CB =( 0, 2 , 1), 平面 A 1CD 的法向量 n =( x , y , z ),3 31r uuur3n CD2x2y 0rruuur,取 n=( 1, -2 , - 1)n CA 1 x z 0r uuur点 B 1 到面 A 1CD 的距离d= n CB 13r⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯n217.本 主要考 排列,典型的失散型随机 量的概率 算和失散型随机 量分布列及希望等基 知 和基本运算能力.解:( 1) 4 个旅游 互不一样样的 路共有:A 54=120 种方法; ⋯(2)恰有两条 路被 中的概率 :P 2 C 52 (2 42) 28=54⋯125(3) 甲 路旅游 数ξ, ξ~ B(4, 1)14⋯⋯⋯⋯⋯⋯ 5∴希望 E ξ=np=4×=5 5答 : ( 1) 路共有120 种,(2)恰有两条 路被 中的概率 0.224, ( 3)所求希望 0.8 个数 .⋯⋯⋯⋯⋯⋯⋯⋯⋯18.本 主要考 数列的基 知 ,考 分 的数学思想,考 考生 合 用所学知 造性解决 的能力.解:( 1) a 1+2 a 2+22a 3+⋯ +2n - 1a n =4n ,∴ a 1+2 a 2+22a 3+⋯ +2n a n+1=4n+1,相减得 2n a n+1=3× 4n , ∴ a n+1=3× 2n ,4(n1) 又 n=1 a 1=4,∴ 上 a n =2n 1所求;⋯⋯⋯⋯⋯⋯⋯⋯⋯3(n 2)⑵ n ≥2 , S n=4+3(2 n- 2), 又 n=1 S 1=4 也建立, ∴ S n =3× 2 n - 2⋯⋯⋯⋯⋯⋯ 12 分19.本 主要考 函数、 数的基本知 、函数性 的 理以及不等式的 合 ,同 考 考生用函数放 的方法 明不等式的能力.解:⑴由 b= f(1)= - 1, f ′(1)= a+b=0, ∴ a=1, ∴f(x)=ln x- x 所求; ⋯⋯⋯⋯⋯⑵∵ x>0,f ′(x)=1- 1=1x ,xxx 0<x<1x=1 x>1 f (′x) +0 - f(x)↗极大↘∴ f (x)在 x=1 获取极大 - 1,即所求最大 - 1; ⋯⋯⋯⋯⋯⑶由⑵得 lnx ≤x- 1 恒建立, ∴ln x+ln y=ln xy+ ln x ln y ≤ xy 1 + x 1 y 1 = xy x y 3建立⋯⋯⋯22 22220.本 考 解析几何的基本思想和方法,求曲 方程及曲 性 理的方法要求考生能正确分析 , 找 好的解 方向, 同 兼 考 算理和 推理的能力, 要求 代数式合理演 ,正确解析最 .解:⑴ C 的焦点在 x 上,由 上的点A 到 F 1、F 2 两点的距离之和是 4,得 2a= 4,即 a=2 .;3134 1.得 b 2=1,于是 c 2=3 ;又点 A(1,) 在 上,因此222b 2因此 C 的方程x 2y 2 1,焦点 F 1 ( 3,0), F 2 ( 3,0). ,⋯⋯⋯4⑵∵ P 在 内,∴直DE 与 订交,∴ D( x 1,y 1),E(x 2,y 2),代入 C 的方程得x 12+4y 12- 4=0, x 22+4y 22- 4=0,相减得 2(x 1- x 2 )+4× 2× 1 (y 1- y 2)=0 , ∴斜率 k=-11 4∴ DE 方程 y- 1= - 1(x-), 即 4x+4y=5; ⋯⋯⋯4(Ⅲ )直 MN 不与 y 垂直,∴MN 方程 my=x- 1,代入 C 的方程得( m 2+4) y 2+2my- 3=0,M( x 1,y 1 ),N( x 2 ,y 2), y 1+y 2=-2m 3 ,且△ >0 建立 .m 2 4, y 1y 2=-m 2 4又 S △ OMN = 1|y 1- y 2|= 1 ×4m212(m 24) = 2 m23, t=m 2 3 ≥ 3 ,2 2m 2 4m 24S△OMN =2,(t+1t1tt ) ′=1 - t-2>0t≥ 3 恒建立,∴t=3t+1获取最小, S△OMN最大,t此 m=0, ∴ MN 方程 x=1⋯⋯⋯⋯⋯。
高三数学模考试卷及答案
一、选择题(每题5分,共50分)1. 函数f(x) = (x-1)^2在区间[0,2]上的单调性为:A. 单调递增B. 单调递减C. 先增后减D. 无单调性2. 已知等差数列{an}的首项a1=3,公差d=2,则第10项a10等于:A. 23B. 21C. 19D. 173. 在直角坐标系中,点P(2,3)关于直线y=x的对称点为:A. (2,3)B. (3,2)C. (3,-2)D. (-2,3)4. 若复数z满足|z-1|=|z+1|,则复数z的取值范围是:A. z=0B. z=1C. z=-1D. z=±15. 已知等比数列{bn}的首项b1=4,公比q=2,则第5项b5等于:A. 32B. 16C. 8D. 46. 若函数f(x) = ax^2 + bx + c在x=1时取得极值,则a、b、c之间的关系是:A. a+b+c=0B. a-b+c=0C. a+b-c=0D. a-b-c=07. 在三角形ABC中,∠A=60°,∠B=45°,则∠C的度数是:A. 75°B. 90°C. 105°D. 120°8. 已知函数f(x) = x^3 - 3x,则f(x)的图像关于原点对称的是:A. x=0B. x=1C. x=-1D. x=39. 若不等式2x-3<5,则x的取值范围是:A. x<2B. x<8C. x>2D. x>810. 在平面直角坐标系中,直线y=2x+1与y轴的交点坐标为:A. (0,1)B. (1,0)C. (0,-1)D. (-1,0)二、填空题(每题5分,共50分)11. 函数f(x) = (x-1)/(x+1)的图像与x轴的交点坐标是______。
12. 若等差数列{an}的通项公式为an = 3n-2,则该数列的前5项和为______。
13. 在三角形ABC中,若AB=AC,则角B和角C的度数分别为______和______。
高三数学模拟真题试卷
一、选择题(每题5分,共50分)1. 已知函数 $f(x) = 2x^3 - 3x^2 + 4$,则 $f'(x)$ 的零点为:A. $x = 0$B. $x = 1$C. $x = 2$D. $x = 3$2. 在直角坐标系中,点 $A(1,2)$ 关于直线 $y = x$ 的对称点为:A. $B(-2,1)$B. $B(2,-1)$C. $B(1,-2)$D. $B(-1,2)$3. 若复数 $z = a + bi$(其中 $a, b$ 为实数),则 $|z|$ 的值为:A. $|a| + |b|$B. $a^2 + b^2$C. $\sqrt{a^2 + b^2}$D. $a^2 - b^2$4. 已知等差数列 $\{a_n\}$ 的首项为 $a_1$,公差为 $d$,则 $a_5 + a_6 +a_7$ 的值为:A. $3a_1 + 12d$B. $3a_1 + 9d$C. $3a_1 + 6d$D. $3a_1 + 3d$5. 若 $\triangle ABC$ 的内角 $A, B, C$ 满足 $A + B + C = \pi$,则 $\sinA + \sinB + \sin C$ 的值为:A. $0$B. $2$C. $3$D. $4$6. 已知 $x^2 + y^2 = 1$,则 $\frac{x}{1+y} + \frac{y}{1+x}$ 的取值范围为:A. $(-\infty, 1]$B. $[1, +\infty)$C. $(-\infty, -1]$D. $[-1, +\infty)$7. 若函数 $f(x) = x^3 - 3x + 2$ 在区间 $[0, 2]$ 上单调递增,则 $f(1)$ 的值为:A. $0$B. $1$C. $2$D. $3$8. 在等比数列 $\{a_n\}$ 中,若 $a_1 = 2$,$a_3 = 8$,则 $a_5$ 的值为:A. $16$B. $32$C. $64$D. $128$9. 若 $\sin \alpha + \sin \beta = \frac{1}{2}$,$\cos \alpha + \cos\beta = \frac{\sqrt{3}}{2}$,则 $\sin(\alpha + \beta)$ 的值为:A. $\frac{1}{2}$B. $\frac{\sqrt{3}}{2}$C. $\frac{1}{\sqrt{2}}$D. $\frac{\sqrt{3}}{\sqrt{2}}$10. 若 $x^2 + y^2 = 1$,则 $\frac{x^2}{y^2} + \frac{y^2}{x^2}$ 的取值范围为:A. $(0, 2)$B. $(2, +\infty)$C. $[2, +\infty)$D. $(0, 1]$二、填空题(每题5分,共20分)1. 若 $a^2 + b^2 = 5$,$ab = 2$,则 $a^4 + b^4$ 的值为______。
高三数学试卷模拟题及答案
一、选择题(每题5分,共50分)1. 已知函数f(x) = x^3 - 3x,若f(x)在区间[1,2]上的最大值为f(1),则f(x)在区间[1,2]上的单调性为()A. 单调递增B. 单调递减C. 先增后减D. 先减后增2. 若等差数列{an}的前n项和为Sn,且S3 = 12,S6 = 36,则该数列的公差d为()A. 2B. 3C. 4D. 63. 下列各式中,正确的是()A. sin(α + β) = sinαcosβ + cosαsinβB. cos(α + β) = cosαcosβ - sinαsinβC. tan(α + β) = tanαtanβD. cot(α + β) = cotαcotβ4. 已知函数g(x) = 2x^3 - 3x^2 + 4,若g'(x) > 0,则g(x)的增区间为()A. (-∞, 1)和(1, +∞)B. (-∞, 1)和(1, 2)C. (-∞, 2)和(2, +∞)D. (-∞, 2)和(2, 1)5. 已知直线l的方程为2x + 3y - 6 = 0,若直线l与圆x^2 + y^2 = 9相切,则圆心到直线l的距离d为()A. 3B. 2C. √5D. √26. 已知数列{an}满足an = 2an-1 + 1,且a1 = 1,则数列{an + 1}的通项公式为()A. an + 1 = 2nB. an + 1 = 2n - 1C. an + 1 = 2n + 1D. an + 1 = 2n - 27. 若复数z = a + bi(a,b∈R),且|z| = 1,则z的共轭复数z的实部为()A. aB. -aC. bD. -b8. 已知函数f(x) = log2(x + 1),则f(x)的值域为()A. (0, +∞)B. (1, +∞)C. (-∞, +∞)D. (-∞, 0)9. 若函数y = ax^2 + bx + c(a≠0)的图像开口向上,且顶点坐标为(1, 3),则a,b,c的值分别为()A. a = 1,b = -2,c = 3B. a = 1,b = 2,c = 3C. a = -1,b = -2,c = 3D. a = -1,b = 2,c = 310. 已知数列{an}的前n项和为Sn,且S4 = 24,S5 = 36,则数列{an}的通项公式an为()A. an = 6B. an = 6nC. an = 6n - 1D. an = 6n + 1二、填空题(每题5分,共50分)11. 若函数f(x) = x^2 - 4x + 4在区间[1,3]上的最大值为3,则f(x)在区间[1,3]上的最小值为______。
高三数学模拟试卷及答案
一、选择题(本大题共10小题,每小题5分,共50分)1. 已知函数f(x) = x^2 - 2ax + 1,若f(x)的图像关于x = a对称,则a的值为()A. 0B. 1C. 2D. 无法确定2. 下列函数中,在定义域内单调递增的是()A. y = x^3B. y = x^2C. y = -x^2D. y = x^3 + 3x^23. 若等差数列{an}的公差为d,首项为a1,则第n项an等于()A. a1 + (n - 1)dB. a1 - (n - 1)dC. a1 + ndD. a1 - nd4. 在△ABC中,若a=3,b=4,c=5,则sinA的值为()A. 1/2B. 2/3C. 3/4D. 4/55. 若log2x + log2y = 1,则x和y的取值范围是()A. x > 0, y > 0B. x > 0, y ≤ 0C. x ≤ 0, y > 0D. x ≤ 0, y ≤ 06. 已知函数f(x) = x^3 - 3x + 2,若f(x)在区间(-∞, +∞)上单调递增,则a 的取值范围是()A. a < 0B. a > 0C. a = 0D. a ≠ 07. 在直角坐标系中,点P(2, 3)关于直线y = x的对称点Q的坐标是()A. (3, 2)B. (2, 3)C. (-3, -2)D. (-2, -3)8. 若复数z满足|z - 1| = |z + 1|,则z在复平面上的轨迹是()A. 实轴B. 虚轴C. 圆心在原点,半径为1的圆D. 直线y = x9. 已知等比数列{an}的首项a1 = 2,公比q = 3,则第n项an等于()A. 2 3^(n-1)B. 2 3^nC. 2^n 3D. 2^n / 310. 若函数f(x) = ax^2 + bx + c在x = 1时取得最小值,则a,b,c之间的关系是()A. a > 0, b = 0, c < 0B. a > 0, b ≠ 0, c < 0C. a < 0, b = 0, c >0 D. a < 0, b ≠ 0, c > 0二、填空题(本大题共10小题,每小题5分,共50分)11. 若等差数列{an}的前n项和为Sn,且S5 = 25,S9 = 45,则S13 = _______。
高三数学模拟考试卷及答案
一、选择题(本大题共10小题,每小题5分,共50分)1. 函数f(x) = 2x^3 - 3x^2 + 4x + 1在区间[1, 2]上的零点个数为:A. 0B. 1C. 2D. 32. 若复数z满足|z-1| = |z+1|,则复数z在复平面内的几何意义是:A. 实部为0B. 虚部为0C. 到原点的距离为2D. 到x轴的距离为23. 下列各式中,正确的是:A. sin^2x + cos^2x = 1B. tan^2x + 1 = sec^2xC. cot^2x + 1 = csc^2xD. sin^2x + cot^2x = 14. 已知等差数列{an}的前n项和为Sn,若S3 = 9,S5 = 21,则首项a1为:A. 2B. 3C. 4D. 55. 已知函数f(x) = ax^2 + bx + c(a≠0)的图象开口向上,且与x轴的两个交点分别为(-1, 0)和(3, 0),则a、b、c的关系是:A. a + b + c = 0B. a - b + c = 0C. -a + b + c = 0D. -a - b + c = 06. 若平面α上的直线l与平面β所成的角为θ,平面α与平面β所成的角为β,则下列关系式中正确的是:A. θ = βB. θ + β = 90°C. θ = 90° - βD. θ = 90° + β7. 在三角形ABC中,若角A、B、C的对边分别为a、b、c,则下列关系式中正确的是:A. a^2 = b^2 + c^2 - 2bccosAB. b^2 = a^2 + c^2 - 2accosBC. c^2 = a^2 + b^2 - 2abcosCD. a^2 = b^2 + c^2 + 2bccosA8. 下列函数中,在区间(0, +∞)上单调递减的是:A. y = 2^xB. y = log2xC. y = x^2D. y = x^39. 已知向量a = (2, -1),向量b = (-3, 2),则向量a·b的值为:A. 5B. -5C. 0D. 710. 下列不等式中,正确的是:A. log2(3) > log2(2)B. log3(3) < log3(2)C. log2(2) < log2(3)D. log3(2) < log2(3)二、填空题(本大题共5小题,每小题10分,共50分)11. 若函数f(x) = x^3 - 3x^2 + 2x + 1的导数f'(x) = 0的解为x1、x2,则f(x)的极值点为______。
高三数学模拟考试题
高三数学模拟考试题一、选择题(每题4分,共40分)1. 函数f(x) = 2x^3 - 3x^2 + 5x - 7的导数是:A. 6x^2 - 6x + 5B. 6x^2 + 3x - 7C. 3x^2 - 3x + 5D. 6x^2 - 6x + 12. 若圆心在原点,半径为1的圆的方程是:A. x^2 + y^2 = 1B. x^2 + y^2 = 0C. (x-1)^2 + y^2 = 1D. (x+1)^2 + y^2 = 13. 已知集合A={1,2},B={2,3},则A∪B的元素个数是:A. 1B. 2C. 3D. 44. 若直线y=2x+b与曲线y=x^2-3x+2相切,则b的值为:A. 2B. 3C. 4D. 55. 已知等差数列的前三项分别为3, 5, 7,则该数列的通项公式为:A. an = 3 + 2(n-1)B. an = 2 + 3(n-1)C. an = 4 + 2(n-1)D. an = 5 + 2(n-1)6. 若复数z满足|z-1-i|=1,则z的轨迹表示的图形是:A. 圆B. 椭圆C. 双曲线D. 抛物线7. 函数y=|x-1|+|x-2|的最小值是:A. 1B. 2C. 3D. 48. 抛物线y^2=4x的焦点坐标是:A. (1,0)B. (2,0)C. (0,1)D. (0,-1)9. 已知向量a=(2,3),b=(-1,2),则a·b的值为:A. -1B. 1C. 3D. 510. 若方程x^2-2x+1=0有实根,则实根的个数是:A. 0B. 1C. 2D. 3二、填空题(每题4分,共20分)11. 已知函数f(x)=x^2-4x+3,当x=______时,函数取得最小值。
12. 若方程x^2+2x+1=0的根为x1和x2,则x1+x2=______。
13. 已知数列{an}的前n项和为S_n=n^2,那么数列的通项公式an=______。
高三数学模拟试卷含答案
一、选择题(本大题共10小题,每小题5分,共50分)1. 已知函数$f(x) = 2x^3 - 3x^2 + 4x + 1$,则$f(x)$的对称中心为()A. $(0, 1)$B. $(1, 2)$C. $(1, 1)$D. $(1, 0)$2. 若$a, b, c$是等差数列,且$a + b + c = 9$,$ab + bc + ca = 15$,则$abc$的值为()A. 9B. 12C. 18D. 243. 已知圆的方程为$x^2 + y^2 - 4x - 6y + 9 = 0$,则该圆的半径为()A. 1B. 2C. 3D. 44. 函数$f(x) = \frac{x^2 - 4x + 3}{x - 1}$的图像与直线$y = x$的交点个数是()A. 1B. 2C. 3D. 45. 在直角坐标系中,若点$A(2, 3)$关于直线$y = x$的对称点为$B$,则点$B$的坐标为()A. $(3, 2)$B. $(2, 3)$C. $(3, 3)$D. $(2, 2)$6. 已知函数$f(x) = \log_2(x + 1)$,若$f(3) = f(x)$,则$x$的值为()A. 2B. 3C. 4D. 57. 若$\sin\alpha + \cos\alpha = \sqrt{2}$,则$\sin\alpha\cos\alpha$的值为()A. $\frac{1}{2}$B. $\frac{\sqrt{2}}{2}$C. $\frac{1}{\sqrt{2}}$D. 08. 在三角形ABC中,$AB = 3$,$AC = 4$,$BC = 5$,则$\cos B$的值为()A. $\frac{3}{5}$B. $\frac{4}{5}$C. $\frac{5}{3}$D. $\frac{5}{4}$9. 已知等差数列$\{a_n\}$的前$n$项和为$S_n$,若$S_3 = 18$,$S_6 = 54$,则数列的公差为()A. 2B. 3C. 4D. 510. 若函数$f(x) = x^3 - 6x^2 + 9x$在区间$[1, 3]$上单调递增,则$f(2)$的值为()A. 1B. 3C. 5D. 7二、填空题(本大题共5小题,每小题10分,共50分)11. 函数$f(x) = x^2 - 2x + 1$的图像的对称轴为______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学复习模拟试卷 (附参考答案)班级 姓名 成绩一、填空题(本大题共14个小题,每小题5分,共70分。
)1. 函数f (x )=|sin x +cos x |的最小正周期是( )A.4πB.2π C. π D. 2π2. 正方体ABCD —A 1B 1C 1D 1中,P 、Q 、R 分别是AB 、AD 、B 1C 1的中点. 那么,正方体的过P 、Q 、R 的截面图形是( )A. 三角形B. 四边形C. 五边形D. 六边形 3. 函数)0(12≤-=x x y 的反函数是( )A. )1(1-≥+=x x yB. )1(1-≥+-=x x yC. )0(1≥+=x x yD. )0(1≥+-=x x y 4. 已知函数)2,2(tan ππω-=在x y 内是减函数,则( ) A. 0<ω≤1 B. -1≤ω<0 C. ω≥1D. ω≤-15. 抛物线y x 42=上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为( )A. 2B. 3C. 4D. 56、函数a ax x f 213)(-+=在(-1,1)上存在0x ,使0)(0=x f ,则a 的取值范围是7、定义在R 上的奇函数)(x f ,满足1)2(=f ,)2()()2(f x f x f +=+,则)1(f 等于 8、下图是由一些相同的小正方体构成的几何体的三视图,这些相同的小正方体的个数是 个9、如图,该程序运行后输出的结果为 .10、若函数()2()log (2),0,1a f x x x a a =+>≠在区间1(0,)2内恒有()0f x >,则()f x 的单调递增区间是11、已知0a >且a ≠1,2()xf x x a =-当x ∈[-1,1]时,均有1()2f x <, 则实数a 的范围是12、等差数列{}n a 中,n S 是其前n 项和,2007200512008,2,20072005S S a =--= 则2008S 的值为 .13、设椭圆124322=+y x 上存在两点关于直线m x y +=4对称,则m 的取值范围是14.给出下列四个命题,其中不正确命题的序号是 . ①若Z k k ∈=-=,2,cos cos πβαβα则;②函数)32cos(2π+=x y 的图象关于x=12π对称;③函数))(cos(sin R x x y ∈=为偶函数,④函数||sin x y =是周期函数,且周期为2π;二、解答题(本大题共6小题,共90分. 解答应写出文字说明,证明过程或演算步骤)15、 (本小题满分15分)已知函数2()(2cos sin )2xf x a x b =++ ⑴ 当1a =时,求()f x 的单调递增区间;⑵ 当0a >,且[0,]x π∈时,()f x 的值域是[3,4],求a b 、的值.16、(本小题满分15分)设o 点为坐标原点,曲线222610xy x y ++-+=上有两点P Q、满足关于直线04=++my x 对称,又满足.0=⋅OQ OP(1)求m 的值; (2)求直线PQ 的方程.17、(本小题满分15分) 已知矩形ABCD 中,AB =2AD =4,E 为 CD 的中点,沿AE 将∆AED 折起,使DB =O 、H 分别为AE 、AB 的中点. (1)求证:直线OH//面BDE ; (2)求证:面ADE ⊥面ABCE ;18、(本小题满分15分)在等差数列{}n a 中,151,9,a a ==在数列{}n b 中,12b =,且121n n b b -=-,(n ≥2)(1)求数列{}n a 和{}n b 的通项公式; (2)设312123...,1111n n n a a a aT b b b b =++++---- 求n T .19、(本小题满分15分)某民营企业生产A ,B 两种产品,根据市场调查和预测,A 产品的利润与投资成正比,其关系如图1,B 产品的利润与投资的算术平方根成正比,其关系如图2。
(注:利润与投资单位是万元)(1)分别将A ,B 两种产品的利润表示为投资的函数,并写出它们的函数关系式;(2)该企业已筹集到10万元资金,并全部投入A ,B 两种产品的生产,问:怎样分配这 10万元投资,才能使企业获得最大利润,其最大利润约为多少万元?(精确到1万元)。
20、 (本小题满分14分)已知函数:1()()x af x a R x a a x+-=∈≠-且(1)当()f x 的定义域为1[1,]2a a --时,求函数()f x 的值域; (2)设函数2()1|()()|g x x x a f x =-+-,求函数()g x 的最小值。
高三数学模拟试卷(一)参考答案一、填空题(本大题共14个小题,每小题5分,共70分。
)1. C2. D3. B4. B5. D6、函数a ax x f 213)(-+=在(-1,1)上存在0x ,使0)(0=x f ,则a 的取值范围是511>-<a a 或7、定义在R 上的奇函数)(x f ,满足1)2(=f ,)2()()2(f x f x f +=+,则)1(f 等于218、下图是由一些相同的小正方体构成的几何体的三视图,这些相同的小正方体的个数是5个9、如图,该程序运行后输出的结果为 63 .10、若函数()2()log (2),0,1a f x x x a a =+>≠在区间1(0,)2内恒有()0f x >,则()f x 的单调递增区间是 1(,)2-∞- 11、已知0a >且a ≠1,2()x f x x a =-当x ∈[-1,1]时,均有1()2f x <, 则实数a 的范围是1(,1)(1,2)212、等差数列{}n a 中,n S 是其前n 项和,2007200512008,2,20072005S S a =--= 则2008S 的值为2008-.13、设椭圆124322=+y x 上存在两点关于直线m x y +=4对称,则m 的取值范围是)13132,13132(-14.给出下列四个命题,其中不正确命题的序号是①②④.①若Z k k ∈=-=,2,co s co s πβαβα则;②函数)32cos(2π+=x y 的图象关于x=12π对称; ③函数))(cos(sin R x x y ∈=为偶函数,④函数||sin x y =是周期函数,且周期为2π;二、解答题(本大题共6小题,共90分. 解答应写出文字说明,证明过程或演算步骤)15、 (本小题满分15分)已知函数2()(2cos sin )2xf x a x b =++ ⑴ 当1a =时,求()f x 的单调递增区间;⑵ 当0a >,且[0,]x π∈时,()f x 的值域是[3,4],求a b 、的值. 解:(1)1)4sin(2sin cos 1)(+++=+++=b x b x x x f π所以递增区间为Z k k k ∈+-],42,432[ππππ (2)3,123)22(2,42]1,22[)4sin(],45,4[4],,0[)4sin(2)cos (sin )(=-=∴=++-=++∴-∈+∈+∈+++=+++=b a b a a b a a x x x ba x ab a x x a x f ππππππ又 16、(本小题满分15分)设o 点为坐标原点,曲线222610xy x y ++-+=上有两点P Q 、满足关于直线04=++my x 对称,又满足.0=⋅OQ OP(1)求m 的值; (2)求直线PQ 的方程.解:(1)曲线方程为9)3()1(22=-++y x ,表示圆心为(-1,3),半径为3的圆.,04,对称在圆上且关于直线点=++my x Q P ∴圆心(-1,3)在直线上,代入直线方程得 1m =-.(2)∵直线PQ 与直线4y x =+垂直, b x y PQ y x Q y x P +-=∴方程设),,(),,(2211将直线b x y +-=代入圆方程. 得.016)4(2222=+-+-+b b x b x232232,0)16(24)4(422+<<->+-⨯⨯--=∆b b b b 得 由韦达定理得216),4(22121+-=⋅--=+b b x x b x xbb b x x x x b b y y 4216)(22121221++-=⋅++-=⋅212120,0,6140.1(22 1.OP OQ x x y y b b b b y x ⋅=∴+=-++==∈-+∴=-+即解得所求的直线方程为17、(本小题满分15分)已知矩形ABCD 中,AB =2AD =4,E 为 CD 的中点,沿AE 将∆AED 折起,使DB =O 、H 分别为AE 、AB 的中点.(1)求证:直线OH//面BDE ; (2)求证:面ADE ⊥面ABCE ;解:(1)证明∵O 、H 分别为AE 、AB 的中点∴OH//BE ,又OH 不在面BDE 内 ∴直线OH//面BDE ……………………6分 (2) O 为AE 的中点AD =DE ,∴DQ ⊥AE ∵BO 2=32+12=10∴222DB DO BO =+ ∴DO OB ⊥又因为AE 和BO 是相交直线所以,DO ⊥面ABCE , 又OD 在面ADE 内 ∴面ADE ⊥面ABCE 18、(本小题满分15分)在等差数列{}n a 中,151,9,a a ==在数列{}n b 中,12b =,且121n n b b -=-,(n ≥2) (1)求数列{}n a 和{}n b 的通项公式;(2)设312123...,1111n n n a a a aT b b b b =++++---- 求n T . 解:(1) a n =2n-1 由121n n b b -=-,得:b n -1=2(b n-1-1) (n ≥2) ∴{}1n b -是以111b -=为首项,2为公比的等比数列; ∴1112n n b --=⨯ 故b n =2n-1+1(2) 120211122122121111222n n n n a a a n T b b b ---⨯--=++⋅⋅⋅+=++⋅⋅⋅+--- 2135232112422n n n n ----=+++⋅⋅⋅++ ① 则 111352321224822n n n n n T ---=+++⋅⋅⋅⋅⋅⋅⋅⋅++ ② ①-②可得:231111112112()222222n n n n T --=++++⋅⋅⋅+-1111()2122121212n n n -⎡⎤-⎢⎥-⎣⎦=+⨯--()211122122n n n -⎛⎫⎛⎫=+--- ⎪⎪⎝⎭⎝⎭()()11342132322n nn n ⎛⎫⎛⎫=-+-=-+⎡⎤ ⎪ ⎪⎣⎦⎝⎭⎝⎭所以12326-+-=n n n T 19、(本小题满分15分)某民营企业生产A ,B 两种产品,根据市场调查和预测,A 产品的利润与投资成正比,其关系如图1,B 产品的利润与投资的算术平方根成正比,其关系如图2。