全国名校高考数学优质学案汇编(附详解)第二节 平面向量基本定理及坐标运算

合集下载

高2020优化方案高考总复习数学理课件配套学案第五章平面向量第2讲平面向量基本定理及坐标表示

高2020优化方案高考总复习数学理课件配套学案第五章平面向量第2讲平面向量基本定理及坐标表示

第2讲 平面向量基本定理及坐标表示1.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标; ②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →| 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,a ∥b ⇔x 1y 2-x 2y 1=0.导师提醒1.理解基底需关注三点(1)基底e 1,e 2必须是同一平面内的两个不共线向量,零向量不能作为基底. (2)基底给定,同一向量的分解形式唯一.(3)如果对于一组基底e 1,e 2,有a =λ1e 1+λ2e 2=μ1e 1+μ2e 2,则可以得到⎩⎪⎨⎪⎧λ1=μ1,λ2=μ2.2.应用共线向量定理应注意两点(1)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,应表示为x 1y 2-x 2y 1=0.(2)判断三点是否共线,先求每两点对应的向量,然后按两向量共线进行判定. 3.牢记两个结论(1)已知P 为线段AB 的中点,若A (x 1,y 1),B (x 2,y 2),则P 点坐标为⎝⎛⎭⎫x 1+x 22,y 1+y 22.(2)已知△ABC 的顶点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则△ABC 的重心G 的坐标为⎝⎛⎭⎫x 1+x 2+x 33,y 1+y 2+y 33.判断正误(正确的打“√”,错误的打“×”) (1)平面内的任何两个向量都可以作为一组基底.( ) (2)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( )(3)平面向量的基底不唯一,只要基底确定后,平面内的任何一个向量都可被这组基底唯一表示.( )(4)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可表示成x 1x 2=y 1y 2.( )答案:(1)× (2)√ (3)√ (4)×(教材习题改编)下列哪组向量可以作为平面向量的一组基底( ) A .e 1=(-2,4),e 2=(1,-2) B .e 1=(4,3),e 2=(-3,8) C .e 1=(2,3),e 2=(-2,-3) D .e 1=(3,0),e 2=(4,0)解析:选B.对于A ,e 1=-2e 2,对于C ,e 1=-e 2,对于D ,e 1=34e 2,对于B ,不存在λ∈R ,使e 1=λe 2,故选B.已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=( ) A .(-7,-4) B .(7,4) C .(-1,4)D .(1,4)解析:选A.法一:设C (x ,y ), 则AC →=(x ,y -1)=(-4,-3),所以⎩⎪⎨⎪⎧x =-4,y =-2,从而BC →=(-4,-2)-(3,2)=(-7,-4).故选A. 法二:AB →=(3,2)-(0,1)=(3,1),BC →=AC →-AB →=(-4,-3)-(3,1)=(-7,-4). 故选A.若向量a =(2,1),b =(-1,2),c =⎝⎛⎭⎫0,52,则c 可用向量a ,b 表示为( ) A .c =12a +bB .c =-12a -bC .c =32a +12bD .c =32a -12b解析:选A.设c =x a +y b ,则⎝⎛⎭⎫0,52=(2x -y ,x +2y ),所以⎩⎪⎨⎪⎧2x -y =0,x +2y =52,解得⎩⎪⎨⎪⎧x =12,y =1,则c =12a +b .(教材习题改编)向量a ,b 满足a +b =(-1,5),a -b =(5,-3),则b =________. 解析:由a +b =(-1,5),a -b =(5,-3),得2b =(-1,5)-(5,-3)=(-6,8),所以b =12(-6,8)=(-3,4).答案:(-3,4)(教材习题改编)已知A (-2,-3),B (2,1),C (1,4),D (-7,t ),若AB →与CD →共线,则t =________.解析:AB →=(2,1)-(-2,-3)=(4,4), CD →=(-7,t )-(1,4)=(-8,t -4). 因为AB →与CD →共线, 所以4(t -4)-4×(-8)=0. 即4t +16=0,所以t =-4. 答案:-4平面向量基本定理的应用(师生共研)(1)(一题多解)(2019·郑州模拟)如图,在直角梯形ABCD 中,AB =2AD =2DC ,E 为BC边上一点,BC →=3EC →,F 为AE 的中点,则BF →=( )A. 23AB →-13AD →B. 13AB →-23AD →C .-23AB →+13AD →D .-13AB →+23AD →(2)在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点.若AB →=λAM →+μAN →,则λ+μ=________.【解析】 (1)法一:如图,取AB 的中点G ,连接DG ,CG ,则易知四边形DCBG 为平行四边形,所以BC →=GD →=AD →-AG →=AD →-12AB →,所以AE →=AB →+BE →=AB →+23BC →=AB →+23⎝⎛⎭⎫AD →-12AB →=23AB →+23AD →,于是BF →=AF →-AB →=12AE →-AB →=12⎝⎛⎭⎫23AB →+23AD →-AB →=-23AB →+13AD →,故选C.法二:BF →=BA →+AF →=BA →+12AE →=-AB →+12⎝⎛⎭⎫AD →+12AB →+CE → =-AB →+12⎝⎛⎭⎫AD →+12AB →+13CB → =-AB →+12AD →+14AB →+16(CD →+DA →+AB →)=-23AB →+13AD →.(2)因为AB →=AN →+NB →=AN →+CN →=AN →+(CA →+AN →)=2AN →+CM →+MA →=2AN →-14AB →-AM →,所以AB →=85AN →-45AM →,所以λ=-45,μ=85,所以λ+μ=45.【答案】 (1)C (2)45平面向量基本定理应用的实质和一般思路(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.[提醒] 在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要熟练运用平面几何的一些性质定理.1.在△ABC 中,点P 是AB 上一点,且CP →=23CA →+13CB →,Q 是BC 的中点,AQ 与CP 的交点为M ,又CM →=tCP →,则实数t 的值为________.解析:因为CP →=23CA →+13CB →,所以3CP →=2CA →+CB →,即2CP →-2CA →=CB →-CP →, 所以2AP →=PB →.即P 为AB 的一个三等分点(靠近A 点), 又因为A ,M ,Q 三点共线,设AM →=λAQ →. 所以CM →=AM →-AC →=λAQ →-AC →=λ⎝⎛⎭⎫12AB →+12AC →-AC →=λ2AB →+λ-22 AC →, 又CM →=tCP →=t (AP →-AC →)=t ⎝⎛⎭⎫13AB →-AC → =t 3AB →-tAC →. 故⎩⎨⎧λ2=t 3,λ-22=-t ,解得⎩⎨⎧t =34,λ=12.故t 的值是34.答案:342.已知点A ,B 为单位圆O 上的两点,点P 为单位圆O 所在平面内的一点,且OA →与OB →不共线.(1)在△OAB 中,点P 在AB 上,且AP →=2PB →,若AP →=rOB →+sOA →,求r +s 的值;(2)已知点P 满足OP →=mOA →+OB →(m 为常数),若四边形OABP 为平行四边形,求m 的值. 解:(1)因为AP →=2PB →,所以AP →=23AB →,所以AP →=23(OB →-OA →)=23OB →-23OA →,又因为AP →=rOB →+sOA →, 所以r =23,s =-23,所以r +s =0.(2)因为四边形OABP 为平行四边形, 所以OB →=OP →+OA →, 又因为OP →=mOA →+OB →, 所以OB →=OB →+(m +1)OA →,依题意OA →,OB →是非零向量且不共线,所以m +1=0, 解得m =-1.平面向量的坐标运算(多维探究)角度一 已知向量的坐标进行坐标运算(1)已知向量a =(5,2),b =(-4,-3),c =(x ,y ),若3a -2b +c =0,则c =( ) A .(-23,-12) B .(23,12) C .(7,0)D .(-7,0)(2)平面直角坐标系xOy 中,已知A (1,0),B (0,1),C (-1,c )(c >0),且|OC →|=2,若OC →=λOA →+μOB →,则实数λ+μ的值为________.【解析】 (1)3a -2b +c =(23+x ,12+y )=0,故x =-23,y =-12,故选A .(2)因为|OC →|=2,所以|OC →|2=1+c 2=4,因为c>0,所以c = 3.因为OC →=λOA →+μOB →,所以(-1,3)=λ(1,0)+μ(0,1),所以λ=-1,μ=3,所以λ+μ=3-1. 【答案】 (1)A (2)3-1角度二 解析法(坐标法)在向量中的应用(1)向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ),则λμ=________.(2)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP →=λAB →+μAD →,则λ+μ的最大值为________.【解析】 (1)以向量a 和b 的交点为原点建立如图所示的平面直角坐标系(设每个小正方形边长为1),则A (1,-1),B (6,2),C (5,-1),所以a =AO →=(-1,1),b =OB →=(6,2),c =BC →=(-1,-3).因为c =λa +μb ,所以(-1,-3)=λ(-1,1)+μ(6,2),即⎩⎪⎨⎪⎧-λ+6μ=-1,λ+2μ=-3,解得λ=-2,μ=-12,所以λμ=4.(2)以A 为坐标原点,AB ,AD 所在直线分别为x ,y 轴建立如图所示的平面直角坐标系,则A (0,0),B (1,0),C (1,2),D (0,2),可得直线BD 的方程为2x +y -2=0,点C 到直线BD 的距离为212+22=25,圆C :(x -1)2+(y -2)2=45,因为P 在圆C 上,所以P (1+255cos θ,2+255sin θ),AB →=(1,0),AD →=(0,2),AP →=λAB →+μAD →=(λ,2μ),所以⎩⎨⎧1+255cos θ=λ,2+255sin θ=2μ,λ+μ=2+255cos θ+55sinθ=2+sin(θ+φ)≤3,tan φ=2.【答案】 (1)4 (2)3(1)向量坐标运算的策略①向量的坐标运算主要是利用加、减、数乘运算法则进行; ②若已知有向线段两端点的坐标,则应先求出向量的坐标; ③解题过程中要注意方程思想的运用及正确使用运算法则. (2)向量问题坐标化当题目条件中所给的几何图形方便建立平面直角坐标系(如矩形、等腰三角形等)时,可建立平面直角坐标系,将向量坐标化,将向量问题转化为代数问题,更便于计算求解.1.已知平行四边形ABCD 中,AD →=(3,7),AB →=(-2,3),对角线AC 与BD 交于点O ,则CO →的坐标为( )A.⎝⎛⎭⎫-12,5 B.⎝⎛⎭⎫12,5 C.⎝⎛⎭⎫12,-5D.⎝⎛⎭⎫-12,-5 解析:选D.因为AC →=AB →+AD →=(-2,3)+(3,7)=(1,10),所以OC →=12AC →=⎝⎛⎭⎫12,5,所以CO →=⎝⎛⎭⎫-12,-5.2.给定两个长度为1的平面向量OA →和OB →,它们的夹角为2π3.如图所示,点C 在以O 为圆心的圆弧AB ︵上运动.若OC →=xOA →+yOB →,其中x ,y ∈R ,求x +y 的最大值.解:以O 为坐标原点,OA →所在的直线为x 轴建立平面直角坐标系,如图所示,则A (1,0),B ⎝⎛⎭⎫-12,32,设∠AOC =α⎝⎛⎭⎫α∈⎣⎡⎦⎤0,2π3,则C (cos α,sin α), 由OC →=xOA →+yOB →,得⎩⎨⎧cos α=x -12y ,sin α=32y ,所以x =cos α+33sin α,y =233sin α, 所以x +y =cos α+3sin α=2sin ⎝⎛⎭⎫α+π6,又α∈⎣⎡⎦⎤0,2π3,所以α+π6∈⎣⎡⎦⎤π6,5π6,所以sin ⎝⎛⎭⎫α+π6∈⎣⎡⎦⎤12,1,故x +y 的最大值为2.平面向量共线的坐标表示(多维探究)角度一 利用两向量共线求参数或坐标(1)(2019·开封模拟)已知平面向量a ,b ,c ,a =(-1,1),b =(2,3),c =(-2,k ),若(a +b )∥c ,则实数k =________.(2)已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.【解析】 (1)由题意,得a +b =(1,4),由(a +b )∥c ,得1×k =4×(-2),解得k =-8. (2)因为在梯形ABCD 中,AB ∥CD ,DC =2AB ,所以DC →=2AB →.设点D 的坐标为(x ,y ),则DC →=(4,2)-(x ,y )=(4-x ,2-y ),AB →=(2,1)-(1,2)=(1,-1),所以(4-x ,2-y )=2(1,-1),即(4-x ,2-y )=(2,-2),所以⎩⎪⎨⎪⎧4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4). 【答案】 (1)-8 (2)(2,4)角度二 利用向量共线求解三点共线问题已知向量OA →=(k ,12),OB →=(4,5),OC →=(-k ,10),且A ,B ,C 三点共线,则k 的值是( ) A .-23B.43C.12D.13【解析】 AB →=OB →-OA →=(4-k ,-7),AC →=OC →-OA →=(-2k ,-2).因为A ,B ,C 三点共线,所以AB →,AC →共线,所以-2×(4-k )=-7×(-2k ),解得k =-23.【答案】 A(1)两平面向量共线的充要条件有两种形式:①若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2-x 2y 1=0;②已知b ≠0,则a ∥b 的充要条件是a =λb (λ∈R ).(2)利用向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均为非零实数时,也可以利用坐标对应成比例来求解.1.(2018·高考全国卷Ⅲ)已知向量a =(1,2),b =(2,-2),c =(1,λ).若c ∥(2a +b ),则λ=________.解析:2a +b =(4,2),因为c =(1,λ),且c ∥(2a +b ),所以1×2=4λ,即λ=12.答案:122.已知a =(1,0),b =(2,1).(1)当k 为何值时,k a -b 与a +2b 共线?(2)若AB →=2a +3b ,BC →=a +m b 且A ,B ,C 三点共线,求m 的值. 解:(1)k a -b =k (1,0)-(2,1)=(k -2,-1), a +2b =(1,0)+2(2,1)=(5,2).因为k a -b 与a +2b 共线,所以2(k -2)-(-1)×5=0, 即2k -4+5=0,得k =-12.(2)法一:因为A ,B ,C 三点共线, 所以AB →=λBC →,即2a +3b =λ(a +m b ),所以⎩⎪⎨⎪⎧2=λ3=mλ,解得m =32.法二:AB →=2a +3b =2(1,0)+3(2,1)=(8,3), BC →=a +m b =(1,0)+m (2,1)=(2m +1,m ). 因为A ,B ,C 三点共线,所以AB →∥BC →.所以8m -3(2m +1)=0,即2m -3=0,所以m =32.坐标法解决平面向量问题如图2,“六芒星”是由两个全等正三角形组成,中心重合于点O 且三组对边分别平行.点A ,B 是“六芒星”(如图1)的两个顶点,动点P 在“六芒星”上(内部以及边界),若OP →=xOA →+yOB →,则x +y 的取值范围是( )A .[-4,4]B .[-21,21]C .[-5,5]D .[-6,6]【解析】 如图建立平面直角坐标系,以x ,y 轴正方向作为一组基底向量i ,j ,令正三角形边长为3, 则OB →=i ,OA →=-32i +32j ,可得i =OB →,则j =233OA →+ 3 OB →,由图知当P 在C 点时有,OP →=3j =2OA →+3OB →, 此时x +y 有最大值5,同理点P 在与C 相对的下顶点时有OP →=-3j =-2OA →-3OB →,此时x +y 有最小值-5. 【答案】 C解决几何图形问题时,可以先建立适当的坐标系将图形坐标化,再运用数学运算解决相关问题.在平面向量中,向量的坐标运算就是这一思想的具体应用.如图,在正方形ABCD 中,P 为DC 边上的动点,设向量AC →=λDB →+μAP →,则λ+μ的最大值为________.解析:以A 为原点,以AB ,AD 所在直线分别为x ,y 轴建立平面直角坐标系,设正方形的边长为2,则B (2,0),C (2,2),D (0,2),P (x ,2),x ∈[0,2].所以AC →=(2,2),DB →=(2,-2),AP →=(x ,2). 因为AC →=λDB →+μAP →,所以⎩⎪⎨⎪⎧2λ+xμ=2,-2λ+2μ=2,所以⎩⎪⎨⎪⎧λ=2-x 2+x ,μ=42+x ,所以λ+μ=6-x 2+x .令f (x )=6-x 2+x(0≤x ≤2),因为f (x )在[0,2]上单调递减,所以f (x )max =f (0)=3.答案:3[基础题组练]1.在平面直角坐标系中,已知向量a =(1,2),a -12b =(3,1),c =(x ,3),若(2a +b )∥c ,则x =( )A .-2B .-4C .-3D .-1解析:选D.因为a -12b =(3,1),所以a -(3,1)=12b ,则b =(-4,2).所以2a +b =(-2,6).又(2a +b )∥c ,所以-6=6x ,x =-1.故选D.2.已知向量AC →,AD →和AB →在边长为1的正方形网格中的位置如图所示,若AC →=λAB →+μAD →,则λ+μ等于( )A .2B .-2C .3D .-3解析:选A.如图所示,建立平面直角坐标系,则AD →=(1,0),AC →=(2,-2),AB →=(1,2).因为AC →=λAB →+μAD →,所以(2,-2)=λ(1,2)+μ(1,0)=(λ+μ,2λ),所以⎩⎪⎨⎪⎧2=λ+μ,-2=2λ,解得⎩⎪⎨⎪⎧λ=-1,μ=3,所以λ+μ=2.故选A. 3.在平行四边形ABCD 中,E 是CD 的中点,F 是BE 的中点,若AF →=mAB →+nAD →,则( ) A .m =34,n =12B .m =14,n =34C .m =12,n =12D .m =12,n =34解析:选A.在平行四边形ABCD 中,E 是CD 的中点,F 是BE 的中点, 则AE →=12AB →+AD →,AF →=12AE →+12AB →,故AF →=12⎝⎛⎭⎫12AB →+AD →+12AB →, =34AB →+12AD →. 由于AF →=mAB →+nAD →, 所以m =34,n =12.故选A.4.已知平面直角坐标系内的两个向量a =(m ,3m -4),b =(1,2),且平面内的任一向量c 都可以唯一地表示成c =λa +μb (λ,μ为实数),则m 的取值范围是( )A .(-∞,4)B .(4,+∞)C .(-∞,4)∪(4,+∞)D .(-∞,+∞)解析:选C.平面内的任意向量c 都可以唯一地表示成c =λa +μb ,由平面向量基本定理可知,向量a ,b 可作为该平面所有向量的一组基底,即向量a ,b 是不共线向量.又因为a =(m ,3m -4),b =(1,2),则m ×2-(3m -4)×1≠0,即m ≠4,所以m 的取值范围为(-∞,4)∪(4,+∞).5.在平面直角坐标系xOy 中,已知A (1,0),B (0,1),C 为坐标平面内第一象限内的点,且∠AOC =π4,|OC |=2,若OC →=λOA →+μOB →,则λ+μ=( )A .2 2 B. 2 C .2D .4 2解析:选 A.因为|OC |=2,∠AOC =π4,所以C (2,2),又因为OC →=λOA →+μOB →,所以(2,2)=λ(1,0)+μ(0,1)=(λ,μ),所以λ=μ=2,λ+μ=2 2.6.在平行四边形ABCD 中,AC 为一条对角线,若AB →=(2,4),AC →=(1,3),则BD →=________. 解析:由题意得BD →=AD →-AB →=BC →-AB →=(AC →-AB →)-AB →=AC →-2AB →=(1,3)-2(2,4)=(-3,-5).答案:(-3,-5)7.设向量a =(x ,1),b =(4,x ),若a ,b 方向相反,则实数x 的值为________.解析:由题意得x 2-1×4=0,解得x =±2.当x =2时,a =(2,1),b =(4,2),此时a ,b 方向相同,不符合题意,舍去;当x =-2时,a =(-2,1),b =(4,-2),此时a ,b 方向相反,符合题意.答案:-28.已知A (-3,0),B (0,3),O 为坐标原点,C 在第二象限,且∠AOC =30°,OC →=λOA →+OB →,则实数λ的值为________.解析:由题意知OA →=(-3,0),OB →=(0,3), 则OC →=(-3λ,3),由∠AOC =30°知,以x 轴的非负半轴为始边,OC 为终边的一个角为150°,所以tan 150°=3-3λ, 即-33=-33λ,所以λ=1, 答案:19.已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b . (1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n ; (3)求M ,N 的坐标及向量MN →的坐标.解:由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42). (2)因为m b +n c =(-6m +n ,-3m +8n ),所以⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.(3)设O 为坐标原点,因为CM →=OM →-OC →=3c , 所以OM →=3c +OC →=(3,24)+(-3,-4)=(0,20). 所以M (0,20).又因为CN →=ON →-OC →=-2b , 所以ON →=-2b +OC →=(12,6)+(-3,-4)=(9,2), 所以N (9,2).所以MN →=(9,-18).10.如图,AB 是圆O 的直径,C ,D 是圆O 上的点,∠CBA =60°,∠ABD =45°,CD →=xOA →+yBC →,求x +y 的值.解:不妨设⊙O 的半径为1,则A (-1,0),B (1,0),D (0,1),C ⎝⎛⎭⎫12,-32.所以CD →=⎝⎛⎭⎫-12,1+32,BC →=⎝⎛⎭⎫-12,-32.又CD →=xOA →+yBC →,所以⎝⎛⎭⎫-12,1+32=x (-1,0)+y ⎝⎛⎭⎫-12,-32.所以⎩⎨⎧-12=-x -12y 1+32=-32y ,解之得⎩⎪⎨⎪⎧x =3+33y =-3+233,所以x +y =3+33-3+233=-33.[综合题组练]1.(创新型)若α,β是一组基底,向量γ=x α+y β(x ,y ∈R ),则称(x ,y )为向量γ在基底α,β下的坐标,现已知向量a 在基底p =(1,-1),q =(2,1)下的坐标为(-2,2),则a 在另一组基底m =(-1,1),n =(1,2)下的坐标为( )A .(2,0)B .(0,-2)C .(-2,0)D .(0,2)解析:选D.因为a 在基底p ,q 下的坐标为(-2,2),即a =-2p +2q =(2,4), 令a =x m +y n =(-x +y ,x +2y ),所以⎩⎪⎨⎪⎧-x +y =2,x +2y =4,即⎩⎪⎨⎪⎧x =0,y =2.所以a 在基底m ,n 下的坐标为(0,2). 2.(创新型)已知P ={}a |a =(1,0)+m (0,1),m ∈R ,Q ={}b |b =(1,1)+n (-1,1),n ∈R 是两个向量集合,则P ∩Q 等于()A.{}(1,1)B.{}(-1,1)C.{}(1,0)D.{}(0,1)解析:选A.设a =(x ,y ),则P ={(x ,y )|{x =1, ,y =m ,m ∈R )},所以集合P 是直线x =1上的点的集合.同理,集合Q 是直线x +y =2上的点的集合,即P ={}(x ,y )|x =1,y ∈R ,Q ={}(x ,y )|x +y -2=0,所以P ∩Q ={}(1,1).故选A.3.(应用型)已知非零不共线向量OA →,OB →,若2OP →=xOA →+yOB →,且P A →=λAB →(λ∈R ),则点Q (x ,y )的轨迹方程是( )A .x +y -2=0B .2x +y -1=0C .x +2y -2=0D .2x +y -2=0解析:选A.由P A →=λAB →,得OA →-OP →=λ(OB →-OA →), 即OP →=(1+λ)OA →-λOB →. 又2OP →=xOA →+yOB →,所以⎩⎪⎨⎪⎧x =2+2λ,y =-2λ,消去λ得x +y -2=0,故选A.4.如图,A ,B ,C 是圆O 上的三点,CO 的延长线与线段BA 的延长线交于圆O 外一点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.解析:由点D 是圆O 外一点,可设BD →=λBA →(λ>1),则OD →=OB →+λBA →=λOA →+(1-λ)OB →.又C ,O ,D 三点共线,令OD →=-μOC →(μ>1),则OC →=-λμOA →-1-λμ·OB →(λ>1,μ>1),所以m =-λμ,n =-1-λμ,则m +n =-λμ-1-λμ=-1μ∈(-1,0). 答案:(-1,0)5.(一题多解)如图,在同一个平面内,向量OA →,OB →,OC →的模分别为1,1,2,OA →与OC →的夹角为α,且tan α=7,OB →与OC →的夹角为45°.若OC →=mOA →+nOB →(m ,n ∈R ),求m +n 的值.解:法一:以O 为坐标原点,OA 所在直线为x 轴建立平面直角坐标系,则A (1,0),由tanα=7,α∈⎝⎛⎭⎫0,π2,得sin α=752,cos α=152,设C (x C ,y C ),B (x B ,y B ),则x C =|OC →|cos α=2×152=15,y C =|OC →|sin α=2×752=75,即C ⎝⎛⎭⎫15,75.又cos(α+45°)=152×12-752×12=-35,sin (α+45°)=752×12+152×12=45,则x B =|OB →|cos(α+45°)=-35,y B =|OB→|sin (α+45°)=45,即B ⎝⎛⎭⎫-35,45,由OC →=m OA →+n OB →,可得 ⎩⎨⎧15=m -35n ,75=45n ,解得⎩⎨⎧m =54,n =74,所以m +n =54+74=3.法二:由tan α=7,α∈⎝⎛⎭⎫0,π2,得sin α=752,cos α=152,则cos(α+45°)=152×12-752×12=-35,OB →·OC →=1×2×22=1,OA →·OC →=1×2×152=15,OA →·OB →=1×1×⎝⎛⎭⎫-35=-35,由OC →=m OA →+n OB →,得OC →·OA →=m OA →2+n OB →·OA →,即15=m -35n ①,同理可得OC →·OB →=m OA →·OB →+n OB →2,即1=-35m +n ②,联立①②,解得⎩⎨⎧m =54,n =74,所以m +n =54+74=3.6.已知△ABC 中,AB =2,AC =1,∠BAC =120°,AD 为角平分线.(1)求AD 的长度;(2)过点D 作直线交AB ,AC 延长线于不同两点E ,F ,且满足AE →=xAB →,AF →=yAC →,求1x +2y 的值,并说明理由.解:(1)根据角平分线定理:DB DC =AB AC =2,所以BD BC =23, 所以AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=13AB →+23AC →,所以AD →2=19AB →2+49AB →·AC →+49AC →2=49-49+49=49,所以AD =23.(2)因为AE →=xAB →,AF →=yAC →,所以AD →=13AB →+23AC →=13x AE →+23y AF →,因为E ,D ,F 三点共线,所以13x +23y =1,所以1x +2y=3.。

2024版高考数学全程学习复习导学案第六章平面向量复数第二节平面向量的基本定理及坐标表示课件

2024版高考数学全程学习复习导学案第六章平面向量复数第二节平面向量的基本定理及坐标表示课件

相反的向量 a 可能是( AD )
A.a=(-1,-2)
B.a=(9,3)
C.a=(-1,2)
D.a=(-4,-8)
【解析】由题意可得A→B =(3,1)-(2,-1)=(1,2). A 选项,a=(-1,-2)=-A→B ,故满足题意; D 选项,a=(-4,-8)=-4A→B ,故满足题意; B,C 选项中的 a 不能用A→B 表示,故不满足题意.
答案:①③
题型二 平面向量的坐标运算 [典例 2]已知 A(-2,4),B(3,-1),C(-3,-4).设A→B =a,B→C =b,C→A =c,且 C→M =3c,C→N =-2b. (1)求 3a+b-3c; (2)求满足 a=mb+nc 的实数 m,n; (3)求 M,N 的坐标及向量M→N 的坐标.
(2)已知 O 为坐标原点,点 A(4,0),B(4,4),C(2,6),则 AC 与 OB 的交点 P 的坐 标为________. 答案:(3,3)
角度 2 利用向量共线求参数 [典例 4](1)(2023·西安模拟)已知向量A→B =(4,-4),B→C =(-3,m),A→D =
(-1,m),若 A,C,D 三点共线,则 m=( A )
第二节 平面向量的基 本定理及坐标表示
【课程标准】 1.理解平面向量基本定理及其意义. 2.借助平面直角坐标系,掌握平面向量的正交分解及坐标表示. 3.会用坐标表示平面向量的加、减运算与数乘运算. 4.能用坐标表示平面向量的数量积,会表示两个平面向量的夹角. 5.能用坐标表示平面向量共线、垂直的条件.
【对点训练】
1.(2022·常德模拟)已知点 A(0,1),B(2,3),向量B→C =(-3,1),则向量A→C =( D )

2020-2021高中数学人教版第二册学案:6.3.1平面向量基本定理含解析

2020-2021高中数学人教版第二册学案:6.3.1平面向量基本定理含解析

新教材2020-2021学年高中数学人教A版必修第二册学案:6.3.1平面向量基本定理含解析6.3平面向量基本定理及坐标表示6.3.1平面向量基本定理[目标]1.了解平面向量基本定理产生的过程和基底的含义,理解平面向量基本定理;2.掌握平面向量基本定理并能熟练应用.[重点] 平面向量基本定理.[难点] 平面向量基本定理的应用.要点整合夯基础知识点平面向量基本定理[填一填](1)定理:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.(2)若e1,e2不共线,我们把{e1,e2}叫做表示这一平面内所有向量的一个基底.[答一答]1.基底有什么特点?平面内基底唯一吗?提示:基底中的两向量e1,e2不共线,这是基底的最大特点.平面内的基底并不是唯一的,任意不共线的两个向量都可以作为基底.2.如图,设OA、OB、OC为三条共端点的射线,P为OC上一点,能否在OA 、OB 上分别找一点M 、N ,使OP →=错误!+错误!?提示:能。

过点P 作OA 、OB 的平行线,分别与OB 、OA 相交,交点即为N 、M .3.若向量a ,b 不共线,且c =2a -b ,d =3a -2b ,试判断c ,d 能否作为基底.提示:设存在实数λ使得c =λd ,则2a -b =λ(3a -2b ),即(2-3λ)a +(2λ-1)b =0.由于a ,b 不共线,从而2-3λ=2λ-1=0,这样的λ是不存在的,从而c ,d 不共线,故c ,d 能作为基底。

典例讲练破题型类型一 基底的概念[例1] 下面说法中,正确的是( )①一个平面内只有一对不共线向量可作为表示该平面内所有向量的基底;②一个平面内有无数多对不共线向量可作为表示该平面内所有向量的基底;③零向量不可作为基底中的向量;④对于平面内的任一向量a 和一组基底e 1,e 2,使a =λe 1+μe 2成立的实数对一定是唯一的.A .②④B .②③④C .①③D .①③④[解析] 因为不共线的任意两个向量均可作为平面的一组基底,故②③正确,①不正确;由平面向量基本定理知④正确.综上可得②③④正确.[答案]B根据平面向量基底的定义知,判断能否作为基底问题可转化为判断两个向量是否共线的问题,若不共线,则它们可以作为一组基底;若共线,则它们不能作为一组基底。

高三数学平面向量基本定理及坐标表示试题答案及解析

高三数学平面向量基本定理及坐标表示试题答案及解析

高三数学平面向量基本定理及坐标表示试题答案及解析1.已知椭圆的中心在坐标原点,焦点在轴上,离心率为,椭圆上的点到焦点距离的最大值为.(1)求椭圆的标准方程;(2)若过点的直线与椭圆交于不同的两点,且,求实数的取值范围.【答案】(1)(2)【解析】(1)设所求的椭圆方程为:由题意:所求椭圆方程为:.(2)若过点的斜率不存在,则.若过点的直线斜率为,即:时,直线的方程为由因为和椭圆交于不同两点所以,所以①设由已知,则②③将③代入②得:整理得:所以代入①式得,解得.所以或.综上可得,实数的取值范围为:.2.(2013•湖北)已知点A(﹣1,1),B(1,2),C(﹣2,﹣1),D(3,4),则向量在方向上的投影为()A.B.C.D.【答案】A【解析】,,则向量方向上的投影为:•cos<>=•===,故选A.3.如图,在正方形ABCD中,E为AB的中点,P为以A为圆心,AB为半径的圆弧上的任意一点,设向量.【答案】【解析】以为原点,以所在直线为轴,建立平面直角坐标系.设正方形的边长为,则设 .又向量所以,∴,∴,∴.由题意得∴当时,同时,时,取最小值为.【考点】平面向量的坐标运算,三角函数的性质.4.如图,在直角梯形ABCD中,AB//CD,AB=2,AD=DC=1,P是线段BC上一动点,Q是线段DC上一动点,,则的取值范围是.【答案】【解析】解:建立平面直角坐标系如图所示,则因为,所以所以,, 所以, 故答案应填.【考点】1、平面向量基本定理;2、向量的坐标表示;3、向量的数量积;4、一元二次函数的最值.5. 如图,△ABC 中,D 为BC 的中点,G 为AD 的中点,过点G 任作一直线MN 分别交AB 、AC 于M 、N 两点.若=x ,=y ,求的值.【答案】4 【解析】设=a ,=b ,则=x a ,=y b ,== (+)= (a +b ).∴=-= (a +b )-x a =a +b ,=-=y b -x a =-x a +y b . ∵与共线,∴存在实数λ,使=λ.∴a +b =λ(-x a +y b )=-λx a +λy b .∵a 与b 不共线,∴消去λ,得=4.6. 已知点O (0,0),A 0(0,1),A n (6,7),点A 1,A 2,…,A n -1(n ∈N ,n ≥2)是线段A 0A n 的n 等分点,则| ++…+OA n -1+|等于( ) A .5n B .10n C .5(n +1) D .10(n +1)【答案】C【解析】取n =2,,则++=(0,1)+(3,4)+(6,7)=(9,12),所以| ++|==15,把n =2代入选项中,只有5(n +1)=15,故排除A 、B 、D ,选C.7. 已知向量a=(cosθ,sinθ),b=(,-1),则|2a-b|的最大值为( ) A .4 B .4 C .16D .8【答案】B【解析】∵2a-b=(2cosθ-,2sinθ+1), ∴|2a-b|===故最大值为4.8. 已知向量a=(1,-2),b=(m,4),且a ∥b,那么2a-b=( )A.(4,0)B.(0,4)C.(4,-8)D.(-4,8)【答案】C【解析】由a∥b,得4=-2m,∴m=-2,∴b=(-2,4),∴2a-b=2(1,-2)-(-2,4)=(4,-8).9.已知向量a=(cosα,-2),b=(sinα,1)且a∥b,则tan(α-)等于()A.3B.-3C.D.-【答案】B【解析】选B.∵a=(cosα,-2), b=(sinα,1)且a∥b,∴=(经分析知cosα≠0),∴tanα=-.∴tan(α-)===-3,故选B.【方法技巧】解决向量与三角函数的综合题的方法向量与三角函数的结合是近几年高考中出现较多的题目,解答此类题目的关键是根据条件将所给的向量问题转化为三角问题,然后借助三角恒等变换再根据三角求值、三角函数的性质、解三角形的问题来解决.10.已知向量a=(3,1),b=,若a+λb与a垂直,则λ等于________.【答案】4【解析】根据向量线性运算、数量积运算建立方程求解.由条件可得a+λb=,所以(a+λb)⊥a⇒3(3-λ)+1+λ=0⇒λ=4.11.设向量,,若满足,则( )A.B.C.D.【答案】D【解析】因为,所以, ,解得:,故选D.【考点】向量共线的条件.12.在所在的平面内,点满足,,且对于任意实数,恒有,则()A.B.C.D.【答案】C【解析】过点作,交于,是边上任意一点,设在的左侧,如图,则是在上的投影,即,即在上的投影,,令,,,,故需要,,即,为的中点,又是边上的高,是等腰三角形,故有,选C.【考点】共线向量,向量的数量积.13.已知向量,若,则的最小值为.【答案】4【解析】,所以.【考点】1、向量的平行关系;2、向量的模;3、重要不等式14.已知向量,向量,且,则的值是()A.B.C.D.【答案】C.【解析】,,即得.【考点】向量的坐标运算.15.已知点,,则与共线的单位向量为()A.或B.C.或D.【答案】C【解析】因为点,,所以,,与共线的单位向量为.【考点】向量共线.16.已知向量,,若,则实数等于.【答案】.【解析】,两边平方得,则有,化简得,即,解得.【考点】平面向量的模、平面向量的坐标运算17.在中,已知,且,则( )A.B.C.D.【答案】A【解析】因为,,所以,,,故选A。

【2021】高考数学一轮复习学案:4.2 平面向量的基本定理及向量坐标运算

【2021】高考数学一轮复习学案:4.2 平面向量的基本定理及向量坐标运算

第二节平面向量的基本定理及向量坐标运算知识体系必备知识1.平面向量基本定理(1)定理:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.(2)基底:不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.2.平面向量的坐标表示在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j 作为基底,该平面内的任一向量a可表示成a=x i+y j,由于a与数对(x,y)是一一对应的,把有序数对(x,y)叫做向量a的坐标,记作a=(x,y),其中a在x轴上的坐标是x,a在y轴上的坐标是y.3.平面向量的坐标运算向量的加法、减法设a=(x1,y1),b=(x2,y2),则a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2)向量的数乘设a=(x,y),λ∈R,则λa=(λx,λy)向量坐标的设A(x1,y1),B(x2,y2),则求 法=(x 2-x 1,y 2-y 1)4.向量共线的坐标表示若a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0.1.注意点:(1)应用平面向量基本定理表示向量的实质应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算,共线向量定理的应用起着至关重要的作用.当基底确定后,任一向量的表示都是唯一的.(2)向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系.两个相等的向量,无论起点在什么位置,它们的坐标都是相同的. 2.易错点:三点共线问题.A,B,C 三点共线等价于与共线.基础小题1.给出下列说法:(1)平面内的任何两个向量都可以作为一组基底.(2)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2. (3)平面向量的基底不唯一,只要基底确定后,平面内的任何一个向量都可被这组基底唯一表示.(4)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可表示成x 1x 2=y 1y 2.(5)当向量的起点在坐标原点时,向量的坐标就是向量终点的坐标.其中正确的是________.【解析】(1)只有不共线的向量才能做基底,故错误.(2)因为a,b不共线,且λ1a+μ1b=λ2a+μ2b,所以λ1=λ2,μ1=μ2.故正确.(3)因为基底确定后,平面内的任何一个向量都可被这组基底唯一表示,故正确.(4)错误,因为a∥b的充要条件是x1y2=x2y1.(5)正确,向量的起点在坐标原点时,向量的坐标就是向量终点的坐标. 答案:(2)(3)(5)2.(教材改编)在如图所示的平面直角坐标系中,向量的坐标是( )A.(2,2)B.(-2,-2)C.(1,1)D.(-1,-1)【解析】选D.因为A(2,2),B(1,1),所以=(-1,-1).3.下列各组向量中,能作为平面上一组基底的是 ( )=(0,2),e2=(0,-1)=(2,1),e2=(0,0)=(3,1),e2=(5,5 3 )=(-2,1),e2=(4,2)【解析】选D.对于A,e 1=-2e 2,向量e 1,e 2共线, 所以不能作基底,对于B,零向量不能作为基底; 对于C,e 2=53e 1,e 1,e 2共线,所以不能作为基底;对于D,e 1,e 2不共线,可以作为基底,所以选D.4.在△ABC 中,点D 在BC 边上,且=2,=r+s,则r+s 等于 ( ) A.23B.43s【解析】选D.因为=2,所以=23=23(-)=23-23,则r+s=23+(-23)=0.5.(教材改编)已知▱ABCD 的顶点A(-1,-2),B(3,-1),C(5,6),则顶点D 的坐标为________.【解析】设D(x,y),则由=,得(4,1)=(5-x,6-y), 即{4=5-x ,1=6-y ,解得{x =1,y =5.答案:(1,5)。

2019年高考数学(理)一轮复习精品资料专题24平面向量的基本定理及其坐标表示(教学案)含解析

2019年高考数学(理)一轮复习精品资料专题24平面向量的基本定理及其坐标表示(教学案)含解析

2019年高考数学(理)一轮复习精品资料1.了解平面向量基本定理及其意义.2.掌握平面向量的正交分解及坐标表示.3.会用坐标表示平面向量的加法、减法与数乘运算.4.理解用坐标表示的平面向量共线的条件.1.平面向量基本定理如果e1,e2是同一平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2,称e1,e2为基底.若e1,e2互相垂直,则称这个基底为正交基底;若e1,e2分别为与x轴,y轴方向相同的两个单位向量,则称单位正交基底.2.平面向量的坐标表示在直角坐标系内,分别取与x轴,y轴正方向相同的两个单位向量i,j作为基底,对任一向量a,有唯一一对实数x,y,使得:a=x i+y j,(x,y)叫做向量a的直角坐标,记作a=(x,y),显然i =(1,0),j=(0,1),0=(0,0).3.平面向量的坐标运算(1)设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2), λa =(λx 1,λy 1),|a |=12. (2)设A (x 1,y 1),B (x 2,y 2),则=(x 2-x 1,y 2-y 1),||=.4.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),则(1)a ∥b ⇔x 1y 2-x 2y 1=0;(2)若a ≠0,则与a 平行的单位向量为±|a|a. 【必会结论】1.若a 与b 不共线,λa +μb =0,则λ=μ=0.2.已知=λ+μ(λ,μ为常数),则A ,B ,C 三点共线的充要条件是λ+μ=1.以上三个条件任取两两组合,都可以得出第三个条件且λ+μ=1常被当作隐含条件运用.3.平面向量一组基底是两个不共线向量,平面向量基底可以有无穷多组.高频考点一 平面向量基本定理的应用例1、在平行四边形ABCD 中,E ,F 分别是BC ,CD 的中点,DE 交AF 于H ,记,分别为a ,b ,则=( ) A.52a -54b B.52a +54b C .-52a +54b D .-52a -54b 答案 B解析 如图,设=λ,由于a ,b 不共线,因此由平面向量的基本定理,得μ=-1+λ.1解之得λ=54,μ=52. 故=λ=λa 1=52a +54b .故选B.【举一反三】(1)在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若=λ+μ,则λ+μ等于( )A.51B.52C.53D.54(2)如图,在△ABC 中,=31,P 是BN 上的一点,若=m +112,则实数m 的值为________.答案 (1)D (2)113(2)设=k ,k ∈R . 因为=+=+k =+k (-)=+k (41-) =(1-k )+4k, 且=m +112,所以1-k =m ,4k =112, 解得k =118,m =113.【感悟提升】应用平面向量基本定理表示向量的方法应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加法、减法或数乘运算,基本方法有两种:(1)运用向量的线性运算法则对待求向量不断进行化简,直至用基底表示为止;(2)将向量用含参数的基底表示,然后列方程或方程组,利用基底表示向量的唯一性求解.【举一反三】如图,已知▱ABCD 的边BC ,CD 的中点分别是K ,L ,且=e 1,=e 2,试用e 1,e 2表示,.【变式探究】(1)如图,已知=a ,=b ,=3,用a ,b 表示,则=________.(2)(如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,E 为线段AO 的中点.若=λ+μ(λ,μ∈R ),则λ+μ=________.解析 (1)=+=+43=+43(-)=41+43=41a +43b .(2)由题意可得=21+21=21+41,由平面向量基本定理可得λ=21,μ=41,所以λ+μ=43. 答案 (1)41a +43b (2)43高频考点二 平面向量的坐标运算例2、已知A (-2,4),B (3,-1),C (-3,-4).设=a ,=b ,=c ,且=3c ,=-2b , (1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n ; (3)求M ,N 的坐标及向量的坐标.(3)设O 为坐标原点,∵=-=3c , ∴=3c +=(3,24)+(-3,-4)=(0,20). ∴M (0,20).又∵=-=-2b ,∴=-2b +=(12,6)+(-3,-4)=(9,2), ∴N (9,2).∴=(9,-18).【方法技巧】平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解,并注意方程思想的应用. 【举一反三】(1)已知向量a =(5,2),b =(-4,-3),c =(x ,y ),若3a -2b +c =0,则c =( ) A.(-23,-12) B.(23,12)C.(7,0)D.(-7,0)(2)向量a ,b ,c 在正方形网格中,如图所示,若c =λa +μb (λ,μ∈R ),则μλ=( )A.1B.2C.3D.4答案 (1)A (2)D【变式探究】 (1)已知点A (-1,5)和向量a =(2,3),若=3a ,则点B 的坐标为( ) A.(7,4) B.(7,14) C.(5,4)D.(5,14)(2)已知向量a =(2,1),b =(1,-2).若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________. 解析 (1)设点B 的坐标为(x ,y ),则=(x +1,y -5). 由=3a ,得y -5=9,x +1=6,解得y =14.x =5,(2)由向量a =(2,1),b =(1,-2), 得m a +n b =(2m +n ,m -2n )=(9,-8), 则m -2n =-8,2m +n =9,解得n =5,m =2,故m -n =-3. 答案 (1)D (2)-3高频考点三 向量共线的坐标表示 例3、已知a =(1,0),b =(2,1). (1)当k 为何值时,k a -b 与a +2b 共线;(2)若=2a +3b ,=a +m b ,且A ,B ,C 三点共线,求m 的值.(2)=2(1,0)+3(2,1)=(8,3). =(1,0)+m (2,1)=(2m +1,m ). ∵A ,B ,C 三点共线,∴∥, ∴8m -3(2m +1)=0,∴m =23.【方法技巧】利用两向量共线解题的技巧(1)一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.(2)如果已知两向量共线,求某些参数的取值时,那么利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2=x 2y 1”解题比较方便.【举一反三】(1)已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =________.(2)已知A (2,3),B (4,-3),点P 在线段AB 的延长线上,且|AP |=23|BP |,则点P 的坐标为________. 解析 (1)由a =(1,2),b =(-2,m ),且a ∥b , 得1×m -2×(-2)=0,即m =-4. 从而b =(-2,-4),那么2a +3b =2(1,2)+3(-2,-4)=(-4,-8). (2)设P (x ,y ),由点P 在线段AB 的延长线上, 则=23,得(x -2,y -3)=23(x -4,y +3),即(y +3).3解得y =-15.x =8,所以点P 的坐标为(8,-15). 答案 (1)(-4,-8) (2)(8,-15)【变式探究】 (1)已知点A (1,3),B (4,-1),则与同方向的单位向量是( ) A.54 B.53 C.54D.53(2)若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为________.答案 (1)A (2)-45【感悟提升】平面向量共线的坐标表示问题的常见类型及解题策略(1)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2=x 2y 1”解题比较方便.(2)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.(3)三点共线问题.A ,B ,C 三点共线等价于与共线.【举一反三】设=(-2,4),=(-a,2),=(b,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,则a 1+b 1的最小值为________.答案 22解析 由题意得=(-a +2,-2),=(b +2,-4), 又∥,所以(-a +2,-2)=λ(b +2,-4), 即-2=-4λ,-a +2=λ(b +2,整理得2a +b =2,所以a 1+b 1=21(2a +b )(a 1+b 1)=21(3+b 2a +a b )≥21(3+2a b )=22(当且仅当b =a 时,等号成立). 高频考点四、解析法(坐标法)在向量中的应用例4、给定两个长度为1的平面向量和,它们的夹角为32π.如图所示,点C 在以O 为圆心的上运动.若=x+y ,其中x ,y ∈R ,求x +y 的最大值.解 以O 为坐标原点,所在的直线为x 轴建立平面直角坐标系,如图所示,【感悟提升】本题首先通过建立平面直角坐标系,引入向量的坐标运算,然后用三角函数的知识求出x+y的最大值.引入向量的坐标运算使得本题比较容易解决,体现了解析法(坐标法)解决问题的优势,凸显出了向量的代数特征,为用代数的方法研究向量问题奠定了基础.【方法技巧】1.平面向量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解.向量的坐标表示的本质是向量的代数表示,其中坐标运算法则是运算的关键.2.根据向量共线可以证明点共线;利用两向量共线也可以求点的坐标或参数值.高频考点五坐标法求向量中的最值问题例5、[2017·全国卷Ⅲ]在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若=λ+μ,则λ+μ的最大值为()A.3 B.2 C. D.2答案 A【方法技巧】本题首先通过建立平面直角坐标系,引入向量的坐标运算,然后用三角函数的知识求出λ+μ的最大值.引入向量的坐标运算使得本题比较容易解决,体现了解析法(坐标法)解决问题的优势,凸显出了向量的代数特征,为用代数的方法研究向量问题奠定了基础.【变式探究】给定两个长度为1的平面向量和,它们的夹角为32π.如图所示,点C 在以O 为圆心的上运动.若=x +y ,其中x ,y ∈R ,求x +y 的最大值.解 以O 为坐标原点,所在的直线为x 轴建立平面直角坐标系,如图所示,1. (2018年全国I卷理数)在△中,为边上的中线,为的中点,则A. B.C. D.【答案】A【解析】根据向量的运算法则,可得,所以,故选A.2. (2018年江苏卷)在平面直角坐标系中,A为直线上在第一象限内的点,,以AB为直径的圆C与直线l交于另一点D.若,则点A的横坐标为________.【答案】31.[2017·山东高考]已知向量a=(2,6),b=(-1,λ).若a∥b,则λ=________.答案-3解析∵a∥b,∴2λ-6×(-1)=0,解得λ=-3.2.【2017课标II,理12】已知是边长为2的等边三角形,P为平面ABC内一点,则的最小是()A. B. C. D.【答案】B【解析】如图,以为轴,的垂直平分线为轴,为坐标原点建立平面直角坐标系,则,,,设,所以,,,所以,,当时,所求的最小值为,故选B.1.【2016年高考四川理数】在平面内,定点A,B,C,D满足==,===-2,动点P,M满足=1,=,则的最大值是( )(A)(B)(C)(D)【答案】B【2015高考福建,理9】已知,若点是所在平面内一点,且,则的最大值等于()A.13 B.15 C.19 D.21【答案】A【解析】以为坐标原点,建立平面直角坐标系,如图所示,【2015高考湖北,理11】已知向量,,则.【答案】91.(2014·重庆卷) 已知向量a =(k ,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( )A .-29B .0C .3 D.215【答案】C【解析】∵2a -3b =2(k ,3)-3(1,4)=(2k -3,-6),又(2a -3b )⊥c ,∴(2k -3)×2+(-6)=0,解得k =3.2.(2014·福建卷) 在下列向量组中,可以把向量a =(3,2)表示出来的是( )A .e 1=(0,0),e 2=(1,2)B .e 1=(-1,2),e 2=(5,-2)C .e 1=(3,5),e 2=(6,10)D .e 1=(2,-3),e 2=(-2,3)【答案】B【解析】由向量共线定理,选项A ,C ,D 中的向量组是共线向量,不能作为基底;而选项B 中的向量组不共线,可以作为基底,故选B.3.(2014·山东卷) 已知向量a =(m ,cos 2x ),b =(sin 2x ,n ),函数f (x )=a ·b ,且y =f (x )的图像过点3π和点,-22π.(1)求m ,n 的值;(2)将y =f (x )的图像向左平移φ(0<φ<π)个单位后得到函数y =g (x )的图像,若y =g (x )图像上各最高点到点(0,3)的距离的最小值为1,求y =g (x )的单调递增区间.【解析】(1)由题意知,f (x )=m sin 2x +n cos 2x .因为y =f (x )的图像过点3π和点,-22π, 所以,4π 即n ,1解得m =,n =1.4.(2014·陕西卷) 设0<θ<2π,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.【答案】21【解析】因为向量a ∥b ,所以sin 2θ-cos θ·cos θ=0,又cos θ≠0,所以2sin θ=cos θ,故tan θ=21.5.(2014·陕西卷) 在直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x ,y )在△ABC 三边围成的区域(含边界)上.(1)若++=0,求||;(2)设=m +n (m ,n ∈R),用x ,y 表示m -n ,并求m -n 的最大值.【解析】(1)方法一:∵++=0,又++=(1-x ,1-y )+(2-x ,3-y )+(3-x ,2-y )=(6-3x ,6-3y ), ∴6-3y =0,6-3x =0,解得y =2,x =2, 即=(2,2),故||=2.(2)∵=m +n ,∴(x ,y )=(m +2n ,2m +n ), ∴y =2m +n ,x =m +2n ,两式相减得,m -n =y -x ,令y -x =t ,由图知,当直线y =x +t 过点B (2,3)时,t 取得最大值1,故m -n 的最大值为1.6.(2013·安徽卷) 在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足||=||=·=2,则点集{P|=λ+μ,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是( )A .2B .2C .4D .4【答案】D【解析】由||=||=·=2,可得点A ,B 在圆x 2+y 2=4上且∠AOB =60°,在平面直角坐标系中,设A (2,0),B(1,),设P(x ,y),则(x ,y)=λ(2,0)+μ(1,),由此得x =2λ+μ,y =μ,解得μ=3y ,λ=21x -31y ,由于|λ|+|μ|≤1,所以21x -31y +31y≤1, 即|x -y|+|2y|≤2 . ①3y≥0,或②3y<0,或 ③3y≥0,或④.y<0,上述四个不等式组在平面直角坐标系中表示的区域如图阴影部分所示,所以所求区域的面积是4 .7.(2013·湖南卷) 已知a ,b 是单位向量,a·b =0,若向量c 满足|c -a -b |=1,则|c |的取值范围是( )A .[-1,+1]B .[-1,+2]C .[1,+1]D .1,+2【答案】A8.(2013·北京卷) 向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R),则μλ=________.图1-3【答案】4【解析】以向量a 和b 的交点为原点,水平方向和竖直方向分别为x 轴和y 轴建立直角坐标系,则a =(-1,1),b =(6,2),c =(-1,-3),则-3=λ+2μ,-1=-λ+6μ,解得,1所以μλ=4.9.(2013·辽宁卷) 已知点A(1,3),B(4,-1),则与向量AB 同方向的单位向量为( ) A.54 B.53 C.54 D.53 【答案】A【解析】∵=(3,-4),∴与方向相同的单位向量为=54,故选A.10.(2013·天津卷) 在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点,若·=1,则AB 的长为________.【答案】2111.(2013·新课标全国卷Ⅱ] 已知正方形ABCD 的边长为2,E 为CD 的中点,则·=________.【答案】2【解析】如图,建立直角坐标系,则=(1,2),=(-2,2),·=2.12.(2013·重庆卷) 如图1-9所示,椭圆的中心为原点O ,长轴在x 轴上,离心率e =22,过左焦点F 1作x 轴的垂线交椭圆于A ,A′两点,|AA′|=4.(1)求该椭圆的标准方程;(2)取垂直于x 轴的直线与椭圆相交于不同的两点P ,P′,过P ,P′作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外,若PQ⊥P′Q ,求圆Q 的标准方程.图1-9【解析】(1)由题意知点A(-c ,2)在椭圆上,则a2(-c )2+b222=1,从而e 2+b24=1. 由e =22得b 2=1-e24=8,从而a 2=1-e2b2=16. 故该椭圆的标准方程为16x2+8y2=1.13.(2013·重庆卷) 在平面上,⊥,|OB 1|=||=1,=+.若||<21,则||的取值范围是( ) A.25B.7C.25D.27【答案】D【解析】根据条件知A ,B 1,P ,B 2构成一个矩形AB 1PB 2,以AB 1,AB 2所在直线为坐标轴建立直角坐标系,如图.设|AB 1|=a ,|AB 2|=b ,点O 的坐标为(x ,y),则点P 的坐标为(a ,b),。

高考数学一轮复习学案:5.2 平面向量基本定理及坐标表示(含答案)

高考数学一轮复习学案:5.2 平面向量基本定理及坐标表示(含答案)

高考数学一轮复习学案:5.2 平面向量基本定理及坐标表示(含答案)5.2平面向量基本定理及坐标表示平面向量基本定理及坐标表示最新考纲考情考向分析1.了解平面向量基本定理及其意义2.掌握平面向量的正交分解及其坐标表示3.会用坐标表示平面向量的加法.减法与数乘运算4.理解用坐标表示的平面向量共线的条件.主要考查平面向量基本定理.向量加法.减法.数乘向量的坐标运算及平面向量共线的坐标表示,考查向量线性运算的综合应用,考查学生的运算推理能力.数形结合能力,常与三角函数综合交汇考查,突出向量的工具性一般以选择题.填空题形式考查,偶尔有与三角函数综合在一起考查的解答题,属于中档题.1平面向量基本定理如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数1,2,使a1e12e2.其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底2平面向量的坐标运算1向量加法.减法.数乘及向量的模设ax1,y1,bx2,y2,则abx1x2,y1y2,abx1x2,y1y2,ax1,y1,|a|x21y21.2向量坐标的求法若向量的起点是坐标原点,则终点坐标即为向量的坐标设Ax1,y1,Bx2,y2,则ABx2x1,y2y1,|AB|x2x12y2y12.3平面向量共线的坐标表示设ax1,y1,bx2,y2,其中b0.a,b共线x1y2x2y10.知识拓展1若a与b不共线,ab0,则0.2设ax1,y1,bx2,y2,如果x20,y20,则abx1x2y1y2.题组一思考辨析1判断下列结论是否正确请在括号中打“”或“”1平面内的任何两个向量都可以作为一组基底2若a,b不共线,且1a1b2a2b,则12,12.3平面向量的基底不唯一,只要基底确定后,平面内的任何一个向量都可用这组基底唯一表示4若ax1,y1,bx2,y2,则ab的充要条件可表示成x1x2y1y2.5当向量的起点在坐标原点时,向量的坐标就是向量终点的坐标6平面向量不论经过怎样的平移变换之后其坐标不变题组二教材改编2P97例5已知ABCD的顶点A1,2,B3,1,C5,6,则顶点D的坐标为________答案1,5解析设Dx,y,则由ABDC,得4,15x,6y,即45x,16y,解得x1,y5.3P119A组T9已知向量a2,3,b1,2,若manb与a2b共线,则mn________.答案12解析由向量a2,3,b1,2,得manb2mn,3m2n,a2b4,1由manb与a2b共线,得2mn43m2n1,所以mn12.题组三易错自纠4设e1,e2是平面内一组基底,若1e12e20,则12________.答案05已知点A0,1,B3,2,向量AC4,3,则向量BC________.答案7,4解析根据题意得AB3,1,BCACAB4,33,17,46xx全国已知向量am,4,b3,2,且ab,则m________.答案6解析因为ab,所以2m430,解得m6.题型一题型一平面向量基本定理的应用平面向量基本定理的应用1在下列向量组中,可以把向量a3,2表示出来的是Ae10,0,e21,2Be11,2,e25,2Ce13,5,e26,10De12,3,e22,3答案B解析方法一设ak1e1k2e2,A选项,3,2k2,2k2,k23,2k22,无解;B选项,3,2k15k2,2k12k2,k15k23,2k12k22,解得k12,k21.故B中的e1,e2可以把a表示出来;同理,C,D选项同A 选项,无解方法二只需判断e1与e2是否共线即可,不共线的就符合要求2xx 济南模拟如图,在ABC中,AN13NC,P是BN上的一点,若APmAB211AC,则实数m的值为________答案311解析AN13NC,AC4AN,ADmAB211ACmAB811AN,又P,B,N三点共线,m8111,即m311.思维升华平面向量基本定理应用的实质和一般思路1应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加.减或数乘运算2用平面向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决题型二题型二平面向量的坐标运算平面向量的坐标运算典例1已知a5,2,b4,3,若a2b3c0,则c等于A.1,83B.133,83C.133,43D.133,43答案D解析由已知3ca2b5,28,613,4所以c133,43.2xx北京西城区模拟向量a,b,c在正方形网格中的位置如图所示,若cab,R,则等于A1B2C3D4答案D解析以向量a和b的交点为原点建立如图所示的平面直角坐标系设每个小正方形边长为1,则A1,1,B6,2,C5,1,aAO1,1,bOB6,2,cBC1,3cab,1,31,16,2,即61,23,解得2,12,4.引申探究在本例2中,试用a,c表示b.解建立本例2解答中的平面直角坐标系,则a1,1,b6,2,c1,3,设bxayc,则6,2x1,1y1,3即xy6,x3y2,解得x4,y2,故b4a2c.思维升华向量的坐标运算主要是利用加.减.数乘运算法则进行计算若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则跟踪训练1已知四边形ABCD的三个顶点A0,2,B1,2,C3,1,且BC2AD,则顶点D的坐标为A.2,72B.2,12C3,2D1,3答案A解析设Dx,y,ADx,y2,BC4,3,又BC2AD,42x,32y2,x2,y72,故选A.2已知平面向量a1,1,b1,1,则向量12a32b等于A2,1B2,1C1,0D1,2答案D解析12a12,12,32b32,32,故12a32b1,2题型三题型三向量共线的坐标表示向量共线的坐标表示命题点1利用向量共线求向量或点的坐标典例已知点A4,0,B4,4,C2,6,则AC与OB的交点P的坐标为________答案3,3解析方法一由O,P,B三点共线,可设OPOB4,4,则APOPOA44,4又ACOCOA2,6,由AP与AC共线,得446420,解得34,所以OP34OB3,3,所以点P的坐标为3,3方法二设点Px,y,则OPx,y,因为OB4,4,且OP与OB共线,所以x4y4,即xy.又APx4,y,AC2,6,且AP与AC共线,所以x46y20,解得xy3,所以点P的坐标为3,3命题点2利用向量共线求参数典例已知向量a1sin,1,b12,1sin,若ab,则锐角________.答案45解析由ab,得1sin1sin12,cos212,cos22或cos22,又为锐角,45.思维升华平面向量共线的坐标表示问题的常见类型及解题策略1利用两向量共线求参数如果已知两向量共线,求某些参数的取值时,利用“若ax1,y1,bx2,y2,则ab的充要条件是x1y2x2y1”解题比较方便2利用两向量共线的条件求向量坐标一般地,在求与一个已知向量a共线的向量时,可设所求向量为aR,然后结合其他条件列出关于的方程,求出的值后代入a即可得到所求的向量跟踪训练1xx北京海淀区模拟已知向量a1,1,点A3,0,点B为直线y2x上的一个动点若ABa,则点B的坐标为________答案3,6解析设Bx,2x,则ABx3,2xABa,x32x0,解得x3,B3,62若三点A1,5,Ba,2,C2,1共线,则实数a的值为________答案54解析ABa1,3,AC3,4,根据题意ABAC,4a1330,即4a5,a54.解析法坐标法在向量中的应用典例12分给定两个长度为1的平面向量OA和OB,它们的夹角为23.如图所示,点C在以O为圆心的AB上运动若OCxOAyOB,其中x,yR,求xy的最大值思想方法指导建立平面直角坐标系,将向量坐标化,将向量问题转化为函数问题更加凸显向量的代数特征规范解答解以O为坐标原点,OA所在的直线为x轴建立平面直角坐标系,如图所示,则A1,0,B12,32.4分设AOC0,23,则Ccos,sin,由OCxOAyOB,得cosx12y,sin32y,所以xcos33sin,y233sin,8分所以xycos3sin2sin6,10分又0,23,所以当3时,xy取得最大值2.12分。

高中数学第二章平面向量2.3.1平面向量基本定理学案(含解析)新人教A版必修4

高中数学第二章平面向量2.3.1平面向量基本定理学案(含解析)新人教A版必修4

2.3.1 平面向量基本定理考试标准学法指导1.平面向量基本定理既是本节的重点,也是本节的难点.2.为了更好地理解平面向量基本定理,可以通过改变向量的方向及模的大小作图观察λ1,λ2取不同值时的图形特征,得到平面上任一向量都可以由这个平面内两个不共线的向量e 1,e 2表示出来.3.在△ABC 中,明确AC →与AB →的夹角与CA →与AB →的夹角互补.1.平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1,e 2叫作表示这一平面内所有向量的一组基底.状元随笔 平面向量基本定理的理解(1)e →1,e →2是同一平面内的两个不共线的向量,e →1,e →2的选取不唯一,即一个平面可以有多组的基底.(2)平面内的任一向量a →都可以沿基底进行分解. (3)基底e →1,e →2确定后,实数λ1、λ2是唯一确定的. 2.关于两向量的夹角(1)两向量夹角的概念:已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB =θ,叫作向量a 与b 的夹角.①范围:向量a 与b 的夹角的范围是[0°,180°]. ②当θ=0°时,a 与b 同向. ③当θ=180°时,a 与b 反向.(2)垂直:如果a 与b 的夹角是90°,我们说a 与b 垂直,记作a ⊥b . 状元随笔 两向量夹角概念的正确理解(1)由于零向量的方向是任意的,因此,零向量可以与任一向量平行,零向量也可以与任一向量垂直.(2)按照向量夹角的定义,只有两个向量的起点重合时所对应的角才是两向量的夹角,如图所示,∠BAC 不是向量CA →与向量AB →的夹角,∠BAD 才是向量CA →与向量AB →的夹角.[小试身手]1.判断下列命题是否正确. (正确的打“√”,错误的打“×”)(1)一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底.( ) (2)若e 1,e 2是同一平面内两个不共线向量,则λ1e 1+λ2e 2(λ1,λ2为实数)可以表示该平面内所有向量.( )(3) 若a e 1+b e 2=c e 1+d e 2(a ,b ,c ,d ∈R ),则a =c ,b =d .( ) 答案:(1)× (2)√ (3)×2.设O 是平行四边形ABCD 两对角线的交点,给出下列向量组:①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →,其中可作为这个平行四边形所在平面的一组基底的是( )A .①②B .①③C .①④ D.③④解析:①AD →与AB →不共线;②DA →=-BC →,则DA →与BC →共线;③CA →与DC →不共线;④OD →=-OB →,则OD →与OB →共线.由平面向量基底的概念知,只有不共线的两个向量才能构成一组基底,故①③满足题意.答案:B3.在△ABC 中,向量AB →,BC →的夹角是指( )A .∠CAB B .∠ABC C .∠BCAD .以上都不是解析:由两向量夹角的定义知,AB →与BC →的夹角应是∠ABC 的补角,故选D. 答案:D4.如图所示,向量OA →可用向量e 1,e 2表示为________.解析:由图可知,OA →=4e 1+3e 2. 答案:OA →=4e 1+3e 2类型一 平面向量基本定理的理解例1 设e 1,e 2是不共线的两个向量,给出下列四组向量: ①e 1与e 1+e 2; ②e 1-2e 2与e 2-2e 1; ③e 1-2e 2与4e 2-2e 1;④e 1+e 2与e 1-e 2.其中,不能作为平面内所有向量的一组基底的是________(写出满足条件的序号).【解析】 ①设e 1+e 2=λe 1,则⎩⎪⎨⎪⎧λ=1,1=0,无解,∴e 1+e 2与e 1不共线,即e 1与e 1+e 2能作为一组基底. ②设e 1-2e 2=λ(e 2-2e 1),则(1+2λ)e 1-(2+λ)e 2=0,则⎩⎪⎨⎪⎧1+2λ=0,2+λ=0,无解,∴e 1-2e 2与e 2-2e 1不共线,即e 1-2e 2与e 2-2e 1能作为一组基底. ③∵e 1-2e 2=-12(4e 2-2e 1),∴e 1-2e 2与4e 2-2e 1共线,即e 1-2e 2与4e 2-2e 1不能作为一组基底.④设e 1+e 2=λ(e 1-e 2),则(1-λ)e 1+(1+λ)e 2=0,则⎩⎪⎨⎪⎧1-λ=0,1+λ=0,无解,∴e 1+e 2与e 1-e 2不共线,即e 1+e 2与e 1-e 2能作为一组基底.【答案】 ③由基底的定义知,平面α内两个不共线的向量e →1、e →2叫做表示这一平面内所有向量的一组基底,要判断所给的两个向量能否构成基底,只要看这两个向量是否共线即可.方法归纳对基底的理解(1)两个向量能否作为一组基底,关键是看这两个向量是否共线.若共线,则不能作基底,反之,则可作基底.(2)一个平面的基底一旦确定,那么平面上任意一个向量都可以由这组基底唯一线性表示出来.设向量a 与b 是平面内两个不共线的向量,若x 1a +y 1b =x 2a +y 2b ,则{ x 1=x 2,y 1=y 2.提醒:一个平面的基底不是唯一的,同一个向量用不同的基底表示,表达式不一样.跟踪训练1 下面三种说法:①一个平面内只有一对不共线向量可作为表示该平面的基底; ②一个平面内有无数多对不共线向量可作为该平面所有向量的基底; ③零向量不可以作为基底中的向量.其中正确的说法是( )A.①② B .②③ C .①③ D .①②③解析:平面内向量的基底是不唯一的,在同一平面内任何一组不共线的向量都可作为平面内所有向量的一组基底;零向量可看成与任何向量平行,故零向量不可以作为基底中的向量,故B 项正确.答案:B平面内任意一对不共线的向量都可以作为该平面内所有向量的基底,一定要注意“不共线”这一条件,在做题时容易忽略此条件而导致错误,同时还要注意零向量不能作基底.类型二 用基底表示平面向量例2 如图所示,在▱ABCD 中,点E ,F 分别为BC ,DC 边上的中点,DE 与BF 交于点G ,若AB →=a ,AD →=b ,试用a ,b 表示向量DE →,BF →.【解析】 DE →=DA →+AB →+BE →=-AD →+AB →+12BC →=-AD →+AB →+12AD →=a -12b .BF →=BA →+AD →+DF →=-AB →+AD →+12AB →=b -12a .解决此类问题的关键在于以一组不共线的向量为基底,通过向量的加、减、数乘以及向量共线的结论,把其他相关的向量用这一组基底表示出来.方法归纳用基底表示向量的两种方法(1)运用向量的线性运算法则对待求向量不断进行转化,直至用基底表示为止. (2)通过列向量方程或方程组的形式,利用基底表示向量的唯一性求解.跟踪训练2 (1)本例条件不变,试用基底a ,b 表示AG →;(2)若本例中的基向量“AB →,AD →”换为“CE →,CF →”即若CE →=a ,CF →=b ,试用a ,b 表示向量DE →,BF →.解析:(1)由平面几何知识知BG =23BF ,故AG →=AB →+BG →=AB →+23BF →=a +23⎝ ⎛⎭⎪⎫b -12a =a +23b-13a =23a +23b . (2)DE →=DC →+CE →=2FC →+CE →=-2CF →+CE →=-2b +a . BF →=BC →+CF →=2EC →+CF →=-2CE →+CF →=-2a +b .用基底表示平面向量,要充分利用向量加法、减法的三角形法则或平行四边形法则. 类型三 向量的夹角例3 已知|a |=|b |,且a 与b 的夹角为120°,求a +b 与a 的夹角及a -b 与a 的夹角.【解析】 如图,作OA →=a ,OB →=b ,∠AOB =120°,以OA →,OB →为邻边作平行四边形OACB ,则OC →=a +b ,BA →=a -b .因为|a |=|b |,所以平行四边形OACB 为菱形. 所以OC →与OA →的夹角∠AOC =60°,BA →与OA →的夹角即为BA →与BC →的夹角∠ABC =30°.所以a +b 与a 的夹角为60°,a -b 与a 的夹角为30°.作图,由图中找到a →-b →与a →的夹角,利用三角形、四边形的知识求角. 方法归纳两个向量夹角的实质及求解的关键(1)实质:两个向量的夹角,实质上是从同一起点出发的两个非零向量构成的角. (2)关键:求两个向量的夹角,关键是利用平移的方法使两个向量的起点重合,然后按照“一作二证三算”的步骤,并结合平面几何知识求出两个向量的夹角.跟踪训练3 已知|a |=|b |=2,且a 与b 的夹角为60°,求a +b 与a 的夹角,a -b 与a 的夹角.解析:如图,作OA →=a ,OB →=b ,且∠AOB =60°,以OA ,OB 为邻边作▱OACB , 则OC →=OA →+OB →=a +b ,BA →=OA →-OB →=a -b ,BC →=OA →=a . 因为|a |=|b |=2,所以△OAB 为正三角形. 所以∠OAB =60°=∠ABC . 即a -b 与a 的夹角为60°. 因为|a |=|b |,所以▱OACB 为菱形.所以OC ⊥AB ,所以∠COA =90°-60°=30°. 即a +b 与a 的夹角为30°.作出向量a →,b →,a →+b →,a →-b →,利用平面几何知识求解. 2.3.1[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.已知向量a =e 1-2e 2,b =2e 1+e 2,其中e 1,e 2不共线,则a +b 与c =6e 1-2e 2的关系是( )A .不共线B .共线C .相等D .不确定 解析:∵a +b =3e 1-e 2,∴c =2(a +b ).∴a +b 与c 共线. 答案:B2.当向量a 与b 共线时,则这两个向量的夹角θ为( ) A .0° B.90°C .180°D .0°或180°解析:当向量a 与b 共线,即两向量同向时夹角θ=0°,反向时夹角θ=180°. 答案:D3.已知AD 是△ABC 的中线,AB →=a ,AD →=b ,以a ,b 为基底表示AC →,则AC →=( ) A.12(a -b ) B .2b -a C.12(b -a ) D .2b +a解析:如图,AD 是△ABC 的中线,则D 为线段BC 的中点,从而AD →=12(AB →+AC →),则AC →=2AD →-AB →=2b -a .答案:B4.在正方形ABCD 中,AC →与CD →的夹角等于( ) A .45° B.90° C .120° D.135° 解析:如图所示,将AC →平移到CE →,则CE →与CD →的夹角即为AC →与CD →的夹角,夹角为135°. 答案:D5.若D 点在三角形ABC 的边BC 上,且CD →=4DB →=rAB →+sAC →,则3r +s 的值为( )55C.85D.45解析:∵CD →=4DB →=rAB →+sAC →, ∴CD →=45CB →=45(AB →-AC →)=rAB →+sAC →,∴r =45,s =-45.∴3r +s =125-45=85.答案:C二、填空题(每小题5分,共15分)6.已知向量a ,b 是一组基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y 的值为________.解析:因为a ,b 是一组基底,所以a 与b 不共线, 因为(3x -4y )a +(2x -3y )b =6a +3b ,所以⎩⎪⎨⎪⎧3x -4y =6,2x -3y =3,解得⎩⎪⎨⎪⎧x =6,y =3,所以x -y =3.答案:37.已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足2AC →+CB →=0,若OA →=a ,OB →=b ,用a ,b 表示向量OC →,则OC →=________.解析:AC →=OC →-OA →,CB →=OB →-OC →,∵2AC →+CB →=0,∴2(OC →-OA →)+(OB →-OC →)=0,∴OC →=2OA →-OB →=2a -b .答案:2a -b8.在正方形ABCD 中,E 是DC 边上的中点,且AB →=a ,AD →=b ,则BE →=________.解析:BE →=BC →+CE →=AD →-12AB →=b -12a .2三、解答题(每小题10分,共20分)9.已知e 1,e 2是平面内两个不共线的向量,a =3e 1-2e 2,b =-2e 1+e 2,c =7e 1-4e 2,试用向量a 和b 表示c .解析:因为a ,b 不共线,所以可设c =x a +y b , 则x a +y b =x (3e 1-2e 2)+y (-2e 1+e 2) =(3x -2y )e 1+(-2x +y )e 2=7e 1-4e 2. 又因为e 1,e 2不共线,所以⎩⎪⎨⎪⎧3x -2y =7,-2x +y =-4,解得⎩⎪⎨⎪⎧x =1,y =-2,所以c =a -2b .10.如图所示,设M ,N ,P 是△ABC 三边上的点,且BM →=13BC →,CN →=13CA →,AP →=13AB →,若AB→=a ,AC →=b ,试用a ,b 将MN →、NP →、PM →表示出来.解析:NP →=AP →-AN →=13AB →-23AC →=13a -23b ,MN →=CN →-CM →=-13AC →-23CB →=-13b -23(a -b )=-23a +13b ,PM →=-MP →=-(MN →+NP →)=13(a +b ).[能力提升](20分钟,40分)11.设非零向量a ,b ,c 满足|a |=|b |=|c |,a +b =c ,则向量a ,b 的夹角为( ) A .150° B.120° C .60° D.30°解析:设向量a ,b 的夹角为θ,作BC →=a ,CA →=b ,则c =a +b =BA →(图略),a ,b 的夹角为180°-∠C .∵|a |=|b |=|c |,∴∠C =60°,∴θ=120°.答案:B 12.如图,在△ABC 中,已知AB =2,BC =3,∠ABC =60°,AH ⊥BC 于H ,M 为AH 的中点,若AM →=λAB →+μBC →,则λ+μ=________.解析:因为AB =2,∠ABC =60°,AH ⊥BC ,所以BH =1,又M 为AH 的中点,BC =3,所以AM →=12AH →=12(AB →+BH →)=12(AB →+13BC →)=12AB →+16BC →,所以λ+μ=23. 答案:2313.如图,在△OAB 中,OC →=14OA →,OD →=12OB →,AD 与BC 交于点M ,设OA →=a ,OB →=b ,试以a ,b 为基底表示OM →.解析:根据平面向量基本定理可设OM →=m a +n b (m ,n ∈R ),则AM →=OM →-OA →=(m -1)a +n b ,AD →=OD →-OA →=12b -a =-a +12b , ∵A 、M 、D 三点共线,∴AM →=λAD →(λ为实数),∴AM →=-λa +λ2b , ∴⎩⎪⎨⎪⎧ m -1=-λ,n =12λ,消去λ得m +2n =1.而CM →=OM →-OC →=⎝ ⎛⎭⎪⎫m -14a +n b ,CB →=OB →-OC →=b -14a =-14a +b , ∵C 、M 、B 三点共线,∴CM →=μCB →(μ为实数),∴CM →=-μ4a +μb ,∴⎩⎪⎨⎪⎧ m -14=-14μ,n =μ,消去μ得4m +n =1.由⎩⎪⎨⎪⎧ m +2n =1,4m +n =1解得⎩⎪⎨⎪⎧ m =17,n =37,∴OM →=17a +37b . 14.在△ABC 中,AB =3,BC =1,AC =2,D 是AC 的中点.求:(1)AD →与BD →夹角的大小;(2)DC →与BD →夹角的大小.解析:(1)如图所示,在△ABC 中,AB =3,BC =1,AC =2,所以AB 2+BC 2=(3)2+1=22=AC 2,所以△ABC 为直角三角形.因为tan A =BC AB =13=33, 所以A =30°.又因为D 为AC 的中点,所以∠ABD =∠A =30°,AD →=DC →.在△ABD 中,∠BDA =180°-∠A -∠ABD =180°-30°-30°=120°,所以AD →与BD →的夹角为120°.(2)因为AD →=DC →,所以DC →与BD →的夹角也为120°.。

高考数学一轮复习 《第五章 平面向量》第2课时 平面向量基本定理及坐标运算课件

高考数学一轮复习 《第五章 平面向量》第2课时 平面向量基本定理及坐标运算课件
= (1, m),A→B,B→C共 线, ∴ 1× m+ 2× 1= 0,∴ m= - 2, 故当 m=-2 时,A,B,C 三点共线.
本课总结
1.解题时,要适当地选取基底,使其他向量能够用基底来
表示,选择了不共线的两个向量 e 、e ,平面上的任何一个向
1
2
量 a 都可以用 e 、e 惟一表示为 a=λ e +λ e ,这样几何问题
【解析】 A→B=(1,3),A→C=(2,4),A→D=(-3,5), = (- 4,2), C→D= (- 5,1), 所 以 A→D + B→D+ C→D= (- 3,5)+ (- 4,2)+ (- 5,1)= (- 12,8).
高考调研·新课标高考总复习
1、纪律是集体的面貌,集体的声音,集体的动作,集体的表情,集体的信念。 2、知之者不如好之者,好之者不如乐之者。 3、反思自我时展示了勇气,自我反思是一切思想的源泉。 4、在教师手里操着幼年人的命运,便操着民族和人类的命运。一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。 5、诚实比一切智谋更好,而且它是智谋的基本条件。 6、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之失败。2022年1月2022/1/182022/1/182022/1/181/18/2022 7、凡为教者必期于达到不须教。对人以诚信,人不欺我;对事以诚信,事无不成。2022/1/182022/1/18January 18, 2022 8、教育者,非为已往,非为现在,而专为将来。2022/1/182022/1/182022/1/182022/1/18
(3)∵→ CM=O→M-→ OC=3c,
m=- 1, 解得n=- 1.
∴O→M= 3c+O→C=(3,24)+ (-3,-4)=(0,20).

全国名校高考数学优质学案汇编(附详解)向量专题讲学案

全国名校高考数学优质学案汇编(附详解)向量专题讲学案

向量专题讲学案命题热点一 平面向量基本定理及共线向量定理1.(优质试题·福建高考)设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA→+OB →+OC →+OD →等于( ) A.OM → B .2OM → C .3OM→ D .4OM→ 【解析】 因为点M 为平行四边形ABCD 对角线的交点,所以点M 是AC 和BD 的中点,由平行四边形法则知OA →+OC →=2OM →,OB →+OD →=2OM →,故OA →+OC→+OB →+OD →=4OM →. 【答案】 D2.(优质试题·陕西高考)已知向量a =(1,m ),b =(m,2),若a ∥b ,则实数m 等于( )A .- 2 B. 2 C .-2或 2D .0【解析】 由a ∥b ⇒m 2=1×2⇒m =2或m =- 2. 【答案】 C3.(优质试题·辽宁高考)已知点A (1,3),B (4,-1),则与向量AB →同方向的单位向量为( )A.⎝ ⎛⎭⎪⎫35,-45 B.⎝ ⎛⎭⎪⎫45,-35 C.⎝ ⎛⎭⎪⎫-35,45 D.⎝ ⎛⎭⎪⎫-45,35 【解析】 AB →=(3,-4),则与其同方向的单位向量e =AB →|AB →|=15(3,-4)=⎝ ⎛⎭⎪⎫35,-45. 【答案】 A命题热点二 平面向量数量积4.(优质试题·全国卷Ⅱ)设向量a ,b 满足|a +b |=10,|a -b |=6,则a·b=( )A .1B .2C .3D .5【解析】 |a +b |2=(a +b )2=a 2+2a ·b +b 2=10, |a -b |2=(a -b )2=a 2-2a ·b +b 2=6,将上面两式左右两边分别相减,得4a·b =4,∴a·b =1. 【答案】 A5.(优质试题·陕西高考)对任意向量a ,b ,下列关系式中不恒成立....的是( ) A .|a·b |≤|a ||b | B .|a -b |≤||a |-|b || C .(a +b )2=|a +b |2D .(a +b )·(a -b )=a 2-b 2【解析】 根据a·b =|a||b|cos θ,又cos θ≤1,知|a·b|≤|a||b|,A 恒成立.当向量a 和b 方向不相同时,|a -b |>||a|-|b||,B 不恒成立.根据|a +b |2=a 2+2a·b +b 2=(a +b )2,C 恒成立.根据向量的运算性质得(a +b )·(a -b )=a 2-b 2,D 恒成立.【答案】 B命题热点三 平面向量数量积的应用6.(优质试题·福建高考)已知AB→⊥AC →,|AB →|=1t ,|AC →|=t .若点P 是△ABC 所在平面内的一点,且AP →=AB →|AB →|+4AC →|AC →|,则PB →·PC→的最大值等于( )A .13B .15C .19D .21【解析】 ∵AB→⊥AC →,故可以A 为原点,AB ,AC 所在直线为坐标轴建立平面直角坐标系,不妨设B ⎝ ⎛⎭⎪⎫0,1t ,C (t,0),则AP →=⎝ ⎛⎭⎪⎫0,1t 1t +4(t ,0)t =(4,1),故点P 的坐标为(4,1).PB →·PC →=⎝ ⎛⎭⎪⎫-4,1t -1·(t -4,-1)=-4t -1t +17=-⎝ ⎛⎭⎪⎫4t +1t +17≤-24+17=13.当且仅当4t =1t ,即t =12时(负值舍去)取得最大值13. 【答案】 A7.(优质试题·天津高考)在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°.动点E 和F 分别在线段BC 和DC 上,且BE →=λBC →,DF→=19λDC →,则AE →·AF→的最小值为________. 【解析】 在等腰梯形ABCD 中,由AB ∥DC ,AB =2,BC =1,∠ABC =60°可得AD =DC =1.建立平面直角坐标系如图所示,则A (0,0),B (2,0),C ⎝ ⎛⎭⎪⎫32,32,D ⎝ ⎛⎭⎪⎫12,32,BC→=⎝ ⎛⎭⎪⎫32,32-(2,0)=⎝ ⎛⎭⎪⎫-12,32, DC→=⎝ ⎛⎭⎪⎫32,32-⎝ ⎛⎭⎪⎫12,32=(1,0). ∵BE→=λBC →=⎝ ⎛⎭⎪⎫-12λ,32λ,∴E ⎝ ⎛⎭⎪⎫2-12λ,32λ. ∵DF →=19λDC →=⎝ ⎛⎭⎪⎫19λ,0,∴F ⎝ ⎛⎭⎪⎫12+19λ,32.∴AE →·AF→=⎝ ⎛⎭⎪⎫2-12λ,32λ·⎝ ⎛⎭⎪⎫12+19λ,32 =⎝ ⎛⎭⎪⎫2-12λ⎝ ⎛⎭⎪⎫12+19λ+34λ=1718+29λ+12λ ≥1718+229λ·12λ=2918.当且仅当29λ=12λ,即λ=23时取等号,符合题意. ∴AE →·AF→的最小值为2918.【答案】29 18命题热点四复数8.(优质试题·广东高考)已知i是虚数单位,则复数(1+i)2=() A.2i B.-2iC.2 D.-2【解析】(1+i)2=1+i2+2i=2i.【答案】 A9.(优质试题·全国卷Ⅰ)已知复数z满足(z-1)i=1+i,则z=() A.-2-i B.-2+iC.2-i D.2+i【解析】∵(z-1)i=i+1,∴z-1=i+1i=1-i,∴z=2-i,故选C. 【答案】 C10.(优质试题·全国卷Ⅱ)若a为实数,且2+a i1+i=3+i,则a=()A.-4 B.-3 C.3 D.4【解析】∵2+a i1+i=3+i,∴2+a i=(3+i)(1+i)=2+4i,∴a=4,故选D.【答案】 D章末过关练(三)第四章(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(优质试题·山东高考)若复数z满足z1-i=i,其中i为虚数单位,则z=()A.1-i B.1+i C.-1-i D.-1+i【解析】 由已知得z =i(1-i)=i +1,则z =1-i ,故选A. 【答案】 A2.(优质试题·泉州模拟)在△ABC 中,有如下三个命题:①AB→+BC →+CA →=0;②若D 为BC 边中点,则AD →=12(AB →+AC →);③若(AB →+AC →)·(AB→-AC →)=0,则△ABC 为等腰三角形.其中正确命题的序号是( ) A .①② B .①③ C .②③D .①②③【解析】 ①AB→+BC →+CA →=AC →+CA →=0正确.②AD →=12(AB →+AC →)正确.③(AB→+AC →)(AB →-AC →)=AB →2-AC →2, ∴|AB →|2=|AC →|2,即|AB →|=|AC →|,所以△ABC 为等腰三角形. 【答案】 D3.已知△ABC 中,AB →=a ,AC →=b ,a ·b <0,S △ABC =154,|a |=3,|b |=5,则a 与b 的夹角为( )A .30°B .120°C .150°D .30°或150°【解析】 S △ABC =12|AB →|·|AC →|·sin ∠BAC =12×3×5·sin ∠BAC =154, ∴sin ∠BAC =12,∴∠BAC =30°或150°,又a ·b =|a |·|b |·cos ∠BAC <0, ∴∠BAC 为钝角,∴∠BAC =150°. 【答案】 C4.(优质试题·济南模拟)已知点A (-2,0),B (3,0),动点P (x ,y )满足P A →·PB →=x 2,则点P 的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线【解析】 P A →=(-2-x ,-y ),PB →=(3-x ,-y ), ∴P A →·PB →=(-2-x ,-y )·(3-x ,-y )=(-2-x )(3-x )+y 2=x 2,即y 2=x +6. 【答案】 D5.(优质试题·西安模拟)已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ=( )A .-4B .-3C .-2D .-1【解析】 由题意可得m +n =(2λ+3,3), m -n =(-1,-1),因为(m +n )⊥(m -n ),所以(m +n )·(m -n )=0,所以(2λ+3)×(-1)+3×(-1)=0,解得λ=-3.【答案】 B6.(优质试题·江西高考)z 是z 的共轭复数.若z +z =2,(z -z )i =2(i 为虚数单位),则z =( )A .1+iB .-1-iC .-1+iD .1-i【解析】 法一 设z =a +b i ,a ,b 为实数,则z -=a -b i ,∵z +z -=2a =2,∴a =1.又(z -z -)i =2b i 2=-2b =2,∴b =-1.故z =1-i.法二 ∵(z -z -)i =2,∴z -z -=2i =-2i.又z +z -=2,∴(z -z -)+(z +z -)=-2i +2,∴2z =-2i +2,∴z =1-i.【答案】 D7.已知向量a =(6,-4),b =(0,2),OC →=c =a +λb ,若C 点在函数y =sin π12x 的图象上,则实数λ等于( )A.52B.32 C .-52D .-32【解析】 c =a +λb =(6,-4+2λ),代入y =sin π12x ,得-4+2λ=sinπ2=1,解得λ=52.【答案】 A8.已知a ,b 是不共线的向量,若AB →=λ1a +b ,AC →=a +λ2b (λ1,λ2∈R),则A ,B ,C 三点共线的充要条件为( )A .λ1=λ2=-1B .λ1=λ2=1C .λ1λ2-1=0D .λ1λ2+1=0【解析】 ∵A ,B ,C 三点共线⇔AB →与AC →共线⇔AB →=kAC →⇔⎩⎨⎧λ1=k ,1=kλ2,∴λ1λ2-1=0.【答案】 C9.在△ABC 所在的平面上有一点P ,满足P A →+PB →+PC →=AB →,则△PBC 与△ABC 的面积之比是( )A .1∶3B .2∶3C .3∶2D .3∶1【解析】 因为P A →+PB →+PC →=AB →,所以PC →=AB →-PB →-P A →=AB →+BP →+AP →=2AP →,所以点P 在边CA 上,且是靠近点A 一侧的三等分点,所以△PBC 和△ABC 的面积之比为23.【答案】 B10.(优质试题·衡水模拟)如图1,△ABC 中,AD =DB ,AE =EC ,CD 与BE 交于F ,设AB→=a ,AC →=b ,AF →=xa +yb ,则(x ,y )为( ) 图1A.⎝ ⎛⎭⎪⎫12,12B.⎝ ⎛⎭⎪⎫23,23 C.⎝ ⎛⎭⎪⎫13,13 D.⎝ ⎛⎭⎪⎫23,12 【解析】 由AB→=a ,AC →=b ,得BE →=12b -a ,DC →=b -12a .因为B ,F ,E。

第二节 平面向量基本定理及坐标运算 课件(共102张PPT)

第二节 平面向量基本定理及坐标运算 课件(共102张PPT)

( B)
A.-6
B.6
C.9
D.12
2.[必修4·P101·A组T7改编]已知点A(0,1),B(3,2),向量
→ AC
=(-4,-3),则向
量B→C=( A )
A.(-7,-4)
B.(7,4)
C.(-1,4)
D.(1,4)
3.[必修4·P96·例2改编]若向量a=(2,1),b=(-1,2),c= 0,52 ,则c可用向量
1.已知△ABC的三个顶点A,B,C的坐标分别为(0,1),( 2 ,0),(0,-2),O
为坐标原点,动点P满足|C→P|=1,则|O→A+O→B+O→P|的最小值是( A )
A. 3-1
B. 11-1
C. 3+1
D. 11+1
2.已知M(3,-2),N(-5,-1),且M→P=12M→N,则P点的坐标为( B )
A.(-8,1)
B.-1,-32
C.1,32
D.(8,-1)
[解析]
设P(x,y),则
→ MP
=(x-3,y+2),而
1 2
→ MN

1 2
(-8,1)=
-4,12
,所以
x-3=-4, y+2=12,
x=-1, 解得y=-32,
所以P-1,-32.
3.已知正△ABC的边长为2
3
,平面ABC内的动点P,M满足|
知识点二 平面向量的坐标表示 在直角坐标系内,分别取与__x_轴__、__y_轴__正__方__向__相__同____的两个单位向量i,j作为基 底,对任一向量a,有唯一一对实数x,y,使得:a=xi+yj,__(_x_,__y_) _叫做向量a的 直角坐标,记作a=(x,y),显然i=__(1_,_0_)___,j=__(_0_,1_)_____,0=__(_0_,0_)___.

高考数学总复习 平面向量的基本定理及坐标表示学案 理 北师大版

高考数学总复习 平面向量的基本定理及坐标表示学案 理 北师大版

学案26平面向量的基本定理及坐标表示导学目标: 1.了解平面向量的基本定理及其意义.2.掌握平面向量的正交分解及其坐标表示.3.会用坐标表示平面向量的加法、减法与数乘运算.4.理解用坐标表示的平面向量共线的条件.自主梳理1.平面向量基本定理定理:如果e 1,e 2是同一平面内的两个________向量,那么对于这一平面内的任意向量a ,__________一对实数λ1,λ2,使a =______________.我们把不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组________. 2.夹角(1)已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB =θ叫做向量a 与b 的________.(2)向量夹角θ的范围是________,a 与b 同向时,夹角θ=____;a 与b 反向时,夹角θ=____.(3)如果向量a 与b 的夹角是________,我们说a 与b 垂直,记作________. 3.把一个向量分解为两个____________的向量,叫做把向量正交分解.4.在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i ,j 作为基底,对于平面内的一个向量a ,有且只有一对实数x ,y 使a =x i +y j ,我们把有序数对______叫做向量a 的________,记作a =________,其中x 叫a 在________上的坐标,y 叫a 在________上的坐标.5.平面向量的坐标运算(1)已知向量a =(x 1,y 1),b =(x 2,y 2)和实数λ,那么a +b =________________________,a -b =________________________,λa =________________.(2)已知A (11x y ,),B (22x y ,),则AB →=OB →-OA →=(x 2,y 2)-(x 1,y 1)=(x 2-x 1,y 2-y 1),即一个向量的坐标等于表示此向量的有向线段的__________的坐标减去__________的坐标.6.若a =(x 1,y 1),b =(x 2,y 2) (b ≠0),则a ∥b 的充要条件是________________________. 7.(1)P 1(x 1,y 1),P 2(x 2,y 2),则P 1P 2的中点P 的坐标为________________________________.(2)P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3),则△P 1P 2P 3的重心P 的坐标为_______________.自我检测1.(2010·福建)若向量a =(x,3)(x ∈R ),则“x =4”是“|a |=5”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件2.设a =⎝⎛⎭⎫32,sin α,b =⎝⎛⎭⎫cos α,13,且a ∥b ,则锐角α为 ( ) A .30° B .45° C .60° D .75°3.(2011·马鞍山模拟)已知向量a =(6,-4),b (0,2),OC →=c =a +λb ,若C 点在函数y =sin π12x 的图象上,则实数λ等于( )A.52B.32C .-52D .-324.(2010·陕西)已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b )∥c ,则m =________.5.(2009·安徽)给定两个长度为1的平面向量OA →和OB →,它们的夹角为120°.如图所»AB上变动,若OC→=xOA→+yOB→,其中x,y∈R,则x+y的示,点C在以O为圆心的圆弧最大值是______.探究点一平面向量基本定理的应用例1如图所示,在△OAB 中,OC →=14OA →,OD→=12OB →,AD 与BC 交于点M ,设OA →=a ,OB →=b ,以a 、b 为基底表示OM →.变式迁移1 (2011·厦门模拟)如图,平面内有三个向量OA →、OB →、OC →,其中OA →与OB→的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,若OC →=λOA →+μOB →(λ、μ∈R ),则λ+μ的值为________.探究点二 平面向量的坐标运算例2 已知A (-2,4),B (3,-1),C (-3,-4),且CM →=3CA →,CN →=2CB →,试求点M ,N 和MN →的坐标.变式迁移2 已知点A (1,-2),若向量|AB →与a =(2,3)同向,|AB →|=213,则点B 的坐标为________.探究点三 在向量平行下求参数问题例3 (2011·嘉兴模拟)已知平面内三个向量:a =(3,2),b =(-1,2),c =(4,1).(1)求满足a =m b +n c 的实数m 、n ; (2)若(a +k c )∥(2b -a ),求实数k .变式迁移3 (2009·江西)已知向量a =(3,1),b =(1,3),c =(k,7),若(a -c )∥b ,则k =________.1.在解决具体问题时,合理地选择基底会给解题带来方便.在解有关三角形的问题时,可以不去特意选择两个基本向量,而可以用三边所在的三个向量,最后可以根据需要任意留下两个即可,这样思考问题要简单得多.2.平面直角坐标系中,以原点为起点的向量OA →=a ,点A 的位置被a 所唯一确定,此时a 的坐标与点A 的坐标都是(x ,y ).向量的坐标表示和以坐标原点为起点的向量是一一对应的,即向量(x ,y )垐垐垎噲垐垐一一对应向量OA →垐垐垎噲垐垐一一对应点A (x ,y ).要把点的坐标与向量的坐标区分开,相等的向量坐标是相同的,但起点、终点的坐标可以不同,也不能认为向量的坐标是终点的坐标,如A (1,2),B (3,4),则AB →=(2,2).(满分:75分)一、选择题(每小题5分,共25分)1.已知a,b 是不共线的向量,若AB →=λ1a +b ,AC →=a +λ2b , (λ1,λ2∈R ),则A 、B 、C 三点共线的充要条件为 ( )A .λ1=λ2=-1B .λ1=λ2=1C .λ1λ2-1=0D .λ1λ2+1=02.如图所示,平面内的两条相交直线OP 1和OP 2将该平面分割成四个部分Ⅰ、Ⅱ、Ⅲ、Ⅳ(不包括边界).若OP →=aOP 1→+bOP 2→,且点P 落在第Ⅲ部分,则实数a ,b 满足 ( )A .a >0,b >0B .a >0,b <0C .a <0,b >0D .a <0,b <03.(2011·湛江月考)设两个向量a =(λ+2,λ2-cos 2α)和b =⎝⎛⎭⎫m ,m2+sin α,其中λ、m 、α为实数.若a =2b ,则λm的取值范围是 ( )A .[-6,1]B .[4,8]C .(-∞,1]D .[-1,6]4.设0≤θ≤2π时,已知两个向量OP 1→=(cos θ,sin θ),OP 2→=(2+sin θ,2-cos θ),则向量P 1P 2→长度的最大值是 ( )A. 2B. 3 C .3 2 D .2 35.在平行四边形ABCD 中,AC 为一条对角线,若AB →=(2,4),AC →=(1,3),则BD →等于( ) A .(-2,-4) B .(-3,-5) C .(3,5) D .(2,4) 题号 1 2 3 4 5 答案 6.(2011·烟台模拟)如图所示,在△ABC 中,点O 是BC 的中点.过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB →=mAM →,AC →=nAN →,则m +n 的值为______.7.在平面直角坐标系xOy 中,四边形ABCD 的边AB ∥DC ,AD ∥BC .已知A (-2,0),B (6,8),C (8,6),则D 点的坐标为________.8.(2009·天津)在四边形ABCD 中,AB →=DC →=(1,1),1|BA →|·BA →+1|BC →|·BC →=3|BD →|·BD →,则四边形ABCD 的面积为________.三、解答题(共38分)9.(12分)已知A 、B 、C 三点的坐标分别为(-1,0)、(3,-1)、(1,2),并且AE →=13AC →,BF →=13BC →.求证:EF →∥AB →.10.(12分)(2011·宣城模拟)在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,已知向量m =(a ,b ),向量n =(cos A ,cos B ),向量p =(22sin B +C2,2sin A ),若m ∥n ,p 2=9,求证:△ABC 为等边三角形.11.(14分)如图,在边长为1的正△ABC 中,E ,F 分别是边AB ,AC 上的点,若AE →=mAB →,AF →=nAC →,m ,n ∈(0,1).设EF 的中点为M ,BC 的中点为N .(1)若A ,M ,N 三点共线,求证:m =n ;(2)若m +n=1,求MN u u u u r的最小值.答案 自主梳理1.不共线 有且只有 λ1e 1+λ2e 2 基底 2.(1)夹角(2)[0,π] 0 π (3)π2a ⊥b3.互相垂直4.(x ,y ) 坐标 (x ,y ) x 轴 y 轴5.(1)(x 1+x 2,y 1+y 2) (x 1-x 2,y 1-y 2) (λx 1,λy 1) (2)终点 始点6.x 1y 2-x 2y 1=0 7.(1)⎝⎛⎭⎫x 1+x 22,y 1+y 22(2)⎝⎛⎭⎫x 1+x 2+x 33,y 1+y 2+y 33自我检测1.A [由x =4知|a |=42+32=5;由|a |=x 2+32=5,得x =4或x =-4.故“x =4”是“|a |=5”的充分而不必要条件.]2.B [∵a ∥b ,∴32×13-sin αcos α=0,∴sin 2α=1,2α=90°,α=45°.]3.A [c =a +λb =(6,-4+2λ),代入y =sin π12x 得, -4+2λ=sin π2=1,解得λ=52.]4.-1解析 a +b =(1,m -1),由(a +b )∥c , 得1×2-(m -1)×(-1)=0,所以m =-1. 5.2解析 建立如图所示的坐标系,则A (1,0),B (cos 120°,sin 120°),即B (-12,32).设AOC ∠=α,则OA →= (cos α,sin α). ∵OC →=xOA →+yOB →=(x,0)+⎝⎛⎭⎫-y 2,32y =(cos α,sin α).∴⎩⎨⎧x -y2=cos α,32y =sin α.∴⎩⎨⎧x =sin α3+cos α,y =2sin α3,∴x +y =3sin α+cos α=2sin(α+30°).∵0°≤α≤120°,∴30°≤α+30°≤150°. ∴x +y 有最大值2,当α=60°时取最大值. 课堂活动区例1 解题导引 本题利用方程的思想,设OM →=ma +nb ,通过建立关于m 、n 的方程求解,同时注意体会应用向量法解决平面几何问题的方法.解 设OM →=m a +n b (m ,n ∈R ), 则AM →=OM →-OA →=(m -1)a +n b ,AD →=OD →-OA →=12b -a =-a +12b .因为A ,M ,D 三点共线,所以m -1-1=n12,即m +2n =1.而CM →=OM →-OC →=⎝⎛⎭⎫m -14a +n b , CB →=OB →-OC →=b -14a =-14a +b ,因为C ,M ,B 三点共线,所以m -14-14=n1,即4m +n =1.由⎩⎪⎨⎪⎧m +2n =1,4m +n =1, 解得⎩⎨⎧m =17,n =37.所以OM →=17a +37b .变式迁移1 6解析 如右图,OC →=OD →+OE →=λOA →+μOB →在△OCD 中,∠COD =30°,∠OCD =∠COB =90°,可求|OD →|=4,同理可求|OE →|=2, ∴λ=4,μ=2,λ+μ=6.例2 解 ∵A (-2,4),B (3,-1),C (-3,-4),∴CA →=(1,8),CB →=(6,3). ∴CM →=3CA →=(3,24), CN →=2CB →=(12,6).设M (x ,y ),则CM →=(x +3,y +4)=(3,24),∴⎩⎪⎨⎪⎧ x +3=3,y +4=24, ∴⎩⎪⎨⎪⎧x =0,y =20.∴M (0,20). 同理可得N (9,2),因此MN →=(9,-18).∴所求M (0,20),N (9,2),MN →=(9,-18). 变式迁移2 (5,4)解析 ∵向量AB →与a 同向,∴设AB →=(2t,3t ) (t >0). 由|AB →|=213,∴4t 2+9t 2=4×13.∴t 2=4.∵t >0,∴t =2.∴AB →=(4,6).设B 为(x ,y ),∴⎩⎪⎨⎪⎧ x -1=4,y +2=6. ∴⎩⎪⎨⎪⎧x =5,y =4.例3解 (1)∵a =m b +n c ,m ,n ∈R ,∴(3,2)=m (-1,2)+n (4,1)=(-m +4n,2m +n ).∴⎩⎪⎨⎪⎧-m +4n =3,2m +n =2,解之得⎩⎨⎧m =59,n =89.(2)∵(a +k c )∥(2b -a ),且a +k c =(3+4k,2+k ),2b -a =(-5,2), ∴(3+4k )×2-(-5)×(2+k )=0,∴k =-1613.变式迁移3 5解析 ∵a -c =(3,1)-(k,7)=(3-k ,-6),且(a -c )∥b ,∴3-k 1=-63,∴k =5.课后练习区1.C [∵A 、B 、C 三点共线⇔AB →与AC →共线⇔AB →=kAC →⇔⎩⎪⎨⎪⎧λ1=k ,kλ2=1,∴λ1λ2-1=0.]2.B [由于点P 落在第Ⅲ部分,且OP →=aOP 1→+bOP 2→,则根据实数与向量的积的定义及平行四边形法则知a >0,b <0.]3.A [∵2b =(2m ,m +2sin α),∴λ+2=2m , λ2-cos 2α=m +2sin α,∴(2m -2)2-m =cos 2α+2sin α, 即4m 2-9m +4=1-sin 2α+2sin α. 又∵-2≤1-sin 2α+2sin α≤2,∴-2≤4m 2-9m +4≤2,解得14≤m ≤2,∴12≤1m ≤4.又∵λ=2m -2, ∴λm =2-2m ,∴-6≤2-2m≤1.]6.2解析 方法一 若M 与B 重合,N 与C 重合, 则m +n =2.方法二 ∵2AO →=AB →+AC →=mAM →+nAN →, AO →=m 2AM →=m 2AM →.∵O 、M 、N 共线,∴m 2+n2=1.∴m +n =2. 7.(0,-2)解析 设D 点的坐标为(x ,y ),由题意知BC→=AD→,即(2,-2)=(x +2,y ),所以x =0,y =-2,∴D (0,-2). 8. 3S =|AB →|=|BC→|sin 60°=2×2×32= 3.9.证明 设E 、F 两点的坐标分别为(x 1,y 1)、(x 2,y 2),则依题意,得AC→=(2,2),BC→=(-2,3),AB →=(4,-1).∴A E→=13AC →=⎝⎛⎭⎫23,23, BF→=13BC →=⎝⎛⎭⎫-23,1. ∴A E→=(x 1,y 1)-(-1,0)=⎝⎛⎭⎫23,23,BF→=(x 2,y 2)-(3,-1)=⎝⎛⎭⎫-23,1.…………………………………………………(4分)∴(x 1,y 1)=⎝⎛⎭⎫23,23+(-1,0) =⎝⎛⎭⎫-13,23, (x 2,y 2)=⎝⎛⎭⎫-23,1+(3,-1)=⎝⎛⎭⎫73,0. ∴EF→=(x 2,y 2)-(x 1,y 1)=⎝⎛⎭⎫83,-23.…………………………………………………(8分) 又∵AB →=(4,-1),∴4×⎝⎛⎭⎫-23-(-1)×83=0, ∴EF→∥AB →.……………………………………………………………………………(12分) 10.证明 ∵m ∥n ,∴a cos B =b cos A . 由正弦定理,得sin A cos B =sin B cos A , 即sin(A -B )=0.∵A 、B 为三角形的内角, ∴-π<A -B <π.∴A =B .……………………………………………………………………………………(5分) ∵p 2=9,∴8sin 2B +C2+4sin 2A =9. ∴4[1-cos(B +C )]+4(1-cos 2A )=9.∴4cos 2A -4cos A +1=0,解得cos A =12.……………………………………………………………………………(10分)又∵0<A <π,∴A =π3.∴△ABC 为等边三角形.………………………………………………………………(12分)11.解 (1)由A ,M ,N 三点共线,得A M→∥A N→,设A M→=λAN →(λ∈R ),即12(AE →+A F→)=12λ(AB →+AC →),所以m AB →+nAC →=λ(AB →+AC →),所以m =n .…………………………………………(5分)(2)因为MN →=AN →-AM →=12(AB →-AC →)=12(AE →-AF →)=12 (1-m )AB → +12(1-n )AC →,……………………………………………………………………………………………(8分)又m +n =1,所以MN →=12 (1-m )AB →+12mAC →,所以|MN →|2=14(1-m )2AB →2+14m 2AC →2+12(1-m )mAB →·AC →………………………………(10分)=14(1-m )2+14m 2+14(1-m )m =14(m -12)2+316. 故当m =12时,|MN →|min =34.……………………………………………………………(14分)。

高考数学一轮复习第2节平面向量的基本定理及坐标表示教学案理(解析版)

高考数学一轮复习第2节平面向量的基本定理及坐标表示教学案理(解析版)

[考纲传真] 1.了解平面向量的基本定理及其意义.2.掌握平面向量的正交分解及其坐标表示.3.会用坐标表示平面向量的加法、减法与数乘运算.4.理解用坐标表示的平面向量共线的条件.1.平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|x 2-12+y 2-3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中a ≠0,b ≠0,a ,b 共线⇔x 1y 2-x 2y 1=0. [常用结论]1.若a 与b 不共线,且λa +μb =0,则λ=μ=0. 2.若G 是△ABC 的重心,则GA →+GB →+GC →=0,AG →=13(AB →+AC →).[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)平面内的任何两个向量都可以作为一组基底.( ) (2)在△ABC 中,向量AB →,BC →的夹角为∠ABC .( ) (3)同一向量在不同基底下的表示是相同的.( )(4)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( ) [答案] (1)× (2)× (3)× (4)√2.(教材改编)已知平面向量a =(1,1),b =(1,-1),则向量12a -32b =( )A .(-2,-1)B .(-2,1)C .(-1,0)D .(-1,2)D [∵a =(1,1),b =(1,-1), ∴12a =⎝ ⎛⎭⎪⎫12,12,32b =⎝ ⎛⎭⎪⎫32,-32∴12a -32b =⎝ ⎛⎭⎪⎫12-32,12+32=(-1,2),故选D.] 3.在下列向量组中,可以把向量a =(3,2)表示出来的是( ) A .e 1=(0,0),e 2=(1,2) B .e 1=(-1,2),e 2=(5,-2) C .e 1=(3,5),e 2=(6,10) D .e 1=(2,-3),e 2=(-2,3)B [A 项中e 1∥e 2,C 项中e 2=2e 1,D 项中e 1=-e 2,只有B 项中e 1,e 2不共线,故a 可以由e 1=(-1,2),e 2=(5,-2)表示,故选B.]4.设向量a =(2,4)与向量b =(x,6)共线,则实数x 等于( ) A .2 B .3 C .4 D .6B [由a ∥b 可知2×6-4x =0,∴x =3.故选B.]5.(教材改编)已知▱ABC D 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________. (1,5) [设D(x ,y ),则由AB →=D C →,得(4,1)=(5-x,6-y ),即⎩⎪⎨⎪⎧ 4=5-x ,1=6-y ,解得⎩⎪⎨⎪⎧x =1,y =5.]平面向量基本定理及其应用1.如果e 1,e 2是平面α内一组不共线的向量,那么下列四组向量中,不能作为平面内所有向量的一组基底的是( ) A .e 1与e 1+e 2 B .e 1-2e 2与e 1+2e 2 C .e 1+e 2与e 1-e 2D .e 1+3e 2与6e 2+2e 1D [选项A 中,设e 1+e 2=λe 1,则⎩⎪⎨⎪⎧1=λ,1=0,无解;选项B 中,设e 1-2e 2=λ(e 1+2e 2),则⎩⎪⎨⎪⎧λ=1,-2=2λ,无解;选项C 中,设e 1+e 2=λ(e 1-e 2),则⎩⎪⎨⎪⎧λ=1,1=-λ,无解;选项D 中,e 1+3e 2=12(6e 2+2e 1),所以两向量是共线向量.故选D.]2.在△ABC 中,M 为边BC 上任意一点,N 为AM 的中点,AN →=λAB →+μAC →,则λ+μ的值为( ) A.12 B.13 C.14 D .1 A [因为M 为边BC 上任意一点, 所以可设AM →=xAB →+yAC →(x +y =1). 因为N 为AM 的中点,所以AN →=12AM →=12xAB →+12yAC →=λAB →+μAC →.所以λ+μ=12(x +y )=12.故选A.]3.如图,以向量OA →=a ,OB →=b 为邻边作▱OA D B ,BM →=13BC →,CN →=13C D →,用a ,b 表示OM →,ON →,MN →.[解] ∵BA →=OA →-OB →=a -b ,BM →=16BA →=16a -16b ,∴OM →=OB →+BM →=16a +56b .∵O D →=a +b ,∴ON →=OC →+13C D →=12O D →+16O D →=23O D →=23a +23b , ∴MN →=ON →-OM →=23a +23b -16a -56b =12a -16b .综上,OM →=16a +56b ,ON →=23a +23b ,MN →=12a -16b .应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的平面向量的坐标运算【例1】 (1)向量a ,b 满足a +b =(-1,5),a -b =(5,-3),则b 为( ) A .(-3,4) B .(3,4) C .(3,-4)D .(-3,-4)(2)向量a ,b ,c 在正方形网格中,如图所示,若c =λa +μb (λ,μ∈R),则λμ=( )A .1B .2C .3D .4(1)A (2)D [(1)∵a +b =(-1,5),a -b =(5,-3),∴a =(2,1),b =(-3,4),故选A.(2)以O 为坐标原点,建立坐标系可得a =(-1,1),b =(6,2),c =(-1,-3).∵c =λa +μb (λ,μ∈R).∴⎩⎪⎨⎪⎧-1=-λ+6μ,-3=λ+2μ,解得λ=-2,μ=-12.∴λμ=4.](1)已知A (1,4),B (-3,2),向量BC =(2,4),D 为AC 的中点,则B D =( )A .(1,3)B .(3,3)C .(-3,-3)D .(-1,-3)(2)若向量a =(2,1),b =(-1,2),c =⎝ ⎛⎭⎪⎫0,52,则c 可用向量a ,b 表示为( ) A .c =12a +bB .c =-12a -bC .c =32a +12bD .c =32a -12b(1)B (2)A [(1)∵D 为AC 的中点,∴B D →=12(BA →+BC →),又BA →=(4,2),BC →=(2,4),∴B D →=12(6,6)=(3,3),故选B.(2)设c =xa +yb ,易知 ⎩⎪⎨⎪⎧0=2x -y ,52=x +2y ,∴⎩⎪⎨⎪⎧x =12,y =1.∴c =12a +b .故选A.]向量共线的坐标表示【例2】 已知a =(1,0),b =(2,1). (1)当k 为何值时,ka -b 与a +2b 共线;(2)若AB →=2a +3b ,BC →=a +mb ,且A ,B ,C 三点共线,求m 的值. [解] (1)∵a =(1,0),b =(2,1), ∴ka -b =k (1,0)-(2,1)=(k -2,-1),a +2b =(1,0)+2(2,1)=(5,2),∵ka -b 与a +2b 共线, ∴2(k -2)-(-1)×5=0, ∴k =-12.(2)AB →=2(1,0)+3(2,1)=(8,3), BC →=(1,0)+m (2,1)=(2m +1,m ).∵A ,B ,C 三点共线,∴AB →∥BC →, ∴8m -3(2m +1)=0,∴m =32.证三点共线:可先证明相关的两向量共线,再说明两向量有公共点;已知向量共线,求参数:可利用向量共线的充要条件列方程组求解(1)-b 平行,则实数(2)已知向量OA →=(k,12),OB →=(4,5),OC →=(-k,10),且A ,B ,C 三点共线,则实数k 的值是________.(1)2 (2)-23 [(1)由题意得a +b =(3,1+x ),3a -b =(1,3-x ),则由a +b 与3a -b 平行得3×(3-x )-1×(1+x )=0,解得x =2. (2)AB →=OB →-OA →=(4-k ,-7), AC →=OC →-OA →=(-2k ,-2). ∵A ,B ,C 三点共线, ∴AB →,AC →共线,∴-2×(4-k )=-7×(-2k ), 解得k =-23.]1.(2015·全国卷Ⅰ)已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=( ) A .(-7,-4) B .(7,4) C .(-1,4)D .(1,4)A [AB →=(3,2)-(0,1)=(3,1), BC →=AC →-AB →=(-4,-3)-(3,1)=(-7,-4). 故选A.]2.(2018·全国卷Ⅲ)已知向量a =(1,2),b =(2,-2),c =(1,λ).若c ∥(2a +b ),则λ=________. 12 [2a +b =(4,2),因为c =(1,λ),且c ∥(2a +b ),所以1×2=4λ,即λ=12.] 3.(2016·全国卷Ⅱ)已知向量a =(m,4),b =(3,-2),且a ∥b ,则m =________. -6 [∵a =(m,4),b =(3,-2),a ∥b , ∴-2m -4×3=0,∴m =-6.]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二节 平面向量基本定理及坐标运算[考纲传真] 1.了解平面向量基本定理及其意义.2.掌握平面向量的正交分解及其坐标表示.3.会用坐标表示平面向量的加法、减法与数乘运算.4.理解用坐标表示的平面向量共线的条件.知识点1 平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于该平面内任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.向量e 1,e 2叫做表示这一平面内的所有向量的一组基底.知识点2 平面向量的坐标运算1.向量加法、减法、数乘向量及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.2.向量坐标的求法(1)若向量的起点是坐标原点,则终点坐标即为向量的坐标. (2)设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1), |AB →|=(x 2-x 1)2+(y 2-y 1)2. 知识点3 平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a ∥b ⇔x 1y 2-x 2y 1=0.1.必会结论(1)若a 与b 不共线,λa +μb =0,则λ=μ=0. (2)平面向量的基底中一定不含零向量. 2.必清误区若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,而应该表示为x 1y 2-x 2y 1=0.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)平面内的任何两个向量都可以作为一组基底.( ) (2)在△ABC 中,向量AB→、BC →的夹角为∠ABC .( )(3)同一向量在不同的基底下的表示是相同的.( )(4)设a 、b 是平面内的一组基底,若实数λ1,μ1,λ2,μ2满足λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( )【解析】 (1)错误.不共线的两个向量才能作为基底. (2)错误.AB→与BC →的夹角为∠ABC 的补角.(3)错误.同一向量在不同的基底下的表示是不同的.(4)正确.由题知a (λ1-λ2)=b (μ2-μ1),由于a 与b 不共线,所以λ1-λ2=0,μ2-μ1=0,即λ1=λ2,μ2=μ1.【答案】 (1)× (2)× (3)× (4)√2.(教材改编)已知a 1+a 2+…+a n =0,且a n =(3,4),则a 1+a 2+…+a n -1的坐标为( )A .(4,3)B .(-4,-3)C .(-3,-4)D .(-3,4)【解析】 a 1+a 2+…+a n -1=-a n =(-3,-4). 【答案】 C3.(优质试题·全国卷Ⅰ)已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC→=( ) A .(-7,-4) B .(7,4) C .(-1,4)D .(1,4)【解析】 AB→=(3,2)-(0,1)=(3,1), BC →=AC →-AB →=(-4,-3)-(3,1)=(-7,-4).故选A. 【答案】 A4.(优质试题·郑州模拟)设向量a =(m,1),b =(1,m ),如果a 与b 共线且方向相反,则m 的值为________.【解析】 设a =λb ,则⎩⎨⎧ m =λ,1=λm ,解得⎩⎨⎧ λ=-1,m =-1或⎩⎨⎧λ=1,m =1,由于λ<0,∴m =-1. 【答案】 -1考向1平面向量基本定理及其应用1.(优质试题·北京高考)在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN→=xAB →+yAC →,则x =________;y =________. 【解析】 ∵AM→=2MC →,∴AM →=23AC →.∵BN→=NC →,∴AN →=12(AB →+AC →), ∴MN→=AN →-AM →=12(AB →+AC →)-23AC → =12AB →-16AC →.又MN→=xAB →+yAC →,∴x =12,y =-16. 【答案】 12 -162.在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点.若AC →=λAE →+μAF→,其中λ,μ∈R ,则λ+μ=________. 【解析】 选择AB →,AD →作为平面向量的一组基底,则AC →=AB →+AD →,AE →=12AB →+AD →,AF →=AB →+12AD →,又AC →=λAE →+μAF →=⎝ ⎛⎭⎪⎫12λ+μAB →+⎝ ⎛⎭⎪⎫λ+12μAD →,于是得⎩⎪⎨⎪⎧12λ+μ=1,λ+12μ=1,解得⎩⎪⎨⎪⎧λ=23,μ=23,所以λ+μ=43. 【答案】 433.(优质试题·南京模拟)如图4-2-1所示,在△ABC 中,H 为BC 上异于B ,C 的任一点,M 为AH 的中点,若AM →=λAB →+μAC →,则λ+μ=________.图4-2-1【解析】 由B ,H ,C 三点共线知,BH →=kBC →(k ≠0,1),则AH→=AB →+BH →=AB →+kBC →=AB →+k (AC →-AB →) =(1-k )AB→+kAC →,所以AM →=12AH →=12(1-k )AB →+k 2AC →, 又AM→=λAB →+μAC →, 所以⎩⎪⎨⎪⎧λ=12(1-k ),μ=k 2,从而λ+μ=12.【答案】 12应用平面向量基本定理的关键点1.平面向量基本定理中的基底必须是两个不共线的向量.2.选定基底后,通过向量的加、减、数乘以及向量平行的充要条件,把相关向量用这一组基底表示出来.3.强调几何性质在向量运算中的作用,用基底表示未知向量,常借助图形的几何性质,如平行、相似等.提醒:在基底未给出的情况下,合理地选取基底会给解题带来方便. 考向2平面向量的坐标运算(1)(优质试题·北京模拟)向量a ,b ,c 在正方形网格中的位置如图4-2-2所示,若c =λa +μb (λ,μ∈R),则λμ=________.图4-2-2(2)已知A (2,3),B (5,4),C (7,10), ①求AB→; ②若AB→=mAC →+nBC →,求m ,n ; ③若AP →=AB →+λAC →(λ∈R),试求λ为何值时,点P 在一、三象限的角平分线上.【解析】 (1)以向量a 和b 的交点为原点建立如图所示的平面直角坐标系(设每个小正方形边长为1),则A (1,-1),B (6,2),C (5,-1),∴a =AO →=(-1,1),b =OB →=(6,2),c =BC →=(-1,-3). ∵c =λa +μb ,∴(-1,-3)=λ(-1,1)+μ(6,2), 即⎩⎨⎧-λ+6μ=-1,λ+2μ=-3, 解得λ=-2,μ=-12,∴λμ=4. 【答案】 4(2)①AB→=(5,4)-(2,3)=(3,1).②∵AC→=(7,10)-(2,3)=(5,7), BC→=(7,10)-(5,4)=(2,6), ∴mAC→+nBC →=m (5,7)+n (2,6)=(5m +2n,7m +6n ). ∵AB→=mAC →+nBC →=(3,1), ∴⎩⎨⎧ 5m +2n =3,7m +6n =1,∴⎩⎨⎧m =1,n =-1.③设P (x ,y ),则AP→=(x ,y )-(2,3)=(x -2,y -3). AB→+λAC →=(5,4)-(2,3)+λ[(7,10)-(2,3)] =(3+5λ,1+7λ). ∵AP→=AB →+λAC →, ∴⎩⎨⎧x -2=3+5λ,y -3=1+7λ, ∴⎩⎨⎧x =5+5λ,y =4+7λ,若点P 在一、三象限的角平分线上, 则5+5λ=4+7λ,∴λ=12.平面向量坐标运算的技巧1.向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解,若已知有向线段两端点的坐标,则应先求向量的坐标.2.解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解.[变式训练]1.(优质试题·昆明模拟)设向量a =(1,-3),b =(-2,4),若表示向量4a,3b -2a ,c 的有向线段首尾相接能构成三角形,则向量c =________(用坐标表示).【解析】 设c =(x ,y ),∵a =(1,-3),b =(-2,4),∴4a =(4,-12), 3b -2a =(-8,18),又由表示向量4a,3b -2a ,c 的有向线段首尾相接能构成三角形,则有4a +(3b -2a )+c =0,即(4,-12)+(-8,18)+(x ,y )=(0,0),∴x =4,y =-6, ∴c =(4,-6). 【答案】 (4,-6)2.已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM→=3c ,CN →=-2b , (1)求3a +b -3c ;(2)求满足a =mb +nc 的实数m ,n ; (3)求M ,N 的坐标及向量MN→的坐标.【解】 由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42). (2)∵mb +nc =(-6m +n ,-3m +8n )=(5,-5), ∴⎩⎨⎧-6m +n =5,-3m +8n =-5, 解得⎩⎨⎧m =-1,n =-1.(3)设O 为坐标原点,∵CM→=OM →-OC →=3c ,∴OM →=3c +OC →=(3,24)+(-3,-4)=(0,20), ∴M (0,20).又∵CN→=ON →-OC →=-2b , ∴ON→=-2b +OC →=(12,6)+(-3,-4)=(9,2), ∴N (9,2),∴MN→=(9,-18).考向3平面向量共线的坐标表示(1)(优质试题·太原模拟)已知a =(1,2),b =(-3,2)且ka +b 与a -3b共线,则k =________.(2)(优质试题·陕西高考)设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),。

相关文档
最新文档