Linear Algebra_彭国华_课后答案[1-4章]_khdaw
高等代数教程上王萼芳著课后习题部份解答2012
第一章 行列式1. 习题1.4(2)第2题 计算行列式。
14916491625916253616253649⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦2. 习题1.5第4(2)题 计算行列式中所有元素的代素余子式之和。
12100...00...............0...000n n a a a a -⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦0,1,2, (i)i n a≠=解:3. 习题1.6第1(3)题 计算行列式:1101231211232102321⎡⎤-⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦第6题 计算2n 阶行列式aba b b a b a 0000000解:得列列加到第第,列,列加到第列,第列加到第将第,121212n n n n +-D =aba ab a a b a b b a b b a b b a 00000000000000000000000++++++ 行)行减第,第行行减第行,第行减第(第n n n n 121212+-b a b a b a b ba bb a b b a ---+++00000000000000000000000=n n n b a b a b a )()()(22-=-+4. 复习题 1第4题 计算行列式nn 222221222223222222222221-----------解: 原式244400014400006400000500222222222221)2()()2()4()2()3(++------------n n n=24444014440074400064000052221++⋅-n n=)2()1(7656+⨯+⨯⨯⨯⨯⨯n n =)!2(41+n第 6 题 计算行列式12121231212321----n n n n n n解:12121231212321----n n n n n n行)行减第第,行,行减第行,第行减第(第n n 13221- =122111111111111111111111--n n n ---------- (第n 列分别加到第1列,第2列,至第1-n 列)=131110000120001220012220 -+n nn (对第1列展开)=阶)1(1100012000122001222012222)1()1(-++-n n n =212)1(1-++n n n )(-第 7 题 计算行列式01211...110...01...0......... (10)n a aa a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(1...0na a≠)第二章 线性方程组1. 习题2.1 第 1 (4) 题1212323434545561562(4)56256254x x x x x x x x x x x x x ì+=ïïïï++=-ïïï++=íïïï++=-ïïï+=-ïî56561615615656115656156156156151515561656565655156656615619156301515151515561656561619563065114150515150565191145665D 解:方程组的系数行列式对第行展开=-骣÷ç÷ç÷ç÷=--=-ç÷ç÷ç÷ç÷桫骣÷ç÷=--=-ç÷ç÷ç桫=?? Cramer D 0, ¹根据法则,方程组有唯一解。
通信原理教程樊昌信版主要课后习题答案
第二章习题习题2.1 设随机过程X (t )可以表示成:()2cos(2), X t t t πθ=+-∞<<∞式中,θ是一个离散随机变量,它具有如下概率分布:P (错误!未找到引用源。
=0)=0.5,P (θ=错误!未找到引用源。
/2)=0.5 试求E [X (t )]和X R (0,1)。
解:E [X (t )]=P (错误!未找到引用源。
=0)2错误!未找到引用源。
+P (错误!未找到引用源。
=错误!未找到引用源。
/2)错误!未找到引用源。
cos t ω习题2.2 设一个随机过程X (t )可以表示成:()2cos(2), X t t t πθ=+-∞<<∞判断它是功率信号还是能量信号?并求出其功率谱密度或能量谱密度。
解:为功率信号。
错误!未找到引用源。
错误!未找到引用源。
222cos(2)j t j t e e πππτ-==+2222()()()(1)(1)j f j tj t j f X P f R e d ee e df f πτπππττττδδ∞-∞---∞-∞==+=-++⎰⎰习题2.3 设有一信号可表示为:4exp() ,t 0(){0, t<0t X t -≥=试问它是功率信号还是能量信号?并求出其功率谱密度或能量谱密度。
解:它是能量信号。
X (t )的傅立叶变换为:(1)004()()441j t t j t j tX x t e dt e e dt edt j ωωωωω+∞-+∞--+∞-+-∞====+⎰⎰⎰ 则能量谱密度 G(f)=错误!未找到引用源。
=222416114j fωπ=++ 错误!未找到引用源。
习题2.4 X (t )=错误!未找到引用源。
,它是一个随机过程,其中1x 和2x 是相互统计独立的高斯随机变量,数学期望均为0,方差均为错误!未找到引用源。
试求:(1)E [X (t )],E [错误!未找到引用源。
];(2)X (t ) 的概率分布密度;(3)12(,)X R t t 解:(1)()[][]()[]02sin 2cos 2sin 2cos 2121=⋅-⋅=-=x E t x E t t x t x E t X E ππππ()X P f 因为21x x 和相互独立,所以[][][]2121x E x E x x E ⋅=。
线性代数第四版答案
线性代数第四版答案(总120页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章行列式1利用对角线法则计算下列三阶行列式(1)解2(4)30(1)(1)1180132(1)81(4)(1)2481644(2)解acb bac cba bbb aaa ccc3abc a3b3c3(3)解bc2ca2ab2ac2ba2cb2(a b)(b c)(c a)(4)解x(x y)y yx(x y)(x y)yx y3(x y)3x33xy(x y)y33x2y x3y3x32(x3y3)2按自然数从小到大为标准次序求下列各排列的逆序数(1)1 2 3 4解逆序数为0(2)4 1 3 2解逆序数为4 41 43 42 32(3)3 4 2 1解逆序数为5 3 2 3 1 4 2 4 1, 2 1(4)2 4 1 3解逆序数为3 2 1 4 1 4 3(5)1 3 (2n1) 2 4 (2n)解逆序数为3 2 (1个)5 2 5 4(2个)7 2 7 4 7 6(3个)(2n1)2 (2n1)4 (2n1)6 (2n1)(2n2) (n1个)(6)1 3 (2n1) (2n) (2n2) 2解逆序数为n(n1)3 2(1个)5 2 5 4 (2个)(2n1)2 (2n1)4 (2n1)6 (2n1)(2n2) (n1个)4 2(1个)6 2 6 4(2个)(2n)2 (2n)4 (2n)6 (2n)(2n2) (n1个)3写出四阶行列式中含有因子a11a23的项解含因子a11a23的项的一般形式为(1)t a11a23a3r a4s其中rs是2和4构成的排列这种排列共有两个即24和42所以含因子a11a23的项分别是(1)t a11a23a32a44(1)1a11a23a32a44a11a23a32a44(1)t a11a23a34a42(1)2a11a23a34a42a11a23a34a424计算下列各行列式(1)解(2)解(3)解(4)解abcd ab cd ad1 5证明:(1)(a b)3;证明(a b)3(2);证明(3);证明(c4c3c3c2c2c1得)(c4c3c3c2得)(4)(a b)(a c)(a d)(b c)(b d)(c d)(a b c d);证明=(a b)(a c)(a d)(b c)(b d)(c d)(a b c d)(5)x n a1x n1a n1x a n证明用数学归纳法证明当n2时命题成立假设对于(n1)阶行列式命题成立即D n1x n1a1x n2a n2x a n1则D n按第一列展开有xD n1a n x n a1x n1a n1x a n因此对于n阶行列式命题成立6设n阶行列式D det(a ij), 把D上下翻转、或逆时针旋转90、或依副对角线翻转依次得证明D3D证明因为D det(a ij)所以同理可证7计算下列各行列式(D k为k阶行列式)(1), 其中对角线上元素都是a未写出的元素都是0解(按第n行展开)a n a n2a n2(a21)(2);解将第一行乘(1)分别加到其余各行得再将各列都加到第一列上得[x(n1)a](x a)n1(3);解根据第6题结果有此行列式为范德蒙德行列式(4);解(按第1行展开)再按最后一行展开得递推公式D2n a n d n D2n2b n c n D2n2即D2n(a n d n b n c n)D2n2于是而所以(5) D det(a ij)其中a ij|i j|;解a ij|i j|(1)n1(n1)2n2(6), 其中a1a2a n0解8用克莱姆法则解下列方程组(1)解因为所以(2)解因为所以9问取何值时齐次线性方程组有非零解解系数行列式为令D0得0或1于是当0或1时该齐次线性方程组有非零解10问取何值时齐次线性方程组有非零解解系数行列式为(1)3(3)4(1)2(1)(3)(1)32(1)23令D0得02或3于是当02或3时该齐次线性方程组有非零解第二章矩阵及其运算1已知线性变换求从变量x1x2x3到变量y1y2y3的线性变换解由已知故2已知两个线性变换求从z1z2z3到x1x2x3的线性变换解由已知所以有3设求3AB2A及A T B解4计算下列乘积(1)解(2)解(132231)(10)(3)解(4)解(5)解(a11x1a12x2a13x3 a12x1a22x2a23x3 a13x1a23x2a33x3)5设问(1)AB BA吗解AB BA因为所以AB BA (2)(A B)2A22AB B2吗解 (A B)2A22AB B2因为但所以(A B)2A22AB B2(3)(A B)(A B)A2B2吗解 (A B)(A B)A2B2因为而故(A B)(A B)A2B26举反列说明下列命题是错误的(1)若A20则A0解取则A20但A0(2)若A2A则A0或A E解取则A2A但A0且A E (3)若AX AY且A0则X Y解取则AX AY且A0但X Y7设求A2A3A k 解8设求A k解首先观察用数学归纳法证明当k2时显然成立假设k时成立,则k1时,由数学归纳法原理知9设A B为n阶矩阵,且A为对称矩阵,证明B T AB也是对称矩阵证明因为A T A所以(B T AB)T B T(B T A)T B T A T B B T AB从而B T AB是对称矩阵10设A B都是n阶对称矩阵,证明AB是对称矩阵的充分必要条件是AB BA证明充分性因为A T A B T B且AB BA所以(AB)T(BA)T A T B T AB即AB是对称矩阵必要性因为A T A B T B且(AB)T AB所以AB(AB)T B T A T BA11求下列矩阵的逆矩阵(1)解 |A|1故A1存在因为故(2)解 |A|10故A1存在因为所以(3)解 |A|20故A1存在因为所以(4)(a1a2a n0)解由对角矩阵的性质知12解下列矩阵方程(1)解(2)解(3)解(4)解13利用逆矩阵解下列线性方程组(1)解方程组可表示为故从而有(2)解方程组可表示为故故有14设A k O (k为正整数)证明(E A)1E A A2A k1证明因为A k O所以E A k E又因为E A k(E A)(E A A2A k1)所以 (E A)(E A A2A k1)E由定理2推论知(E A)可逆且(E A)1E A A2A k1证明一方面有E(E A)1(E A)另一方面由A k O有E(E A)(A A2)A2A k1(A k1A k)(E A A2A k1)(E A)故 (E A)1(E A)(E A A2A k1)(E A)两端同时右乘(E A)1就有(E A)1(E A)E A A2A k115设方阵A满足A2A2E O证明A及A2E都可逆并求A1及(A2E)1证明由A2A2E O得A2A2E即A(A E)2E或由定理2推论知A可逆且由A2A2E O得A2A6E4E即(A2E)(A3E)4E或由定理2推论知(A2E)可逆且证明由A2A2E O得A2A2E两端同时取行列式得 |A2A|2即 |A||A E|2故 |A|0所以A可逆而A2E A2 |A2E||A2||A|20故A2E也可逆由A2A2E O A(A E)2EA1A(A E)2A1E又由A2A2E O(A2E)A3(A2E)4E(A2E)(A3E) 4 E所以 (A2E)1(A2E)(A3E)4(A 2 E)116设A为3阶矩阵求|(2A)15A*|解因为所以|2A1|(2)3|A1|8|A|1821617设矩阵A可逆证明其伴随阵A*也可逆且(A*)1(A1)*证明由得A*|A|A1所以当A可逆时有|A*||A|n|A1||A|n10从而A*也可逆因为A*|A|A1所以(A*)1|A|1A又所以(A*)1|A|1A|A|1|A|(A1)*(A1)*18设n阶矩阵A的伴随矩阵为A*证明(1)若|A|0则|A*|0(2)|A*||A|n1证明(1)用反证法证明假设|A*|0则有A*(A*)1E由此得A A A*(A*)1|A|E(A*)1O所以A*O这与|A*|0矛盾,故当|A|0时有|A*|0(2)由于则AA*|A|E取行列式得到|A||A*||A|n若|A|0则|A*||A|n1若|A|0由(1)知|A*|0此时命题也成立因此|A*||A|n119设AB A2B求B解由AB A2E可得(A2E)B A故20设且AB E A2B求B解由AB E A2B得(A E)B A2E即 (A E)B(A E)(A E)因为所以(A E)可逆从而21设A diag(12 1)A*BA2BA8E求B 解由A*BA2BA8E得(A*2E)BA8EB8(A*2E)1A18[A(A*2E)]18(AA*2A)18(|A|E2A)18(2E2A)14(E A)14[diag(21 2)]12diag(12 1)22已知矩阵A的伴随阵且ABA1BA13E求B解由|A*||A|38得|A|2由ABA1BA13E得AB B3AB3(A E)1A3[A(E A1)]1A23设P1AP其中求A11解由P1AP得A P P1所以A11 A=P11P1.|P|3而故24设AP P其中求(A)A8(5E6A A2)解()8(5E62)diag(1158)[diag(555)diag(6630)diag(11 25)]diag(1158)diag(1200)12diag(100)(A)P()P125设矩阵A、B及A B都可逆证明A1B1也可逆并求其逆阵证明因为A1(A B)B1B1A1A1B1而A1(A B)B1是三个可逆矩阵的乘积所以A1(A B)B1可逆即A1B1可逆(A1B1)1[A1(A B)B1]1B(A B)1A26计算解设则而所以即27取验证解而故28设求|A8|及A4解令则故29设n阶矩阵A及s阶矩阵B都可逆求 (1)解设则由此得所以(2)解设则由此得所以30求下列矩阵的逆阵(1)解设则于是(2)解设则第三章矩阵的初等变换与线性方程组1把下列矩阵化为行最简形矩阵(1)解(下一步r2(2)r1r3(3)r1 ) ~(下一步r2(1)r3(2) ) ~(下一步r3r2 )~(下一步r33 )~(下一步r23r3 )~(下一步r1(2)r2r1r3 )~(2)解(下一步r22(3)r1r3(2)r1 )~(下一步r3r2r13r2 )~(下一步r12 )~(3)解(下一步r23r1r32r1r43r1 )~(下一步r2(4)r3(3)r4(5) )~(下一步r13r2r3r2r4r2 )~(4)解(下一步r12r2r33r2r42r2 ) ~(下一步r22r1r38r1r47r1 ) ~(下一步r1r2r2(1)r4r3 )~(下一步r2r3 )~2设求A解是初等矩阵E(1 2)其逆矩阵就是其本身是初等矩阵E(1 2(1))其逆矩阵是E(1 2(1))3试利用矩阵的初等变换求下列方阵的逆矩阵(1)解~~~~故逆矩阵为 (2)解~~~~~故逆矩阵为4 (1)设求X使AX B 解因为所以(2)设求X使XA B 解考虑A T X T B T因为所以从而5设AX2X A求X解原方程化为(A2E)X A因为所以6在秩是r的矩阵中,有没有等于0的r1阶子式有没有等于0的r阶子式解在秩是r的矩阵中可能存在等于0的r1阶子式也可能存在等于0的r阶子式例如R(A)3是等于0的2阶子式是等于0的3阶子式7从矩阵A中划去一行得到矩阵B问A B的秩的关系怎样解R(A)R(B)这是因为B的非零子式必是A的非零子式故A的秩不会小于B的秩8求作一个秩是4的方阵它的两个行向量是(1 0 1 0 0) (11 0 0 0)解用已知向量容易构成一个有4个非零行的5阶下三角矩阵此矩阵的秩为4其第2行和第3行是已知向量9求下列矩阵的秩并求一个最高阶非零子式(1);解(下一步r1r2 )~(下一步r23r1r3r1 )~(下一步r3r2 )~矩阵的是一个最高阶非零子式(2)解(下一步r1r2r22r1r37r1 ) ~(下一步r33r2 )~矩阵的秩是2是一个最高阶非零子式(3)解(下一步r12r4r22r4r33r4 )~(下一步r23r1r32r1 )~(下一步r216r4r316r2 )~~矩阵的秩为3是一个最高阶非零子式10设A、B都是m n矩阵证明A~B的充分必要条件是R(A)R(B)证明根据定理3必要性是成立的充分性设R(A)R(B)则A与B的标准形是相同的设A 与B的标准形为D则有A~D D~B由等价关系的传递性有A~B11设问k为何值可使(1)R(A)1 (2)R(A)2 (3)R(A)3解(1)当k1时R(A)1(2)当k2且k1时R(A)2(3)当k1且k2时R(A)312求解下列齐次线性方程组:(1)解对系数矩阵A进行初等行变换有A~于是。
Linear Algebra_彭国华_第五章课后答案
《数字逻辑》第四版部分习题答案_khdaw
⑴真值表:
⑵真值表:
∴Y3=AB,Y2= AB ,Y1=0,Y0= AB + AB =B,逻辑电路为:
⑵ Y = X 3 ,(Y 也用二进制数表示)
因为一个两位二进制正整数的立方的二进制数最多有五位,故输入端用A、B两个变量, 输出端用Y4、Y3、Y2、Y1、Y0五个变量。可列出真值表⑵
∴Y4=AB,Y3= AB + AB= A ,Y2=0,Y1= AB ,Y0= AB + AB =B,逻辑电路如上图。
F3
(
A,B,C , D
)
=
A⋅
BC
+
ABC
⋅
D+
ABCD
第8页
《数字逻辑》习题解答
习题三
3.1 将下列函数简化,并用“与非”门和“或非”门画出逻辑电路。 ⑴ F ( A, B,C ) = ∑m(0,2,3,7)= A ⋅ C + BC = A ⋅ C ⋅ BC Q F = AC + BC ∴ F = A + C + B + C
2.9 用卡诺图判断函数 F ( A, B,C , D ) 和 G( A, B,C , D ) 有何关系。 F( A,B,C , D ) =
= B ⋅ D + A ⋅ D + C ⋅ D + AC D G( A,B,C , D ) =
= BD + CD + A ⋅ + ABD 可见, F = G
= ∏M(5,6,7,8,9,10,11,12,13,14,15) (如下卡诺图 3)
第6页
《数字逻辑》习题解答
2.8 用卡诺图化简下列函数,并写出最简“与-或”表达式和最简“或-与”表达式: ⑴ F ( A, B,C ) = ( A + B )( AB + C ) = AC + BC = C( A + B )
线性代数答案第四版(高等教育出版社)
(1) 1 2 3 4;
(2) 4 1 3 2;
(3) 3 4 2 1;
(4) 2 4 1 3;
(5) 1 3 · · · (2n − 1) 2 4 · · · (2n);
(6) 1 3 · · · (2n − 1) (2n) (2nห้องสมุดไป่ตู้− 2) · · · 2.
解
(1) 逆序数为 0.
(2) 逆序数为 4: 4 1, 4 3, 4 2, 3 2.
(4)
x
y x+y
y x + y x = x(x + y)y + yx(x + y) + (x + y)yx − y3 − (x + y)3 − x3
x+y x
y
= 3xy(x + y) − y3 − 3x2y − 3y2x − x3 − y3 − x3 = −2(x3 + y3).
2 . 按自然数从小到大为标准次序, 求下列各排列的逆序数:
70
第一章 行列式
课后的习题值得我们仔细研读. 本章建议重点看以下习题: 5.(2), (5); 7; 8.(2). (这几个题号建立有超级链接.) 若 您发现有好的解法, 请不吝告知.
1 . 利用对角线法则计算下列三阶行列式:
201 (1) 1 −4 −1 ;
−1 8 3
abc (2) b c a ;
1
2
第一章 行列式
(3) 逆序数为 5: 3 2, 3 1, 4 2, 4 1, 2 1.
(4) 逆序数为 3: 2 1, 4 1, 4 3.
(5)
逆序数为
n(n−1) 2
:
3 2...........................................................................1 个 5 2, 5 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 个 7 2, 7 4, 7 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 个 .................................................................................. (2n − 1) 2, (2n − 1) 4, (2n − 1) 6, . . . , (2n − 1) (2n − 2). . . . . . . . . . . . . .(n − 1) 个
应用回归分析人大前四章课后习题答案详解Word版
3.10验证决定系数 与F值之间的关系式: 38
3.11研究货运总量y(万吨)与工业总产值38
1)计算出y, x1 ,x2, x3的相关系数矩阵39
2)求y关于x1, x2, x3的三元线性回归方程40
3)对所求的的方程作拟合优度检验41
③不论是时间序列数据还是横截面数据的手机,样本容量的多少一般要与设置的解释变量数目相配套。
4)统计数据的整理中不仅要把一些变量数据进行折算,差分,甚至把数据对数化,标准化等,有时还须注意剔除个别特别大或特别小的“野值”,有时需要利用差值的方法把空缺的数据补齐。
1.7构造回归理论模型的基本根据是什么?
1)绘制y对x的散点图,可以用直线回归描述两者之间的关系吗?31
2)建立y对x的线性回归;32
3)用线性回归的Plots功能绘制标准残差的直方图和正态概率图,检验误差项的正态性假设。32
3多元线性回归34
3.1写出多元线性回归模型的矩阵表示形式,并给出多元线性回归模型的基本假设。34
3.2讨论样本容量n与自变量个数p的关系,它们对模型的参数估计有何影响?35
由于许多经济变量的前后期之间总是有关联的,因此时间序列数据容易产生模型中随机误差项的序列相关。对于具有随机误差项序列相关的情况,就要通过对数据的某种计算整理来消除序列相关性,最常用的处理方法是差分法。
②横截面数据是在同一时间截面上的统计数据。由于一个回归模型往往涉及众多解释变量,如果其中某一因素或一些因素随着解释变量观测值的变化而对被解释变量产生不同影响,就产生异方差。因此当用截面数据作样本时,容易产生异方差。对于具有异方差性的建模问题,数据整理就是注意消除异方差性,这常与模型参数估计方法结合起来考虑。
矩阵分析课后习题解答整理版
第一章线性空间与线性变换(以下题目序号与课后习题序号不一定对应,但题目顺序是一致的,答案为个人整理,不一定正确,仅供参考,另外,此答案未经允许不得擅自上传)(此处注意线性变换的核空间与矩阵核空间的区别)1.9.利用子空间定义,)R对m C满足加(AR是m C的非空子集,即验证)(A法和数乘的封闭性。
1.10.证明同1.9。
1.11.rankA n A N rankA A R -==)(dim ,)(dim (解空间的维数)1.13.提示:设),)(-⨯==n j i a A n n ij (,分别令T i X X ),0,0,1,0,0( ==(其中1位于i X 的第i 行),代入0=AX X T ,得0=ii a ;令T ij X X )0,0,10,0,1,0,0( ==(其中1位于ij X 的第i 行和第j 行),代入0=AX X T ,得0=+++jj ji ij ii a a a a ,由于0==jj ii a a ,则0=+ji ij a a ,故A A T -=,即A 为反对称阵。
若X 是n 维复列向量,同样有0=ii a ,0=+ji ij a a ,再令T ij i X X ),0,1,0,0,,0,0( ='=(其中i 位于ij X 的第i 行,1位于ij X 的第j 行),代入0=AX X H ,得0)(=-++ij ji jj ii a a i a a ,由于0==jj ii a a ,ij ji a a -=,则0==ji ij a a ,故0=A1.14.AB 是Hermite 矩阵,则AB BA A B AB H H H ===)(1.15.存在性:令2,2HH A A C A A B -=+=,C B A +=,其中A 为任意复矩阵,可验证C C B B H H -==,唯一性:假设11C B A +=,1111,C C B B HH-==,且C C B B ≠≠11,,由1111C B C B A H H H -=+=,得C A A C B A A B HH =-==+=2,211(矛盾)第二章酉空间和酉变换(注意实空间与复空间部分性质的区别)2.8 法二:设~2121),,()0,0,1,0,0)(,,(X e e e e e e e n T n i ==(1在第i 行);~2121),,()0,0,1,0,0)(,,(Y e e e e e e e n T n j ==(1在第j 行) 根据此题内积定义⎩⎨⎧≠===j i j i X Y e e H j i 01),~~( 故n e e e ,,21是V 的一个标准正交基。
Linear Algebra(线性代数)
一、双语教学班组建学生自愿报名申请。
未修读过“线性代数”,且所在专业的培养方案中“线性代数”为必修课程的学生皆可申请。
申请学生需要有优良的英语基础和数学基础,对英语学习和数学学习有浓厚的兴趣,学习自主性强,已修课程应全部及格。
参加“线性代数”双语教学班的学生在课程考核通过后,不再需要修读中文讲授的“线性代数”课程;未通过者,可参加中文讲授的“线性代数”课程补考。
“线性代数”课程学分数为2.5。
下学期拟组建一个“线性代数”双语教学班,人数约90人。
当报名人数超过90人时,按照平均学分绩点从高到低进行选拔。
学生可以在该班试听两周,可以在开课两周内申请退出该双语教学班。
二、教学及考核课程教学以英文教材为主,强调数学思维训练,并介绍数学软件包Matlab的初步知识。
课程考试采用英文试卷,课程讲授循序渐进增加英语讲授时间。
课堂教学使用英语讲授时间平均超过50%。
该课程考核采用多种方式。
课程总评成绩=课程结束考试成绩(占60%) +课程中期测验(占20%) +平时作业成绩(占10%)+ Project (10%)。
课程期中测验题全部为书中习题。
英语运用能力作为考核指标纳入平时作业成绩的考核。
三、申请时间及上课时间申请参加双语教学班的学生于2012年元月6日(星期五)前将“修读…线性代数‟双语教学课程申请表”(见附表)按班级汇总后交至各学院教务员,学院将报名表汇总后于2012年元月11日前送至教学研究科。
上课时间为2011—2012学年第二学期,第二至第十二周,星期一、星期四晚6:30—8:30。
上课地点另行通知。
四、教材及参考书主要教材:Steven J. Leon,Linear Algebra with Applications(影印版),机械工业出版社,2007.5第七版,定价58元。
主要参考书:S.K.Jain, A.D. Gunawardena,Linear Algebra:An Interactive Approach(影印版),机械工业出版社,2003.7。
华东师大光学教程第四版答案
(3) 由公式
2 I A12 A2 2 A1 A2 cos 4 A12 cos 2
在的位置为中央亮条纹,试求插入的玻璃片的厚度.已知光波长为 6×10-7m.
Δr = 现在
r2 r1
S1 发出的光束途中插入玻璃片时, P 点的光程差为 0 0 2 2
h
ww
解:
4. 波长为 500nm 的单色平行光射在间距为 0.2mm 的双狭缝上.通过其中一个缝的能量 为另一个的 2 倍,在离狭缝 50cm 的光屏上形成干涉图样.求干涉条纹间距和条纹的可见度.
w.
y
r2 r1 h nh
所以玻璃片的厚度为
r2 r1 5 10 6 10 4 cm n 1 0.5
h N h N 2
13. 迈克耳孙干涉仪平面镜的面积为4×4cm2,观察到该镜上有 20 个条纹。当入射光 的波长为 589nm 时,两镜面之间的夹角为多大? 解: 因为
kh da
课 后
j 1
2 cos i 2
2h 2 0.25 5.5 10 4 mm 550nm N 909
y1
答 案
r0 50 6.4 10 5 8.0 10 2 cm d 0 . 4 = y 0.01 0.04 0.8 105 cm r0 50
r2 r1 d sin d tan d
w.
3
网
co m
2 2 (r2 r1 ) 0.8 10 5 5 6.4 10 4
ww w.
课 后 网 答 案
光学教程
参考答案
(姚启钧原著)
高等代数1-4章 彭国华
LINEAR ALGEBRAS
3
16、解: 由题意可设x ≡ 2(mod 7), 求x + 276 ≡?(mod 7)即可. 易知x + 276 ≡ 5(mod 7). 17、解: (1) 设N = x0 + 10x1 + 102 x2 + · · · + 10k xk , 9 | N ⇔ N ≡ 0(mod 9), 易知10i ≡ 1(mod 9), i ≥ 0. 所以N ≡ x0 + x1 + · · · + xk (mod 9), 特别的, N ≡ 0(mod 9) ⇔ x0 + x1 + · · · + xk ≡ 0(mod9). (2) 10i ≡ (−1)i (mod 11) ⇒ N ≡ x0 − x1 + · · · + (−1)k xk (mod11). 2 18、证明: i (1) 因 为p为 素 数, 所 以 对 于 任 意 的0 ≤ i < p, i p. 因 此p | Cp . 特 别 地, i Cp ≡ 0(mod p). 1 p−1 p−1 p−1 i (2) (a + b)p = ap + Cp a b + · · · + Cp ab + bp . 由(1)知, Cp ≡ 0(mod p), 所 p p p 以(a + b) ≡ a + b (mod p). (3)由(2)知ap = (a − 1 + 1)p ≡ (a − 1)p + 1p , 如果a > 0, 那么ap = 1p + · · · + 1p = a. 同理可知当a ≤ 0时也成立. 2 19、证明:(n > 1) an − 1 = (a − 1)(an−1 + an−2 + · · · + a + 1), 如果a = 2, 则an − 1为合数,与题意矛盾.因 此a = 2. 又如果n不是素数,则可设n = p ∗ q, 2n − 1 = (2p − 1)((2p )q−1 + (2p )q−2 + · · · + 1).此时2n − 1不为合数,与题意矛盾. 所以n为素数. 2 20、证明: 假设a为奇数,an 为奇数,an + 1为偶数与题意矛盾.所以a为偶数。又如果n不是2的 方幂,则存在素数p = 2,使得p | n. 令p ∗ q = n,an + 1 = (aq + 1)((aq )p−1 + (aq )p−2 + · · · + 1)与题意矛盾. 2 21、证明: √ √ ( −1), √ (1)1 = 1 + √ 0 ∗ −1 ∈ Q√ (2)∀a1 + b1 −1, a2 + b2 −1 ∈ Q( −1),则 √ √ √ √ a1 + b1 −1 + a2 + b2 −1 = (a1 + a2 ) + (b1 + b2 ) −1 ∈ Q( −1), √ √ √ √ a1 + b1 −1 − a2 − b2 −1 = (a1 − a2 ) + (b1 − b2 ) −1 ∈ Q( −1), √ √ √ √ (a1 + b1 −1) ∗ (a2 + b2 −1) = (a1 a2 − b1 b2 ) + (a1 b2 + a2 b1 ) −1 ∈ Q( −1), √ (3) 如果a2 + b2 −1 = 0, 则 √ √ √ √ 2 2 2 (a1 +b1 −1)/(a2 +b2 −1) = (a1 a2 +b1 b2 )/(a2 2 +b2 )+(a2 b1 −a1 b2 ) −1/(a2 +b2 ) ∈ Q( −1). √ 所以Q( −1)为数域. 2 22、证明: √ √ √ 5 的数域 , 则 Q ⊂ F, 5 ∈ F , 由数域的定义可知 b 5 ∈ F, ∀b ∈ 设F为任意包含 √ √ Q, a + b 5 ∈ F, ∀a ∈ Q,所以Q( 5) ⊂ F . 2 23、证明: (1)ζ = e2πi/n , ζ n = 1.
《抽象代数基础》习题解答
⎝ i=1 ⎠
k =1
k =1
aw 所以,对于任意的正整数 n 和 m ,等式成立. hd 考 察 A 中 任 意 n ( n ≥ 1 ) 个 元 素 a1, a2, ⋯, an : 当 n ≥ 3 时 , 要 使 记 号 k a1 ⋅ a2 ⋅ ⋯ ⋅ an 变成有意义的记号,必需在其中添加一些括号规定运算次序.现在我 . 们来阐明:在不改变元素顺序的前提下,无论怎样在其中添加括号,运算结果总是 w n w 等于∏ ai . w i=1
,
gf
⎛1
=
⎜⎜ ⎝
3
2 4
3 1
4 2
5⎞ 5⎟⎟⎠
,
f −1
⎛1 = ⎜⎜⎝3
2 1
3 2
4 5
5⎞ 4 ⎟⎟⎠
.
7.设 a = (i1 i2 ⋯ ik ) ,求 a−1 . 解 我们有 a = (ik ik−1 ⋯ i1) . 8.设 f 是任意一个置换,证明: f ⋅ (i1 i2 ⋯ ik ) ⋅ f −1 = ( f (i1) f (i2 ) ⋯ f (ik )) .
网 事实上,当 n = 1 或 n = 2 时,无需加括号,我们的结论自然成立.当 n = 3 时,由
于“ ⋅ ”适合结合律,我们的结论成立.假设当 n ≤ r ( r ≥ 1 )时我们的结论成立.考察
案 n = r +1 的 情 形 : 不 妨 设 最 后 一 次 运 算 是 a ⋅b , 其 中 a 为 a1, a2, ⋯, an 中 前
所以 Z 关于该乘法构成一个群.
4.写出 S3 的乘法表.
解 S3 = {(1), (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}, S3 的乘法表如下:
复变函数与积分变换答案(马柏林、李丹横、晏华辉)修订版,习题8
习题八1. 求下列函数的拉普拉斯变换.(1)()sin cos f t t t =⋅,(2)4()etf t -=,(3)2()sin f t t=(4)2()f t t =, (5)()sinh f t bt= 解: (1)1()sin cos sin 22f t t t t =⋅=221121(())(sin 2)2244L f t L t s s ==⋅=++(2)411(())(e )24t L f t L s -==+(3)21cos 2()sin 2tf t t -==221cos 21111122(())()(1)(cos 2)222224(4)tL f t L L t s s s s -==-=⋅-⋅=++(4) 232()L t s = (5)22e e 111111(())()(e )(e )22222bt btbt bt b L f t L L L s bs bs b ---==-=⋅-⋅=-+-2. 求下列函数的拉普拉斯变换.(1)2,01()1,120,2t f t t t ≤<⎧⎪=≤<⎨⎪≥⎩(2)cos ,0π()0,πt t f t t ≤<⎧=⎨≥⎩解: (1) 122011(())()e 2e e (2e e )st st st s s L f t f t dt dt dt s+∞-----=⋅=⋅+=--⎰⎰⎰(2) πππ2011e (())()e cos e (1e)1s ststsL f t f t dt t dt ss -+∞---+=⋅=⋅=+++⎰⎰3. 设函数()cos ()sin ()f t t t t u t δ=⋅-⋅,其中函数()u t 为阶跃函数, 求()f t 的拉普拉斯变换. 解:20222(())()e cos ()e sin ()e cos ()e sin e 11cos e1111st st st st st stt L f t f t dt t t dt t u t dtt t dt t dt s t s s s δδ+∞+∞+∞---+∞+∞---∞-==⋅=⋅⋅-⋅⋅=⋅⋅-⋅=⋅-=-=+++⎰⎰⎰⎰⎰4. 求图8.5所表示的周期函数的拉普拉斯变换解:2()e 1(())1e (1e )Tst T T asas f t dt as a L f t s s ---⋅+==---⎰5. 求下列函数的拉普拉斯变换.(1)()sin 2t f t lt l=⋅ (2)2()esin 5tf t t-=⋅(3)()1e t f t t =-⋅(4)4()e cos 4tf t t-=⋅(5)()(24)f t u t =- (6()5sin 23cos 2f t t t =-(7) 12()e t f t t δ=⋅ (8) 2()32f t t t =++ 解:(1)222222221()sin [()sin ]221()(())(sin )[()sin ]22112()22()()t f t lt t lt ll t F s L f t L lt L t lt l lllssl s l l s l s l =⋅=--⋅==⋅=--⋅-'=-=-⋅=+++(2)225()(())(esin 5)(2)25tF s L f t L t s -==⋅=++21(3)()(())(1e )(1)(e )(e )1111()1(1)t t t F s L f t L t L L t L t ss s s s ==-⋅=-⋅=+-⋅'=+=---(4)424()(())(ecos 4)(4)16ts F s L f t L t s -+==⋅=++(5)1,2(24)0,t u t >⎧-=⎨⎩其他22()(())((24))=(24)e 1=e =e st st sF s L f t L u t u t dtdt s∞-∞--==--⋅⎰⎰(6)222()(())(5sin 23cos 2)5(sin 2)3(cos 2)210353444F s L f t L t t L t L t s s s s s ==-=--=⋅-⋅=+++(7)12332213(1)()22()(())(e )()()t F s L f t L t s s δδδΓ+Γ==⋅==-- (8)2221()(())(32)()3()2(1)(232)F s L f t L t t L t L t L s s s==++=++=++6.记[]()()L f s F s =,对常数0s ,若00Re()s s δ->,证明00[e ]()()s t L f s F s s ⋅=-证明:00000()()00[e ]()e ()e ()e()e ()s t s t st s s ts s t L f s f t dtf t dt f t dt F s s ∞-∞∞---⋅=⋅⋅=⋅=⋅=-⎰⎰⎰7 记[]()()L f s F s =,证明:()()[(t)()]()n n F s L f t s =-⋅证明:当n=1时,()()e st F s f t dt +∞-=⋅⎰()[()e ][()e ]()e (())st st st F s f t dt f t dt t f t dt L t f t s+∞--+∞+∞-''=⋅∂⋅==-⋅⋅=-⋅∂⎰⎰⎰所以,当n=1时, ()()[(t)()]()n n Fs L f t s =-⋅显然成立。
《编译原理》蒋立源课后答案【khdaw_lxywyl】
www.khd课后a答w案.网com
课后答案网
最右推导: <程序>T<分程序>T<标号>:<分程序> T<标号>:<标号>:<分程序> T<标号>:<标号>:<无标号分程序> T<标号>:<标号>:<分程序首部>;<复合尾部> T<标号>:<标号>:<分程序首部>;<语句>;<复合尾部> T<标号>:<标号>:<分程序首部>;<语句>;<语句>;end T<标号>:<标号>:<分程序首部>;<语句>;s;end T<标号>:<标号>:<分程序首部>;s;s;end T<标号>:<标号>:<分程序首部>;说明;s;s;end T<标号>:<标号>:<分程序首部>;d;s;s;end T<标号>:<标号>:begin 说明;d;s;s;end T<标号>:<标号>:begin d;d;s;s;end T<标号>: L:begin d;d;s;s;end TL:L:begin d;d;s;s;end (2)句子 L:L:begin d;d;s;s end 的相应语法树是:
第二章 习题解答
1.(1)答:26*26=676
(2)答:26*10=260
(3)答:{a,b,c,...,z,a0,a1,...,a9,aa,...,az,...,zz,a00,a01,...,zzz}, 共 26+26*36+26*36*36=34658 个
AA2013(1) 抽象代数答案
8 Lecture 8 (Oct 12): Fundamental Theorem of Homomorphisms 9 Lecture 9 (Oct 14): Characteristic and Field of Fractions 9.1 9.2 Characteristic of A Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Field of Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6 Lecture 6 (Sep 30): Operations on Ideals 7 Lecture 7 (Oct 10): Maximal Ideals and Quotient Rings 7.1 7.2 7.3 Maximal Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Quotient Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ideals And Quotient Rings for Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lecture Notes On Abstract Algebra (I)
Guohua Peng email: peng@ October 18, 2013
段正敏主编《线性代数》习题解答
线性代数习题解答1张应应胡佩2013-3-1目录第一章行列式 (1)第二章矩阵 (22)第三章向量组的线性相关性 (50)第四章线性方程组 (69)第五章矩阵的相似对角化 (91)第六章二次型 (114)附录:习题参考答案 (129)1教材:段正敏,颜军,阴文革:《线性代数》,高等教育出版社,2010。
第一章 行列式1.填空题:(1)3421的逆序数为 5 ;解:该排列的逆序数为00235t =+++=. (2)517924的逆序数为 7 ;解:该排列的逆序数为0100337t =+++++=. (3)设有行列式2311187001234564021103152----=D =)(ij a ∆, 含因子543112a a a 的项为 -1440,0 ; 解:(23154)31223314554(1)(1)526831440t a a a a a -=-⋅⋅⋅⋅⋅=-(24153)41224314553(1)(1)506810t a a a a a -=-⋅⋅⋅⋅⋅=所以D 含因子543112a a a 的项为-1440和0.(4)若n 阶行列式=-∆==∆=)(,)(ij ij n a D a a D 则()1na-;解:Q 行列式D 中每一行可提出一个公因子1-,()()()1()1n nij ij D a a a ∴=∆-=-∆=-.(5)设328814412211111)(x xx x f --=,则0)(=x f 的根为 1,2,-2 ;解:()f x 是一个Vandermonde 行列式,()(1)(2)(2)(21)(22)(21)0f x x x x ∴=--+-----=的根为1,2,-2.(6)设321,,x x x 是方程03=++q px x 的三个根,则行列式=132213321x x x x x x x x x 0 ; 解:根据条件有332123123123()()()()x px q x x x x x x x x x x x ax x x x ++=---=-+++-比较系数可得:1230x x x ++=,123x x x q =-再根据条件得:311322333x px q x px q x px q⎧=--⎪=--⎨⎪=--⎩原行列式333123123123=3()33()0x x x x x x p x x x q q ++-=-++--⋅-=.(7)设有行列式10132x x x-=0,则x = 1,2 ; 解:2231032(1)(2)001xx x x x x x -=-+=--= 1,2x ∴=.(8)设=)(x f 444342343331242221131211a a a xa a x a a x a a xa a a ,则多项式)(x f 中3x 的系数为 0 ; 解:按第一列展开11112121313141()f x a A a A a A xA =+++,Q 112131,,A A A 中最多只含有2x 项,∴含有3x 的项只可能是41xA()()12134141222433343123413242233132234122433(1)a a x xA x a x a xa a x x a a a a a a x a a a a a a +=-⎡⎤ =-++-++⎣⎦Q 41xA 不含3x 项,∴()f x 中3x 的系数为0.(9)如果330020034564321x =0,则x = 2 ;解:12346543122(512)(63)000265330033xx x =⋅=--= 2x ∴=.(10)00000000000dcb a= -abcd ;解:将行列式按第一行展开:1400000000(1)0000000000a b b a cabcd cdd+=⋅-=-.(11)如果121013c ba =1,则111425333---c b a = 1 ;解:1323323133301302524121111111Tr r AA r r a a b c a b c bc -=+---=.(12)如333231232221131211a a a a a a a a a =2,则333232312322222113121211222222222222a a a a a a a a a a a a ---= -16 , 332313231332221222123121112111323232a a a a a a a a a a a a a a a ------= -4 ,3212000332313322212312111a a a a a a a a a= -4 ; 解:1112131121312122231231222321233132331323332T a a a a a a A a a a A a a a a a a a a a αααβββ======()()1112121332122222312231223313232331221232222222222222222288016a a a a a a a a a a a a A αααααααααααααα--=-=-- =+-=-=-()1121112131122212223212123121231323132333122311232323232323232a a a a a a a a a a a a a a a ββββββββββββββββββ----=--=---- =-+-- =()1223122123224T A ββββββββββ-=- =-=-11213114122232132333000212423T a a a A a a a a a a + ⋅=-按第一行展开(-1).(13)设n 阶行列式D =0≠a ,且D 中的每列的元素之和为b ,则行列式D 中的第二行的代数余子式之和为=a b;解:11121111211112121222121212111=n n n n n n nnn n nnn n nna a a a a a a a a a a ab b b ba a a a a a a a a L L L L L L M M M M M M M M M L LL每行元素加到第二行()212220n b A A A a+++=≠L 按第二行展开∴212220,0n b A A A ≠+++≠L 且21222n a A A A b∴+++=L 实际上,由上述证明过程可知任意行代数余子式之和12,1,2,,i i in aA A A i n b+++==L K . (14)如果44434234333224232214131211a a a a a a a a a a a a a =1,则2423121144434234333224232200a a a a a a a a a a a a a = -1 , 443424433323423222a a a a a a a a a =111a ;解:令222324323334424344a a a B a a a a a a =,则111213142223241111113233341142434401(1)10,000a a a a a a a a B a B a a a a a a a +=⋅-= ⇒ ≠=≠且 2223243233344111114243441112232400(1)10a a a a a a a B a B a a a a a a a +=⋅-=-=-223242233343112434441T a a a a a a B B a a a a ===. (15)设有行列式101321x x -,则元素1-的余子式21M2的代数余子式12A(16)设3214214314324321=D =)(ij a ∆,ij ij a A 表示元素的代数余子式,则=+++44342414432A A A A 0 ;解:方法一:14243444234A A A A +++可看成D 中第一列各元素与第四列对应元素代数余子式乘积之和,故其值为0.方法二:11424344412312342234034134124A A A A +++=推论.(17)设cdb a a cbda dbcd c ba D ==)(ij a ∆,ij ij a A 表示元素的代数余子式,则=+++44342414A A A A 0 ;解:1424344411011a bc c bd A A A A dbc a bd +++=推论4.(18)设6000000000000002000230023402345)(x x x x x x f --=,则5x 的系数为 6 ;解:方法一:54255254320543243200432032000()66(1)(1)6320020000200000000000006x x x x x f x x x x x x xx ⨯--===⋅-⋅-⋅=--方法二:Q ()f x 只有一项非0()()54321615243342516610255543204320032000()1200000000000006(1)(1)66t x x x f x a a a a a a x x x x -∴==-- =-⋅-⋅⋅= 综上所述:5x 的系数为6.(19)设1112121222*********121212222122212120m m m m mm n m n m n n nnn n nma a a a a a a a a Db b bc c c b b b c c c b b b c c c =KK M M L M K KKK K M M L M M M L M KK, 且111212122212m m m m mma a a a a a a a a a =K KM M L M K111212122212n n n n nnb b b b b b b b b b =K K M M L M K,则D =()1mnab - ;解:方法一:令111212122212m m m m mma a a a a a A a a a a ==L LM M M L,111212122212n n n n nnb b b b b b B b b b b ==L L M M M L则1A O D A B ab CB==⋅=,()()211mnmnO AD A B ab B C==-⋅=-证明:根据行列式性质2和5,将行列式A 变成下三角行列式,得到:11112121222212121212m m m m m mm m m ma a a a a a a a a A a a a a a a a a a a '====''L L L M M M M M O LL行列式1D 、2D 的变换和行列式A 的变换完全相同,得到:1212121111211112121222212221212m m m m n m n n n nm n n nna a a a a a D c c cb b bc c c b b b c c c b b b '''='''''''''M M O L L LL L M M M M M M LL1212122111211112121222212221212m m m n m n m n n nnn n nm a a a a a a D b b b c c c b b b c c c b b b c c c '''='''''''''MM O L LL LLMMM M M M LL分别将1D 、2D 第一次按第一行展开(2a 变成第一行),第二次按第二行展开(3a 变成第一行),……,总共进行m 次第一行展开,得到:112m D a a a B A B ab ==⋅=L ;()()()()()11111121211111n n n mn mnm D a a a B A B ab ++++++=-⋅--⋅=-⋅⋅=-L证毕.方法二:设()ij m m A a ⨯=,()pq n n B b ⨯=,()()()ij m n m n A O D d C B +⨯+⎛⎫== ⎪⎝⎭其中:(), 1:,1:, 1:,1:,, , 1:,1:, ij ij pq pja i m j m db i m m n j m m n p i m q j mc i m m n j m p i m ==⎧⎪==++=++=-=-*⎨⎪=++==-⎩那么:()(){}{}1111111,,,,1,,1m m m n m m m n m n t p p p pp mp m p m n p p p m n A O D d d d d C B +++++++=+==-∑L L L L L L ()()()()(){}{}{}{}()()()(){}{}{}{}()(){}{}()(){}11111111111111111111,,1,,,,1,,11,,1,,,,1,,11,,1,,,,11111m n m nm m n n m nmm n n m n m m t p p m l m l p mp l nl p p m l l n t p p t l l p mp l nl p p m l l n t p p t l l p mp l nl p p m l l a a b b a a b b a a b b *++=====-⎡⎤=-⋅-⎣⎦⎛⎫=-⋅- ⎪ ⎪⎝⎭∑∑∑L L L L L L L L L L L L L L L L L L L L L L L 由{}1,,n A B ab=⎛⎫ ⎪ ⎪⎝⎭=⋅=∑L1112121222122111211112121222212221212m m m m mmnm n m n n nn n n nma a a a a a a a a Db b bc c c b b b c c c b b b c c c =L LMMM L LLL L M M M M M M L L2D 中m a g 依次与12,,,n b b b g g g L 对换,使得m a g 在n b g 下面;()1m a - g 依次与12,,,n b b b g g g L 对换,使得()1m a - g 在n b g 下面,在m a g 上面;……1a g 依次与12,,,n b b b g g g L 对换,使得1a g 在n b g 下面,在a 2 g 上面;总共进行了mn 次对换。