摩擦磨损三章
机械设计基础课后习题答案(第四版)
目录第1章机械设计概述 (1)第2章摩擦、磨损及润滑概述 (3)第3章平面机构的结构分析 (12)第4章平面连杆机构 (16)第5章凸轮机构 (36)第6章间歇运动机构 (46)第7章螺纹连接与螺旋传动 (48)第8章带传动 (60)第9章链传动 (73)第10章齿轮传动 (80)第11章蜗杆传动 (112)第12章齿轮系 (124)第13章机械传动设计 (131)第14章轴和轴毂连接 (133)第15章轴承 (138)第16章其他常用零、部件 (152)第17章机械的平衡与调速 (156)第18章机械设计CAD简介 (163)第1章机械设计概述1.1机械设计过程通常分为哪几个阶段?各阶段的主要内容是什么?答:机械设计过程通常可分为以下几个阶段:1.产品规划主要工作是提出设计任务和明确设计要求。
2.方案设计在满足设计任务书中设计具体要求的前提下,由设计人员构思出多种可行方案并进行分析比较,从中优选出一种功能满足要求、工作性能可靠、结构设计可靠、结构设计可行、成本低廉的方案。
3.技术设计完成总体设计、部件设计、零件设计等。
4.制造及试验制造出样机、试用、修改、鉴定。
1.2常见的失效形式有哪几种?答:断裂,过量变形,表面失效,破坏正常工作条件引起的失效等几种。
1.3什么叫工作能力?计算准则是如何得出的?答:工作能力为指零件在一定的工作条件下抵抗可能出现的失效的能力。
对于载荷而言称为承载能力。
根据不同的失效原因建立起来的工作能力判定条件。
1.4标准化的重要意义是什么?答:标准化的重要意义可使零件、部件的种类减少,简化生产管理过程,降低成本,保证产品的质量,缩短生产周期。
第2章摩擦、磨损及润滑概述2.1按摩擦副表面间的润滑状态,摩擦可分为哪几类?各有何特点?答:摩擦副可分为四类:干摩擦、液体摩擦、边界摩擦和混合摩擦。
干摩擦的特点是两物体间无任何润滑剂和保护膜,摩擦系数及摩擦阻力最大,磨损最严重,在接触区内出现了粘着和梨刨现象。
第3章摩擦学设计
(3)摩擦状态转化
仅依据润滑膜的厚度还不能准确地判断润滑 状态,尚须与表面粗糙度进行对比,图3.2。 实际机械中的摩擦副,通常几种润滑状态会 同时存在--------混合润滑状态。
(4)摩擦状态的判断
① 通常用膜厚比来判断摩擦状态-测量困难,不便采用
hmin Ra1 Ra 2
2 2
hmin—两滑动粗糙表面间的最小公称油膜厚度;
介于1~3之间,因此该摩擦副处在混合润滑状态。
3.2.2 摩擦设计
内摩擦:发生在物质内部,阻碍分子间相对运动
流体分子间的摩擦
摩擦
静摩擦
外摩擦:发生在接触表面,阻碍相对滑动(趋势) 动摩擦 本课程讲述
F 定义:摩擦力与法向力的比值,即 f N
摩擦系数在静摩擦条件下是变化的。
1.摩擦系数
一般与摩擦副材质有关,通常从试验中得到。
3 s
dV W 或磨粒磨损的式 ka ds H
对稳定的一维磨损,高度h的磨损率为常数,即:
dh 常数 dt
再通过对时间的积分可以得到对应时间下的磨 损的高度h。
2.磨损设计准则
(1)要求轴承表面的平均压强不大于材料的 许用压强,以避免材料过载,即 p p (2)要求轴承的摩擦功耗不大于材料的许用 值,以防止表面温升过高产生胶合,即 pv pv (3)要求表面的相对速度不大于材料的许用 值,以防止轴承表面严重磨损,即
磨损
粘着磨损
根据磨损机理
磨粒磨损 疲劳磨损 腐蚀磨损 气蚀磨损 微动磨损
1.磨损计算 (1)粘着磨损—金属摩擦副之间最普遍的一种
定义:当摩擦表面的轮廓峰在相互作用的各点处发 生“冷焊”后,在相对滑动时,材料从一个表面迁 移 到另一个表面,便形成了粘着磨损。 粘着磨损计算根据如图3.8所示的模型求得。 dV W
磨损三阶段与磨损三过程
磨损三阶段与磨损三过程
1.磨损三阶段
摩擦表面上的物质,由于表面相对运动而不断损失的现象称磨损。
在一般正常工作状态下,磨损可分三个阶段:
1)跑合(磨合)阶段:轻微的磨损,跑合是为正常运行创造条件。
2)稳定磨损阶段:磨损更轻微,磨损率低而稳定。
3)剧烈磨损阶段:磨损速度急剧增长,零件精度丧失,发生噪音和振动,摩擦温度迅速升高,说明零件即将失效。
(如图)
机件磨损是无法避免的。
但是如何缩短跑合期、延长稳定磨损阶段和推迟剧烈磨损的到来,是研究者致力的方向。
2.磨损三过程
在实际的磨损现象中,通常是几种形式的磨损同时存在,而且一种磨损发生后往往诱发其它形式的磨损。
另外,磨损形式还随工况的变化而变化。
1)表面的相互作用
两个摩擦表面的相互作用,可以是机械(弹性、塑性和犁沟效应)或分子(吸引和粘着)的两类磨损量跑合稳定磨损阶段
剧烈
磨损三个阶段的示意图
摩擦行程(时间)
2)表面层的变化
在摩擦表面的相互作用下,表面层将发生机械(硬化)、组织结构(退火)的、物理的和化学的变化。
3)表面层的破坏形式
擦伤:由于犁沟作用在摩擦表面产生沿摩擦方向的沟痕和磨屑。
点蚀:在接触应力反复作用下,金属疲劳破坏而形成的表面凹坑。
剥落:金属表面由于变形强化而变脆,在载荷作用下产生微裂纹,随后剥落。
胶合:由粘着效应形成的表面粘结点具有较高的连接强度,使剪切破坏发生在表层内一定深度,因而导致严重磨损。
济南益华摩擦学测试技术有限公司。
《机械设计》第三节-摩擦-磨损-润滑
t
度不会继续改变,所占时
间比率较小
O
时间t
2、稳定磨损阶段
经磨合的摩擦表面加工硬化,形成了稳定的表面粗糙度,摩擦
条件保持相对稳定,磨损较缓,该段时间长短反映零件的寿命
3、急剧磨损阶段 经稳定磨损后,零件表面破坏,运动副间隙增大→动载振动
→润滑状态改变→温升↑→磨损速度急剧上升→直至零件失效
二、磨损的类型
弹性变形
流体摩擦(润滑)
塑性变形
边界膜
边界摩擦(润滑)—最低要求
边界膜 液体
液
混合摩擦(润滑)
边界膜
液体
一、干摩擦
摩擦理论: 库仑公式 Ff f () Fn
新理论:分子—机械理论、能量理论、粘着理论
简单粘着理论:
Ff
Ar B
Fn
sy
B
a
n
Ar Ari i 1
f () Ff B Fn sy
(3)条件粘度(相对粘度)—恩氏粘度
3、影响润滑油粘度的主要因素
(1)温度 润滑油的粘度随着温度的升高而降低
粘度指数VI ,35,85,110
(2)压力
p 0 ep
P>10MP时,随P↑→ηP↑
4、配油计算
K v vB vA vB
配油比
1、根据摩擦面间存在润滑剂的状况,滑动摩擦分
为哪几种? 2、获得流体动力润滑的基本条件是什么?
3、典型的磨损分哪三个阶段?磨损按机理分哪几 种类型?
4、什么是流体的粘性定律?
5、粘度的常用单位有哪些?影响粘度的主要因素是 什么?如何影响?
6、评价润滑脂和润滑油性能的指标各有哪几个?
润滑油压分布
v1
v2
7-材料磨损与耐磨材料(第3章粘着磨损)4详解
在以后的摩擦过程中,附着物碾转于对磨件的表面之 间,有些粘附物在反复的摩擦中可能由金属表面脱落下 来→磨屑。
9
§3.1.1 粘着磨损的概念
粘着磨损也称咬合(胶合)磨损。磨损产物通常呈小 颗粒状,从一物体表面粘附到另一个物体表面上,然 后在继续的摩擦过程中,表面层发生断裂,有时还发 生反粘附.即被粘附到另一个表面上的材料又回到原 来的表面上,这种粘附反粘附往往使材料以自由磨屑 状脱落下来。粘着磨损产物可以在任意的循环中形成。 粘着以后的断裂分离,并不一定在最初的接触表面产 生。
4
Chapter 3: 材料的磨损机理
图(d)为腐蚀磨损。它的主要特征是磨损表面有化 学反应膜或小麻点,但麻点比较光滑。磨损物为簿的 碎片或粉末,典型工件如船舶外壳、水力发电的水轮 机叶片等。
5
Chapter 3: 材料的磨损机理
• §3.1 • §3.2 • §3.3 • §3.4 • §3.5 • §3.6
10
§3.1 粘着磨损
• §3.1.1 粘着磨损的概念 • §3.1.2 粘着磨损一般规律 • §3.1.3 粘着磨损分类 • §3.1.4 粘着磨损表达式与定律 • §3.1.5 影响粘着磨损的因素
11
Hale Waihona Puke §3.1.2 粘着磨损一般规律
• 粘着磨损过程一般分为三个阶段: (1)跑合阶段亦称 磨合阶段(磨合磨损阶段); (2)稳定磨损阶段; (3)急 剧磨损阶段亦称破坏磨损阶段。如下图所示:
26
§3.1.3 粘着磨损分类
第一类胶合的相关因素: • 材料性能(表面物性、表面化性、表面力性);
• e.g.强度、塑性、韧性、氧化性等
第三章 摩擦、磨损和润滑
适当的润滑是减小摩擦、减轻磨损和降低能量消耗的有效手 段。
第一节 摩 擦
摩擦的种类 1)内摩擦:发生在物质内部,阻碍分子间相对运动的摩擦。 2)外摩擦:当相互接触的两个物体发生相对滑动或有相对滑
在液体摩擦状态下,其摩擦性能取决于流体内部分子之间的 粘滞阻力,故摩擦因数极小(约为0.001~0.008),是一种理想的 摩擦状态。摩擦规律也已有了根本的变化,与干摩擦完全不同。
四、混合摩擦
当两摩擦表面不能被具有压力的液体层完全分隔开,摩擦表 面间处于既有边界摩擦又有液体摩擦的混合状态称为混合摩擦。
边界膜有两大类:吸附膜和化学反应膜。吸附膜又分为物理 吸附膜与化学吸附膜。
物理吸附膜是由分子引力所 形成的。吸附膜吸附在金属表面 的模型如图2.3.4所示。
化学吸附膜是润滑油分子 以其化学键力作用在金属表面 形成保护膜,它的剪切强度与 抗粘着能力较低,但熔点较高 (约120°C)。所以,能在中等 速度及中等载荷下起润滑作用。
机械零件的磨损过程分为:磨合阶段、稳定磨损阶段和剧烈磨损 阶段。
按照磨损失效的机理,磨损主要有四种基本类型,即磨粒磨损、 粘着磨损、接触疲劳磨损和腐蚀磨损。
(1)磨粒磨损 外界进入摩擦表面间的硬质颗粒或摩擦表面上 的硬质凸峰,在摩擦过程中引起表面材料脱落的现象。特征是摩擦表 面沿着滑动方向形成划痕,在一些脆性材料上还会有崩碎和颗粒。
中心值列于表2.3.1。
此外,常用的还有比较法测定粘度,称为条件粘度(或相对粘 度)。我国常用的条件粘度为恩氏粘度,即在规定温度下200cm3的 油样流过恩氏粘度计的小孔(直径2.8 mm)所需时间(s)与同体积的 蒸馏水在20°C下流过相同小孔时间的比值即为该油样的恩氏粘度, 以符号°Et表示,其角标t表示测定时的温度。美国常用赛氏通用 秒(SUS),英国常用雷氏秒(R)作为条件湿或吸附于金属摩擦表面 形成边界膜的性能称为油性。吸附能力强,则愈有利于边界油膜的 形成,油性愈好。
摩擦磨损基本原理
4.犁沟效应
犁沟效应是硬金属的粗糙峰嵌入软金属后,在滑 动中推挤软金属,产生塑性流动并划出一条沟槽。 犁沟效应的阻力是摩擦力的组成部分,在磨粒磨损 和檫伤磨损中,为主要分量。
硬金属表面的粗糙峰由许多半角为θ 的圆锥体组成,在法向载荷作用下,硬 峰嵌入软金属的深度为h,滑动摩擦时, 只有圆锥体的前沿面与软金属接触。 接触表面在水平面上的投影面积A =πd2/8; 在垂直面上的投影面积S=dh/2。 如果软金属的塑性屈服性能各向同性,屈服极限为σs,于是 法向载荷W和犁沟力Pe 分别为
定律三:摩擦系数与滑动速度无关。虽然对于金属材料基 本符合,而对粘弹性显著的弹性材料,摩擦系数则明显与滑 动速度有关。
特别注意:在古典摩擦定律中,摩擦系数µ是一个常数。 大量的试验指出,很难确定某种摩擦副固定的摩擦系数, 仅在一定的环境(湿度温度等)和工况(速度和载荷等)下,对 于一定的材质的摩擦副来说,µ才有可能是一个常数。如在 正常的大气环境下,硬质钢摩擦副表面的µ为0.6,但在真 空下,其µ可达到2.0。 因此,通过摩擦试验测得试样的摩擦系数时,必须注明 试验条件,否则所得的试验数据没有意义。
a.金属的整体机械性质:如剪切强度、屈服极限、硬度、弹 性模量等,都直接影响摩擦力的粘着项和犁沟项。 b. 晶态材料的晶格排列:在不同晶体结构单晶的不同晶面 上,由于原子密度不同,其粘着强度也不同。如面心立方晶 系的Cu的(111)面,密排六方晶系的Co的(001)面,原子密度 高,表面能低,不易粘着。
对金属间的摩擦而言,主要是粘着作用,其次是“犁沟”作用。 而材料的弹性变形引起的能量消耗很小,因而对总摩擦阻力的 影响很小,故可忽略不计,因此摩擦阻力可用下式表达:
F = F 剪 + F犁
(试卷真题)第3章_摩擦
第3章摩擦、磨损及润滑一、选择题1.干摩擦时,摩擦力与所受载荷及表观接触面积的关系为:____A.与表观面积无关而与载荷成正比B. 与表观面积有关而与载荷无关C. 与表观面积有关而与载荷成正比选A第3章摩擦、磨损及润滑第1节摩擦力与接触面积的关系来源:机械设计学习要点与习题解析P162.摩擦副表面为液体动压润滑状态,当外载荷不变时,摩擦面间的最小油膜厚度随相对滑动速度的增加而____。
A.变薄B.增厚C.不变选B第3章摩擦、磨损及润滑第1节摩擦的性质来源:机械设计学习要点与习题解析P163.两相对滑动的接触表面,依靠吸附油膜进行润滑的摩擦状态称为____。
A.干摩擦B.边界摩擦C.混合摩擦D.液体摩擦选B第3章摩擦、磨损及润滑第1节摩擦的判别来源:机械设计学习要点与习题解析P164.减少磨损的一般方法有很多中,其中____是错误的。
A.选择合适的材料组合B.生成表面膜C.改滑动摩擦为滚动摩擦D.增加表面粗糙度选D第3章摩擦、磨损及润滑第2节减少磨损的方法来源:机械设计学习要点与习题解析P165.表面疲劳磨损(点蚀)的发生与____有关。
A.酸碱盐介质B.瞬时速度C.硬质磨粒D.材料浅层缺陷选D第3章摩擦、磨损及润滑第2节磨损的性质来源:机械设计学习要点与习题解析P176.各种油杯中,____可用于脂润滑。
A.针阀油杯B.油绳式油杯C.旋盖式油杯选C第3章摩擦、磨损及润滑第3节润滑的分类来源:机械设计学习要点与习题解析P177.零件表面在混合润滑状态时的摩擦系数比液体润滑状态时的摩擦系数____。
A.大B.小C.可能大可能小D.相等选A第3章摩擦、磨损及润滑第1节摩擦的性质来源:机械设计学习要点与习题解析P178.为了减轻摩擦副的表面疲劳磨损,下面措施中,____是不合理的。
A.降低表面粗糙度B.增大润滑油粘度C.提高表面硬度D.提高相对滑动速度选D第3章摩擦、磨损及润滑第2节磨损的判别来源:机械设计学习要点与习题解析P179.采用含有油性和极压添加剂的润滑剂,主要是为了减少____。
机械设计----摩擦
第三章 磨擦、磨损及润滑(一)教学要求掌握摩擦副分类及基本性质、磨损过程和机理及润滑的类型及润滑剂类型。
(二)教学的重点与难点摩擦副基本性质和典型磨损过程(三)教学内容§3—1 摩擦摩擦——两接触的物体在接触表面间相对滑动或有一趋势时产生阻碍其发生相对滑动的切向阻力,——这种现角叫磨擦磨损——由于摩擦引起的摩擦能耗和导致表面材料的不断损耗或转移,即形成磨损。
使零件的表面形状与尺寸遭到缓慢而连续破坏→精度、可靠性↓效率↓直至破坏润滑——减少摩擦、降低磨损的一种有效手段。
摩擦学(Tribology )——包含力学、流变学、表面物理、表面化学及材料学、工程热物理学等学科,是一门边缘和交叉学科。
摩擦 内摩擦——发生在物质内部外摩擦——两个相互接触表面之间的摩擦接运动状态——摩擦 静摩擦——仅有相对滑动趋势时的摩擦动摩擦本节只讨论金属摩擦副的滑动摩擦根据摩擦面间存在润滑剂的状况,干摩擦 ——最不利滑动摩擦 边界摩擦(边界润滑) ——最低要求流体摩擦(流体润滑) ——如图3-1所示混合摩擦(混合润滑) ——最理想各种状态下的摩擦系数见表3-1,图3-2为摩擦特性曲线p v f /ηλ=-的关系。
一、干摩擦——两摩擦表面直接接触,不加入任何润滑剂的摩擦而实际上,即使很洁净的表面上也存在脏污膜和的氧化膜,∴实际f 比在真空中测定值小很多。
摩擦理论:①库仑公式 n f fF F =(n F —法向力)——至今沿用机理:②机械摩擦理论→认为两个粗糙表面接触时,接触点相互啮合,摩擦力为啮合点问切向阻力的总和,表面越粗糙,摩擦力就越大。
但不能解释光滑表面间的摩擦现象——表面愈光滑、接触面越大,f F 越大,且与滑动速度V 有关。
③新理论:分子—机械理论、能量理论、粘着理论—常用简单粘着理论:如图3-3所示,摩擦副真实接触面积Ar 只有表现接触面积A 的百分之一和万分之一,)10000~100/(A Ar =,∴接触面上压力很大,很容易达到材料的压缩屈服极限sy σ→产生塑性流动→接触面↑,∴n F ↑应力并不升高 ∴sy nF Ar σ= (3-1)接触点塑性变形后→脏污膜遭破坏,容易使基本金属产生粘着现象→产生冷焊结点→滑动时,先将结点切开,设结点的剪切强度极限为B τ,则摩擦力为B sy nB r f F A F τστ== (3-2) ∴金属摩擦系数syB n fF F f στ== (3-3) B τ 两接触金属中较软者的剪切强度——剪切发生在软金属站界面的剪切强度极限B f f B ττττ<<=,(脏污表面)——剪切发生在结点金属上 sy σ——较硬的基本材料的压缩屈服极限∵大多数金属sy B στ/很相近,∴f 很相近∴降低摩擦系数的措施:在硬金属基体表面涂覆一层极薄的软金属(使)sy σ取决于基体材料,B τ取决于软金属。
摩擦磨损
4 粘着摩擦理论1950年的鲍登和泰伯提出:当接触表面相 互压紧时,它们只在微凸体的顶端接触,由于接触面积很 小,接触着的微凸体上压力很高,足以引起塑性变形。使 得紧密接触处发生牢固粘着,即接点产生冷焊现象。若要 接触物体产生相对滑动,必须剪断冷焊点。因此摩擦力的 粘着分量可表示为
F A r
2、磨粒尺寸的影响: 一般金属的磨损量随磨料平均尺寸的增 大而增加,到某一临界值后,磨损量便保持 不变,即磨损与磨料的尺寸无关。钢磨损量 与磨料尺寸关系如右图所示。各种材料磨料 临界尺寸是不相同的,磨料的临界尺寸还与 工作零件的结构和精度有关。
3、显微组织的影响: a.基体组织 由铁素体逐步转变为珠光体、贝氏体、马氏体时,耐磨 性提高。众所周知,铁素体硬度太低,故耐磨性很差。马氏 体与回火马氏体硬度高,所以耐磨性好。但在相同硬度时, 下贝氏体氏体的耐磨性要比回火马氏体的好得多。钢中的残 余奥氏体也影响抗磨料磨损能力。在低应力磨损下,残余奥 氏体数量较多时,将降低耐磨性;反之,在高应力磨损下, 残余奥氏体因能显著加工硬化或转变为马氏体而改善耐磨性。
4、载荷的影响:
载荷显著地影响各种材料的磨粒磨 损。 如右图所示,线磨损度与表面压力 成正比。当压力达到转折值pc 时, 线 磨损度随压力的增加变得平缓, 这是 由于磨粒磨损形式转变的结果。各种 材料的转折压力值不同。
3.5.1粘着磨损的定义与分类
定义: 当摩擦副相对滑动时, 由于粘着效应所形成的 结点发生剪切断裂,接触表面的材料从一个表面转 移到另一个表面的现象称为粘着磨损。
3.2.1 摩擦的定义和分类: 当两个相互接触的物体在外力作用下产生 相对运动或具有相对运动的趋势时,在接 触面间产生的切向运动阻力称为摩擦力, 这个阻力与运动方向相平行,这种现象称 之为摩擦。
(整理)摩擦和磨损与润滑学的基本原理
摩擦和磨损与润滑学的基本原理一、摩擦和摩擦的种类1.什么是摩擦?相互接触的物体沿着它们的接触面做相对运动时,会产生阻碍物体相对运动的阻力,这种现象称为摩擦。
这种阻力叫摩擦力。
2.摩擦的种类摩擦的种类很多,因为研究的依据不同,摩擦的分类也不同。
按摩擦副的运动状态分为静摩擦和动摩擦;按摩擦副运动形式分类分为滑动摩擦、滚动摩擦和自旋摩擦;按摩擦发生的部位分类分为内摩擦和外摩擦;按摩擦副表面润滑状况分类分为静摩擦、干摩擦、边界摩擦、流体摩擦和混合摩擦。
本文重点介绍静摩擦、干摩擦、边界摩擦、流体摩擦(液体摩擦)和混合摩擦。
(1)静摩擦是指摩擦表面没有任何吸附膜或化合物存在时的摩擦。
静金属的摩擦会产生表面粘着。
(2)干摩擦是指在大气条件下,摩擦表面没有任何润滑剂存在的摩擦。
严格说干摩擦是在接触表面上无任何其他介质,如自然污染膜、润滑膜以及湿气等。
干摩擦是消耗动力最多,磨损最严重的一种摩擦。
(3)边界摩擦是指摩擦表面有一层极薄得润滑膜存在时的摩擦。
这层膜称为边界油膜。
(4)流体摩擦是指摩擦表面完全被润滑油膜隔开时的摩擦。
这种摩擦发生在界面的润滑剂膜内,摩擦阻力最小,磨损最小。
(5)混合摩擦——是指属于过渡状态的摩擦,包括半干摩擦和半流体摩擦。
半干摩擦是指同时存在着干摩擦和边界摩擦的混合摩擦。
半流体摩擦是指同时存在着流体摩擦和边界摩擦(或干摩擦)的混合摩擦。
二、磨损和磨损的种类1.什么是磨损?是指两个相互接触的物体发生相对运动时,物体表面的物质不断地转移和损失。
磨损的结果使相对运动的物体表面不断有微料抖落,表面性质、几何尺寸均发生改变。
2.磨损的三个阶段磨损阶段、稳定磨损阶段和急剧磨损阶段3.磨损的种类按磨损的破坏机理,通常把磨损分为粘着磨损、磨料磨损、疲劳磨损、腐蚀磨损和微动磨损五种。
(1)粘着磨损由于摩擦表面存在着一定的粗糙度,在压力的作用下,当摩擦表面做相对运动时,在真空接触点上产生瞬时高温,使其表面软化,熔化,甚至相互粘着,接触表面的材料从一个表面转移到另一个表面,这种现象就叫做粘着磨损。
第三章 磨损及磨损理论
c.材料的组织结构和表面处理
多相金属比单相金属的抗粘着磨损能力高;金 属中化合物相比单相固溶体的粘着倾向小。
通过表面处理技术在金属表面生成硫化物、磷 化物或氯化物等薄膜可以减少粘着效应,同时 表面膜限制了破坏深度,提高抗粘着磨损的能 力。
d.元素周期表中的B族元素,如锗、银、镉、铟、 锡、锑、铊、铅、铋与铁的冶金相容性差,抗 粘着磨损性能好。而铁与A族元素组成的摩擦副 粘着倾向大。
b. 相同金属或冶金相溶性大的材料摩擦副易发生 粘着磨损。异种金属或冶金相溶性小的材料摩 擦副抗粘着磨损能力较高。金属与非金属摩擦 副抗粘着磨损能力高于异种金属摩擦副。
应避免使用同种金属或冶金相溶性大的金属组成 摩擦副。
冶金的相(互)溶性:两种金属能在固态互相溶解的性能。 摩擦的相(互)溶性:一定配对材料在发生摩擦和磨损时抵 抗粘着的性能。 一般,冶金相溶性好的金属摩擦副,其摩擦相溶性就差, 相同金属摩擦副,摩擦互溶性最差。
③ 速度的影响
随着滑动速度的变化,磨损类型由一种形式转变为另一种 形式。 如图(a)所示,当摩擦速度很低时,主要是氧化磨损,出 现Fe2O3的磨屑,磨损量很小。 随速度的增大,氧化膜破裂,金属的直接接触,转化为粘 着磨损,磨损量显著增大。 滑动速度再高,摩擦温度上升,有利于氧化膜形成,又转 为氧化磨损,磨屑为Fe3O4,磨损量又减小。 如摩擦速度再增大,将再次转化为粘着磨损,磨损量又开 始增加。
它们不产生切削作用,因此Ks值明显减小。
图(b)是滑动速度保持一定而改变载荷所得到的钢对钢磨
损实验结果。
载荷小产生氧化磨损, 磨屑主要是Fe2O3;
当载荷达到W0后, 磨屑是FeO、Fe2O3 和Fe3O4的混合物。 载荷超过临界载荷Wc以后, 便转入危害性的粘着磨损。
第3章金属磨损ppt课件
pv准则
pv准则形式简单,常用在非流体润滑的滑动轴承等零件的 设计中,作为选择抗胶合材料的依据。 但是其数据离散范围较大,有时达到50%,因此准确性较 差。
pv [ pv]
式中,p为Hertz最大应力;v为相对滑动速度。 根据工况条件[pv]在3.2×103~1.5×105 MPa·m/s之间变化。
载荷与速度的乘积与摩擦副间传递的功率成正比,因此可 以认为,材料一定的摩擦副传递的功率是有限的。工程中 常常要限制摩擦副的pv值。
2. 表面温度
pv值与摩擦副传递的功率成正比,也就是与摩擦损耗的功 率成正比,摩擦过程中这些能量产生的热使表面温度升高。
产生的热量在接触表面间不是均匀分布的,大部分的热量 产生在表面接触点附近,形成了半球形的等温面。
而由于摩擦副体积远大于接触峰点,一旦脱离接触,峰点 温度便迅速下降,一般局部高温持续时间只有几毫秒。
润滑油膜、吸附膜或其他表面膜将发生破裂,使接触峰点 产生粘着,随后在滑动中粘着结点破坏。
这种粘着、破坏、再粘着的交替过程就构成粘着磨损。
3.3.1 粘着磨损的种类
1. 轻微粘着磨损 当粘着结点的强度低于摩擦副金属的强度时,剪切发生在
对于纯金属和各种未经热处理的钢材,耐磨性与材料硬度成 正比关系。
2. 相对硬度
磨料硬度H0与试件材料硬度H之间的相对值。 为了防止磨粒磨损,材料硬度应高于磨料硬度。
3. 载荷
外载荷对各种材料的磨粒磨损有显著影响。线磨损率与表面 压力成正比。
当压力达到转折值pc时,线磨损率随压力的增加变得平缓, 这是由于磨粒磨损形式转变的结果。各种材料的转折压力值 是不同的。
结合面上。此时虽然摩擦系数增大,但是磨损却很小,材料 迁移也不显著。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、润滑油的粘度
润滑油的粘度反 映了润滑油在外 力作用下抵抗剪 切变形的能力, 也是内摩擦力大 小的标志。
F A
式中 A--流体剪切面积
流体剪切应力
剪切应力τ与流体沿y方向速度的梯度成正比,即
d / dy
η定义为流体的动力粘度 上式称为牛顿流体粘性定律,凡符合此定律 的流体称为牛顿流体,否则称为非牛顿流体。 除此以外,还有运动粘度和条件粘度(恩 氏粘度)
5)腐蚀磨损-电化学作用
形成:空气中的酸、润滑油中的无机酸产生化学作用或 电化学作用。 现象:表面腐蚀并磨损。 影响因素:环境、润滑油的腐蚀性。
6)微动磨损
形成:小振幅、大频率、点或线接触。 现象:磨损面积小。
影响因素:载荷。
润滑剂、添加剂和润滑方法
• 润滑剂:气体、液体、半固体和固体
1、润滑油 2、润滑脂 3、固体润滑剂 石墨、二硫化钼、氮化硼 、蜡、 聚氟乙烯、 酚醛树脂 有机油、矿物油、合成油 钙基润滑脂、钠基润滑脂、锂基润滑脂
4、闪点—瞬时燃烧和碳化的温度;
燃点—长时间连续燃烧的温度(高温性能);
5、凝点—冷却,由液体转变为不能流动的临界温度 (低温启动性能) 6、极压性(EP), 在重压下表面膜破裂的最大 接触载荷,用PB表示,(极限载荷)
7、酸值—限制润滑剂变质后对表面的腐蚀
润滑油的选用:
我国将柴油机润滑油按质量标准分为五个等级。(CA、 CB、CC、CD、CE)其中农用运输车常用CC级润滑油, 它又分为5W/30、5W/40、10W/30、l0W/40、 10W/40、20W/40、30、40等8种粘度型号。数值越大, 润滑油的粘度越大。应根据不同的季节、地区和柴油 机的技术状态,选用不同牌号的润滑油。在保证可靠 润滑的前提下,为使发动机有效地发挥其效率,尽量 选用低牌号的润滑油。夏季可选用40CC级柴油机润滑 油,冬季可选用30CC级柴油机润滑油。对于新出厂的 柴油机,由于各运动件配合间隙较小,选用的润滑油 粘度可适当低一些。
2)磨粒磨损/磨削
形成:表面微峰或外界硬质颗粒进入摩擦面。
现象:表面划伤或犁沟现象。
影响因素:环境,表面硬度、粗糙度。
3)疲劳磨损(也称疲劳点蚀)
形成:接触应力反复作用。轴承、齿轮。 现象:表层金属剥落,形成点蚀凹坑。 影响因素:表面硬度、粗糙度,润滑油粘度。
4)流体磨粒、冲蚀磨损
形成:一定速度的硬质微粒反复作用,表面受法向力 及切向力。燃气涡轮机叶片、水轮机叶片。 现象:表面疲劳,材料损失。 影响因素:材料硬度
A a1 a2 a3
A l B (b) 分子作用模型 x
b1 b2 b3 B
(a)
三、摩擦理论
3、分子机械理论
摩擦连接破坏的五种形式
修正的粘着理论——粘着点长大
犁沟分量——锥形
球形滑块在软金属上产生的犁沟
球形滑块
金属的堆积
金属的螺脊
槽
表1 系数Kp的值 材料 钨 钢 铁 系数 1.55 1.35~1.70 1.90 材料 铜 锡 铅 系数 1.55 2.40 2.90
铸钢-钢
铸铁-铸铁
1.9 22 8.3 30.3
古典摩擦定律纠正
1 1—极小载荷 2、3—中等载荷 4—极大载荷 2 3 4 滑动速度v
摩 擦 系 数
f
古典摩擦定律纠正
三、摩擦理论
1、机械啮合理论(凹凸说)
v
L F
θ
机械理论摩擦模型
三、摩擦理论
2、分子理论
p0—接触点的平均压力; n0—原子接触数; x—滑动距离; l—晶体内原子间距离。
水在20℃时流经同样的毛细管所需时间的比值来衡量流体的粘性。
二、润滑油的特性
1、粘温特性
润滑油的粘度随温度的 变化存在指数关系:
t 0 t0 / t
m
2、润滑油的粘压特性
粘度和压力的关系近 似表示为:
0e
ap
3、油性—反映在摩擦表面的吸附性能
(边界润滑和粗糙表面尤其重要)
摩擦学原理
Principles of Tribology
材料科学与工程学院 孟君晟
第三章 摩擦 Friction
• 一、摩擦
• (Friction) •增大摩擦的方法
•减小摩擦的方法
气垫船
磁悬浮列车
金属的摩擦
•摩擦磨损润滑和密封失效是现代机械系统的主要失效原因。
摩 擦
内摩擦
摩 擦
外摩擦
静摩擦 动摩擦
1)动力粘度η
图示,长、宽、高各为1m的流体,如果使立方体顶面流体层相对 底面流体层产生1m/s的运动速度,所需要的外力F为1N时,则流 体的粘度η为1N•s/m²,叫做“帕秒”,常用Pa•s表示。有时也用 “(dyn •s/cm2)泊P”、“厘泊cP”表示。
换算关系:1Pa• S=10P=1000cP
滑动摩擦 滚动摩擦
金属摩擦副的运动状态
干摩擦—最不利(无润滑状态) dry friction
其摩擦阻力最大,磨损最严重。
金属摩擦副的运动状态
(boundary friction) 边界摩擦—最低要求(边界润滑状态)
温度对边界膜的影响很大。温度越 高,边界膜越容易破坏。
边界摩擦—最低要求(边界润滑状态)
莱昂纳多.达.芬奇
G.阿蒙顿
库仑
摩擦力计算公式: F=μ×P
古典摩擦定律纠正
1、载荷、速度与摩擦力关系式
摩擦副
单位面积载荷
a
0.006 0.004 0.022 0.022
b
0.114 0.110 0.054 0.074
c
0.94 0.97 0.55 0.59
d
0.226 0.216 0.125 0.110
3、剧烈磨损阶段
经稳定磨损后,零件表面破坏,运动副间隙增大→动载、振动→润滑状态 改变→温升↑→磨损速度急剧上升→直至零件失效
二、磨损分类:根据磨损机理可分为
1)粘着磨损:
形成:边界摩擦,载荷大,速度高,边界膜破坏,表 面尖峰接触。 现象:形成材料转移。 影响因素:材料硬度,表面粗糙度,载荷、速度、温 度,不同材料配副。
人们在生活中都有这样的经验,骑 自行车时,如果车胎打足了气,蹬起来 就省力;如果车胎瘪了,蹬起来就费力。 这是为什么呢?
分析物理情景
设Ny对B点的力臂为k,即 Ny与G的水平距离为k,则 力矩:
M=kNy=kG
滚动摩擦理论—微观滑动
汉斯柯特滑移
滚动摩擦理论—微观滑动
滚动接触中的滑移区与未滑移区
API质量等级分类,
汽油机油分为SA、SB、SC、SD、SE、 SF、SG 柴油机油分为:CA、CB、CD、CE、CF 加W的是冬季油,不加的是夏季油
例如:
5W/30是冬夏通用油 5—牌号(运动粘 度 ) 5W/30 意思代表既能满足冬季用5 号油,又能满足夏季30号油的场合的多 级油 L-AN46 L--润滑剂 AN-全损耗系统用 油,精制的矿物油类 类(L) 品种(AN)数字(46)
金属摩擦副的运动状态
流体摩擦(流体润滑状态)
(liquid friction)
其摩擦系数最小,且不会产生磨损,是 理想的摩擦状态。
金属摩擦副的运动状态
混合摩擦(混合润滑状态) (mixed friction)
混合摩擦能有效降低摩擦阻力,其摩 擦系数比边界摩擦时要小得多。
二、古典摩擦定律
古典摩擦定律
三、润滑脂及其主要性能
组成: 基础油+稠化剂+添加剂+澎润土 润滑脂的性能指标:针入度、滴点、析油量、 机械杂质、灰分、水分 1)针入度 软硬程度 H(mm)/0.1 阻力大小、流动性强弱
标准锥体,150g,25 ℃ ,5s h
2)滴点----固体流体的温度转折点,表示耐热性 3)防水性能; 4)静音性能; 5)种类 A)钙基脂:抗水,适于轻中重载荷; B)钠基脂:高温,但不抗水; C)锂基脂:多用途,最好; D)铝基脂:高度耐水性,航运机械 E)其它特种润滑脂(特种合成油、添加剂、 稠化剂等)
四、固体润滑剂 •用途:真空、辐射、重载等恶劣环境;
•种类:MoS2,PTFE,石墨,氟化石墨, WS2、
纳米材料
•应用方法:涂镀,沉积,粘贴,嵌入,添加剂
集中供油装置 a) 简单的少数点位集中供油 b) 设备中心、车间及工厂级集中供油 泵站+(稳压+冷却)+过滤+分配器+工位润滑
手动润滑泵
电动润滑泵
滚动摩擦理论—弹性滞后
圆柱在平面上滚动
磨 损
一、典型的磨损过程(三阶段)
1、磨合磨损过程
在一定载荷作用下形成一个 稳定的表面粗糙度,且在以后 过程中,此粗糙度不会继续改 变,所占时间比率较小
2、稳定磨损阶段
经磨合的摩擦表面加工硬化,形成了稳定的表面粗糙度,摩擦条件保 持相对稳定,磨损较缓,该段时间长短反映零件的寿命
2)运动粘度
流体的动力粘度与同温度下的密度ρ的比 值,称为运动粘度: 单位是cm² /s,叫做“斯”,常用St表示
换算关系:1m2/s=104St=106cSt 矿物油ρ=850~900kg/m3
3) 条件粘度
o
Et
恩氏粘度是相对粘度的一种,它是用200ml的粘性流体,在给定的温 度t下流经一定直径和长度的毛细管所需的时间,与同体积的蒸馏 (恩氏粘度用 o Et 表示)