26.1.1 二次函数同步练习 新人教版
最新人教版九年级数学上册《二次函数》同步练习及答案.docx
第二十六章二次函数26.1 二次函数(一)1.矩形周长是20cm,一边长是x㎝,面积是y㎝2,则y与x的函数关系式是,这个函数称作次函数.2.下列函数y=0.5x-1,y=3x2,y=0.5x2-4x+1,y=x(x-2),y=(x-1)2-x2中,二次函数的个数为( )(A)2个(B)3个(C)4个(D)5个3.k取哪些值时,函数y=(k2-k)x2+kx+(k+1)是以x为自变量是一次函数?二次函数?4.已知等腰直角三角形的斜边长为xcm,面积为ycm2,请写出y与x的函数关系式,并判断它是什么函数?5.如图,正方形ABCD边长是4,E、F分别在BC、CD上,设ΔAEF面积是y,EC=x,如果CE=CF,试求出y与x的函数关系及自变量取值范围,并判定y是x的什么函数?6.已知二次函数y=ax2+c,当x=0时,y=-3;当x=1时,y=-1,求当x=-2时,y的值.7.一块矩形耕地大小尺寸如下图,要在这块地上沿东西方向挖一条水渠,沿南北方向挖两条水渠,水渠宽为xm,余下的可耕地面积为ym2,(1)请你写出y与x之间的函数关系式.(2)根据你写出的函数关系式,求出水渠宽为1m时,余下的可耕地面积为多少?(3)若耕除去水渠剩余部分面积为4408m2,求此时水渠的宽度.26.1二次函数(二)1.已知函数y=ax2的图象过点(2,-4),则a=,对称轴是,顶点坐标是,抛物线的开口方向,抛物线的顶点是最点.2.下列关于函数y=-0.5x2的图象说法( )①图象是一条抛物线;②开口向下;③对称轴是y轴;④顶点(0,0).其中正确的有( )(A)1个(B)2个(C)3个(D)4个3.已知函数y=x2的图象过点(a,b),则它必通过的另一点是( )(A)(a,-b) (B)(-a,b)(C)(-a,-b) (D)(b,a)4.抛物线y=ax2过A(-1,2),试判断B(-2,-3),C(,)是否在抛物线上.5、已知正方形的对角线长为x,面积为y.(1)写出y与x的函数关系;(2)画出这个函数的图象草图.6.抛物线y=ax2(a≠0)与直线y=4x-3交于点A(m,1),求:(1)点A的坐标及抛物线顶点C的坐标和对称轴;(2)抛物线y=ax2与直线y=4x-3是否还有其他交点?若有,请求出这个交点B的坐标,若没有,请说明理由. 并求点A、B、C三点构成的三角形的面积.2.6.1二次函数(三)1.函数y=-1.5x2+2的图象开口方向,对称轴是,顶点坐标是,当x=时,y最大.2.把抛物线y=-x2向上平移4个单位后,得到的抛物线的函数解析式为,平移后的抛物线的顶点坐标是,对称轴是,与y轴的交点坐标是,与x轴的交点坐标是.3.将抛物线y=2x2-3通过下列( )平移后得到抛物线y=2x2,(A)向下平移3个单位(B)向上平移3个单位(C)向下平移2个单位(D)向上平移2个单位4.已知抛物线的对称轴是y轴,顶点的纵坐标为5,且过点(1,2)求这条抛物线的解析式.5.抛物线y=ax2+c顶点是(0,2),且形状及开口方向与y=-0.5x2相同.(1)确定a、c的值;(2)画出这个函数的图象.6.在同一坐标系中,画出函数y=-x2+2与y=x2-2的图像请分别说出图象的顶点坐标、对称轴及开口方向,并比较两个图像之间有何联系?26.1二次函数(四)1.抛物线y=3(x-2)2的对称轴是( )(A)直线x=2 (B)直线x=-2 (C)y 轴 (D)x 轴2.将抛物线y=3x 2向左平移3个单位所得的抛物线的函数关系式为( )A 、332-=x y B 、2)3(3-=x y C 、332+=x y D 、2)3(3+=x y3.抛物线2)1(--=x y 是由抛物线向平移个单位得到的,平称后的抛物线对称轴是,顶点坐标是,当x=时,y 有最值,其值是.4.用配方法把下列函数化成y=a(x-h)2的形式,并指出开口方向,顶点坐标和对称轴.(1)y=x 2+4x+4(2)y=- x 2+3x-(3)y=2x 2-4x5、已知二次函数图像的顶点在x 轴上,且图像经过点(2,-2)与(-1,-8)求此函数解析式.6.抛物线2)2(-=x a y 经过(1,-1).(1)确定a 的值;(2)画出这个函数图象; (3)求出抛物线与坐标轴的交点坐标.2.6.1 二次函数(五) 1、填表2、下列抛物线顶点是(2,1)的是( )A.1)2(22--=x y B.2)1(32+-=x y C.1)2(22+-=x y D.2)1(42+-=x y 3、抛物线23x y =先向上平移2个单位,后向右平移3个单位,所得抛物线是( )A.2)3(32-+=x y B.2)3(32++=x y C.2)3(32--=x y D.2)3(32+-=x y 4、抛物线的顶点在(-1,-2)且又过(-2,-1). (1)确定抛物线的解析式; (2)画出这个函数的图象.综合与运用5、如图所示,求:(1)抛物线的解析式,(2)抛物线与x 轴的交点坐标.6.某同学在推铅球时,推球经过的路线是抛物线的一部分(如图),出手处A 点坐标是(0,2),最高点B 坐标是(6,5),(1)求此抛物线的函数表达式.(2)你能算出这位学生推出的铅球有多远吗?拓展与探索7.如图,在一幢建筑物里,从10m 高的窗户处用水管斜着向外喷水,喷出的水,在垂直于墙壁的平面内画出一条抛物线,其顶点离墙1m,并且在离墙3m 处落到地面上,问抛物线的顶点比喷出的水高出多少?26.1二次函数(六)1、二次函数322+-=x x y 的顶点坐标是( ) A 、(1,0) B 、(1,2) C 、(2,1) D 、(―1,―2)2、二次函数y= x 2+x-1的图像是由函数y=x 2的图像先向平移个单位,再向平移个单位得到的. 3、用配方法求下列抛物线的顶点坐标和对称轴(1)x x y -=2(2)122+--=x x y4、写出下列抛物线的开口方向、对称轴、顶点坐标,当x 为何值时,y 有最大(小)值?并求其值. (1)y=-x 2+3x-2 (2))12)(2(--=x x y综合与运用5、有一矩形的苗圃,其四周是总长为40m 篱笆,假设它的一边长为xm ,面积为2ym . (1)y 随x 的变化的规律是什么?请分别用函数的表达式、表格、函数的图象表示出; (2)由函数的图象指出当x 取何值时,苗圃的面积最大?最大面积是多少?6、有一条长为7.2m 的木料,做成如图所示的“日”字形的窗柜,窗柜的宽和高各取多少时,这个窗的面积S 最大?最大面积是多少?(不考虑木料加工时的损耗和中间木柜所占的面积)7、心理学家发现,学生对概念的接受能力y 与提出概念所用的时间x (单位:min)之间满足函数关系y=-0.1x 2+2.6x+43 (0≤x ≤30),y 值越大,表示接受能力越强.(1)x 在什么范围内,学生的接受能力逐步增强?x 在什么范围内,学生的接受能力逐步降低? (2)第10min 时,学生的接受能力是多少? (3)多长时间内,学生的接受能力最强? 复习巩固1、下列函数中,是二次函数的是( )A 、y=0.5(x-3)xB 、y=(x+2)(x-2)-x 2C 、y=-0.75xD 、y=2、抛物线1)1(22+-=x y 的顶点是( ) A 、(1,1) B 、(-1,1) C 、(1,-1) D 、(-1,-1)3、顶点是(-2,0),开口方向、形状与抛物线y=0.5x 2相同的抛物线是( )A 、y=0.5(x-2)2B 、y=0.5(x+2)2C 、y=-0.5(x-2)2D 、y=-0.5(x+2)2 4、抛物线32+=x y 向右平移2个单位,再向上平移3个单位,所得新的抛物线是. 5、写出一个开口向下且对称轴是x=-2的二次函数解析式 6、将二次函数222---=x x y 经配方后得( )A 、3)1(2---=x y B 、3)1(2-+-=x yC 、1)1(2---=x yD 、1)1(2-+-=x y 7、二次函数42-=x y 与x 轴的交点坐标为,8、二次函数a x ax y ++=42的最大值是3,则=a9、将一根铁丝长为x,围成一个等边三角形,则面积S 与周长x 的关系式为. 10、 根据下列条件,分别确定二次函数中字母系数的值:(1)抛物线c x x y ++=42的顶点在x 轴上;c= (2)抛物线232+-=x ax y 的图像经过点(-1,3)a= (3)抛物线52+-=bx x y 的对称轴是直线x=-2,b=综合与运用11、如图,有一直角梯形的苗圃,它的两邻边借用夹角是135°的两围墙,另外两边用总长为30m的篱笆,问篱笆的两边各是多少米时,苗圃的面积最大?最大面积是多少?12、某商场将进价为30元的台灯以40元售出,平均每月能售出600个,调查表明:这种台灯的售价每上涨1元,其销售量就减少10个.(1)为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?(2)如果商场要想每月的销售利润最多,这种台灯的售价又将定为多少?这时应进台灯多少个?13.某瓜果基地市场部为指导该基地某种蔬菜的生产和销售,在对历年市场行情和生产情况进行了调查的基础上,对今年这种蔬菜上市后的市场售价和生产成本进行了预测,提供了两个方面的信息,如图甲、乙两图请你根据图象提供的信息说明:(1)在3月份出售这种蔬菜,每千克的收益是多少元?(收益=售价-成本)(2)哪个月出售这种蔬菜每千克的收益最大?说明理由.拓展与探索14、已知二次函数y=-0.5x 2+x+1.5 (1)用配方法求它的顶点坐标和对称轴; (2)画出这个函数的图象;(3)根据图象回答:当x 取哪些值时,y =0,y >0,y <0第二十六章答案 26.1二次函数(一)1、x x y 102+-=,二. 2、B 3、k=1,k ≠0且k ≠1.4、241x y =它是二次函数 5、x x y 4212+-= 0<x<4,二次 6、5 7(1)480020022+-=x x y , (2)4602m 2, (3)此时水渠的宽度是2m. 26、1二次函数(二)1、-1 y 轴 (0,0) 向下 高 2、D 3、B 4、点B 不在,点C 在 5、(1)221x y = (2)略 6、A 7(1)A(1,1) 顶点C(0,0)对称轴是y 轴.(2)(3,9)3 26、1二次函数(三)1、 下、y 轴、(0,2),1,2 2、42+-=x y (0,4) y 轴 (0,4) (2,0)(-2,0) 3、B 4、532+-=x y 5、(1)2,21=-=c a (2)略 6、顶点坐标分别是(0,2)(0,-2) 对称轴都是y 轴,开口方向向下与向上,两个图象关于x 轴对称, 6、 26.1二次函数(四)1、A 2、D 3、2x y -= 右 1 直线x=1 1 大草原0 4、(1)2)2(+=x y 开口向上, 顶点(-2,0)对称轴是直线x=-2 (2)2)3(21--=x y 开口向下,顶点(3,0)对称轴是直线x=3 5、2)5(92--=x y 或2)1(2--=x y ,6、(1)-1,(2)略(3) (0,-4)(2,0) 26.1二次函数(五)1、略 2、C 3、D 4、(1)2)1(2-+=x y (2)略5、(1)3)2(432+--=x y (2)(0,0) (4,0 ) 6、(1)5)6(1212+--=x y (2)1526+ 7、310 26.1二次函数(六)1、B 2、左 2 下 2 3、(1)41)21(2--=x y 顶点()41,21- 对称轴是直线21=x (2)2)1(2++-=x y 顶点(-1,2)对称轴是直线x=-1, 4、(1)25)3(212+--=x y 开口向下,顶点(3,)25对称轴是直线x=3,当x=3时,y 有最大值是35 (2)87)45(22--=x y 开口向上,顶点()87,45- 对称轴是直线x=45,当x= 45时,y 有最小值87- 5、(1)变化规律是二次函数、x x y 202+-= 表格与图象略,(2)当x=10m 时,y 的最大值是100m 2,6、宽为,21m ⋅高为m 8.1,最大面积为216.2m . 7、(1) 0≤x ≤13 13<x ≤30 (3)x=13复习题1、A 2、A 3、B 4、6)2(2+-=x y 5、不唯一如2)2(+-=x y 6、D 7、(2,0) (-2,0)8、4或-1 9、2363x y = 10、(1)4 (2)-2 (3)-4 11、直角腰为10m,下底边为20m,最大面积为150m 2.12、(1)当售价定为50元时,销售量为500个,当售价定为80元时,销售量为200个,(2)当售价定为65元时,销售量为350个,获利最大是1225元.13、(1)1元,(2)每千克售价关于月份的函数关系式为7321+-=x y ,每千克成本关于月份的函数关系式1)6(3122+-=x y ,每千克的收益21y y y -=,故37)5(312+--=x y ,当x=5时,y 最大值37, 14、(1)2)1(212+--=x y 顶点点坐标(1,2) 对称轴是直线x=1,(2)略 (3)当x=-1或x=3时,y=0,当-1<x<3时y>0,当x<-1或x>3时,y<0.。
新人教版九年级数学下册 26.1.1 二次函数同步练习(含答案)
26.1.1 二次函数
1. 下列五个函数关系式:①25y ax x =-+,②y =-x 2+1,③y =32
+2x ,④2325y x x =--,⑤2256
y x x =-+.其中是二次函数的有( ) A .1个 B .2个 C .3个 D .4个 2. 下列结论正确的是( )
A .关于x 的二次函数y =a (x +2)2中,自变量的取值范围是x ≠-2
B .二次函数自变量的取值范围是所有实数
C .在函数y =-x 22
中,自变量的取值范围是x ≠0 D .二次函数自变量的取值范围是非零实数
3. 如图,直角三角形AOB 中,AB ⊥OB ,且AB =OB =3,设直线x =t 截此三角形所得的阴影部
分的面积为S ,则S 与t 之间的函数关系式为( )
A .S=t
B .212S t =
C .S=t 2
D .2112
S t =- 4. 当m =_________时,2(2)m m y m x +=+是关于x 的二次函数.
5. 国家决定对某药品价格分两次降价,若设平均每次降价的百分率为x ,该药品原价为18
元,降价后的价格为y 元,则y 与x 之间的函数关系式为 .
参考答案
1.B
2.B
3.B
4.1
5.y=18(1-x)2。
新人教版九年级下册 二次函数各课时同步练习及答案
26.1二次函数(1)◆基础扫描1. 下列函数中,不是二次函数的是( )A 、21y =-B 、22(1)4y x =+-C 、1(1)(4)2y x x =-+ D 、22(2)1y x x =--+ 2.在半径为4的圆中,挖去一个边长为xcm 的正方形,剩下部分面积为2ycm ,则关于y 与x 之间函数关系式为( )A 、24y x π=-B 、216y x π=-C 、216y x =-D 、24y x π=- 3.在二次函数21y x =-+中,二次项系数、一次项系数、常数项的和为 .4.边长为2的正方形,如果边长增加x ,则面积S 与x 之间的函数关系是 .5.已知221(3)2a a y a x --=--是二次函数,则a = .◆能力拓展6.某工厂计划为一批长方体形状的产品涂上油漆,长方体的长和宽相等,高比长多0.5 m.如果长方体的长和宽用x(m)表示, 油漆每平方米所需费用是5元,油漆每个长方体所需费用为y 元.求y 与x 之间函数关系式.7.如图,矩形ABCD 中,AB=10cm,BC=5cm,点M 以1cm /s 的速度从点B 向点C 运动,同时,点N 以2cm /s 的速度从点C 向点D 运动.设运动开始第t 秒钟时,五边形ABMND 的面积为2Scm ,求出S 与t 的函数关系式,并指出自变量t 的取值范围.N DCB A◆创新学习8.已知函数2y ax bx c =++是二次函数,函数y ax b =+是一次函数且其图象不经过第一象限.请你给出符合上述条件的a 、b 的值参考答案1.D 2.B 3. 0 4.244S x x =++5.1a =- 6.23010y x x =+7.由题意得BM= t ,CN =2 t ,所以MC =5t -,得MCN ABCD S S S ∆=-矩形 11055)22t t =⨯-⨯-⨯(,即2550S t t -+=,自变量的取值范围是0<t <5.8.当1,1ab =-=-时,2y x xc =--+是二次函数,1y x =--的图形不经过第一象限(答案不唯一).26.1二次函数(2)◆基础扫描1.抛物线2222,2,21y x y x y x ==-=+共有的性质是( )A .开口向上B .对称轴都是y 轴C .都有最高点D .顶点都是原点2.已知a <1-,点1(1,)a y -、2(,)a y 、3(1,)a y +都在函数2y x =的图象上,则( ) A .1y <2y <3y B .1y <3y <2y C .3y <2y <1y D .2y <1y <3y 3.抛物线2112y x =-+的开口 ,对称轴是 ,顶点坐标是 . 4.把抛物线23y x =向下平移3个单位得到抛物线 .5.将抛物线21y x =+的图象绕原点O 旋转180°,则旋转后的抛物线解析式是 .◆能力拓展6.已知正方形的对角线长xcm,面积为2ycm .请写出y 与x 之间的函数关系式,并画出其图象.7. 如图所示,有一座抛物线形拱桥,桥下面在正常水位AB 时,宽20m ,水位上升3m 就达到警戒线CD,这时水面宽度为10m .(1)在如图所示的坐标系中求抛物线的解析式;(2)若洪水到来时,水位以每小时0.2m 的速度上升,从警戒线开始,再持续多少小时才能到达拱桥顶?◆创新学习8. 如图,直线l 经过点A (4,0)和点B (0,4),且与二次函数2y ax =的图象在第一象限内相交于点P ,若△AOP 的面积为92,求二次函数的解析式。
26.1 二次函数及其图象同步练习 新人教版
26.1 二次函数及其图象专题一 开放题1.请写出一个开口向上,与y 轴交点纵坐标为﹣1,且经过点(1,3)的抛物线的解析 式 .(答案不唯一) 2.(1)若22()m my m m x -=+是二次函数,求m 的值;(2)当k 为何值时,函数221(1)(3)k k y k x k x k --=++-+是二次函数?专题二 探究题3.如图,把抛物线y =x 2沿直线y =x 平移2个单位后,其顶点在直线上的A 处,则平移后抛物线的解析式是( ) A .1)1(2-+=x y B .1)1(2++=x y C .1)1(2+-=x y D .1)1(2--=x y4.如图,若一抛物线y =ax 2与四条直线x =1、 x =2、 y =1、 y =2围成的正方形有公共点,求a 的取值范围.专题三 存在性问题5.如图,抛物线 与x 轴交于A 、B 两点,与y 轴交于点C ,且OA =2,OC =3. (1)求抛物线的解析式;(2)若点D (2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P ,使得△BDP的周长最小?若存在,请求出点P 的坐标;若不存在,请说明理由. 注:二次函数c bx ax y ++=2(a ≠0)的对称轴是直线x =ab2-.=6.如图,二次函数c x x y +-=221的图象与x 轴分别交于A 、B 两点,顶点M 关于x 轴的对称点是M′.(1)若A (-4,0),求二次函数的关系式; (2)在(1)的条件下,求四边形AMBM′的面积; (3)是否存在抛物线212y x x c =-+,使得四边形AMBM′为正方形?若存在,请求出此抛物线的函数关系式;若不存在,请说明理由.c bx x y ++-=221【知识要点】1.二次函数的一般形式c bx ax y ++=2(其中a ≠0,a ,b ,c 为常数).2.二次函数2y ax =的对称轴是y 轴,顶点是原点,当a >0时,抛物线的开口向上, 顶点是抛物线的最低点,a 越大,抛物线的开口越小;当a <0时,抛物线的开口向下,顶点是抛物线的最高点,a 越大,抛物线的开口越大. 3.抛物线2()y a x h k =-+的图象与性质:(1)二次函数2()y a x h k =-+的图象与抛物线2y ax =形状相同,位置不同,由抛物线2y ax =平移可以得到抛物线2()y a x h k =-+.平移的方向、距离要根据h ,k 的值确定. (2)①当0a >时,开口向上;当a <0时,开口向下; ②对称轴是直线x h =;③顶点坐标是(h ,k ).4.二次函数y=ax 2+bx+c 的对称轴是直线x =ab2-,顶点坐标为)44,2(2a b ac a b --.【温馨提示】1.二次函数的一般形式y=ax 2+bx+c 中必须强调a ≠0. 2.当a <0时,a 越小,开口越小,a 越大,开口越大. 3.二次函数的增减性是以对称轴为分界线的.4.当a >0时,二次函数有最小值,若自变量取值范围不包括顶点的横坐标,则距离对称轴最近处,取得函数的最小值;当a <0时,二次函数有最大值,若自变量取值范围不包括顶点的横坐标,则距离对称轴最近处,取得函数的最大值.【方法技巧】1.一般地,抛物线的平移规律是 “上加下减常数项,左加右减自变量”.2.如已知三个点求抛物线解析式,则设一般式y=ax 2+bx+c .3.若已知顶点和其他一点,则设顶点式2()y a x h k =-+.参考答案1. 答案不唯一,如y=x 2+3x ﹣1等.【解析】设抛物线的解析式为y=ax 2+bx+c ,∵ 开口向上,∴a >0. ∵其与y 轴交点纵坐标为﹣1,∴c =﹣1.∵经过点(1,3),∴a+b -1=3.令a =1,则b =3,所以y=x 2+3x ﹣1.2.解:(1)由题意,得⎪⎩⎪⎨⎧=+=-,0,222m m m m 解得m =2.(2)由题意,得⎩⎨⎧≠+=--,01,2122k k k 解得k =3.3.C 【解析】把抛物线y=x 2沿直线y=x 平移2个单位,即是将抛物线向上平移一个单位长度后再向右移1个单位长度,再根据“上加下减常数项,左加右减自变量”即可得到平移后的抛物线的解析式为2(1)1=-+y x ,答案为C.4.解:因为四条直线x =1、 x =2、 y =1、 y =2围成正方形ABCD ,所以A (1,2),C (2,1).设过A 点的抛物线解析式为y =a 1x 2,过C 点的抛物线解析式为y =a 2x 2,则a 2≤a ≤a 1. 把A (1,2),C (2,1)分别代入,可求得a 1=2,a 2=14.所以a 的取值范围是14≤a ≤2.5.解:(1)将A (-2,0), C (0,3)代入y =c bx x ++-221得⎩⎨⎧=+--=,022,3c b c 解得b = 12 ,c = 3.∴此抛物线的解析式为 y = 21-x 2+21x +3.(2) 连接AD 交对称轴于点P ,则P 为所求的点.设直线AD 的解析式为y =kx +b. 由已知得⎩⎨⎧=+=+-,22,02b k b k 解得k= 21,b =1.∴直线AD 的解析式为y =21x +1.对称轴为直线x =-a b 2= 21.当x = 21时,y = 45,∴ P 点的坐标为(21,45). 6.解:(1) 把A (-4,0)代入c x x y +-=221,解出c =-12.∴二次函数的关系式为12212--=x x y .(2)如图,xyM'MBA O令y =0,则有211202x x --=,解得14x =-,26x =,∴A (-4,0),B (6,0), ∴AB =10. ∵225)1(21122122--=--=x x x y ,∴M (1, 225-), ∴M ′(1, 225), ∴MM′=25.∴四边形AMBM′的面积=12AB·MM′=21×10×25=125.(3) 存在.假设存在抛物线c x x y +-=221,使得四边形AMBM′为正方形.令y =0,则0212=+-=c x x y ,解得c x 211-±=.∴A (c 211--,0),B (c 211-+,0),∴AB =c 212-. ∵四边形AMBM′为正方形, ∴MM′=c 212-.∵对称轴为直线12=-=abx ,∴顶点M (1, c 21--). 把点M 的坐标代入212y x x c =-+,得c 21--=c +-121,整理得2304c c +-=,解得112c =(不合题意,舍去),232c =-.∴抛物线关系式为23212--=x x y 时, 四边形AMB M′为正方形.。
人教版九年级数学下册第二十六单元二次函数的应用同步练习1带答案
人教版九年级数学下册第二十六单元《二次函数的应用》同步练习1带答案一、抛物线y=(k+1)x 2+k 2-9开口向下,且通过原点,那么k =—————————二、已知抛物线y=x 2+(n-3)x+n+1通过坐标原点O ,求这条抛物线的极点P 的坐标3、、二次函数c bx x y ++=2的图象上有两点(3,-8)和(-5,-8),那么此拋物线的对称轴是( )(A )1x =- (B )1x = (C )2x =(D )3x =4、极点为(-2,-5)且过点(1,-14)的抛物线的解析式为___________________.五、已知二次函数y =ax 2+bx +c ,当x =1时,y 有最大值为5,且它的图象通过点(2,3),求那个函数的关系式.6、某水果批发商场经销一种水果,若是每千克盈利10元,天天可售出500千克.经市场调查发觉, 在进货价不变的情形下,假设每千克涨价1元,日销售量将减少20千克.(10分)(1)当每千克涨价为多少元时,天天的盈利最多?最多是多少?(2)假设商场只要求保证天天的盈利为6000元,同时又可使顾客取得实惠,每千克应涨价为多少元?7、已知函数12-+=bx x y 的图象通过点(3,2).求那个函数的解析式;并指出图象的极点坐标;当0>x 时,求使2≥y 的x 的取值范围.八、二次函数c bx x y ++=2的图象上有两点(3,-8)和(-5,-8),那么此拋物线的对称轴是( )A .x =4 B. x =3 C. x =-5 D. x =-1。
九、直角坐标平面上将二次函数y =-2(x -1)2-2的图象向左平移1个单位,再向上平移1个单位,那么其极点为( )A.(0,0) B.(1,-2) C.(0,-1) D.(-2,1)10、已知二次函数232)1(2-++-=m mx x m y ,那么当=m 时,其最大值为0. 1一、抛物线2ax y =与直线b ax y +=交于点)3,3(-A ,求这两个函数的解析式。
新课程课堂同步练习册(九年级数学下册人教版)答案
数学课堂同步练习册(人教版九年级下册)参考答案第二十六章 二次函数26.1 二次函数及其图象(一)一、 D C C 二、 1. ≠0,=0,≠0,=0,≠0 =0, 2. x x y 62+=3. )10(x x y -= ,二三、1. 23x y = 2.(1)1,0,1 (2)3,7,-12 (3)-2,2,0 3. 2161x y = §26.1 二次函数及其图象(二)一、 D B A 二、1. 下,(0,0),y 轴,高 2. 略 3. 答案不唯一,如22x y -= 三、1.a 的符号是正号,对称轴是y 轴,顶点为(0,0) 2. 略3. (1) 22x y -= (2) 否 (3)()6-;(),6-§26.1 二次函数及其图象(三)一、 BDD 二、1.下, 3 2. 略 三、1. 共同点:都是开口向下,对称轴为y 轴.不同点:顶点分别为(0,0);(0,2);(0,-2) .2. 41=a 3. 532+-=x y §26.1 二次函数及其图象(四)一、 DCB 二、1. 左,1, 2. 略 3. 向下,3-=x ,(-3,0) 三、1. 3,2a c ==- 2. 13a =3. ()2134y x =-§26.1 二次函数及其图象(五)一、C D B 二、1. 1=x ,(1,1) 2. 左,1,下,2 3.略三、1.略2.(1)()212y x =+- (2)略 3. (1)3)2(63262--=-===x y k h a(2)直线2223x =>-小2.(1)()212y x =+- (2)略 §26.1 二次函数及其图象(六) 一、B B D D 二、1.23)27,23(=x 直线 2. 5;5;41<-3. < 三、1. ab ac a b x a y x y x y 44)2(32)31(36)4(2222-++=---=--= 略2. 解:(1)设这个抛物线的解析式为2y ax bx c =++.由已知,抛物线过(20)A -,,(10)B ,,(28)C ,三点,得4200428a b c a b c a b c -+=⎧⎪++=⎨⎪++=⎩,,.解这个方程组,得 224a b c =⎧⎪=⎨⎪=-⎩.∴所求抛物线的解析式为2224y x x =+-.(2)222192242(2)222y x x x x x ⎛⎫=+-=+-=+- ⎪⎝⎭.∴该抛物线的顶点坐标为1922⎛⎫-- ⎪⎝⎭,. §26.2 用函数观点看一元二次方程一、 C D D 二、1.(-1,0);(2,0) (0,-2) 2. 一 3. 312-或; 231<<-x ; 312x x <->或 三、1.(1)1x =-或3x = (2)x <-1或x >3(3)1-<x <3 2.(1)()21232y x =--+ (2)()20和()20 §26.3 实际问题与二次函数(一)一、 A C D 二、1. 2- 大 18 2. 7 3. 400cm 2三、1.(1)当矩形的长与宽分别为40m 和10m 时,矩形场地的面积是400m 2(2)不能围成面积是800m 2的矩形场地.(3)当矩形的长为25m 、宽为25m 时,矩形场地的面积最大,是625m 22.m ,矩形的一边长为2x m .其相邻边长为((2041022xx -+=-+∴该金属框围成的面积(121022S x x ⎡⎤=⋅-++⎣⎦(2320x x =-++ (0<x<10-当30x ==-.此时矩形的一边长为)260x m =-,相邻边长为((()10210310m -+⋅-=.()21003300.S m =-=-最大26.3 实际问题与二次函数(二)一、A B A 二、1. 2 2. 250(1)x + 3.252或12.5 三、1. 40元 当5.7=x 元时,625=最大W 元 2. 解:(1)降低x 元后,所销售的件数是(500+100x ),y=-100x 2+600x+5500 (0<x ≤11 )(2)y=-100x 2+600x+5500 (0<x ≤11 )配方得y=-100(x -3)2+6400 当x=3时,y 的最大值是6400元。
新人教版九年级数学第26章《二次函数》同步练习及答案2
第26章二次函数 同步学习检测(二)班级 _________ 座号 姓名 ___ 得分______一、选择题(每小题2分,共102分)1、抛物线y=12x 2 向左平移8个单位,再向下平移9个单位后,所得抛物线的表达式是( ) A. y=12(x+8)2-9 B. y=12(x -8)2+9 C. y=12(x -8)2-9 D. y=12(x+8)2+9 2、(2009年泸州)在平面直角坐标系中,将二次函数22x y =的图象向上平移2个单位,所得图象的解析式为( )A .222-=x yB .222+=x yC .2)2(2-=x yD .2)2(2+=x y3、 (2009年四川省内江市)抛物线3)2(2+-=x y 的顶点坐标是( )A .(2,3)B .(-2,3)C .(2,-3)D .(-2,-3)4、(2009年长春)如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回,点P 在运动过程中速度大小不变,则以点A 为圆心,线段AP 长为半径的圆的面积S 与点P 的运动时间t 之间的函数图象大致为( )5、(2009年桂林市、百色市)二次函数2(1)2y x =++的最小值是( ).A .2B .1C .-3D .23 6、(2009年上海市)抛物线22()y x m n =++(m n ,是常数)的顶点坐标是( )A .()m n ,B .()m n -,C .()m n -,D .()m n --,7、(2009年陕西省)根据下表中的二次函数c bx ax y ++=2的自变量x 与函数y 的对应值,可判断二次函数的图像与x 轴【 】A .只有一个交点B .有两个交点,且它们分别在y 轴两侧C .有两个交点,且它们均在y 轴同侧D .无交点8、(2009威海)二次函数2365y x x =--+的图象的顶点坐标是( )A .(18)-,B .(18),C .(12)-,D .(14)-,9、(2009湖北省荆门市)函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象可能是( )10、(2009年贵州黔东南州)抛物线的图象如图所示,根据图象可知,抛物线的解析式可能..是( )A 、y=x 2-x -2B 、y=121212++-x C 、y=121212+--x x D 、y=22++-x x 11、(2009年齐齐哈尔市)已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论:0ac >①;②方程20ax bx c ++=的两根之和大于0;y ③随x 的增大而增大;④0a b c -+<,其中正确的个数( )A .4个B .3个C .2个D .1个12、(2009年深圳市)二次函数c bx ax y ++=2的图象如图2所示,若点A (1,y 1)、B (2,y 2)是它图象上的两点,则y 1与y 2的大小关系是() A .21y y < B .21y y = C .21y y > D .不能确定13、已知抛物线y=ax 2+bx+c 与x 轴有两个不同的交点,则关于x 的一元二次方程ax 2+bx+c=0根的情况是 ( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .由b 2-4ac 的值确定14、(2009丽水市)已知二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,给出以下结论: ①a >0. ②该函数的图象关于直线1x =对称.③当13x x =-=或时,函数y 的值都等于0.其中正确结论的个数是( )A .3B .2C .1D .0 A . B . C . D . 1111x o y y o x y o xx o y15、(2009年甘肃庆阳)图(1)是一个横断面为抛物线形状的拱桥,当水面在l 时,拱顶(拱桥洞的最高点)离水面2m ,水面宽4m .如图(2)建立平面直角坐标系,则抛物线的关系式是( )A .22y x =-B .22y x =C .212y x =-D .212y x =16、(2009年广西南宁)已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列四个结论:20040b c b ac <>->①②③④0a b c -+<,其中正确的个数有( )A .1个B .2个C .3个D .4个 17、(2009年鄂州)已知=次函数y =ax 2+bx+c 的图象如图.则下列5个代数式:ac ,a+b+c ,4a -2b+c ,2a+b ,2a -b 中,其值大于0的个数为( )A .2B 3C 、4D 、518、(2009年甘肃庆阳)将抛物线22y x =向下平移1个单位,得到的抛物线是( )A .22(1)y x =+B .22(1)y x =-C .221y x =+D .221y x =- 19、(2009年孝感)将函数2y x x =+的图象向右平移a (0)a >个单位,得到函数232y x x =-+的图象,则a 的值为( )A .1B .2C .3D .4 20、(2010年湖里区二次适应性考试)二次函数12+-=x y 的图象与x 轴交于A 、B 两点,与y 轴交于点C ,下列说法错误..的是( )A .点C 的坐标是(0,1)B .线段AB 的长为2C .△ABC 是等腰直角三角形D .当x>0时,y 随x 增大而增大21、(2009年烟台市)二次函数2y a x b x c =++的图象如图所示,则一次函数24y b x b a c =+-与反比例函数a b c y x++=在同一坐标系内的图象大致为( )22、(2009年嘉兴市)已知0≠a ,在同一直角坐标系中,函数ax y =与2ax y =的图象有可 能是( )23、(2009年新疆)如图,直角坐标系中,两条抛物线有相同的对称轴,下列关系不正确...的是( )A .h m =B .k n =C .k n >D .00h k >>,24、(2010年广州市中考六模)若二次函数y =2 x 2-2 mx +2 m 2-2的图象的顶点在y 轴上,则m 的值是( )A.0B.±1C.±2D.±225、(2009年济宁市)小强从如图所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:(1)0a <;(2) 1c >;(3)0b >;(4) 0a b c ++>; (5)0a b c -+>. 你认为其中正确信息的个数有 ( )A .2个B .3个C .4个D .5个26、(2009年衢州)二次函数2(1)2y x =--的图象上最低点的坐标是( )A .(-1,-2)B .(1,-2)C .(-1,2)D .(1,2)27、(2009年新疆乌鲁木齐市)要得到二次函数222y x x =-+-的图象,需将2y x =-的图象( ).A .向左平移2个单位,再向下平移2个单位B .向右平移2个单位,再向上平移2个单位C .向左平移1个单位,再向上平移1个单位D .向右平移1个单位,再向下平移1个单位28、(2009年广州市)二次函数2)1(2+-=x y 的最小值是( )A.2 (B )1 (C )-1 (D )-229、(2009年天津市)在平面直角坐标系中,先将抛物线22y x x =+-关于x 轴作轴对称变换,再将所得的抛物线关于y 轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为( )A .22y x x =--+B .22y x x =-+-C .22y x x =-++D .22y x x =++30、(2009年广西钦州)将抛物线y =2x 2向上平移3个单位得到的抛物线的解析式是( )A .y =2x 2+3B .y =2x 2-3C .y =2(x +3)D .y =2(x -3)2 31、(2009年南充)抛物线(1)(3)(0)y a x x a =+-≠的对称轴是直线( )A .1x =B .1x =-C .3x =-D .3x = 32、(2009宁夏)二次函数2(0)y ax bx c a =++≠的图象如图所示,对称轴是直线1x =,则下列四个结论错误..的是( ) A .0c > B .20a b += C .240b ac -> D .0a b c -+>33、(2009年湖州)已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点,请你在图中任意画一条抛物线,问所画的抛物线最多能经过81个格点中的多少个?( )A .6B .7C .8D .934、(2009年兰州)二次函数c bx ax y ++=2的图象如图所示,则下列关系式不正确的是A .a <0 B.abc >0 C.c b a ++>0 D.ac b 42->035、(2009年济宁市)小强从如图所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:(1)0a <;(2) 1c >;(3)0b >;(4) 0a b c ++>; (5)0a b c -+>. 你认为其中正确信息的个数有( )A .2个B .3个C .4个D .5个36、(2009年兰州)在同一直角坐标系中,函数y mx m =+和函数222y mx x =-++(m 是常数,且0m ≠)的图象可能..是( )37、(2009年遂宁)把二次函数3412+--=x x y 用配方法化成()k h x a y +-=2的形式 A.()22412+--=x y B. ()42412+-=x y C.()42412++-=x y D. 321212+⎪⎭⎫ ⎝⎛-=x y 38、(2010年西湖区月考)关于二次函数y =ax 2+bx+c 的图象有下列命题:①当c=0时,函数的图象经过原点;②当c >0时且函数的图象开口向下时,ax 2+bx+c=0必有两个不等实根;③函数图象最高点的纵坐标是a b ac 442-;④当b=0时,函数的图象关于y 轴对称.其中正确的个数是( )A.1个 B 、2个 C 、3个 D. 4个39、(2009年兰州)把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移 后抛物线的解析式为( )A .2(1)3y x =---B .2(1)3y x =-+-C .2(1)3y x =--+D .2(1)3y x =-++40、(2009年湖北荆州)抛物线23(1)2y x =-+的对称轴是( )A .1x =B .1x =-C .2x =D .2x =-41、(2009年河北)某车的刹车距离y (m )与开始刹车时的速度x (m/s )之间满足二次函数2120y x =(x >0),若该车某次的刹车距离为5 m ,则开始刹车时的速度为( ) A .40 m/s B .20 m/s C .10 m/s D .5 m/s42、(2009年黄石市)已知二次函数2y ax bx c =++的图象如图所示,有以下结论:①0a b c ++<;②1a b c -+>;③0abc >;④420a b c -+<;⑤1c a ->其中所有正确结论的序号是( )A .①②B . ①③④C .①②③⑤D .①②③④⑤43、(2009 黑龙江大兴安岭)二次函数)0(2≠++=a c bx ax y 的图象如图,下列判断错误的是( )A .0<aB .0<bC .0<cD .042<-ac b 44、(2009年枣庄市)二次函数c bx ax y ++=2的图象如图所示,则下列关系式中错.误.的是( ) A .a <0 B .c >0 C .ac b 42->0 D .c b a ++>045、(2009烟台市)二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b c y x++=在同一坐标系内的图象大致为( )46.(2010三亚市月考). 下列关于二次函数的说法错误的是( )A.抛物线y=-2x 2+3x +1的对称轴是直线x=34; B.点A(3,0)不在抛物线y=x 2 -2x -3的图象上;C.二次函数y=(x +2)2-2的顶点坐标是(-2,-2);D.函数y=2x 2+4x -3的图象的最低点在(-1,-5)47.二次函数y=ax 2+bx+c(a≠0)的图像如图所示,下列结论正确的是( )A.ac <0B.当x=1时,y >0C.方程ax 2+bx+c=0(a≠0)有两个大于1的实数根D.存在一个大于1的实数x 0,使得当x <x 0时,y 随x 的增大而减小; 当x >x 0时,y 随x 的增大而增大.48.如图所示,二次函数y =x 2-4x +3的图象交x 轴于A 、B 两点, 交y 轴于点C , 则△ABC 的面积为( )A. 6B. 4C. 3D. 149.(2010年河南中考模拟题4)二次函数2y ax bx c =++(0a ≠)的图象如图所示,则正确的是( )A .a <0B .b <0C .c >0D .以答案上都不正确50.(2010年杭州月考)已知二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,给出以下结论:①0<abc ②当1x =时,函数有最大值。
人教版九年级数学上学期(第一学期)《二次函数》同步练习及答案.docx
第二十六章二次函数26.1 二次函数(一)1.矩形周长是20cm,一边长是x㎝,面积是y㎝2,则y与x的函数关系式是,这个函数称作次函数.2.下列函数y=0.5x-1,y=3x2,y=0.5x2-4x+1,y=x(x-2),y=(x-1)2-x2中,二次函数的个数为( )(A)2个(B)3个(C)4个(D)5个3.k取哪些值时,函数y=(k2-k)x2+kx+(k+1)是以x为自变量是一次函数?二次函数?4.已知等腰直角三角形的斜边长为xcm,面积为ycm2,请写出y与x的函数关系式,并判断它是什么函数?5.如图,正方形ABCD边长是4,E、F分别在BC、CD上,设ΔAEF面积是y,EC=x,如果CE=CF,试求出y与x的函数关系及自变量取值范围,并判定y是x的什么函数?6.已知二次函数y=ax2+c,当x=0时,y=-3;当x=1时,y=-1,求当x=-2时,y的值.7.一块矩形耕地大小尺寸如下图,要在这块地上沿东西方向挖一条水渠,沿南北方向挖两条水渠,水渠宽为xm,余下的可耕地面积为ym2,(1)请你写出y与x之间的函数关系式.(2)根据你写出的函数关系式,求出水渠宽为1m时,余下的可耕地面积为多少?(3)若耕除去水渠剩余部分面积为4408m2,求此时水渠的宽度.26.1二次函数(二)1.已知函数y=ax2的图象过点(2,-4),则a=,对称轴是,顶点坐标是,抛物线的开口方向,抛物线的顶点是最点.2.下列关于函数y=-0.5x2的图象说法( )①图象是一条抛物线;②开口向下;③对称轴是y轴;④顶点(0,0).其中正确的有( )(A)1个(B)2个(C)3个(D)4个3.已知函数y=x2的图象过点(a,b),则它必通过的另一点是( )(A)(a,-b) (B)(-a,b)(C)(-a,-b) (D)(b,a)4.抛物线y=ax2过A(-1,2),试判断B(-2,-3),C(,)是否在抛物线上.5、已知正方形的对角线长为x,面积为y.(1)写出y与x的函数关系;(2)画出这个函数的图象草图.6.抛物线y=ax2(a≠0)与直线y=4x-3交于点A(m,1),求:(1)点A的坐标及抛物线顶点C的坐标和对称轴;(2)抛物线y=ax2与直线y=4x-3是否还有其他交点?若有,请求出这个交点B的坐标,若没有,请说明理由. 并求点A、B、C三点构成的三角形的面积.2.6.1二次函数(三)1.函数y=-1.5x2+2的图象开口方向,对称轴是,顶点坐标是,当x=时,y最大.2.把抛物线y=-x2向上平移4个单位后,得到的抛物线的函数解析式为,平移后的抛物线的顶点坐标是,对称轴是,与y轴的交点坐标是,与x轴的交点坐标是.3.将抛物线y=2x2-3通过下列( )平移后得到抛物线y=2x2,(A)向下平移3个单位(B)向上平移3个单位(C)向下平移2个单位(D)向上平移2个单位4.已知抛物线的对称轴是y轴,顶点的纵坐标为5,且过点(1,2)求这条抛物线的解析式.5.抛物线y=ax2+c顶点是(0,2),且形状及开口方向与y=-0.5x2相同.(1)确定a、c的值;(2)画出这个函数的图象.6.在同一坐标系中,画出函数y=-x2+2与y=x2-2的图像请分别说出图象的顶点坐标、对称轴及开口方向,并比较两个图像之间有何联系?26.1二次函数(四)1.抛物线y=3(x-2)2的对称轴是( )(A)直线x=2 (B)直线x=-2 (C)y 轴 (D)x 轴2.将抛物线y=3x 2向左平移3个单位所得的抛物线的函数关系式为( )A 、332-=x y B 、2)3(3-=x y C 、332+=x y D 、2)3(3+=x y3.抛物线2)1(--=x y 是由抛物线向平移个单位得到的,平称后的抛物线对称轴是,顶点坐标是,当x=时,y 有最值,其值是.4.用配方法把下列函数化成y=a(x-h)2的形式,并指出开口方向,顶点坐标和对称轴.(1)y=x 2+4x+4(2)y=- x 2+3x-(3)y=2x 2-4x5、已知二次函数图像的顶点在x 轴上,且图像经过点(2,-2)与(-1,-8)求此函数解析式.6.抛物线2)2(-=x a y 经过(1,-1).(1)确定a 的值;(2)画出这个函数图象; (3)求出抛物线与坐标轴的交点坐标.2.6.1 二次函数(五) 1、填表2、下列抛物线顶点是(2,1)的是( )A.1)2(22--=x yB.2)1(32+-=x y C.1)2(22+-=x y D.2)1(42+-=x y 3、抛物线23x y =先向上平移2个单位,后向右平移3个单位,所得抛物线是( )A.2)3(32-+=x y B.2)3(32++=x y C.2)3(32--=x y D.2)3(32+-=x y 4、抛物线的顶点在(-1,-2)且又过(-2,-1). (1)确定抛物线的解析式; (2)画出这个函数的图象.综合与运用5、如图所示,求:(1)抛物线的解析式,(2)抛物线与x 轴的交点坐标.6.某同学在推铅球时,推球经过的路线是抛物线的一部分(如图),出手处A 点坐标是(0,2),最高点B 坐标是(6,5),(1)求此抛物线的函数表达式.(2)你能算出这位学生推出的铅球有多远吗?拓展与探索7.如图,在一幢建筑物里,从10m 高的窗户处用水管斜着向外喷水,喷出的水,在垂直于墙壁的平面内画出一条抛物线,其顶点离墙1m,并且在离墙3m 处落到地面上,问抛物线的顶点比喷出的水高出多少?26.1二次函数(六)1、二次函数322+-=x x y 的顶点坐标是( ) A 、(1,0) B 、(1,2) C 、(2,1) D 、(―1,―2)2、二次函数y= x 2+x-1的图像是由函数y=x 2的图像先向平移个单位,再向平移个单位得到的. 3、用配方法求下列抛物线的顶点坐标和对称轴(1)x x y -=2(2)122+--=x x y4、写出下列抛物线的开口方向、对称轴、顶点坐标,当x 为何值时,y 有最大(小)值?并求其值. (1)y=-x 2+3x-2 (2))12)(2(--=x x y综合与运用5、有一矩形的苗圃,其四周是总长为40m 篱笆,假设它的一边长为xm ,面积为2ym . (1)y 随x 的变化的规律是什么?请分别用函数的表达式、表格、函数的图象表示出; (2)由函数的图象指出当x 取何值时,苗圃的面积最大?最大面积是多少?6、有一条长为7.2m 的木料,做成如图所示的“日”字形的窗柜,窗柜的宽和高各取多少时,这个窗的面积S 最大?最大面积是多少?(不考虑木料加工时的损耗和中间木柜所占的面积)7、心理学家发现,学生对概念的接受能力y 与提出概念所用的时间x (单位:min)之间满足函数关系y=-0.1x 2+2.6x+43 (0≤x ≤30),y 值越大,表示接受能力越强.(1)x 在什么范围内,学生的接受能力逐步增强?x 在什么范围内,学生的接受能力逐步降低? (2)第10min 时,学生的接受能力是多少? (3)多长时间内,学生的接受能力最强? 复习巩固1、下列函数中,是二次函数的是( )A 、y=0.5(x-3)xB 、y=(x+2)(x-2)-x 2C 、y=-0.75xD 、y=2、抛物线1)1(22+-=x y 的顶点是( ) A 、(1,1) B 、(-1,1) C 、(1,-1) D 、(-1,-1)3、顶点是(-2,0),开口方向、形状与抛物线y=0.5x 2相同的抛物线是( )A 、y=0.5(x-2)2B 、y=0.5(x+2)2C 、y=-0.5(x-2)2D 、y=-0.5(x+2)2 4、抛物线32+=x y 向右平移2个单位,再向上平移3个单位,所得新的抛物线是. 5、写出一个开口向下且对称轴是x=-2的二次函数解析式 6、将二次函数222---=x x y 经配方后得( )A 、3)1(2---=x y B 、3)1(2-+-=x yC 、1)1(2---=x yD 、1)1(2-+-=x y 7、二次函数42-=x y 与x 轴的交点坐标为,8、二次函数a x ax y ++=42的最大值是3,则=a9、将一根铁丝长为x,围成一个等边三角形,则面积S 与周长x 的关系式为. 10、 根据下列条件,分别确定二次函数中字母系数的值:(1)抛物线c x x y ++=42的顶点在x 轴上;c= (2)抛物线232+-=x ax y 的图像经过点(-1,3)a= (3)抛物线52+-=bx x y 的对称轴是直线x=-2,b=综合与运用11、如图,有一直角梯形的苗圃,它的两邻边借用夹角是135°的两围墙,另外两边用总长为30m的篱笆,问篱笆的两边各是多少米时,苗圃的面积最大?最大面积是多少?12、某商场将进价为30元的台灯以40元售出,平均每月能售出600个,调查表明:这种台灯的售价每上涨1元,其销售量就减少10个.(1)为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?(2)如果商场要想每月的销售利润最多,这种台灯的售价又将定为多少?这时应进台灯多少个?13.某瓜果基地市场部为指导该基地某种蔬菜的生产和销售,在对历年市场行情和生产情况进行了调查的基础上,对今年这种蔬菜上市后的市场售价和生产成本进行了预测,提供了两个方面的信息,如图甲、乙两图请你根据图象提供的信息说明:(1)在3月份出售这种蔬菜,每千克的收益是多少元?(收益=售价-成本)(2)哪个月出售这种蔬菜每千克的收益最大?说明理由.拓展与探索14、已知二次函数y=-0.5x 2+x+1.5 (1)用配方法求它的顶点坐标和对称轴; (2)画出这个函数的图象;(3)根据图象回答:当x 取哪些值时,y =0,y >0,y <0第二十六章答案 26.1二次函数(一)1、x x y 102+-=,二. 2、B 3、k=1,k ≠0且k ≠1.4、241x y =它是二次函数 5、x x y 4212+-= 0<x<4,二次 6、5 7(1)480020022+-=x x y , (2)4602m 2, (3)此时水渠的宽度是2m.26、1二次函数(二)1、-1 y 轴 (0,0) 向下 高 2、D 3、B 4、点B 不在,点C 在 5、(1)221x y = (2)略 6、A 7(1)A(1,1) 顶点C(0,0)对称轴是y 轴.(2)(3,9)3 26、1二次函数(三)1、 下、y 轴、(0,2),1,2 2、42+-=x y (0,4) y 轴 (0,4) (2,0)(-2,0) 3、B 4、532+-=x y 5、(1)2,21=-=c a (2)略 6、顶点坐标分别是(0,2)(0,-2) 对称轴都是y 轴,开口方向向下与向上,两个图象关于x 轴对称, 6、 26.1二次函数(四)1、A 2、D 3、2x y -= 右 1 直线x=1 1 大草原0 4、(1)2)2(+=x y 开口向上, 顶点(-2,0)对称轴是直线x=-2 (2)2)3(21--=x y 开口向下,顶点(3,0)对称轴是直线x=3 5、2)5(92--=x y 或2)1(2--=x y ,6、(1)-1,(2)略(3) (0,-4)(2,0) 26.1二次函数(五)1、略 2、C 3、D 4、(1)2)1(2-+=x y (2)略5、(1)3)2(432+--=x y (2)(0,0) (4,0 ) 6、(1)5)6(1212+--=x y (2)1526+ 7、310 26.1二次函数(六)1、B 2、左 2 下 2 3、(1)41)21(2--=x y 顶点()41,21- 对称轴是直线21=x (2)2)1(2++-=x y 顶点(-1,2)对称轴是直线x=-1, 4、(1)25)3(212+--=x y 开口向下,顶点(3,)25对称轴是直线x=3,当x=3时,y 有最大值是35 (2)87)45(22--=x y 开口向上,顶点()87,45- 对称轴是直线x=45,当x= 45时,y 有最小值87- 5、(1)变化规律是二次函数、x x y 202+-= 表格与图象略,(2)当x=10m 时,y 的最大值是100m 2,6、宽为,21m ⋅高为m 8.1,最大面积为216.2m . 7、(1) 0≤x ≤13 13<x ≤30 (3)x=13复习题1、A 2、A 3、B 4、6)2(2+-=x y 5、不唯一如2)2(+-=x y 6、D 7、(2,0) (-2,0)8、4或-1 9、2363x y = 10、(1)4 (2)-2 (3)-4 11、直角腰为10m,下底边为20m,最大面积为150m 2.12、(1)当售价定为50元时,销售量为500个,当售价定为80元时,销售量为200个,(2)当售价定为65元时,销售量为350个,获利最大是1225元.13、(1)1元,(2)每千克售价关于月份的函数关系式为7321+-=x y ,每千克成本关于月份的函数关系式1)6(3122+-=x y ,每千克的收益21y y y -=,故37)5(312+--=x y ,当x=5时,y 最大值37, 14、(1)2)1(212+--=x y 顶点点坐标(1,2) 对称轴是直线x=1,(2)略 (3)当x=-1或x=3时,y=0,当-1<x<3时y>0,当x<-1或x>3时,y<0.。
(完整版)人教九年级数学下册同步练习题及答案
第二十六章二次函数26.1二次函数(第一课时)一、课前小测1.已知函数y=(k+2)x+3是关于x的一次函数,则k_______.2.已知正方形的周长是ccm,面积为Scm2,则S与c之间的函数关系式为__ ___. 3.填表:4.在边长为4m的正方形中间挖去一个长为xm的小正方形, 剩下的四方框形的面积为y,则y与x间的函数关系式为_________.5.用一根长为8m的木条,做一个长方形的窗框,若宽为xm,则该窗户的面积y(m2)与x(m)之间的函数关系式为________.二、基础训练121.形如_______ ________的函数叫做二次函数.2.扇形周长为10,半径为x ,面积为y ,则y 与x 的函数关系式为_______________。
3.下列函数中,不是二次函数的是( )x 2 B.y=2(x-1)2+4 C.y=12(x-1)(x+4) D.y=(x-2)2-x 2 4.在半径为4cm 的圆中, 挖去一个半径为xcm 的圆面, 剩下一个圆环的面积为ycm 2,则y与x 的函数关系式为( )A.y=πx 2-4 B.y=π(2-x)2; C.y=-(x 2+4) D.y=-πx 2+16π 5.若y=(2-m)22m x -是二次函数,则m 等于( )A.±2 B.2 C.-2 D.不能确定三、综合训练1.已知y 与x 2成正比例,并且当x=1时,y=2,求函数y 与x 的函数关系式,并求当x=-3时,y的值.当y=8时,求x 的值.2.已知函数y =(m 2-m )x 2+(m -1)x +m +1.(1)若这个函数是一次函数,求m 的值;(2)若这个函数是二次函数,则m 的值应怎样?326.1二次函数(第二课时)一、课前小测1.函数y =ax 2+bx +c (a ,b ,c 是常数)是二次函数的条件是( )A.a ≠0,b ≠0,c ≠0B.a <0,b ≠0,c ≠0C.a >0,b ≠0,c ≠0D.a ≠02.下列函数中:①y =-x 2;②y =2x ;③y =22+x 2-x 3;④m =3-t -t 2是二次函数的是__ __(其中x 、t 为自变量).3.当k=__ ___时,27(3)k y k x -=+是二次函数。
(完整版)人教九年级数学下册同步练习题及答案
第二十六章二次函数26.1二次函数(第一课时)一、课前小测1.已知函数y=(k+2)x+3是关于x的一次函数,则k_______.2.已知正方形的周长是ccm,面积为Scm2,则S与c之间的函数关系式为__ ___. 3.填表:4.在边长为4m的正方形中间挖去一个长为xm的小正方形, 剩下的四方框形的面积为y,则y与x间的函数关系式为_________.5.用一根长为8m的木条,做一个长方形的窗框,若宽为xm,则该窗户的面积y(m2)与x(m)之间的函数关系式为________.二、基础训练121.形如_______ ________的函数叫做二次函数.2.扇形周长为10,半径为x ,面积为y ,则y 与x 的函数关系式为_______________。
3.下列函数中,不是二次函数的是( )x 2 B.y=2(x-1)2+4 C.y=12(x-1)(x+4) D.y=(x-2)2-x 2 4.在半径为4cm 的圆中, 挖去一个半径为xcm 的圆面, 剩下一个圆环的面积为ycm 2,则y与x 的函数关系式为( )A.y=πx 2-4 B.y=π(2-x)2; C.y=-(x 2+4) D.y=-πx 2+16π 5.若y=(2-m)22m x -是二次函数,则m 等于( )A.±2 B.2 C.-2 D.不能确定三、综合训练1.已知y 与x 2成正比例,并且当x=1时,y=2,求函数y 与x 的函数关系式,并求当x=-3时,y的值.当y=8时,求x 的值.2.已知函数y =(m 2-m )x 2+(m -1)x +m +1.(1)若这个函数是一次函数,求m 的值;(2)若这个函数是二次函数,则m 的值应怎样?326.1二次函数(第二课时)一、课前小测1.函数y =ax 2+bx +c (a ,b ,c 是常数)是二次函数的条件是( )A.a ≠0,b ≠0,c ≠0B.a <0,b ≠0,c ≠0C.a >0,b ≠0,c ≠0D.a ≠02.下列函数中:①y =-x 2;②y =2x ;③y =22+x 2-x 3;④m =3-t -t 2是二次函数的是__ __(其中x 、t 为自变量).3.当k=__ ___时,27(3)k y k x -=+是二次函数。
新人教版初三数学下二次函数同步练习题
学校: 班级: 姓名: 考号: ………………………………密…………………………………………封………………………………线………………………………罗平轻松学习辅导中心13年中学生周末辅导同步专题26.1二次函数的概念(1)●基础巩固1.已知函数y=(k+2)24kk x +-是关于x 的二次函数,则k=________.2.已知正方形的周长是ccm,面积为Scm 2,则S 与c 之间的函数关系式为_____.3.填表:4.在边长为4m 的正方形中间挖去一个长为xm 的小正方形, 剩下的四方框形的面积为y,则y 与x 间的函数关系式为_________.5.用一根长为8m 的木条,做一个长方形的窗框,若宽为xm,则该窗户的面积y(m 2)与x(m)之间的函数关系式为________. 6.下列结论正确的是( )A.二次函数中两个变量的值是非零实数;B.二次函数中变量x 的值是所有实数;C.形如y=ax 2+bx+c 的函数叫二次函数;D.二次函数y=ax 2+bx+c 中a,b,c 的值均不能为零 7.下列函数中,不是二次函数的是( )x 2 B.y=2(x-1)2+4; C.y=12(x-1)(x+4) D.y=(x-2)2-x 28.在半径为4cm 的圆中, 挖去一个半径为xcm 的圆面, 剩下一个圆环的面积为ycm 2,则y与x 的函数关系式为( )A.y=πx 2-4B.y=π(2-x)2;C.y=-(x 2+4)D.y=-πx 2+16π9.若y=(2-m)22mx -是二次函数,则m 等于( )A.±2B.2C.-2D.不能确定 ●能力提升10.已知y 与x 2成正比例,并且当x=1时,y=2,求函数y 与x 的函数关系式,并求当x=-3时,y 的值.当y=8时,求x 的值.11.某化工材料经销公司购进了一种化工原料共7000kg,购进价格为每千克30元,物价部门规定其销售单价不得高于每千克70元也不得低于30元,市场调查发现;单价定为70元时,日均销售60kg.单价每降低1元,日均多售出2kg,在销售过程中, 每天还要支出其他费用500元(天数不足一天时,按整天计算).设销售单价为x 元, 日均获利为y 元,求y 关于x 的二次函数关系式.●综合探究12.现有铝合金窗框材料8米,准备用它做一个如图所示的长方形窗架( 窗架宽度AB 必须小于窗户的高度BC).已知窗台距离房屋天花板2.2米.设AB 为x 米,窗户的总面积为S(平方米). (1)试写出S 与x 的函数关系式; (2)求自变量x 的取值范围.FD BC A E学校: 班级: 姓名: 考号: ………………………………密…………………………………………封………………………………线………………………………26.2二次函数的图像与性质一、基础知识1、二次函数的三种形式: 一般式:)0,,(2≠++=a c b a c bx ax y 为常数,且顶点式:)0()(2≠+-=a k h x a y ;交点式:)0)()((21≠--=a x x x x a y .2、一般地,抛物线k h x a y +-=2)(与2ax y =的形状相同,位置不同.把抛物线2axy =向上 (下)向左(右)平移,可得到抛物线k h x a y +-=2)(.平移的方向、距离要根据h ,k 的值来决定.抛物线k h x a y +-=2)(有如下特点:(1)当0>a 时,开口向上,函数有最小值k ;当0<a 时,开口向下,函数有最大值k ; (2)对称轴是h x =; (3)顶点是),(k h .3、二次函数)0,,(2≠++=a c b a c bx ax y 为常数,且的图像是抛物线.○1顶点是:)44,(2ab ac a b --,对称轴是:a b x 2-=. ○2开口方向:0>a 时,开口向上;0<a 时,开口向下. ○3增减性:当0>a ,在a b x 2-<时,y 随x 的增大而减小,在abx 2->时,y 随x 的增大而增大; 当0<a 时,在abx2-<时,y 随x 的增大而增大,在abx 2->时,y 随x 的增大而减小. ○4最值:当0>a 时,函数有最小值,且当a b x 2-=时,y 有最小值是a b ac 442-; 0<a 时,函数有最大值,且当a b x 2-=时,y 有最大值是ab ac 442-.○5开口大小:a 越大抛物线的开口越小,反之越大. 4、我们可以利用根的判别式来判断函数)0,,(2≠++=a c b a c bx ax y 为常数,且与x 轴交点的个数(1)当042>-=∆ac b 时,抛物线与x 轴有两个交点; (2)当042=-=∆ac b 时,抛物线与x 轴有一个交点; (3)当042<-=∆ac b 时,抛物线与x 轴无交点.5、抛物线)0,,(2≠++=a c b a c bx ax y 为常数,且与y 轴的交点是),0(c .二、快速练习1、抛物线3)2(2+-=x y 的顶点坐标是( )A .(2,3)B .(-2,3)C .(2,-3)D .(-2,-3) 2、二次函数2)1(2+-=x y 的最小值是( )A.2 (B )1 (C )-1 (D )-2 第3题 3、二次函数c bx ax y ++=2的图象如图所示,若点A (1,y 1)、B (2,y 2)是它图象上的两点,则y 1与y 2的大小关系是( )A .21y y <B .21y y =C .21y y >D .不能确定4、抛物线2ax y =向左平移5个单位,再向下移动2个单位得到抛物线5、函数(2)(3)y x x =--取得最大值时,x =______.6、请写出符合以下三个条件的一个函数的解析式 .①过点(31),; ②当0x >时,y 随x 的增大而减小;学校: 班级: 姓名: 考号: ………………………………密…………………………………………封………………………………线………………………………③当自变量的值为2时,函数值小于2.7、求函数962++=x x y 的最小值及图象的对称轴和顶点坐标。
新人教版九年级数学下册26.1.2 二次函数=2的图象同步练习及答案
26.1.2 二次函数y =ax ²的图象
1. 关于函数y =2x 2
的图象的描述:(1)图象有最低点,(2)图象为轴对称图形,(3)图象与y 轴的交点为原点,(4)图象的开口向上,其中正确的有( )
A .1个
B .2个
C .3个
D .4个
2.(2013丽水)若二次函数y=ax 2的图象过点P (-2, 4),则该图象必经过点( )
A .(2, 4)
B .(-2, -4)
C .(2, -4)
D .(4, -2)
3. 在抛物线212
y x =,y =-3x 2,y =x 2中,开口最大的是( ) A .212
y x = B .y =-3x 2 C .y =x 2 D .无法确定
4. (1)若抛物线y =ax 2 与y =-2x 2 的形状相同,开口方向相同,则a = _____ .
(2)把抛物线223
y x =绕原点旋转180°后的抛物线是____. 5.跳伞运动员在打开降落伞之前,下落的路程s (米)与所经过的时间t (秒)之间的关系为s =at 2.
(1)根据表中的数据,写出s 关于t 的函数解析式; (2)完成上面自变量t 与函数s 的对应值表;
(3)如果跳伞运动员从5100米的高空跳伞,为确保安全,必须在离地面600米之前打开降落伞.问运动员在空中不打开降落伞的时间至多有几秒?
参考答案1.D 2.A 3.A
4.(1)-2 (2)y =
2
3
x²
5.解:(1)s=5t2
(2)
(3)由题意得s=5t
∴运动员在空中不打开降落伞的时间至多有30秒.。
人教版九年级数学上册《二次函数图象和性质》 同步练习
二次函数图像和性质小结与测验班级: 姓名:一.填空题:1.二次函数2y ax =的图像开口向____,对称轴是____,顶点坐标是___,图像有最___点,x ___时,y 随x 的增大而增大,x ___时,y 随x 的增大而减小。
2.抛物线y=-21(2)2x +-4的开口向___,顶点坐标___,对称轴___,x __时,y 随x 的增大而增大,x ___时,y 随x 的增大而减小。
当x = 时,函数y 有最 值是 .3.化243y x x =++为y =a 2()x h -k +的形式是____,图像的开口向____,顶点是___,对称轴是____。
当x = 时,函数y 有最 值是 . 4、已知抛物线342++=x x y ,请回答以下问题:⑴、它的开口向 ,对称轴是直线 ,顶点坐标为 ; ⑵、图像与x 轴的交点为 ,与y 轴的交点为 。
5、二次函数2243y x x =--,当x = 时,函数y 有最 值是 . 6(1)二次函数y=-x 2+6x+3的图像顶点为_________对称轴为_________。
二次函数122--=x x y 的顶点坐标为 ,对称轴为 。
(2)二次函数y=2x 2-4的顶点坐标为________,对称轴为__________。
7.二次函数y=2x -mx+3的对称轴为直线x=3,则m=________。
8、抛物线3)2(32-+=x y 可由抛物线2)2(32++=x y 向 平移 个单位得到. 9、将2)3(652+-=x y 向右平移3个单位,再向上平移2个单位,得到的抛物线是 10、把抛物线1)1(2---=x y 向 平移 个单位,再向_____平移_______个单位得到抛物线3)2(2-+-=x y .11.抛物线)0(2≠++=a c bx ax y 过第二、三、四象限,则a 0,b 0,c 0.12.已知二次函数232)1(2-++-=m mx x m y ,则当=m 时,其最大值为0.二.选择题:1. 二次函数y=ax 2+bx+c 的图像如图所示,则下列结论正确的是( ) A.a >0,b <0,c >0 B.a <0,b <0,c >0 C.a <0,b >0,c <0 D.a <0,b >0,c >02.抛物线y=-2x 2-4x-5经过平移得到y=-2x 2,平移方法是( )A.向左平移1个单位,再向下平移3个单位B.向左平移1个单位,再向上移3个单位C.向右平移1个单位,再向下平移3个单位D.向右平移1个单位,再向上移3个单位 3、二次函数y=x 2+6x-2的最小值为( ) A 11 B -11 C 9 D -94.已知正比例函数kx y =的图像如右图所示,则二次函数222k x kx y +-=的图像大致为( )A B C D5.二次函数c bx ax y ++=2的图像如图所示,则abc ,ac b 42-,b a +2,c b a ++这四个式子中,值为正数的有( ) (A )4个 (B )3个 (C )2个(D )1个第5题 第6题 第7题 6、二次函数c bx x y ++=2的图像上有两点(3,-8)和(-5,-8), 则此拋物线的对称轴是( )(A )1x =- (B )1x = (C )2x = (D )3x = 7、如图所示,二次函数y=x 2-4x+3的图像交x 轴于A 、B 两点,交y 轴于C 点, 则△ABC 的面积为( )A 、6B 、 4C 、3D 、 18.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图3所示,下列结论: ①abc >0 ②2a+b <0 ③4a -2b+c <0 ④a+c >0, 其中正确的个数是_________9.二次函数y=ax2+bx+c 的图像如图所示,则关于此二次函数的下列四个结论①a<0②a>0③b 2-4ac>0④0<ab中,正确的结论有( ) A.1个 B.2个 C.3个 D.4个O xy-1 1y O x y O x yO xOxyyOxB A xCy23-xy10.下列四个函数图象中,当x<0时,函数值y 随自变量x 的增大而减小的是( )11.在同一坐标系中,一次函数1+=ax y 与二次函数a x y +=2的图像可能是三.解答题:1.已知一个二次函数的图像过点(0,1),它的顶点坐标是(8,9),求这个二次函数的关系式。
人教版九年级上册数学二次函数同步训练(含答案)
人教版九年级上册数学22.1.1二次函数同步训练一、单选题1.下列函数表达式中,一定为二次函数的是( )A .y =2x ﹣5B .y =ax 2+bx +cC .h =22tD .y =x 2+1x 2.若函数y =m 22mm x +++4是二次函数,则m 的值为( ) A .0或﹣1 B .0或1 C .﹣1 D .13.二次函数()2221y m x x =-+-中,m 的取值范围是( )A .2m >B .2m <C .2m ≠D .一切实数 4.正方形的面积s 和边长a 之间的关系可以表示s =a 2,则s 与a 之间的函数关系是( )A .一次函数B .正比例函数C .二次函数D .以上都不对 5.对于y =ax 2+bx +c ,有以下四种说法,其中正确的是( )A .当b =0时,二次函数是y =ax 2+cB .当c =0时,二次函数是y =ax 2+bxC .当a =0时,一次函数是y =bx +cD .以上说法都不对6.二次函数223y x x =-+的一次项系数是( )A .1B .2C .2-D .3 7.设a ,b ,c 分别是二次函数y =﹣x 2+3的二次项系数、一次项系数、常数项,则( )A .a =﹣1,b =3,c =0B .a =﹣1,b =0,c =3C .a =﹣1,b =3,c =3D .a =1,b =0,c =3 8.观察:①26y x =;①235y x =-+;①2200400y x x =+;①32y x x =-;①213y x x=-+;①()221y x x =+-.这六个式子中二次函数有( )个. A .2B .3C .4D .5二、填空题 9.如果函数y =(m ﹣2)24m m x +-是二次函数,则m 的值为 __.10.若12m y x x -=+是关于x 的二次函数,则m =_______11.已知函数y =(m ﹣2)x 2+mx ﹣3(m 为常数).(1)当m _______时,该函数为二次函数;(2)当m _______时,该函数为一次函数.12.当函数21(1)23a y a x x +=-++是二次函数时,a 的值为_________.13.已知(2)21m y m x x =-+-是y 关于x 的二次函数,那么m 的值____.14.已知二次函数y =1﹣5x +3x 2,则二次项系数a =___,一次项系数b =___,常数项c =___.15.已知二次函数2113y x x =+-,当3x =-时,函数y 的值是_________. 16.二次函数2(1)y x x =-的二次项系数是________.三、解答题17.一个二次函数234(1)21kk y k x x -+=-+-.(1)求k 的值.(2)求当x =3时,y 的值?18.已知函数2(||1)(1)3y m x m x =-+++.(1)若这个函数是一次函数,求m 的值(2)若这个函数是二次函数,求m 的取值范围.19.若函数y=(a-1)x b+1+x 2+1是二次函数,试讨论a 、b 的取值范围.20.篱笆墙长30m ,靠墙围成一个矩形花坛,写出花坛面积y(m 2)与长x 之间的函数关系式,并指出自变量的取值范围.答案第1页,共1页 参考答案:1.C2.C3.C4.C5.D6.C7.B8.B9.﹣310.311. ≠2 =212.1-13.2-14. 3 -5 115.-116.217.(1)k =2;(2)1418.(1)1m =;(2)1m ≠±19.①a≠0;①b=0或-1,a 取全体实数①当a=1,b 为全体实数时,y=x 2+1是二次函数 20.y= 21152x x -+, x 的取值范围为0<x<30.。
九年级数学上册 22.1.1 二次函数同步练习1 (新版)新人教版
22.1.1 二次函数要点感知 一般地,形如________(a ,b ,c 是常数,a ≠0)的函数,叫做二次函数,其中________是自变量,a 、b 、c 分别是函数解析式的________、________和________.预习练习1-1 (怀化中考)下列函数是二次函数的是( )A.y =2x+1B.y=-2x+1C.y=x2+2D.y=21x-2 1-2 对于y=ax 2+bx+c ,有以下四种说法,其中正确的是( )A.当b=0时,二次函数是y=ax 2+cB.当c=0时,二次函数是y=ax 2+bxC.当a=0时,一次函数是y=bx+cD.以上说法都不对1-3 已知圆柱的高为14 cm ,写出圆柱的体积V(cm 3)与底面半径r(cm)之间的函数关系式:________.知识点1 二次函数的定义1.下列函数中,是二次函数的有( )①y=1-2x 2;②y=21x;③y=x (1-x);④y=(1-2x)(1+2x). A.1个 B.2个 C.3个 D.4个2.圆的面积公式S=πR 2中,S 与R 之间的关系是( )A.S 是R 的正比例函数B.S 是R 的一次函数C.S 是R 的二次函数D.以上答案都不对3.若y=(a+2)x 2-3x+2是二次函数,则a 的取值范围是________.4.已知二次函数y=1-3x+5x 2,则二次项系数a=_______,一次项系数b=_______,常数项c=_______.5.已知两个变量x,y 之间的关系式为y=(a-2)x 2+(b+2)x-3.(1)当_______时,x,y 之间是二次函数关系;(2)当_______时,x,y 之间是一次函数关系.6.已知两个变量x 、y 之间的关系为y=(m-2)22 m x +x-1,若x 、y 之间是二次函数关系,求m 的值.知识点2 实际问题中的二次函数解析式7.国家决定对某药品价格分两次降价,若设平均每次降价的百分率为x ,该药品原价为18元,降价后的价格为y 元,则y 与x 的函数关系式为( )A.y=36(1-x)B.y=36(1+x)C.y=18(1-x)2D.y=18(1+x 2)8.已知一个直角三角形两直角边的和为10,设其中一条直角边为x ,则直角三角形的面积y 与x 之间的函数关系式是( )A.y=-21x 2+5xB.y=-x 2+10xC.y=21x 2+5xD.y=x 2+10x 9.边长为20 cm 的正方形铁片,中间剪去一个边长是x(cm)的小正方形铁片,剩下的四方框铁片的面积y(cm 2)与x(cm)之间的函数关系是_______.10.某校九(1)班共有x 名学生,在毕业典礼上每两名同学都握一次手,共握手y 次,试写出y 与x 之间的函数关系式_______,它_______(填“是”或“不是”)二次函数.11.如图,有一个长为24米的篱笆,一面利用墙(墙的最大长度a 为10米)围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB 为x 米,面积为S 平方米.(1)求S 与x 的函数关系式;(2)如果要围成面积为45平方米的花圃,AB的长为多少米?12.函数y=(m-n)x2+mx+n是二次函数的条件是( )A.m,n为常数,且m≠0B.m,n为常数,且m≠nC.m,n为常数,且n≠0D.m,n可以为任何常数13.在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t2+2t,则当t=4时,该物体所经过的路程为( )A.88米B.68米C.48米D.28米14.二次函数y=x2+2x-7的函数值是8,那么对应的x的值是( )A.5B.3C.3或-5D.-3或515.判断函数y=(x-2)(3-x)是否为二次函数,若是,写出它的二次项系数、一次项系数和常数项;若不是,请说明理由.16.一块矩形的草地,长为8 m,宽为6 m,若将长和宽都增加x m,设增加的面积为y m2.(1)求y与x之间的函数关系式;(2)若要使草地的面积增加32 m2,长和宽都增加多少米?17.某商店经营一种小商品,进价为2.5元,据市场调查,销售单价是13.5元时,平均每天销售量是500件,而销售单价每降低1元,平均每天就可以多售出100件.假定每件商品降价x元,商店每天销售这种小商品的利润是y 元,请写出y与x之间的函数关系式,并注明x的取值范围.挑战自我18.如图,在△ABC中,∠B=90°,AB=12 mm,BC=24 mm,动点P从点A开始沿边AB向B以2 mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4 mm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,设运动的时间为x s,四边形A PQC的面积为y mm2.(1)求y与x之间的函数关系式;(2)求自变量x 的取值范围;(3)四边形APQC 的面积能否等于172 mm 2.若能,求出运动的时间;若不能,说明理由.参考答案要点感知 y=ax 2+bx+c,x,二次项系数、一次项系数,常数项.预习练习1-1 C 1-2 D 1-3 V=14πr 2.1.C2.C3.a ≠-2.4.5,-3,1.5.(1)a ≠2 (2)a=2且b ≠-2.6.根据题意,得m 2-2=2且m-2≠0.解得m=-2.即m 的值为-2.7.C 8.A 9.y=400-x 2.10.y=21x 2-21x ,是 11.(1)S=x(24-3x),即S=-3x 2+24x.(2)当S=45时,-3x 2+24x=45.解得x 1=3,x 2=5.又∵当x=3时,BC >10(舍去),∴x=5.答:AB 的长为5米.12.B 13.A 14.C15.y=(x-2)(3-x)=-x 2+5x-6,它是二次函数,它的二次项系数为-1,一次项系数为5,常数项为-6.16.(1)y=x 2+14x.(2)当y=32时,x 2+14x=32.解得x 1=2,x 2=-16(舍去).答:长和宽都增加2米.17.降低x 元后,所销售的件数是(500+100x),则y=(13.5-2.5-x)(500+100x).即y=-100x 2+600x+5 500(0<x ≤11).挑战自我18.(1)由运动可知,AP=2x ,BQ=4x ,则y=21BC ·AB-12BQ ·BP=21×24×12-21·4x ·(12-2x), 即y=4x 2-24x+144.(2)∵0<AP <AB ,0<B Q <BC ,∴0<x<6.(3)四边形APQC 的面积能否等于172 mm 2.若能,求出运动的时间;若不能,说明理由.解:当y=172时,4x 2-24x+144=172.解得x 1=7,x 2=-1.又∵0<x<6,∴四边形APQC 的面积不能等于172 mm 2.。
人教版九年级下册26.1函数同步练习含详细答案
人教版九年级下册26班级:___________姓名:___________得分:__________(满分:100分,考试时刻:120分钟)一、选择题:(本大题10个小题,每小题3分,共30分)1.人的身高h随时刻t的变化而变化,那么下列讲法正确的是()A.h,t差不多上不变量B.t是自变量,h 是因变量C.h,t差不多上自变量D.h是自变量,t是因变量2.在圆的面积公式S=πr2中,是常量的是()A.S B.πC.R D.S 和r3.假设汽车匀速行驶在高速公路上,那么在下列各量中,变量的个数是()①行驶速度;②行驶时刻;③行驶路程;④汽车油箱中的剩余油量.A.1个B.2个C.3个D.4个4.下列四个选项中,不是y关于x的函数的是()A.|y|=x-1 C.y=2x-7D.y=x25.下列讲法正确的是()A.若y<2x,则y是x的函数C.变量x,y满足y2=2x,y是x的函数D.温度是变量6.下列各曲线表示的y与x的关系中,y不是x的函数的是()A.B.C.D.7.下列关于变量x,y的关系,其中y不是x的函数的是()A.B.C.D.8.某品牌豆浆机成本为70元,销售商对其销量定价的关系进行了调查,结果如下():定价(元)100 110 120 130 140 150销量(个)80 100 110 100 80 60 定价是常量,销量是变量定价是变量,销量是不变量定价与销售量差不多上变量,定价是自变量,销量是因变量定价与销量差不多上变量,销量是自变量,定价是因变量9信件质量p(克) 0<p≤2020<p≤40 40<x≤60邮资q(元) 1.20 2.40 3.60下列表述:①若信件质量为27克,则邮资为2.40元;②若邮资为2.40元,则信件质量为35克;③p是q的函数;④q是p的函数,其中正确的是()A.①④B.①③C.③④D.①②③④10.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x(kg)间有下面的关系:x 0 1 2 3 4 5y 10 10.5 11 11.5 12 12.5下列讲法不正确的是()x与y差不多上变量,且x是自变量,y是因变量弹簧不挂重物时的长度为0cm物体质量每增加1kg,弹簧长度y增加0.5cm所挂物体质量为7kg时,弹簧长度为13.5cm二、填空题:(本大题5个小题,每空1分,共18分)11.我们解答过一些求代数式的值的题目,请把下面的咨询题补充完整:当x的值分不取-5、0、1…时,3x2-2x+4的值分不为89、4、5…按照函数的定义,能够把x看做自变量,把看做因变量,那么因变量(填“是”或“不是”)自变量x的函数,理由是.代数式的值是12.关于x,y的关系式:(1)y-x=0;(2)x=2y;(3)y2=2x;(4)y-x2=x,其中y是x的函数的是.13.一石激起千层浪,一枚石头投入水中,会在水面上激起一圈圈圆形涟漪,如上如图所示(这些圆的圆心相同).(1)在那个变化过程中,自变量是圆的半径,因变量是圆的面积(或周长).(2)如果圆的半径为r,面积为S,则S与r之间的关系式是.s=πr2(3)当圆的半径由1cm增加到5cm时,面积增加了24πcm2.14.完成以下咨询题:(1)某人连续以a米/分钟的速度t分钟内跑了s米,其中常量是,变量是t,s;(2)在t分钟内,不同的人以不同的速度a米/分钟跑了s米,其中常量是a,变量是t,s ;(3)s米的路程不同的人以不同的速度a米/分钟各需跑t分钟,其中常量是s ,变量是t,a ;(4)按照以上叙述,写一句关于常量与变量的结论:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.15.某水果店卖出的香蕉数量(千克)与售价(元)之间的关系如表:上表反映了两个变量之间的关系,其中,自变量是香蕉数量;因变量是售价.三、综合题:(本大题5个小题,共52分)16.(12分)下列关系哪些表示函数关系?(1)在一定的时刻t内,匀速运动所走的路程s和速度v;(2)在安静的湖面上,投入一粒石子,泛起的波浪的周长L与半径r;(3)正方形的面积S和梯形的面积S′;(4)圆的面积S和它的周长c.17.(8分)指出下列咨询题中的变量和常量:某市的自来水价为4元/t,现要抽取若干户居民调查水费支出情形,记某户月用水量为x t,月应交水费为y元.18.(12分)如图,下列各曲线中哪些能够表示y是x的函数?你能讲出其中的道理吗?19.(8分)已知直线m,n之间的距离是3,△ABC的顶点A 在直线m上,边BC在直线n上,求△ABC的面积S和BC边的长x 之间的关系式,并指出其中的变量和常量.20.(12分)已知某易拉罐厂设计一种易拉罐,在设计过程中发觉符合要求的易拉罐的底面半径与铝用量有如下关系:底面半径x(cm)1.6 2.0 2.4 2.8 3.2 3.6 4.0用铝量y(cm3) 6.9 6.0 5.6 5.5 5.7 6.0 6.5 (1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当易拉罐底面半径为2.4cm时,易拉罐需要的用铝量是多少?(3)按照表格中的数据,你认为易拉罐的底面半径为多少时比较适宜?讲讲你的理由.(4)粗略讲一讲易拉罐底面半径对所需铝质量的阻碍.参考答案一.选择题(共10小题,满分30分,每小题3分)1.B【解析】因为人的身高h随时刻t的变化而变化,因此t是自变量,h是因变量;故选B.2.B【解析】在圆的面积S=πr²中,π是常量,S、r是变量.故选B3.C【解析】∵汽车平均行驶在高速路上∴②行驶时刻、③行驶路程、④汽车油箱中色剩余油量是变量.选C4.A【解析】A.x取一个值,有两个y值与其对应,错;B. x取一个值,有唯独一个y值与其对应,对;C. x取一个值,有唯独一个y值与其对应,对;D. x取一个值,有唯独一个y值与其对应,对;选A5.B【解析】A.若y<2x,则y是x的函数,不符合函数的定义,错;B. 设正方形的周长为L,而面积为S,函数关系式为:,正确.C. 变量x、y满足y²=2x,y是x的函数,不符合函数的定义,错误;D. 在不同的情形下,温度不一定是变量,错误.选B6.C【解析】按照函数的意义可知:关于自变量x的任何值,y都有唯独的值与之相对应,只有C满足条件.7.D【解析】按照函数的意义可知:关于自变量x的任何值,y都有唯独的值与之相对应,只有D满足条件.8.C【解析】定价与销售量差不多上变量,定价是自变量,销售是因变量,故选C.9.A【解析】①∵信件质量为27克在20<p≤40范畴内,∴邮资为2.40元;①正确;②若邮资为2.40元,则信件质量在20<p≤40范畴内均可,故②错;由题意q是p的函数,故③错误,④正确.选A10.B【解析】A.y随x的增加而增加,x是自变量,y是因变量,正确;B.弹簧不挂重物时的长度是10cm,错误;C.物体质量没增加1kg,弹簧长度y增加0.5cm,正确;D.由C明白,y=10+0.5x,则当x=7时,y=13.5,即所挂物体质量为7kg,则弹簧的长度为13.5cm.正确.选B二.填空题(共5小题,每空1分,满分18分)11.代数式的值;是;关于自变量每取一个值,因变量都有唯独确定的值与它对应.【解析】当x的值分不取-5、0、1...时,3x²-2x+4的值分不为8 9、4、5...按照函数的定义,能够把x看做自变量,即可解答.12.(1)、(2)、(4)【解析】y是x的函数的是:y-x=0、x=2y、y-x²=x.13.圆的半径、圆的面积(或周长);s=πr²;24π.【解析】(1)自变量是圆的半径,因变量是圆的面积(或周长);(2)按照圆的面积公式,s=πr²;(3)当圆的半径由1cm增加到5cm,面积增加了24π.14.(1)a;t、s;(2)a;t、s;(3)s;a、t.15.两;香蕉数量;售价.【解析】∵香蕉的售价随着香蕉数量的变化而变化∴上表反映了两个变量之间的关系,其中,自变量是香蕉数量;因变量是售价.三.解答题(共5小题,满分52分)16.(1)在一定的时刻t,匀速运动所走的路程s和速度v,s=vt 是正比例函数;(2)在安静的湖面上,投入一粒石子,泛起的波浪的周长L与半径r,L=2πr是正比例函数;(3)正方形的面积S和梯形的面积S’,正方形和梯形不存在关系,错误;(4)圆的面积S和它的周长C是二次函数.17.解:依据题意得:y=4x(x≥0).改函数式中,变量是x、y,常量是4.18.解:(3)(4)关于x的每一个取值,y都有不唯独确定的值与之对应,故都不是函数;(1)(2)能够表示y是x的函数.∵关于x的每一个取值,y都有唯独确定的值,∴(1)、(2)能够表示y是x的函数.19.解:由题意可得:s=1.5x,变量是s、x;常量是1.5.20.解:(1)易拉罐底面半径和用铝量的关系,易拉罐底面半径为自变量,用铝量为因变量;(2)当底面半径为2.4cm时,易拉罐的用铝量为5.6cm²;(3)易拉罐底面半径为2.8cm时比较合适,因为现在用铝量较少,成本低;(4)当易拉罐底面半径在1.6~2.8cm变化时,用铝量随半径的增大而减小,当易拉罐半径在2.8~4.0cm之间变化时,用铝量随半径的增大而增大.。
【人教版】2020九年级数学下册 第26章 26.1 同步练习 (新版)华东师大版
26.1 二次函数知|识|目|标1.通过对教材“问题1”“问题2”中所列函数关系式共同点的探索,归纳出二次函数的定义,并会判断一个函数是不是二次函数.2.类比根据实际问题列出一次函数关系式的方法,能根据实际问题或几何图形写出二次函数的关系式及自变量的取值范围.目标一 能识别二次函数例1 教材补充例题 下列函数:①y =x +2;②y =2x 2;③y =ax 2+bx +c (a ,b ,c 是常数);④y =3x 2;⑤y =x (x +1);⑥y =-13x 2-x +2;⑦y =(x +1)2-x (x +1).其中y 一定是x 的二次函数的有哪些?请指出二次函数中相应的a ,b ,c 的值.【归纳总结】1.一个函数是二次函数必须同时满足:(1)函数关系式是整式;(2)化简后自变量的最高次数是2;(3)二次项系数不等于零.三者缺一不可.2.确定二次函数中各项系数时,应先将关系式化为一般形式,注意各项系数应包括它前面的符号.目标二 会列二次函数关系式例2 教材练习第1题针对训练 如图26-1-1,有长为30 m 的篱笆,现一面利用墙(墙的最大可用长度为15 m)围成中间隔有一道篱笆的长方形菜园.设菜园的一边AB =x m ,总面积为S m 2,求S 关于x 的函数关系式,并确定自变量x 的取值范围.图26-1-1【归纳总结】列二次函数关系式“三步法”:(1)审清题意,找到实际问题中的已知量(常量)和未知量(变量),分析各量之间的关系,找出等量关系.(2)根据实际问题中的等量关系,列出二次函数关系式,并化成一般形式.(3)根据实际问题的意义及所列函数关系式,确定自变量的取值范围.知识点一 二次函数的概念定义:形如__________________________________的函数叫做二次函数.其中x 是自变量,ax 2,bx ,c 分别是二次函数的二次项、一次项和常数项.a ,b ,c 分别是二次函数的二次项系数、一次项系数和常数项.自变量x 的取值范围是__________.知识点二 列二次函数关系式根据题意用自变量表示出题目中的相关量,然后列出函数关系式.列出函数关系式后,要注意标明自变量的取值范围.当m 为何值时,y =(m +1) 是关于x 的二次函数?解:令x 的指数是2,即m 2-3m -2=2,解得m 1=-1,m 2=4.所以当m =-1或m =4时,y =(m +1) 是关于x 的二次函数.以上解答过程正确吗?若不正确,请指出错误,并给出正确的解答过程.教师详解详析【目标突破】例1 [解析] ①自变量的最高次数是1,不是二次函数;②是二次函数,a =2,b =0,c =0;③当a =0时不是二次函数;④函数关系式不是整式,故不是二次函数;⑤是二次函数,a =1,b =1,c =0;⑥是二次函数,a =-13,b =-1,c =2;⑦化简得y =x +1,不是二次函数.解:y 一定是x 的二次函数的有②⑤⑥.②y =2x 2:a =2,b =0,c =0;⑤y =x(x +1):a =1,b =1,c =0;⑥y =-13x 2-x +2:a =-13,b =-1,c =2. 例2 [解析] 因为AB =x m ,所以BC =(30-3x)m .利用长方形的面积公式可以写出S 关于x 的关系式,再利用给定墙的长度及篱笆长度可以求得自变量x 的取值范围.解:由题意,得AB =x m ,则BC =(30-3x)m ,∴S =x ·(30-3x)=-3x 2+30x.又∵3AB =3x<30,且BC =30-3x ≤15,∴x<10且x ≥5,即自变量x的取值范围是5≤x<10.∴S=-3x2+30x(5≤x<10).备选目标利用二次函数的关系式进行简单计算例已知二次函数y=ax2+2x-3,当x=1时,y=0.(1)求a的值;(2)若x=2,求y的值;(3)若y=-4,求x的值.解:(1)把x=1,y=0代入y=ax2+2x-3中,解得a=1.(2)由(1)知y=x2+2x-3.把x=2代入y=x2+2x-3中,得y=22+2×2-3=5.(3)把y=-4代入y=x2+2x-3中,得x2+2x-3=-4,解得x=-1.【总结反思】[小结] 知识点一y=ax2+bx+c(a,b,c是常数,a≠0) 全体实数[反思] 不正确.根据二次函数的定义,要使y=(m+1) 是关于x的二次函数,m不但应满足m2-3m -2=2,而且还应满足m+1≠0,二者缺一不可.在解题过程中忽略了m+1≠0这一条件,所以解答过程不正确.正解:根据题意知m应满足的条件是m2-3m-2=2,且m+1≠0,解得m=4.所以当m=4时,y=(m+1) 是关于x的二次函数.。
二次函数 同步练习 人教版数学九年级上册
22.1.1二次函数 同步练习1.下列函数是二次函数的是( ) A .y=8x 2+1B .y=8x+1C .y=D .y=+12.已知二次函数2135y x x =-+,则其二次项系数a ,一次项系数b ,常数项c 分别是( ) A .1,3,5a b c ==-= B .1,3,5a b c ===C .5,3,1a b c ===D .5,3,1a b c ==-=3.下列函数中,是y 关于x 的二次函数的是( ) A .y=2x+1B .y=2x (x+1)C .y=2x 2D .y=(x-2)2-x 2 4.二次函数y=x 2+2x-7的函数值是8,那么对应的x 的值是( )A.5B.3C.3或-5D.-3或55.若y =(m -1)是二次函数,则m 的值是( ) A. 1 B. -1 C. 1或-1 D. 26.下列具有二次函数关系的是( )A .正方形的周长y 与边长xB .速度一定时,路程s 与时间tC .三角形的高一定时,面积y 与底边长xD .正方形的面积y 与边长x7.对于y =ax 2+bx +c ,有以下四种说法,其中正确的说法是( )A .当b =0时,y =ax 2+c 是二次函数B .当c =0时,y =ax 2+bx 是二次函数C .当a =0时,y =bx +c 是一次函数D .以上说法都不对8.关于x 的函数y =(m +1)x 2+(m ﹣1)x +m ,当m =0时,它是 函数;当m =﹣1时,它是 函数.9.当m________ 时,y=(m﹣2)22mx 是二次函数.10.已知函数y=ax2+bx+c(其中a,b,c为常数),当a________时,是二次函数;当a________,b________时,是一次函数;当a________,b________,c________时,是正比例函数.11.在二次函数y=﹣x2+1中,二次项系数、一次项系数、常数项的和为.12.如果函数y=(k﹣3)+kx+1是二次函数,则k的值是.13.已知函数y=(m-1)+5x+3是关于x的二次函数,则m的值为.14.小李家用40 m长的篱笆围成一个一边靠墙(墙足够长)的矩形菜园,如图所示.(1)写出这块菜园的面积y(m2)与垂直于墙的一边长x(m)之间的关系式,并指出它是一个什么函数;(2)直接写出x的取值范围.15.某商场以每件30元的价格购进一种商品,试销过程中发现这种商品每天的销售量m(件)与每件的售价x(元)满足一次函数关系,关系式为m=162-3x.若规定该商品每件的售价不得小于进价,求商场销售这种商品每天的销售利润y(元)与每件的售价x(元)之间的函数关系式.16.某广告公司设计一个周长为12m的矩形广告牌,设计费为每平方米1000元,设矩形一边的长为x m,面积为S m2.(1)求S与x之间的函数表达式,并确定自变量x的取值范围;(2)若要求设计的广告牌的边长为整数,请你填写下表,并探究当x取何值时,广告牌的设计费最多.17.如图,正方形EFGH的顶点在边长为2的正方形ABCD的边上.设AE=x,正方形EFGH的面积为y.(1)求y与x之间的函数关系式;(2)若正方形EFGH的面积为2,求AE的长.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
26.1.1 二次函数
1. 下列五个函数关系式:①25y ax x =-+y =-x 2+1,③y =32+2x ,④
2325y x x =--,⑤2256
y x x =-+.其中是二次函数的有( )A .1个 B .2个 C .3个 D .4个2. 下列结论正确的是( )
A .关于x 的二次函数y =a (x +2)2中,自变量的取值范围是x ≠-2
B .二次函数自变量的取值范围是所有实数
C .在函数y =- 中,自变量的取值范围是x ≠0
x 22D .二次函数自变量的取值范围是非零实数
3. 如图,直角三角形AOB 中,AB ⊥OB ,且AB =OB =3,设直线x =t 截此三角形所得的阴影部
分的面积为S ,则S 与t 之间的函数关系式为( )
A .S=t
B .212S t =
C .S=t 2
D .2112
S t =-4. 当m =_________时,2(2)m m y m x +=+是关于x 的二次函数.
5. 国家决定对某药品价格分两次降价,若设平均每次降价的百分率为x ,该药品原价为18
元,降价后的价格为y 元,则y 与x 之间的函数关系式为 .
参考答案
1.B
2.B
3.B
4.1
5.y=18(1-x)2。