圆的基本性质(一)
圆的性质及相关定理
圆的性质及相关定理圆是几何学中的基本图形之一,它具有许多独特的性质和定理。
在本文中,我们将探讨圆的性质以及与之相关的一些定理。
一、圆的定义与基本性质圆可以被定义为平面上所有到一个给定点距离相等的点的集合。
这个给定点被称为圆心,而到圆心的距离被称为半径。
圆的基本性质包括以下几点:1. 圆的直径是通过圆心的一条线段,它的两个端点都在圆上。
直径的长度是半径长度的两倍。
2. 圆的周长是圆上任意两点之间的弧长,它等于圆的直径乘以π(pi)。
周长也可以被称为圆的周长。
3. 圆的面积是圆内部所有点的集合。
圆的面积等于半径的平方乘以π。
二、圆的相关定理在圆的研究中,有一些重要的定理被广泛应用。
下面我们将介绍其中几个。
1. 弧长定理弧长定理指出,在同一个圆上,两个弧所对应的圆心角相等时,它们的弧长也相等。
这个定理可以用来求解弧长,也可以用来证明一些与圆有关的性质。
2. 弧度制与角度制弧度制是一种用弧长来度量角度大小的方法。
在弧度制中,一个圆的周长被定义为2π弧度。
而角度制是我们常用的度量角度大小的方法。
两者之间可以通过一定的换算关系进行转换。
3. 切线定理切线定理是指与圆相切的直线与半径所构成的角是直角。
这个定理在解决与圆相关的几何问题时非常有用,可以帮助我们确定切线的位置和方向。
4. 正切定理正切定理指出,与圆相切的半径与切线所构成的角的正切值等于切线上相应弧所对应的角的正切值。
这个定理可以用来求解与切线相关的角度问题。
5. 弦切角定理弦切角定理是指,当一个弦与切线相交时,切线与弦所夹的角等于弦上所对应的弧所对应的角的一半。
这个定理可以用来求解与弦和切线相关的角度问题。
三、圆的应用圆的性质和定理在实际生活中有着广泛的应用。
以下列举几个例子:1. 圆的运动轨迹当一个点以固定的速度绕着另一个点旋转时,它的轨迹是一个圆。
这个性质被广泛应用在天文学中,用来描述行星、卫星等天体的运动。
2. 圆形建筑与设计圆形建筑具有独特的美学效果和结构稳定性。
圆的概念和性质
圆的概念和性质圆是我们数学中重要的几何概念之一,广泛应用于各个领域。
无论是日常生活中的测量、建筑设计,还是工程技术、科学研究中的模型和计算,都离不开圆的概念和性质。
本文将从圆的定义、常见性质以及应用等方面进行详细的探讨。
一、圆的定义圆可以定义为平面上一组到一个定点的距离都相等的点的集合。
这个定点称为圆心,到圆心的距离称为半径。
以圆心为中心、以半径为半径的线段称为圆的半径。
圆内的任意两点到圆心的距离都小于半径,而圆外的任意一点到圆心的距离都大于半径。
二、圆的性质1. 圆的直径圆的直径是通过圆心并且两端点都在圆上的线段。
直径是圆中最长的线段,并且它的长度等于半径的两倍。
2. 圆的周长圆的周长是圆上一周的长度,也称为圆周。
圆周的长度可以通过圆的直径或者半径与圆周率之间的关系来计算。
根据定义,圆周的长度等于直径乘以π(圆周率)。
3. 圆的面积圆的面积是圆内部的所有点与圆心之间的连线围成的区域。
圆的面积也是通过圆的半径与圆周率之间的关系来计算。
根据定义,圆的面积等于半径平方乘以π。
4. 圆的切点两个圆相切时,它们有一个共同的切点。
切点是两个圆相切时,位于两个圆的切线上的点。
5. 圆的切线圆的切线是与圆只有一个公共点的直线。
圆的切线与半径垂直,并且切线的斜率等于半径与圆心连线的斜率的相反数。
三、圆的应用1. 圆在日常生活中的应用圆在日常生活中有很多应用,比如钟表中的表盘、轮胎的设计、圆桌的使用等。
同时,圆的性质也可以用来解决一些实际问题,比如判断一个物体是否能通过一个洞的尺寸、计算环形花坛的面积等。
2. 圆在几何图形中的应用圆在几何图形中也有广泛的应用。
例如,圆可以用来构造其他几何图形,比如正多边形、扇形、圆锥等。
同时,圆也可以与其他几何图形相交,形成复杂的图形结构。
3. 圆在科学与工程中的应用圆的概念和性质在科学与工程领域中也有重要的作用。
例如,在物理学中,圆的运动轨迹和碰撞规律可以用来描述天体运动、粒子动力学等现象。
圆的性质及相关定理
圆的性质及相关定理圆是几何学中的一个基本概念,是由平面上所有距离等于定值的点构成的图形。
在这篇文章中,我们将探讨圆的性质及相关定理,帮助读者更好地理解和应用圆的知识。
一、圆的基本性质1. 圆心和半径:每个圆都有一个圆心和一个半径。
圆心是圆上所有点的中心位置,通常用字母O表示。
半径是从圆心到圆上的任意点的距离,通常用字母r表示。
2. 直径:直径是通过圆心的任意两点间的线段。
直径的长度等于半径的两倍。
3. 弧:圆上两点之间的弧是连接这两点的圆上的一部分。
圆上的弧可以根据其长度分为弧长和弧度。
4. 弦:弦是连接圆上任意两点的线段。
直径是最长的弦。
5. 弧度和角度:弧度是一个与圆的半径相关的度量单位,用符号rad表示。
角度是以度为单位的度量,用符号°表示。
二、圆的定理1. 切线定理:从圆外一点引一条切线,切线与半径的连线垂直。
2. 切线与弦定理:切线和弦的交点处的角等于从该点到弦的两个割线所夹的弧对应的角。
3. 弧中角定理:在同一个圆上,弧所对的圆心角相等,而弧所对的弦所夹的角则相等。
4. 圆心角定理:在同一个圆上,圆心角是其所对弧的两倍。
5. 弧长定理:同样大小的圆心角所对应的弧长相等。
6. 切割圆定理:如果有两个弧相交于圆心,它们所对的圆心角互补(和为180°)。
三、应用示例1. 计算圆的面积:圆的面积公式为A = πr²,其中A表示面积,π是一个近似值,约等于3.14,r为半径。
2. 计算圆的周长:圆的周长公式为C = 2πr,其中C表示周长,π是一个近似值,约等于3.14,r为半径。
3. 判断点是否在圆内:计算点到圆心的距离,如果小于半径,则点在圆内。
4. 判断两个圆是否相交:计算两个圆心之间的距离,如果小于两个半径之和,则两个圆相交。
总结:本文介绍了圆的基本性质和相关定理。
通过学习圆的性质,我们可以更好地理解和应用圆的知识,解决与圆相关的几何问题。
希望本文对读者有所帮助,并在几何学学习中起到指导作用。
初中数学知识归纳圆的概念和性质
初中数学知识归纳圆的概念和性质圆是初中数学中的一个重要概念,它有许多独特的性质。
下面将对圆的概念和性质进行归纳。
一、圆的概念圆是由平面上所有到一个固定点的距离都相等的点的集合。
固定点叫做圆心,等距离叫做半径。
圆可以用圆心和半径表示,通常表示为∠O(r),其中O表示圆心,r表示半径。
二、圆的性质1. 圆上任意两点的距离都相等。
即圆上的任意两点A和B,都有AB = r,其中r为圆的半径。
2. 圆的直径是圆上任意两点间的最大距离。
直径d等于半径的两倍,即d = 2r。
3. 相交弧:圆上的两条弧如果有一个公共点,则称它们为相交弧。
4. 弧度:圆心角对应的弧长与圆的半径的比值叫做弧度。
常用弧度符号表示为θ。
5. 弧长:圆周上任意两点间的弧长等于该圆心角的弧度数乘以圆的半径。
即L = θr。
三、圆的相关公式1. 圆的面积公式:S = π * r²,其中S表示圆的面积,r表示半径。
π是一个常数,约等于3.14。
2. 圆的周长公式:C = 2π * r,其中C表示圆的周长,r表示半径。
3. 弓形的面积公式:A = 1/2 * θ * r²,其中A表示弓形的面积,θ表示圆心角的弧度数,r表示半径。
4. 弦与弦的关系公式:如果两条弦相交,且其中一条被另一条平分,则两条弦的乘积等于交叉部分之间的弦的乘积。
即AB * CD = BC * AD。
四、圆的常见问题类型1. 判断关系:判断两个图形是否为圆,判断是否为同心圆等。
2. 计算问题:根据已知条件计算圆的面积、周长等。
3. 推理问题:利用圆的性质进行推理,解决几何问题。
4. 证明问题:根据已知条件进行推导,证明一个几何命题。
5. 应用问题:将圆的概念和性质应用于生活实际,解决实际问题。
五、常见解题思路1. 利用定义:根据圆的定义进行判断或运用相关公式进行计算。
2. 运用性质:根据圆的性质推导出结论,解决几何问题。
3. 运用变换:将圆的问题转化为其他图形的问题,通过转换求解。
沪科版九年级数学下册24.2圆的基本性质(第一课时)教学设计
二、学情分析
九年级学生在学习圆的基本性质这一章节之前,已经掌握了平面几何中直线、三角形、四边形等基本图形的性质和计算方法。他们对几何图形有一定的认识,具备了一定的观察、分析、推理能力。但在圆的性质这一部分,学生可能会遇到以下问题:对圆的基本概念理解不够深入,对圆的性质掌握不够熟练,对圆的相关计算方法不够熟悉。因此,在教学过程中,教师需要关注以下几点:
四、教学内容与过程
(一)导入新课
1.教师出示一枚硬币,让学生观察硬币的形状,并提问:“这个形状是什么?它有什么特点?”
2.学生回答:“这个形状是圆形,它的特点是边缘线条流畅,各点到中心点的距离相等。”
3.教师总结:“今天我们要学习一种新的几何图形——圆,它具有很多独特的性质。接下来,让我们一起来探索圆的世界。”
沪科版九年级数学下册24.2圆的基本性质(第一课时)教学设计
一、教学目标
(一)知识与技能
1.让学生理解圆的基本概念,掌握圆的各个基本性质,如圆的半径、直径、圆周率等,并能运用这些性质解决实际问题。
2.培养学生运用圆的相关性质进行计算和推理的能力,如求圆的周长、面积,判断点与圆的位置关系等。
3.使学生掌握圆的对称性质,并能运用对称性质解决一些几何问题,如求圆的切线、弦的性质等。
(二)过程与方法
1.通过直观演示、实际操作和小组讨论等教学活动,引导学生探索圆的基本性质,培养学生观察、分析、归纳的能力。
2.设计丰富的例题和练习题,让学生在解决实际问题的过程中,掌握圆的性质和计算方法,提高学生的解决问题的能力。
3.引导学生运用数形结合的思想,将圆的性质与几何图形相结合,培养学生的空间想象力和几何直观。
圆的性质与定理
圆的性质与定理圆是一种具有特殊几何性质的几何图形,它由一条曲线组成,这条曲线上的每一点到圆心的距离都相等。
在数学中,关于圆的性质和定理有很多,它们帮助我们深入理解圆的特点和应用。
一、圆的基本性质1. 圆心和半径:圆心是圆上所有点的中心,用字母O表示。
半径是圆心到圆上任意一点的距离,用字母r表示。
2. 直径和周长:直径是穿过圆心的两个点之间的距离,等于半径的两倍。
周长是圆的边界长度,等于直径乘以π(圆周率)。
二、圆的重要定理1. 同圆弧定理:如果两条弧所对应的圆心角相等,则这两条弧是同圆弧。
2. 同弦定理:如果两条弦所对应的圆心角相等,则这两条弦是同弦。
3. 弧长定理:圆内任意一段圆弧的长度等于这段圆弧所对应的圆心角的弧度数乘以半径的长度。
即弧长 = 圆心角的弧度数 ×半径。
4. 切线定理:切线与半径垂直。
5. 相切弦定理:从外部一定点引圆的两条切线,这两条切线所夹的弦的长度相等。
6. 弦切角定理:圆内的弦所夹的角等于这条弦所对应的圆心角的一半。
7. 弧切角定理:圆内一条弧与这条弧所对应的切线所夹的角等于这段弧所对应的圆心角的一半。
三、圆的应用1. 圆周率π的计算:π是无理数,它代表了圆的周长与直径的比值。
在计算中常用3.14或22/7作为π的近似值。
2. 圆的面积计算:圆的面积等于半径的平方乘以π。
即面积= π ×半径的平方。
3. 圆的几何画图:在平面几何中,圆的几何画图是重要的基础知识,它包括圆的作图、切线的作图等。
4. 圆与三角形的关系:圆与三角形之间存在着多个重要的性质和定理,如圆内切等著名定理。
综上所述,圆的性质与定理是数学中重要的内容,它们帮助我们更深入地了解圆的特点与应用。
通过学习圆的性质与定理,我们可以解决与圆相关的问题,同时也为进一步学习几何学奠定了坚实基础。
圆的基本性质
圆的基本性质圆是几何学中最基本的图形之一,具有许多独特的性质和特征。
在本文中,我将介绍圆的基本性质,包括圆的定义、圆的半径和直径、圆心和弧、圆的面积和周长等。
通过了解这些基本性质,我们可以更好地理解和运用圆形。
1. 圆的定义圆是由一条与一个固定点距离相等的点构成的集合。
这个固定点被称为圆心,圆心到圆上的任意一点的距离被称为半径。
圆内部的点到圆心的距离都小于半径,而圆外部的点到圆心的距离都大于半径。
2. 圆的半径和直径圆的半径是从圆心到圆上任意一点的距离。
圆的直径是通过圆心,并且两个端点都在圆上的线段。
圆的直径是半径的两倍,也是圆的最长线段。
3. 圆心和弧圆心是圆的中心点。
圆上的弧是由圆上的两个点以及它们之间的弧长所确定的。
圆的弧可以被度量为角度,弧度或弧长。
4. 圆的面积圆的面积是圆内部所包围的空间。
圆的面积公式为:面积= π * r²,其中π(pi)是一个无理数,约等于3.14159,r是圆的半径。
这个公式表明,圆的面积正比于半径的平方。
5. 圆的周长圆的周长是圆上所有点之间的距离总和。
圆的周长也被称为圆周长或圆的周长。
圆的周长公式为:周长= 2 * π * r,其中2πr是一个圆的直径。
6. 圆的切线在圆上的每个点上都有一个与切线相切的方向。
切线是与圆只有一个交点的直线,且与圆的切点处于圆上的切线角度为90度。
7. 圆的弦圆上的任意两个点之间的线段被称为弦。
最长的弦是圆的直径。
8. 圆的弧度弧度是一种用于度量圆上弧长的单位。
一个圆的弧长等于半径的弧度数乘以圆心角的弧度。
总结:在几何学中,圆拥有许多独特的性质和特征。
通过了解圆的定义、圆的半径和直径、圆心和弧、圆的面积和周长等基本性质,我们可以更好地理解和应用圆形。
圆在许多领域中都有广泛的应用,如工程、建筑、数学等。
掌握圆的基本性质对于解决与圆相关的问题非常重要。
通过学习和应用这些性质,我们可以更好地理解圆,并在实际生活和学习中运用它们。
2024-2025学年沪科版初中数学九年级(下)教案第24章圆24.2圆的基本性质(第1课时)
第24章圆24.2 圆的基本性质第1课时圆的定义及与圆有关的概念教学目标教学反思1.认识圆,理解圆的本质属性.2.理解弦、弧、直径、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,并了解它们之间的区别和联系.3.会判断点与圆的位置关系,并应用这一关系进行解题.教学重难点重点:认识圆,理解圆的本质属性.难点:理解弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,并了解它们之间的区别和联系.教学过程导入新课问题情境:观察下列图片,从图片中找出共同的图形.教师追问:你还能举出生活中的圆形吗?师生活动:学生列举生活中的圆形,教师适当引导.思考:车轮为什么做成圆形? 做成三角形、正方形可以吗?师生活动:如果把车轮做成圆形,车轴安装在圆心上,当车轮在地面滚动的时候,车轴离开地面的距离总是等于车轮半径长.因此车厢里坐的人都将平稳地被车子拉着走.假设车轮是个破的,已经不成圆形了,轮缘上高一块低一块的,也就是说从轮缘到轮子圆心的距离不相等,那么这种车子行驶起来一定很颠簸.同样道理,如果车轮设计成三角形或是正方形,因为其中心点到周边各点的距离不等长,所以行驶起来也一定会很颠簸!探究新知1.圆的定义教师提问:同学们,你们知道怎样画一个圆吗?你有哪些方法?师生活动:学生畅所欲言,教师圆规演示画圆的过程,总结圆的定义.1.定好半径长(即圆规两脚间的距离);2.固定圆心(即把有针尖的脚固定在一点);教学反思3.旋转一圈(使铅笔在纸上画出封闭曲线);4.用字母表示圆心、半径、直径.【归纳总结】圆的旋转定义:在一个平面内,线段OP绕它固定的一个端点O旋转一周,另一个端点P所形成的图形叫做圆.以点O为圆心的圆,记作“⊙O”,读作“圆O”.问题情境:1.以1 cm为半径能画几个圆,以点O为圆心能画几个圆?2.如何画一个确定的圆?师生活动:学生独立思考并回答,教师引导.教师追问:从画圆的过程可以看出什么呢?【归纳总结】①圆上各点到定点(圆心O)的距离都等于半径.②平面内到定点的距离等于定长的所有点都在同一个圆上.【归纳总结】圆的集合定义:平面内到定点(圆心O )的距离等于定长(半径r)的所有点组成的图形.探究:确定一个圆的要素.教师提问:当圆的圆心确定时,这个圆唯一确定吗?当圆的半径确定时,这个圆唯一确定吗?师生活动:学生小组讨论,举出反例,思考确定圆的要素,教师引导.①②【解】如图①,圆心相同,半径不同,能画出无数个同心圆;如图②,半径相同,圆心不同,能画出无数个等圆.【归纳总结】确定一个圆的要素一是圆心,圆心确定其位置;二是半径,半径确定其大小.圆的基本性质:同圆的半径相等.【新知应用】例1 如图,矩形ABCD 的对角线AC ,BD 相交于点O .求证:A ,B ,C ,D 四个点在以点O 为圆心的同一个圆上.师生活动:(学生思考,教师引导)要使A ,B ,C ,D 四个点在以点O 为圆心的同一圆上,结合圆的集合性定义,点A ,B ,C ,D 与点O 的距离有什么关系?【证明】∵ 四边形ABCD 为矩形, ∴ OA =OC =12AC ,OB =OD =12BD ,AC =BD ,∴ OA =OB =OC =OD ,∴ A ,B ,C ,D 四个点在以点O 为圆心,OA 为半径的圆上.【归纳总结】(学生总结,老师点评)由圆的集合性定义可知,圆上各点到定点(圆心O )的距离都等于定长(半径r ). 2.点与圆的位置关系圆心为O ,半径为r 的圆可以看成是所有到定点O 的距离等于定长r 的点的集合.请你用集合的语言描述下面的两个概念:(1)圆的内部是到圆心的距离小于圆的半径r 的所有点的集合; (2)圆的外部是到圆心的距离大于圆的半径r 的所有点的集合. 【新知讲解】点与圆的位置关系: 1.点P 在圆上⇔OP =r (如图①). 2.点P 在圆内⇔OP <r (如图②). 3.点③练一练:1.正方形ABCD 的边长为3 cm ,以A 为圆心,3cm 长为半径作⊙A ,则点A 在⊙A ,点B 在⊙A ,点C 在⊙A ,点D 在⊙A .2.一点和⊙O 上的最近点距离为4 cm ,最远距离为10 cm ,则这个圆的半径是 cm.3.与圆有关的概念 (1)弦连接圆上任意两点的线段(如图中的AB )叫做弦.图中的弦还有 .经过圆心的弦(如图中的AC )叫做直径.注意:①弦和直径都是线段.②直径是弦,是经过圆心的特殊弦,是圆中最长的弦,但弦不一定是直径. (2)弧圆上任意两点间的部分叫做圆弧,简称弧.以A ,B 为端点的弧记作AB ,读作“圆弧AB ”或“弧AB ”. (3)半圆圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆.教学反思(4)劣弧与优弧小于半圆的弧叫做劣弧,如图中的AC .大于半圆的弧叫做优弧,如图中的ABC .(5)等圆能够重合的两个圆叫做等圆.等圆是两个半径相等的圆. (6)等弧在同圆或等圆中,能够互相重合的弧叫做等弧. 3.概念辨析(1)长度相等的弧是等弧吗?师生活动:学生思考并回答,说明理由,教师引导归纳总结.【归纳总结】(学生总结,老师点评)长度相等的弧不一定是等弧,只有在同圆或等圆中,长度相等的弧才是等弧.(2)直径是弦吗?弦是直径吗?师生活动:学生思考并回答,说明理由,教师引导归纳总结.【归纳总结】(学生总结,老师点评)直径是弦,但弦不一定是直径,只有在弦经过圆心时,这条弦才叫直径,因此直径是圆中最长的弦.(3)半圆是弧吗?弧是半圆吗?师生活动:学生思考并回答,说明理由,教师引导归纳总结.【归纳总结】(学生总结,老师点评)半圆是弧,但弧不一定是半圆,只有直径的两个端点把圆分成的两条弧才是半圆.【新知应用】例2 下列说法:①弧分为优弧和劣弧;②半径相等的圆是等圆;③过圆心的线段是直径;④长度相等的弧是等弧;⑤半径是弦.其中正确的是________.(填序号)师生活动:(引发学生思考)优弧、劣弧、等圆、直径、等弧的定义分别是什么?圆上的弧可以分为哪几类?【答案】②【归纳总结】(学生总结,老师点评)由圆的有关概念可知,连接圆上任意两点的线段是弦;过圆心的弦是直径;在同圆或等圆中,能够互相重合的弧是等弧;圆上的弧分为优弧、半圆、劣弧.例3 如图.(1)请写出以点B 为端点的劣弧及优弧; (2)请写出以点B 为端点的弦及直径; (3)请任选一条弦,写出这条弦所对的弧.师生活动:发对优弧、劣弧概念的思考.【解】(1)劣弧:BD ,BF ,BC ,BE .优弧:BFE ,BFC ,BCD ,BCF .(2)弦BD , AB , BE .其中弦AB 又是直径.(3)答案不唯一.如:弦DF ,它所对的弧是DF 和DEF . 【归纳总结】大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.要按照一定的顺序书写,不要遗漏.【拓展延伸】 例4 下列说法:①经过点P 的圆有无数个;②以点P 为圆心的圆有无数个;③半径为3 cm ,且经过点P 的圆有无数个;④以点P 为圆心,以3 cm 为半径的圆有无数个.其中错误的有( )A .1个 B.2个 C.3个 D.4个师生活动:(引发学生思考)结合圆的定义分析怎样确定一个圆?确定一个圆的条件有哪些?【答案】A教学反思【归纳总结】(学生总结,老师点评)确定一个圆需要两个要素:一是圆心,确定圆的位置;二是半径,确定圆的大小.两者缺一不可.例5A,B是半径为5的⊙O上两个不同的点,则弦AB的取值范围是()A.AB>0B.0<AB<5C.0<AB<10D.0<AB≤10师生活动:(引发学生思考)连接圆上任意两点的线段是弦,求弦AB的取值范围,就要知道连接圆上任意两点构成的最长线段和最短线段分别是什么.【答案】D【归纳总结】(学生总结,老师点评)圆上最长的弦是直径,则圆上不同两点构成的弦长大于0且小于等于直径长.课堂练习1.填空:(1)______是圆中最长的弦,它是______的2倍.(2)如图所示,图中有条直径,条非直径的弦.2.一点和⊙O上的点最近距离为6 cm,最远距离为12 cm,则这个圆的半径是 .3.判断下列说法的正误.(1)弦是直径. ()(2)过圆心的线段是直径. ()(3)半圆是弧. ()(4)过圆心的直线是直径. ()(5)直径是最长的弦. ()(6)半圆是最长的弧. ()(7)长度相等的弧是等弧. ()(8)同心圆也是等圆. ()4.给出下列说法:①直径是弦;②优弧是半圆;③半径是圆的组成部分;④两个半径不相等的圆中,大的半圆的弧长小于小的半圆的周长.其中正确的是.(填序号)5.如图,点A,B,C,E在⊙O上,点A,O,D与点B,O,C分别在同一直线上,图中有几条弦?分别是哪些?第5题图6.如图,点A,N在半圆O上,四边形ABOC和四边形DNMO均为矩形,求证:BC=MD.参考答案1.(1)直径半径(2)两三2.9 cm或3 cm3.(1)×(2)×(3)√(4)×(5)√(6)×(7)×(8)×4.①5.解:图中有3条弦,分别是弦AB,BC,CE.6.证明:如图,连接ON,OA.∵点A,N在半圆O上,∴ON=OA.∵四边形ABOC和四边形DNMO均为矩形,∴ON=MD,OA=BC,∴BC=MD. 教学反思第6题答图课堂小结学生独立思考,进行总结,教师补充概括. ⎧⎧⎪⎪⎨⎪⎩⎪⎪⎧⎪⎪⎪⎧⎪⎪⎨⎪⎪⎨⎪⎪⎨⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩圆的旋转定义圆的定义圆的集合定义弦—直径劣弧圆弧半圆圆的有关概念优弧等圆等弧 布置作业教材第14页练习板书设计24.2 圆的基本性质第1课时 圆的定义及与圆有关的概念1.圆的定义(1)圆的旋转定义 (2)圆的集合定义2.与圆有关的概念:弦;直径;弧;半圆;等圆;等弧.3.点与圆的位置关系: 点P 在圆上⇔OP =r ; 点P 在圆内⇔OP <r ; 点P 在圆外⇔OP >r. 教学反思。
圆的基本概念与性质
圆的基本概念与性质圆是几何学中最基本的图形之一,它具有独特的形状和性质。
本文将对圆的基本概念和一些重要性质进行详细介绍。
一、圆的定义圆是由平面上距离一个固定点一定距离的所有点组成的集合。
这个固定点被称为圆心,而这个距离被称为半径。
二、圆的常用符号在几何学中,圆常用符号“O”表示圆心,用字母“r”表示半径。
因此,一个圆可以用符号“O(r)”表示。
三、圆的性质1. 圆的对称性由于圆的定义是以一个固定点为中心,所有距离这个点相等的点的集合,因此圆具有天然的对称性。
任意一条直径将圆分成两个等边的半圆,半圆上的所有点与圆心的距离相等。
2. 圆的直径、半径和弦在圆中,直径是通过圆心并且两端点都在圆上的线段;半径是从圆心到圆上的任意一点的线段,它等于圆的半径;弦是圆上连接两个点的线段,不经过圆心。
3. 圆的周长和面积圆的周长定义为圆上的一条完整弧所对应的长度,可以用公式C =2πr来计算,其中C表示周长,r表示半径。
圆的面积定义为圆内所有点所组成的区域的大小,可以用公式A = πr²来计算,其中A表示面积,r表示半径。
4. 圆的切线和法线圆上的切线是与圆相切的直线,它只与圆在切点相交。
切线与半径构成的夹角为90度。
法线是与切线垂直的直线,它通过切点并与切线垂直相交。
5. 圆的弧度制和度数制圆的弧度制是一种用弧长比半径的面度来度量角度的方式。
一个圆的弧长等于半径的弧度数。
度数制是人们常见的度量角度的方式,一个圆被等分为360度,1度等于圆的1/360。
四、圆的相关定理和应用1. 圆上的三角形圆上的三角形是指三个顶点都在圆上的三角形。
它有很多特殊性质,如圆上的两条弧所对应的角相等,半径与割线所包围的弧所对应的角相等等。
2. 切线定理和切割定理切线定理指的是切线与半径的关系,即切线的平方等于切点处外切圆的半径与切点到圆心的距离之积。
切割定理指的是弦分割定理和切线分割定理,它们描述了切线和弦所分割的弧长和线段之间的关系。
圆的性质和定理
圆的性质和定理圆是几何中的重要概念之一,它具有许多独特的性质和定理。
在本文中,我们将探讨圆的基本性质以及一些与圆相关的重要定理。
一、圆的性质1. 定义:圆是由平面上与一定点的距离相等的所有点组成的集合。
圆心是圆上所有点的中心,半径是从圆心到圆上任意一点的距离。
2. 圆周率:圆的周长与直径的比值被定义为圆周率π(pi),它是一个无理数,约等于3.14159。
根据这个定义,圆的周长C可以表示为C = 2πr,其中r是圆的半径。
3. 直径和半径的关系:直径是一条通过圆心的线段,它的长度等于半径的两倍。
换句话说,d = 2r,其中d代表直径,r代表半径。
4. 弧和弦:在圆上,弧是圆上的一段弯曲的部分,而弦则是连接圆上两个点的线段。
任何一条弦对应的弧都是唯一确定的,且弦总是小于或等于圆的直径。
5. 弦的性质:如果两条弦互相垂直,则它们所对应的弧互补。
二、圆的定理1. 弧度制和角度制:在计量角度时,常见的有两种制度,一种是弧度制,另一种是角度制。
弧度制是以圆的半径为单位,角度制是以度为单位。
两者之间的转换关系是2π弧度等于360度。
2. 弧度与圆周角的关系:一条弧所对应的圆周角的弧度数等于这条弧所对应的圆心角的弧度数。
这个定理揭示了圆弧度的重要性,为许多相关问题的解决提供了便利。
3. 切线定理:与圆相切的直线(切线)与半径的相交点处的角是一个直角。
4. 弧长和扇形面积:弧长是弧上的一部分的长度,可以由弧度数乘以半径得到。
扇形面积是由相邻两条半径和其所夹的弧组成的图形的面积,它可以通过半径和所夹的圆心角的弧度数计算得出。
5. 割线定理:在与圆相交的直线上,两个相交点分割的弦的乘积等于这条直线外部线段与这条直线在圆上的切点分割的弦的乘积。
总结:圆具有许多独特的性质和定理,对于几何学的研究和应用有着重要的意义。
掌握了圆的性质和定理,我们可以更好地理解和解决与圆相关的问题。
在实际应用中,圆的性质和定理也被广泛应用于建筑、机械、地理等领域,为问题的解决提供了有效的方法和准确的计算依据。
初中数学圆的基本性质公式定理
初中数学圆的基本性质公式定理初中数学圆的基本性质公式定理大全大家都知道:圆是定点的距离等于定长的点的集合,那么圆的半径、圆心等性质大家熟知了吗。
以下是小编为你整理的内容,欢迎阅读。
圆的基本性质1圆是定点的距离等于定长的点的集合2圆的内部可以看作是圆心的距离小于半径的点的集合3圆的外部可以看作是圆心的距离大于半径的点的集合4同圆或等圆的半径相等5到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆6和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线7到已知角的两边距离相等的点的轨迹,是这个角的平分线8到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线9定理不在同一直线上的三点确定一个圆。
上面为大家带来的是初中数学公式定理大全之圆的公式定理,热爱数学的同学们应该熟记于心了吧。
初中数学正方形定理公式关于正方形定理公式的内容精讲知识,希望同学们很好的掌握下面的内容。
正方形定理公式正方形的特征:①正方形的四边相等;②正方形的四个角都是直角;③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角;正方形的判定:①有一个角是直角的菱形是正方形;②有一组邻边相等的矩形是正方形。
希望上面对正方形定理公式知识的讲解学习,同学们都能很好的掌握,相信同学们会取得很好的成绩的哦。
初中数学平行四边形定理公式同学们认真学习,下面是老师对数学中平行四边形定理公式的内容讲解。
平行四边形平行四边形的性质:①平行四边形的对边相等;②平行四边形的对角相等;③平行四边形的对角线互相平分;平行四边形的判定:①两组对角分别相等的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③对角线互相平分的四边形是平行四边形;④一组对边平行且相等的四边形是平行四边形。
上面对数学中平行四边形定理公式知识的讲解学习,同学们都能很好的掌握了吧,相信同学们会从中学习的更好的哦。
初中数学直角三角形定理公式下面是对直角三角形定理公式的内容讲解,希望给同学们的学习很好的帮助。
圆的性质知识点总结
圆的性质知识点总结圆是我们日常生活中常见的一种几何形状。
它具有一些独特的性质,我们通过下面的总结来了解圆的性质。
一、圆的定义和要素圆可以定义为平面上任意点到固定点的距离保持不变的集合。
这个固定点称为圆心,到圆心的距离称为半径。
圆中的任意一条线段,它的两个端点都在圆上,称为弦。
经过圆心的弦称为直径,直径是弦中最大的一段。
二、圆的基本性质1. 圆的半径相等性质:圆上任意两点到圆心的距离相等。
2. 弧的定义:在圆上,由两个点所确定的部分称为弧。
圆上一段既非弦也非整个圆的弧称为弧段。
3. 圆心角:圆上以圆心为顶点的角。
圆心角所对的弧长是该角度的两倍。
4. 弦的性质:等长的弦所对的圆心角相等,且直径是圆上最长的弦。
5. 弧长的比例:相等弧所对的圆心角相等,弧长和圆周长之间存在比例关系。
三、圆的周长和面积公式1. 周长:圆的周长等于圆周上一整条弧的长度。
周长的计算公式为C=2πr,其中C表示周长,r表示半径,π是一个常数,约等于3.14159。
2. 面积:圆的面积是指圆内部的所有点组成的部分所占据的平面面积。
面积的计算公式为S=πr^2,其中S表示面积,r表示半径。
四、圆的判定定理1. 弦切定理:如果一个弦和它所对的圆心角相等,那么这个弦被平分。
2. 弦心定理:如果两个弦的两个端点分别在另一个弦上,那么这两个弦的长度乘积等于它们所决定的弧的长度乘积。
3. 切线性质:从一个点外切圆上的切线和这条切线上这个点到圆心的线段垂直。
五、圆的相关定理1. 相交弦定理:如果两个弦相交,那么它们所对的圆心角相等。
2. 弦切角定理:相交的两条弦所对的弧所决定的角相等。
3. 弦切切定理:切线和弦的交角等于它所对的弧所决定的角。
六、圆的应用1. 圆的运动:物体在圆周上做匀速圆周运动时,物体的速度大小恒定,但方向不断改变。
2. 圆锥曲线:圆可以通过用直线旋转一条线段得到,例如圆锥曲线中的椭圆、抛物线和双曲线。
3. 圆的几何画法:使用圆规、尺子等几何工具可以进行圆的画法,如确定一个圆的圆心、半径等。
圆的性质与定理
圆的性质与定理在数学中,圆是一种基本的几何形状。
它具有一些独特的性质和定理,这些性质和定理对于我们理解和应用圆形至关重要。
本文将介绍圆的性质和一些与圆相关的重要定理。
一、圆的性质1. 定义:圆是由平面上距离一个固定点(圆心)相等的所有点构成的集合。
圆心由大写字母O表示,半径由小写字母r表示。
2. 圆的直径:任意通过圆心并且两端点在圆上的线段称为圆的直径。
直径的长度等于半径的2倍。
3. 圆的弦:圆上任意两点连线段称为圆的弦。
4. 圆的弧:圆上的两点之间的部分称为圆的弧。
5. 圆的切线:与圆仅有一个交点且与切点垂直的直线称为圆的切线。
二、圆的定理1. 圆心角与弧度:圆心角是以圆心为顶点的角,弧度是以半径为半径的圆弧包含的圆心角所对的弧长所对应的角度。
圆心角的大小等于其对应的圆弧的弧度。
2. 弧长公式:已知圆的半径r和圆心角θ的弧长L计算公式为L = r * θ。
3. 正弦定理:在圆上的两条弦所夹的圆心角θ和这两条弦的长度a、b之间存在如下关系:a/sin(θ/2) = b/sin(θ/2) = c/sin(θ/2),其中c为弦的长度。
4. 余弦定理:在圆上的两条弦之间的夹角θ和这两条弦的长度a、b之间存在如下关系:c² = a² + b² - 2ab*cos(θ/2)。
5. 切线定理:圆上与切点相连的两条切线的交点与圆心的连线垂直。
6. 切割线定理:若直线与圆相交,割线与切线的乘积等于割线与割线的乘积。
7. 相切定理:两个圆相切于一点,切点到圆心的连线垂直于两个切线。
8. 切圆定理:过圆外一点可以作两条切线,两条切线夹角等于切点到该点的连线与圆的半径的夹角的一半。
9. 切割圆定理:若两个相交的圆互为切割,则切点到圆心的连线垂直于相应切线。
三、应用举例1. 圆的计算:对于已知半径r的圆,可以根据公式计算圆的周长和面积。
圆的周长C为2πr,圆的面积S为πr²。
2. 弧长和扇形面积:已知圆心角θ和半径r,可以通过公式计算弧长L和扇形面积A。
圆的概念与性质
圆的概念与性质圆是几何学中一种基本的二维图形,被广泛应用于数学、物理和工程领域。
本文将从圆的定义、性质以及应用等方面进行探讨。
一、圆的定义圆是由平面上离给定点距离相等的所有点组成的集合。
给定平面上的一个点为圆心,以该点为中心,以一个确定的长度为半径做直线,与平面上的点交于一或两点,这一或两点离圆心的距离为半径长,称其为圆。
二、圆的基本性质1. 圆心和半径在圆中,圆心是一个关键概念。
圆心可用于确定圆的位置,并将圆分割为内部和外部两部分。
圆心对称性是圆的独特性质之一,即圆上的任意两点与圆心的距离相等。
2. 弧和弧长圆上的弧是由圆周上的两点所确定的一部分,它可以是一段弧或者是圆上的整个弧。
弧长是指弧所对应的圆周的长度。
可以通过已知的圆的半径和弧度来计算弧长。
3. 圆的直径和周长圆的直径是通过圆心的直线,其两个端点都在圆上。
直径的长度是圆周长度的两倍,即d=2r,其中d为直径,r为半径。
圆的周长是指圆周的长度,通常用C表示,其计算公式为C=2πr。
4. 圆的面积圆的面积是指圆内部的平面区域的大小,通常用A表示。
圆的面积的计算公式为A=πr^2,其中r为半径。
三、圆的应用圆具有许多实际应用,以下列举几个常见的应用场景:1. 圆的几何应用在建筑、设计和工程领域,圆常常用于绘制弧线、圆形或圆弧结构,如建筑的圆顶、桥梁的拱形等。
圆形的地基也可以增强结构的稳定性。
2. 圆的运动学应用在物理学和工程中,圆用于描述旋转和循环运动。
例如,轮胎的旋转和车轮在行驶过程中的循环运动均可以使用圆来解释和计算。
3. 圆的几乎的普遍性圆是自然界中最常见的形状之一。
在生物学和天文学中,圆形的结构和形态被广泛观察。
例如,太阳、行星、水滴和许多生物体的细胞结构都具有圆形特征。
4. 圆的数学应用圆具有丰富的数学应用,与圆相关的数学概念如三角函数、圆周率等,都在数学研究和实际问题中发挥着重要的作用。
例如,三角函数中的正弦函数和余弦函数可以通过圆的投影和观察来定义和计算。
圆的基本性质
圆的基本性质圆是我们日常生活中常见的一种几何图形,具有一些独特的性质。
在本文中,我们将详细讨论圆的基本性质,包括定义、特点和相关公式。
一、定义圆是平面上所有与给定点(圆心)的距离都相等的点的集合。
圆可以用一个有限的点表示圆心和一个确定的距离表示半径。
二、特点1. 圆心和半径圆心是圆的中心点,通常用字母O表示。
圆心到圆上任意一点的距离称为半径,用字母r表示。
在一个圆中,所有的半径长度相等。
2. 直径直径是通过圆心的线段,它的两个端点都在圆上。
直径的长度是半径长度的两倍,用字母d表示。
3. 弦弦是两个端点都在圆上的线段。
一条弦将圆分成两个弧,其中一个是大弧,另一个是小弧。
弦的中点位于圆上,并且与圆心连线垂直。
4. 弧弧是圆上的一段曲线,由两个端点和位于弧上的点组成。
弧的长度是按照圆周的长度来衡量的。
5. 切线切线是与圆只有一个交点的直线。
切线与半径的夹角是直角(垂直),切线的斜率是半径的负倒数。
三、相关公式1. 圆周长圆的周长是圆周上一周的长度,用字母C表示。
圆的周长可以根据半径或直径计算。
公式如下:C = 2πr 或C = πd其中,π取近似值3.14。
2. 圆面积圆的面积是圆内部的平面空间,用字母A表示。
圆的面积可以根据半径计算。
公式如下:A = πr²其中,π取近似值3.14。
3. 弧长弧长是弧的长度,用字母L表示。
弧长可以根据圆心角和半径计算。
如果已知圆心角的度数为θ(弧度制),半径为r,则弧长可以通过下面的公式计算:L = (π/180)θr 或L = θr四、应用举例下面是一些圆的基本性质的应用举例:1. 计算圆的周长和面积:已知半径或直径的数值,可以使用相应的公式计算出圆的周长和面积。
2. 构造切线:在给定圆上选择一点,可以通过这个点构造与圆的切线。
3. 圆的投影:如果一个圆在平面上投射到平行于平面的另一个平面上,投影仍然是一个圆,且具有相似的性质。
总结:圆是一个重要的几何图形,它具有一些基本性质,如圆心、半径、直径、弦、弧和切线等。
圆的基本概念与性质
圆的基本概念与性质圆是几何学中的基本图形之一,它具有独特的性质和特点。
本文将介绍圆的基本概念和性质,并以简明扼要的方式展示出来。
1. 圆的定义圆是由平面内到一个定点距离等于该定点到平面内所有点的距离的所有点组成的集合。
这个定点称为圆心,到圆心距离等于半径的线段称为半径,圆上的任一线段都等于半径的长度。
2. 圆的元素(1)圆心:圆心是圆的核心点,通常用大写字母O表示。
(2)半径:半径是从圆心到圆上任意一点的线段,通常用小写字母r表示。
(3)直径:直径是通过圆心并且两端点处于圆上的线段,直径的长度是半径的两倍,通常用小写字母d表示。
(4)弦:弦是圆上任意两点之间的线段。
(5)弧:弧是圆上两点之间的一段曲线。
3. 圆的性质(1)圆是由无数个点组成的闭合曲线。
(2)圆的直径是圆中最长的线段,且等于半径的两倍。
(3)圆的半径在圆上任一点都是垂直于切线的。
(4)圆上任意两条弦所对应的圆心角相等。
(5)切线与半径的夹角是直角。
(6)对于同一个圆,如果两条弧的夹角相等,则它们所对应的弦的长度也相等。
4. 圆的重要定理(1)圆的半径平分弦和弧。
(2)在圆上,两条弦和它们所夹的弧所对应的圆心角相等。
反之,两条弦所对应的圆心角相等,则它们所夹的弧也相等。
(3)在圆上,两条相等的弧所对应的圆心角也相等。
(4)在圆上,夹在同一弧上的两个圆心角互补(合为180度)。
(5)在圆内,夹在同一弧上的两个角互为补角(合为90度)。
总结圆作为几何学中基本的图形之一,具有许多重要的性质和定理。
通过对圆的基本概念的理解和对其性质的掌握,我们能更好地应用它们解决实际问题。
对于进一步学习几何学和进行相关研究,圆的基本概念与性质是必不可少的基础知识。
小学数学知识归纳圆的认识与性质
小学数学知识归纳圆的认识与性质圆是我们学习数学时经常接触到的一个几何图形。
在小学数学中,我们主要学习了关于圆的一些基本知识和性质。
下面将对这些内容进行归纳和总结。
1. 圆的定义:圆是由平面上到一个固定点距离相等的所有点组成的图形。
这个固定点称为圆心,到圆心距离相等的线段称为半径。
平面上的其他点到圆心的距离都等于半径。
2. 圆的符号和表示方法:我们通常用字母O表示圆心,用字母r表示半径。
圆的名称可以用大写字母加圆心表示,例如圆O。
3. 圆的性质一:圆的直径:一条穿过圆心的线段,且两个端点都在圆上,这条线段称为圆的直径。
直径是半径的两倍。
4. 圆的性质二:圆的弦:在圆上任取两点,这两点及其之间的线段称为圆的弦。
弦的长度小于等于直径长度。
5. 圆的性质三:圆心角:以圆心为顶点的角称为圆心角。
对于同一个弧所对的圆心角,它的度数恒定不变。
6. 圆的性质四:圆的弧:连接圆上两点的部分称为圆的弧。
圆的弧可以有弧长来表示,弧长等于圆心角的度数除以360°再乘以2πr(r为半径)。
7. 圆的性质五:圆的周长和面积:圆的周长是指围绕圆形轮廓的长度,等于2πr(r为半径);圆的面积是指圆所围成的部分,等于πr²。
8. 圆与其他几何图形的关系:(1) 圆与直线:与圆相切的直线与圆的切点处的切线垂直。
(2) 圆与三角形:圆内接于一个三角形的圆心与三角形的三个顶点共线。
(3) 圆与四边形:内接四边形的对角线相互垂直。
(4) 圆与正多边形:正多边形的内切圆与外切圆的关系。
通过以上的总结,我们对小学数学中关于圆的知识有了一定的了解。
通过这些基本的概念和性质,我们可以应用于解决一些数学问题,并且为之后的学习打下了基础。
对圆的认识是数学学习中的基础,希望同学们能够善于运用这些知识并进一步深化理解,为数学的学习打下坚实的基础。
最后给小学数学的学习者一个建议,多做一些有关圆的练习题,通过实践来加深对圆的认识。
只有通过不断地探索和实践,我们才能更好地理解和运用圆的知识。
圆的基本性质复习(1)
分析:
D
C
B
以AB为轴旋转一周所得到的几何体是由公共
底面的两个圆锥所组成的几何体,因此求全面
积就是求两个圆锥的侧面积。
已知圆锥底面半径为1cm,母线长为3cm. (1)求它的侧面展开图的圆心角和全面积. (2)若一甲虫从圆锥底面圆上一点A出发,沿 圆锥侧面绕行到母线SA的中点B,它所走的最短 路程是多少?
C
图1
15
3
3.6
做圆的直径与找90度的圆周 角也是圆里常用的辅助线
A
B
•
O C
D
例4、半径为5的圆中,有两条平行 弦AB 和CD,并且AB =6,CD=8, 求AB和CD间的距离
C
.E
D
O
A FB (1)
A FB
C
.E D
O
(2)
做这类问题是,思考问题一定要 全面,考虑到多种情况。
练习题
BE A
推论:圆的内接四边形的对角互补,并且任何一个外角都等 于它的内对角。
圆内接四边形ABCD A+ C=180 CBE= D
推论:圆内接梯形是等腰梯形,圆内接平行四边形是矩形
E
CE=DE
垂径定理:AB是直径
AB CD
AC=AD
CB=DB
推论1:平分弦(不是直径)的直径垂 直于弦,并且平分弦所对的弧
;
3、 扇形AOB的半径为12cm,∠AOB=120°,求 扇形的面积和周长.
4、 如图,当半径为30cm的转动轮转过120°时, 传送带上的物体A平移的距离为______.
A
例1、已知:在RtΔABC,
C 900.AB 13cm, BC 5cm
求以AB为轴旋转一周所得到的几何体的全面积。
初中数学:有关圆的概念及性质
初中数学:有关圆的概念及性质一、圆的基本概念及性质(1)圆的有关概念①圆:平面. 上到定点的距离等于定长的所有点组成的图形叫做圆,其中定点为圆心,定长为半径.②弧:圆. 上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧.③弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.(2)圆的有关性质①圆是轴对称图形:其对称轴是任意一条过圆心的直线:圆是中心对称图形,对称中心为圆心。
②垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.③弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有-组量相等,那么它们所对应的其余各组量都分别相等.推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角: 90”的圆周角所对的弦是直径.④三角形的内心和外心确定圆的条件:不在同一直线上的三个点确定一个圆.⑥:三角形的外心:三角形的三个顶点确定-一个圆,这个圆叫做三角形的外接圆,外接圆的圆心就是三角形三边的垂直平分线的交点,叫做三角形的外心.三角形的内心:和三角形的三边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.2.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角。
圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边分别和圆相交的角,叫圆周角。
圆周角的度数等于它所对的弧的度数的一半.(3)圆心角与圆周角的关系:同圆或等圆中,同弧或等弧所对的圆周角等于它所对的圆心角的- -半.(4)圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.圆内接四边形对角互补,它的一一个外角等于它相邻内角的对角.圆的性质1、圆是轴对称图形,对称轴是任意一条过圆心的直线。
2、垂径定理:垂直于弦的直径平分这条弦,并粗平分弦所对的弧。
垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并平分弦对的弧。
圆的性质与相关定理
圆的性质与相关定理圆是几何学中的一种基本图形,它不仅在数学中有着重要的地位,也在日常生活中随处可见。
圆的性质和相关定理为我们理解和应用圆提供了基础。
本文将从多个角度探讨圆的性质和相关定理。
一、圆的基本性质圆是由一组等距离于圆心的点组成的。
圆心是圆的中心点,所有的点到圆心的距离都相等,这一性质被称为半径。
半径的长度决定了圆的大小。
圆上的任意一点到圆心的距离称为半径。
圆上的任意两点之间的距离称为弦,而弦的长度决定了圆的直径。
直径是圆上最长的弦,它的长度等于两倍的半径。
二、圆的周长和面积圆的周长是指圆的边界长度,也被称为圆周。
根据圆周的性质,我们可以得出圆的周长公式:C = 2πr,其中C表示圆的周长,r表示圆的半径。
这个公式告诉我们,圆的周长与其半径成正比。
圆的面积是指圆所占据的平面的大小。
根据圆的性质,我们可以得出圆的面积公式:A = πr²,其中A表示圆的面积,r表示圆的半径。
这个公式告诉我们,圆的面积与其半径的平方成正比。
三、圆的切线和切点切线是与圆相切的直线。
根据圆的性质,切线与半径垂直相交。
圆上的切点是切线与圆相交的点。
根据圆的性质,切点与半径在切点处的切线垂直相交。
四、圆的相交和相切当两个圆相交时,它们的圆心之间的距离小于两个圆的半径之和,但大于两个圆的半径之差。
当两个圆的圆心之间的距离等于两个圆的半径之和时,它们相切于一个点。
当两个圆的圆心之间的距离大于两个圆的半径之和时,它们不相交。
五、圆的切圆和切线当一个圆与另一个圆相切时,它们的圆心之间的距离等于两个圆的半径之和。
在这种情况下,我们可以通过连接两个圆心,并将连接线延长到圆的外部,找到两个圆的切线。
这两条切线与连接线垂直相交。
六、圆的角度和弧度圆的角度是指圆心所对应的弧所占据的比例。
圆的角度被度量为360度。
圆的弧度是指圆心所对应的弧所占据的长度比例。
圆的弧度被度量为2π弧度。
根据圆的性质,我们可以得出角度和弧度之间的转换关系:1弧度=180/π度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B A
圆的基本性质(一)
A 组
1、 已知:在直角三角ABC 中,0
90=∠A ,AB=3cm,AC=4cm,AD 是CB 边上的高,则D 在
以A 为圆心,AC 为半径的( )
6、如图,四边形ABCD 中,∠A=130°,∠B=90°,∠C =50°,则过四点A 、B 、C 、D
能否画一个圆?若能,请画出这个圆,请简单说明理由。
(6分)
7、如图,点C 是AB 上的点,CD ⊥OA 于D ,CE ⊥OB 于E ,若CD=CE 。
求证:点C 是
AB 的中点。
(6分)
⌒ ⌒
8、如图,AB 是⊙O 的直径,且AD ∥OC ,若
AD 的度数为80°。
求CD 的度数。
(6分)
9.如图所示,已知:⊙O 的弦AB,E 、F 是弧AB 上两点,弧AE 与弧BF 相等,OE 、OF 分别交AB 。
10、如图所示,BC 为⊙O 的直径,弦AD ⊥BC 于E ,0
60=∠C ,求证:ABD ∆为等边三角形。
11、 如图,弦CD 长为________。
12、 在⊙O 中,弦弦CD 的弦心距
13、 矩形ABCD CD 与⊙O ⊙O 的直径等于B
F
E
A
C D
B
14、 ⊙O 的半径为10cm ,两平行弦AC ,BD 的长分别为12cm ,16cm ,则两弦间的距离是( ) A. 2cm B. 14cm C. 6cm
15、.弓形的半径为10cm ,弦长为
16、已知扇形面积为12cm 2,半径为17、 如图,⊙O 是∆ABC
的外接圆,
E 是BA 延长线上一点,∠=DAE 114 A. 57° B. 38° C. 33°18、已知AB 、CD
19. 如图,⊙C 经过原点且与两坐标轴分别交于点A 与点B, 点A 的坐标为(0, 4 ) , M 是圆上一点,∠BMO=1200.求:⊙C 的半径和圆心C 的坐标.。
20. 如图,在△ABC 中,∠B = Rt ∠,∠A = 600,以点B 为圆心,AB 为半径画圆,交AC 于点D,交BC 于点E .求证: (1) AD = 2ED: ( 2 ) D 是AC 的中点.
C 组
21、如图15,BC 是圆O 的直径,AD 垂直BC 于D ,弧BA 等于弧AF ,BF 与AD 交于E ,求证:(1)AE =BE ,(2)若A ,F 把半圆三等分,BC =12,求AE 的长。
B
A
C
D
E
F
图15
22、△ABC 内接于⊙O ,CE ⊥AB 于E ,交⊙O 于F ,AD ⊥BC ,求证:∠FAO=∠BAC 。
24、如图,有四个矩形(长,宽均为b a ,),在图(1)中将线段21A A 向右平移1个单位到
21B B ,得到封闭图形1221B B A A ,在图(2)中将折线321A A A 向右平移1个单位到321B B B ,
图(4)中,在一块矩形的草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位),请你猜想空白部分表示草地面积是多少?。