乳液聚合工艺稳定性研究19页PPT
乳液聚合.ppt
三.乳剂化和乳剂作用
1.乳化剂:是一类可使互不相容的油和水转 变成难以分层的乳液的物质,属于表面活 性剂。
• 分子通常由两部分组成 亲水的极性基团
亲油的非极性基团
如长链脂肪酸钠盐
亲油基(烷基)
亲水基(羧酸钠)
乳化剂在水中的情况
S2O82_+ HSO3_→SO42_+ SO4·+HSO3 过氧化氢-亚铁盐
H2O2+ Fe2+→OH_+ HO·+ Fe3+
C. 油溶性氧化剂-水溶性还原剂引发剂 例 异丙苯过氧化氢-亚硫酸氢钠 Φ-C(CH3)2OOH + HSO3_→Φ-
C(CH3)2O·+ ·OH + HSO3· (3)分散介质 a.与单体不相溶。 b .在正常体系中,对油溶 性单体而言,采用无离子水。
NA
N 为乳胶粒浓度,个 / cm3
NA为阿氏常数 103 N / NA 是将粒子浓度化为 mol / L n 为每个乳胶粒内的平均自由基数
乳液聚合恒速期的聚合速率表达式为
Rp
103
N
n kp[M NA
]
对于第一阶段:自由基不断进入胶束引发聚合,成核 的乳胶粒数 N 从零不断增加,因此,Rp不断增加。
则,平均聚合度
xn
rp ri
k p [M] N ρ
聚合度与 N 和ρ有关,与N成正比,与ρ成反比。 聚合速率与N成正比,与单体浓度成正比。
★乳液聚合,在恒定的引发速率ρ下,用增加乳胶
能力愈强
胶束的形状
※ 胶束的大小和
乳液聚合方法PPT课件
亲憎平衡值,也称亲水亲油平衡值 ( HLB )
是衡量表面活性剂中亲水部分和亲油部分对其性大,表明亲水性越大。 HLB值不同,用途也不同。乳液聚合在 8~18范围
.
7
3. 乳液聚合机理
对于“ 理想体系”,即单体、乳化剂难溶于水,引 发剂溶于水,聚合物溶于单体的情况
(2)聚合度
设:体系中总引发速率为ρ(生成的自由基 个数/ cm3 • s)
对一个乳胶粒,引发速率为 ri ,增长速率为 rp
则,初级自由基进入一个聚合物粒子的速率为
ri
N
每秒钟一个乳胶粒吸收的自由基数 即 自由基个数 / s
.
14
每个乳胶粒内只能容纳一个自由基,
每秒钟加到一个初级自由基上的单体 分子数,即聚合速率:
单体
单体和乳化
液滴
剂在聚合前
的三种状态
➢ 极少量单体和少量乳化剂以分子分散状态溶解在水中
➢ 大部分乳化剂形成胶束,约 4 ~5 n m,1017-18个/ cm3
➢ 大部分单体分散成液滴,约 1000 n m ,1010-12个/ cm3
.
8
聚合场所:
水相不是聚合的主要场所;
单体液滴也不是聚合场所;
一般自由基聚合,提高[ I ] 和T,可提高Rp, 但Xn下降
.
16
.
4
加入单体的情况
在形成胶束的水溶液中加入单体
极小部分单体 以分子分散状 态溶于水中
小部分单体 可进入胶束 的疏水层内
大部分单体 经搅拌形成 细小的液滴
体积增至 60 ~100Å
相似相容,等于增 加了单体在水中的 溶解度,将这种溶 有单体的胶束称为 增容胶束
.
体积约为 10000Å
浅析乳液聚合的合成原理及和材料及稳定性
浅析乳液聚合的合成原理及和材料及稳定性在乳液聚合过程中,乳化剂的种类、用量与用法、pH值、引发剂的类型、搅拌形状与搅拌速度、加料方式、聚合工艺等都会影响到聚合物乳液的稳定性。
功能性单体如硅烷偶联剂、丙烯酸、丙烯酰胺、丙烯酸羟乙酯等作为交联单体参与共聚,在一定程度上可提高乳液的稳定性,但因具有极强的亲水性,聚合过程中若在水相发生均聚形成水溶性大分子,容易产生絮凝现象,极易破乳。
因而选择合适的乳化体系和聚合工艺对乳液聚合过程的稳定性具有极重要。
聚合物乳液承受外界因素对其破坏的能力称为聚合物乳液的稳定性。
在乳液聚合过程中局部胶体稳定性的丧失会引起乳胶粒的聚结形成宏观或微观的凝聚物,即凝胶现象。
凝胶多为大小不等、形态不一的块状聚合物,有的发软、发粘,有的发硬、发脆、多孔。
在搅拌作用下凝胶分散在乳液中,可通过过滤法或沉降法除去,但有时也会形成大量肉眼看不到的、普通方法很难分离的微观凝胶,使乳液蓝光减弱颜色发白,外观粗糙。
严重时甚至整个体系完全凝聚,造成抱轴、粘釜和挂胶现象。
凝聚物的生成在乳液研究和生产中具有极大的危害性,它不仅降低单体的有效转化率,增加聚合装置的停机时间和处理的费用,而且还会加大各釜和各批次间产品性能的不一致性,污染环境。
目前比较权威的用于解释聚合物乳液稳定性的理论是双电层理论和空间位阻理论。
乳胶粒子的表面性质与吸附或结合在其上的起稳定作用的物质有关,酸性、碱性离子末端以及吸附在乳胶粒表面上的乳化剂在一定的pH值下都是以离子形式存在的,使乳胶粒子表面带上一层电荷,从而在乳胶粒子之间就存在静电斥力,乳胶粒难于互相接近而不发生聚结。
当乳胶粒表面吸附有非离子型乳化剂或高分子保护胶体时,其稳定性则与空间位阻有关。
乳化剂的选择是决定乳液聚合体系稳定性的关键因素之一。
乳化剂虽不直接参与反应,但乳化剂的种类及用量将直接影响到引发速率、链增长速率以及聚合物的分子量和分子量分布。
此外乳化剂的类型、用量和加入方式对乳胶粒的粒径和粒径分布、乳液粒度也有着决定性的影响。
乳液聚合工艺学_5_性能
研究聚合物乳液稳定性的方法
由于聚合物乳胶粒的尺寸在0.01~5μm之间,正
好落在胶体颗粒范围内,因此可以运用胶体理 论来指导提高聚合物乳液的稳定性和加速凝聚 过程。 胶体的稳定性和电性能与界面能有密切关系。
乳胶粒的本质
乳胶粒内包含的聚合物的性质与其它方法
合成的聚合物是一样的,也可分为结晶态、 橡胶态和玻璃态。 乳胶粒干燥过程与乳胶粒的Tg有很大的关 系
(5)稀释稳定性
将乳液稀释到固体含量为3%,再把30m1稀释后的乳
液倒入试管中,液柱高为20cm,放置72h,测量上 部清液和沉淀部分的体积即可知其稀释稳定性。
乳液相对密度的测定
粘度小于5Pas没有气泡的聚合物乳液可用
标准韦氏相对密度天平来测定其相对密度, 或是比重计测定。 粘度大且有气泡的聚合物乳液,可以在一 高型量筒中,装入已知体积的试样并进行 称重,由此可以计算得近似的相对密度。
乳胶粒的静电斥力越大,则ζ电位越高,乳液 越稳定。
(1)(2)(3)来自 (2) 非水介质中的“毛发”乳胶粒结构
用聚12-羟基硬脂酸链在十二烷介质中接枝在甲
基丙烯酸甲酯乳胶粒。
(3) 聚电解质接枝稳定乳胶粒的结构
此种乳胶粒中同时存在静电稳定作用和空间 位阻作用
影响乳胶粒稳定性的作用力
(1)静电力
当Tg大于干燥温度时得到粉末状树脂; 当Tg小于干燥温度时,干燥到一定的程度,乳
胶粒发生聚结,形成连续的薄膜
乳液聚合中使乳液稳定的物质
吸附在乳胶粒表面的乳化剂; 引发剂引入聚合物链末端的离子基团; 在乳胶粒表面上吸附或接枝的聚合物
不同稳定机理的乳胶粒的结构
(1) 带负电乳胶粒的双电层结构
乳液聚合经典教程ppt课件
Williame 核壳理论
7
★ 乳液聚合特点
优 (1) 易散热
η ↓ (对本体、溶液)
dp↓ (悬浮50~200μ
(2) Rp Mw 可同步增加
分割体系 Mw~τ Rp~Nc
(3) 聚合产物粘度低,易操作
(4) 水基 安全 无公害
(5) 直接使用
缺 (1) 固体聚合物使用 分离困难
(2) 乳化剂等杂质
6
乳液聚合的基础研究
Gardon Harada Parts Sundberg Ⅰ阶段 重新考察计算
引伸发展经典理论
Stockmayer O'Toole
Ⅱ阶段 解析求S-E方程通解
Ugelsted 稳态假设
Ⅱ阶段 慢速终止 数值法求解
Gardon 非稳态假设
Katz
Ⅱ阶段 快速终止 统计法求解
Zimmit Benson Burkhart Criis Hui Ⅲ阶段 Trommsdoff效应
X% 胶束 单体液滴 Nc 胶粒体积 [M]
分散阶段
0 存在 存在
0
0
0
Ⅰ M/P生成阶段 0~10 存在 存在 增加 增长 恒定
Ⅱ M/P长大阶段 10~40 无 存在 恒定 增长 恒定
Ⅲ 聚合完成阶段 40~100 无 无 恒定 稍微收缩 下降
-
Ⅱ
d[M]/dt
Ⅲ
Ⅰ
0 11 X
2.3 S-E动力学理论 ◆ 低聚物自由基 水相中 可能的反应和结果
5
60-80' (现状)
◆ 乳液聚合工业规模 ~1000万吨/年 1/10聚合物产量
◆ 乳液聚合产品的应用
橡胶 丁苯 丁腈 氯丁 etc 塑料 PTFE ABS PVC糊 etc 涂料 粘合剂 织物整理剂 纸张处理剂
聚合物乳液胶乳的稳定理论
聚合物乳液的稳定性在乳液聚合中起着重要作用,没有胶乳的稳定性,就不能成功地进行乳液聚合,得不到所需的聚合物乳胶粒子。
直接应用于其它领域的聚合物乳液没有一定的稳定性,就不能们满足其使用要求。
研究聚合物胶乳的稳定理论有重要的科学和实际意义。
聚合物乳液中乳胶粒子的尺寸范围通常在0.01-1μm之间,处在胶体粒度范围之内,因此聚合物乳液就是“聚合物胶体”(Polymer Colloid)的通俗称谓。
聚合物乳液是处于热力学亚稳定状态(metastable),由于聚合物乳液所处的环境和条件不同,它可以是稳定的乳液体系,也可以成为不稳定体系,甚至会产生破乳或凝聚(coagulate)。
聚合物胶乳承受外界条件(如温度、PH值、电解质、机械力等)对其破坏的能力称作聚合物乳液的稳定性。
1 聚合物乳胶粒子的表面状态要了解聚合物乳液体系的稳定性原理,首相要了解聚合物粒子的结构和表面状态。
稳定的聚合物胶乳是由无数个聚合物乳胶粒子各自作布朗运动的单元,能够长期分散悬浮于介质中的胶体体系。
每个乳胶粒子都含有许多条分子量大约在105-107范围的大分子链。
根据高聚物的特性、大分子链在乳胶粒内部的排列情况以及外界条件,聚合物可以呈结晶态、橡胶态或玻璃态。
聚合物乳胶粒的表面性质与吸附或结合在其表面上稳定作用的物质有关。
这些物质有:①吸附在乳胶粒表面上的乳化剂;②结合于聚合物链末端的引发剂离子基团;③在乳胶粒表面上吸附、锚接或者接枝的两亲聚合物。
按照乳胶粒子表面附着物质的性质,粒子表面可以呈双电层结构、毛发结构和毛发-双电层结构。
1.1 双电层结构粒子表面吸附有离子性乳化剂,或通过引发剂、离子性单体引入离子性端基,使乳胶粒子表面带一层或为正,或为负的电荷,这一层电荷是不移动的,成为固定层。
在固定层周围,由于静电引力会吸附一层反号离子,该层中的反号离子成为吸附层。
在绝对零度时,由于没有热运动,吸附层和固定层所带电荷电量相等,符号相反,故乳胶粒本身处于电中性状态。
乳液聚合生产工艺培训教材ppt(72张)
1、乳液聚合生产工艺的特点 乳液聚合的定义: 乳液聚合是单体和水在乳化剂的作用下配制 成的乳状液中进行的聚合,体系主要由单体、 水、乳化剂及水溶性引发剂四种成分组成。
乳液聚合的应用 合成橡胶:丁苯橡胶、氯丁橡胶、丁腈橡胶等 合成树脂:聚氯乙烯及其共聚物、聚醋酸乙烯及
其共聚物、聚丙烯酸酯类共聚物等
(3)空间位阻的保护作用
乳化剂使液滴或乳胶粒周围
形成有一定厚度和强度的水合
乳胶粒
层,起空间位阻的保护作用 。
这种空间位阻的保护作用阻碍
了液滴或乳胶粒之间的聚集而 具有空间位阻作用的水合层示意图 使乳状液稳定
影响乳状液稳定的因素
(1)电解质的加入
当乳状液中加入一定量的电解质后,液相中离子浓度增 加,在吸附层中异性离子增多,电中和的结果是使动电位下 降,双电层被压缩。当电解质浓度达到足够浓度时,乳胶粒 的动电位降至临界点以下,乳胶粒之间的吸引力由于排斥力 的消失而体现出来,使体系出现破乳和凝聚现象。
加入乳化剂,浓度低于CMC时形成真溶液,高于CMC 时形成胶束。
加入单体
按在水中的溶解度以分子 状态溶于水中,更多的溶 解在胶束内形成增溶胶束, 还有的形成小液滴,即单 体液滴。
单体、乳化剂在单体液滴、 水相及胶束间形成动态平 衡。
乳液聚合生产工艺培训教材(PPT72页)
(2)乳胶粒生成阶段
引发剂溶解在水中,分解形成初始自由基。 引发剂在不同的场所引发单体——生成乳胶粒。
(1)乳化剂使分散相和分散介质的表面张力降低 以表面活性剂作为乳化剂时,乳化剂使分散相 和分散介质的界面张力降低, 使液滴和乳胶粒的自 然聚集的能力大大降低,因而使体系稳定性提高。 但这样仅使液滴和乳胶粒有自聚集倾向,而不能彻 底防治液滴之间的聚集。
乳液聚合工艺稳定性研究
乳液聚合工艺稳定性研究乳液聚合是一种重要的合成方法,广泛应用于涂料、胶粘剂、纺织助剂等领域。
然而,乳液聚合过程中聚合物的稳定性是一个关键问题,直接影响产品的质量和性能。
因此,对乳液聚合工艺的稳定性进行研究具有重要的意义。
乳液聚合的稳定性主要涉及到以下几个方面:胶体颗粒的稳定性、乳液的粒径分布、乳液的粘度以及聚合过程中酸碱值的变化。
首先,胶体颗粒的稳定性是乳液聚合工艺稳定性的核心问题之一、乳液中的聚合物颗粒往往呈胶态分散,稳定性的优劣直接决定了乳液的稳定性。
乳液中的胶体颗粒会发生聚集、沉降等非理想现象,这会导致粒径分布的不均匀,甚至乳液失稳。
因此,合适的胶体分散剂的选择和添加对乳液的稳定性至关重要。
其次,乳液的粒径分布也是影响乳液聚合工艺稳定性的重要因素。
粒径分布的不均匀会导致产品性能的波动,甚至在使用过程中出现沉降和分层问题。
因此,在乳液聚合过程中,要通过控制乳液的配方、调节乳液的pH值等手段,使得粒径分布接近单一,从而保证产品的稳定性。
另外,乳液的粘度也会影响乳液聚合工艺的稳定性。
粘度的升高会增加聚合过程中的阻力,从而影响乳液中的颗粒分散状态和扩散速率。
因此,合理控制乳液的粘度是保证乳液聚合工艺稳定性的重要手段。
可以采用添加剂、改变温度和溶剂等方式来调节乳液的粘度。
最后,乳液聚合过程中酸碱值的变化也会对乳液的稳定性产生影响。
由于聚合过程中的酸碱值的变化,乳液中的颗粒表面电荷可能发生变化,从而影响颗粒的分散状态和胶体颗粒间的相互作用力。
因此,在乳液聚合过程中,要合理调节酸碱值,确保乳液的稳定性。
综上所述,乳液聚合工艺的稳定性对产品的质量和性能至关重要。
通过合理选择胶体分散剂、控制粒径分布、调节乳液的粘度和酸碱值等手段,可以实现乳液聚合工艺的稳定性,从而提高产品的品质和市场竞争力。
因此,对乳液聚合工艺稳定性进行研究具有重要的理论和实际意义。
乳液聚合经典教程 PPT课件
稳定性↑
SDS
0.48
◆ 加料方式
共聚单体加入方式 → M/P表面分布 → 稳定性 羧酸 分批加入 种子聚合法 → -COO- 在 M/P 表面↑
◆ 微量乳化剂作用
<CMC 加入E → 保护初始粒子 → 稳定性↑ → Nc↑ → Rp↑
◆ 齐聚物链长↑→CMC ↓ ◆ M/P中P分子量↑→表面电荷密度 ↓
稳定性↓
齐聚物胶束 成核机理示意图
齐聚物自由基
形成胶束 增长 聚并
增长 基本粒子
聚并 稳定乳胶粒
最终产物
临界成核链长ncr:St 7 MMA 82 VAc 1320
3.1.1.3 母体颗粒凝结成核 母体颗粒通过均相成核而形成 母体颗粒的聚结生成最终颗粒 聚合速度由以下三部分组成 1)母体颗粒的形成速率 2)母体颗粒的聚结 3)颗粒内的增长反应 实为上两成核理论的综合
水溶性单体 M2↑→ 组成M2↑→ 粒子稳定↑→ 颗粒数↑→ Rp↑
◆ 羧酸单体的中和度
加入碱和羧酸单体的摩尔比
中和度 → 油水相分配比 水相中离解程度 → 羧酸在P中含量
颗粒形成 稳定性 → Rp
中和度↑→ Rp↓
胶乳稳定性 M/P表面 –COO-决定
每-COO-占表面 0.14~ 0.23nm2/个 小
易吸附自由基, 易聚结, 分布均匀
传统
15~20% 结束
3.1.2 无皂乳液制备 使M/P稳定, 链和端基上 离子基团 来源有三:
(1) 引发剂碎片法
K2S2O8 分解 引入-SO4特点: 表面电荷小 体系稳定性差 固含量不高(10%)
聚合速度缓慢
(2) 水溶性单体参加共聚制无皂胶乳
共聚单体强亲水性 → M/P表面 稳定 水溶性单体种类 聚合工艺 → 产品影响
聚合物乳液胶乳的稳定理论
聚合物乳液胶乳的稳定理论聚合物乳液的稳定性在乳液聚合中起着重要作用,没有胶乳的稳定性,就不能成功地进行乳液聚合,得不到所需的聚合物乳胶粒子。
直接应用于其它领域的聚合物乳液没有一定的稳定性,就不能们满足其使用要求。
研究聚合物胶乳的稳定理论有重要的科学和实际意义。
聚合物乳液中乳胶粒子的尺寸范围通常在0.01-1μm之间,处在胶体粒度范围之内,因此聚合物乳液就是“聚合物胶体”(Polymer Colloid)的通俗称谓。
聚合物乳液是处于热力学亚稳定状态(metastable),由于聚合物乳液所处的环境和条件不同,它可以是稳定的乳液体系,也可以成为不稳定体系,甚至会产生破乳或凝聚(coagulate)。
聚合物胶乳承受外界条件(如温度、PH值、电解质、机械力等)对其破坏的能力称作聚合物乳液的稳定性。
1 聚合物乳胶粒子的表面状态要了解聚合物乳液体系的稳定性原理,首相要了解聚合物粒子的结构和表面状态。
稳定的聚合物胶乳是由无数个聚合物乳胶粒子各自作布朗运动的单元,能够长期分散悬浮于介质中的胶体体系。
每个乳胶粒子都含有许多条分子量大约在105-107范围的大分子链。
根据高聚物的特性、大分子链在乳胶粒内部的排列情况以及外界条件,聚合物可以呈结晶态、橡胶态或玻璃态。
聚合物乳胶粒的表面性质与吸附或结合在其表面上稳定作用的物质有关。
这些物质有:①吸附在乳胶粒表面上的乳化剂;②结合于聚合物链末端的引发剂离子基团;③在乳胶粒表面上吸附、锚接或者接枝的两亲聚合物。
按照乳胶粒子表面附着物质的性质,粒子表面可以呈双电层结构、毛发结构和毛发-双电层结构。
1.1 双电层结构粒子表面吸附有离子性乳化剂,或通过引发剂、离子性单体引入离子性端基,使乳胶粒子表面带一层或为正,或为负的电荷,这一层电荷是不移动的,成为固定层。
在固定层周围,由于静电引力会吸附一层反号离子,该层中的反号离子成为吸附层。
在绝对零度时,由于没有热运动,吸附层和固定层所带电荷电量相等,符号相反,故乳胶粒本身处于电中性状态。
《乳液聚合》课件
领域 食品 医药 化妆品
应用 乳化剂及膳食纤维等添加物的制备和添加 生物胶体、医药品、口服液和原材料制备 乳化液、婴儿油、防晒霜、压缩液等制备
乳液聚合的优缺点分析
1 优点
使用乳液聚合反应制备的聚合物具有结构、形态、性质、功能等方面的高度可控性。
2 缺点
乳液相对密度过大的固体较难分散在水中,很难获得尺寸分布小的微粒,从而造成成品 的质量不稳定性。
结束:乳液混合液残余物的 处理
聚合反应结束后,用凝固浴将聚合 好的聚合物从乳液分散相里析出来, 并用去离子水作为清洗剂,将聚合 物晾干即可。
乳液中的表面活性剂作用
乳化效应
表面活性剂减小液-液或液-固界面的张力,分散一 些难溶解的液体或液体中的小颗粒,使它们变成液 滴、颗粒或胶体,即达到乳化效果。
缓解反应过程中的自聚集
乳液聚合中的引发体系选择
热量引发剂
热量引发剂的引发机理主要是通过 分解发生最后生成自由基,有机过 氧化物既是热量引发剂中一类较重 要的通用引发剂,也是选择较广的 多用途过氧化物类物质。
光引发剂
光引发剂的引发机理主要是通过光 能的吸收激发,释放出自由基,其 强化耐久性和协同作用性好,广泛 应用于能够进一步优化其性质的不 同聚合物体系之中。
3
引发剂打碎和投加时间
反应开始前应确认好引发剂的类型、用量和投加时间,充分搅拌,确保单体稳定 地分散在水相中,实行分批投加和掌控操作步骤。
乳液聚合在涂料行业的应用
优势
乳液聚合涂料膜具有良好的粘结性、附着性和耐久 性。且聚合反应温度低,无毒、无害、无溶剂,节 能环保。
缺点
相对于传统涂料,乳液涂料失去了某些特殊的性能。 耐化学腐蚀性差,可划痕、不耐磨损和磨灭,对于 注重工艺装饰的某些场合不适用。而乳液涂料含水 量较大,有可能影响涂层干燥、表面附着性、耐水 性及适用性等问题。
自由基乳液聚合原理演示文稿ppt(共22张PPT)
T↑,乳液稳定性下降。
3、搅拌
乳液聚合的搅拌以维持单体和其它组分适当分散即可。它 的目的主要是加快单体和游离基的扩散速度,分散聚合物胶乳, 一般控制在 105-120 rpm 。
5、聚合速度、转化率
聚合速度与聚合物质量之间没有直接的关系,但反应速度太大,散 热困难,所以一般采取散热较好的情况下,尽可能加大反应速度。
(3)聚合结束阶段(减速期) 关于减速期的说明:
体系中只有水相和乳胶粒两相。乳胶粒内由单体和聚合物两 部分组成,水中的自由基可以继续扩散入内使引发增长或终止, 但单体再无补充来源,聚合速率将随乳胶粒内单体浓度的降低而 降低。
该阶段是单体 — 聚合物乳胶粒转变成聚合物乳胶粒的过程。
五、乳液聚合影响因素分析
II. 环氧乙烷和环氧丙烷的共聚物。
由于具有非离子特性,所以对 pH 变化不敏感比较稳定,但乳化能 力不足,一般不单独使用。
6、乳液的稳定性和破乳
固体乳胶微粒的粒径在 1 微米以下(微米),乳液体系长时 间静置时不沉降的状态为稳定乳液。
乳液由不互溶的分散相和分散介质所组成,属多相体系,乳液的 稳定性是相对有条件的。
1.8nm 3.2nm
薄层状胶束
棒状胶束 水
球状胶束
c. 浊点和三相点
非离子表面活性剂被加热到一定温度,溶液由透明变为浑浊,出现
此现象时的温度称为浊点(Cloud Point),乳液聚合在浊点温度以下进
进入增溶胶束,引发聚合,形成乳胶粒 —— 胶束成核
行。 脂肪胺盐,如 RNH2•HCl 、 RNH(CH3)•HCl
昆虫水黾为何能够毫不费力地站在水面上, 并能快速地移动和跳跃?
水黾脚和后脚特别细长,长着许多直径为纳米量级的细毛,具有疏 水性,利用水的表面张力,使它们能在水面上自由行走、快速滑移和 跳跃。
乳液聚合工艺稳定性研究
谢 谢!
第四章 结论
是不同的。引发 剂用量越大反应速率越快。这是由于增加了引发剂的用量, 在水相中就会生成更多的自由基,都会使聚合速率增大。 本实验中,加入 1ml 左右的引发剂得到的乳液相对稳定性 较好。 单体 醋酸乙烯酯的性质直接影响乳液粘度、转化率,单体 蒸馏后才可以使用,可以使聚醋酸乙烯酯的粘度大为提高。 保温温度 本实验中采用分段控制, 70 ℃时滴加单体 1h ,升温到 85℃时保温2h,可得到稳定性较好的乳液。
单体 乳液聚合的 组成 水 水溶性乳化剂 水溶性引发剂
粘度低、易散热
乳液聚合的 优点
具有高的反应速率 和高 的分子量 以水作介质成本低 、环境污染小
所用设备工艺简单 、操作方便灵活
聚醋酸乙烯酯的沿革
聚醋酸乙烯酯( PVAc)乳液是目前使用量最大,使 用历史最悠久的合成乳液, 早在1909年和1927年,科学家先后发表了有关PVAc 乳液聚合的专利。 1930年由IG公司实现工业化。
25
VAc/ml PVA/ml (5%水 溶液)
流动性
聚合稳 定性 差 差 好 好 好 好
粘度 /(Pa· s-1)
70 60 50 40 30 20
差 差 较好 好 好 好
5.7 4.9 4.2 3.9 3.4 3.1
10
0
好
好
好
差
2.8
2.6
乳化剂对聚醋酸乙烯酯乳液性能的影响
乳化剂的种类对乳液聚合的影响 采用相同量 4%(相对单体质量)的非离子乳化剂 OP10、阴离子乳化剂十二烷基硫酸钠 SDS对乳液聚合稳定性 的影响如表3-2所示
微乳液聚合 无皂乳液聚合
新技术
互穿聚合网络聚 合 基团转移聚合
《乳液聚合》课件——乳液聚合新技术及应用剖析
温度如何影响乳化剂HLB值?
非离子型油相溶解度增大,HLB降低 离子型反之
离子型乳化剂一般需要用助乳化剂——长链烷烃,长链脂肪族醇或醚 作用:调节乳化剂的HLB,吸收聚合物微粒子表面乳化剂来分散,链转移
26
三、制备工艺
早期认为需用微乳化工艺——超声波或流态均化器 自发乳化√
缺陷:消耗大量乳化剂,聚合物粒子表面含有大量乳化剂难以脱除干净
无明显恒速期
22
四、微乳液及其聚合的特点
乳液(聚合)
微乳液(聚合)
① 动力学稳定,强力搅拌形成
热力学稳定,可自发形成
② 液滴粒径100-500nm,体系浑浊或半透 液滴粒径小于100nm,透明或半透明或
明
微蓝
③ 与之相反 ④ 成核期、恒速期,降速期
单体含量低于10%,乳化剂含量高于 10%
成核期,降速期
天津大学哈润华教授——丙烯酰胺及离子型水溶性单体的反相微乳液 聚合 徐相凌——以Y型乳化剂制备单体含量较高的微乳液并研究其聚合特 征 复旦大学府寿宽教授——用原子扫描隧道电镜及差热分析手段研究微 乳液聚合得到的聚苯乙烯特殊结构
24
2. 微乳液聚合体系及形成
一、单体和引发体系
油溶性单体苯乙烯、氯乙烯等——O/W或W/O体系 水溶性单体丙烯酰胺、丙烯酸盐等——W/O或双连续相
高压均化器或微射流乳化器
27
3. 微乳液聚合的应用
一、多孔材料的制备
双连续相微乳液和W/O微乳液制备 孔的尺寸和形态——微乳液体系的配方 克服相分离:①提高反应速率②加入交联剂③降低聚合温度
二、聚合物包覆无机粒子的制备
兼有有机和无机材料性质,如高分子材料中增加导电率,磁性等
28
三、酶催化聚合
《乳液聚合》幻灯片
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
1、乳液聚合生产工艺的特点
乳液聚合的定义:
乳液聚合是单体和水在乳化剂的作用下配制成的乳 状液中进展的聚合,体系主要由单体、水、乳化剂及 水溶性引发剂四种成分组成。
〔4〕长期存放
2、乳液聚合的根本原理
乳液聚合机理及动力学
1、乳液聚合机理
乳液聚过程合体系的相转变:
液-液体系→液-固体系
根据间隙乳液聚合的动力学特征,可以把整个乳液聚合过程分为四 个阶段:
• 分散阶段〔聚合前段〕
• 乳胶粒长大阶段〔聚合II段〕
• 乳胶粒生成阶段〔聚合I段〕 • 聚合完成阶段〔聚合III段〕
Gemini外表活性剂构造特征
Gemini外表活性剂的典型构造可以看成是由两个构造一 样的传统外表活性剂分子通过一个连接链连接而成,其 分子构造中至少含有两个疏水链和两个亲水基团〔离子 或极性基团〕。
图一 Gemini外表活性剂特征图
Gemini外表活性剂构造特征
分子中含有两个疏水链、两个亲水头和一 个柔或刚性连接基。
Gemini外表活性剂定义、构造特征
双子外表活性剂〔Gemini surfactant〕, 又称孪连外表活性剂 双生外表活性剂 偶联外表活性剂
Gemini型外表活性剂是一种新型的外表活性剂, 由两个双亲分子的离子头经联接基团通过化学键 联接而成。 Gemini是双子星座的意思。 1991年, Gemini的概念由Menger等第一次 提出。
3、乳液聚合物料体系及其影响因素