运筹学教学案例
简单的运筹学实际应用案例
简单的运筹学实际应用案例运筹学(Operations Research)是一门研究如何有效利用有限资源进行决策的学科,它通过数学、统计学和经济学等方法,帮助管理者做出最佳决策。
下面将介绍几个简单的运筹学实际应用案例。
1.生产线优化假设一公司拥有多条生产线,每条生产线对应不同的产品。
公司希望通过优化生产线的调度,以达到最大的产出和利润。
运筹学可以通过数学模型和算法,对生产线进行优化调度。
例如,可以使用线性规划模型来确定每条生产线的产量和调度,以最大化总利润;也可以使用整数规划模型来考虑生产线的限制和约束条件。
2.物流网络设计一家物流公司需要设计其物流网络,以最小化成本并满足客户对快速物流的需求。
运筹学可以通过数学模型和算法,帮助物流公司优化物流网络的设计。
例如,可以使用网络流模型来确定货物在物流网络中的最佳路线和节点,以最小化总运输成本;也可以使用线性规划模型来决定在不同节点上的仓库和货物库存量,以满足客户的需求。
3.航班调度问题一家航空公司需要制定最佳航班调度计划,以最大化航班利润并排除延误风险。
运筹学可以通过数学模型和算法,帮助航空公司优化航班调度。
例如,可以使用线性规划模型来决定不同航班的起降时间和机型,以最大化航班利润;也可以使用排队论模型来评估航班的延误风险,并制定相应的调度策略。
4.人员调度问题一家超市需要制定最佳的员工调度计划,以最大化服务质量和节约人力成本。
运筹学可以通过数学模型和算法,帮助超市优化员工调度。
例如,可以使用整数规划模型来决定不同时间段需要多少员工,并考虑员工的技能匹配和工作时间的合理安排;也可以使用模拟仿真方法来评估不同调度策略的效果,并做出相应的决策。
以上是几个简单的运筹学实际应用案例,运筹学在实际生产和管理中有着广泛的应用。
通过数学模型和算法的应用,可以帮助企业优化资源配置、提高效率和决策质量,从而实现最佳的经济效益。
运筹学教学案例集
6
OR 案例
2. 年收入及其概率的估计 假定在医用成像技术的市场中竞争激烈,在以后的三年中,很多不确定的因
素都对 B 公司的潜在年收入有影响。嘉美斯试着估计公司在不同情况下的收入, 表 2.1 给出了嘉美斯估计的三种情况下(高利润、中等利润、低利润)的年收入 以及三种情况出现的概率估计。
表 2.1 当 B 公司获得 SBIR 资助并且三维技术软件获得成功时,B 公司的估计收入
显然我们简单的设想一下,贝尔觉得所有的工作机会,在学习、团队合作和 获得工作经验方面都将提供相似的内容,因此,我们认为,贝尔唯一的决策标准 就是薪水,贝尔明显喜欢薪水较高的那个工作。 3. 概率数据分析
3.1 学校的工作机会 贝尔的夏季打工问题面临着许多不确定因素,首先是瓦莎提供工作只是一种 可能,其次学校组织的夏季招工活动,收入也高低不同,甚至未必能够找到工作。 贝尔已经去过学校的就业中心,收集了先前一些 MBA 学生夏季打工薪水数 据,这些数据经整理列在表 1-1 中。此表中给出了五种薪水水平(根据周工资) 和相关的占有比例,其中有 5%的学生没有工资收入,既没有能够安排合适的打 工的机会。
市场状况
概率
总收入
高利润
20%
$3,000,000
运筹学案例集
运筹学案例集常州宝菱重工机械有限公司孔念荣收集整理运筹学的一些典型性应用•合理利用材料问题:如何在保证生产的条件下,下料最少•配料问题:在原料供应量的限制下,如何获取最大收益•投资问题:从投资项目中选取最佳组合,使投资回报最大•产品生产计划:合理利用人力、物力、财力等,使获利最大•劳动力安排:用最少的劳动力来满足工作的需要•运输问题:如何制定最佳调运方案,使总运费最少一、生产计划问题案例1(2-4)、某工厂用A、B、C、D四种原料生产甲、乙两种产品,生产甲和乙所需各种原料的数量以及在一个计划期内各种原料的现有数量见下表所示。
又已知每单位产品甲、乙的售价分别为400元和600元,问应如何安排生产才能获得最大收益?已知生产单位产品所需的设备台时及A、B两种原材料的消耗、资源的限制,如下表:问题:工厂应分别生产多少单位Ⅰ、Ⅱ产品才能使工厂获利最多?案例3(2-25)、某公司面临一个是外包协作还是自行生产的问题。
该公司生产甲、乙、丙三种产品,都需要经过铸造、机加工和装配三个车间。
甲、乙两种产品的铸件可以外包协作,亦可以自行生产,但产品丙必须本厂铸造才能保证质量,数据如下表所示。
问题:公司为了获得最大利润,甲、乙、丙三种产品各生产多少件?甲、乙两种产品的铸造中,由本公司铸造和由外包协作各应多少件?案例4(2-28)、永久机械厂生产Ⅰ、Ⅱ、Ⅲ三种产品,均要经过A、B两道工序加工。
设有两种规格的设备A1、A2能完成A工序;有三种规格的设备B1、B2、B3能完成B 工序。
Ⅰ可在A、B的任何规格的设备上加工;Ⅱ可在任意规格的A设备上加工,但对B工序,只能在B1设备上加工;Ⅲ只能在A2与B2设备上加工,数据如下表所示。
问题:为使该厂获得最大利润,应如何制定产品加工方案?案例5、某造纸厂用原材料白坯纸生产原稿纸、笔记本和练习本三种产品。
该厂现有工人100人,每月白坯纸供应量为3万公斤。
已知工人的劳动生产率为:每人每月生产原稿纸30捆,或生产日记本30打,或练习本30箱。
运筹学经典案例
运筹学经典案例案例一:鲍德西((B AWDSEY)雷达站的研究20世纪30年代,德国内部民族沙文主义及纳粹主义日渐抬头。
以希特勒为首的纳粹势力夺取了政权开始为以战争扩充版图,以武力称霸世界的构想作战争准备。
欧洲上空战云密布。
英国海军大臣丘吉尔反对主政者的“绥靖”政策,认为英德之战不可避免,而且已日益临近。
他在自己的权力范围内作着迎战德国的准备,其中最重要、最有成效之一者是英国本土防空准备。
1935年,英国科学家沃森—瓦特(R.Watson-Wart)发明了雷达。
丘吉尔敏锐地认识到它的重要意义,并下令在英国东海岸的Bawdsey建立了一个秘密的雷达站。
当时,德国已拥有一支强大的空军,起飞17分钟即可到达英国。
在如此短的时间内,如何预警及做好拦截,甚至在本土之外或海上拦截德机,就成为一大难题。
雷达技术帮助了英国,即使在当时的演习中已经可以探测到160公里之外的飞机,但空防中仍有许多漏洞,1939年,由曼彻斯特大学物理学家、英国战斗机司令部科学顾问、战后获诺贝尔奖金的P.M.S.Blachett为首,组织了一个小组,代号为“Blachett 马戏团”,专门就改进空防系统进行研究。
这个小组包括三名心理学家、两名数学家、两名应用数学家、一名天文物理学家、一名普通物理学家、一名海军军官、一名陆军军官及一名测量人员。
研究的问题是:设计将雷达信息传送给指挥系统及武器系统的最佳方式;雷达与防空武器的最佳配置;对探测、信息传递、作战指挥、战斗机与防空火力的协调,作了系统的研究,并获得了成功,从而大大提高了英国本土防空能力,在以后不久对抗德国对英伦三岛的狂轰滥炸中,发挥了极大的作用。
二战史专家评论说,如果没有这项技术及研究,英国就不可能赢得这场战争,甚至在一开始就被击败。
“Blackett马戏团”是世界上第一个运筹学小组。
在他们就此项研究所写的秘密报告中,使用了“Operational Research”一词,意指作战研究”或“运用研究”。
运筹课程设计案例
运筹课程设计案例一、课程目标知识目标:1. 让学生掌握运筹学的基本概念,如线性规划、整数规划等,并能够理解其在实际问题中的应用。
2. 使学生了解运筹学中的常用方法与工具,如图表法、单纯形法等,并能运用这些方法解决简单的实际问题。
3. 引导学生理解优化问题的本质,培养他们运用数学语言描述现实问题的能力。
技能目标:1. 培养学生运用运筹学方法分析问题和解决问题的能力,特别是针对实际案例,能够设计出有效的优化方案。
2. 提高学生的数据处理和计算能力,使其能够熟练运用运筹学软件工具解决复杂的优化问题。
3. 培养学生的团队协作和沟通能力,通过小组讨论和报告,共享解决问题的思路和方法。
情感态度价值观目标:1. 培养学生对运筹学学科的兴趣,激发他们探索优化问题的热情,形成积极向上的学习态度。
2. 培养学生具有批判性思维和创新精神,面对复杂问题能够勇于挑战,寻求最佳解决方案。
3. 引导学生认识到运筹学在国家和企业发展中的重要作用,增强社会责任感和使命感。
本课程针对的学生特点是具有一定数学基础和逻辑思维能力的初中生。
在教学过程中,教师应注重理论联系实际,激发学生的兴趣和好奇心,注重培养学生的动手操作能力和实际应用能力。
通过本课程的学习,期望学生能够掌握基本的运筹学知识和方法,提高解决实际问题的能力,同时培养他们的团队合作精神和批判性思维。
二、教学内容1. 运筹学基本概念:介绍运筹学的定义、发展历程及其在现实生活中的应用,重点讲解线性规划和整数规划的基本原理。
教材章节:第一章 运筹学概述,第三节 线性规划2. 运筹学方法与工具:详细讲解图表法、单纯形法等常用优化方法,并通过实例分析展示这些方法在实际问题中的应用。
教材章节:第二章 线性规划的图解法与单纯形法,第四节 整数规划简介3. 运筹学案例分析:选择具有代表性的实际案例,如生产计划、物流配送等,让学生运用所学方法解决实际问题。
教材章节:第三章 运筹学应用案例分析4. 运筹学软件工具介绍:介绍运筹学软件(如Lingo、CPLEX等)的基本功能和使用方法,帮助学生提高优化问题的求解效率。
运筹学在实际问题中的应用案例分析
运筹学在实际问题中的应用案例分析运筹学作为一门研究如何最优化地解决决策问题的学科,在实际问题中得到了广泛的应用。
本文将通过分析两个实际案例来探讨运筹学在解决复杂问题和优化资源利用方面的应用。
案例一:物流配送优化物流配送是一个典型的运筹学应用领域。
在现代社会,物流配送环节对于企业的运营效率和成本控制至关重要。
如何合理安排车辆路线、调度和配送是一项复杂且具有挑战性的任务。
运筹学可以通过数学建模和优化算法来解决这个问题。
首先,我们可以将物流配送问题建模为一个旅行商问题(Traveling Salesman Problem,TSP)。
TSP是一个经典的组合优化问题,目标是寻找一条最短路径,使得从一个地点出发经过所有其他地点后回到起点,且路径的总长度最小。
通过运筹学方法,可以利用算法来求解最佳路径并优化物流配送效率。
其次,为了进一步优化物流配送的效率,我们可以引入车辆调度问题。
例如,考虑到不同城市的交通堵塞情况,我们可以使用调度算法将不同城市的订单分配给不同的车辆,以减少整体行程时间和成本。
通过运筹学的应用,一家物流公司可以最大限度地减少行程时间、减少燃料消耗,提高物流配送的效率。
因此,运筹学在物流配送问题中的应用具有重要的意义。
案例二:生产排产优化生产排产是制造业中的一个重要环节,它关系到企业的生产效率、生产能力和订单交付时间。
运筹学在生产排产中的应用可以帮助企业提高生产效率,降低成本并及时交付产品。
在生产排产中,我们通常需要考虑到多个因素,如机器的利用率、工人的工作时间和任务的优先级等。
通过运筹学的方法,可以构建一个数学模型,通过数学规划算法来优化生产排产方案。
例如,假设一个工厂有多个机器和多个订单需要排产,每个订单有不同的完成时间和优先级。
我们可以通过运筹学的方法,将这个问题建模为一个调度问题。
然后,利用调度算法来确定每个订单的完成时间和最优的生产顺序,从而实现生产排产的优化。
通过运筹学的应用,企业可以有效地优化生产排产计划,提高生产效率,减少资源浪费,并保证订单能够及时交付。
运筹学实践教学报告范文(3篇)
第1篇一、引言运筹学作为一门应用数学分支,广泛应用于经济管理、工程技术、军事决策等领域。
本报告旨在通过运筹学实践教学,验证理论知识在实际问题中的应用效果,提高学生的实践能力和创新能力。
以下是对本次实践教学的总结和反思。
二、实践教学内容1. 线性规划问题本次实践教学选择了线性规划问题作为研究对象。
通过建立线性规划模型,我们尝试解决生产计划、资源分配等实际问题。
- 案例一:生产计划问题某公司生产A、B两种产品,每单位A产品需消耗2小时机器时间和3小时人工时间,每单位B产品需消耗1小时机器时间和2小时人工时间。
公司每天可利用机器时间为8小时,人工时间为10小时。
假设A、B产品的利润分别为50元和30元,请问如何安排生产计划以获得最大利润?- 建模:设A产品生产量为x,B产品生产量为y,目标函数为最大化利润Z = 50x + 30y,约束条件为:\[\begin{cases}2x + y \leq 8 \\3x + 2y \leq 10 \\x, y \geq 0\end{cases}\]- 求解:利用单纯形法求解该线性规划问题,得到最优解为x = 3,y = 2,最大利润为240元。
- 案例二:资源分配问题某项目需要分配三种资源:人力、物力和财力。
人力为50人,物力为100台设备,财力为500万元。
根据项目需求,每种资源的需求量如下:- 人力:研发阶段需20人,生产阶段需30人;- 物力:研发阶段需30台设备,生产阶段需50台设备;- 财力:研发阶段需100万元,生产阶段需200万元。
请问如何合理分配资源以满足项目需求?- 建模:设人力分配量为x,物力分配量为y,财力分配量为z,目标函数为最大化总效用U = x + y + z,约束条件为:\[\begin{cases}x \leq 20 \\y \leq 30 \\z \leq 100 \\x + y + z \leq 500\end{cases}\]- 求解:利用线性规划软件求解该问题,得到最优解为x = 20,y = 30,z = 100,总效用为150。
运筹学应用案例
运筹学应用案例运筹学是一门应用数学,研究如何在资源有限的情况下,最优地组织和管理这些资源。
运筹学的应用范围非常广泛,涉及到各个领域。
以下是一个关于运筹学应用的实际案例。
某公司是一家制造业企业,主要生产产品A和产品B。
这家公司有两个生产车间和一个物流中心,每个车间配备了不同的生产设备。
公司的目标是最大化利润。
产品A在车间1中生产,车间1的生产设备可以在一小时内生产5个单位的产品A。
产品B在车间2中生产,车间2的生产设备可以在一小时内生产4个单位的产品B。
物流中心负责将产品A和产品B运送到市场,物流中心的运输能力为每小时20个单位。
同时,公司还面临一个资源的限制,即每天生产的产品A和产品B的总数不能超过400个单位。
另外,公司还有一个库存的限制,即每天生产的产品A和产品B的总数不能超过600个单位。
为了系统地解决这个问题,公司决定使用运筹学的方法进行决策。
首先,公司需要确定目标函数。
由于公司的目标是最大化利润,所以可以将目标函数定义为利润函数。
假设公司每个单位的产品A的利润为10美元,每个单位的产品B的利润为8美元。
那么公司的目标函数可以定义为:Z=10A+8B。
然后,公司需要确定约束条件。
根据资源的限制,可以得到以下约束条件:A≤5×小时数(车间1的生产能力)B≤4×小时数(车间2的生产能力)A+B≤400(每天生产的总数限制)A+B≤600(库存的限制)20A+20B≤600(物流中心的运输能力)接下来,公司需要确定变量的取值范围。
由于产量和库存数量为实数,所以可以将A和B的取值范围定义为非负实数。
最后,公司需要使用线性规划算法来求解最优解。
线性规划算法可以通过求解目标函数的最大值来找到最优解。
在这个案例中,可以使用单纯形法来求解最优解。
通过使用运筹学的方法,公司可以得到最优的生产和运输计划,以最大化利润。
对于公司而言,这个案例展示了如何在资源有限的情况下,通过合理的规划和管理,实现最优的生产和销售策略。
运筹学教学案例:Cases1(线性规划案例答案1)
2.1a) In this case, we have two decision variables: the number of Family Thrillseekers we should assemble and the number of Classy Cruisers we should assemble. We also have the following three constraints:1. The plant has a maximum of 48,000 labor hours.2. The plant has a maximum of 20,000 doors available.3. The number of Cruisers we should assemble must be less than or equal to 3,500.4567D Resources Used=SUMPRODUCT(B6:C6,Production)=SUMPRODUCT(B7:C7,Production)1011FTotal Prof it=SUMPRODUCT(UnitProf it,Production)Rachel’s plant should assemble 3,800 Thrillseekers and 2,400 Cruisers to obtain a maximum profit of $26,640,000.b) In part (a) above, we observed that the Cruiser demand constraint was not binding.Therefore, raising the demand for the Cruiser will not change the optimal solution.The marketing campaign should not be undertaken.c) The new value of the right-hand side of the labor constraint becomes 48,000 *1.25 = 60,000 labor hours. All formulas and Solver settings used in part (a)remain the same.Rachel’s plant should now assemble 3,250 Thrillseekers and 3,500 Cruisers to achieve a maximum profit of $30,600,000.d) Using overtime labor increases the profit by $30,600,000 – $26,640,000 =$3,960,000. Rachel should therefore be willing to pay at most $3,960,000 extra for overtime labor beyond regular time rates.e) The value of the right-hand side of the Cruiser demand constraint is 3,500 * 1.20= 4,200 cars. The value of the right-hand side of the labor hour constraint is48,000 * 1.25 = 60,000 hours. All formulas and Solver settings used in part (a) remain the same. Ignoring the costs of the advertising campaign and overtimelabor,Rachel’s plant should produce 3,000 Thrillseekers and 4,000 Cruisers for amaximum profit of $32,400,000. This profit excludes the costs of advertising and using overtime labor.f) The advertising campaign costs $500,000. In the solution to part (e) above, weused the maximum overtime labor available, and the maximum use of overtime labor costs $1,600,000. Thus, our solution in part (e) required an extra $500,000 + $1,600,000 = $2,100,000. We perform the following cost/benefit analysis:Profit in part (e): $32,400,000Advertising and overtime costs: $ 2,100,000$30,300,000We compare the $30,300,000 profit with the $26,640,000 profit obtained in part (a) and conclude that the decision to run the advertising campaign and use overtime labor is a very wise, profitable decision.g) Because we consider this question independently, the values of the right-handsides for the Cruiser demand constraint and the labor hour constraint are the same as those in part (a). We now change the profit for the Thrillseeker from $3,600 to $2,800 in the problem formulation. All formulas and Solver settings used in part(a) remain the same.Rachel’s plant should assemble 1,875 Thrillseekers and 3,500 Cruiser s to obtain a maximum profit of $24,150,000.h) Because we consider this question independently, the profit for the Thrillseekerremains the same as the profit specified in part (a). The labor hour constraint changes. Each Thrillseeker now requires 7.5 hours for assembly. All formulas and Solver settings used in part (a) remain the same.Rachel’s plant should assemble 1,500 Thrillseekers and 3,500 Cruisers for amaximum profit of $24,300,000.i) Because we consider this question independently, we use the problem formulationused in part (a). In this problem, however, the number of Cruisers assembled has to be strictly equal to the total demand. The formulas used in the problemformulation remain the same as those used in part (a).The new profit is $25,650,000, which is $26,640,000 – $25,650,000 = $990,000 less than the profit obtained in part (a). This decrease in profit is less than$2,000,000, so Rachel should meet the full demand for the Cruiser.j) We now combine the new considerations described in parts (f), (g), and (h). In part (f), we decided to use both the advertising campaign and the overtime labor.The advertising campaign raises the demand for the Cruiser to 4,200 sedans, and the overtime labor increases the labor hour capacity of the plant to 60,000 labor hours. In part (g), we decreased the profit generated by a Thrillseeker to $2,800.In part (h), we increased the time to assemble a Thrillseeker to 7.5 hours. The formulas and Solver settings used for this problem are the same as those used in part (a).Rachel’s plant should assemble 2,120 Thrillseekers and 4,200 Cruisers for amaximum profit of $28,616,000 – $2,100,000 = $26,516,000.。
运筹学案例集
运筹学案例集常州宝菱重工机械有限公司孔念荣收集整理运筹学的一些典型性应用•合理利用材料问题:如何在保证生产的条件下,下料最少•配料问题:在原料供应量的限制下,如何获取最大收益•投资问题:从投资项目中选取最佳组合,使投资回报最大•产品生产计划:合理利用人力、物力、财力等,使获利最大•劳动力安排:用最少的劳动力来满足工作的需要•运输问题:如何制定最佳调运方案,使总运费最少一、生产计划问题案例1(2-4)、某工厂用A、B、C、D四种原料生产甲、乙两种产品,生产甲和乙所需各种原料的数量以及在一个计划期内各种原料的现有数量见下表所示。
又已知每单位产品甲、乙的售价分别为400元和600元,问应如何安排生产才能获得最大收益?已知生产单位产品所需的设备台时及A、B两种原材料的消耗、资源的限制,如下表:问题:工厂应分别生产多少单位Ⅰ、Ⅱ产品才能使工厂获利最多?案例3(2-25)、某公司面临一个是外包协作还是自行生产的问题。
该公司生产甲、乙、丙三种产品,都需要经过铸造、机加工和装配三个车间。
甲、乙两种产品的铸件可以外包协作,亦可以自行生产,但产品丙必须本厂铸造才能保证质量,数据如下表所示。
问题:公司为了获得最大利润,甲、乙、丙三种产品各生产多少件?甲、乙两种产品的铸造中,由本公司铸造和由外包协作各应多少件?案例4(2-28)、永久机械厂生产Ⅰ、Ⅱ、Ⅲ三种产品,均要经过A、B两道工序加工。
设有两种规格的设备A1、A2能完成A工序;有三种规格的设备B1、B2、B3能完成 B 工序。
Ⅰ可在A、B的任何规格的设备上加工;Ⅱ可在任意规格的A设备上加工,但对B工序,只能在B1设备上加工;Ⅲ只能在A2与B2设备上加工,数据如下表所示。
问题:为使该厂获得最大利润,应如何制定产品加工方案?案例5、某造纸厂用原材料白坯纸生产原稿纸、笔记本和练习本三种产品。
该厂现有工人100人,每月白坯纸供应量为3万公斤。
已知工人的劳动生产率为:每人每月生产原稿纸30捆,或生产日记本30打,或练习本30箱。
运筹学经典案例
运筹学经典案例运筹学是一门研究在有限资源下进行有效决策的学科,它涉及到数学、经济学、管理学等多个领域。
在现实生活中,我们经常会遇到需要做出决策的情况,而运筹学正是帮助我们在复杂的情况下做出最优决策的学科。
下面,我们将介绍一些运筹学的经典案例,希望能够帮助大家更好地理解运筹学的应用。
1. 供应链优化。
供应链优化是运筹学中非常重要的一个领域,它涉及到如何在有限的资源下,实现最佳的供应链效率。
一个经典的案例是,某公司需要将产品从生产地运送到各个销售点,而在运输过程中需要考虑到运输成本、时间、货物损耗等多个因素。
通过运筹学的方法,可以帮助公司找到最佳的运输方案,从而降低成本、提高效率。
2. 生产排程优化。
在工厂生产过程中,如何合理地安排生产顺序和时间,是一个典型的运筹学问题。
通过对生产设备的利用率、生产时间、生产成本等因素进行综合考虑,可以利用运筹学的方法找到最优的生产排程,从而提高生产效率,降低生产成本。
3. 库存管理。
对于零售商来说,如何合理地管理库存是一个关键问题。
库存过多会增加成本,而库存过少又会导致无法满足客户需求。
通过运筹学的方法,可以帮助零售商找到最佳的库存管理策略,使得库存成本和客户满意度达到最优平衡。
4. 交通规划。
在城市交通规划中,如何合理地安排交通流量、制定最佳的交通信号灯配时方案等,都是典型的运筹学问题。
通过对交通流量、道路容量、交通需求等因素进行分析和优化,可以帮助城市交通管理部门制定出更加合理的交通规划方案,提高交通效率,减少拥堵。
5. 项目管理。
在企业项目管理中,如何合理地安排资源、时间和任务分配,是一个重要的问题。
通过运筹学的方法,可以帮助项目经理制定出最佳的项目计划,提高项目执行效率,降低项目成本,确保项目顺利完成。
总结。
运筹学在现实生活中有着广泛的应用,它帮助我们在复杂的决策情况下找到最佳解决方案,提高效率,降低成本。
通过对供应链优化、生产排程、库存管理、交通规划、项目管理等经典案例的分析,我们可以更好地理解运筹学的应用,希望大家能够在实际工作中运用运筹学的方法,解决复杂的决策问题,取得更好的效果。
运筹学案例
运筹学案例(第一部分)案例1 高压电器强电流试验计划的安排某高压电器研究所属行业归口所,是国家高压电器试验检测中心,每年都有大量的产品试验、中试、出口商检等任务.试验计划安排及实施的过程一般如下:·提前一个月接受委托试验申请·按申请的高压电器类别及台数编制下月计划·按计划调度,试验产品进入试验现场·试验检测,出检测报告·试验完成,撤出现场高压电器试验分强电流试验和高压电试验两部分,该研究所承担的强电流实验任务繁重,委托试验的电器量很大,因此科学地计划安排试验计划显得非常重要。
高压电器分十大类,委托试验的产品有一定随机性,但是试验量最多的产品(占85%以上)是以下八类:1.35KV断路器2.10KV等级断路器3.35KV开关柜4.10KV等级开关柜5.高压熔断器6.负荷开关7.隔离开关8.互感器这八类产品涉及全国近千个厂家,市场广阔,数量庞大。
当前的强电流产品试验收费标准见表1—1。
表1-1 强电流产品试验收费标准由于强电流试验用的短路发电机启动时,会给城市电网造成冲击,严重影响市网质量,故只能在中午1点用电低谷时启动,从而影响全月连续试验工时只有约108小时,任务紧张时只能靠加班调节。
正常情况下各种试验所需试验工时见表8—2。
表1—2 各类产品试验所需工时强电流试验特点是开机时耗电量大,而每次实验短路时,只持续几秒钟,虽然短路容量在“0”秒时达2500 MVA,但瞬时耗电量却很小.每天试验设备提供耗电量限制为5000千瓦,每月135千千瓦,那麽每种产品耗量如表8-3所示。
各类产品的冷却水由两个日处理能力为14吨的冷却塔供给.每月按27天计,冷却水月供给量为14×27=378吨.每月各类产品冷却水处理量见表8-3。
表1—3 各类产品试验耗电量与冷却水处理量根据以往的经验和统计报表显示第一类产品和第二类产品每月最多试验台数分别为6台和4台,第三类和第四类产品则每月至少需分别安排8台和10台。
运筹学应用范例与解法
运筹学应用范例与解法以运筹学应用范例与解法为题,我们将探讨一些实际问题,并介绍如何运用运筹学的方法来解决这些问题。
一、生产调度问题假设某工厂有多条生产线,每条生产线可以生产不同种类的产品。
每个产品的生产时间、成本和销售价格都不同。
我们需要确定每条生产线的生产计划,以最大化总利润。
解决方案:可以使用线性规划模型来解决这个问题。
首先,我们需要列出每条生产线的生产时间、成本和销售价格表。
然后,我们将每条生产线的生产计划表示为决策变量,并设置约束条件,如生产时间不能超过工作时间,每个产品的生产数量不能为负数等。
最后,我们通过求解线性规划模型,得到最佳的生产计划。
二、配送路线问题假设某物流公司需要将货物从若干个仓库送往多个客户,每个仓库和客户之间的距离和货物数量都不同。
我们需要确定最佳的配送路线,以最小化总运输成本。
解决方案:可以使用旅行商问题(TSP)模型来解决这个问题。
首先,我们需要计算每个仓库和客户之间的距离,并列出距离矩阵。
然后,我们将每个客户的配送路线表示为决策变量,并设置约束条件,如每个客户只能被访问一次,每个仓库的货物数量不能超过容量等。
最后,我们通过求解TSP模型,得到最佳的配送路线。
三、项目调度问题假设某公司有多个项目需要进行调度,每个项目都有不同的工期、资源需求和利润。
我们需要确定最佳的项目调度方案,以最大化总利润。
解决方案:可以使用动态规划模型来解决这个问题。
首先,我们需要列出每个项目的工期、资源需求和利润表。
然后,我们将每个项目的调度方案表示为决策变量,并设置约束条件,如资源不能超过容量,每个项目的工期不能延迟等。
最后,我们通过求解动态规划模型,得到最佳的项目调度方案。
四、库存管理问题假设某零售商需要决定每个产品的订货量,以满足客户需求并最小化库存成本。
每个产品的需求量、订货时间和库存成本都不同。
解决方案:可以使用库存模型来解决这个问题。
首先,我们需要列出每个产品的需求量、订货时间和库存成本表。
运筹学经典案例
运筹学经典案例
运筹学是一门研究如何有效地组织、管理和优化资源的学科,它在现代管理中
起着至关重要的作用。
在实际应用中,我们可以通过一些经典案例来了解运筹学的具体运用,下面就介绍几个经典案例。
第一个案例是关于生产调度的。
在一个工厂中,有多条生产线,每条生产线上
有不同的产品需要生产。
如何合理安排生产顺序,以最大程度地提高生产效率,是一个典型的运筹学问题。
通过运筹学的方法,可以建立数学模型,考虑到各种约束条件,最终得出一个最优的生产调度方案,从而实现生产效率的最大化。
第二个案例是关于物流配送的。
在物流配送中,如何合理规划配送路线,以最
大程度地降低成本,提高配送效率,也是一个典型的运筹学问题。
通过对各种因素的分析和考虑,可以利用运筹学方法建立配送优化模型,从而得出最优的配送路线和方案。
第三个案例是关于库存管理的。
在企业的库存管理中,如何合理控制库存水平,以最大程度地降低库存成本,同时又能够保证供应链的稳定性,也是一个典型的运筹学问题。
通过对需求的预测和供应链的优化,可以利用运筹学方法建立库存管理模型,从而实现库存水平的最优控制。
通过以上几个经典案例的介绍,我们可以看到,运筹学在实际应用中发挥着重
要作用。
通过建立数学模型,考虑各种约束条件,运用运筹学方法进行优化,可以帮助企业提高生产效率,降低成本,提高配送效率,优化供应链,从而实现经济效益的最大化。
总的来说,运筹学经典案例的研究和实践对于企业的管理和运营具有重要的指
导意义。
希望通过对运筹学经典案例的深入学习和研究,可以更好地应用运筹学理论,解决实际管理中的问题,实现企业的可持续发展。
优秀的运筹学案例
优秀的运筹案例1. 孙武与《孙子兵法》孙武,字长卿,后人尊称其为孙武子、孙子,中国历史上著名军事家.公元前535年左右出生于齐国乐安(今山东惠民). 后来到了吴国,因为献上兵法十三篇,被吴王阖闾重用,拜为大将,和伍子胥共事,辅佐吴王,领兵攻破楚国都城郢(今湖北江陵县纪南城).孙武在春秋末期(公元前476年前后)所著《孙子兵法》,是世界上现存最古老的兵书.其中的《始计第一》论述怎样在开战之前和战争中实行谋划的问题,以及谋划在战争中的重要意义;《作战第二》论述速战速胜的重要性;《谋攻第三》论述用计谋征服敌人的问题;《军形第四》论述用兵作战要先为自己创造不被敌人战胜的条件,以等待敌人可以被我战胜的时机,使自己“立于不败之地”;《兵势第五》论述用兵作战要造成一种可以压倒敌人的迅猛之势,并要善于利用这种迅猛之势;《虚实第六》论述用兵作战须采用“避实而击虚”的方针;《军争第七》论述如何争夺制胜的有利条件,使自己掌握作战主动权的问题;《九变第八》论述将帅指挥作战应根据各种具体情况灵活机动地处置问题,不要机械死板而招致失败,并对将帅提出了要求;《行军第九》论述行军作战中怎样安置军队和判断敌情问题;《地形第十》论述用兵作战怎样利用地形的问题,并着重论述深入敌国作战的好处;《九地第十一》进一步论述用兵作战怎样利用地形及统兵之道的问题;《火攻第十二》论述在战争中使用火攻的办法、条件和原则等问题;《用间第十三》论述使用间谍侦察敌情在作战中的重要意义,以及间谍的种类和使用间谍的方法.《孙子兵法》是体现我国古代军事运筹思想的最早的典籍.它考察了战争中各种依存、制约关系,总结了战争的规律,并依此来研究如何筹划兵力以争取全局的胜利. 书中的语言叙述简洁,内容也很有哲理性,后来的很多将领用兵都受到了该书的影响.《孙子兵法》对中国的文化发展有深远的影响.2. 孙膑与齐王赛马孙膑(约公元前380-公元前432),孙武的后世子孙,战国中期的著名军事家. 少时孤苦,年长后从师鬼谷子(著名隐士,精通兵学和纵横学)学习《孙子兵法》十三篇等兵书战策. 庞涓妒孙膑之才而将其骗至魏,施以膑刑(割去膝盖骨).后来乘齐国使团来魏之机,孙膑被齐使秘密接到齐国,并被大将田忌所赏识,留在府中做幕僚,奉为上宾. 孙膑的“斗马术”是我国古代运筹思想中争取总体最优的脍炙人口的著名范例(记载于《史记·孙子吴起列传》),成为军事上一条重要的用兵规律,即要善于用局部的牺牲去换取全局的胜利,从而达到以弱胜强的目的. “斗马术”的基本思想是不强求一局的得失,而争取全盘的胜利. 这是一个典型的博弈问题.3. 围魏救赵公元前354年,魏将庞涓发兵8万,以突袭的办法将赵国的都城邯郸包围. 赵国抵挡不住,求救于齐. 齐王拜田忌为大将,孙膑为军师,发兵8万,前往救赵. 大军既出,田忌欲直奔邯郸,速解赵国之围. 孙膑提出应趁魏国国内兵力空虚之机,发兵直取魏都大梁(今河南开封),迫使魏军弃赵回救. 这一战略思想,将避免齐军长途奔袭的疲劳,而致魏军于奔波被动之中,立即为田忌采纳,率领齐军杀往魏国都城大梁. 庞涓得知大梁告急的消息,忙率大军驰援大梁. 齐军事先在魏军必经之路的桂陵(今河南长垣南),占据有利地形,以逸待劳,打败了魏军. 这就是历史上有名的“围魏救赵”之战.“围魏救赵”之妙,妙在善于调动敌人. 调动敌人的要诀,则在“攻其所必救”.4. 减灶之法公元前342年,魏将庞涓带领10万大军进攻韩国. 韩国向齐国求救. 齐王召集群臣商讨对策,齐国的成侯邹忌主张不救,田忌主张早救. 孙膑建议先答应韩国的请求,致使韩国必倾力抗敌. 等到韩、魏双方战到疲惫不堪时,再出兵救韩,可用力少而见功多,取胜易而受益大. 韩国仗恃有齐国相援,倾全力抗魏,五战皆败,只得于公元前341年再次向齐求助. 齐王才决定派兵救韩,仍以田忌为主将,孙膑为军师. 战役之初,按照孙膑的计策,齐军长驱直入把攻击的矛头指向魏国的都城大梁. 庞涓听到消息,立即回援,但齐军已经进入魏国境内. 孙膑对田忌说,魏国军队素来慓悍勇武而看不起齐国,善于作战的人只能因势利导. 兵法上说,行军百里与敌争利会损失上将军,行军五十里而与敌争利只有一半人能赶到. 为了让魏军以为齐军大量掉队,应使齐军进入魏国境内后先设10万个灶,过一天设5万个灶,再过一天设3万个灶. 庞涓行军三天,见到齐军所留灶迹,判断齐军士兵已经逃跑一大半,所以丢下步兵,只率轻车锐骑用加倍的速度追赶齐军. 孙膑计算魏军行程,日暮时必然赶到马陵(今河南范县西南).马陵道路狭窄,两旁地形险阻.孙膑预先布置好伏兵,并集中优秀弩手夹道设伏. 庞涓日暮追至马陵,进入齐军伏击阵地. 齐军万弩齐发,魏军大乱,庞涓兵败自刎. 齐军乘胜全歼10万魏军.马陵之战,孙膑的因势利导、调动敌人、变劣势为优势、力争发挥突然性的作战指导主动,是颇有参考价值的. 其退军设伏的战法,也给了后人不少的启示.“围魏救赵”与“减灶之法”都充分体现了如何运用筹划兵力,选择最佳时间、地点,趋利避害,集中优势兵力以弱克强的运筹思想.5. 运筹帷幄中,决胜千里外在公元前3世纪楚汉相争中,汉高祖刘邦的著名谋士张良为推翻秦朝,打败项羽,统一全国立下了盖世奇功,刘邦赞誉他“夫运筹策帷帐之中,决胜于千里之外”. 这千古名句也可以说是对张良运筹思想的赞颂和褒奖. 《史记》在《留侯世家》及其他多处提及“夫运筹策帷帐之中,决胜于千里之外”. 这里的“运筹”,指张良在帷幄中制定作战谋略与决策的过程. 在西汉时代,“运筹”已被当作制定谋略与决策职能分工的代名词.20世纪30年代发展起来的运筹学,其基本宗旨是探讨事理,强调做一项工作之前要明确目的,制定效果,衡量指标体系作为估计不同方案所达到预定目标程度的依据,在此基础上选择最优方案和实施有效管理. 我国1955年开始研究运筹学时,从《史记》中摘取“运筹”一词作为“Operations Research”的意译,包含了运用筹划、以智取胜的深刻含义. 从《史记》对“运筹”的记述表明,我国运筹思想源远流长,至今对运筹学的发展仍有重要影响.6. 贾思勰与《齐民要术》贾思勰,北魏时期的科学家,益都(在山东寿光南)人,祖、父两代都善于经营,有着丰富的劳动经验,并都非常重视农业技术方面的学习和研究. 贾思勰从小在田园长大,对很多农作物都非常熟悉,他还跟着父亲身体力行参加各种农业劳动,学习掌握了大量农业科技. 他家里拥有大量藏书,这使他从小就有机会博览群书,从中汲取各方面的知识,也为他以后编撰《齐民要术》打下了基础. 大约在北魏永熙二年(533年)到东魏武定二年(554年)期间,他将自己积累的许多古书上的农业技术资料、询问老农获得的丰富经验以及他自己的亲身实践,加以分析、整理、总结,写成农业科学技术巨著《齐民要术》.《齐民要术》一书,不仅是我国古代农业科学一部杰出的学术著作,也是一部蕴含丰富运筹思想的宝贵文献,它记载了我国古代农民如何根据天时、地利和生产条件去合理筹划农事的经验. 其中所提出的不同作物的播种时间和各种作物茬口安排上的先后关系,可以说是现代运筹学中二阶段决策问题的雏型.7. 丁渭修皇宫[6]图1.1 丁渭修皇宫引水示意图[7]宋真宗大中祥符年间(1008—1017),都城开封里的皇宫失火,需要重建. 右谏议大夫、权三司使丁渭受命负责限期重新营造皇宫. 建造皇宫需要很多土,丁渭考虑到从营建工地到城外取土的地方距离太远,费工费力,于是下令将城中街道挖开取土,节省了不少工时. 挖了不久,街道便成了大沟. 丁渭又命人挖开官堤,引汴河水进入大沟之中,然后调来各地的竹筏、木船经这条大沟运送建造皇宫所用的各种物材,十分便利(见图1. 1). 等到皇宫营建完毕,丁渭命人将大沟中的水排尽,再将拆掉废旧皇宫以及营建新皇宫所丢弃的砖头瓦砾添入大沟中,大沟又变成了平地,重新成为街道. 这样,丁渭一举三得,挖土、运送物材、处理废弃瓦砾等三件工程一蹴而成,节省的工费数以亿万计.这是我国古代大规模工程施工组织方面运筹思想的典型例子.8. 沈括运粮[6]沈括(1031—1095), 北宋时期大科学家、军事家. 在率兵抗击西夏侵扰的征途中,曾经从行军中各类人员可以背负粮食的基本数据出发,分析计算了后勤人员与作战兵士在不同行军天数中的不同比例关系,同时也分析计算了用各种牲畜运粮与人力运粮之间的利弊,最后做出了从敌国就地征粮,保障前方供应的重要决策,从而减少了后勤人员的比例,增强了前方作战的兵力.当时沈括的分析计算过程译意如下:凡是行军作战,如何从敌方取得粮食,是最急迫的事情. 自己运粮不仅耗费大,而且沈括势必难以远行. 我曾经作过计算:假设一个民夫可以背六斗米,士兵自带五天的干粮.如果一个民夫供应一个士兵,单程只能进军十八天(六斗米,每人每天吃两升米,两人吃十八天*). 若要计回程的话,只能进军九天.如果两个民夫供应一个士兵,单程可进军二十六天(两个民夫背一石二斗米,三个人每天要吃六升米. 八天以后,其中一个民夫背的米已经吃光,给他六天的口粮让他先返回,以后的十八天,两人每天吃四升米).若要计回程的话,只能前进十三天的路程(前八天每天吃六升,后五天及回程每天吃四升米,能够进军十三天).如果三个民夫供应一个士兵,单程可进军三十一天(三人背米一石八斗,前六天半四个人,每天吃八升米,遣返一个民夫,给他四天口粮. 中间的七天三个人同吃,每天吃六升米,再遣返一个民夫,给他九天口粮;最后的十八天两人吃,每天四升米).如果要计回程的话,只可以前进十六天的路程(开始六天半每天吃八升米,中间七天,每天吃六升米,最后两天半以及十六天回程每天吃四升米).三个民夫供应一个士兵,已经到极限了.如果要出动十万军队,辎重占去三分之一兵源,能够上阵打仗的士兵不足七万人.这就要用三十万民夫运粮,再要扩大规模很困难了.每人背六斗米的数量也是根据民夫的总数平均来说的. 因为其中的队长不背,伙夫减半,他们所减少的要摊在众人头上.*士兵干粮相当于十升米,连同民夫背的米共有七十升,每天吃四升米,实际上只能维持十七天半. 十八天是以整数来说的. 以下计算类同.更何况还会有患病和死亡的人,他们所背的米又要由众人分担.所以军队中不容许饮食无度,如果有一个人暴食,两三个人供应他还不够.如果用牲畜运输,骆驼可以驮三石,马或骡可以驮一石五斗,驴子可以驮一石.与人工相比,虽然能驮得多,花费也少,但如果不能及时放牧或喂食,牲口就会瘦弱而死.一头牲口死了,只能连它驮的粮食也一同丢弃.所以与人工相比,实际上是利害相当.这种军事后勤问题的分析计算是具有现代意义的运筹思想的范例.9. 高超治河[6]高超,宋朝人,河工. 宋仁宗庆历年间(1041—1048)黄河在北都(今太原)商胡地区决口,很长时间都没有堵上决口. 朝廷派三司度支副使(官职名)郭申锡亲自前往监督工程进行. 凡是堵决口将要合拢的时候,都要在决口中间压上一埽(用树枝、芦苇、石头等捆紧做成圆柱形),叫做“合龙门”,这是成败的关键. 当时好几次压埽都合不上. 那时合龙门用的埽长六十步(步,古代的长度计量单位).有个叫做高超的水工献策说:埽身太长,人力压不住,埽到达不了水底,所以水流不断. 应当把六十步的埽身分为三节,每节长二十步,中间用绳索连起来. 先放下第一节,等它到了水底,再压第二节、第三节. 老河工和他争论,认为不可行,说:“二十步的埽不能阻断水流,白白使用三节埽,浪费好几倍成本,而决口依然堵不上”.高超对他说:“第一节河水确实没有被阻断,但是水势必然被削弱一半. 压第二节时只用一半的力气,水就算没有被阻断,也不过是很少往外漏出. 第三节就是在平地上施工,足以能够让人使出全部力气. 压完第三节以后,上两节自来就被浊泥淤积,不用再麻烦人力来加固它们了.” 郭申锡遵照从前的方法,不采纳高超的建议.当时魏公(爵位名)贾将军镇守北门(地名),只有他认为高超的话是对的,暗地派遣几千人在下游收集漂下来的埽. 而上游的埽压上以后,果然被水冲走了,黄河的决口更加大,郭申锡因此被贬官. 最后还是采用了高超的建议,才堵上了商胡地区的决口.这种分阶段作业优于一次作业的分析与论证,是运筹思想的典型范例.10、为何说一名数学家等于十个师?在第二次世界大战中,盟军为了和德国法西斯作战,大量军需物品要穿过大西洋运送到各个战场。
运筹学案例集
运筹学案例集常州宝菱重工机械有限公司孔念荣收集整理运筹学的一些典型性应用•合理利用材料问题:如何在保证生产的条件下,下料最少•配料问题:在原料供应量的限制下,如何获取最大收益•投资问题:从投资项目中选取最佳组合,使投资回报最大•产品生产计划:合理利用人力、物力、财力等,使获利最大•劳动力安排:用最少的劳动力来满足工作的需要•运输问题:如何制定最佳调运方案,使总运费最少一、生产计划问题案例1(2-4)、某工厂用A、B、C、D四种原料生产甲、乙两种产品,生产甲和乙所需各种原料的数量以及在一个计划期内各种原料的现有数量见下表所示.又已知每单位产品甲、乙的售价分别为400元和600元,问应如何安排生产才能获得最大收益?已知生产单位产品所需的设备台时及A、B两种原材料的消耗、资源的限制,如下表:问题:工厂应分别生产多少单位Ⅰ、Ⅱ产品才能使工厂获利最多?案例3(2—25)、某公司面临一个是外包协作还是自行生产的问题。
该公司生产甲、乙、丙三种产品,都需要经过铸造、机加工和装配三个车间.甲、乙两种产品的铸件可以外包协作,亦可以自行生产,但产品丙必须本厂铸造才能保证质量,数据如下表所示。
问题:公司为了获得最大利润,甲、乙、丙三种产品各生产多少件?甲、乙两种产品的铸造中,由本公司铸造和由外包协作各应多少件?案例4(2-28)、永久机械厂生产Ⅰ、Ⅱ、Ⅲ三种产品,均要经过A、B两道工序加工。
设有两种规格的设备A1、A2能完成A工序;有三种规格的设备B1、B2、B3能完成B 工序。
Ⅰ可在A、B的任何规格的设备上加工;Ⅱ可在任意规格的A设备上加工,但对B工序,只能在B1设备上加工;Ⅲ只能在A2与B2设备上加工,数据如下表所示。
问题:为使该厂获得最大利润,应如何制定产品加工方案?案例5、某造纸厂用原材料白坯纸生产原稿纸、笔记本和练习本三种产品。
该厂现有工人100人,每月白坯纸供应量为3万公斤。
已知工人的劳动生产率为:每人每月生产原稿纸30捆,或生产日记本30打,或练习本30箱。
运筹学线性规划案例
运筹学线性规划案例线性规划是运筹学中的一个重要分支,它主要研究如何利用数学模型来解决最优化问题。
在实际应用中,线性规划可以帮助企业做出最佳的决策,使资源得到最大化利用。
本文将通过一个实际案例来介绍线性规划的应用,以便读者更好地理解和掌握这一方法。
假设某公司生产两种产品A和B,它们分别需要机器加工和人工装配。
公司拥有的机器和人工资源分别为每周80小时和60人天。
产品A每单位需要机器加工2小时,人工装配3人天;产品B每单位需要机器加工3小时,人工装配2人天。
每单位产品A的利润为2000元,产品B的利润为3000元。
现在的问题是,如何安排生产计划,才能使得利润最大化呢?首先,我们可以将该问题建立成数学模型。
假设x1和x2分别表示生产产品A 和B的单位数,则该问题可以表示为:Max Z=2000x1+3000x2。
约束条件为:2x1+3x2≤80。
3x1+2x2≤60。
x1≥0,x2≥0。
接下来,我们可以通过线性规划的方法来求解最优解。
在这里,我们不妨使用单纯形法来进行求解。
首先,我们将约束条件转化成标准形式,得到:2x1+3x2+s1=80。
3x1+2x2+s2=60。
x1≥0,x2≥0。
然后,我们构造初始单纯形表,并进行单纯形法的迭代计算。
最终得到最优解为x1=20,x2=10,此时利润最大为80000元。
通过这个简单的案例,我们可以看到线性规划在实际中的应用。
通过建立数学模型和运用线性规划方法,我们可以很好地解决类似的最优化问题,使得资源得到最大化利用,从而帮助企业做出更加科学合理的决策。
总之,线性规划作为运筹学中的重要方法,具有广泛的应用前景。
通过不断地学习和实践,我们可以更好地掌握线性规划的原理和方法,为实际问题的解决提供更加科学的支持。
希望本文的案例能够帮助读者更好地理解线性规划的应用,从而在实际工作中能够更好地运用这一方法,取得更好的效果。
运筹学教学案例
《运筹学》教学案例管理科学与工程学院系统工程教研室二○○五年五月一日目录案例1 某集团摩托车公司产品年度生产计划的优化研究 (1)1 问题的提出 (1)2 市场调查与生产状况分析 (1)3 建模与求解 (2)4 结果分析 (4)5 方案调整分析 (5)案例2 年度配矿计划优化 (9)1 问题的提出 (9)2 分析与建模 (10)3 计算结果及分析 (10)案例3 某汽车修配厂钢板综合下料问题的研究 (13)1 问题的提出 (13)2 钢板下料现状分析及综合利用设想方案 (13)3 建模与求解 (15)4 结果分析与进一步讨论 (16)案例4 某配合饲料厂关于饲料配方的优化研究 (18)1 问题的提出 (18)2 饲料配方的现状分挤 (18)3 配方优化研究 (19)4 进一步的分析和讨论 (22)案例5 某设计项目人员指派方案的研究 (24)1 问题的提出 (24)2 基本情况分析 (24)3 建模与求解 (25)案例6 关于泗洪县110kV泗金线施工工期的探讨 (29)1 绪论 (29)2 工程概述 (29)3 确定目标任务并列出关系作业表 (30)4 绘制初始网络图 (30)5 计算网络时间参数,确定关键路线 (31)6 工程的时间优化与调整 (31)7 工程费用如下: (32)8 工期探讨摘要 (34)案例7 网络计划 (35)案例8 北方莱金属罐铸造厂生产计划的优化分析 (38)1 问题的提出 (38)2 生产主要过程及员优生产计划 (38)3 计算结果的简单分析 (40)4 生产计划的优化后分析(灵敏度分析) (40)5 结论及建议 (44)案例9 某白泥矿合理配车间题的研究 (46)1 问题的提出 (46)2 现状分析与研究思路 (46)3 建模及计算 (47)4 结果分析与进一步讨论 (48)案例10 运用PERT方法对某研究与开发计划项目进行优化 (51)案例11 火车调车场作业调度问题的分析 (54)1 问题的提出 (54)2 问题分析 (54)3 求解 (55)4 结果分析 (56)案例12 运输路线的最优化问题 (57)1 问题的提出 (57)2 资料及分布 (57)3 建模与求解 (58)4 分析与讨论 (59)案例1 某集团摩托车公司产品年度生产计划的优化研究1 问题的提出某集团摩托车公式是生产各种类型摩托车的专业厂家,有30多年从事摩托车生产的丰富经验,近年来,随着国内摩托车行业的发展,市场竞争日趋激烈,该集团原有的优势逐渐丧失,摩托车公司的生存和发展面临严峻的挑战。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《运筹学》教学案例管理科学与工程学院系统工程教研室二○○五年五月一日目录案例1 某集团摩托车公司产品年度生产计划的优化研究 (1)1 问题的提出 (1)2 市场调查与生产状况分析 (1)3 建模与求解 (2)4 结果分析 (4)5 方案调整分析 (5)案例2 年度配矿计划优化 (9)1 问题的提出 (9)2 分析与建模 (10)3 计算结果及分析 (10)案例3 某汽车修配厂钢板综合下料问题的研究 (13)1 问题的提出 (13)2 钢板下料现状分析及综合利用设想方案 (13)3 建模与求解 (15)4 结果分析与进一步讨论 (16)案例4 某配合饲料厂关于饲料配方的优化研究 (18)1 问题的提出 (18)2 饲料配方的现状分挤 (18)3 配方优化研究 (19)4 进一步的分析和讨论 (22)案例5 某设计项目人员指派方案的研究 (24)1 问题的提出 (24)2 基本情况分析 (24)3 建模与求解 (25)案例6 关于泗洪县110kV泗金线施工工期的探讨 (29)1 绪论 (29)2 工程概述 (29)3 确定目标任务并列出关系作业表 (30)4 绘制初始网络图 (30)5 计算网络时间参数,确定关键路线 (31)6 工程的时间优化与调整 (31)7 工程费用如下: (32)8 工期探讨摘要 (34)案例7 网络计划 (35)案例8 北方莱金属罐铸造厂生产计划的优化分析 (38)1 问题的提出 (38)2 生产主要过程及员优生产计划 (38)3 计算结果的简单分析 (40)4 生产计划的优化后分析(灵敏度分析) (40)5 结论及建议 (44)案例9 某白泥矿合理配车间题的研究 (46)1 问题的提出 (46)2 现状分析与研究思路 (46)3 建模及计算 (47)4 结果分析与进一步讨论 (48)案例10 运用PERT方法对某研究与开发计划项目进行优化 (51)案例11 火车调车场作业调度问题的分析 (54)1 问题的提出 (54)2 问题分析 (54)3 求解 (55)4 结果分析 (56)案例12 运输路线的最优化问题 (57)1 问题的提出 (57)2 资料及分布 (57)3 建模与求解 (58)4 分析与讨论 (59)案例1 某集团摩托车公司产品年度生产计划的优化研究1 问题的提出某集团摩托车公式是生产各种类型摩托车的专业厂家,有30多年从事摩托车生产的丰富经验,近年来,随着国内摩托车行业的发展,市场竞争日趋激烈,该集团原有的优势逐渐丧失,摩托车公司的生存和发展面临严峻的挑战。
为此,公司决策层决心顺应市场,狠抓管理,挖潜创新,重振摩托雄风。
为制定1999年度摩托车生产计划公司从市场调查入手,紧密结合公司实际,运用科学方法对其进行优化组合,制定出企业总体经济效益最优的方案。
2 市场调查与生产状况分析1998年,由于受东南亚金融风暴的影响,国内摩托车市场出现疲软,供给远大于需求。
该集团的摩托车生产经营也出现开工不足、库存增加和资金周转困难等问题。
对此,在制定1999年生产计划时必须给予充分考虑。
该集团有3个专业厂,分别生产轻便摩托车、普通两轮车和三轮摩托车三大系列产品。
在市场调查的基础上,从企业实际出发普遍下调整车出厂价和目标利润率,有关数据见附表1-1附表1-1 摩托车品种、厂价、利润和生产能力1999年该集团可供摩托车生产的流动资金总量为4000万元,年周转次数为5次,生产各种型号摩托车资金占用情况见附表1-2附表1-2 各种摩托车的生产需占用资金量由于发动机改型生产的限制,改型车M3和M6两种车1999年的生产量预测数分别为20000辆和22000辆。
合理的控制1999年末产成品的库存是减少资金占用和降低仓储压力的必要措施。
经预测,三种系列摩托车1999年产销率列于附表1-3中,同时还列出各系列摩托车仓储面积的占用率。
附表1-3 1999年摩托车产销率和仓储面积占用率公司1999年可提供的最大仓储能力为3000个仓储单位,库存产品最大允许占用生产资金为1600万元。
3 建模与求解设x j表示生产M j 型摩托车的数量(j=1,2,3……,9),综上所述数据,可列出如下摩托车产品生产计划总利润最大的数学模型:目标函数:max Z=0.18*0.06x1 +0.21*0.07x2 +0.23*0.1x3 +0.38*0.07x4 +0.48*0.06x5 +0.65*0.08x6 +0.82*0.06x7 +0.88*0.06x8 0.92*0.06x9.约束条件:x1+ x2+ x3≤50000 (1)x4+ x5 +x6≤60000 (2)x7+ x8 +x9≤10000 (3)0.152 x1+0.17x2+0.185 x3+0.32 x4+0.41x5+0.54 x6+0.6 x7+0.745 x8+0.86 x9≤4000*5 (4)x3≤20000 (5)x6≤22000 (6)0.03*( x1+ x2+ x3)+0.03*1.5 (x4+ x5 +x6)+0.08*3 (x7+ x8 +x9) ≤3000 (7)0.00456 x1+0.0051 x2+0.00555 x3+0.0096 x4+0.0123 x5+0.0162 x6+0.048 x7+0.0596 x8+0.0688 x9≤1600 (8)模型说明:约束式(1)(2)(3)分别表示三种系列摩托车的最大生产能力限制;约束式(4)表示摩托车生产受流动资金的限制;约束式(5)和(6)表示x3和x6两种车受发动机供应量的限制;约束式(7)表示销售的产量受库存能力的限制;约束式(8)表示未销售产品占用资金的限制。
该模型是一个线性规划模型,可运用QSB+软件在计算机上进行求解,计算结果见附表1-4和附表1-5附表1-4 线性规划模型计算结果(1)附表1-5线性规划计算结果(2)4 结果分析(1)根据计算结果,能够使年利润达到最大化的产品生产品种计划是:生产M2型车26000辆,生产M3型车20000辆,生产M6型车22000辆,共计68000辆。
目标利润为1986.2万元。
(2)松弛变量s1,s2,s3不为零,其取值表示三种系列的摩托车的生产能力均有富余。
尤其是三轮摩托车未安排生产,生产能力完全剩余;s4=0,说明用于摩托车生产的流动资金完全用完,s5 =s6=0,说明M3和M6两种车型发动机也无剩余。
S7,S8不为零,其取值表示库存容量及库存车占用的生产资金额度尚有富余。
(3)从附表1.5结果来看,约束式(1)、(2)、(3)、(7)和(8)为松约束式与松弛变量取非零值相对应,说明生产能力、库存量、库存品占用资金有剩余。
约束式(4)、(5)、(6)为紧约束,与松弛变量取零值相对应,其含义与松弛变量分析相同;与(1)、(2)、(3)、(7)、(8)对应的影子价格为零,说明约束右边项的增加不会引起目标函数的改善。
因此我们可以考虑通过增加流动资金的注入和扩大M3和M6两种车发动机的供应能力来提高赢利水平,且增加流动资金的注入,能够使赢利水平提高最快。
(4)上述计算虽然得出了最优解,使得目标利润最大化,但应该看到,该计划没有充分挖掘公司现有的生产能力,尤其是三轮摩托车生产线完全闲置。
为保持产品的市场占有率,可添加一些约束条件,重新规划最优生产方案。
5 方案调整分析上述计算得出的生产方案虽然是最优的,但也存在着明显的缺陷,主要问题是公司摩托车生产能力利用严重不足,利用率仅为57%左右。
因此,有必要对该方案做进一步分析并作出适当调整。
(1)关于流动资金约束的讨论。
根据前面分析,流动资金是紧约束,其影子价格最高。
因此,如果适当增加,可以使赢利水平有较大提高。
首先,可以从加快生产经营节奏,加快资金周转来提高资金利用率,即保持流动资金供应总量4000万元不变,争取将年周转次数增加1次,即由5次增加到6次。
其他条件不变。
计算结果见附表1-6附表1-6加速资金周转后计算结果从附表1.6可见,资金周转加速后,摩托车总产量由68000辆提高到79710辆,目标利润由1986.2万元提高到2284万元。
由于s4依然为零,说明如果进一步考虑注入新的流动资金,可以使产量和利润有更大提高,附表1-7所示为增加1000万元流动资金后的计算结果,摩托车的生产量为73333辆,目标利润为2506.4万元。
附表1-7 增加流动资金1000万元后的计算结果(2)关于发动机生产量约束讨论。
约束5和约束6表明,发动机的生产量限制了M3和M6两种车的产量。
因此应设法多增产这两种发动机。
如果将这两种发动机的产量增加,使M3和M6两种车的产量各增加5000台,则计算结果如附表1-8所示,摩托车产量为75000辆,目标利润为2641.4万元。
附表1-8 增加M3和M6发动机后计算结果(3)关于合理安排生产品种的讨论,根据生产和销售的实际需要,为保持公司各种系列摩托车有一定的市场占有率,需对上述结果作出修改。
即要保证三轮摩托车达到一个最低产量。
安排生产M9型车不少于2000辆。
为此需增加约束式(9):X9≥2000。
其计算结果为附表1-9所示,摩托车产量为66333辆,目标利润为2408.6万元。
附表1-9 规定必须生产M9型车2000辆后计算结果(4) 关于适当增加库存能力的讨论。
为保证三轮摩托车生产线的开动,使公司整个摩托车的生产量和目标利润受到较大影响。
从附表1.8可知,由于三轮摩托车占用的库存量较大,约束式(7)的影子价格非常高,因此,可考虑适当增加库存量,以提高生产量和目标利润。
若将库存量扩大500个单位,则计算结果见附表1-10,摩托车产量为79176辆,目标利润为2705.2万元。
附表1-10 扩大库存能力500辆后计算结果综上分析,我们认为在安排1999年摩托车生产计划时,需要适当增加流动资金的注入和扩充库存面积,这样不仅能有效利用现有的生产能力,还可以增加企业赢利。
因此,1999年摩托车生产的合理计划是:M1=0,M6=27000辆,M2=5199辆, M7=0,M3=25000辆, M8=0,M4=0, M9=2000辆,M5=19978辆。
需补充说明的是,摩托车的生产数量还是整数,原本应用整数规划来求解,但由于摩托车的生产数量较大,相对于1而言误差不大,故直接采用线性规划单纯形法求解。
案例2 年度配矿计划优化2 分析与建模1) 决策变量:记x j = 1,2, …,14分别表示出矿点1~14所产矿石中参与配矿的数量 (单位:万吨)2) 约束条件:包括三部分 (1)供给(资源)约束:x 1 ≤ 70 x 2 ≤ 7 x 3 ≤ 17 x 4 ≤ 23 x 5 ≤ 3 x 6 ≤ 9.5 x 7 ≤ 1 x 8 ≤ 15.4 x 9 ≤ 2.7 x 10 ≤ 7.6 x 11 ≤ 13.5 x 12 ≤ 2.7 x 13 ≤ 1.2 x 14 ≤ 7.2 (2)品位约束(3)非负约束: x j ≥ 0 j = 1,2,3, … ,143) 目标函数:此题目要求“效益最佳”有一定的模糊性,由于配矿后的混合矿石将作为后面工序的原料而产生利润,故在初始阶段,可将目标函数选作配矿总量的极大化。