二次函数与四边形综合压轴题专题汇编(含答案)
中考数学—二次函数的综合压轴题专题复习附答案
一、二次函数真题与模拟题分类汇编〔难题易错题〕1 .童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销该店决定降价销售, 经市场调查发现:每降价1元,每星期可多卖10件,该款童装每件本钱30元,设降价后该款童装每件售价工元,每星期的销售量为〕'件.⑴降价后,当某一星期的销售量是未降价前一星期销售量的3倍时,求这一星期中每件童装降价多少元?⑵当每件售价定为多少元时,一星期的销售利润最大,最大利润是多少?【答案】〔1〕这一星期中每件童装降价20元;〔2〕每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【解析】【分析】〔1〕根据售量与售价x 〔元/件〕之间的关系列方程即可得到结论.〔2〕设每星期利润为W元,构建二次函数利用二次函数性质解决问题.【详解】解:〔1〕根据题意得,〔60-x〕 xl0+100=3xl00,解得:x=40,60 - 40 = 20 元,答:这一星期中每件童装降价20元:〔2〕设利润为w,根据题意得,w= 〔x- 30〕 [ 〔60-X〕xl0+100]= - 10x2+1000x - 21000=-10 〔x- 50〕 2+4000,答:每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【点睛】此题考查二次函数的应用,一元二次不等式,解题的关键是构建二次函数解决最值问题, 利用图象法解一元二次不等式,属于中考常考题型.2 .阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线〞.例如,点M 〔1, 3〕的特征线有:x=l, y=3,备用图问题与探究:如图,在平面直角坐标系中有正方形0A8C,点8在第一象限,A、C分别在x轴和y轴上,抛物线> =;*一〃?〕2+〃经过8、C两点,顶点.在正方形内部.〔1〕直接写出点.〔m, n〕所有的特征线:〔2〕假设点.有一条特征线是y=x+l,求此抛物线的解析式:〔3〕点P是48边上除点八外的任意一点,连接0P,将AOAP沿着0P折登,点4落在点々的位置,当点4在平行于坐标轴的.点的特征线上时,满足〔2〕中条件的抛物线向下平移多少距离,其顶点落在0P上?【答案】〔1〕 x=m, y=n, y=x+n - m, y= - x+m+n;〔2〕 y = - 〔x-2〕2 + 3 ;〔3〕抛物4线向下平移上二正或W距离,其顶点落在OP上. 3 12【解析】试题分析:〔1〕根据特征线直接求出点.的特征线:〔2〕由点.的一条特征线和正方形的性质求出点.的坐标,从而求出抛物线解析式;〔2〕分平行于x轴和y轴两种情况,由折卷的性质计算即可.试题解析:解:〔1〕・二点D 〔m,.〕,,••点.〔m, n〕的特征线是x=m, y=n, y=x+n - m,y= - x+m+n;〔2〕点.有一条特征线是y=x+l, .•.〃=m+l. •.•抛物线解析式为了 = !〔工一"?了+〃,.•.y = =〔x—〃?〕2+〃? + 1, ,四边形OA8C是正方形,且.点为正方4 4形的对称轴,.〔m, /?〕,「. 8 〔2m, 2m〕 ,y = —〔2m — m〕2 + n = 2m 9将c=m+l 带4入得到m=2, n=3;・・・.〔2, 3〕,・•・抛物线解析式为y = !〔x-2〕2+3.〔3〕①如图,当点A在平行于y轴的.点的特征线时:根据题意可得,D (2, 3),・ .0A=0A=4, 0M=2,N AOM=60°,「・N AOP=N AOP=30°,:MN笺空,抛物线需要向下平移的距离=3—李亨•②如图,当点4在平行于X轴的.点的特征线时,设A〔P,3 〕,那么OA=OA=4, OE=3,EA 二“2.32 =a,,AF=4-a,设P(4, c) (c>0),,在RS AFP 中,(4-V7)2+ (3-c) 2=c2, .•“」6T立,「.p (4, .16 —4" ) ,直线OP解析式为3 3y=匕Lx, :.N (2, l") •.抛物线需要向下平移的距离=3-3 38-2>/7 _1 + 2>/7-3-- -3综上所述:抛物线向下平移) - 2琳或1 + 2"距离,其顶点落在0P上. 3 3点睛:此题是二次函数综合题,主要考查了折叠的性质,正方形的性质,解答此题的关键是用正方形的性质求出点.的坐标.3.在直角坐标系中,我们不妨将横坐标,纵坐标均为整数的点称之为〃中国结〃.〔1〕求函数y=/x+2的图像上所有“中国结〞的坐标:〔2〕求函数y=±〔HO, k为常数〕的图像上有且只有两个“中国结〃,试求出常数k的值X与相应“中国结〞的坐标;〔3〕假设二次函数丫=〔公一3攵+2〕/+〔2攵2-4%+ 1〕%+公一% 〔k为常数〕的图像与x轴相交得到两个不同的"中国结",试问该函数的图像与x轴所围成的平而图形中〔含边界〕,一共包含有多少个“中国结〞?【答案】〔1〕〔0,2〕 : 〔2〕当k=l时,对应"中国结〞为〔1,1〕〔一1, -D ;当k=-l 时,对应"中国结"为〔1, 一1〕, 〔一1,1〕 ; 〔3〕 6个.【解析】试题分析:〔1〕由于X是整数,XHO时,JJx是一个无理数,所以XHO时,JJx+2不是整数,所以x=o, y=2,据此求出函数y=J^x+2的图象上所有“中国结〃的坐标即可.k〔2〕首先判断出当k=l时,函数/一〔k/0, k为常数〕的图象上有且只有两个〃中国xk结〃:〔1, 1〕、〔-1、-1〕:然后判断出当代1时,函数度一〔kHO, k为常数〕的图X象上最少有4个〃中国结〃,据此求出常数k的值与相应〃中国结〃的坐标即可.(3)首先令(k2-3k+2) x2+ (2k2-4k+l) x+k2 - k=0,那么[(k- 1) x+k][ (k-2) x+ (k-1)]=0,求出X】、X2的值是多少;然后根据X】、X2的值是整数,求出k的值是多少:最后根据横坐标,纵坐标均为整数的点称之为"中国结",判断出该函数的图象与x轴所用成的平面图形中(含边界),一共包含有多少个“中国结〞即可.试题解析:(l);x是整数,XHO时,、^x是一个无理数,xHO时,JJx+2不是整数,x=0> y=2,即函数y=Cx+2的图象上"中国结〞的坐标是(0, 2).(2)①当k=l时,函数度勺(k#0, k为常数)的图象上有且只有两个“中国结〃:x (1, 1)、(-1、-1):②当匕-1时,函数丫=&(HO, k为常数)的图象上有且只有两个“中国结〃:X(1, -1)、( -1, 1).③当修±1时,函数尸& (HO, k为常数)的图象上最少有4个〃中国结JX(I, k)、( - 1, - k)、(k, 1)、( - k, - 1),这与函数度土(kxo, k 为常数)的x图象上有且只有两个“中国结"矛盾,k综上可得,k=l时,函数y=— (k/0, k为常数)的图象上有且只有两个“中国结J (1, x 1)、( - 1、- 1);k=-l时,函数y=七(k/0, k为常数)的图象上有且只有两个“中国结J (1, -1)、x (-1、1).(3)令(k2-3k+2) x2+ (2k2-4k+l) x+k2 - k=0,那么[(k- 1) x+k][ (k-2) x+ (k- 1) ]=0, kx.= ---------.•・{ ik-\f x 2x) +1• k =——=-=——. x1 +1 x2 +1 整理,可得XlX2+2X2+l=0t/. xz (xi+2) = T,•••X】、X2都是整数,X)= 1 x, =—1{- 或{-玉+2 = _「^+2 = 1匹=T ②当{X、= —1k ,,/ ------- = -1 ,l — kk=k-l,无解;练上,可得.3K=—, XF-3, x2=l t2y= (k2- 3k+2) x2+ (2k2-4k+l) x+k2 - k3 3 3 3 3 3=[(-)2-3X-+21X2+[2X ( - ) 2-4x-+l]x+ (- ) 2--2 2 2 2 2 2①当x=-2时,1 13 1 1 3y= - - x2- — x+ — = " - x ( - 2) 2 - -x ( - 2) + —4 2 4 4 2 4_3~4②当X=-1时,=13③当x=0时,y=-,另外,该函数的图象与X轴所闱成的平面图形中x轴上的“中国结〞有3个: 〔-2, 0〕、〔 -1、0〕、〔0, 0〕.综上,可得假设二次函数y= 〔k2-3k+2〕 x2+ 〔2k2-4k+l〕 x+l?-k 〔k为常数〕的图象与x轴相交得到两个不同的"中国结〞,该函数的图象与x轴所围成的平面图形中〔含边界〕,一共包含有6个“中国结〞:〔-3, 0〕、〔-2, 0〕、〔 - 1, 0〕〔-1, 1〕、〔0, 0〕、〔1, 0〕.考点:反比例函数综合题4.如图,抛物线〕,= 公+ C的顶点为A〔4,3〕,与轴相交于点3〔0,—5〕,对称轴为直线/,点"是线段A8的中点.〔1〕求抛物线的表达式:〔2〕写出点M的坐标并求直线A3的表达式;〔3〕设动点尸,.分别在抛物线和对称轴I上,当以A,P,Q,例为顶点的四边形是平行四边形时,求.,.两点的坐标.【答案】〔1〕y = --x2+4x-5t〔2〕 A/〔2,-1〕, y = 2x-5:〔3〕点夕、.的坐 2标分别为〔6,1〕或〔2,1〕、〔4,—3〕或〔4』〕.【解析】【分析】〔1〕函数表达式为:〕,= a〔x = 4『+3,将点3坐标代入上式,即可求解:〔2〕 A〔4,3〕、B〔0-5〕,那么点加〔2,-1〕,设直线A8的表达式为:y = ^-5,将点4坐标代入上式,即可求解;〔3〕分当AM是平行四边形的一条边、AM是平行四边形的对角线两种情况,分别求解即可. 【详解】解:〔1〕函数表达式为:y = a〔x = 4〕2+3,将点4坐标代入上式并解得:.=2故抛物线的表达式为:y = -l x2+4x-5:乙(2) 4(4,3)、B(0,-5),那么点M(2,-1),设直线A8的表达式为:y = /oc-5,将点A坐标代入上式得:3 =必一5,解得:k = 2,故直线A8的表达式为:y = 2x-5:( i \(3)设点.(4,s)、点P m,——nr +4/H —5 ,①当AM是平行四边形的一条边时,点A向左平移2个单位、向下平移4个单位得到M,同样点P;"?,-:〃,+4机一5)向左平移2个单位、向下平移4个单位得到0(4,s),即:团一2 = 4, —nr +4m-5-4 = s , 2解得:m = 6 ♦ s = —3,故点P、.的坐标分别为(6,1)、(4,-3):②当AM是平行四边形的对角线时,由中点定理得:4+2 = 〃z+4, 3-1 = --//r +4w-5 + 5,2解得:〞1 = 2, 5 = 1 >故点尸、.的坐标分别为(2/)、(4,1);故点尸、.的坐标分别为(6,1), (4,一3)或(2,1)、(分-3), (2,1)或(4,1).【点睛】此题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图象的面积计算等,其中(3),要主要分类求解,防止遗漏.5.如图,某足球运发动站在点0处练习射门,将足球从离地面0.5m的A处正对球门踢出 (点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y= at2 + 5t+c,足球飞行0.8s时,离地面的高度为3.5m.⑴足球飞行的时间是多少时,足球离地而最高?最大高度是多少?⑵假设足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x = 10t,己知球门的高度为2.44m,如果该运发动正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?8【答案】(1)足球飞行的时间是一s时,足球离地而最高,最大高度是4.5m: (2)能.5【解析】(2)把 x=28 代入 x=10t 得 t=2.8,251・•・当 t=2.8 时,y=-a2・8?+5乂2・8令2・25 V2/4, •L . 乙^ 他能将球直接射入球门. 考点:二次函数的应用.6.如图,在平面直角坐标系中,抛物线y=ax?+2x+c 与x 轴交于A ( - 1, 0) B (3, 0)两 点,与y 轴交于点C,点D 是该抛物线的顶点.(1)求抛物线的解析式和直线AC 的解析式;(2)请在y 轴上找一点M,使△BDM 的周长最小,求出点M 的坐标;(3)试探究:在抛物线上是否存在点P,使以点A, P, C 为顶点,AC 为直角边的三角形 是直角三角形?假设存在,请求出符合条件的点P 的坐标:假设不存在,请说明理由.试题分析:(1)由题意得:函数y=atz+5t+c 的图象经过(0, 0.5) (0.8, 35),于是得0. 5二.到 n,求得抛物线的解析式为:3. 5=0.8 4+5X0. 8+c 、 y=-衰2+514,当t=|时,y 破大=4.5;1(2)把x=28代入x=10t 得t=2.8,当t=2.8时,y=- 竿2.82+5、2.8哈2・25V2.44,于是得 16 2到他能将球直接射入球门.解:(1)由题意得:函数y=a&5t+c 的图象经过(0, 0.5) (0.8, 3.5),"0. 5二c• «, 、3. 5=0. 8 &2+5 X 0. g+c '3=解得:_ 251612・•・抛物线的解析式为:y=・•,y【答案】(1)抛物线解析式为y=-x2+2x+3;直线AC 的解析式为丫=3x+3; (2)点M 的 坐标为(0, 3):7 20 1013〔3〕符合条件的点P 的坐标为〔或,2〕或〔“,-"〕, 3 93 9【解析】分析:〔1〕设交点式y=a 〔x+1〕 〔x-3〕,展开得到-2a=2,然后求出a 即可得到抛物线解 析式:再确定C 〔0, 3 〕,然后利用待定系数法求直线AC 的解析式:〔2〕利用二次函数的性质确定D 的坐标为〔1, 4〕,作B 点关于y 轴的对称点W,连接DB 咬y 轴于M,如图1,那么B ,〔-3, 0〕,利用两点之间线段最短可判断此时MB+MD 的值最小,那么此时△ BDM 的周长最小,然后求出直线DB ,的解析式即可得到点M 的坐标:〔3〕过点C 作AC 的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC 的解析式为y=-lx +b,把C 点坐标代入求出b 得到直线PC 的解析式为再解方程组, 1得此时P 点坐标;当过点A 作AC 的垂线交抛物y=--x + 3 I 3线于另一点P 时,利用同样的方法可求出此时P 点坐标. 详解:〔1〕设抛物线解析式为y=a 〔x+1〕〔x-3〕, KP y=ax 2 - 2ax - 3a,,2a=2,解得 a=- 1,・•・抛物线解析式为y= - X 2+2X +3: 当 x=0 时,y= - x 2+2x+3=3,那么 C (0, 3), 设直线AC 的解析式为y=px+q.q = 0把 A ( - 1, 0) , C (0, 3)代入得〈q = 3直线AC 的解析式为y=3x+3;〔2〕 •/ y= - X 2+2X +3= - 〔x- 1〕 2+4, •1•顶点D 的坐标为〔1, 4〕,作B 点关于y 轴的对称点B",连接DB ,交y 轴于M,如图1,那么夕〔-3, 0〕,MB=MB',/. MB+MD=MB /+MD=DB /,此时 MB+MD 的值最小, 而BD 的值不变,・•,此时△ BDM 的周长最小,y=-x 2 +2x + 31 y=- -x+3, 3易得直线DB ,的解析式为y=x+3, 当 x=0 时,y=x+3=3> ・ ・•点M 的坐标为〔0, 3〕;〔3〕存在.过点C 作AC 的垂线交抛物线于另一点P,如图2,把C 〔0, 3 〕代入得b=3,・ ,・直线PC 的解析式为y=- -x+3,过点A 作AC 的垂线交抛物线于另一点P,直线PC 的解析式可设为y=-点+b, 把A ( -1, 0)代入得1+b=0,解得b=- L 3 3・ •・直线PC 的解析式为y=- :x- 1点睛:此题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数 的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解 方程组求把两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短 路径问题:会运用分类讨论的思想解决数学问题.直线PC 的解析式可设为y=- —x+b,3解方程组?y=-x 2+2x + 31 ,解得?y=——x + 33x = 0)=3或,7x =一3 7 20 ,那么此时P 点坐标为〔一,—〕:2.39y =解方程组?y=-x 2+2x + 31 1 y=——x ——33x = -ly = 010x =—3 13那么此时P 点坐标为〔—, 3综上所述,符合条件的点p 的坐标为〔N, 310 T-?>•直线AC 的解析式为y=3x+3.7.如图,直线A8与抛物线C :),=⑪2+21+.相交于人(—1,0)和点8(2,3)两点.⑴求抛物线.的函数表达式;⑵假设点M 是位于直线A3上方抛物线上的一动点,以M4、/W8为相邻两边作平行四边形 M4N8,当平行四边形M4N8的而积最大时,求此时四边形M4N8的而积S 及点M 的 坐标: ⑶在抛物线C 的对称轴上是否存在定点尸,使抛物线.上任意一点夕到点尸的距离等于到 直线y ="的距离,假设存在,求出定点厂的坐标:假设不存在,请说明理由.41 27 【答案】〔1〕 y =—厂 + 2x + 3 :〔2〕当 〃 =—,S ZMANB = 2S △ ABM =—,此时2 415 \ :⑶存在.当/A — 时,无论%取任何实数,均有= 理由见解析. \ 4 )【解析】【分析】 (1)利用待定系数法,将A, B 的坐标代入y=ax2+2x+c 即可求得二次函数的解析式; (2)过点M 作MH_Lx 轴于H,交直线AB 于K,求出直线AB 的解析式,设点M (a,- a?+2a+3),那么K (a, a+1),利用函数思想求出MK 的最大值,再求出△ AMB 面积的最大 值,可推出此时平行四边形MANB 的面积S 及点M 的坐标:17(3)如图2,分别过点B, C 作直线y=—的垂线,垂足为N. H,设抛物线对称轴上存在 4点F,使抛物线C 上任意一点P 到点F 的距离等于到直线y=—的距离,其中F (1, a), 4 连接BF, CF,那么可根据BF=BN, CF=CN 两组等量关系列出关于a 的方程组,解方程组即 可.【详解】(1)由题意把点(-1, 0)、(2, 3)代入 y=ax2+2x+c, .- 2 + c = 0得, ,4a + 4 + c = 3 解得 a=-l, c=3,,此抛物线c 函数表达式为:y=*2+2x+3:〔2〕如图1,过点M 作MHLx 轴于H,交直线AB 于K,MH4 〕>>将点〔・1, 0〕、〔2, 3〕代入y=kx+b中, 一k+b=0得,2y 解得,k=l, b=l,/.Y AB=X+1,设点M (a, -a2+2a+3),那么K (a, a+1), 贝lj MK=-a2+2a+3- (a+1)=-(a- - ) 2+—, 2 41 9根据二次函数的性质可知,当合二彳时,MK有最大长度丁, 2 4S A AMB以大=S A AMK+S A BMK=—MK*AH+ —MK> (x B-x H)2 2=—MK e (XB-XA)21 9=x — x32 4_27-—,8以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,27 27 1 15s 餐大=2S A AMB 4U=2X —=—,M (-, —).(3)存在点F,•/ y=-x2+2x+3=-(x-1) 2+4,「・对称轴为直线x=l.当y=0 时,xi=-l, X2=3,,抛物线与点x轴正半轴交于点C (3, 0),17如图2,分别过点B, C作直线y:一的垂线,垂足为N, H, 4抛物线对称轴上存在点F,使抛物线C上任意一点P到点F的距离等于到直线y=—的距4离,设 F (1, a ),连接BF, CF,IT1 17 5 17那么BF=BN二一-3二一,CF=CH=—, 4 4 4(5、(2-1)2+3—3)2 =由题意可列:(3 — 1)2+/=阴【点睛】此题考查了待定系数法求解析式,还考查了用函数思想求极值等,解题关键是能够判断出当平行四边形MANB的面积最大时,aABM的面积最大,且此时线段MK的长度也最大.8.如图,己知二次函数%=a' + "过(-2, 4) , ( - 4. 4)两点.〔1〕求二次函数力的解析式:〔2〕将为沿x轴翻折,再向右平移2个单位,得到抛物线及,直线y=m 〔m>0〕交及于M、N 两点,求线段MN的长度〔用含m的代数式表示〕:〔3〕在〔2〕的条件下,力、及交于A、B两点,如果直线y=m与力、刃的图象形成的封闭曲线交于C、D两点〔C在左侧〕,直线y=-m与力、刃的图象形成的封闭曲线交于E、F两点〔E在左侧〕,求证:四边形CEFD是平行四边形.1yi =_/2_3%【答案】〔1〕2【解析】〔2〕 5 +范〔3〕证实见解析.试题分析:〔1〕根据待定系数法即可解决问题.〔2〕先求出抛物线yz的顶点坐标,再求出其解析式,利用方程组以及根与系数关系即可求出MN.〔3〕用类似〔2〕的方法,分别求出CD、EF即可解决问题.试题解析:⑴・•・二次函数月=°/ + "过〔-2, 4〕 , 〔-4, 4〕两点,4a - 2b = 416a -4b = 4解得:1a=~2=_1 2_ -「.二次函数力的解析式为一寸3X2-3% -# + 3)2 +9,二顶点坐标〔-3, >〕 , ,「将力沿x釉翻折,再向右平移2个单位,得到抛物线〞,9.・・抛物线y2的顶点坐标〔-1, -、〕,•,・抛物线均为1 9y=#+i)2_] 消去y整理得到/ + 2x_8_2m = 0,设打,也是它的两个根,那么"21A〔q+ x2〕-似/2=、阳而千J5:〔3〕由y = my =一/2-3欠,消去y整理得到x +6%+2m = 0,设两个根为打,0那么y =-m1 9______ y =—〔x --CD」"I一亚15〔修+ OF - 4町2«36 -所,由2 2,消去丫得到x2 + 2x-8 + 2m = 0,设两个根为勺,%2,那么EF」X1 - "zlK,dl + 工2〕2 - 4XI%2=«36 - 8m, ... EF=CD, EFII CD,四边形CEFD 是平行四考点:二次函数综合题.9 .抛物避= a/ + M + c,假设a, b, c满足b=a+c,那么称抛物线,=.壮+必+ c为“恒定〞抛物线. 〔1〕求证:"恒定"抛物线'=°/ +丘+,必过*轴上的一个定点人;〔2〕"恒定〃抛物线y = -于的顶点为P,与X轴另一个交点为B,是否存在以Q为顶点,与X轴另一个交点为C的“恒定〞抛物线,使得以PA, CQ为边的四边形是平行四边形?假设存在,求出抛物线解析式:假设不存在,请说明理由.【答案】〔1〕证实见试题解析:〔2〕 y = \/^2 + 4v-^x + 3-V3 那么=- v取2 + y3.【解析】试题分析:〔1〕由"恒定〞抛物线的定义,即可得出抛物线恒过定点〔-1, 0〕:〔2〕求出抛物线F = W"一小的顶点坐标和B的坐标,由题意得出PAII CQ, PA=CQ:存在两种情况:①作QMXAC于M,那么QM=0P=\3,证实RtA QM〔^ RtA POA. MC=OA=1,得出点Q的坐标,设抛物线的解析式为,=矶" + 2〕2-\/3,把点A坐标代入求出a的值即可:②顶点Q在y轴上,此时点C与点B重合:证实△0QS4 0PA,得出OQ=OP=\B,得出点Q坐标,设抛物线的解析式为' =以2+«3,把点C坐标代入求出a的值即可.试题解析:〔1〕由“恒定〃抛物线,二仙2 +%+ 4得:b=a+c,即a-b+c=0,二•抛物线y = ax2 + bx + c t当x=-l时,y=0, 恒定〞抛物线,=必+八+〔;必过乂轴上的一个定点 A 〔 - 1, 0〕:〔2〕存在:理由如下::“恒定"抛物线卜"*丫一道,当尸0时,\8/-、6=0,解得:x=±l, V A ( - 1, 0) , /. B (1, 0):.・x=O 时,y=一\'3,顶点P 的坐标为(0, 一\3),以PA, CQ为边的平行四边形,PA、CQ是对边,「.PAII CQ, PA=CQ, .,.存在两种情况:①如图1所示:作QM_LAC 于M,那么QM=0P=y3, Z QMC=90°=Z POA,在RtA QMC 和RtA POA 中,: CQ=PA, QM=OP,J RtA QMC合RtA POA (HL) , /. MC=OA=1, OM=2, 丁点 A 和点C 是抛物线上的对称点,AM=MC=1, .,.点Q的坐标为(-2, 一\3),设以Q为顶点,与x轴另一个交点为C的“恒定〞抛物线的解析式为y = a(% + 2)2-«3,把点A(-l, 0)代入得:aS% .•.抛物线的解析式为:丫 = \乃(% + 2)273,即,=\访2 + 4、%+3日②如图2所示:顶点Q在y轴上,此时点C与点B重合,.•.点C坐标为(1, 0),CQII PA, /. Z OQC=Z OPA,在^ OQC 和4 OPA 中,: Z OQC=Z OPA, Z COQ=Z AOP,CQ=PA,OQC2△ OPA (AAS) ,「・0Q=0P=、3,「•点Q 坐标为(0, \§),设以Q为顶点,与X轴另一个交点为C的“恒定〞抛物线的解析式为y = a%2 + g3,把点C(l, 0)代入得:a=-W, .•.抛物线的解析式为:?=一臼2 + 口;综上所述:存在以Q为顶点,与x轴另一个交点为C的“恒定〞抛物线,使得以PA, CQ为边的四边形是平行四边形,抛物线的解析式为:«3/ + 4\,做+3\3,或y =-%即 + 0考点:1.二次函数综合题:2.压轴题:3.新定义:4.存在型:5.分类讨论.3 910 .二次函数y=—-x2+bx+c的图象经过A (0, 3) , B ( - 4,--)两点.(1)求b, c的值.3(2)二次函数y= -「xZ+bx+c的图象与x轴是否有公共点,求公共点的坐标:假设没有,请16说明情况.【答案】⑴j 8 : 〔2〕公共点的坐标是〔-2, 0〕或〔8, 0〕. c = 3【解析】【分析】〔1〕把点A、B的坐标分别代入函数解析式求得b、c的值;〔2〕利用根的判别式进行判断该函数图象是否与x轴有交点,由题意得到方程-3 o—X2+-X+3=0,通过解该方程求得x的值即为抛物线与x轴交点横坐标.16 89 3【详解】(1)把 A (0, 3) , B ( - 4,--)分别代入y=- - x2+bx+c,2 16c = 3得4 39------ x l6-4〃 + c =——16 26 = ?解得彳8 ;[c = 33 9〔2〕由〔1〕可得,该抛物线解析式为:y=- -x2+-x+3, 1 o 83 225-4x ( - -- ) x3= >0»16 6483所以二次函数y=- - x2+bx+c的图象与x轴有公共点, 163 9.「- -x2+-x+3=0 的解为:x产・2, X2=8,16 8公共点的坐标是〔-2, 0〕或〔8, 0〕.【点睛】此题考查了抛物线与x轴的交点,二次函数图象上点的坐标特征.注意抛物线解析式与一元二次方程间的转化关系.。
二次函数压轴题专题(含答案)
二次函数压轴题专题1.如图,已知△ABC的三个顶点坐标分别为A(﹣4,0)、B(1,0)、C(﹣2,6).(1)求经过A、B、C三点的抛物线解析式;(2)设直线BC交y轴于点E,连接AE,求证:AE=CE;(3)设抛物线与y轴交于点D,连接AD交BC于点F,试问以A、B、F为顶点的三角形与△ABC相似吗?2.如图,在平面直角坐标系xOy中,四边形ABCD是菱形,顶点A、C、D均在坐标轴上,且AB=5,sinB=.(1)求过A、C、D三点的抛物线的解析式;(2)记直线AB的解析式为y1=mx+n,(1)中抛物线的解析式为y2=ax2+bx+c,求当y1<y2时,自变量x的取值范围;(3)设直线AB与(1)中抛物线的另一个交点为E,P点为抛物线上A、E两点之间的一个动点,当P点在何处时,△PAE的面积最大?并求出面积的最大值.3.如图,经过点A(0,﹣4)的抛物线y=x2+bx+c与x轴相交于B(﹣2,0),C两点,O为坐标原点.(1)求抛物线的解析式;(2)将抛物线y=x2+bx+c向上平移个单位长度,再向左平移m(m>0)个单位长度得到新抛物线,若新抛物线的顶点P在△ABC内,求m的取值范围;(3)设点M在y轴上,∠OMB+∠OAB=∠ACB,求AM的长.参考答案,,由题意得:,=2,=2,的函数解析式可得:,,,)=,=,,=sinB=sinD=﹣﹣x x+4﹣;﹣x x+4,;=x+bx+b=x x+4,即直线x+;,))﹣(××(+.(,)时,.x2y=,即:x2+x+﹣;m=;<。
中考数学总复习《二次函数与特殊四边形综合压轴题》专题训练(附答案)
中考数学总复习《二次函数与特殊四边形综合压轴题》专题训练(附答案)学校:___________班级:___________姓名:___________考号:___________1.如图,抛物线2y x bx c =-++的顶点D 坐标为()1,4,且与x 轴相交于A ,B 两点,点A 在点B 的左侧,与y 轴相交于点C ,点E 在x 轴上方且在对称轴左侧的抛物线上运动,点F 在抛物线上并且和点E 关于抛物线的对称轴对称,作矩形EFGH ,其中点G ,H 都在x 轴上.(1)求抛物线解析式; (2)设点F 横坐标为m①用含有m 的代数式表示点E 的横坐标为______(直接填空); ②当矩形EFGH 为正方形时,求点G 的坐标; ③连接AD ,当EG 与AD 垂直时,求点G 的坐标;(3)过顶点D 作DM x ⊥轴于点M ,过点F 作FP AD ⊥于点P ,直接写出DFP △与DAM △相似时,点F 的坐标.2.如图,抛物线()20y ax bx c a =++≠交x 轴于点A 、B (点A 在点B 左侧),交y 轴于点C ,点P 是抛物线上的一动点,已知点()0,4C ,AOC COB △∽△且4AO BO =.(1)求抛物线和直线AC 的表达式.(2)若点P 在直线AC 的上方,过点P 作PF AB ⊥,与AC 交于点E ,垂足为点F ,当PE EF =时,求点P 的坐标.(3)若点M 为x 轴上一动点,当B 、C 、P 、M 四个点组成的四边形是平行四边形时,请直接写出点P 的坐标. 3.在平面直角坐标系xOy 中,已知点A 在y 轴正半轴上.(1)如果四个点()()()()00032411-,,,,,,,中恰有三个点在二次函数2y ax =(a 为常数,且0a ≠)的图像上.①=a :①如图1,已知菱形ABCD 的顶点B 、C 、D 在该二次函数的图像上,且AD y ⊥轴,求点D 的坐标; ①如图2,已知正方形ABCD 的顶点B 、D 在该二次函数的图象上,点B 、D 在y 轴的同侧,且点B 在点D 的左侧,设点B 、D 的横坐标分别为m 、n ,试探究n m -是否为定值.如果是,求出这个值;如果不是,请说明理由.(2)已知正方形ABCD 的顶点B 、D 在二次函数2y ax =(a 为常数,且0a >)的图像上,点B 在点D 的左侧,设点B 、D 的横坐标分别为m 、n ,直接写出m 、n 满足的等量关系式. 4.如图,抛物线2y x bx c =-++的顶点A 在直线3y x上,直线3yx与抛物线的另一个交点为点B ,与y 轴的交点为C .(1)若点B 与点C 重合时,求此时抛物线的解析式;(2)移动点A ,另一个交点B ,也随之移动,试求出AB 的长;(3)在抛物线上是否存在一点P ,使得由A ,B ,O ,P 四个点构成的四边形为平行四边形;若存在,求出此时抛物线的解析式;若不存在,说明理由.5.如图,已知抛物线2y x bx c =-++与一直线相交于()1,0A -,()2,3C 两点,与y 轴交于点N ,其顶点为D .(1)求抛物线及直线AC 的解析式.(2)设点()3,M m ,求使MN MD +的值最小时m 的值.(3)若抛物线的对称轴与直线AC 相交于点B ,E 为直线AC 上的任意一点,过E 作EF BD ∥交抛物线于点F ,以B ,D ,E ,F 为顶点的四边形能否为平行四边形?若能,求出点E ,F 的坐标;若不能,请说明理由. 6.如图1,抛物线234y x x =-++与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点C ,连接,AC BC .(1)求△ABC 的面积;(2)如图2,点P 为直线上方抛物线上的动点,过点P 作PD AC ∥交直线BC 于点D ,过点P 作直线PE x 轴交直线BC 于点E ,求PD PE +的最大值及此时P 的坐标;(3)在(2)的条件下,将原抛物线234y x x =-++向右平移2个单位,再向上平移8个单位,点M 是新抛物线与原抛物线的交点,N 是平面内任意一点,若以P 、B 、M 、N 为顶点的四边形是平行四边形,请直接写出点N 的坐标.7.如图,抛物线212y x bx c =-++与x 轴交于点A 和点B ,与y 轴交于点C .点B 坐标为(6,0),点C 坐标为(0,6),点D 是抛物线的顶点.(1)求抛物线的解析式及点D 的坐标;(2)点M 是抛物线上的动点,过点M 作MN x ∥轴与抛物线交于点N ,点P 在x 轴上,在坐标平面内是否存在点Q ,使得以线段MN 为对角线的四边形MPNQ 为正方形,若存在,请求出点Q 的坐标,若不存在,请说明理由.8.已知抛物线1C :22y ax ax c =-+经过点()2,3,与x 轴交于()1,0A -、B 两点.(1)求抛物线1C 的解析式;(2)如图1,已知()0,1E -,以A E C D 、、、为顶点作平行四边形,若C D 、两点都在抛物线上,求C D 、两点的坐标;(3)如图2,将抛物线1C 沿x 轴平移,使其顶点在y 轴上,得到抛物线2C ,过定点()0,2H 的直线交抛物线2C 于M N 、两点,过M N 、的直线MR NR 、与抛物线2C 都只有唯一公共点,求证:R 点在定直线上运动. 9.如图1,抛物线223y x x =--+与x 轴相交于点A 、B (点B 在点A 左侧),与y 轴相交于点C .(1)求点A 到直线BC 的距离;(2)点P 是直线BC 上方抛物线上一动点,过点P 作直线BC 的垂线,垂足为点E ,过点P 作PF y ∥轴交BC 于点F ,求PEF 周长的最大值及此时点P 的坐标;(3)如图2,将该抛物线向左平移2个单位长度得到新的抛物线y ',平移后的抛物线与原抛物线相交于点D ,点M 为直线BC 上的一点,点N 是平面坐标系内一点,是否存在点M ,N ,使以点B ,D ,M ,N 为顶点的四边形为菱形,若存在,请直接写出点M 的坐标;若不存在,请说明理由. 10.如图,已知抛物线()213022y x x n n =-->与x 轴交于A ,B 两点(A 点在B 点的左边),与y 轴交于点C .(1)如图1,若5AB =,则n 的值为______(直接写出结果);(2)如图1,在(1)的条件下,点P 在抛物线上,点Q 在抛物线的对称轴上,若以BC 为边,以点B 、C 、P 、Q 为顶点的四边形是平行四边形,求P 点的坐标;(3)如图2,过点A 作直线BC 的平行线交抛物线于另一点D ,交y 轴于点E ,若:1:4AE ED =,求n .11.在平面直角坐标系中,二次函数22y ax bx =++的图象与x 轴交于()()3010A B -,,,两点,与y 轴交于点C .(1)求这个二次函数的解析式;(2)点P 是直线AC 上方的抛物线上一动点,设三角形APC 的面积为S ,求S 的最大值及S 取得最大值时点P 的坐标;(3)点M 为抛物线上一动点,在x 轴上是否存在点Q ,使以A 、C 、M 、Q 为顶点的四边形是平行四边形?若存在,直接写出点Q 的坐标;若不存在,说明理由.12.如图,直线2y kx =+与x 轴交于点()30A ,,与y 轴交于点B ,抛物线2423y x bx =-++经过点A B ,.(1)求k 的值和抛物线的解析式.(2) (,0)M m 为x 轴上一动点,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P N ,.若以O B N P ,,,为顶点的四边形是平行四边形,求m 的值.13.在直角坐标系中,抛物线()2102y x bx c a =++≠与x 轴交于A 、B 两点.其中点()2,0A -,点()4,0B .(1)求抛物线的解析式.(2)如图1,在直线1:2l y x n =-+经过A 点,与y 轴交于D .在直线l 下方的抛物线上有一个动点P ,连接PA ,PD ,求PAD 面积的最大值及其此时P 的坐标.(3)将抛物线y 向右平移1个单位长度后得到新抛物线1y ,点E 是新抛物线1y 的对称轴上的一个动点,点F 是原抛物线上的一个动点,取PAD 面积最大值时的P 点.若以点P 、D 、E 、F 为顶点的四边形是平行四边形,直接写出点F 的坐标,并写出求解其中一个F 点的过程. 14.如图,抛物线2y ax bx c =++与x 轴交于A ,B 两点,点B 的坐标为()20,,抛物线与y 轴交于点()022C -,,对称轴为直线322x =-,连接AC ,过点B 作BE AC ∥交抛物线于点E .(1)求抛物线的解析式;(2)点P 是线段AC 下方抛物线上的一个动点,过点P 作PF y ∥轴交直线BE 于点F ,过点F 作FD AC ⊥交直线AC 于点D ,连接PD ,求FDP 面积的最大值及此时点P 的坐标;(3)在第(2)小问的条件下,将原抛物线沿着射线CB 方向平移,平移后的抛物线过点B ,点M 在平移后抛物线的对称轴上,点T 是平面内任意一点,是否存在以B 、P 、M 、T 为顶点的四边形是以BP 为边的菱形,若存在,直接写出点T 的坐标,若不存在,请说明理由.15.如图,抛物线()21:260l y ax x a =++≠与y 轴交于点()0,6C ,与x 轴交于点A 和点B ,抛物线的对称轴2x =与抛物线交于点D ,与直线BC 交于点E .抛物线2l 与抛物线1l 关于原点O 中心对称.(1)求抛物线1l 顶点D 的坐标及抛物线2l 的解析式;(2)若点P 是抛物线2l 上位于y 轴左侧的一个动点,点Q 是坐标平面内一点,是否存在点Q ,使得以点P 、Q 、D 、E 为顶点的四边形是面积为36的平行四边形?若存在,请求出点Q 的坐标;若不存在,请说明理由.参考答案:1.(1)223y x x =-++ (2)2m -①;G ②点坐标为()5,0;G ③点坐标为117,02⎛⎫+ ⎪ ⎪⎝⎭;(3)F 点坐标为720,39⎛⎫ ⎪⎝⎭2.(1)213442y x x =--+ 142y x =+;(2)(2,6)P -;(3)1()0,4P 2(6,4)P - 3(413,4)P -- 4(413,4)P ---;3.(1)①1;①234,33D ⎛⎫⎪ ⎪⎝⎭;①1(2)()1a n m -=或0m n +=.4.(1)2(1)4y x =--+; (2)2;(3)存在,当四边形为平行四边形时,抛物线为:231391322y x ⎛⎫++=--+ ⎪ ⎪⎝⎭或:231391322y x ⎛⎫--=--+ ⎪ ⎪⎝⎭ 或:211351322y x ⎛⎫+-=-++ ⎪ ⎪⎝⎭ 或:211351322y x ⎛⎫-+=-++ ⎪ ⎪⎝⎭.5.(1)抛物线的解析式为223y x x =-++,直线AC 的解析式为1y x =+ (2)185(3)以B ,D ,E ,F 为顶点的四边形能为平行四边形,()01E ,,()03F ,或11731722E ⎛⎫++ ⎪ ⎪⎝⎭,,11717122F ⎛⎫+- ⎪ ⎪⎝⎭,或11731722E ⎛⎫-- ⎪ ⎪⎝⎭, 11717122F ⎛⎫--- ⎪ ⎪⎝⎭, 6.(1)10(2)最大值为41745+;此时()2,6P (3)113,24⎛⎫ ⎪⎝⎭或345,24⎛⎫- ⎪⎝⎭或53,24⎛⎫- ⎪⎝⎭7.(1)21262y x x =-++ (2,8)D(2)存在,(2,2217)-+或(2,2217)--8.(1)223y x x =-++(2)(1,4),(2,3)C D 或(1,4),(2,5)C D --或(2,5)C -- ()1,4D9.(1)22(2)当点P 坐标为31524⎛⎫- ⎪⎝⎭,时,PEF 的周长有最大值,最大值为92944+(3)7544⎛⎫- ⎪⎝⎭,或()355-+,或()355---,或()1,4M10.(1)2(2)11(2 395),(82-,39)8)(3)278n =11.(1)224233y x x =--+(2)94 3522P ⎛⎫- ⎪⎝⎭, (3)存在点Q ,使得以A C M Q 、、、为顶点的四边形是平行四边形,Q 点的坐标为()10-,或()50-,或()270+,或()270-,12.(1)23k =-,抛物线的解析式为2410233y x x =-++(2)m 的值为332±或3152±13.(1)2142y x x =-- (2)PAD 面积最大值为258,此时135,28P ⎛⎫- ⎪⎝⎭;(3)335,28F ⎛⎫- ⎪⎝⎭或527,28F ⎛⎫- ⎪⎝⎭或311,28F ⎛⎫-- ⎪⎝⎭14.(1)2232242y x x =+- (2)PDF S △最大值为92()2232P --,(3)7263222⎛⎫--- ⎪⎝⎭,或7263222⎛⎫--+ ⎪⎝⎭,或52622⎛⎫ ⎪⎝⎭,或52622⎛⎫- ⎪⎝⎭,.15.(1)顶点D 的坐标为()2,8 21262y x x =+- (2)存在,Q 的坐标为177,2⎛⎫- ⎪⎝⎭或17,2⎛⎫- ⎪⎝⎭或1511,2⎛⎫ ⎪⎝⎭。
二次函数中考精品压轴题(四边形的存在性问题)解析精选
二次函数中考精品压轴题(四边形与存在性问题)解析精选【例1】综合与实践:如图,在平面直角坐标系中,抛物线y=﹣x 2+2x+3与x 轴交于A .B 两点,与y 轴交于点C ,点D 是该抛物线的顶点.(1)求直线AC 的解析式及B .D 两点的坐标;(2)点P 是x 轴上一个动点,过P 作直线l ∥AC 交抛物线于点Q ,试探究:随着P 点的运动,在抛物线上是否存在点Q ,使以点A .P 、Q 、C 为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q 的坐标;若不存在,请说明理由.(3)请在直线AC 上找一点M ,使△BDM 的周长最小,求出M 点的坐标.【答案】解:(1)当y=0时,﹣x 2+2x+3=0,解得x 1=﹣1,x 2=3。
∵点A 在点B 的左侧,∴A .B 的坐标分别为(﹣1,0),(3,0)。
当x=0时,y=3。
∴C 点的坐标为(0,3)。
设直线AC 的解析式为y=k 1x+b 1(k 1≠0),则111b =3k +b =0⎧⎨-⎩,解得11k =3b =3⎧⎨⎩。
∴直线AC 的解析式为y=3x+3。
∵y=﹣x 2+2x+3=﹣(x ﹣1)2+4,∴顶点D 的坐标为(1,4)。
(2)抛物线上有三个这样的点Q 。
如图,①当点Q 在Q 1位置时,Q 1的纵坐标为3,代入抛物线可得点Q 1的坐标为(2,3);②当点Q 在点Q 2位置时,点Q 2的纵坐标为﹣3,代入抛物线可得点Q 2坐标为(1+7,﹣3);③当点Q 在Q 3位置时,点Q 3的纵坐标为﹣3,代入抛物线解析式可得,点Q 3的坐标为(1﹣7,﹣3)。
综上可得满足题意的点Q 有三个,分别为:Q 1(2,3),Q 2(1+7,﹣3),Q 3(1﹣7,﹣3)。
(3)点B 作BB′⊥AC 于点F ,使B′F=BF ,则B′为点B 关于直线AC 的对称点.连接B′D 交直线AC 与点M ,则点M 为所求。
过点B′作B′E ⊥x 轴于点E 。
二次函数与几何图形综合(压轴题)-含答案
二次函数与几何图形综合题类型一 线段数量关系/最值问题1. (2019滨州)如图①,抛物线y =-18x 2+12x +4与y 轴交于点A ,与x 轴交于点B ,C ,将直线AB 绕点A 逆时针旋转90°,所得直线与x 轴交于点D .(1)求直线AD 的函数解析式;(2)如图②,若点P 是直线AD 上方抛物线上的一个动点. ①当点P 到直线AD 的距离最大时,求点P 的坐标和最大距离; ②当点P 到直线AD 的距离为524时,求sin ∠P AD 的值.第1题图2. 如图,直线y =x +2与抛物线y =ax 2+bx +6相交于A (12,52)和B (4,c ).(1)求抛物线的解析式;(2)点P 是直线AB 上的动点,设点P 的横坐标为n ,过点P 作PC ⊥x 轴,交抛物线于点C ,交x 轴于点M .①当点P 在线段AB 上运动时(点P 不与点A ,B 重合),是否存在这样的点P ,使线段PC 的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;②点P 在直线AB 上自由移动,当点C 、P 、M 中恰有一点是其他两点所连线段的中点时,请直接写出n 的值.第2题图类型二面积数量关系/最值问题1. (2019成华区一诊)如图,抛物线经过原点O,与x轴交于点A(-4,0),且经过点B(4,8).(1)求抛物线的解析式;(2)设直线y=kx+4与抛物线两交点的横坐标分别为x1,x2(x1<x2),当1x2-1x1=22时,求k的值;(3)连接OB,点P为x轴下方抛物线上一动点,过点P作OB的平行线交直线AB于点C,连接OC、OP,当S△POC∶S△BOC=1∶2时,求点P的坐标.第1题图2. (2019武侯区一诊)如图,在平面直角坐标系中,直线y =mx +3与抛物线交于点A (9,-6),与y 轴交于点B ,抛物线的顶点C 的坐标是(4,-11).(1)分别求该直线和抛物线的函数表达式;(2)D 是抛物线上位于对称轴左侧的点,若△ABD 的面积为812,求点D 的坐标;(3)在y 轴上是否存在一点P ,使∠APC =45°?若存在,求出满足条件的点P 的坐标;若不存在,请说明理由.类型三特殊三角形存在性问题1. (2019武侯区二诊)如图,抛物线y=x2+(m+2)x+4的顶点C在x轴正半轴上,直线y=x+2与抛物线交于A,B两点(点A在点B的左侧).(1)求抛物线的函数表达式;(2)点P是抛物线上一点,若S△P AB=2S△ABC,求点P的坐标;(3)将直线AB上下平移,平移后的直线y=x+t与抛物线交于A′、B′两点(A′在B′的左侧),当以点A′、B′、(2)中第二象限的点P为顶点的三角形是直角三角形时,求t的值.类型四特殊四边形存在性问题1. (2019高新区二诊)如图,在同一直角坐标系中,抛物线C1:y=ax2-2x-3与抛物线C2:y=x2+mx +n关于y轴对称,C2与x轴交于A、B两点,其中点A在点B的左侧,交y轴于点D.(1)求A、B两点的坐标;(2)过抛物线C2:y=x2+mx+n在第三象限上的一点P,作PF⊥x轴于点F,交AD于点E,若E关于PD的对称点E′恰好落在y轴上,求P点的坐标;(3)在抛物线C1上是否存在一点G,在抛物线C2上是否存在一点Q,使得以A、B、G、Q四点为顶点的四边形是平行四边形?若存在,求出G、Q两点的坐标;若不存在,请说明理由.类型五相似三角形问题1.(2019金牛区一诊)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A(-3,0)、B(1,0),与y轴交于点D(0,3),过顶点C作CH⊥x轴于点H.(1)求抛物线的解析式和顶点C的坐标;(2)连接AD、CD,若点E为抛物线上一动点(点E与顶点C不重合),当△ADE与△ACD面积相等时,求点E的坐标;(3)若点P为抛物线上一动点(点P与顶点C不重合),过点P向CD所在的直线作垂线,垂足为点Q,以P、C、Q为顶点的三角形与△ACH相似时,求点P的坐标.第1题图备用图参考答案类型一 线段数量关系/最值问题1. 解:(1)抛物线y =-18x 2+12x +4,令x =0,可得A 点的坐标为(0,4),令y =0,可得B 点的坐标为(-4,0),C 点的坐标为(8,0). 易得直线AB 的函数解析式为y =x +4, ∵OA =OB , ∴∠BAO =45°.又∵直线AD 由直线AB 逆时针旋转90°而来, ∴∠BAD =90°,∴∠OAD =45°,△OAD 为等腰直角三角形, ∴OD =OA =4,D (4,0),易得直线AD 的函数解析式为y =-x +4;(2)①如解图①,过点P 作PE ⊥x 轴交AD 于点E ,PF ⊥AD 于点F ,第1题解图①易得△PEF 为等腰直角三角形, ∴PF =22PE , ∴当PE 取得最大值时,PF 取得最大值, 设P (x ,-18x 2+12x +4),则E (x ,-x +4),∴PE =-18x 2+12x +4-(-x +4)=-18x 2+32x =-18(x -6)2+92,∴当x =6时,PE 有最大值92,此时PF 有最大值924,∴当x =6时,-18x 2+12x +4=52,∴当点P 到直线AD 的距离最大时,点P 的坐标为(6,52),最大距离为924;②如解图②,连接AP ,过点P 作PE ⊥x 轴,交AD 于点E ,PF ⊥AD 于点F ,当点P 到AD 的距离为524时,PF =524,则此时PE =2PF =52,将PE =52代入PE =-18(x -6)2+92中,解得x 1=10,x 2=2,∴此时点P 的坐标为(10,-72)或(2,92),当点P 的坐标为(2,92)时,AP =22+(92-4)2=172,∴sin ∠P AD =524172=53434;当点P 的坐标为(10,-72)时,AP =102+(-72-4)2=252,∴sin ∠P AD =PF AP =524252=210.综上,sin ∠P AD 的值是53434或210.第1题解图②2. 解:(1)∵B (4,c )在直线y =x +2上, ∴c =6,则B (4,6),∵A (12,52),B (4,6)在抛物线y =ax 2+bx +6上,∴⎩⎪⎨⎪⎧14a +12b +6=5216a +4b +6=6., 解得⎩⎪⎨⎪⎧a =2b =-8,故抛物线的解析式为y =2x 2-8x +6; (2)①存在.设点P 的坐标为(n ,n +2)(12<n <4),则点C 的坐标为(n ,2n 2-8n +6),∴PC =(n +2)-(2n 2-8n +6)=-2n 2+9n -4=-2(n -94)2+498.∵-2<0,12<n <4,∴当n =94时,线段PC 的长取得最大值498.② n 的值为5±212或17±1298.【解法提示】设P 的坐标为(n ,n +2),则点C 的坐标为(n ,2n 2-8n +6),易知抛物线与x 轴交点坐标为(1,0),(3,0),直线与x 轴交点坐标为(-2,0).(Ⅰ)若M 点为PC 的中点,此时n <-2或1<n <3,则PM =CM ,即n +2=-(2n 2-8n +6),整理得2n 2-7n +8=0,此方程没有实数解;(Ⅱ)若P 点为CM 的中点,此时,n >4或-2<n <12,则PM =PC ,CM =2PM ,即2n 2-8n +6=2(n +2),整理得n 2-5n +1=0,解得n 1=5+212,n 2=5-212,n 1,n 2均满足条件;(Ⅲ)若C 点为PM 的中点,此时12<n <1或3<n <4,则PC=CM ,PM =2CM ,即n +2=2(2n 2-8n +6),整理得4n 2-17n +10=0,解得n 1=17+1298,n 2=17-1298,n 1,n 2均满足条件.综上所述,n 的值为5±212或17±1298.类型二 面积数量关系/最值问题1. 解:(1)∵抛物线经过原点O , ∴设抛物线的解析式为y =ax 2+bx ,把点A (-4,0),B (4,8)代入,得⎩⎪⎨⎪⎧16a -4b =016a +4b =8,解得⎩⎪⎨⎪⎧a =14b =1,∴抛物线的解析式为y =14x 2+x ;(2)联立⎩⎪⎨⎪⎧y =14x 2+xy =kx +4,消去y ,得14x 2+(1-k )x -4=0,∴x 1+x 2=4(k -1),x 1x 2=-16,∵1x 2-1x 1=22, ∴(x 1+x 2)2-4x 1x 2(x 1x 2)2=12, 即16(k -1)2+64256=12, 解得k =3或k =-1,经检验都符合题意,∴k 的值为3或-1;(3)∵OB ∥PC ,S △POC ∶S △BOC =1∶2,∴PC ∶OB =1∶2,∵B (4,8),∴OB =45,直线OB 的解析式为y =2x ,∴PC =25,设点P 的坐标为(a ,14a 2+a )(-4<a <0),直线PC 的解析式为y =2x +t , 把P (a ,14a 2+a )代入y =2x +t ,整理得t =14a 2-a , ∴直线PC 的解析式为y =2x +14a 2-a , 易得直线AB 的解析式为y =x +4,联立⎩⎪⎨⎪⎧y =x +4y =2x +14a 2-a , 解得x =4+a -14a 2, ∴PC =5(x C -x P )=5×(4+a -14a 2-a )=25, 解得a =22(舍去)或a =-22,将a =-22代入抛物线的解析式,得y =14×(-22)2-22=2-22, ∴点P 的坐标为(-22,2-22).2. 解:(1)把点A (9,-6)代入y =mx +3中,得m =-1,∴直线的函数表达式为y =-x +3;∵抛物线的顶点C 的坐标是(4,-11)且过点A (9,-6),设抛物线的函数表达式为y =a (x -4)2-11,∴a (9-4)2-11=-6,解得a =15,∴抛物线的函数表达式为y =15(x -4)2-11=15x 2-85x -395; (2)设点D 的横坐标为n .∵抛物线对称轴为直线x =4,∴分两种情况讨论①当0<n <4时,如解图①,过点D 作x 轴的垂线交直线AB 于点E ,则D (n ,15n 2-85n -395),E (n ,-n +3), ∴DE =-n +3-(15n 2-85n -395)=-15n 2+35n +545, ∴S △ABD =S △BDE +S △ADE =12DE ·(x E -x B )+12DE ·(x A -x E ) =12DE ·(x A -x B )=12(-15n 2+35n +545)×9=812, 解得n 1=3-352(不合题意,舍去),n 2=3+352(不合题意,舍去);第2题解图①②当n <0时,如解图②,过点D 作x 轴的垂线交直线AB 于点E ,S △ABD =S △ADE -S △BDE =12DE ·(x A -x E )-12DE ·(x B -x E )=12DE ·(x A -x B )=12(-15n 2+35n +545)×9=812, 解得n 1=3-352,n 2=3+352(不合题意,舍去). 当n =3-352时,y =15×(3-352)2-85×3-352-395=35-152. ∴D (3-352,35-152);第2题解图②(3)在y 轴上存在一点P ,使∠APC =45°,如解图③,分别过点C 、A 作y 轴、x 轴的平行线,两线交于点G ,则∠CGA =90°,∵A 、C 的坐标分别为(9,-6),(4,-11),∴点G 的坐标为(4,-6).∴GA =GC =5.作以G 为圆心,GA 的长度为半径的圆,交y 轴于点P ,P ′,连接AP 、CP 、AP ′、P ′C ,此时∠APC =∠AP ′C =12∠CGA =45°, ∴GP =5.设点P 的坐标为(0,k ),过点G 作GH ⊥y 轴于点H ,则H (0,-6).在Rt △PGH 中,PH 2+HG 2=PG 2,即(k +6)2+42=52,解得k 1=-3,k 2=-9,∴P (0,-3),P ′(0,-9).第2题解图③类型三 特殊三角形存在性问题1. 解:(1)∵抛物线的顶点C 在x 轴的正半轴上,∴4ac -b 24a =16-(m +2)24=0, 解得m =2或-6,∵顶点在x 轴正半轴上,∴-m +22>0.解得m <-2, ∴m =-6,∴抛物线的函数表达式为y =x 2-4x +4;(2)如解图①,过点C 作抛物线的对称轴,交直线AB 于点D ,由y =x 2-4x +4得抛物线的对称轴是直线x =2,则D (2,4),DC =4.在点D 上方的抛物线的对称轴上取一点E ,使DE =2DC ,则E (2,12).连接AE ,BE ,则S △ABE =2S △ABC .过点E (2,12)作直线AB 的平行线交抛物线于点P 1,P 2,此时满足S △P AB =S △ABE =2S △ABC .设直线P 1P 2的函数表达式为y =x +k ,∵点E (2,12)在直线P 1P 2上,∴2+k =12,∴k =10.∴直线P 1P 2的函数表达式为y =x +10.联立⎩⎪⎨⎪⎧y =x +10y =x 2-4x +4, 解得⎩⎪⎨⎪⎧x 1=-1y 1=9或⎩⎪⎨⎪⎧x 2=6y 2=16, 综上所述,满足条件的点P 的坐标为(-1,9),(6,16);第1题解图①(3)设A ′(x 1,y 1),B ′(x 2,y 2),显然,∠P A ′B ′≠90°.①如解图②,当∠A ′B ′P =90°时,过点B ′作直线MN ∥y 轴,A ′M ⊥MN 于点M ,PN ⊥MN 于点N , ∵直线A ′B ′的解析式是y =x +t ,∴∠B ′A ′M =45°,∴△A ′B ′M 和△PB ′N 都是等腰直角三角形,∴PN =NB ′,∴x 2+1=9-y 2,即x 2+y 2=8,联立⎩⎪⎨⎪⎧x 2+y 2=8y 2=x 2+t , 解得⎩⎨⎧x 2=4-12ty 2=4+12t , 将点(4-12t ,4+12t )代入抛物线的函数表达式,得4+12t =(4-12t )2-4×(4-12t )+4. 解得 t 1=0,t 2=10(此时点A ′与点P 重合,舍去);第1题解图②如解图③,若∠A′PB′=90°,过点P作EF∥y轴,A′E⊥EF于E,B′F⊥EF于点F,则△A′EP∽△PFB′,∴A′EPE=PFB′F.∴x1+19-y1=y2-9x2+1.∴x1x2+(x1+x2)+1=9(y1+y2)-y1y2-81,令x2-4x+4=x+t,即x2-5x+4-t=0,则x1+x2=5,x1x2=4-t,y1+y2=(x1+t)+(x2+t)=x1+x2+2t=5+2t,y1y2=(x1+t)(x2+t)=x1x2+t(x1+x2)+t2=t2+4t+4,∴(4-t)+5+1=9(5+2t)-(t2+4t+4)-81,整理得t2-15t+50=0,解得t1=5,t2=10(此时A′与P重合,舍去),综上,t的值为0或5.第1题解图③类型四特殊四边形存在性问题1. 解:(1)∵C1、C2关于y轴对称,∴C1与C2的交点一定在y轴上,且C1与C2的形状,大小均相同,∴a=1,n=-3,∴C1的对称轴为直线x=1,∴C2的对称轴为直线x=-1,∴m=2,∴C 1的函数表达式为y =x 2-2x -3,C 2的函数表达式为y =x 2+2x -3=0,在C 2的函数表达式y =x 2+2x -3中,当y =0可得x 2+2x -3=0,解得x =-3或x =1,∴A (-3,0),B (1,0);(2)根据题意可得点D 的坐标为(0,-3),设直线AD 的表达式为y =kx +b .把(0,-3)和(-3,0)代入到y =kx +b 中得⎩⎪⎨⎪⎧b =-3-3k +b =0, 解得⎩⎪⎨⎪⎧b =-3k =-1, ∴直线AD 的表达式为y =-x -3,设P (a ,a 2+2a -3),则E (a ,-a -3),则PE =-a -3-(a 2+2a -3)=-a 2-3a ,根据对称可得四边形PEDE ′是菱形,则DE ′=PE =-a 2-3a , 如解图,过点P 作PG ⊥y 轴于点G ,∵ED ∥PE ′,ED 所在直线斜率k =-1∴∠E ′=∠AEF =45°,GE ′=-a ,PG =GE ′.在Rt △PGE ′中,根据勾股定理得:PE ′=-2a ,根据菱形性质可得:PE ′=DE ′, ∴-2a =-a 2-3a ,解得a =2-3,∴P (2-3,2-42);第1题解图(3)存在.∵AB 的中点为(-1,0),且点G 在抛物线C 1上,点Q 在抛物线C 2上,∴AB 只能为平行四边形的一边,∴GQ ∥AB 且GQ =AB ,由(1)可知AB =1-(-3)=4,∴GQ =4,设G (t ,t 2-2t -3),则Q (t +4,t 2-2t -3)或(t -4,t 2-2t -3),①当Q (t +4,t 2-2t -3)时,则t 2-2t -3=(t +4)2+2(t +4)-3,解得t =-2,∴t 2-2t -3=4+4-3=5,∴G (-2,5),Q (2,5);②当Q (t -4,t 2-2t -3)时,则t 2-2t -3=(t -4)2+2(t -4)-3,解得t =2,∴t 2-2t -3=4-4-3=-3,∴G (2,-3),Q (-2,-3),综上可知,存在满足条件的点G 、Q ,其坐标为G (-2,5),Q (2,5)或G (2,-3),Q (-2,-3).类型五 相似三角形问题1. 解:(1)把点A 、B 、D 的坐标分别代入抛物线的解析式中得:⎩⎪⎨⎪⎧a +b +c =09a -3b +c =0c =3,解得⎩⎪⎨⎪⎧a =-1b =-2c =3,∴抛物线的解析式为y =-x 2-2x +3,∴抛物线的对称轴为直线x =-b 2a=-1, ∴点C 的坐标为(-1,4);(2)如解图①,过点C 作CE ∥AD 交抛物线于点E ,交y 轴于点T ,则△ADE 与△ACD 面积相等,直线AD 过点D ,设其解析式为y =mx +3,将点A 的坐标代入得:0=-3m +3,解得m =1,则直线AD 的解析式为y =x +3,∵CE ∥AD ,设直线CE 的解析式为y =x +n ,将点C 的坐标代入上式得:4=-1+n ,解得n =5,则直线CE 的解析式为y =x +5,则点T 的坐标为(0,5),联立⎩⎪⎨⎪⎧y =-x 2-2x +3y =x +5, 解得x =-1或x =-2(x =-1为点C 的横坐标),即点E 的坐标为(-2,3);在y 轴取一点H ′,使DT =DH ′=2,过点H ′作直线E ′E ″∥AD ,则△ADE ′和△ADE ″都与△ACD 面积相等,同理可得直线E ′E ″的解析式为y =x +1,联立⎩⎪⎨⎪⎧y =-x 2-2x +3y =x +1, 解得x =-3±172, ∴点E ″、E ′的坐标分别为(-3+172,-1+172)、(-3-172,-1-172), 综上,满足要求的点E 的坐标为(-2,3)或(-3+172,-1+172)或(-3-172,-1-172);第1题解图①(3)如解图②,设点P 的坐标为(m ,n ),则n =-m 2-2m +3,把点C 、D 的坐标代入一次函数的解析式y =kx +b 得:⎩⎪⎨⎪⎧4=-k +b b =3, 解得⎩⎪⎨⎪⎧k =-1b =3, 即直线CD 的解析式为y =-x +3,由(1)得,直线AD 的解析式为y =x +3,∴AD ⊥CD ,而直线PQ ⊥CD ,故直线PQ 的解析式中的k 值与直线AD 的解析式中的k 值相同, 同理可得直线PQ 的解析式为y =x +(n -m ),联立⎩⎪⎨⎪⎧y =-x +3y =x +(n -m ), 解得x =3+m -n 2, 即点Q 的坐标为(3+m -n 2,3-m +n 2), 则PQ 2=(m -3+m -n 2)2+(n -3-m +n 2)2=(m +n -3)22=12(m +1)2·m 2, 同理可得:PC 2=(m +1)2[1+(m +1)2],AH =2,CH =4,则AC =25, 当△ACH ∽△CPQ 时,PC PQ =AC CH =52,即4PC 2=5PQ 2,整理得3m 2+16m +16=0,解得m =-4或m =-43, ∴点P 的坐标为(-4,-5)或(-43,359); 当△ACH ∽△PCQ 时,同理可得,点P 的坐标为(-23,359)或(2,-5), 综上所述,点P 的坐标为(-4,-5)或(-43,359)或(-23,359)或(2,-5).。
中考数学总复习《二次函数压轴题(特殊四边形)》专项提升练习题(附答案)
中考数学总复习《二次函数压轴题(特殊四边形)》专项提升练习题(附答案)学校:___________班级:___________姓名:___________考号:___________1.如图,已知抛物线232y a x k ⎛⎫=-+ ⎪⎝⎭经过()1,0A -,()0,4C -两点,直线m 是抛物线的对称轴.(1)求抛物线的解析式.(2)设E 是直线m 上的一个动点,当点E 到点A ,C 的距离之和最短时,求点E 的坐标.(3)已知P 为抛物线的顶点,在平面直角坐标系中是否存在一点Q ,恰好使得P ,Q ,B ,C 为顶点平行四边形,若存在,写出所有符合条件的Q 点坐标,并写出求解点Q 的坐标的其中一种情况的过程,若不存在,说明理由. 2.如图,抛物线232yax bx与x 轴交于()1,0A -和()3,0B ,与y 轴交于C 点,点C 关于抛物线的对称轴的对称点为点D .抛物线顶点为H .(1)求抛物线的解析式.(2)如图1,在抛物线上是否存在一点M (异于点B )使得ACB ACM S S =△△?若存在,请求出M 的坐标,不存在,说明理由;(3)如图2,当点E 在抛物线上运动时,在直线AD 上是否存在点F ,使得以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请直接写出点F 的坐标;若不存在,请说明理由.3.如图,已知抛物线23y ax bx =+-(a ,b 为常数,且0a ≠)与x 轴交于()30A B ,,两点,且3OB OA =,与y 轴交于点C ,点D 为第四象限内抛物线上的动点,DE y ∥轴交BC 所在直线于点E .(1)求抛物线的函数表达式和点C '的坐标;(2)若点F 为y 轴上一点,是否存在点D ,使得以点C ,D ,E ,F 为顶点的四边形是菱形?若存在,求出所有符合条件的点D 的坐标:若不存在,请说明理由.4.如图,在平面直角坐标系中,抛物线24y ax bx =++与x 轴分别交于()4,0A -,()2,0B 两点,与y 轴交于C 点.(1)求抛物线的解析式;(2)点P 为直线AC 上方抛物线上任意一点,过点P 作PD y ∥轴交直线AC 于点D ,过点D 作DH x ∥轴,交y 轴于点H ,求PD DH +的最大值及此时点P 的坐标;(3)将抛物线沿着水平方向向右平移2个单位长度得到新的抛物线,点E 为原抛物线与平移后的抛物线的交点,点M 为平移后的抛物线对称轴上一动点,点N 为坐标平面内一点,直接写出所有使得以点B ,E ,M ,N 为顶点的四边形是菱形的点N 的坐标,并把求其中一个点N 的坐标的求解过程写出来.5.如图,已知直线1y x =+与抛物线2y x mx n =-++交于A 、D 两点且A 点在x 轴上,抛物线与x 轴另一个交点为B ,与y 轴交于点()0,3C .(1)求抛物线的解析式;(2)如图,直线AD 上方的抛物线上有一点F ,过点F 作FG AD ⊥于点G ,求线段FG 的最大值;(3)点M 是抛物线的顶点,点P 是y 轴上一点,点Q 是坐标平面内一点,以A ,M ,P ,Q 为顶点的四边形是以AM 为边的矩形,求点Q 的坐标.6.如图,已知直线24y x =-+分别交x 轴、y 轴于点B .抛物线过A ,B 两点. P 是线段AB 上一动点,过点P 作PC ⊥x 轴于点C ,交抛物线于点D .(1)若抛物线的顶点M 的坐标为19,22⎛⎫⎪⎝⎭,其对称轴交AB 于点N .⊥求抛物线的解析式.⊥在抛物线的对称轴上找一点Q ,使AQ BQ -的值最大,试求出点Q 的坐标. ⊥是否存在点P ,使四边形MNPD 为平行四边形?若存在,求出此时点P 的坐标.(2)当点P 的横坐标为1时,是否存在这样的抛物线,使得以B ,P ,D 为顶点的三角形与AOB 相似?若存在,直接写出满足条件的抛物线的解析式;若不存在,请说明理由.7.如图1,在平面直角坐标系中,抛物线22y ax bx =++与x 轴交于()40A -,和()10B ,,与y 轴交于点C ,连接AC BC ,.(1)求该抛物线的解析式;(2)如图1,在x 轴上有一动点D ,平面内是否存在一点E ,使以点A 、D 、C 、E 为顶点的四边形是菱形?若存在,请求出点E 的坐标,若不存在,请说明理由. (3)如图2,点M 为抛物线上的一动点:⊥若点M 为直线AC 上方的抛物线上任意一点,过点M 作y 轴的平行线,交AC 于点N ,过点M 作x 轴的平行线,交直线AC 于点Q ,求MNQ △周长的最大值;⊥若点M 为抛物线上的任意一动点,且45ACM BAC ∠=︒-∠,请直接写出满足条件的点M 的坐标. 8.如图,直线443y x =+与x 轴交于点A ,与y 轴交于点C ,抛物线2)83(0y ax x c a =-+≠经过A ,C 两点,交x 轴的正半轴于点B ,连接BC .(1)求抛物线的解析式.(2)点P 在抛物线上,连接PB ,当45PBC ∠=︒时,求点P 的坐标;(3)已知点M 从点B 出发,以每秒1个单位长度的速度沿BA 运动,同时点N 从点O 出发,以每秒3个单位长度的速度沿OC CA ,运动.当点M ,N 运动到某一时刻时,在坐标平面内是否存在点D ,使得以A ,M ,N ,D 为顶点的四边形是矩形?若存在,请直接写出点D 的坐标;若不存在,请说明理由.9.如图1,平面直角坐标系xOy 中,抛物线()230y ax bx a =++<与x 轴分别交于点()30A -,和点()10B ,,与y 轴交于点C ,P 为抛物线上一动点.(1)写出抛物线的对称轴为直线______,抛物线的解析式为______;(2)如图2,连结AC ,若P 在AC 上方,作PQ y ∥轴交AC 于Q ,把上述抛物线沿射线PQ 的方向向下平移,平移的距离为h ()0h >,在平移过程中,该抛物线与直线AC 始终有交点,求h 的最大值;(3)若P 在AC 上方,设直线AP ,BP 与抛物线的对称轴分别相交于点F ,E ,请探索以A ,F ,B ,G (G 是点E 关于x 轴的对称点)为顶点的四边形面积是否随着P 点的运动而发生变化,若不变,求出这个四边形的面积;若变化,说明理由.(4)设M 为抛物线对称轴上一动点,当P ,M 运动时,在坐标轴上是否存在点N ,使四边形PMCN 为矩形?若存在,直接写出点P 的横坐标;若不存在,请说明理由.10.如图,在平面直角坐标系中,二次函数2y ax bx c =++的图象与x 轴交于()30A ,,()10B -,两点,与y 轴交于点()03C ,.(1)求这个二次函数的解析式;(2)已知点D 是直线AC 上方的抛物线上一动点.⊥当点D 运动到什么位置时,四边形ABCD 的面积最大?求此时D 点的坐标和四边形ABCD 的最大面积; ⊥连接DO DC ,,并把DOC △沿CO 翻折,得到四边形DOD C ',那么是否存在点D ,使四边形DOD C '为菱形?若存在,请求出此时点D 的坐标;若不存在,请说明理由.11.如图,抛物线23y ax ax c =-+与x 轴交于A ,()4,0B 两点(A 在B 的左侧),与y 轴交于点(0,4)C -,直线l 是地物线的对称轴,直线l 与x 轴交于点D .(1)求抛物线的函数表达式;(2)点M 在直线l 上,且12DM =,点P ,Q 是抛物线上的动点,点P 在点Q 的左侧,是否存在点P ,Q 使得以点D 、M 、P 、Q 为顶点的四边形是菱形?若存在,请求出点P ,Q 的坐标;若不存在,请说明理由. 12.如图,二次函数的图象交x 轴于点()2,0A -和()8,0B ,交y 轴于点()0,4C ,连接AC ,BC ,点P 是线段OB 上一动点,过点P 作直线PD AC ∥,交y 轴于点D ,交线段BC 于点E ,交x 轴上方二次函数的图象于点F .(1)求二次函数的表达式.(2)当点P 为线段DE 的三等分点时,求点P 的坐标.(3)在线段OB 上是否存在点P ,使得四边形AEFC 为平行四边形?若存在,求出点P 的坐标;若不存在,请说明理由. 13.综合与探究如图,直线4y x =-+与x 轴交于点B ,与y 轴交于点C ,经过B ,C 两点的抛物线212y x bx c =-++与x 轴的另一个交点为点A ,连接AC .(1)求抛物线的解析式以及点A 的坐标;(2)若点P 是直线BC 上方抛物线上的一个动点,过点P 作PQ AC ∥交直线4y x =-+于点Q ,求线段PQ 的最大值;(3)若点M 在直线BC 上运动,在坐标平面内是否存在另一个点N ,使得以A ,C ,M ,N 为顶点的四边形是菱形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.14.如图,已知抛物线()230y ax ax c a =++>与x 轴交于A 、B 两点,与y 轴交于点C ,点A 在点B 左侧,点B 的坐标为()1,0,点C 的坐标为为()0,3-.(1)求抛物线的函数关系式;(2)若点D 是x 轴上的一点,在抛物线上是否存在点E ,使以A 、C 、D 、C 为顶点且以AC 为一边的四边形是平行四边形﹖若存在,请求出点E 的坐标;若不存在,请说明理由. 15.综合与探究:如图,抛物线248433y x x =+-与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求点A ,B ,C 的坐标;(2)点D 是第三象限内抛物线上的动点,设点D 的横坐标为m ,求四边形ABCD 面积S 的最大值及此时点D 的坐标;(3)若点P 在抛物线对称轴上,点Q 是平面内一点,试探究,是否存在点P ,Q ,使以点A ,C ,P ,Q 为顶点的四边形是以AC 为对角线的菱形?若存在,请求出点P 的坐标;若不存在,请说明理由.参考答案:1.(1)232524y x ⎛⎫=-- ⎪⎝⎭(2)35,22E -⎛⎫⎪⎝⎭(3)59,24Q ⎛⎫ ⎪⎝⎭或145,24Q -⎛⎫- ⎪⎝⎭或119,24Q -⎛⎫ ⎪⎝⎭2.(1)21322y x x =-++.(2)存在,M 点的坐标为214,2⎛⎫-- ⎪⎝⎭(3)存在,点F 的坐标为10,2⎛⎫ ⎪⎝⎭或317517,24⎛⎫++ ⎪⎝⎭或317517,24⎛⎫-- ⎪⎝⎭或12,2⎛⎫-- ⎪⎝⎭3.(1)抛物线的函数表达式为223y x x =--,点C 的坐标为()03-,(2)存在点D ,使得以点C ,D ,E ,F 为顶点的四边形是菱形,点D 的坐标为()23-,或()32,242--4.(1)2142y x x =--+ (2)92 53,2P ⎛⎫- ⎪⎝⎭(3)()1,419-+或()1,419--或()3,19或()3,19-5.(1)223y x x =-++(2)928(3)72,2Q ⎛⎫ ⎪⎝⎭或12,2Q ⎛⎫- ⎪⎝⎭6.(1)⊥2224y x x =-++;⊥1,62Q ⎛⎫⎪⎝⎭;⊥存在 3,12P ⎛⎫ ⎪⎝⎭(2)存在,2224y x x =-++或25342y x x =-++7.(1)213222y x x --=+(2)存在 ()10,2E - ()225,2E ()325,2E - 45,22E -⎛⎫⎪⎝⎭(3)⊥625+ ⊥1(5,3)M -- 22375(,)749M -8.(1)248433y x x =--+(2)51213,20100⎛⎫- ⎪⎝⎭(3)71311362⎛⎫+-- ⎪ ⎪⎝⎭,或()33-,或11355⎛⎫-- ⎪⎝⎭,9.(1)=1x - 223y x x =--+ (2)h 的最大值为169(3)不变,这个四边形的面积为16 (4)存在,点P 的横坐标为51456-± 1-10.(1)二次函数的解析式为223y x x =-++;(2)⊥点D 的坐标为31524⎛⎫ ⎪⎝⎭,时,四边形ABCD 的最大面积值为758;⊥点D 的坐标为210322⎛⎫+ ⎪ ⎪⎝⎭,.11.(1)234y x x =--(2)存在,点P 、Q 的坐标分别是()2,6- ()5,6或()1,6- ()2,6-12.(1)213442y x x =-++(2)点P 的坐标为8011⎛⎫ ⎪⎝⎭,或1607⎛⎫⎪⎝⎭,; (3)不存在,理由见解析13.(1)抛物线的解析式为2142y x x =-++ ()20A -,; (2)PQ 的最大值为253; (3)点N 的坐标为()21010--,或()21010-+-,或()46,或()75-,.14.(1)239344y x x =+- (2)()3,3--或341,32⎛⎫-- ⎪ ⎪⎝⎭或341,32⎛⎫-+ ⎪ ⎪⎝⎭15.(1)()30A -,()10B , ()04C -, (2)当点D 坐标为352⎛⎫-- ⎪⎝⎭,时,四边形ABCD 面积S 的最大值为252; (3)存在,P 的坐标为1318⎛⎫-- ⎪⎝⎭,。
中考数学总复习《二次函数与四边形》练习题(含答案)
二次函数与四边形一 、解答题1.如图,二次函数y =ax 2+bx 的图象与一次函数y =x +2的图象交于A 、B 两点,点A 的横坐标是﹣1,点B 的横坐标是2. (1)求二次函数的表达式;(2)设点C 在二次函数图象的OB 段上,求四边形OABC 面积的最大值.2.如图,已知二次函数图象的顶点为点,且经过点.(1)求此二次函数的关系式;(2)设点是此二次函数图象上一动点,且位于第三象限,点的坐标为,四边形是以为对角线的平行四边形.① 求平行四边形的面积与之间的函数关系式,并写出自变量的取值范围;② 当点B 在此二次函数图象的对称轴上时,求平行四边形的面积; ③ 当平行四边形的面积为64时,请判断平行四边形是否为菱形?④ 是否存在点,使平行四边形为正方形?若存在,求出点的坐标;若不存在,请说明理由.2y ax c =+()09M -,()30A ,()D x y ,C ()50-,ABCD AC ABCD S x x ABCD ABCD ABCD D ABCD D3.如图,点O 是坐标原点,点(0)A n ,是x 轴上一动点(0)n <.以AO 为一边作矩形AOBC ,点C 在第二象限,且2OB OA =.矩形AOBC 绕点A 逆时针旋转90︒得矩形AGDE .过点A 的直线y kx m =+(0)k ≠交y 轴于点F ,FB FA =.抛物线2y ax bx c =++过点E 、F 、G 且和直线AF 交于点H ,过点H 作HM x ⊥轴,垂足为点M . (1) 求k 的值;(2) 点A 位置改变时,AMH ∆的面积和矩形AOBC 的面积的比值是否改变?说明你的理由.4.如图,已知二次函数图象的顶点坐标为,直线与二次函数的图象交于、两点,其中点在轴上. (1)二次函数的解析式= ;(2)证明点不在(1)中所求的二次函数的图象上; (3)若为线段的中点,过点作轴于点,与二次函数的图象交于点.① 轴上存在点,使以,,,为顶点的四边形是平行四边形,则点的坐标是 ;()20,1y x =+A B A y y ()21m m --,C AB C CE x ⊥E CE D y K K Z D C K②二次函数的图象上是否存在点,使得?求出点坐标;若不存在,请说明理由.5.如图,为正方形的对称中心,,,直线交于,于,点从原点出发沿轴的正半轴方向以1个单位每秒速度运动,同时,点从出发沿个单位每秒速度运动,运动时间为.求: (1)的坐标为 ; (2)当为何值时,与相似?(3)求的面积与的函数关系式;并求以为顶点的四边形是梯形时的值及的最大值.6.如图所示,在平面直角坐标系中,矩形的边在轴的负半轴上,边在轴的正半轴上,且,,矩形绕点按顺时针方向旋转后得到矩形.点的对应点为点,点的对应点为点,点的对应点为点,抛物线过点. (1)判断点是否在轴上,并说明理由; (2)求抛物线的函数表达式;(3)在轴的上方是否存在点,点,使以点为顶点的平行P 2POE ABD S S =△△P P ABCD ()03A ,()10B ,OP AB N DC M H O x R O OM t C t ANO △DMR △HCR △S t A B C R ,,,t S H y xP N M ROD C BAABOC BO x OCy 1AB =OB ABOC O 60EFOD A E B F C D 2y ax bx c =++A E D ,,E y x P Q O B P Q ,,,四边形的面积是矩形面积的2倍,且点在抛物线上,若存在,请求出点,点的坐标;若不存在,请说明理由.ABOC P P Q y xODEC FA B y xO DECFA B M二次函数与四边形答案解析一 、解答题1.(1)把x =﹣1和2分别代入y =x +2,得到y 的值分别是1、4,因而A 、B 的坐标分别是(﹣1,1),(2,4).根据题意得到:1424a b a b +=⎧⎨-=⎩,解得10a b =⎧⎨=⎩因而二次函数的解析式是y=x 2.(2)过点A 、B 作AM ⊥x 轴,BN ⊥x 轴,分别交于M 、N .过点C 作CP ⊥BN 与P .设P 的坐标是(x ,y ).()()1115=143222AMNB S AM BN MN +⋅=+⋅=梯形; 1122AOM S AM OM =⋅=△; ()()()()21112424222BCP S CP BP x y x x =⋅=--=--△;()()()2111=224222CPNO S CP ON PN x y x x +⋅=-+⋅=-⋅⎡⎤⎣⎦四边形. ∴2=2 3 AOM BCP OABC CPNO AMNB S S S S S x x ---=-++△△四边形四边形梯形. 当x =1时,函数S =﹣x 2+2x +3有最大值是4.【解析】本题主要考查了待定系数法求函数的解析式,求面积的最值问题一般要转化为函数的最值问题,依据函数的性质解决.2.(1)由题意得,解之,得,990c a c =-⎧⎨+=⎩19a c =⎧⎨=-⎩故二次函数的关系式为.(2)① 在二次函数的图象上,且位于第三象限, ∴,即,表示点到的距离. ∵是平行四边形的对角线, ∴. 当时,,得,∴二次函数的图象与x 轴的另一个交点是,自变量x 的取值范围是﹣3<x <0.② 过点作,垂足为点, ∵点在二次函数的图象的对称轴上, 由得,∴OE=2, ∴当时,,;③ 根据题意,当时,即. 解之,得,.故所求的点有两个,分别为,.点不满足,∴平行四边形不是菱形(或者说明点D 不在第三象限);点满足,∴平行四边形是菱形.④ 当,且时,平行四边形是正方形,此时点的坐标只能是.点不在二次函数的图象上,故不存在这样的点,使平行四边形为正方形.【解析】代数几何综合题。
中考压轴题 二次函数与四边形综合题(解析版)
专题07 二次函数与四边形综合题1.(2019黄石中考)如图,已知抛物线y =13x 2+bx +c 经过点A(−1,0)、B(5,0).(1)求抛物线的解析式,并写出顶点M 的坐标;(2)若点C 在抛物线上,且点C 的横坐标为8,求四边形AMBC 的面积(3)定点D(0,m)在y 轴上,若将抛物线的图象向左平移2各单位,再向上平移3个单位得到一条新的抛物线,点P 在新的抛物线上运动,求定点D 与动点P 之间距离的最小值d (用含m 的代数式表示)【答案】(1)y =13x 2−43x −53,M(2,−3);(2)36;(3)d ={|m|(m ≤32)√12m−92(m >32) 【解析】【分析】(1)函数的表达式为:y =13(x +1)(x -5),即可求解;(2)S 四边形AMBC =12AB (y C -y D ),即可求解;(3)抛物线的表达式为:y =13x 2,即可求解.【详解】(1)函数的表达式为:y =13(x +1)(x -5)=13(x 2-4x -5)=13x 2−43x −53,点M 坐标为(2,-3);(2)当x =8时,y =13(x +1)(x -5)=9,即点C (8,9),S 四边形AMBC =12AB (y C -y D )=12×6×(9+3)=36;(3)y =13(x +1)(x -5)=13(x 2-4x -5)=13(x -2)2-3,抛物线的图象向左平移2个单位,再向上平移3个单位得到一条新的抛物线,则新抛物线表达式为:y =13x 2,则定点D 与动点P 之间距离PD =√x 2+(m −13x 2)2=√19x 4+(1−23m)x 2+m 2, ∵19>0,PD 有最小值,当x 2=3m -92时,PD 最小值d =√3m −92=√12m−92. 【点睛】本题考查的是二次函数综合运用,涉及到图形平移、面积的计算等知识点,难度不大. 2.(2019湖南益阳中考)在平面直角坐标系xOy 中,顶点为A 的抛物线与x 轴交于B 、C 两点,与y 轴交于点D ,已知A (1,4),B (3,0).(1)求抛物线对应二次函数表达式;(2)探究:如图1,连接OA ,作DE ∥OA 交BA 的延长线于点E ,连接OE 交AD 于点F ,M 是BE 的中点,则OM 是否将四边形OBAD 分成面积相等的两部分?请说明理由;(3)应用:如图2,P (m ,n )是抛物线在第四象限的图象上的点,且m +n =﹣1,连接P A 、PC ,在线段PC 上确定一点M ,使AN 平分四边形ADCP 的面积,求点N 的坐标.提示:若点A 、B 的坐标分别为(x 1,y 1)、(x 2,y 2),则线段AB 的中点坐标为(122x x +,122y y +).【答案】(1)y =﹣x 2+2x ﹣3;(2)OM 将四边形OBAD 分成面积相等的两部分,理由见解析;(3)点N (43,﹣73). 【解析】【分析】(1)函数表达式为:y =a (x ﹣1)2+4,将点B 坐标的坐标代入上式,即可求解;(2)利用同底等高的两个三角形的面积相等,即可求解; (3)由(2)知:点N 是PQ 的中点,根据C,P 点的坐标求出直线PC 的解析式,同理求出AC,DQ 的解析式,并联立方程求出Q 点的坐标,从而即可求N 点的坐标. 【详解】(1)函数表达式为:y =a (x ﹣1)2+4, 的将点B坐标的坐标代入上式得:0=a(3﹣1)2+4,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x﹣3;(2)OM将四边形OBAD分成面积相等的两部分,理由:如图1,∵DE∥AO,S△ODA=S△OEA,S△ODA+S△AOM=S△OEA+S△AOM,即:S四边形OMAD=S△OBM,∴S△OME=S△OBM,∴S四边形OMAD=S△OBM;(3)设点P(m,n),n=﹣m2+2m+3,而m+n=﹣1,解得:m=﹣1或4,故点P(4,﹣5);如图2,故点D作QD∥AC交PC的延长线于点Q,由(2)知:点N是PQ的中点,设直线PC的解析式为y=kx+b,将点C(﹣1,0)、P(4,﹣5)的坐标代入得:45k bk b-+=⎧⎨+=-⎩,解得:11 kb=-⎧⎨=-⎩,所以直线PC的表达式为:y=﹣x﹣1…①,同理可得直线AC的表达式为:y=2x+2,直线DQ∥CA,且直线DQ经过点D(0,3),同理可得直线DQ的表达式为:y=2x+3…②,联立①②并解得:x =﹣43,即点Q (﹣43,13), ∵点N 是PQ 的中点,由中点公式得:点N (43,﹣73). 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、图形面积的计算等,其中(3)直接利用(2)的结论,即点N 是PQ 的中点,是本题解题的突破点.3.(2019广东中考)如图1,在平面直角坐标系中,抛物线2y x x =+与x 轴交于点A 、B (点A 在点B 右侧),点D 为抛物线的顶点.点C 在y 轴的正半轴上,CD 交x 轴于点F ,CAD ∆绕点C 顺时针旋转得到CFE ∆,点A 恰好旋转到点F ,连接BE .(1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;(3)如图2,过顶点D 作1DD x ⊥轴于点1D ,点P 是抛物线上一动点,过点P 作PM x ⊥轴,点M 为垂足,使得PAM ∆与1DD A ∆相似(不含全等).①求出一个满足以上条件的点P 的横坐标;②直接回答....这样的点P 共有几个?【答案】(1)1,0A ,()7,0B -,(3,D --;(2)证明见解析;(3)①点P 的横坐标为53-,11-,373-,②点P 共有3个. 【解析】【分析】(1)令y =0,可得关于x 的方程,解方程求得x 的值即可求得A 、B 两点的坐标,对解析式配方可得顶点D 的坐标;(2)由CF CA =,CO ⊥AF ,可得OF =OA =1,如图2,易得1DD F COF ∆~∆,由此可得OC =证明ACF ∆为等边三角形,推导可得//EC BF ,再由6EC DC ==,6BF =,可得//EC BF ,问题得证;(3)①设点P的坐标为2,848x x x ⎛⎫+- ⎪ ⎪⎝⎭,分三种情况:点P 在B 点左侧,点P 在A 点右侧,点P在AB 之间,分别讨论即可得;②由①的结果即可得.【详解】(1)令20848x x +-=, 解得1x =或7-,故()1,0A ,()7,0B -,配方得)238y x =+-(3,D --; (2)∵CF CA =,CO ⊥AF ,∴OF =OA =1,如图,DD 1⊥轴,∴DD 1//CO ,∴1DD F COF ∆~∆, ∴11D D CO FD OF=,CO 1,∴OC =∴CF,∴2CA CF FA ===,即ACF ∆为等边三角形,∴∠AFC =∠ACF =60°,∵∠ECF =∠ACF ,∴AFC ECF ∠=∠,∴//EC BF ,∵CF :DF =OF :FD 1=1:2,∴DF =4,∴CD =6,又∵6EC DC ==,6BF =, ∴//EC BF ,∴四边形BFCE 是平行四边形;(3)①设点P的坐标为2,848x x x ⎛⎫+- ⎪ ⎪⎝⎭, (ⅰ)当点P 在B 点左侧时,因为PAM ∆与1DD A ∆相似,则1)11PM MA DD D A=,214x x x +-,∴11x =(舍),x 2=-11; 2)11PM MA AD DD =,即28484x x +,∴11x =(舍),2373x =-; (ⅱ)当点P 在A 点右侧时,因为PAM ∆与1DD A ∆相似,则3)11PM MA DD D A=,即214x x x +-,∴11x =(舍),23x =-(舍); 4)11PM MA AD DD =,即28484x x +,∴11x =(舍),253x =-(舍); (ⅲ)当点P 在AB 之间时,∵PAM ∆与1DD A ∆相似,则5)11PM MA DD D A=,即214x x x -+-, ∴11x =(舍),23x =-(舍); 6)11PM MA AD DD =,即24x x -+⎝⎭, ∴11x =(舍),253x =-; 综上所述,点P 的横坐标为53-,11-,373-; ②由①可得这样的点P 共有3个.【点睛】本题考查的是函数与几何综合题,涉及了等边三角形的判定与性质,平行四边形的判定,相似三角形的判定与性质,解一元二次方程等,综合性较强,有一定的难度,熟练掌握相关知识,正确进行分类讨论并画出符合题意的图形是解题的关键.4.(山西省2019年中考数学试题)如图,抛物线26y ax bx =++经过点A (-2,0),B (4,0)两点,与y 轴交于点C ,点D 是抛物线上一个动点,设点D 的横坐标为(14)m m <<.连接AC ,BC ,DB ,DC ,(1)求抛物线的函数表达式;(2)△BCD 的面积等于△AOC 的面积的34时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.【答案】(1)233642y x x =-++;(2)3;(3)1234(8,0),(0,0),(M M M M . 【解析】【分析】 (1)利用待定系数法进行求解即可;(2)作直线DE ⊥x 轴于点E ,交BC 于点G ,作CF ⊥DE ,垂足为F ,先求出S △OAC =6,再根据S △BCD =34S △AOC ,得到S △BCD =92,然后求出BC 的解析式为362y x =-+,则可得点G 的坐标为3(,6)2m m -+,由此可得2334DG m m =-+,再根据S △BCD =S △CDG +S △BDG =12DG BO ⋅⋅,可得关于m 的方程,解方程即可求得答案; (3)存在,如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图,以BD 为边时,有3种情况,由点D 的坐标可得点N 点纵坐标为±154,然后分点N 的纵坐标为154和点N 的纵坐标为154-两种情况分别求解;以BD 为对角线时,有1种情况,此时N 1点与N 2点重合,根据平行四边形的对边平行且相等可求得BM 1=N 1D =4,继而求得OM 1= 8,由此即可求得答案.【详解】(1)抛物线2y ax bx c =++经过点A (-2,0),B (4,0), ∴426016460a b a b -+=⎧⎨++=⎩,解得3432a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线的函数表达式为233642y x x =-++;(2)作直线DE ⊥x 轴于点E ,交BC 于点G ,作CF ⊥DE ,垂足为F , ∵点A 的坐标为(-2,0),∴OA =2,由0x =,得6y =,∴点C 的坐标为(0,6),∴OC =6,∴S △OAC =1126622OA OC ⋅⋅=⨯⨯=, ∵S △BCD =34S △AOC , ∴S △BCD =39642⨯=, 设直线BC 的函数表达式为y kx n =+,由B ,C 两点的坐标得406k n n +=⎧⎨=⎩,解得326k n ⎧=-⎪⎨⎪=⎩, ∴直线BC 的函数表达式为362y x =-+, ∴点G 的坐标为3(,6)2m m -+, ∴2233336(6)34224DG m m m m m =-++--+=-+, ∵点B 的坐标为(4,0),∴OB =4,∵S △BCD =S △CDG +S △BDG =1111()2222DG CF DG BE DG CF BE DG BO ⋅⋅+⋅⋅=⋅+=⋅⋅, ∴S △BCD =22133346242m m m m -+⨯=-+(), ∴239622m m -+=, 解得11m =(舍),23m =,∴m 的值为3;(3)存在,如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图,以BD 为边时,有3种情况,∵D 点坐标为15(3,)4,∴点N 点纵坐标为±154, 当点N 的纵坐标为154时,如点N 2, 此时233156424x x -++=,解得:121,3x x =-=(舍), ∴215(1,)4N -,∴2(0,0)M ; 当点N 的纵坐标为154-时,如点N 3,N 4,此时233156424x x -++=-,解得:1211x x ==∴315(1)4N +-,415(1)4N -,∴3M ,4(M ; 以BD 为对角线时,有1种情况,此时N 1点与N 2点重合, ∵115(1,)4N -,D (3,154),∴N 1D =4,∴BM 1=N 1D =4,∴OM 1=OB +BM 1=8, ∴M 1(8,0),综上,点M 的坐标为:1234(80)(00)(M M M M ,,,,.【点睛】本题考查的是二次函数的综合题,涉及了待定系数法、三角形的面积、解一元二次方程、平行四边形的性质等知识,运用了数形结合思想、分类讨论思想等数学思想,熟练掌握和灵活运用相关知识是解题的关键.最新模拟试题5.(2020年湖北省枣阳市太平一中中考数学模拟题)如图已知点A (﹣2,4)和点B (1,0)都在抛物线y =mx 2+2mx +n 上.(1)求m 、n ;(2)向右平移上述抛物线,记平移后点A 的对应点为A ′,点B 的对应点为B ′,若四边形A A ′B ′B 为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB ′的交点为点C ,试在x 轴上找点D ,使得以点B ′、C 、D 为顶点的三角形与△ABC 相似.【答案】(1)4,43m n =-=(2)2416(4)33y x '=--+(3)13,03D ⎛⎫ ⎪⎝⎭【解析】【分析】 (1)已知了抛物线图象上A 、B 两点的坐标,将它们代入抛物线的解析式中,即可求得m 、n 的值.(2)根据A 、B 的坐标,易求得AB 的长;根据平移的性质知:四边形A A ′B ′B 一定为平行四边形,若四边形A A ′B ′B 为菱形,那么必须满足AB =BB ′,由此可确定平移的距离,根据“左加右减”的平移规律即可求得平移后的抛物线解析式.(3)易求得直线AB ′的解析式,联立平移后的抛物线对称轴,可得到C 点的坐标,进而可求出AB 、BC 、AC 、B ′C 的长;在(2)题中已经证得AB =BB ′,那么∠BAC =∠BB ′C ,即A 、B ′对应,若以点B ′、C 、D 为顶点的三角形与△ABC 相似,可分两种情况考虑:①∠B ′CD =∠ABC ,此时△B ′CD ∽△ABC ,②∠B ′DC =∠ABC ,此时△B ′DC ∽△ABC ;根据上述两种不同的相似三角形所得不同的比例线段,即可求得不同的BD 长,进而可求得D 点的坐标.【详解】解:(1)由于抛物线经过A (﹣2,4)和点B (1,0),则有:44420m m n m m n -+=⎧⎨++=⎩,解得434m n ⎧=-⎪⎨⎪=⎩; 故m =﹣43,n =4.(2)由(1)得:y =﹣43x 2﹣83x +4=﹣43(x +1)2+163;由A (﹣2,4)、B (1,0),可得AB =5;若四边形A A ′B ′B 为菱形,则AB =BB ′=5,即B ′(6,0);故抛物线需向右平移5个单位,即:y =﹣43(x +1﹣5)2+163=﹣43(x ﹣4)2+163.(3)由(2)得:平移后抛物线的对称轴为:x =4;∵A (﹣2,4),B ′(6,0),∴直线AB ′:y =﹣12x +3; 当x =4时,y =1,故C (4,1);所以:AC B ′C BC ;由(2)知:AB =BB ′=5,即∠BAC =∠BB ′C ;若以点B ′、C 、D 为顶点的三角形与△ABC 相似,则:①∠B ′CD =∠ABC ,则△B ′CD ∽△ABC ,可得:B CAB ''=B D AC'',B ′D =3, 此时D (3,0);②∠B ′DC =∠ABC ,则△B ′DC ∽△ABC ,可得:B CAC '=B D AB '=5B D ',B ′D =53, 此时D (133,0);综上所述,存在符合条件的D点,且坐标为:D(3,0)或(133,0).【点睛】此题考查了二次函数解析式的确定、函数图象的平移、菱形的判定和性质、相似三角形的判定和性质等知识;(3)题中,在相似三角形的对应角和对应边不确定的情况下,一定要分类讨论,以免漏解.6.(河南省外国语中学2019届九年级中招适应性测试卷数学试题)如图,在平面直角坐标系xOy中,已知抛物线y=ax2-2x+c与直线y=kx+b都经过A(0,-3)、B(3,0)两点,该抛物线的顶点为C.(1)求此抛物线和直线AB的解析式;(2)设直线AB与该抛物线的对称轴交于点E,在射线EB上是否存在一点M,过M作x轴的垂线交抛物线于点N,使点M、N、C、E是平行四边形的四个顶点?若存在,求点M的坐标;若不存在,请说明理由;(3)设点P是直线AB下方抛物线上的一动点,当△P AB面积最大时,求点P的坐标,并求△P AB面积的最大值.【答案】(1) 抛物线的解析式为y=x2-2x-3,直线AB的解析式为y=x-3;(2) M点的坐标为(2,-1)或,(3) 当m=32时,△P AB面积的最大值是278,此时P点坐标为(32,−32).【解析】(1)将A(0,-3)、B(3,0)两点坐标分别代入二次函数的解析式和一次函数解析式即可求解;(2)先求出C点坐标和E点坐标,则CE=2,分两种情况讨论:①若点M在x轴下方,四边形CEMN为平行四边形,则CE=MN,②若点M在x轴上方,四边形CENM为平行四边形,则CE=MN,设M(a,a-3),则N(a,a2-2a-3),可分别得到方程求出点M的坐标;(3)如图,作PG∥y轴交直线AB于点G,设P(m,m2-2m-3),则G(m,m-3),可由S△P AB=12 PG•OB,得到m的表达式,利用二次函数求最值问题配方即可.【详解】(1)∵抛物线y=ax2-2x+c经过A(0,-3)、B(3,0)两点,∴9603a cc-+⎧⎨-⎩==,∴13 ac⎧⎨-⎩==,∴抛物线的解析式为y=x2-2x-3,∵直线y=kx+b经过A(0,-3)、B(3,0)两点,∴303k bb+⎧⎨-⎩==,解得:13kb⎧⎨-⎩==,∴直线AB的解析式为y=x-3,(2)∵y=x2-2x-3=(x-1)2-4,∴抛物线的顶点C的坐标为(1,-4),∵CE∥y轴,∴E(1,-2),∴CE=2,①如图,若点M在x轴下方,四边形CEMN为平行四边形,则CE=MN,设M(a,a-3),则N(a,a2-2a-3),∴MN=a-3-(a2-2a-3)=-a2+3a,∴-a2+3a=2,解得:a=2,a=1(舍去),∴M(2,-1),②如图,若点M在x轴上方,四边形CENM为平行四边形,则CE=MN,设M (a ,a -3),则N (a ,a 2-2a -3),∴MN =a 2-2a -3-(a -3)=a 2-3a ,∴a 2-3a =2,解得:a ,a (舍去),∴M ,2-),综合可得M 点的坐标为(2,-1 (3)如图,作PG ∥y 轴交直线AB 于点G ,设P (m ,m 2-2m -3),则G (m ,m -3),∴PG =m -3-(m 2-2m -3)=-m 2+3m ,∴S △P AB =S △PGA +S △PGB =12PG •OB =12×(−m 2+3m )×3=−32m 2+92m =-32 (m −32)2+278, ∴当m =32时,△P AB 面积的最大值是278,此时P 点坐标为(32,−32). 【点睛】本题是二次函数综合题,考查了待定系数法求函数解析式,二次函数求最值问题,以及二次函数与平行四边形、三角形面积有关的问题.7.(河南省洛阳市2019-2020学年九年级上学期期中数学试题)如图,抛物线2y x bx c =-++交x 轴于A ,B 两点,交y 轴于点C .直线122y x =-+经过点B ,C .(1)求抛物线的解析式;(2)点P 是直线BC 上方抛物线上一动点,设点P 的横坐标为m .①求PBC ∆面积最大值和此时m 的值;②Q 是直线BC 上一动点,是否存在点P ,使以A 、B 、P 、Q 为顶点的四边形是平行四边形,若存在,直接写出点P 的坐标.【答案】(1)2722y x x =-++;(2)①当2m =时max 8∆=PBC S ,②P ⎝⎭,41324⎛+ ⎝⎭【解析】(1)求出点B 、C 的坐标,将点B 、C 的坐标代入抛物线表达式,即可求解;(2)①过点P 作y 轴的平行线交直线BC 于点H ,根据△PBC 面积=12×PH ×OB ,利用二次函数的性质即可求解;②分AB 是平行四边形的边,AB 是平行四边形的对角线两种情况,分别求解即可.【详解】解:(1)∵直线122y x =-+经过点B ,C , ∴点B 、C 的坐标分别为:(4,0)、(0,2),将点B 、C 的坐标代入抛物线表达式,得01642b c c =-++⎧⎨=⎩,解得:722b c ⎧=⎪⎨⎪=⎩, ∴抛物线的表达式为:2722y x x =-++; (2)①过点P 作y 轴的平行线交直线BC 于点H ,则点P (m ,2722m m -++),点H (m ,122m -+), ∴△PBC 面积=12×PH ×OB =12×4×(2722221m m m -+++-)=−2m 2+8m =−2(m -2)2+8, ∴当m =2时,面积存在最大值8;②设点P (m ,2722m m -++),点Q (n ,122n -+), 令27202y x x =-++=,解得:12124x x ⎧=-⎪⎨⎪=⎩, ∴点A 的坐标为:(12-,0), 当AB 是平行四边形的边时,点A 向右平移92个单位得到B , 同样点P (Q )向右平移92个单位得到Q (P ), 则m ±92=n ,2722m m -++=122n -+, 解得:m =12-(舍去)或92∴此时P 点坐标为⎝⎭或⎝⎭; 当AB 是平行四边形的对角线时,由中点公式得:m +n =72,27122022m m n -++-+=, 解得:m =12-或92(重复,舍去);综上点P 的坐标为:⎝⎭或⎝⎭.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图形的面积计算等,其中(2)②,要注意分类求解,避免遗漏.8.(河南省濮阳市县区2019-2020学年九年级上学期期末数学试题)如图,已知抛物线23)0(y a bx a =++≠经过点1,0A 和点()3,0B ,与y 轴交于点C .(1)求此抛物线的解析式;(2)若点P 是直线BC 下方的抛物线上一动点(不点B ,C 重合),过点P 作y 轴的平行线交直线BC 于点D ,设点P 的横坐标为m .①用含m 的代数式表示线段PD 的长;②连接PB ,PC ,求PBC ∆的面积最大时点P 的坐标;(3)设抛物线的对称轴与BC 交于点E ,点M 是抛物线的对称轴上一点,N 为y 轴上一点,是否存在这样的点M 和点N ,使得以点C 、E 、M 、N 为顶点的四边形是菱形?如果存在,请直接写出点M 的坐标;如果不存在,请说明理由.【答案】(1)y =x 2﹣4x +3;(2)①用含m 的代数式表示线段PD 的长为﹣m 2+3m ;②△PBC 的面积最大时点P 的坐标为(32,﹣34);(3)存在这样的点M 和点N ,使得以点C 、E 、M 、N 为顶点的四边形是菱形.点M 的坐标为M 1(2,3),M 2(2,1﹣),M 3(2,).【解析】(1)根据已知抛物线y=ax2+bx+3(a≠0)经过点A(1,0)和点B(3,0)代入即可求解;(2)①先确定直线BC解析式,根据过点P作y轴的平行线交直线BC于点D,即可用含m的带上书表示出P和D的坐标进而求解;②用含m的代数式表示出△PBC的面积,可得S是关于m的二次函数,即可求解;(3)根据(1)中所得二次函数图象和对称轴先得点E的坐标即可写出点三个位置的点M的坐标.【详解】(1)∵抛物线y=ax2+bx+3(a≠0)经过点A(1,0)和点B(3,0),与y轴交于点C,∴309330a ba b++=⎧⎨++=⎩,解得14ab=⎧⎨=-⎩,∴抛物线解析式为y=x2﹣4x+3;(2)①设P(m,m2﹣4m+3),将点B(3,0)、C(0,3)代入得直线BC解析式为y BC=﹣x+3.∵过点P作y轴的平行线交直线BC于点D,∴D(m,﹣m+3),∴PD=(﹣m+3)﹣(m2﹣4m+3)=﹣m2+3m.答:用含m的代数式表示线段PD的长为﹣m2+3m.②S△PBC=S△CPD+S△BPD=12OB•PD=﹣32m2+92m=﹣32(m﹣32)2+278.∴当m=32时,S有最大值.当m=32时,m2﹣4m+3=﹣34.∴P(32,﹣34).答:△PBC的面积最大时点P的坐标为(32,﹣34).(3)存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形.根据题意,点E(2,1),∴EF=CF=2,∴EC=2,根据菱形的四条边相等,∴ME=EC,∴M(2,1-)或(2,)当EM=EF=2时,M(2,3)∴点M的坐标为M1(2,3),M2(2,1﹣),M3(2,).【点睛】本题考查了二次函数与方程、几何知识综合应用,解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.9.(2019年河南中考原创卷A卷)如图,抛物线y=﹣x2+2x+3与x轴相交的于A,B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.(1)直接写出A,B,C三点的坐标和抛物线的对称轴;(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点(P不与C,B两点重合),过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形.②设△BCF的面积为S,求S与m的函数关系式;当m为何值时,S有最大值.【解析】解:(1)对于抛物线y=﹣x2+2x+3,令x=0,得到y=3;令y=0,得到﹣x2+2x+3=0,即(x﹣3)(x+1)=0,解得:x=﹣1或x=3,则A(﹣1,0),B(3,0),C(0,3),抛物线对称轴为直线x=1;(2)①设直线BC的函数解析式为y=kx+b,把B(3,0),C(0,3)分别代入得:,解得:k=﹣1,b=3,∴直线BC的解析式为y=﹣x+3,当x=1时,y=﹣1+3=2,∴E(1,2),当x=m时,y=﹣m+3,∴P(m,﹣m+3),令y=﹣x2+2x+3中x=1,得到y=4,∴D(1,4),当x=m时,y=﹣m2+2m+3,∴F(m,﹣m2+2m+3),∴线段DE=4﹣2=2,∵0<m<3,∴y F>y P,∴线段PF=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m,连接DF,由PF∥DE,得到当PF=DE时,四边形PEDF为平行四边形,由﹣m2+3m=2,得到m=2或m=1(不合题意,舍去),则当m=2时,四边形PEDF为平行四边形;②连接BF,设直线PF与x轴交于点M,由B(3,0),O(0,0),可得OB=OM+MB=3,∵S=S△BPF+S△CPF= PF•BM+PF•OM=PF(BM+OM)=PF•OB,∴S=×3(﹣m2+3m)=﹣m2+m(0<m<3),的则当m =时,S 取得最大值.10.(2019年河南中考原创卷B 卷)如图,一次函数y =-12x +2的图象分别交y 轴、x 轴于A 、B 两点,抛物线y =-x 2+bx +c 过A 、B 两点.(1)求该抛物线的解析式;(2)作垂直于x 轴的直线x =t,在第一象限内交直线AB 于M,交抛物线于N .当t 取何值时,MN 有最大值,最大值是多少?(3)在(2)的情况下,以A 、M 、N 、D 为顶点作平行四边形,求第四个顶点D 的坐标.【解析】解: (1)∵y =-12x +2的图象分别交y 轴、x 轴于A 、B 两点,∴A (0,2),B (4,0), 将A (0,2),B (4,0)代入抛物线y =-x 2+bx +c 中,得2,1640,c b c =⎧⎨-++=⎩ 解得7,22,b c ⎧=⎪⎨⎪=⎩∴该抛物线的解析式为y =-x 2+72x +2. (2)如图1,设MN 交x 轴于点E,图1则E(t,0),BE=4-t.∵tan∠ABO=OAOB=24=12,∴ME=BE·tan∠ABO=(4-t)×12=2-12t.又N点在抛物线上,且xN =t,∴yN=-t2+72t+2,NE=yN,∴MN=NE-ME=-t2+72t+2-122t⎛⎫-⎪⎝⎭=-t2+4t=-(t-2)2+4,∴当t=2时,MN有最大值,最大值为4.(3)由(2)可知,A(0,2),M(2,1),N(2,5).以A、M、N、D为顶点作平行四边形,D点的位置分三种情况,如图2所示.图2(i)当D在y轴上时,设D的坐标为(0,a),由AD=MN,得|a-2|=4,解得a1=6,a2=-2,所以D 1(0,6),D 2(0,-2), (ii )当D 不在y 轴上时,由图可知3D 为N D 1延长线与M D 2延长线的交点,易得N D 1的方程为y =-12x +6,M D 2的方程为y =32x -2, 由两方程联立解得3D (4,4),故所求的D 点坐标为(0,6),(0,-2)或(4,4).11.(2020年广东省初中学业水平考试数学模拟试题)如图,在平面直角坐标系中,已知抛物线220y ax bx a =++≠()与x 轴交于A (-1,0),B (3,0)两点,与y 轴交于点C .(1)求该抛物线的解析式;(2)如图①,若点D 是抛物线上一动点,设点D 的横坐标为m (0<m <3),连接CD ,BD ,BC ,AC ,当△BCD 的面积等于△AOC 面积的2倍时,求m 的值;(3)若点N 为抛物线对称轴上一点,请在图②中探究抛物线上是否存在点M ,使得以B ,C ,M ,N 为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.【答案】(1)224233y x x =-++(2)1或2(3)存在;M 1(2,2)M 2(-2,10-3)M 3(4,10-3) 【解析】【分析】 (1)将A 、B 两点坐标代入抛物线解析式求出a 、b 即可得到解析式;(2)过点D 作y 轴平行线交BC 于点E ,用m 表示出D 、E 的坐标,求出DE 线段的表达式,再利用面积关系建立方程求解;(3)根据平行四边形对角线互相平分,可知对角线上的两个点的中点相同,可用中点坐标公式建立方程求解,设N (1,n ),M (x,y ),分3种情况讨论即可.【详解】(1)把A (-1,0),B (3,0)代入22y ax bx =++中,得:209320a b a b -+=⎧⎨++=⎩解得:2343a b ⎧=-⎪⎪⎨⎪=⎪⎩∴抛物线解析式为224233y x x =-++ (2)过点D 作y 轴平行线交BC 于点E把0x =代入224233y x x =-++中,得:2y =, ∴C 点坐标是(0,2),又B (3,0)∴直线BC 的解析式为223y x =-+ ∵224,233⎛⎫-++ ⎪⎝⎭D m m m ∴2,23⎛⎫-+ ⎪⎝⎭E m m ∴2242(2)(2)333DE m m m =-++--+ 2223m m =-+ 由2BCD AOC S S =得:11222=⨯DE OB OA OC ∴212123212232m m -+⨯=⨯⨯⨯() 整理得:2320m m -+=解得 11m =,22m =∵0<m <3∴m 的值为1或2(3)存在点M 使得以B ,C ,M ,N 为顶点的四边形是平行四边形,设N (1,n ),M (x,y ),四边形CMNB 是平行四边形时,CN 、MB 为对角线, ∴103=22++x ∴x =−2,代入抛物线得()()22410222=333=-⨯-+⨯-+-y ∴M (-2,10-3); 四边形CNBM 时平行四边形时,CB 、MN 为对角线, ∴301=22++x , ∴x =2,代入抛物线得224222=233=-⨯+⨯+y ∴M (2,2); 四边形CNMB 时平行四边形时,CM 、BN 为对角线, ∴130=22++x , ∴x =4,代入抛物线得22410442=333=-⨯+⨯+-y ∴M (4,10-3); 综上所述:存在M 1(2,2)M 2(-2,10-3)M 3(4,10-3) 【点睛】本题考查二次函数的综合问题,包含待定系数法求解析式,面积问题和平行四边形存在性问题,属于中考常考类型题,需要掌握抛物线的图像与性质,特殊几何图形的性质,注意数形结合.。
中考数学复习《二次函数压轴题(特殊四边形问题)》专项检测卷(附带答案)
中考数学复习《二次函数压轴题(特殊四边形问题)》专项检测卷(附带答案) 学校:___________班级:___________姓名:___________考号:___________1.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a>0)与x轴交于点A(﹣2,0)和点B,与y轴交于点C,对称轴为直线x=12.(1)请用a的代数式表示C点坐标.(2)连接AC,BC,若△ABC的面积为10,求该抛物线的解析式.(3)在(2)的条件下,点P是直线y=x+2上一点(位于x轴下方),点Q是反比例函数y=kx(k>0)图象上一点,若以点A,C,P,Q为顶点的四边形是菱形,则直接写出k的值(不需要写出计算过程).2.综合与探究如图,抛物线与轴交于A、B两点(点A在点B的左侧),与轴交于点C,连接AC、BC.点P沿AC以每秒1个单位长度的速度由点A向点C运动,同时,点Q沿BO以每秒2个单位长度的速度由点B向点O运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ,过点Q 作QD△x轴,与抛物线交于点D,与BC交于点E.连接PD,与BC交于点F.设点P的运动时间为秒().(1)求直线BC的函数表达式.(2)△直接写出P、D两点的坐标(用含的代数式表示,结果需化简).△在点P 、Q 运动的过程中,当PQ=PD 时,求的值.(3)试探究在点P 、Q 运动的过程中,是否存在某一时刻,使得点F 为PD 的中点.若存在,请直接写出此时的值与点F 的坐标;若不存在,请说明理由.3.已知:平面坐标系内点(),P x y 和点()0,1A ,点P 到点A 的距离始终等于点P 到x 轴的距离. (1)请你求出点P 满足的函数关系式;(2)如果(1)中求出的函数图象记为L ,L '是L 沿着水平方向平移得到的,若点M 在L 上,点N 是L 平移后点M 的对应点,点Q 是x 轴上的点.是否存在这样的点M ,使得以M 、N 、O 、Q 为顶点的四边形是有一个内角为60︒且的菱形?若存在,请你求出Q 点坐标;若不存在,请说明理由.4.如图,直角三角形ABC 中,△ABC =90°,B (2,0),经过A 、B 、C 三点的抛物线y =14x 2﹣2x +k 与y 轴交于点A ,与x 轴的另一个交点为D . (1)求此抛物线的解析式;(2)△B 是以点B 为圆心,OB 长为半径的圆,以点D 为圆心的△D 与直线BC 相切,请你通过计算说明:△B 与△D 的位置关系;(3)在直线AD 下方的抛物线上是否存在一点P ,使四边形APDC 的面积最大?若存在,请你求出点P 的坐标和四边形APDC 面积的最大值;若不存在,请你说明理由.5.如图1,抛物线()230y ax bx a =++≠与x 轴交于点()1,0A -和点B ,与y 轴正半轴交于点C ,且OC OB =.(1)求该抛物线的函数表达式;(2)点P 为直线BC 上方该抛物线上任意一点,过点P 作PF y ∥轴交BC 于点F ,作PE BC ⊥于点E ,当PF 的值最大时,求点P 的坐标,并求出此时PF PE +的最大值;(3)如图2,在(2)问的条件下,将该抛物线沿射线CB 的方向平移22y ',新抛物线y '与原抛物线的交点为M .在新抛物线y '的对称轴上有一点N ,在平面内有一点K ,是否存在以点,,,P K M N 为顶点的四边形是以PN 为边的菱形?若存在,请直接写出点K 的坐标并写出求解K 点坐标的其中一种情况的过程;若不存在,请说明理由.6.如图,在平面直角坐标系xOy 中,AB 在x 轴上,以AB 为直径的半圆△O ′与y 轴正半轴交于点C ,连接BC ,AC .CD 是半圆△O ′的切线,AD △CD 于点D .(1)求证:∠CAD =∠CAB ;(2)已知抛物线y = ax 2 + bx + c 过A 、B 、C 三点,AB = 10,tan ∠CAD =12:△ 求抛物线的解析式;△ 判断抛物线的顶点E 是否在直线CD 上,并说明理由;(3)在抛物线上是否存在一点P ,使四边形PBCA 是直角梯形,请说明理由.7.如图,直线y =﹣x +3与x 轴、y 轴分别交于点B ,点C ,经过B ,C 两点的抛物线y =x 2+bx +c 与x 轴的另一个交点为A ,顶点为P ,点M 为抛物线的对称轴上的一个动点. (1)求该抛物线的解析式;(2)当点M 在x 轴的上方时,求四边形COAM 周长的最小值;(3)在平面直角坐标系内是否存在点N ,使以C ,P ,M ,N 为顶点的四边形为菱形?若存在,请写出所有符合条件的点M 的坐标;若不存在,请说明理由.8.如图,抛物线2y x bx c =-++经过()()1,00,3A C -,两点,并交x 轴于另一点B ,点M 是抛物线的顶点,直线AM 与轴交于点D .(1)求该抛物线与直线AM 的表达式;(2)若点H 是x 轴上一动点,分别连接MH DH ,,求MH DH +的最小值;(3)若点P 是抛物线上一动点,问在对称轴上是否存在点Q ,使得以D M P Q ,,,为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点Q 的坐标;若不存在,请说明理由. 9.如图形似“w”的函数是由抛物线y 1的一部分,其表达式为:y 1=(x 2﹣2x ﹣3)(x≤3)以及抛物线y 2的一部分所构成的,其中曲线y 2与曲线y 1关于直线x=3对称,A 、B 是曲线y 1与x 轴两交点(A 在B 的左边),C 是曲线y 1与y 轴交点.(1)求A ,B ,C 三点的坐标和曲线y 2的表达式;(2)我们把其中一条对角线被另一条对角线垂直且平分的四边形称为筝形.过点C 作x 轴的平行线与曲线y 1交于另一个点D ,连接AD .试问:在曲线y 2上是否存在一点M ,使得四边形ACDM 为筝形?若存在,计算出点M 的横坐标,若不存在,说明理由.10.如图,抛物线y =223x x --与x 轴交于A 、 B 两点,与y 轴交于点C ,顶点是D ,连接BC ,交抛物线的对称轴于点E ,点P 是线段BC 上的一个动点,点F 是第四象限抛物线上的一个动点.(1)求点A 、B 、C 的坐标. (2)求抛物线的对称轴和顶点坐标.(3)如图2,求以D 、E 、F 、P 四点为顶点的四边形是平行四边形时点P 的坐标.(4)如图3,连接CF ,BF ,满足第(3)问中的点F 能否使△BCF 的面积最大,请通过计算说明. 11.已知抛物线22y ax bx =+-与x 轴交于点()()1,0,4,0A B -,与y 轴交于C 点. (1)求抛物线的解析式;(2)如图1,直线x m =(04m <<)交抛物线于M 点,交BC 于N 点,且CM ON ,求m 的值;(3)如图2,若点()00,P x y 为抛物线x 轴下方一点,直线AP 交y 轴于()10,E y 点,直线BP 交y 轴于()20,F y 点,试判断012,,y y y 三者之间的等量关系,并加以证明.12.如图,在平面直角坐标系中,抛物线212y x bx c =++与坐标轴交于()()0,2,4,0A B -两点,直线:28BC y x =-+交y 轴于点C .点D 为直线AB 下方抛物线上一动点,过点D 作x 轴的垂线,垂足为,G DG 分别交直线,BC AB 于点,E F .(1)求抛物线212y x bx c =++的表达式; (2)当12GF =,连接BD ,求BDF 的面积; (3)△H 是y 轴上一点,当四边形BEHF 是矩形时,求点H 的坐标;△在△的条件下,第一象限有一动点P ,满足2PH PC =+,求PHB △周长的最小值.13.已知抛物线212y x bx c =++与y 轴交于点()0,3A ,对称轴是直线3x =. 直线12y x m =+与抛物线交于B ,C 两点(点B 在点C 的左侧),点Q 是直线BC 下方抛物线上的一个动点,点P 在抛物线对称轴上. (1)求抛物线的表达式;(2)当点P 在x 轴上,且ABC 和PBC 的面积相等时,求m 的值;(3)求证:当四边形QBPC 是平行四边形时,不论m 为何值,点Q 的坐标不变.14.已知二次函数20y ax bx c a =++≠()的图象与x 轴交于()()3010A B -,,,两点,与y 轴交于点(0,3)C - (1)求二次函数的表达式;(2)D 是二次函数图象上位于第三象限内的点,求点D 到直线AC 的距离取得最大值时点D 的坐标; (3)M 是二次函数图象对称轴上的点,在二次函数图象上是否存在点N .使以M N B O 、、、为顶点的四边形是平行四边形?若有,请写出点N 的坐标(不写求解过程).15.在平面直角坐标系中,二次函数22y ax bx =++的图象与x 轴交于()()3010A B -,,,两点,与y 轴交于点C .(1)求这个二次函数的解析式;(2)点P 是直线AC 上方的抛物线上一动点,设三角形APC 的面积为S ,求S 的最大值及S 取得最大值时点P 的坐标;(3)点M 为抛物线上一动点,在x 轴上是否存在点Q ,使以A 、C 、M 、Q 为顶点的四边形是平行四边形?若存在,直接写出点Q 的坐标;若不存在,说明理由.16.如图,抛物线24y ax bx =++经过点()2,0A -,点()4,0B ,与y 轴交于点C ,过点C 作直线//CD x 轴,与抛物线交于点D ,作直线BC ,连接AC .(1)求抛物线的函数表达式,并用配方法求抛物线的顶点坐标; (2)E 是抛物线上的点,求满足ECD ACO ∠=∠的点E 的坐标;(3)点M 在y 轴上,且位于点C 的上方,点N 在直线BC 上,点P 为直线BC 上方抛物线上一点,若以点C ,M ,N ,P 为顶点的四边形是菱形,求菱形的边长.参考答案:1.(1)C (0,﹣6a );(2)222433y x x =--;(3)k 的值为5. 2.(1);(2)△P (,),D (,);△;(3)t=3,F (,). 3.(1)21122yx ;(2)存在,Q 坐标为() () ()- ()-.4.(1)y =14x 2﹣2x +3;(2)△B 与△D 的位置关系为相交;(3)当x =3,即 P (3,﹣34)时,四边形APDC 的面积最大,且最大值为28912. 5.(1)抛物线的表达式为:223y x x =-++(2)PF 的最大值为94,此时点315,24P ⎛⎫ ⎪⎝⎭;PF PE +的最大值为188+(3)存在,点K 的坐标为⎛ ⎝⎭或⎛ ⎝⎭或91,4⎛⎫⎪⎝⎭6.(1)证明略(2)△y =14-x 232-x +4;△抛物线顶点E 在直线CD 上(3)存在,P 1(-10,-6),P 2(10,-36)7.(1)243y x x -+=;(2)432+3)存在,点M 的坐标为322⎛⎫⎪⎝⎭,或()27,或(2125+,﹣或(2125-,-. 8.(1)抛物线的表达式:223y x x =-++,直线AM 的表达式:22y x =+; (2)37MH DH +=(3)Q 点坐标为()1,3或()1,1或()1,5.9.(1)A (﹣1,0),B (3,0),C (03.y 23x 2﹣10x+21)(x≥3);(2)存在,x M 1373+ 10.(1)A (-1,0)、 B (3,0)、 C (0,-3) (2)对称轴1x =,顶点(1,-4) (3)P (2,-1)或P (0,-3) (4)不能11.(1)213222y x x =-- (2)2(3)1202y y y ⋅=-12(1)213222y x x =--;(2)34;(3)△()0,3H ;△457 13.(1)抛物线的表达式是21332y x x =-+ (2)34m =14.(1)223y x x =+-;(2)(32-,154-);(3)(-2,-3)或(0,-3)或(2,5).15.(1)224233y x x =--+(2)94,3522P ⎛⎫- ⎪⎝⎭,(3)存在点Q ,使得以A C M Q 、、、为顶点的四边形是平行四边形,Q 点的坐标为()10-,或()50-,或()2或()216.(1)2142y x x =-++,91,2⎛⎫ ⎪⎝⎭;(2)点E 的坐标为53,2⎛⎫ ⎪⎝⎭或91,2⎛⎫⎪⎝⎭;(3)4.。
+2023+年九年级数学中考复习+二次函数与平行四边形综合压轴题+专题提升训练+
2022-2023学年九年级数学中考复习《二次函数与平行四边形综合压轴题》专题提升训练(附答案)1.如图1,已知抛物线C1是抛物线C:y=(x﹣2)2向上平移1个单位长度得到,抛物线C1的顶点为Q.(1)求抛物线C1的函数解析式;(2)点P是y轴上的一个动点,①如图1,过点P作直线l平行于x轴,与抛物线C1相交于点A,设点A的横坐标为m(m<2),点B与点P关于直线x=m对称,点D在抛物线C上,求当m为何值时,四边形PQBD是平行四边形?②如图2,直线y=x+1与抛物线C1交于E,F两点,当△PEF的周长最小时,求S△PEF的值.2.综合与探究:如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点A的坐标是(﹣1,0),点C的坐标是(0,3),点F在对称轴上运动.(1)求抛物线的解析式及顶点D的坐标;(2)如图1,点D关于y轴的对称点是点E,连接FE,以EF为边作等腰直角三角形EFG,使EF=FG,∠EFG=90°,点G恰好落在该抛物线上,求点F的坐标;(3)点H在抛物线上运动,请借助图2探究以点O,B,F,H为顶点的四边形是平行四边形,请直接写出点H的坐标.3.已知抛物线y=ax2﹣2ax+c(a<0)与x轴交于A、B两点(点A在点B的左侧),与y 轴交于点C(0,4),抛物线的顶点为P,对称轴交BC于点M,连接PC、PB,△PCM 与△PBM的面积比为1:2;(1)①抛物线的对称轴是;②求抛物线的函数表达式.(2)若点Q为抛物线第一象限图象上的一点,作QN⊥x轴交BC于点N,当QN+NB取得最大值时,求以Q、N、B、G为顶点的平行四边形顶点G的坐标.4.已知抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴交于C点,且A(﹣1,0),C(0,4).(1)求抛物线的解析式;(2)点P为抛物线上位于直线BC上方的一点,连结PB、PC.①如图1,过点P作PE∥y轴交BC于点D,交x轴于点E,连结OD.设△BCP的面积为S1,△ODE的面积为S2,若S=S1﹣S2,求S的最大值;②如图2,已知∠PBC+∠ACO=45°,Q为平面内一点,若以点A、C、P、Q为顶点的四边形是以CP为边的平行四边形,求点Q的坐标.5.如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点(A在B的左侧),与y轴交于点N,过A点的直线l:y=﹣x﹣1与y轴交于点C,与抛物线y=﹣x2+bx+c的另一个交点为D (5,﹣6),已知P点为抛物线y=﹣x2+bx+c上一动点(不与A、D重合).(1)求抛物线的解析式;(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作PF∥y 轴交直线l于点F,求PE+PF的最大值;(3)设M为直线l上的动点,以NC为一边且顶点为N,C,M,P的四边形是平行四边形,求所有符合条件的M点坐标.6.如图,直线y=﹣x+3分别交x,y轴于点B,C,经过点B,C的抛物线y=ax2+2x+c与x轴的另一交点为点A.(1)求抛物线的解析式;(2)若点P为第一象限内抛物线上一动点,连接AP,交BC于点D,求的最大值及此时点P的坐标;(3)若点F在x轴上,点G在抛物线的对称轴上,以点B,C,F,G为顶点的四边形为平行四边形,请直接写出点F的坐标.7.如图,在平面直角坐标系中,抛物线y=x2+x﹣3交x轴于点A,点B(点A在点B 的左侧),交y轴于点C,连接AC,BC.P是第三象限内抛物线上一动点,过P作PE ∥y轴交AC于点E,过E作EF∥BC交x轴于点F.(1)求△ABC的面积;(2)求PE+EF+FO的最大值及此时点P的坐标;(3)将抛物线y=x2+x﹣3平移,使得新抛物线的顶点为(2)中求得的点P,点Q 为x轴下方的新抛物线上一点,R为x轴上一点,直接写出所有使得以点A,C,Q,R 为顶点的四边形是平行四边形的点R的坐标.8.如图,抛物线y=ax2+bx+3(a≠0)与x轴交于点A(3,0)和点B(﹣1,0),与y轴交于点C.(1)求抛物线的解析式;(2)抛物线的对称轴与直线AC交于点E,与x轴交于点F,P为直线AC.上方抛物线上一动点.求△CPE的面积最大时P点坐标;(3)在(2)的条件下,点M在x轴上,在抛物线上是否存在点Q,使得以F,M,P,Q为顶点的四边形是平行四边形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.9.如图,在平面直角坐标系中,抛物线L:y=ax2+bx+3(a≠0)与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C.(1)求抛物线L的解析式;(2)已知第一象限内抛物线上一点P,其纵坐标为3,连接BC,将原抛物线L沿射线BC方向平移3个单位,得到新的抛物线L',点P的对应点为点D,点E为L'的对称轴上任意一点,在L'上确定一点F,使得以点C、D、E、F为顶点的四边形是平行四边形,求出所有符合条件的点F的坐标.10.如图,在平面直角坐标系中,抛物线C1:y=ax2+bx+2交x轴于A、B两点(点A在点B的左侧),交y轴于点C,一次函数y=﹣x﹣1交抛物线于A,D两点,其中点D(3,﹣4).(1)求抛物线C1的解析式;(2)点G为抛物线上一点,且在线段BC上方,过点G作GH∥y轴交BC于H,交x 轴于点N,作GM⊥BC于点M,求△GHM周长的最大值;(3)将抛物线C1沿着射线AD方向平移后得到抛物线C2,使得点A平移后的对应点为A′(),抛物线C1与抛物线C2交于点R,动点P在抛物线C2上.抛物线C1的对称轴上是否存在点E,使得以点A、R、P、E为顶点的四边形为平行四边形?若存在,请求出点E;若不存在,请说明理由.11.如图,直线y=﹣x+3与x轴交于点A,与y轴交于点B,抛物线y=ax2+x+c经过A、B两点.(1)求二次函数解析式;(2)如图1,点E在线段AB上方的抛物线上运动(不与A、B重合),过点E作ED⊥AB,交AB于点D,作EF⊥AC,交AC于点F,交AB于点M,求△DEM的周长的最大值;(3)在(2)的结论下,连接CM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、C、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.(4)如图2,点N的坐标是(1,0),将线段ON绕点O逆时针旋转得到ON′,旋转角为α(0°<α<90°),连接N′A、N′B,求N′A+N′B的最小值.12.抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣3,0),B(1,0)两点,与y轴交于点C(0,3),点P是抛物线上的一个动点.(1)求抛物线的函数表达式;(2)如图1,点P在线段AC上方的抛物线上运动(不与A,C重合),过点P作PD⊥AB,垂足为D,PD交AC于点E.作PF⊥AC,垂足为F,求△PEF的面积的最大值;(3)如图2,点Q是抛物线的对称轴l上的一个动点,在抛物线上,是否存在点P,使得以点A,P,C,Q为顶点的四边形是平行四边形?若存在,求出所有符合条件的点P 的坐标;若不存在,说明理由.13.如图,抛物线经过点A(﹣1,0),B(4,0),与y轴交于点C,连接BC,AC,对称轴l与BC交于点D,连接AD.(1)求抛物线的解析式;(2)抛物线上是否存在一点P,使得?若存在,求点P的坐标;若不存在,说明理由;(3)E是对称轴l上一点,F是抛物线上一点,若以A,C,E,F为顶点的四边形是平行四边形,直接写出点F的坐标.14.如图,在平面直角坐标系中,抛物线L:y=ax2+bx+c与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C(0,﹣4).(1)求抛物线L的函数表达式;(2)抛物线L'与L关于原点对称,点A、B在L'上的对应点分别为A'、B'.那么在L'的对称轴上是否存在一点M,在L上是否存在一点N,使得以A、A'、M、N为顶点的四边形是平行四边形?若存在,求出N点的坐标;若不存在,请说明理由.15.如图1,二次函数y=ax2+bx+3(a≠0)的图象与x轴交于点A,B,与y轴交于点C,tan∠CBO=,点A(﹣2,0).(1)求二次函数的解析式;(2)如图2,点P是直线BC上方抛物线上一点,PD∥y轴交BC于点D.PE∥BC变x 轴于点E.求PD+BE的最大值;(3)在(2)的条件下,当PD+BE取最大值时,点M在该抛物线的对称轴上,满足△BPM的周长最小,点N为该坐标平面内一点,是否存在以点A,B,M,N为顶点的平行四边形,若存在,请直接写出点N的坐标;若不存在,请说明理由.16.如图,在平面直角坐标系中,抛物线y=﹣x2+2x+3交x轴于A,B两点(点A在点B 的左侧),点C是抛物线的顶点.点P是直线BC上方抛物线上的一个动点,过点P作PE∥y轴,交BC于点E,PF⊥BC,垂足为F.(1)求点C的坐标;(2)当PE+PF取得最大值时,求点P的坐标和PE+PF的最大值;(3)当点P满足(2)问的条件时,把抛物线y=﹣x2+2x+3向右平移,使得新抛物线经过原点,M是新抛物线上一点,N是直线BC上一点,直接写出所有使得以点A,P,M,N为顶点的四边形是平行四边形的点M的坐标,并把求其中一个点M的坐标的过程写出来.17.在平面直角坐标系中,已知抛物线与x轴交于点A(﹣1,0)和点B,与y轴交于点C (0,3),对称轴为直线x=1,交x轴于点E.(1)求该抛物线的表达式;(2)点D为此抛物线的顶点,证明:∠CDB=∠CAB;(3)在x轴上是否存在一点M,以及抛物线上一点N,使得以M、N、B、C四点构成的四边形为平行四边形?如果有,请直接写出点M的坐标;如果没有,请说明理由.18.在平面直角坐标系中,二次函数y=a(x﹣1)2与直线y=﹣x﹣1交于A、B两点,其中点B的坐标为(0,﹣1),抛物线的顶点C在x轴上.(1)求二次函数的表达式;(2)点P为线段AB上的一个动点(点P不与A、B两点重合),过点P作PE∥y轴交抛物线于点E,设线段PE的长为h,点P的横坐标为t,当t取何值时,h有最大值?最大值是多少?(3)点D为直线AB与对称轴x=1的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时点P的坐标;若不存在,请说明理由.19.如图,抛物线y=ax2+bx+c(a≠0)的图象经过A(1,0),B(3,0),C(0,6)三点.(1)求抛物线的解析式.(2)抛物线的顶点M与对称轴l上的点N关于x轴对称,直线AN交抛物线于点D,点E为抛物线在直线AD下方的一个动点,连接AE、DE,问:△ADE的面积是否存在最大值?若存在,请求出面积的最大值和点E的坐标.若不存在,请说明理由.(3)P为抛物线上的一动点,Q为对称轴上一动点,若以A、D、P、Q为顶点的四边形为平行四边形,请直接写出点P的坐标(至少写两个).20.综合与探究如图,抛物线y=ax2+bx﹣6经过点A(﹣2,0),B(6,0)两点,与y轴交于点C,点D是抛物线的顶点,点P是抛物线上一个动点,设点P的横坐标为m(0<m<6),连接AC,BD,PB,PD.(1)分别求出抛物线与直线BD的函数表达式;(2)当S△BDP=S△AOC时,求m的值;(3)若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点A、C、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.参考答案1.解:(1)∵抛物线C1是抛物线C:y=(x﹣2)2向上平移1个单位长度得到,∴抛物线C1的函数解析式为:y=(x﹣2)2+1;(2)①根据题意得:A(m,m2﹣4m+5),Q(2,1),∵点B与点P关于直线x=m对称,∴B(2m,m2﹣4m+5),P(0,m2﹣4m+5),∵四边形PQBD是平行四边形,∴PD∥QB,PD=QB,∴QB向左平移2个单位,向上平移(m2﹣4m+5﹣1)个单位得到PD,∴D(2m﹣2,2m2﹣8m+9),又∵点D在在抛物线C上,∴(2m﹣2﹣2)2=2m2﹣8m+9,解得:m=2﹣或m=2+,∵m<2,∴m=2﹣;②设直线y=x+1与y轴交于点H,则H(0,1),∵直线y=x+1与抛物线C1交于E,F两点,∴,解得:,,∴E(1,2),F(4,5),如图2,作点E关于y轴的对称点E′(﹣1,2),连接E′F交y轴于点P,设直线E′F的解析式为y=kx+b,则,解得:,∴直线E′F的解析式为y=x+,令x=0,得y=,∴P(0,),∴S△PEF=S△PFH﹣S△PEH=×(﹣1)×4﹣×(﹣1)×1=.2.解:(1)将点A(﹣1,0),点C(0,3)代入y=﹣x2+bx+c,∴,解得,∴抛物线y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标是(1,4);(2)∵点D(1,4)关于y轴的对称点是点E,∴点E的坐标是(﹣1,4),设点F的坐标是(1,m),过点F作直线l⊥y轴,过点E作EM⊥直线l于点M,过点G作GN⊥直线l于点N,∵EF=FG,∠EFG=90°,∴∠EMF=∠EFG=∠FNG=90°,∴∠E+∠EFM=∠EFM+∠NFG=90°,∴∠E=∠NFG,∴△EFM≌△FGN(AAS),∴NG=MF=2,NF=EM=m﹣4,∴点G的坐标是(m﹣3,m﹣2),∵点G恰好落在抛物线y=﹣x2+2x+3上,∴m﹣2=﹣(m﹣3)2+2(m﹣3)+3,解得m=2或m=5,∴点F的坐标是(1,2)或(1,5);(3)设F(1,n),H(t,﹣t2+2t+3),①当OB为平行四边形的对角线时,1+t=3,∴t=2,∴H(2,3);②当OF为平行四边形的对角线时,3+t=1,∴t=﹣2,∴H(﹣2,﹣5);③当OH为平行四边形的对角线时,t=1+3=4,∴H(4,﹣5);综上所述:点H的坐标是(4,﹣5)或(﹣2,﹣5)或(2,3).3.解:(1)①∵y=ax2﹣2ax+c,∴x=﹣=1,即抛物线的对称轴是直线x=1,故答案为:直线x=1;②∵C(0,4),∴抛物线y=ax2﹣2ax+4,∵△PCM与△PBM的面积比为1:2,∴PM×(x B﹣1)=2×PM×(1﹣x C),∴x B﹣1=2,∴x B=3,∴B(3,0),∵抛物线的对称轴是直线x=1,∴A(﹣1,0),将B(3,0)代入抛物线y=ax2﹣2ax+4中,得:9a﹣6a+4=0,解得:a=﹣,∴该抛物线的函数表达式为y=﹣x2+x+4.(2)设直线BC的解析式为y=kx+b,将B(3,0),C(0,4)代入得:,解得:,∴直线BC的解析式为y=x+4,设Q(t,﹣t2+t+4),则N(t,t+4),∴QN=﹣t2+t+4﹣(t+4)=﹣t2+4t,设QN与x轴交于H,则H(t,0),∴NH=t+4,BH=3﹣t,∵QN⊥x轴,∴∠BHN=∠BOC=90°,在Rt△BOC中,BC===5,∵sin∠CBO==,∴=,∴NB=(t+4)=t+5,∴QN+NB=﹣t2+4t+(t+5)=﹣t2+t+5=﹣(t﹣)2+,∵<0,∴当t=时,QN+NB取得最大值,∴﹣t2+t+4=﹣×()2+×+4=,此时,Q(,),N(,),①当BQ为▱BNQG的对角线时,BG∥QN,BG=QN,∵QN=﹣=,QN∥y轴,∴BG=,BG∥y轴,∴G1(3,);②当BN为▱BQNG的对角线时,BG∥QN,BG=QN,∵QN=﹣=,QN∥y轴,∴BG=,BG∥y轴,∴G2(3,﹣);③当QN为▱BQGN的对角线时,BN∥GQ,BN=GQ,∵BH=3﹣=,HN=,∴BN向左平移个单位,向上平移个单位,得到线段GQ,∴点G的横坐标为:﹣=﹣,点G的纵坐标为:+=,∴G3(﹣,);综上所述,顶点G的坐标为G1(3,)或G2(3,﹣)或G3(﹣,).4.解:(1)由题意,得:,∴.∴此抛物线的解析式为:y=﹣x2+3x+4.(2)①由y=﹣x2+3x+4,令x=0,则y=4.∴B(4,0).设直线BC的解析式为:y=kx+b1,则,∴.∴直线BC的解析式为:y=﹣x+4.设P(m,﹣m2+3m+4),则D(m,﹣m+4),∴PE=﹣m2+3m+4,DE=﹣m+4,OE=m.∴PD=PE﹣DE=﹣m2+4m,∴S=S1﹣S2=PD•OB﹣OE•DE=4(﹣m2+4m)﹣m(﹣m+4)=(m﹣2)2+6,∵﹣<0,∴当m=2时,S有最大值为6.②在OB上截取OF=OA,连接CF,如图,则∠ACO=∠FCO,∵∠PBC+∠ACO=45°,∴∠FCO+∠PBC=45°.∵B(4,0),C(0,4),∴OB=OC=4.∵OC⊥OB,∴∠OCB=45°,∴∠BCF=∠CBP,∴BP∥CF.∵A(﹣1,0),∴OA=1.∴OF=OA=1.∴F(1,0).设直线CF的解析式为y=dx+n,则,解得:.∴直线CF的解析式为:y=﹣4x+4.∵BP∥CF,∴设直线BP的解析式为y=﹣4x+e,∵B(4,0),∴e﹣4×4=0.∴直线BP的解析式为:y=﹣4x+16.由题意:﹣4x+16=﹣x2+3x+4,解得:x=3或4,∴P(3,4).∵C(0,4),∴PC∥x轴,PC=3.∵以点A、C、P、Q为顶点的四边形是以CP为边构成平行四边形,∴PC∥AQ,PC=AQ=3.∴点Q在x轴上,∴Q(﹣4,0)或(2,0).5.解:(1)∵直线l:y=﹣x﹣1过点A,∴A(﹣1,0),又∵D(5,﹣6),将点A,D的坐标代入抛物线表达式可得:,解得.∴抛物线的解析式为:y=﹣x2+3x+4.(2)如图,设点P(x,﹣x2+3x+4),∵PE∥x轴,PF∥y轴,则E(x2﹣3x﹣5,﹣x2+3x+4),F(x,﹣x﹣1),∵点P在直线l上方的抛物线上,∴﹣1<x<5,∴PE=|x﹣(x2﹣3x﹣5)|=﹣x2+4x+5,PF=|﹣x2+3x+4﹣(﹣x﹣1)|=﹣x2+4x+5,∴PE+PF=2(﹣x2+4x+5)=﹣2(x﹣2)2+18.∵﹣1<x<5,∴当x=2时,PE+PF取得最大值,最大值为18.(3)由(1)可求NC=5,∵NC是所求平行四边形的一边,∴NC PM,设点p(t,﹣t2+3t+4),则M(t,﹣t﹣1),由题意知:|y P﹣y M|=5,即|﹣t2+3t+4+t+1|=5.化简得:t2﹣4t=0或t2﹣4t﹣10=0,解得:t1=0(舍去),t2=4,,.则符合条件的M点有三个:,.6.解:(1)∵直线y=﹣x+3与x轴、y轴的交点分别为B、C,∴当x=0时,y=3,当y=0时,x=3,∴点B、C的坐标分别为(3,0)、(0,3),∵抛物线y=ax2+2x+c过点B,C,∴,解得,∴抛物线的解析式为y=﹣x2+2x+3;(2)作AM⊥x轴交BC于M,作PN⊥x轴交BC于N,∴AM∥PN,∴∠AMD=∠PND,∵∠CDA=∠NDP,∴△ADM∽△PDN,∴,∵抛物线的解析式为y=﹣x2+2x+3,直线BC:y=﹣x+3,∴A(﹣1,0),C(0,3),B(3,0),设M(﹣1,m),∴m=1+3=4,∴M(﹣1,4),∴AM=4,设P(n,﹣n2+2n+3),则N(n,﹣n+3),∴PN=﹣n2+2n+3﹣(﹣n+3)=﹣n2+3n=﹣(n﹣)2+,∴===﹣(n﹣)2+,∴当n=时,的最大值为,∴﹣n2+2n+3=,∴P(,);(3)①BC为平行四边形的边时,如图,当四边形CBFG是平行四边形时,∴CG∥BF,CG=BF,∵点G在抛物线y=﹣x2+2x+3的对称轴上,∴对称轴为x=﹣=1,∵C(0,3),∴G(1,3),∴BF=CG=1,∵B(3,0),∴点F的坐标为(4,0);当四边形CBG′F′是平行四边形时,∴CB∥G′F′,CB=G′F′,∵点G在抛物线y=﹣x2+2x+3的对称轴上,∴对称轴为x=﹣=1,∵C(0,3),∵B(3,0),∴点F的坐标为(﹣2,0);②BC为平行四边形的对角线时,如图,∵四边形CFBG是平行四边形,∴CG∥BF,CG=BF,∵点G在抛物线y=﹣x2+2x+3的对称轴上,∴对称轴为x=﹣=1,∵C(0,3),∴G(1,3),∴BF=CG=1,∵B(3,0),∴点F的坐标为(2,0);综上,点F的坐标为(4,0)或(﹣2,0)或(2,0).7.解:(1)令x=0,则y=﹣3.∴C(0,﹣3).∴OC=3.令y=0,则x2+x﹣3,解得:x=﹣5或1.∴A(﹣5,0),B(1,0),∴OA=5,OB=1.∴AB=OA+OB=6.∴×AB•OC=6×3=9;(2)延长PE交x轴于点G,如图,∵PE∥y轴,∴PG⊥OA.∵EF∥BC,PE∥y轴,∴∠FEG=∠BCO.∴tan∠FEG=tan∠BCO.∵tan∠BCO=,∴tan∠FEG=,∵tan∠FEG=,∴.设GF=k,则GE=3k.∴EF=k.∴EF=FG.∴EF+FO=OG.设直线AC的解析式为y=ax+b,则:,∴.∴直线AC的解析式为y=﹣x﹣3.设点P(m,m﹣3),则E(m,﹣m﹣3),∴OG=﹣m,PE=(﹣m﹣3)﹣(m﹣3)=m2﹣3m.∴PE+EF+FO=PE+OG=m2﹣3m﹣m=m2﹣4m=﹣+.∵﹣<0,∴当m=﹣时,PE+EF+FO有最大值.此时点P的坐标为(,).(3)∵将抛物线y=x2+x﹣3平移,使得新抛物线的顶点为点P(,),∴新抛物线的解析式为y=+4x+.∵点Q为x轴下方的新抛物线上一点,R为x轴上一点,∴以点A,C,Q,R为顶点的四边形是平行四边形时,①若AR∥CQ,AC为对角线时,如图,令y=﹣3,则+4x+=﹣3.解得:x=.∴Q1(,﹣3),Q2(,﹣3).∴CQ1=,CQ2=.∵AR1=CQ1=,AR2=CQ2=,∴OR1=OA﹣AR1=5﹣=,OR2=OA﹣AR2=5﹣=,∴R1(,0),R2(,0).②若AR∥CQ,AC为一边时,如图,同理求得:R1(,0),R2(,0).综上,以点A,C,Q,R为顶点的四边形是平行四边形的点R的坐标为:(,0)或(,0)或(,0)或(,0).8.解:(1)将点A(3,0),B(﹣1,0)代入y=ax2+bx+3,得a(x+1)(x﹣3)=ax2+bx+3,∴b=﹣2a,﹣3a=3,解得:a=﹣1,b=2,∴抛物线的解析式为y=﹣x2+2x+3.(2)如图1,过C点和P点分别作对称轴的垂线,垂足为点G和点H,记PC与对称轴的交点为点K,则S△CPE=S△CEK+S△EPK,∴S△CPE=EK•CG+EK•PH=EK(CG+PH),∵抛物线的解析式为y=﹣x2+2x+3,∴对称轴为直线x=1,C(0,3),设点P的坐标为(m,﹣m2+2m+3),直线AC的解析式为y=kx+b,则,解得:,∴AC直线解析式为y=﹣x+3,∴E点的坐标为(1,2),设PC直线的解析式为y=kx+n,则,解得:,∴直线PC的解析式为y=(﹣m+2)x+3,∴点K坐标为(1,﹣m+5),∴EK=﹣m+5﹣2=3﹣m,CG+PH=1+(m﹣1)=m,∴S△CPE=EK(CG+PH)=m(3﹣m)=﹣m2+=﹣(m﹣)2+,∴当m=时,S△CPE取得最大面积为,此时,P点坐标为(,).(3)由(2)得点P坐标为(,),对称轴为直线x=1,∴点F坐标为(1,0),∵点M在x轴上,以F,M,P,Q为顶点的四边形是平行四边形,∴MF∥PQ,MF=PQ,∵点Q在抛物线上,∴点Q的坐标为(,),当点Q在x轴的下方时,纵坐标为﹣也符合题意,此时Q(,﹣)或(,﹣).9.解:(1)∵抛物线y=ax2+bx+3(a≠0)与x轴交于点A(﹣1,0),B(3,0),∴,解得.∴抛物线的解析式为y=﹣x2+2x+3.(2)令y=3,得﹣x2+2x+3=3,解得:x1=2,x2=0(舍去),∴P(2,3),∵B(3,0),C(0,3),∴OB=OC=3,∴∠CBO=45°,即直线BC与x轴的夹角为45°,∴沿射线BC方向平移3个单位,实际上可看作向左平移3个单位,向上平移3个单位,∵P(2,3),∴D(﹣1,6),抛物线L:y=﹣x2+2x+3平移后得抛物线L′:y=﹣x2﹣4x+3,∴抛物线L′的对称轴为:直线x=﹣2,当CD为平行四边形的边时,若D平移到抛物线L′对称轴上的E点,则F点的横坐标为﹣1,代入抛物线L′:y=﹣x2﹣4x+3,得y=6,即F(﹣1,6),此时点F与D重合,不能构成平行四边形;若C平移到对称轴上的E点,则F点的横坐标为﹣3,代入抛物线L′:y=﹣x2﹣4x+3,得y=6,∴F(﹣3,6);当CD为平行四边形的对角线时,若D平移到对称轴上的E点时,则F平移到C,∴F的横坐标为1,代入抛物线L′:y=﹣x2﹣4x+3,得y=﹣2,∴F(﹣1,﹣2);综上,点F的坐标为(﹣3,6)或(﹣1,﹣2).10.解:(1)∵一次函数y=﹣x﹣1交抛物线于A点,且点A在x轴上,∴A(﹣1,0);将A(﹣1,0)和D(3,﹣4)代入抛物线C1:y=ax2+bx+2,∴,解得,∴抛物线C1:y=﹣x2+x+2.(2)由(1)知抛物线C1:y=﹣x2+x+2.令y=0,解得x=﹣1或x=2,∴B(2,0);令x=0,则y=2,∴C(0,2).∴OB=OC=2,直线BC的解析式为:y=﹣x+2;∴△OBC是等腰直角三角形,且∠OBC=∠OCB=45°;∵GH∥y轴,∴∠GNB=90°,∴∠BHN=45°,∵GM⊥BC,∴∠GMH=90°,∵∠MGH=∠GHM=45°,∴GM=MH=GH;设点G的横坐标为t,则G(t,﹣t2+t+2),H(t,﹣t+2),∴GH=﹣t2+2t=﹣(t﹣1)2+1.∵﹣1<0,∴当t=1时,GH有最大值1;∵△GHM的周长为:GM+MH+GH=(+1)GH,∴△GHM周长的最大值为+1.(3)存在,理由如下:设点E的坐标为(,t);∵点A平移后的对应点为A′(),∴抛物线C1先向右平移个单位,再向下平移个单位后得到抛物线C2,∵C1:y=﹣x2+x+2=﹣(x﹣)2+,∴C2:y=﹣(x﹣2)2+,令﹣(x﹣)2+=﹣(x﹣2)2+,得x=,∴R(,).①当AR是平行四边形的边时,x P﹣x E=x R﹣x A或x E﹣x P=x R﹣x A,∴x P=x R﹣x A+x E=+1+=或x P=x E﹣x R+x A=﹣﹣1=﹣,∴y P=﹣(﹣2)2+=﹣或y P=﹣(﹣﹣2)2+=﹣,∴E(,﹣)或E(,﹣).②当AR是平行四边形的对角线时,x P+x E=x R+x A,y P+y E=y R+y A,∴x P+=﹣1,∴x P=,∴y P=﹣(﹣2)2+=﹣,∴y E=y R+y A﹣y P=+0+=3.∴E(,3).综上可知,存在点E,使得以点A、R、P、E为顶点的四边形为平行四边形,此时E(,﹣)或E(,﹣)或E(,3).11.解:(1)∵直线y=﹣x+3与x轴交于点A,与y轴交于点B,∴A(4,0),B(0,3).∵抛物线y=ax2+x+c经过A、B两点,∴,解得.∴二次函数的解析式为:y=﹣x2+x+3.(2)∵A(4,0),B(0,3).∴OA=4,OB=3,∴AB=5.∵ED⊥AB,∴∠EDM=∠AOB=90°,∵∠DEM+∠EMD=∠FMA+∠BAO=90°,∠FMA=∠EMD,∴∠DEM=∠BAO,∴△AOB∽△EDM,∴AO:OB:AB=ED:DM:EM=4:3:5,设E的横坐标为t,则E(t,﹣t2+t+3),∴M(t,﹣t+3),∴EM=﹣t2+t+3﹣(﹣t+3)=﹣t2+t.∴△DEM的周长为:ED+DM+EM=EM=﹣(t﹣2)2+,∴当t=2时,△DEM的周长的最大值为.(3)存在以P、Q、C、M为顶点的四边形是平行四边形,理由如下:由y=﹣x2+x+3可知,C(﹣2,0),点Q的横坐标为1,由(2)知,M(2,).①当CM为边,且点P在点Q的左侧时,有x P﹣x Q=x C﹣x M,∴x P﹣1=﹣2﹣2,即x P=﹣3,∴P(﹣3,﹣).当点P在点Q右侧时,x Q﹣x P=x C﹣x M,∴﹣1﹣x P=﹣2﹣2,即x P=5,∴P(5,﹣);②当AM为对角线时,x P+x Q=x C+x M,∴x P+1=﹣2+2,即x P=﹣1,∴P(﹣1,).综上,当以P、Q、C、M为顶点的四边形是平行四边形时,点P的坐标为(﹣3,﹣)或(5,﹣)或(﹣1,).(4)如图,在y轴的正半轴取OG,使得OG=,连接GN′,∵OG•OB=1,ON2=1,∴OG•OB=ON2,∵∠GON′=∠N′OB,∴△OBN′∽△ON′G,∴BN′:N′G=OB:ON′=3,∴N′G=N′B,∴N′A+N′B=N′C+N′G,∴当A,N′,G三点共线时,N'A+N'B的值最小.此时AG==.∴N'A+N'B的最小值为.12.解:(1)∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣3,0),B(1,0)两点,∴设y=a(x+3)(x﹣1),把C(0,3)代入,得:3=a×(0+3)×(0﹣1),解得:a=﹣1,∴y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3,∴该抛物线的函数表达式为y=﹣x2﹣2x+3;(2)∵A(﹣3,0),C(0,3),∴OA=OC=3,∴∠ACO=45°,∵PD⊥AB,OC⊥AB,∴PD∥OC,∴∠PEF=∠ACO=45°,∵PF⊥AC,∴△PEF是等腰直角三角形,如图1,过点F作FH⊥PE于点H,则FH=PE,∴S△PEF=×PE×FH=PE2,当PE最大时,S△PEF最大,设直线AC的解析式为y=kx+d,则,解得:,∴直线AC的解析式为y=x+3,设P(t,﹣t2﹣2t+3),则E(t,t+3),∴PE=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t=﹣(t+)2+,∵﹣1<0,∴当t=﹣时,PE取得最大值,∴S△PEF=PE2=×()2=,∴△PEF的面积的最大值为;(3)①当AC为平行四边形的边时,则有PQ∥AC,且PQ=AC,如图2,过点P作对称轴的垂线,垂足为G,设AC交对称轴于点H,则∠AHG=∠ACO=∠PQG,在△PQG和△ACO中,,∴△PQG≌△ACO(AAS),∴PG=AO=3,∴点P到对称轴的距离为3,又∵y=﹣(x+1)2+4,∴抛物线对称轴为直线x=﹣1,设点P(x,y),则|x+1|=3,解得:x=2或x=﹣4,当x=2时,y=﹣5,当x=﹣4时,y=﹣5,∴点P坐标为(2,﹣5)或(﹣4,﹣5);②当AC为平行四边形的对角线时,如图3,设AC的中点为M,∵A(﹣3,0),C(0,3),∴M(﹣,),∵点Q在对称轴上,∴点Q的横坐标为﹣1,设点P的横坐标为x,根据中点公式得:x+(﹣1)=2×(﹣)=﹣3,∴x=﹣2,此时y=3,∴P(﹣2,3);综上所述,点P的坐标为(2,﹣5)或(﹣4,﹣5)或(﹣2,3).13.解:(1)把点A(﹣1,0),B(4,0)代入抛物线中,得,解得:,∴抛物线的解析式为:y=﹣x2+x+2;(2)∵B(4,0),C(0,2),∴直线BC的解析式为:y=﹣x+2,抛物线的对称轴是:x==,∴D(,),∵A(﹣1,0),∴AD的解析式为:y=x+,如图1,∵OC∥DE,∴===,∴=,∵,∴S△ABD=S△BPD,如图2,过点A作AP∥BC,交抛物线于点P,设P A的解析式为:y=﹣x+m,把点A(﹣1,0)代入得:﹣×(﹣1)+m=0,∴m=﹣,∴P A的解析式为:y=﹣x﹣,∴﹣x2+x+2=﹣x﹣,解得:x1=﹣1,x2=5,此时点P的坐标为(5,﹣3)或(﹣1,0);综上,点P的坐标为(5,﹣3)或(﹣1,0);(3)分三种情况:①如图3,四边形EAFC是平行四边形,∵A(﹣1,0),C(0,2),点E的横坐标为,∴点F的横坐标为﹣2.5,∴F(﹣2.5,﹣);②如图4,四边形ACEF是平行四边形,∵A(﹣1,0),C(0,2),点E的横坐标为,∴点F的横坐标为,∴F(,);②如图5,四边形ACFE是平行四边形,由平移得:F的横坐标为,∴F(,);综上,点F的坐标为(﹣2.5,﹣)或(,)或(,).14.解:(1)将点A(﹣1,0),B(4,0),C(0,﹣4)代入y=ax2+bx+c,∴,∴,∴y=x2﹣3x﹣4;(2)存在点M、N,使得以A、A'、M、N为顶点的四边形是平行四边形,理由如下:∵抛物线L'与L关于原点对称,∴抛物线L'的解析式为y=﹣x2﹣3x+4,∵y=﹣x2﹣3x+4=﹣(x+)2+,∴抛物线的对称轴为直线x=﹣,∵点A、B关于原点的对称,∴A'(1,0),B'(﹣4,0),设M(﹣,m),N(n,n2﹣3n﹣4),①当AA'为平行四边形的对角线时,n=,∴N(,﹣);②当AM为平行四边形的对角线时,﹣1﹣=1+n,∴n=﹣,∴N(﹣,);③当AN为平行四边形的对角线时,﹣1+n=1﹣,∴n=,∴N(,﹣);综上所述:N点坐标为(,﹣)或(﹣,)或(,﹣).15.解:(1)∵二次函数解析式为y=ax2+bx+3,∴点C的坐标为(0,3),∴OC=3,∵tan∠CBO=,∴OB=6,∴点B的坐标为(6,0),由抛物线经过点A(﹣2,0),B(6,0)设抛物线的解析式为y=a(x+2)(x﹣6),将点C(0,3)代入解析式为a×(0+2)×(0﹣6)=3,∴a=﹣,∴抛物线的解析式为y=﹣(x+2)(x﹣6)=﹣x2+x+3.(2)过点P作PF∥x轴交BC于点F,∵PE∥BC,∴四边形PEBF为平行四边形,∴PF=BE,∴PD+BE=PD+PF,设直线BC的解析式为y=kx+b,则,解得:,∴直线BC的解析式为y=﹣x+3,设点P的坐标为(m,﹣m2+m+3),则点D的坐标为(m,﹣m+3),∴PD=﹣m2+m+3﹣(﹣m+3)=﹣m2+m,∵PF∥x轴,∴点F和点P的纵坐标相等,即﹣x+3=﹣m2+m+3,∴x=m2﹣2m,∴点F的坐标为(m2﹣2m,﹣m2+m+3),∴PF=m﹣(m2﹣2m)=﹣m2+3m,∴PD+BE=﹣m2+m+(﹣m2+3m)=﹣m2+m=﹣(m﹣3)2+,∴当m=3时,PD+BE的最大值为;(3)由(2)可得点P的坐标为(3,),∵抛物线的解析式为y=﹣x2+x+3.∴抛物线的对称轴为x=﹣=2,连接AP交抛物线的对称轴于点M,则△BPM的周长最小,设直线AP的解析式为y=kx+n,∴,解得,∴直线AP的解析式为y=x+,当x=2时,y==3,∴M(2,3),又∵B(6,0),∴存在以点A,B,M,N为顶点的平行四边形,若以AB为平行四边形的一边,∴AB=MN=8,∴N(10,3)或N(﹣6,3),若以AB为平行四边形的一条对角线,∴N(2,﹣3).综上所述,点N的坐标为(10,3)或(﹣6,3)或(2,﹣3).16.解:(1)∵抛物线y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点C的坐标为(1,4).(2)令y=0,则﹣x2+2x+3=0,解得x=﹣1或x=3,∴A(﹣1,0),B(3,0),∴直线BC的解析式为:y=﹣2x+6;如图,过点C作CD⊥x轴于点D,∴BD=2,CD=4,∴BC=2,∵PF⊥BC,∴∠PFE=∠CDB=90°,∵PE∥y轴,∴CD∥PE,∴∠PEF=∠BCD,∴△BCD∽△PEF,∴PE:PF=BC:BD=:1,∴PF=PE,∴PE+PF=PE+PE=(1+)PE,∴若求PE+PF的最大值,则求PE的最大值即可;设点P的横坐标为t,则P(t,﹣t2+2t+3),E(t,﹣2t+6),∴PE=﹣t2+2t+3﹣(﹣2t+6)=﹣t2+4t+3=﹣(t﹣2)2+1,∵﹣1<0,∴当t=2时,PE有最大值1,∴PE+PF的最大值为1+,此时P(2,3).(3)设抛物线y=﹣x2+2x+3向右平移n(n>0)个单位得到新抛物线y′经过原点,∴y′=﹣(x﹣1﹣n)2+4,则有﹣(0﹣1﹣n)2+4=0,解得n=﹣3(舍)或n=1;∴y′=﹣(x﹣2)2+4=﹣x2+4x,设点M的横坐标为m,则M(m,﹣m2+4m),若使得以点A,P,M,N为顶点的四边形是平行四边形,则需要分以下两种情况:当AP为边时,由平行四边形的性质可知,①x P﹣x A=x M﹣x N,y P﹣y A=y M﹣y N,∴2﹣(﹣1)=m﹣x N,∴x N=m﹣3,∴N(m﹣3,﹣2m+12),∴3﹣0=﹣m2+4m﹣(﹣2m+12),方程无解,此种情况不存在;②x P﹣x A=x N﹣x M,y P﹣y A=y N﹣y M,∴2﹣(﹣1)=x N﹣m,∴x N=m+3,∴N(m+3,﹣2m),∴3﹣0=﹣2m﹣(﹣m2+4m),解得m=3+2或m=3﹣2,此时M(3+2,﹣9﹣4)或(3﹣2,﹣9+4).当AP为对角线时,由中点坐标公式可知,x P+x A=x M+x N,y P+y A=y M+y N,∴2+(﹣1)=m+x N,∴x N=1﹣m,∴N(1﹣m,2m+4),∴3+0=﹣m2+4m+2m+4,解得m=3+或m=3﹣,此时M(3+,﹣7﹣2)或(3﹣,﹣7+2).综上可得,使得以点A,P,M,N为顶点的四边形是平行四边形的点M的坐标为(3+2,﹣9﹣4)或(3﹣2,﹣9+4)或(3+,﹣7﹣2)或(3﹣,﹣7+2).17.(1)解:设抛物线解析式为y=ax2+bx+c(a≠0),∵抛物线经过点A(﹣1,0),C(0,3),且对称轴为直线x=1,∴,解得,∴抛物线的表达式为y=﹣x2+2x+3;(2)证明令y=0,则﹣x2+2x+3=0,解得:x1=﹣1,x2=3,∴B(3,0),∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D坐标(1,4),∴CD==,BD==2,CB==3,∵BC2+CD2=(3)2+()2=20,BD2=(2)2=20,∴BC2+CD2=BD2,∴∠BCD=90°,∴∠tan∠CDB===3,∵tan∠CAB==3,∴∠CDB=∠CAB;(3)解:①当BM∥CN时,如图:∵对称轴为直线x=1,C(0,3),∴N(2.3),CN=2,∵B(3,0),∴CN=BM,∴BM=2,当M点在B点左侧时,M1(1,0),当M点在B点右侧时,M2(5,0),∴M1(1,0)或M2(5,0);②当CM∥BN时,如图:CN与BM互相平分,N点和C点纵坐标互为相反数,可得N点纵坐标为﹣3,把y=﹣3代入解析式得:﹣x2+2x+3﹣3,解得:x1=+1,x2=﹣+1,所以N1的横坐标为+1.,N2的横坐标为﹣+1,由平行四边形对角线互相平分可得﹣+1+0=3+x M或+1+0=3+x M,解得x N=﹣﹣2或x N=﹣2,所以M3(﹣2,0)或M4(﹣﹣2,0).综上所述:M1(1,0)或M2(5,0)或M3(﹣2,0)或M4(﹣﹣2,0).18.解:(1)将点B(0,﹣1)代入函数解析式y=a(x﹣1)2,∴a(0﹣1)2=﹣1,解得a=﹣1,∴二次函数的表达式为y=﹣(x﹣1)2;(2)令﹣x﹣1=﹣(x﹣1)2,解得x=0或x=3,∴A(3,﹣4).设P的横坐标为t(0<t<3),∴P(t,﹣t﹣1),E(t,﹣t2+2t﹣1),∴h=EP=(﹣t2+2t﹣1)﹣(﹣t﹣1)=﹣t2+3t=﹣(t﹣)2+.∵﹣1<0,∴当t为时,h的最大值为.(3)存在,理由如下:∵抛物线的顶点为C,∴C(1,0),∵点D为直线AB与对称轴x=1的交点,∴D(1,﹣2),∴CD=2;CD∥y轴,∴CD∥EP,若四边形DCEP是平行四边形,则只需CD=EP,由(2)知,EP=﹣t2+3t,∴﹣t2+3t=2,解得t=1(舍)或t=2,∴P(2,﹣3).综上,存在一点P,使得四边形DCEP是平行四边形,此时P(2,﹣3).19.解:(1)∵抛物线y=ax2+bx+c(a≠0)的图象经过点A(1,0),B(3,0),∴设抛物线的解析式为y=a(x﹣1)(x﹣3),把点C(0,6)代入,∴6=a(0﹣1)(0﹣3),∴a=2,∴y=2(x﹣1)(x﹣3)=2x2﹣8x+6,∴抛物线解析式为y=2x2﹣8x+6;(2)∵y=2x2﹣8x+6=2(x﹣2)2﹣2,∴顶点M的坐标为(2,﹣2),∵抛物线的顶点M与对称轴l上的点N关于x轴对称,∴点N(2,2),设直线AN的解析式为:y=kx+b,由题意可得:,解得:,∴直线AN解析式为:y=2x﹣2,联立y=2x2﹣8x+6得:,解得:,,∴点D(4,6),设△ADE的面积为S,点E(e,2e2﹣8e+6),过点E作EF⊥x轴交直线AD于点F,则点F坐标为(e,2e﹣2),∴EF=(2e﹣2)﹣(2e2﹣8e+6)=﹣2e2+10e﹣8,∴S=•EF•|D x﹣A x|=×3×(﹣2e2+10e﹣8)=﹣3(e2﹣5e﹣4)=,所以,当时,△ADE的面积,此时点E坐标为;(3)由(2)知,A(1,0),D(4,6),设Q(2,m),P(x,2x2﹣8x+6),①以AD为对角线时,∵以A,D,P,Q为顶点的四边形为平行四边形,∴,解得:,②以AP为对角线时,∵以A,D,P,Q为顶点的四边形为平行四边形,∴,解得:,∴P(5,16);③以AQ为对角线时,∵以A,D,P,Q为顶点的四边形为平行四边形,∴,解得:,∴P(﹣1,16);综上所述,当点P的坐标为(5,16)或(﹣1,16)或(3,0)时,以A,D,P,Q为顶点的四边形为平行四边形.20.解:(1)∵抛物线y=ax2+bx﹣6经过点A(﹣2,0),B(6,0)两点,∴,解得:,∴抛物线的函数表达式为y=x2﹣2x﹣6;∵y=x2﹣2x﹣6=(x﹣2)2﹣8,∴顶点D(2,﹣8);设直线BD的表达式为y=kx+b,则,解得:,∴直线BD的函数表达式为y=2x﹣12;(2)y=x2﹣2x﹣6中令x=0,得y=﹣6,∴C(0,﹣6),∴OC=6,∵A(﹣2,0),∴S△AOC=OA•OC=×2×6=6,设点P的横坐标为m(0<m<6),∴P(m,m2﹣2m﹣6),①如图,当0<m<2时,过点P作PH∥x轴,交BD于点H,过点D作DJ⊥PH于点J,过点B作BI⊥PH交PH 的延长线于点I,则H(m2﹣m+3,m2﹣2m﹣6),∴PH=m2﹣m+3﹣m=m2﹣2m+3,∴S△BDP=S△PDH+S△BCH=PH•DJ+PH•BI=PH•(DJ+BI)=PH×8=4PH=4(m2﹣2m+3)=m2﹣8m+12,∵S△BDP=S△AOC,∴m2﹣8m+12=×6,解得:m1=4﹣,m2=4+(不符合题意,舍去);②如图:当2<m<6,过点P作PE⊥x轴于点E,交BD于点F,过点D作DG⊥FP,交FP的延长线于点G,则F(m,2m﹣12),∴FP=(2m﹣12)﹣(m2﹣2m﹣6)=﹣m2+4m﹣6,∴S△BDP=S△FDP+S△FPB=FP•DG+FP•BE=FP•(DG+BE)=FP•4=2FP=2(﹣m2+4m﹣6)=﹣m2+8m﹣12,∵S△BDP=S△AOC,∴﹣m2+8m﹣12=3,解得:m1=3,m2=5.综上所述,m的值为4﹣或3或5;(3)存在,理由如下:此题分情况讨论,已求得A点坐标为(﹣2.0),C点坐标为(0.﹣6),构成的平行四边形的对角线的交点即为两条对角线的中点,据此作答,第一种情况:构成的平行四边形中AM为对角线时,则另一条对角线是CN,设N点坐标为(x0,),M的坐标为(a,0),根据平行四边形的性质以及中点坐标公式有:,化简:,解得:a=4±2,此时M的坐标为(4﹣2,0)或(4+2,0);第二种情况:构成的四边形中AN为对角线时,则另一条对角线是CM,设N点坐标为(x0,),M的坐标为(a,0),此时根据平行四边形的性质以及中点坐标公式有:,化简:,解得:a=2或a=﹣2(此时A点和M点重合,不合题意舍去),此时M点的坐标为(2,0);第三种情况:构成的四边形中AC为对角线时,则另一条对角线是MN,设N点坐标为(x0,),M的坐标为(a,0),此时根据平行四边形的性质以及中点坐标公式有:,化简:,解得:a=﹣6或a=﹣2(此时A点和M点重合,不合题意舍去),此时M点的坐标为(6,0).综上所述,M点坐标为(﹣6,0)或(2,0)或(4﹣2,0)或(4+2,0).。
+2023+年九年级数学中考复习+二次函数与特殊平行四边形综合压轴题+专题提升训练+
2022-2023学年九年级数学中考复习《二次函数与特殊平行四边形综合压轴题》专题提升训练(附答案)1.已知在平面直角坐标系xOy中,二次函数y=2x2﹣(1+2c)x+c(c>,c是常数)的图象与x轴分别交于点A,点B(点B在点A右侧),与y轴交于点C,连接BC.(1)证明:△BOC是等腰直角三角形;(2)抛物线顶点为D,BC与抛物线对称轴交于点E,当四边形AEBD为正方形时,求c 的值.2.如图,抛物线y=﹣x2+bx+c经过点和点,与x轴交于点C和点D,点A为线段CD的中点,直线y=kx﹣1过点A,与y轴交于点B.(1)求抛物线的函数表达式.(2)在第三象限内,以AB为边作正方形ABMN,请求出点M和点N的坐标.(3)在(2)的条件下,点P是x轴上方抛物线上的一点,以AB为一边,以点P为对角线的交点作平行四边形ABEF,当平行四边形ABEF的面积恰好是正方形ABMN的面积的4倍时,求出点P的横坐标.3.抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,且点A的坐标为A(﹣2,0),点C的坐标为C(0,6),对称轴为直线x=1.点D是抛物线上一个动点,设点D的横坐标为m,连接AC,BC,DC.(1)求抛物线的函数表达式;(2)若∠BCD=∠ACO,求m值.(3)点F坐标为(0,2),连接AF,点P在直线AF上,点Q是平面上任意一点,当以A、C、P、Q四点为顶点的四边形为菱形时,直接写出Q点坐标.4.如图1,将矩形OABC置于平面直角坐标系中,点A的坐标为(﹣4,0),点C的坐标为(0,m)(m>0),点D(﹣1,m)在边BC上,将△ABD沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)如图2,当m=3时,抛物线过点A、E、C,求抛物线解析式;(2)如图3,随着m的变化,点E正好落在y轴上,求∠BAD的余切值;(3)若点E横坐标坐标为1,抛物线y=ax2+2ax+10(a≠0且a为常数)的顶点落在△ADE的内部,求a的取值范围.5.已知抛物线y=ax2+bx+3与x轴交于A,B两点(A在B的左边),与y轴交于点C,若AB=4,对称轴是直线x=1,点P是直线BC上方的抛物线上的一个动点.(1)求抛物线的解析式;(2)若点M是坐标平面内一动点,是否存在点M,使得以C,B,P,M为顶点的四边形是矩形?如果存在,求出点P的坐标;如果不存在,请说明理由.6.如图,在平面直角坐标系中,四边形ABCD是矩形,AB在x轴上,点A位于点B左侧,点E,F分别在边CD,AD上,BF⊥EF,EC=EF,AB=9,BC=15.(1)求证:△BEC≌△BEF;(2)若点A坐标为(1,0),抛物线y=ax2+bx经过B,D两点,求抛物线的解析式;(3)若点A坐标为(m,0)(m>0),点G为平面内一点,以点O,B,F,G为顶点的四边形是菱形时,求点A的坐标.7.如图,已知二次函数y=ax2+bx+2(a≠0)与x轴交于点A(﹣1,0),B(4,0),与y 轴交于点C.(1)求抛物线的解析式;(2)连接AC,BC,点P是直线BC上方抛物线上一点,过点P作PD∥AC交直线BC 于点D,PE∥x轴交直线BC于点E,求△PDE周长的最大值及此时点P的坐标;(3)在(2)的条件下,将原抛物线向左平移个单位长度得到新抛物线y′,点M是新抛物线y′对称轴上一点,点N是平面直角坐标系内一点,当点M,N,P,B为顶点的四边形是菱形时,请直接写出所有符合条件的N点的坐标,并任选一点,写出求解过程.8.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴交于A(﹣2,0),B两点(点A在点B的左侧),与y轴交于点C,连接BC,∠ABC=30°.(1)求抛物线的解析式;(2)点P为直线BC上方抛物线上(不与B,C重合)一点,连接PC,PB,AC,当S=S△AOC,求点P的坐标.△PBC(3)将抛物线沿射线CB方向平移个单位,点F是平移后新抛物线的顶点,M是y轴正半轴上一点,点N是平面内任意一点,当以A、F、M、N为顶点的四边形是菱形时,请直接写出所有符合条件的N点的坐标;并任选其中一个N点,写出求N点的坐标的过程.9.如图,抛物线y=ax2+bx﹣3(a≠0)与x轴交于A、B(点A在点B的左侧),其中OA =1,tan∠ABC=.(1)求抛物线的表达式;(2)如图1,点P是直线BC下方抛物线上一点,过点P作PQ∥AC交BC于Q,PH∥x轴交BC于H,求△PQH周长最大值及此时点P的坐标;(3)如图2,将抛物线y水平向右平移1个单位得到新抛物线y′,点G为新抛物线y′对称轴上一点,将线段AC沿着直线BC平移,平移后的线段记为A1C1,点K是平面内任意一点,在线段平移的过程中,是否存在以A1、C1、G、K为顶点且A1G为边的正方形?若存在,请直接写出点K的坐标;若不存在,请说明理由.10.如图,边长为5的正方形OABC的两边在坐标轴上,以点M(0,4)为顶点的抛物线经过点N(4,0),点P是抛物线MN段上一动点,过点P作PF⊥BC于点F,点E(0,3),连接PE、EF.(1)求抛物线的解析式;(2)当∠EPF=60°,求点P的坐标;(3)求△PEF周长的取值范围.11.平面直角坐标系中,直线l与y轴,x轴分别交于点A(0,4)和点B(4,0),点C在直线l上且不与A,B重合,过点O,B,C的抛物线解析式为y=ax2+bx(a≠0).(1)求直线l的解析式;(2)当抛物线在△AOB内部的图象从左到右上升时,求a的取值范围;(3)以OC为边,向射线OC右侧作正方形OCDE,正方形OCDE的面积为S1,正方形OCDE在第一象内的面积为S2,当S2=S1时,求抛物线的解析式.12.抛物线y=ax2+2x+c过点A(﹣1,0),点B(3,0),顶点为C.(1)求抛物线的表达式及顶点C的坐标;(2)如图1,点P在第一象限抛物线上,连接CP并延长交x轴于点D,连接AC,AP.若S△ACP:S△ADP=4:5,求点P的坐标;(3)如图2,在(2)的条件下,点E是抛物线对称轴上一点,点F是平面内一点,是否存在点E,点F,使得四边形ADFE为菱形?若存在,请求出所有符合条件的点F的坐标;若不存在,请说明理由.13.如图,抛物线y=x2+bx+c与x交于A,B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=12.(1)求抛物线的解析式以及点D的坐标.(2)联结BD,F为抛物线上一点,当∠F AB=∠ACO时,求点F的坐标.(3)平行于x轴的直线交抛物线于M,N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=MN时,求菱形对角线MN的长.14.在平面直角坐标系中,抛物线y=﹣x2+x+3与x轴交于A、B两点(A在B左侧),与y轴交于点C,抛物线的顶点为D,过点B作BC的垂线,交对称轴于E.(1)如图1,点P为第一象限内的抛物线上一动点,当△P AE面积最大时,在对称轴上找一点M,在y轴上找一点N,使得OM+MN+NP最小,求此时点M的坐标及OM+MN+NP 的最小值;(2)如图2,平移抛物线,使抛物线的顶点D在射线AD上移动,点D平移后的对应点为D',点A的对应点A',设原抛物线的对称轴与x轴交于点F,将△FBC沿BC翻折,使点F落在点F′处,在平面上找一点G,使得以A'、D'、F'、G为顶点的四边形为菱形.直接写出D′的坐标.15.如图,在平面直角坐标系中,抛物线y=x2+bx+c与坐标轴交于A(0,﹣2),B(4,0)两点,直线BC:y=﹣2x+8交y轴于点C.点D为直线AB下方抛物线上一动点,过点D作x轴的垂线,垂足为G,DG分别交直线BC,AB于点E,F.(1)求b和c的值;(2)当GF=时,连接BD,求△BDF的面积;(3)H是y轴上一点,当四边形BEHF是矩形时,求点H的坐标.16.阅读材料:一般地,对于某个函数,如果自变量x在取值范围内任取x=a与x=﹣a时,函数值相等,那么这个函数是“对称函数”.例如:y=x2,在实数范围内任取x=a时,y =a2;当x=﹣a时,y=(﹣a)2=a2,所以y=x2是“对称函数”.(1)函数y=2|x|+1 对称函数(填“是”或“不是”).当x≥0时,y=2|x|+1的图象如图1所示,请在图1中画出x<0时,y=2|x|+1的图象.(2)函数y=x2﹣2|x|+1的图象如图2所示,当它与直线y=﹣x+n恰有3个交点时,求n的值.(3)如图3,在平面直角坐标系中,矩形ABCD的顶点坐标分别是A(﹣3,0),B(2,0),C(2,﹣3),D(﹣3,﹣3),当二次函数y=x2﹣b|x|+1(b>0)的图象与矩形的边恰有4个交点时,求b的取值范围.17.在平面直角坐标系中,二次函数y=﹣x2+2mx﹣6m(x≤2m,m为常数)的图象记作G,图象G上点A的横坐标为2m.平面内有点C(﹣2,﹣2).当AC不与坐标轴平行时,以AC为对角线构造矩形ABCD,AB与x轴平行,BC与y轴平行.(1)当m=﹣2,求图象G的最高点坐标;(2)若图象G过点(3,﹣9),求出m的取值范围;(3)若矩形ABCD为正方形时,求点A坐标;(4)图象G与矩形ABCD的边有两个公共点时,直接写出m的取值范围.18.综合与探究如图,抛物线与y轴交于点A(0,8),与x轴交于点B(6,0),C,过点A作AD∥x轴与抛物线交于另一点D.(1)求抛物线的表达式;(2)连接AB,点P为AB上一个动点,由点A以每秒1个单位长度的速度沿AB运动(不与点B重合),运动时间为t,过点P作PQ∥y轴交抛物线于点Q,求PQ与t的函数关系式;(3)点M是y轴上的一个点,点N是平面直角坐标系内一点,是否存在这样的点M,N,使得以B,D,M,N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.19.已知抛物线y=ax2+2ax+c(a,c均不为0).(1)若该抛物线经过A(﹣3,0),B(0,6)两点,设AB的直线解析式为y=kx+b.①求抛物线解析式及直线AB的解析式;②直接写出关于x的不等式ax2+2ax+c<kx+b的解集;(2)若a=1.①若抛物线到x轴距离为的点只有2个,求c的取值范围;②该抛物线交y轴于正半轴,直线x=c交抛物线于点M,直线x=﹣2c交抛物线于点N,矩形MPNQ的顶点P在直线x=﹣2c上,顶点Q在直线x=c上,若抛物线在直线x=c 与x=﹣2c之间(包括直线上)的部分的最低点的纵坐标等于﹣,请直接写出矩形MPNQ 的周长.20.如图,在平面直角坐标系中,四边形ABCD为正方形,点A,B在x轴上,抛物线y=x2+bx+c经过点B,D(﹣4,5)两点,且与直线DC交于一点E.(1)求抛物线的解析式;(2)若点P为y轴上一点,探究EP+PB是否存在最小值.若存在,请求出这个最小值及点P的坐标;若不存在,请说明理由;(3)若点F为抛物线对称轴上一点,点Q为平面直角坐标系中的一点,是否存在以点Q,F,E,B为顶点的四边形是以BE为边的菱形.若存在,请求出点F的坐标;若不存在,请说明理由.参考答案1.(1)证明:∵∠BOC=90°,二次函数y=2x2﹣(1+2c)x+c(c>,c是常数)的图象与y轴交于点C,令x=0,则y=c,∴C(0,c),令y=0,则2x2﹣(1+2c)x+c=0,解得x=或x=c,∵点B在点A右侧且c>,∴A(,0),B(c,0).∴OB=OC=c,∴△BOC是等腰直角三角形;(2)解:如图,设抛物线对称轴与x轴交于点F,设直线BC想解析式为y=kx+b,由(1)知,B(c,0),C(0,c),∴,解得:,∴直线BC的解析式为:y=﹣x+c,∵二次函数y=2x2﹣(1+2c)x+c=2(x﹣)2﹣,∴抛物线的顶点D(,﹣),对称轴为直线x=,∴E(,),F(,0),∴EF=,DF=,∵△BOC是等腰直角三角形,∴∠ABE=45°,由抛物线的对称性得,AE=BE,AF=BF,∠ABE=∠BAE=45°,∴∠AEB=180°﹣45°﹣45°=90°,故若四边形AEBD为正方形,则只需EF=DF,∴=,解得c=(舍去),c=.综上所述,c的值为.2.解:(1)由抛物线y=﹣x2+bx+c经过点(﹣3,)和点(0,),于是得到,解得,故抛物线的表达式为y=﹣x2﹣4x+;(2)由(1)知抛物线的对称轴是直线x=﹣2,∵点A为抛物线CD的中点,y=kx﹣1,∴A(﹣2,0),B(0,﹣1),作正方形ABMN,过点M作MG⊥y轴于点G,∴∠AOB=∠MGB=∠ABM=90°,AB=BM,∴∠ABO+∠MBG=∠ABO+∠OAB=90°,∴∠MBG=∠OAB,∴△AOB≌△BGM(AAS),∴BG=OA=2,MG=OB=1,∴OG=3,即M(﹣1,﹣3),同理可得:N(﹣3,﹣2);(3)由(2)知,在Rt△OAB中,OA=2,OB=1,∴AB==,∴S正方形ABMN=AB2=5,由平行四边形的性质知,S平行四边形ABEF=4S△ABP,∵S平行四边形ABEF=4S正方形ABMN,∴S△ABP=S正方形ABMN=5,在点B的上方的y轴上取点T,设点T的坐标为(0,t),由S△ABT=BT•AO=5,即:×2(t+1)=5,∴t=4,即T(0,4),过点T(0,4)作直线RT∥AB,∵直线AB的解析式为y=kx﹣1,把点A(﹣2,0)代入y=kx﹣1,可得y=﹣x﹣1,∵直线RT∥AB,点T(0,4),∴直线RT的解析式为:y=﹣x+4,∴列方程﹣x2﹣4x+=﹣x+4,化简得:2x2+7x+5=0,∴解方程得:x1=﹣1,x2=﹣,即点P的横坐标为﹣1或.3.解:(1)由题意得:,解得:,∴抛物线的函数表达式为:y=﹣x2+x+6;(2)当点D在直线BC上方时,过点B作BE⊥BC交CD的延长线于E,垂足为B,作EF⊥x轴于F,∵点A的坐标为A(﹣2,0),对称轴为直线x=1.点C的坐标为C(0,6),∴B(4,0),∴OA=2,OC=6,OB=4,∵∠BCD=∠ACO,∠AOC=∠EBC,∴△AOC∽△EBC,∴=3,∵∴BE⊥BC,∴∠OBC+∠EBF=90°,∵∠OBC+∠BCO=90°,∴∠BCO=∠EBF,∵∠BOC=∠EFB=90°,∴△BOC∽△EFB,∴=3,∴BF=2,EF=,∴OF=OB+BF=6,∴E(6,),设直线CE的解析式为y=kx+n,∴,解得,∴直线CE的解析式为y=﹣x+6,联立y=﹣x2+x+6得x=0(舍去)或,∴m=;当点D在直线BC下方时(D′的位置),延长EB交CD′于G,过G作GH⊥x轴于H,∵∠BCD′=∠ACO=∠BCD,BE⊥BC,∴BG=BE,∵∠BHG=∠BFE=90°,∠GBH=∠EBF,∴△GBH≌△EBF(AAS),∴BH=BF=2,GH=EF=,∴OH=OB﹣BH=2,∴直线CG的解析式为y=﹣x+6,联立y=﹣x2+x+6得x=0(舍去)或,∴m=;综上,m的值为或;(3)∵点A的坐标为A(﹣2,0),点C的坐标为C(0,6),点F坐标为(0,2),∴AC2=22+62=40,直线AF为y=x+2,设P(t,t+2),AP2=(t+2)2+(t+2)2=2t2+8t+8,PC2=t2+(t+2﹣6)2=2t2﹣8t+16,①当AC是菱形的边时,如图,AP=AC时,2t2+8t+8=40,解得t=﹣2+2或t=﹣2﹣2,∴P(﹣2+2,2)或(﹣2﹣2,﹣2),∵点A的坐标为A(﹣2,0),点C的坐标为C(0,6),∴Q(2,2+6)或(﹣2,﹣2+6),CP=AC时,2t2﹣8t+16=40,解得t=﹣2(舍去)或t=6,∴P(6,8),∵点A的坐标为A(﹣2,0),点C的坐标为C(0,6),∴Q(4,2),综上,当AC是菱形的边时,点Q的坐标为(2,2+6)或(﹣2,﹣2+6)或(4,2);②当AC是菱形的对角线时,如图,∴AP=CP,∴2t2+8t+8=2t2﹣8t+16,解得t=,∴P(,),∵点A的坐标为A(﹣2,0),点C的坐标为C(0,6),∴Q(﹣,),综上所述,点Q的坐标为(2,2+6)或(﹣2,﹣2+6)或(4,2)或(﹣,).4.解:(1)如图,当m=3时,点C的坐标为(0,3)(m>0),点D(﹣1,3),∵点A的坐标为(﹣4,0),四边形OABC是矩形,∴OA=BC=4,AB=OC=3,∴BD=3,∴将△ABD沿AD折叠压平,点B的对应点E在x轴上,∴AE=3,∴OE=1,∴E(﹣1,0),设过点A、E、C的抛物线解析式为y=a1x2+bx+c(a1≠0),∴,解得,∴抛物线解析式为y=x2+x+3;(2)当点E正好落在y轴上,如图:由折叠得DE=DB=3,∠AED=∠B=90°,∴∠DEC+∠AEO=90°,CE===2,∵∠EAO+∠AEO=90°,∴∠DEC=∠EAO,∵∠AOE=∠ECD=90°,∴△AOE∽△ECD,∴,∴,∴OE=,∴AB=OC=3,∴cot∠BAD==;(3)如图,过点E作EN⊥x轴于N,延长NE交BC延长线于M,则∠M=90°,∵点E横坐标坐标为1,∴ON=CM=1,∴DM=DC+CM=2,AN=OA+ON=5,由折叠得∠AED=∠B=90°,∴∠AEN+∠DEM=90°,∵∠AEN+∠EAN=90°,∴∠DEM=∠EAN,∵∠M=∠AEN=90°,∴△DEM∽△EAN,∴,在Rt△DEM中,ME===,∴,∴EN=2,∴MN=EN+ME=3,∴D(﹣1,3),E(1,2),设直线AE的解析式为y=kx+b,∴,解得,∴直线AE的解析式为y=x+,∵抛物线y=ax2+2ax+10=a(x+1)2﹣a+10,∴顶点为(﹣1,﹣a+10),当x=﹣1时,y=x+=,∵抛物线y=ax2+2ax+10(a≠0且a为常数)的顶点落在△ADE的内部,∴<﹣a+10<3,∴10﹣3<a<10﹣.5.解:(1)设对称轴与x轴交于D点,∵AB=4,对称轴是直线x=1,∴AD=BD=2,OD=1,∴A(﹣1,0),B(3,0),∵抛物线y=ax2+bx+3与x轴交于A,B两点,∴,解得:,∴抛物线的解析式为y=﹣x2+2x+3;(2)x=0时,y=﹣x2+2x+3=3,∴C(0,3),∴OC=3,设P(n,﹣n2+2n+3),①当CP⊥PB时,设BC的中点为J(,),则有PJ=BC=,∴(n﹣)2+(﹣n2+2n+3﹣)2=()2,整理得n(n﹣3)(n2﹣n﹣1)=0,∴n=0或3或,∵P在第一象限,∴n=,∴﹣n2+2n+3=,∴P点坐标为(,);②当CP⊥CB时,过P作PE⊥y轴于E,则EC=﹣n2+2n+3﹣3,PE=n,∵∠PEC=∠BOC=90°,∴∠ECP+∠BCO=∠BCO+∠CBO=90°,∴∠ECO=∠CBO,∴△PEC∽△COB,∴=,∵CO=BO=3,∴PE=CE,∴﹣n2+2n+3﹣3=n,∴n=1,∴﹣n2+2n+3=4,∴P(1,4).∴P点横坐标为1;综上所述:P点坐标为(,)或(1,4).6.(1)证明:∵四边形ABCD是矩形,∴∠C=90°,∵BF⊥EF,∴∠BFE=90°,∴∠C=∠BFE=90°,在Rt△BEC和Rt△BEF中,,∴Rt△BEC≌Rt△BEF(HL);(2)解:∵四边形ABCD是矩形,AB在x轴上,AB=9,BC=15,A(1,0),∴AD=BC=15,OB=10,∴B(10,0),D(1,15),分别将B(10,0),D(1,15)代入y=ax2+bx,得解得抛物线的解析式为y=﹣x2+;(3)由(1)△BEC≌△BEF,则BF=BC=15,AF===12,分三种情况讨论:①以BO,BF为菱形的邻边时,则BO=BF=15,∵A点坐标为(m,0)(m>0),∴OA=m,∴BO=m+9,即15=m+9,∴m=6,∴A坐标为(6,0);②以FB,FO为菱形的邻边时,则FO=FB=15,由①知,OA=m,∵在Rt△OAF中,FO2=OA2+AF2,∴152=m2+122,∴m=﹣9或m=9,∵m>0,∴m=﹣9舍去,∴A坐标为(9,0);③以OB,OF为菱形的邻边时,则OB=OF,由①和②知,OA=m,OB2=(m+9)2,OF2=m2+122,∴(m+9)2=m2+122,∴m=,∴A点坐标为(,0);综上,以O,B,F,G为顶点的四边形是菱形时,A点坐标为(,0),或(6,0),或(9,0).7.解:(1)∵二次函数y=ax2+bx+2(a≠0)与x轴交于点A(﹣1,0),B(4,0),∴,解得.∴抛物线的解析式为:y=﹣x2+x+2.(2)∵y=﹣x2+x+2,∴当x=0时,y=2,∴C(0,2).∴设直线BC的解析式为:y=kx+2,∵直线BC过点B,∴4k+2=0,解得k=﹣.∴直线BC的解析式为:y=﹣x+2.设点P(m,﹣m2+m+2)(0<m<4),∴E(m2﹣3m,﹣m2+m+2),∴PE=﹣m2+4m.∵A(﹣1,0),B(4,0),C(0,2).∴AB=5,AC=,BC=2,∴C△ABC=3+5,∵PD∥AC,PE∥x轴,∴∠PDE=∠ACB,∠ABC=∠EPD,∴△PDE∽△ACB,∴=,即=,∴C△PDE=(﹣m2+4m)=﹣(m﹣2)2++4,∵﹣<0,∴当m=2时,C△PDE的最大值为+4,此时P(2,3);(3)∵y=﹣x2+x+2=﹣(x﹣)2+,该抛物线向左移动个单位,∴新抛物线的解析式为:y′=﹣(x+1)2+,∴新抛物线的对称轴为直线x=﹣1,设M(﹣1,t);①当线段BP为菱形的对角线时,MP=MB,∵P(2,3),B(4,0),∴MP2=t2﹣6t+18,MB2=t2+25,∴t2﹣6t+18=t2+25,解得t=﹣,∴BP的中点为(3,),∴N(7,).当线段PB为菱形的边时,∵P(2,3),B(4,0),∴MP2=t2﹣6t+18,PB2=13,MB2=t2+25,①当MP=PB时,MP2=PB2,即t2﹣6t+18=13,∴t=1或t=5;∴M(﹣1,1)或(﹣1,5);∴BM的中点分别为(,)或(,)∴N(1,﹣2)或(1,2).②当BP=BM时,BP2=BM2,即13=t2+25,无解;综上,点N的坐标为(7,)或(1,﹣2)或(1,2).8.解:(1)当x=0时,y=2,∴C(0,2),OC=2,∵∠BOC=90°,∠ABC=30°,∴OB=OC=6,∴B(6,0),把A(﹣2,0)和B(6,0)代入抛物线y=ax2+bx+2(a≠0)中得:,解得:,∴抛物线的解析式为:y=﹣x2+x+2;(2)如图1,过点P作PE∥y轴,交BC于E,∵B(6,0),C(0,2),∴设直线BC的解析式为:y=kx+n,∴,解得:,∴直线BC的解析式为:y=﹣x+2,设P(m,﹣m2+m+2),则E(m,﹣m+2),∴PE=(﹣m2+m+2)﹣(﹣m+2)=﹣m2+m,∵S△PBC=S△AOC,×6×PE=××,∴PE=,∴﹣m2+m=,解得:m1=m2=3,∴P(3,);(3)如图2,Rt△BOC中,若BC=,∵∠B=30°,∴OC=,OB=OC=1,∴将抛物线沿射线CB方向平移个单位,就是将抛物线向下平移个单位,再向右平移1个单位,得到新的抛物线的解析式为:y=﹣(x﹣3)2+,∴F(3,),设M(0,y)(y>0),分两种情况:①如图3,AF为边,当四边形AFNM是菱形时,AF=AM,∴(3+2)2+()2=22+y2,∴y2=,∴y=,∴M(0,),∴N(5,+);②如图4,AF是对角线,四边形AMFN是菱形,∵AM=FM,∴22+y2=32+(y﹣)2,∴y=,∴M(0,),∴N(1,﹣);综上,点N的坐标为(5,+)或(1,﹣).9.解:(1)由题意得:C(0,﹣3),∴OC=3,∵∠BOC=90°,∴tan∠ABC==,∴,∴OB=4,∴B(4,0),A(﹣1,0),∴,∴,∴y=﹣x﹣3;(2)∵A(﹣1,0),B(4,0),C(0,﹣3),∴直线BC的关系式为:y=﹣3,BC=5,AB=5,AC=,设点P(a,﹣),由=﹣a﹣3得,x=a2﹣3a,∴H点的横坐标为:a2﹣3a,∴PH=a﹣(a2﹣3a)=﹣a2+4a=﹣(a﹣2)2+4,∴当a=2时,PH最大=4,当a=2时,﹣﹣3=﹣,∴P(2,),设△PQH的周长记作l1,△ABC周长记作l,∵PQ∥AC,PH∥AB,∴∠PQH=∠ACB,∠QHP=∠ABC,∴△PQH∽△ACB,∴=,∴=,∴l1最大=;(3)当A1C1为边时,∵原抛物线的对称轴为:x=﹣=,∴新抛物线的对称轴为:x=1+=,如图,∵将线段AC沿着直线BC平移,∴设点C1(m,),A1(m﹣1,),G(,n)作EA1⊥x轴,作GE⊥EA1于E,作C1F⊥EA1于F,∴∠E=∠F=90°,∴∠EGA1+∠EA1G=90°,∵∠G1AC1=90°,∴∠EA1G+∠F A1C1=90°,∴∠EGA=1∠F A1C1,∵A1G=A1C1,∴△GEA1≌△A1FC1(AAS),∴EG=A1F,EA1=C1F,∴﹣(m﹣1)=3,n﹣=1,∴m=,∴n=,∴A1(﹣,),C1(,﹣),G(,),∴K(,﹣),同理可得,RA′=TC′=3,RG′=TA′=1,∴(m﹣1)﹣=3,﹣n=1,∴m=,∴n=,∴G′(,),∴K′(,),当A1C1为对角线时,如图,点K在EF的左侧时,设点C1(m,),A1(m﹣1,),G(,n)过点A1作A1E⊥直线x=于点E,过点C1作C1F⊥直线x=于点F,∴∠A1EG=∠GFC1=90°=∠A1GC1,∴∠A1GE+∠C1GF=90°=∠A1GE+∠GA1E,∴∠GA1E=∠C1GF,又∵A1G=C1G,∴△A1EG≌△GFC1(AAS),∴A1E=GF,C1F=EG,∴﹣m+﹣(m﹣1)=m﹣(),∴m=,∴点A1(,),C1(,﹣),∴A1E=GF=2,∴G(,),∴点K(﹣,),当点K在EF的右侧时,同理可求K(,),综上所述:K(,﹣)或(,)或(,)或(﹣,).10.解:(1)∵抛物线的顶点为M(0,4),设抛物线的解析式为y=ax2+4,将点N(4,0)代入y=ax2+4,∴a=﹣,∴y=﹣x2+4;(2)∵边长为5的正方形OABC的两边在坐标轴上,∴A(5,0),C(0,5),B(5,5),设P(t,﹣t2+4),∵PF⊥BC,∴F(t,5),∴PF=5+t2﹣4=t2+1,∵E(0,3),∴PE==t2+1,∴PE=PF,∵∠EPF=60°,∴△PEF是等边三角形,∴EF=PE,∴=t2+1,解得t2=12,∴t=±2,∵P点在第一象限内,∴t=2,∴P(2,1);(3)当点P与N重合时,△PEF的周长最大,此时E(0,3),N(4,0),F(4,5),∴PF=5,PE=5,EF==2,∴△PEF的周长的最小值为10+2.当点P与M重合时,PE=PF=1,EF=2,PE+PF+EF=4,此时三角形不存在,∴4<△PEF的周长≤10+2.解法二:∵PE=PF.∴△PEF的周长=2PF+EF=2(x2+1)+=x2+2+.∵当0≤x≤4时,x2+2随x的增大而增大,x2+4随x的增大而增大,∴x2+2+随x的增大而增大,∴4<△PEF的周长≤10+2.11.解:(1)设直线l的解析式为y=kx+b,将点A(0,4)和点B(4,0),可得,解得,∴y=﹣x+4;(2)将点B(4,0)代入y=ax2+bx,∴16a+4b=0,∴b=﹣4a,∴y=ax2﹣4ax,∴抛物线的对称轴为直线x=2,顶点坐标为(2,﹣4a),∵抛物线在△AOB内部的图象从左到右上升,∴﹣4a≥2,∴a≤﹣;(3)∵四边形OCDE为正方形,∴S1=OC2,设C(t,﹣t+4),∴OC2=2t2﹣8t+16,∴S2=S1﹣×OA×|t|,∵S2=S1,∴OC2﹣×OA×|t|=OC2,∴2t2﹣8t+16=8|t|,解得t=﹣2+4或t=2+4,∴C(﹣2+4,2)或(2+4,﹣2),∴y=﹣x2+(2+)x或y=x2﹣(2﹣)x.12.解:(1)把A(﹣1,0)、B(3,0)代入y=ax2+2x+c,得:,解得:,∴抛物线的解析式为y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点C坐标为(1,4);(2)如图1,过点C作CM⊥x轴于M,PN⊥x轴于N,∵S△ACP:S△ADP=4:5,∴S△ADP:S△ADC=5:9,∴,∴,设P(t,﹣t2+2t+3),其中t>0,则,解得:(舍),,∴P(,);(3)存在,设直线CP的解析式为y=kx+b,则,解得:,∴直线CP的解析式为y=x+,令x=0,得x+=0,解得:x=4,∴D(4,0),由(1)知:抛物线的对称轴为直线x=1,A(﹣1,0),设E(1,m),当四边形ADFE为菱形时,则AE=AD,如图2,设直线x=1与x轴交于点H,则H(1,0),∴AH=1﹣(﹣1)=2,EH=|m|,∴AE2=AH2+EH2=m2+4,∵AD2=25,∴m2+4=25,解得:m=±,∴点E坐标为或.由平移性质可知点F坐标分别为或.13.解:(1)∵OB=OC=12,∴B(12,0),C(0,﹣12),∴,解得,∴抛物线解析式为y=x2﹣5x﹣12,∵y=x2﹣5x﹣12=(x﹣5)2﹣,∴点D的坐标为(5,﹣);(2)如图1,过F作FG⊥x轴于点G,设F(x,x2﹣5x﹣12),则FG=|x2﹣5x﹣12|,在y=x2﹣5x﹣12中,令y=0可得x2﹣5x﹣12=0,解得x=﹣2或x=12,∴A(﹣2,0),∴OA=2,则AG=x+2,∵C(0,﹣12),∴OC=12,当∠F AB=∠ACO时,∵∠FGA=∠AOC=90°,∴△F AG∽△ACO,∴,即,∴==,当点F在x轴上方时,则有=,解得x=﹣2(舍去)或x=,此进F 点坐标为(,);当点F在x轴下方时,则有=﹣,解得x=﹣2(舍去)或x=,此进F点坐标为(,﹣);综上可知,点F的坐标为(,)或(,﹣);(3)∵点P在x轴上,∴由菱形的对称性可知P(5,0),如图2,当MN在x轴上方时,设T为菱形对角线的交点,∵PQ=MN,∴MT=PT,设PT=n,则MT=n,∴M(5+n,n),∵M在抛物线上,∴n=(5+n)2﹣5(5+n)﹣12,解得n=或n=(舍去),∴MN=2MT=3n=;当MN在x轴下方时,同理可设PT=n,则M(5+n,﹣n),∴﹣n=(5+n)2﹣5(5+n)﹣12,解得n=或n=(舍去),∴MN=2MT=3n=;综上可知,菱形对角线MN的长为或.14.解:(1)当x=0时,y=3,∴C(0,3),当y=0时,﹣x2+x+3=0,解得:x=﹣或x=3,∴点A(﹣,0),B(3,0),∴点D的橫坐标为=,∴点D的坐标为(,4),∴OC=3,OB=3,如图,记对称轴于x轴的交点为点F,则BF=3﹣=2,∠BFE=∠COB=90°,∵BC⊥BE,∴∠CBF+∠FBE=90°,∵∠FBE+∠FEB=90°,∴∠CBF=∠FEB,∴△FBE∽△OCB,∴,即,∴EF=4,∴点E的坐标为(,﹣4),设直线AE的解析式为y=kx+b,则,解得:,∴直线AE的解析式为y=﹣x﹣2,过点P作PQ⊥x轴,交直线AE于点Q,设点P的坐标为(x,﹣x2+x+3),则点Q的坐标为(x,﹣x﹣2),∴PQ=﹣x2+x+3﹣(﹣x﹣2)=﹣x2+2x+5=﹣(x﹣2)2+9,∵S△P AE=S△P AQ﹣S△PEQ===PQ,∴S△P AE=﹣(x﹣2)2+9,∴当x=2,即点P的坐标为(2,3)时,△P AE面积最大,作点P和点O关于对称轴的对称点P'和O',连接O'P',与对称轴交于点M,与y轴交于点N,则OM+MN+NP的最小值即为O'P'的长,∵O(0,0),P(2,3)∴O'(2,0),P'(﹣2,3),∴O'P'==,设直线O'P'的解析式为y=mx+n,则,解得:,∴直线O'P'的解析式为y=﹣x+,当x=时,y=,∴点M的坐标为(,),OM+MN+NP的最小值为.(2)设直线BC的解析式为y=kx+b,则,解得:,∴直线BC的解析式为y=﹣x+3,记FF'与BC的交点为点H,则∠FHB=90°,点H为F和F'的中点,∴cos∠FBH=cos∠CBO,即,∵BF=2,BO=3,BC==3,∴,∴BH=,过点H作HK⊥x轴于点K,则∠HKB=90°,∴sin∠HBK=sin∠CBO,cos∠HBK=cos∠CBO,∴,,∴,∴HK=,BK=,∴OK=OB﹣BK=3﹣=,∴点H的坐标为(,),∴点F'的坐标为(,),∵点A(﹣,0),点D(,4),∴AD=2,即A'D'=2,设平移的距离为t,则点A'的坐标为(﹣+t,2t),点D'的坐标为(+t,4+2t),∴A'F'2=(﹣+t﹣)2+(2t﹣)2=6t2﹣24t+,D'F'2=(t+﹣)2+(4+2t﹣)2=6t2+,A'D'2=24,①以A'F'和D'F'为邻边时,A'F'2=D'F'2,∴6t2﹣24t+=6t2+,解得:t=1,∴点D'的坐标为(2,6);②以A'F'和A'D'为邻边时,A'F'2=A'D'2,∴6t2﹣24t+=24,解得:t=2+或t=2﹣,∴点D'的坐标为(3+,8+)或(3﹣,8﹣);③以D'F'和A'D'为邻边时,D'F'2=A'D'2,∴6t2+=24,解得:t=或t=﹣(舍),∴点D'的坐标为(+,4+);综上所述,点D'的坐标为(2,6)或(3+,8+)或(3﹣,8﹣)或(+,4+).15.解:(1)∵抛物线y=x2+bx+c与坐标轴交于A(0,﹣2),B(4,0)两点,∴,解得:,∴b=﹣,c=﹣2;(2)∵b=﹣,c=﹣2,∴抛物线解析式为y=x2﹣x﹣2,设直线AB的解析式为y=kx+a,则,解得:,∴直线AB的解析式为y=x﹣2,设D(m,m2﹣m﹣2),则E(m,﹣2m+8),F(m,m﹣2),G(m,0),∴FG=﹣(m﹣2)=2﹣m,当GF=时,2﹣m=,解得:m=3,∴D(3,﹣2),F(3,﹣),G(3,0),∴DF=﹣(﹣2)=,BG=4﹣3=1,∴S△BDF=DF•BG=××1=;(3)如图2,∵直线BC:y=﹣2x+8交y轴于点C,∴C(0,8),∴OC=8,∵OA=2,OB=4,∴==,==,∴=,∵∠AOB=∠BOC=90°,∴△AOB∽△BOC,∴∠ABO=∠BCO,∵∠CBO+∠BCO=90°,∴∠CBO+∠ABO=90°,即∠ABC=90°,∵四边形BEHF是矩形,∴EH=BF,FH=BE,EH∥BF,FH∥BE,∴∠CEH=∠ABC=90°,∠AFH=∠ABC=90°,∵DE⊥x轴,∴DE∥y轴,∴∠ECH=∠BEF,∠F AH=∠BFE,∴△CEH≌△EBF(AAS),△HF A≌△EBF(AAS),∴CH=EF,HA=EF,∴CH=HA,∴H是AC的中点,∴H(0,3).16.解:(1)∵在实数范围内任取x=a时,y=2|a|+1,当x=﹣a时,y=2|﹣a|+1=2|a|+1,∴y=2|x|+1是“对称函数”.故答案为:是;y=2|x|+1的图象如图1所示,(2)①当直线y=﹣x+n经过点(0,1)时,函数y=x2﹣2|x|+1的图象与直线y=﹣x+n恰有3个交点,∴n=1;②当直线y=﹣x+n与函数y=x2﹣2|x|+1的图象的右半侧相切时,函数y=x2﹣2|x|+1的图象与直线y=﹣x+n恰有3个交点,即方程组有一个解,∴方程x2﹣x+1﹣n=0有两个相等的实数根.∴Δ=(﹣1)2﹣4×1×(1﹣n)=0,解得:n=.综上,函数y=x2﹣2|x|+1的图象与直线y=﹣x+n恰有3个交点,则n的值为1或;(3)当x>0时,函数y=x2﹣bx+1的图象与x轴相切时,方程x2﹣bx+1=0有两个相等的实数根,∴Δ=(﹣b)2﹣4×1×1=0,∵b>0,∴b=2;当x>0时,函数y=x2﹣bx+1的图象与直线DC相切时,方程x2﹣bx+1=﹣3有两个相等的实数根,∴Δ=(﹣b)2﹣4×1×4,∵b>0,∴b=4;当x<0时,函数y=x2+bx+1的图象经过点(﹣3,﹣3)时,﹣3=(﹣3)2﹣3b+1,解得:b=.综上,当2<b<4或b>时,二次函数y=x2﹣b|x|+1(b>0)的图象与矩形的边恰有4个交点.17.解:(1)m=﹣2时,y=﹣x2﹣4x+12=﹣(x+2)2+16(x≤﹣4),∴抛物线开口向下,顶点坐标为(﹣2,16),∵﹣4<﹣2,∴x=﹣4时,y=﹣16+16+12=12为函数最大值,∴图象G的最高点坐标为(﹣4,12).(2)∵y=﹣x2+2mx﹣6m=﹣(x﹣m)2+m2﹣6m,∴抛物线对称轴为直线x=m,将x=3代入y=﹣x2+2mx﹣6m=﹣9,∴抛物线过定点(3,﹣9),∴2m≥3,解得m≥.(3)将x=2m代入y=﹣x2+2mx﹣6m得y=﹣6m,∴点A坐标为(2m,﹣6m),∵C(﹣2,﹣2),∴|x A﹣x C|=|y A﹣y C|,∴2m+2=﹣6m+2或2m+2=﹣2+6m,解得m=0或m=1,∴点A坐标为(0,0)或(2,﹣6).(4)点A为抛物线与矩形交点,当m>0时,抛物线对称轴在线段AD左侧,y轴右侧,当﹣6m<﹣2时,AB在CD下方,m>,∴当抛物线顶点(m,m2﹣6m)在CD下方时满足题意,∴m2﹣6m<﹣2,解得3﹣<m<3+,当﹣1<m≤0时,AD在BC右侧,抛物线对称轴在AD右侧,抛物线在矩形内部的部分y随x增大而增大,满足题意,当m<﹣1时,图象G与矩形只有1交点为A,综上所述,3﹣<m<3+或﹣1<m≤0.18.解:(1)将A(0,8),B(6,0)代入抛物线,得,解得.∴抛物线的表达式为;(2)设直线AB的解析式为y=kx+d,将A,B两点坐标代入解析式得.解得∴直线AB的解析式为.∵OA=8,OB=6,∴由勾股定理可得.如图,过点P作PE⊥y轴于点E,∴∠AEP=∠AOB=90°,∴EP∥OB.则△AEP∽△AOB.∴AE:EP:AP=AO:OB:AB=4:3:5.根据题意可知AP=t,∴,,∴点P的横坐标为.∴,∴PQ与t的函数关系式为(0≤t<10);(3)存在,点N的坐标为或.要使以B,D,M,N为顶点的四边形是矩形,分以下情况进行讨论:如图,过点B作x轴的垂线交AD的延长线于点E,则AE⊥EB,当y=8时,,解得x=0或3.∴点D的坐标为(3,8).∴AD=3,DE=3.①如图,当DM为矩形的边时,过点N作NK⊥x轴,交x轴于点K.∵∠MAD=∠DEB=90°,∠ADM+∠BDE=90°,∠AMD+∠ADM=90°,∴∠BDE=∠AMD.∴△ADM∽△EBD.∴,即,∴.同理,可求得△EBD∽△KBN.∴△ADM∽△KBN,∴∠MAD=∠NKB=90°,∠ADM=∠KBN,又∵MD=NB,∴△ADM≌△KBN.∴AD=KB=3.∴OK=6﹣3=3.∴,∴;②如图,当DM'为矩形的对角线时,过点N'作N'K'⊥x轴交DA的延长线于点K'.同理可得△M'BO∽△DBE,∴,∴,∴.∵DN'=BM',∴△DN'K'≌△BM'O,∴,K′D=OB=6,∴AK'=3,点N'的纵坐=,∴,③以BD为对角线这种情况不存在.综上所述,存在点M,N,使得以B,D,M,N为顶点的四边形是矩形,点N的坐标为或.19.解:(1)①将A(﹣3,0),B(0,6)代入y=ax2+2ax+c得,解得,∴抛物线解析式为y=﹣2x2﹣4x+6.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
72x =B(0,4) A(6,0)E FxyO二次函数与四边形综合压轴题专题汇编一.二次函数与四边形的形状例1.(浙江义乌市) 如图,抛物线223y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2.(1)求A 、B 两点的坐标及直线AC 的函数表达式; (2)P 是线段AC 上的一个动点,过P 点作y 轴的平 行线交抛物线于E 点,求线段PE 长度的最大值;(3)点G 是抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、G 这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由.练习1.(河南省实验区) 23.如图,对称轴为直线72x =的抛物线经过点 A (6,0)和 B (0,4). (1)求抛物线解析式及顶点坐标;(2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF是以OA 为对角线的平行四边形.求平行四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;①当平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形?②是否存在点E ,使平行四边形OEAF 为正方形?若存在,求出点E的坐标;若不存在,请说明理由.A练习 2.(四川省德阳市)25.如图,已知与x 轴交于点(10)A ,和(50)B ,的抛物线1l 的顶点为(34)C ,,抛物线2l 与1l 关于x 轴对称,顶点为C '.(1)求抛物线2l 的函数关系式;(2)已知原点O ,定点(04)D ,,2l 上的点P 与1l 上的点P '始终关于x 轴对称,则当点P 运动到何处时,以点D O P P ',,,为顶点的四边形是平行四边形?(3)在2l 上是否存在点M ,使ABM △是以AB 为斜边且一个角为30的直角三角形?若存,求出点M 的坐标;若不存在,说明理由.练习3.(山西卷)如图,已知抛物线1C 与坐标轴的交点依次是(40)A -,,(20)B -,,(08)E ,. (1)求抛物线1C 关于原点对称的抛物线2C 的解析式; (2)设抛物线1C 的顶点为M ,抛物线2C 与x 轴分别交于C D ,两点(点C 在点D 的左侧),顶点为N ,四边形MDNA 的面积为S .若点A ,点D 同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M ,点N 同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A 与点D 重合为止.求出四边形MDNA 的面积S 与运动时间t 之间的关系式,并写出自变量t 的取值范围;(3)当t 为何值时,四边形MDNA 的面积S 有最大值,并求出此最大值;(4)在运动过程中,四边形MDNA 能否形成矩形?若能,求出此时t 的值;若不能,请说明理由.5-4- 3-2-1- 1 2 3 455 4 3 2 1 A EBC '1- O2l 1lx y二.二次函数与四边形的面积例1.(资阳市)25.如图10,已知抛物线P:y=ax2+bx+c(a≠0) 与x轴交于A、B两点(点A在x 轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC上,抛物线P上部分点的横坐标对应的纵坐标如下:x …-3 -2 1 2 …y …-52-4 -520 …(1) 求A、B、C三点的坐标;(2) 若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围;(3) 当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=k·DF,若点M不在抛物线P上,求k的取值范围.练习1.(辽宁省十二市2007年第26题).如图,平面直角坐标系中有一直角梯形OMNH,点H的坐标为(-8,0),点N的坐标为(-6,-4).(1)画出直角梯形OMNH绕点O旋转180°的图形OABC,并写出顶点A,B,C的坐标(点M的对应点为A,点N的对应点为B,点H的对应点为C);(2)求出过A,B,C三点的抛物线的表达式;(3)截取CE=OF=AG=m,且E,F,G分别在线段CO,OA,AB上,求四边形BEFG的面积S与m之间的函数关系式,并写出自变量m的取值范围;面积S是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由;(4)在(3)的情况下,四边形BEFG是否存在邻边相等的情况,若存在,请直接写出此时m的值,并指出相等的邻边;若不存在,说明理由.图10练习3.(吉林课改卷)如图,正方形ABCD 的边长为2cm ,在对称中心O 处有一钉子.动点P ,Q 同时从点A 出发,点P 沿A B C →→方向以每秒2cm 的速度运动,到点C 停止,点Q 沿A D →方向以每秒1cm 的速度运动,到点D 停止.P ,Q 两点用一条可伸缩的细橡皮筋联结,设x 秒后橡皮筋扫过的面积为2cm y .(1)当01x ≤≤时,求y 与x 之间的函数关系式; (2)当橡皮筋刚好触及钉子时,求x 值;(3)当12x ≤≤时,求y 与x 之间的函数关系式,并写出橡皮筋从触及钉子到运动停止时POQ ∠的变化范围;(4)当02x ≤≤时,请在给出的直角坐标系中画出y 与x 之间的函数图象.练习4.(四川资阳卷)如图,已知抛物线l 1:y =x 2-4的图象与x 轴相交于A 、C 两点,B 是抛物线l 1上的动点(B 不与A 、C 重合),抛物线l 2与l 1关于x 轴对称,以AC 为对角线的平行四边形ABCD 的第四个顶点为D .(1) 求l 2的解析式;(2) 求证:点D 一定在l 2上;(3) □ABCD 能否为矩形?如果能为矩形,求这些矩形公共部分的面积(若只有一个矩形符合条件,则求此矩形的面积);如果不能为矩形,请说明理由. 注:计算结果不取近似值.B CPO D QA BPCO DQ Ay321 O1 2 x三.二次函数与四边形的动态探究例1.(荆门市)28. 如图1,在平面直角坐标系中,有一张矩形纸片OABC ,已知O (0,0),A (4,0),C (0,3),点P 是OA 边上的动点(与点O 、A 不重合).现将△PAB 沿PB 翻折,得到△PDB ;再在OC 边上选取适当的点E ,将△POE 沿PE 翻折,得到△PFE ,并使直线PD 、PF 重合.(1)设P (x ,0),E (0,y ),求y 关于x 的函数关系式,并求y 的最大值;(2)如图2,若翻折后点D 落在BC 边上,求过点P 、B 、E 的抛物线的函数关系式;(3)在(2)的情况下,在该抛物线上是否存在点Q ,使△PEQ 是以PE 为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q 的坐标.例2.(2010年沈阳市第26题)、已知抛物线y =ax2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB <OC )是方程x 2-10x +16=0的两个根,且抛物线的对称轴是直线x =-2.(1)求A 、B 、C 三点的坐标; (2)求此抛物线的表达式;(3)连接AC 、BC ,若点E 是线段AB 上的一个动点(与点A 、点B 不重合),过点E 作EF ∥AC 交BC 于点F ,连接CE ,设AE 的长为m ,△CEF 的面积为S ,求S 与m 之间的函数关系式,并写出自变量m 的取值范围;(4)在(3)的基础上试说明S 是否存在最大值,若存在,请求出S的最大值,并求出此时点E 的坐标,判断此时△BCE 的形状;若不存在,请说明理由.图2OC A Bxy DPE F 图1FE PD y xBA C O例3..(湖南省郴州) 27.如图,矩形ABCD 中,AB =3,BC =4,将矩形ABCD 沿对角线A 平移,平移后的矩形为EFGH (A 、E 、C 、G 始终在同一条直线上),当点E 与C 重时停止移动.平移中EF 与BC 交于点N ,GH 与BC 的延长线交于点M ,EH 与DC 交于点P ,FG 与DC 的延长线交于点Q .设S 表示矩形PCMH 的面积,S '表示矩形NFQC 的面积.(1) S 与S '相等吗?请说明理由.(2)设AE =x ,写出S 和x 之间的函数关系式,并求出x 取何值时S 有最大值,最大值是多少? (3)如图11,连结BE ,当AE 为何值时,ABE ∆是等腰三角形.练习1.(07年河池市)如图12, 四边形OABC 为直角梯形,A (4,0),B (3,4),C (0,4). 点M 从O 出发以每秒2个单位长度的速度向A 运动;点N 从B 同时出发,以每秒1个单位长度的速度向C 运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N 作NP 垂直x 轴于点P ,连结AC 交NP 于Q ,连结MQ .(1)点 (填M 或N )能到达终点;(2)求△AQM 的面积S 与运动时间t 的函数关系式,并写出自 变量t 的取值范围,当t 为何值时,S 的值最大;(3)是否存在点M ,使得△AQM 为直角三角形?若存在,求出点M 的坐标,若不存在,说明理由.xN MQ PHGFEDCBA图11QPN M HGFED CBA图10图12练习2..(江西省) 25.实验与探究(1)在图1,2,3中,给出平行四边形ABCD 的顶点A B D ,,的坐标(如图所示),写出图1,2,3中的顶点C 的坐标,它们分别是(52),, , ;(2)在图4中,给出平行四边形ABCD 的顶点A B D ,,的坐标(如图所示),求出顶点C 的坐标(C 点坐标用含a b c d e f ,,,,,的代数式表示);归纳与发现(3)通过对图1,2,3,4的观察和顶点C 的坐标的探究,你会发现:无论平行四边形ABCD 处于直角坐标系中哪个位置,当其顶点坐标为()()()()A a b B c d C m n D e f ,,,,,,,(如图4)时,则四个顶点的横坐标a c m e ,,,之间的等量关系为 ;纵坐标b d n f ,,,之间的等量关系为 (不必证明);运用与推广(4)在同一直角坐标系中有抛物线2(53)y x c x c =---和三个点15192222G c c S c c ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,,,,(20)H c ,(其中0c >).问当c 为何值时,该抛物线上存在点P ,使得以G S H P ,,,为顶点的四边形是平行四边形?并求出所有符合条件的P 点坐标.x图1x图2x图3)x图4答案:一.二次函数与四边形的形状例1.解:(1)令y=0,解得11x =-或23x =∴A (-1,0)B (3,0);将C 点的横坐标x=2代入223y x x =--得y=-3,∴C (2,-3)∴直线AC 的函数解析式是y=-x-1 (2)设P 点的横坐标为x (-1≤x ≤2)则P 、E 的坐标分别为:P (x ,-x-1), E (2(,23)x x x --∵P 点在E 点的上方,PE=22(1)(23)2x x x x x -----=-++ ∴当12x =时,PE 的最大值=94(3)存在4个这样的点F ,分别是1234(1,0),(3,0),(4(4F F F F - 练习 1.解:(1)由抛物线的对称轴是72x =,可设解析式27(2y a x k =-+.把A 、B 两点坐标代入上式,得227(6)0,27(0) 4.2a k a k ⎧-+=⎪⎪⎨⎪-+=⎪⎩ 解之,得225,.36a k ==- 故抛物线解析式为22725(326y x =--,顶点为725(,).26- (2)∵点(,)E x y 在抛物线上,位于第四象限,且坐标适合22725(326y x =--,∴y<0,即 -y>0,-y 表示点E 到OA 的距离.∵OA 是OEAF 的对角线, ∴2172264()2522OAES SOA y y ==⨯⨯⋅=-=--+.因为抛物线与x 轴的两个交点是(1,0)的(6,0),所以,自变量x 的 取值范围是1<x <6. ①根据题意,当S = 24时,即274()25242x --+=.化简,得271().24x -=解之,得123, 4.x x == 故所求的点E 有两个,分别为E 1(3,-4),E 2(4,-4). 点E 1(3,-4)满足OE = AE ,所以OEAF 是菱形; 点E 2(4,-4)不满足OE = AE ,所以OEAF 不是菱形. ② 当OA ⊥EF ,且OA = EF 时,OEAF 是正方形,此时点E 的 坐标只能是(3,-3).而坐标为(3,-3)的点不在抛物线上,故不存在这样的点E5-4-3-2-1-12 3D554 32 1 ACEM BC '1-O 2l 1l xy使OEAF 为正方形.练习2.解:(1)由题意知点C '的坐标为(34)-,.设2l 的函数关系式为2(3)4y a x =--. 又点(10)A ,在抛物线2(3)4y a x =--上,2(13)40a ∴--=,解得1a =.∴抛物线2l 的函数关系式为2(3)4y x =--(或265y x x =-+).(2)P 与P '始终关于x 轴对称, PP '∴与y 轴平行.设点P 的横坐标为m ,则其纵坐标为265m m -+,4OD =,22654m m ∴-+=,即2652m m -+=±.当2652m m -+=时,解得36m =±.当2652m m -+=-时,解得32m =±.∴当点P 运动到(362)-,或(362)+,或(322)--,或(322)+-,时, P P OD ' ∥,以点D O P P ',,,为顶点的四边形是平行四边形.(3)满足条件的点M 不存在.理由如下:若存在满足条件的点M 在2l 上,则90AMB ∠=,30BAM ∠=(或30ABM ∠=),114222BM AB ∴==⨯=.过点M 作ME AB ⊥于点E ,可得30BME BAM ∠=∠=.112122EB BM ∴==⨯=,3EM =,4OE =. ∴点M 的坐标为(43)-,. 但是,当4x =时,246451624533y =-⨯+=-+=-≠-.∴不存在这样的点M 构成满足条件的直角三角形.练习3. [解] (1)点(40)A -,,点(20)B -,,点(08)E ,关于原点的对称点分别为(40)D ,,(20)C ,,(08)F -,. 设抛物线2C 的解析式是2(0)y ax bx c a =++≠,则16404208a b c a b c c ++=⎧⎪++=⎨⎪=-⎩,,.解得168a b c =-⎧⎪=⎨⎪=-⎩,,.所以所求抛物线的解析式是268y x x =-+-.(2)由(1)可计算得点(31)(31)M N --,,,. 过点N 作NH AD ⊥,垂足为H .当运动到时刻t 时,282AD OD t ==-,12NH t =+.根据中心对称的性质OA ODOM ON ==,,所以四边形MDNA是平行四边形.所以2ADN S S =△.所以,四边形MDNA 的面积2(82)(12)4148S t t t t =-+=-++. 因为运动至点A 与点D 重合为止,据题意可知04t <≤.所以,所求关系式是24148S t t =-++,t 的取值范围是04t <≤. (3)781444S t ⎛⎫=--+ ⎪⎝⎭,(04t <≤). 所以74t =时,S 有最大值814. 提示:也可用顶点坐标公式来求.(4)在运动过程中四边形MDNA 能形成矩形. 由(2)知四边形MDNA 是平行四边形,对角线是AD MN ,,所以当AD MN =时四边形MDNA 是矩形.所以OD ON =.所以2222OD ON OH NH ==+.所以22420t t +-=.解之得1222t t ==,(舍).所以在运动过程中四边形MDNA 可以形成矩形,此时2t =.[点评]本题以二次函数为背景,结合动态问题、存在性问题、最值问题,是一道较传统的压轴题,能力要求较高。