高中数学随机变量分布列知识点
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章随机变量及其分布
内容提要:
一、随机变量的定义
设是一个随机试验,其样本空间为,若对每一个样本点,都有唯一确定的实数
与之对应,则称上的实值函数是一个随机变量(简记为)。
二、分布函数的概念和性质
1.分布函数的定义
设是随机变量,称定义在上的实值函数
为随机变量的分布函数。
2.分布函数的性质
(1) ,
(2)单调不减性:,
(3)
(4)右连续性:。
注:上述4个性质是函数是某一随机变量的分布函数的充要条件。在不同的教科书上,分布函数的定义可能有所不同,例如,其性质也会有所不同。
(
5)
注:该性质是分布函数对随机变量的统计规律的描述。
三、离散型随机变量
1.离散型随机变量的定义
若随机变量的全部可能的取值至多有可列个,则称随机变量是离散型随机变量。
2.离散型随机变量的分布律
(1)定义:离散型随机变量
的全部可能的取值以及取每个值时的概率值,称
为离散型随机变量的分布律,表示为或用表格表示:
1
2
x 1 x2 … x n…p k P1 p 2… p n …
或记为
~
(2)性质:,
注:该性质是是某一离散型随机变量的分布律的充要条件。
其中。
注:常用分布律描述离散型随机变量的统计规律。
3.离散型随机变量的分布函数
=,它是右连续的阶梯状函数。
4.常见的离散型分布
(1)两点分布(0—1分布):其分布律为
即
0 1
p 1–p p
(2)二项分布
(ⅰ)二项分布的来源—重伯努利试验:设是一个随机试验,只有两个可能的结果
及,,将独立重复地进行次,则称这一串重复的独立试验
为重伯努利试验。
(ⅱ)二项分布的定义
设表示在重伯努利试验中事件发生的次数,则随机变量的分布律为
,,
称随机变量服从参数为的二项分布,记作。
注:即为两点分布。
(3)泊松分布:若随机变量的分布律为
,,
则称随机变量服从参数为的泊松分布,记作(或。
3