2013-2014学年江苏省无锡市江阴徐霞客中学八年级下数学期末复习试卷
【三套打包】无锡市八年级下学期期末数学试题含答案
最新八年级下册数学期末考试试题【答案】一、选择题(共10小题,每小题4分,共40分)1.点P(2,﹣1)关于原点对称的点P′的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(1,﹣2)2.下面四幅图是我国一些博物馆的标志,其中是中心对称图形的是()A.B.C.D.3.一元二次方程x(x﹣1)=0的解是()A.x=0B.x=1C.x=0或x=﹣1D.x=0或x=14.抛物线y=(x﹣2)2+3的顶点坐标是()A.(﹣2,3)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)5.用配方法解方程x2﹣2x﹣4=0,配方正确的是()A.(x﹣1)2=3B.(x﹣1)2=4C.(x﹣1)2=5D.(x+1)2=36.如图四边形ABCD是正方形,点E、F分别在线段BC、DC上,∠BAE=30°.若线段AE绕点A逆时针旋转后与线段AF重合,则旋转的角度是()A.30°B.45°C.60°D.90°7.某商品原售价289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x,则下面所列方程中正确的是()A.289(1﹣2x)=256B.256(1+x)2=289C.289(1﹣x)2=256D.289﹣289(1﹣x)﹣289(1﹣x)2=2568.将抛物线y=2(x﹣7)2+3平移,使平移后的函数图象顶点落在y轴上,则下列平移正确的是()A.向上平移3个单位B.向下平移3个单位C.向左平移7个单位D.向右平移7个单位9.二次函数y1=ax2+bx+c与一次函数y2=mx+n的图象如图所示,则满足ax2+bx+c>mx+n的x的取值范围是()A.﹣3<x<0B.x<﹣3或x>0C.x<﹣3D.0<x<310.在同一平面直角坐标系中,函数y=ax2+bx与y=﹣bx+a的图象可能是()A .B .C .D .二、填空题(共6小题,每小题4分,共24分)11.关于x 的方程012=+-mx x 的一个解为1,则m 的值为_____________.12.如图.将平面内Rt △ABC 绕着直角顶点C 逆时针旋转90°得到Rt △EFC .若AC =2,BC =1,则线段BE 的长为 .13.二次函数()5122---=x y 的最大值是____________. 14.《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为x 尺,则可列方程为 ______________.15.求代数式1241124112++-+-⎪⎪⎭⎫ ⎝⎛-+c a ac a ac a 的值是____________. 16.小明对自己上学路线的长度进行了20次测量,得到20个数据x 1,x 2,…,x 20,已知x 1+x 2+…+x 20=2019,当代数式(x ﹣x 1)2+(x ﹣x 2)2+…+(x ﹣x 20)2取得最小值时,x 的值为___________.三、解答题(共9小题,共86分)17.计算:(10分)(1)0642=--x x (2)()033=-+-x x x18.(7分)在平面直角坐标系中,已知点A (﹣4,2),B (﹣4,0),C (﹣1,1),请在图上画出△ABC ,并画出与△ABC 关于原点O 对称的图形.19.(7分)如图,在Rt△BAC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′,若∠CC′B′=30°,求∠B的度数.20.(8分)关于x的方程x2+(2k+1)x+k2﹣1=0有两个不相等的实数根.(1)求实数k的取值范围;(2)若k为负整数,求此时方程的根.21.(8分)已知抛物线的顶点为(2,﹣1),且过(1,0)点.(1)求抛物线的解析式;(2)在坐标系中画出此抛物线;22.(本题10分)如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm,动点P从点A开始沿AB边向B以1cm/s的速度移动(不与点B重合);动点Q从B点开始沿BC边向点C以2cm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,出发多少秒后,四边形APQC的面积为8cm2?23.(本题10分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)若a≥50,求矩形菜园ABCD面积的最大值.24.(本题13分)已知:正方形ABCD,E为平面内任意一点,连接DE,将线段DE绕点D顺时针旋转90°得到DG,连接EC,AG.(1)当点E在正方形ABCD内部时,①根依题意,在图1中补全图形;②判断AG与CE的数量关系与位置关系并写出证明思路.2,求CE的长.(可在备用图(2)当点B,D,G在一条直线时,若AD=4,DG=2中画图)25. (本题13分)在平面直角坐标系中,如果点P 的横坐标和纵坐标相等,则称点P 为和谐点。
江苏省无锡八年级下学期期末考试数学试题2有答案
江苏省无锡市八年级下学期期末考试
数学试题
注意事项:
1.本卷考试时间为100分钟,满分100分.
2. 请把试题的答案写在答卷上,不要写在试题上。
2.卷中除要求近似计算的按要求给出近似结果外,其余结果均应给出精确结果.一、选择题(本大题共10小题,每小题2分,共20分.)
1.下列根式中,与是同类二次根式的是(▲)
A. B.C.D.
2.下列图标中,既是中心对称图形又是轴对称图形的是(▲)
A. B. C.D.
3.在代数式、、、、、a+中,分式的个数有(▲)
A.2个B.3个 C.4个 D.5个
4.为了解一批电视机的使用寿命,从中抽取100台进行试验,这个问题的样本是(▲) A.这批电视机 B.这批电视机的使用寿命
C.抽取的100台电视机的使用寿命 D.100台
5.如图,在△ABC中,D,E分别是AB,AC的中点,AC=12,F是DE上一点,连接AF,CF,DF=1.若∠AFC=90°,则BC的长度为(▲)
A.12 B.13 C.14 D.15
第5题图
第10题图
6.函数(a为常数)的图象上有三点(﹣4,y1),(﹣1,y2),(2,y3),则函数值y 1,y2,y3的大小关系是(▲)。
无锡市八年级(下)期末考试数学试题与答案
八年级数学期末试卷注意事项:1.本卷考试时间为100分钟,满分120分;2.卷中除要求近似计算的按要求给出近似结果外,其余结果均应给出精确结果.一、选择题(本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.)1.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.下列二次根式中属于最简二次根式的是()A.24 B.36 C.aD.a+4 b3.下面调查中,适合采用普查的是()A.调查全国中学生心理健康现状B.调查你所在的班级同学的身高情况C.调查我市食品合格情况D.调查XX电视台《第一看点》收视率4.下列事件是随机事件的是()A.购买一X福利彩票,中特等奖B.在一个标准大气压下,加热水到100℃,沸腾C.任意三角形的内角和为180°D.在一个仅装着白球和黑球的袋中摸出红球5.如图,矩形ABOC的面积为k的图象过点A,则k的值为2,反比例函数y=x()A.2 B.-2 C.2D.-26.下列性质中,矩形、菱形、正方形都具有的是()A.对角线相等B.对角线互相垂直(第5题图)C.对角线平分一组对角D.对角线互相平分7.下列算式正确的()-a+b2-a-1 2+y2) a-1 x 0.5+2y 5+2y (B.-a2+8=A.(a-b)2=1 a2+8 C.x+y=x+y D. 0.1+x =1+x2x-a8.若关于x的分式方程x+1=1的解为正数,则字母a的取值X围为()A.a≥-1 B.a>-1 C.a≤-1 D.a<-19.如图,在ABCD中,点E为AB的中点,F为BC上任意一点,DA把△BEF沿直线EF翻折,点B的对应点B′落在对角线ACB′上,则与∠FEB一定相等的角(不含∠FEB)有()EA.2个B.3个C.4个D.5个10.已知点(a-1,y1)、(a+1,y2)在反比例函数y k B F C=(k>0)的图x(第9题图)像上,若y1<y2,则a的X围是()-1-A.a>1 B.a<-1C.-1<a<1 D.-1<a<0或0<a<1二、填空题(本大题共有8小题,每小题3分,共24分.请把结果直接填在题中的横线上.)2x+111.当x=_________时,分式2x-1的值为0.12.若2-x在实数X围内有意义,则x的取值X围是_________.13.一组数据共有50个,分成四组后其中前三组的频率分别是0.25、0.15、0.3,则第四组数据的个数为_________.14.在结束了初中阶段数学内容的新课教学后,数学老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制了如图所示的扇形统计图,则数学老师安排复习“统计与概率”内容的时间为__________课时.综合与实践5%统计与概率数与代数45%BC E图形与几何40%AFD(第14题图)(第16题图)(第17题图)k15.反比例函数y=x与一次函数y=x+2的图象交于点A(-1,a),则k=_________.16.已知:如图,在四边形ABCD中,∠C=90°,E、F分别为AB、AD的中点,BC=6,CD=4,则EF =_________.317.如图,在平面直角坐标系中,四边形ABCD是矩形,AD∥x轴,A(-3,2),AB=1,AD=2,将矩形ABCD向右平移m个单位,使点A,C恰好同时落在反比k B 例函数y=x的图象上,得矩形A′B′C′D′,则反比例函PQ 数的解析式为__________.18.如图,在△ABC中,AB=BC=4,S△ABC=43,点P、Q、KA C分别为线段AB、BC、AC上任意一点,则PK+QK的最小值K为_________.(第18题图)三、解答题(本大题共9小题,共66分.解答时应写出文字说明、说理过程或演算步骤.)19.(本题满分8分)计算:(1)8+32-2;(2)( 2+3)2-( 2+3)(2-3).20.(本题满分9分)(1)计算:m+n 2m;(2)先化简,再求值:(x2+4x2-4 +x-4)÷2,其中x=1.m-n n-m x +2x-2-1-6-x=-2.21.(本题满分5分)解方程:x-33-x22.(本题满分6分)某校分别于2015 年、2016年春季随机调查相同数量的学生,对学生做家务的情况进行调查(开展情况分为“基本不做”、“有时做”、“常常做”、“每天做”四种),绘制成部分统计图如下.2016年做家务人数2015、2016年做家务80情况扇形统计图情况条形统计图622015基本不做5244 2016a每天做4238有时做40%b常常做21%调查情况基本不做有时做常常做每天做请根据图XX息,解答下列问题:(1)a=_______%,b=_______%,“每天做”对应阴影的圆心角为_______°;(2)请你补全条形统计图;(3)若该校2016年共有1200名学生,请你估计其中“每天做”家务的学生有多少名?23.(本题满分4分)大家看过中央电视台“购物街”节目吗?其中有一个游戏环节是大转轮比赛,转轮上平均分布着 5、10、15、20一直到100共20个数字.选手依次转动转轮,每个人最多有两次机会.选手转动的数字之和最大不超过100者为胜出;若超过100则成绩无效,称为“爆掉”.(1)某选手第一次转到了数字5,若再转第二次,则两次数字之和为100的概率有多大?(2)某选手第一次转到了数字65,若再转第二次则有可能“爆掉”,请你分析“爆掉”的概率有多大?-3-24.(本题满分8分)如图,在矩形ABCD中,点E在AD上,且EC平分∠BED.(1)△BEC是否为等腰三角形?证明你的结论;(2)若AB=2,∠DCE=22.5°,求BC长.25.(本题满分8分)如图,反比例函数k 3y=(k>0)的图像与一次函数y=x的图像交于A、B两点(点x 4A在第一象限).(1)当点A的横坐标为4时.①求k的值;②根据反比例函数的图像,直接写出当-4<x<1(x≠0)时,y的取值X围;(2)点C为y轴正半轴上一点,∠ACB=90°,且△ACB的面积为10,求k的值.yCAO xB-4-26.(本题满分9分)某高速公路工程指挥部要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的2;若由3 甲队先做10天,剩下的工程再由甲、乙两队合作30天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.工程预算的施工费用为500万元.为缩短工期并高效完成工程,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.27.(本题满分9分)已知:如图1,在平面直角坐标中,A(12,0),B(6,6),点C为线段AB的中点,点D与原点O关于点C对称.(1)利用直尺和圆规在图1中作出点D的位置(保留作图痕迹),判断四边形OBDA的形状,并说明理由;(2)在图1中,动点E从点O出发,以每秒1个单位的速度沿线段OA运动,到达点A时停止;同时,动点F从点O出发,以每秒a个单位的速度沿OB→BD→DA运动,到达点A时停止.设运动的时间为t(秒).①当t=4时,直线EF恰好平分四边形OBDA的面积,求a的值;②当t=5时,CE=CF,请直接写出a的值.y y yB B BF C C CO E A x O A x O A x (图1)(备用图1)(备用图2)-5-2016年春学期八年级数学期末试卷参考答案一、选择题(本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.)1. B 3. B 5. B 7. A 9. C2. D 4. A 6. D 8. B 10. C二、填空题(本大题共有8小题,每小题3分,共24 分.请把结果直接填在题中的横线上.)1 11.-212.x≤213.1514. 615.-116.133 17.y=2x18.23-6-三、解答题(本大题共9小题,共 66分.解答时应写出文字说明、说理过程或演算步骤.)19.解:(1)原式=22+42-2=52;⋯⋯⋯⋯(4分)(2)原式=2+2 6+3-(2-3)=5+2 6+1=6+2 6;⋯⋯⋯⋯(4分)20.(1)原式=m+n-2m=m+n-2m=n-m=-1;⋯⋯⋯⋯(4分)m-nm-nm-nm-n(2)化简得x-2,⋯⋯⋯⋯(4分),求值得-1.⋯⋯⋯⋯(1分)21.x=-1(无验根扣1分)⋯⋯⋯⋯(5分)22.(1)19,20,144;⋯⋯⋯⋯(3分)(2)“有时做”的人数为:20%×200=40,“常常做”的人数为:200×21%=42,图略;⋯⋯⋯⋯(2分)(3)1200×80=480(人).答:估计该校每天做家务的学生有480人.⋯⋯⋯⋯(1分)20023.解:(1)要使他两次数字之和为100,则第二次必须转到95,⋯⋯⋯⋯(1分)因为总共有 20个数字,所以他两次数字之和为100的概率为201;⋯⋯⋯⋯(1分)(2)由题意分析可得:转到数字35以上就会“爆掉”,共有13种情况,⋯⋯⋯⋯(1分)因为总共有 20个数字,所以“爆掉”的概率为1320.⋯⋯⋯⋯(1分)24.解:(1)△BEC是等腰三角形,⋯⋯⋯⋯(1分)理由如下:∵矩形ABCD,∴AD∥BC,∴∠DEC=∠ECB,∵CE平分∠BED,∴∠DEC=∠CEB,∴∠CEB=∠ECB,∴BE=BC,即△BEC是等腰三角形.⋯⋯⋯⋯(3分)(2)解:∵矩形ABCD,∴∠A=∠D=90°,∵∠DCE=22.5°,∴∠DEB=2×(90°-22.5°)=135°,∴∠AEB=180°-∠DEB=45°,∴∠ABE=∠AEB=45°,∴AE=AB=2,由勾股定理得:BE=BC=AE2+AB2=22,答:BC的长是22.⋯(4分)25.(1)①A(4,3),⋯⋯⋯⋯(1分),k=12;⋯⋯⋯⋯(1分)②y<-3或y>12;⋯⋯⋯⋯(2分)3 5(2)设A(a,a)(a>0),则OA=OB=OC=a,4 4由S ACB=152,∴A(23 224a2a=10,解得a=2 2,2),得k=6.⋯⋯⋯⋯(4分)△-7-226.解:(1)设乙队单独完成这项工程需要x天,则甲队单独完成这项工程需要3x天.根据题意得10+30(1 12 2+)=1,⋯⋯⋯⋯(2分)x3x3x解得x=90.⋯⋯⋯⋯(1分)经检验,x=90是原方程的根,也符合题意.⋯⋯⋯⋯(1分)∴2x=2×90=60.⋯⋯⋯⋯(1分)3 3答:甲、乙两队单独完成这项工程分别需60 天和90天.(2)设甲、乙两队合作完成这项工程需要y 天,1 1则y(60+90)=1,解得y=36.⋯⋯⋯⋯(2分)需要施工费用:36×(8.4+5.6)=504(万元).∵504>500.∴工程预算的施工费用不够用,需追加预算4万元.⋯⋯⋯⋯(2分)27.(1)作图略,⋯⋯⋯⋯(1分)四边形OBDA是平行四边形,理由如下:∵点C为线段AB的中点,∴CB=CA,⋯⋯⋯⋯(1分)∵点D与原点O关于点C对称,∴CO=CD,⋯⋯⋯⋯(1分)∴四边形OBDA是平行四边形.⋯⋯⋯⋯(1分)(2)①若直线 EF恰好平分四边形OBDA的面积,则直线EF必过C(9,3),3只有当F在BD上时,此时4a-6 2+4=12,a=2+22;⋯⋯⋯⋯(2分)②方法说明:CE=CF=5,并利用∠OBA=∠OAB=90°,可得a=62-7,62+7,122-7+12.⋯⋯(3分)5 5 5-8-。
江苏省无锡市江阴要塞中学2013-2014学年八年级下数学期末综合练习(A)
)1B 江苏省无锡市江阴要塞中学2013-2014学年度第一学期八年级数学期末综合练习A班级 姓名命题:吴晓刚 审核:初二数学备课组一、选择题1.在− π3,3-127 ,7,0.3030030003,− 227,3.14中,无理数的个数是 ( ) A .2个 B .3个 C .4个 D .5个 2.将△ABC 向右平移2个单位后得到△A′B′C′,若A (-2,3),则点A′ 的坐标是 ( ) A .(0,3) B .(-2,5) C .(-4,3) D .(-2,1) 3.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明 ∠AOC =∠BOC 的依据是( ) A .SSS B .ASAC .AASD .角平分线上的点到角两边距离相等4.下在△ABC 内一点P 满足PA=PB=PC ,则点P 一定是△ABC ( )A .三条角平分线的交点B .三边垂直平分线的交点C .三条高的交点D .三条中线的交点5.如图,一个无盖的正方体盒子的棱长为2,BC 的中点为M ,一只蚂蚁从盒外的B 点沿正方形的表面爬到盒内的M 点,蚂蚁爬行的最短距离是 ( ) A .13B .17C .1D .52+6.某仓库调拨一批物资,调进物资共用8小时.调进物资4小时后同时开始调出物资(调进与调出物资的速度均保持不变).该仓库库存物资w (吨)与时间t (小时)之间的函数关系如图所示.则这批物资调出的速度(吨/小时)及从开始调进到全部调出所需要的时间(小时)分别是 ( ) A .10,10 B .25,8.8 C .10,8.8 D .25,9二、填空题7.若一个正数的两个不同的平方根为2m − 6与m + 3,则这个正数为 .8.如图,△ABC 中,∠C =90°,AD 平分∠BAC ,AB =5,CD =2,则△ABD 的面积是 . 9.等腰三角形的底边长为6,底边上的中线长为4,它的腰长为 . 10.在平面直角坐标系中,点P (2,−3)关于y 轴对称点坐标为 . 11.在一次函数y =2x -2的图像上,和x 轴的距离等于1的点的坐标是__________.三、解答题12.(1)计算:()002π-- (2)求x 的值: 25(x −3)2 − 100 = 0.ADCB第17题EDC B A13.已知:AB =AD ,∠BAC =∠DAC ,若过A 点作AE ⊥BC 于E ,AF ⊥CD 于F ,求证:AE =AF .14.如图:ABC ∆是一张直角三角形纸片,其中90=∠C ,cm BC 8=,cm AB 10=,将纸片折叠,使点A 恰好落在BC 的中点D 处,折痕为MN,试求出AM 的长度.15.在一条直线上依次有A 、B 、C 三个港口,甲、乙两船同时分别从A 、B 港口出发,沿直线匀速驶向C 港,最终到达C 港.设甲、乙两船行驶x (h )后,与B 港的距离....分别为y 1 、y 2 (km ), y 1 、y 2 与x 的函数关系如图所示.(1)填空:A 、C 两港口间的距离为_______km ,a = _______;(2)求图中点P 的坐标,并解释该点坐标所表示的实际意义; (3)若两船的距离不超过10km 时能够相互望见,求甲、乙两船可以相互望见时x 的取值范围.。
江苏省江阴市徐霞客中学八年级数学3月月考试题 苏科版
江苏省江阴市徐霞客中学2014-2015学年八年级数学3月月考试题(总分:120分考试时间:100分钟)一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把答案直接填写在答题卷上相应的位置.)1.下列标志中,既是轴对称图形,又是中心对称图形的为()2.下列调查适合作普查的是 ( )A.了解在校大学生的主要娱乐方式B.了解某市居民对废电池的处理情况C.日光灯管厂要检测一批灯管的使用寿命D.对甲型H7N9流感患者的同一车厢的乘客进行医学检查3.下列事件是必然事件的是()A.太阳从西方升起B.若,则C.打开电视正在播放动画片《喜羊羊与灰太狼》D.某运动员投篮时连续3次全中4.下列说法正确的是()A.在一次抽奖活动中,“中奖的概率是1100”表示抽奖100次就一定会中奖B.随机抛一枚硬币,落地后正面一定朝上C.同时掷两枚均匀的骰子,朝上一面的点数和为6D.在一副没有大小王的扑克牌中任意抽一张,抽到的牌是6的概率是1 135.一个正方形绕着它的中心旋转一定角度后,就能与它自身重合,这个角度至少为()A.450B.600 C.900 D.18006.平行四边形的对角线长为x、y,一边长为12,则x、y的值可能是()A.8和14 B.10和14 C.18和20 D.10和347.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F.若AE=4,AF=6,且平行四边形ABCD的周长为40,则平行四边形ABCD的面积为()A.24 B.36 C.40 D.48第7题第8题第10题8.如图,把矩形ABCD沿EF对折,若∠1=50°,则∠AEF等于()A.115° B.130° C.120° D.65°9.下列条件中,不能判定四边形ABCD为菱形的是()A.AC⊥BD,AC与BD互相平分 B.AB=BC=CD=DAC.AB=BC,A D=CD,且AC⊥BD D.AB=CD,AD=BC,AC⊥BD10.如图,已知四边形ABCD是正方形,点E在BC上,且CE=BC,点F是CD的中点,延长AF与BC的延长线交于点M.以下结论:①AB=CM;②AE=AB+CE;③S△AE F =;④∠AFE=90°,其中正确的结论的个数有()A、1个 B、2个 C、3个 D、4个二、填空题(本大题共8小题,每空3分,共33分)11. 学校为了考察我校七年级同学的视力情况,从七年级的10个班共540名学生中,每班抽取了5名进行分析,在这个问题中,总体是,样本容量是_________12.一只小狗在如图所示的方砖上(每个小矩形的面积相等)走来走去,求最终停在阴影方砖上的概率是.13.在□ABCD中,若∠A=52°,则∠C= ,∠D= .14.若矩形的一个角的平分线分一边为4cm和3cm的两部分,则矩形的宽为__ ____ ____.第12题第17题第18题15.菱形的两条对角线的长分别是6和8,则菱形的面积是,对角线的交点与菱形一边中点的距离为 .16.已知平行四边形的三个顶点坐标分别为(-1,0)、(0,2)(2,0),则第四个顶点的坐标为_______________。
2024届江苏省江阴市第一初级中学数学八年级第二学期期末达标检测模拟试题含解析
2024届江苏省江阴市第一初级中学数学八年级第二学期期末达标检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,菱形ABCD 中,∠BAD =60°,AC 与BD 交于点O ,E 为CD 延长线上的一点,且CD =DE ,连接BE ,分别交AC 、AD 于点F 、G ,连接OG ,则下列结论:①OG =12AB ;②图中与△EGD 全等的三角形共有5个;③以点A 、B 、D 、E 为项点的四边形是菱形;④ S 四边形ODGF = S △ABF .其中正确的结论是( )A .①③B .①③④C .①②③D .②②④2.下列式子从左至右变形不正确的是( )A .a b =a 2b 2++ B .a b =4a4b C .23b -=-23bD .a 2b --=a 2b3.如图,平面直角坐标系中,ABC ∆的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线12y x b =+与ABC ∆有交点时,b 的取值范围是( )A .11b -≤≤B .112b -≤≤ C .1122b -≤≤D .112b -≤≤4.把一些笔记本分给几个学生,如果每人分3本,那么余8本,如果每人分5本,则最后一个人分到的本数不足3本,则共有学生( )人.A .4B .5C .6D .5或65.乒乓球是我国的国球,也是世界上流行的球类体育项目.我国乒乓球名将与其对应身高如下表所示: 乒乓球名将 刘诗雯 邓亚萍 白杨 丁宁 陈梦 孙颖莎 姚彦 身高()160155171173163160175这些乒乓球名将身高的中位数和众数是( ) A .160,163B .173,175C .163,160D .172,1606.下列图形中,是中心对称但不是轴对称图形的有( )A .1个B .2个C .3个D .4个7.若()()20183201942019m n m xn y ---++=是关于x ,y 的二元一次方程,则( )A .2019m =±,4n =±B .2019m =-,4n =±C .2019m =±,4n =-D .2019m =-,4n =8.如图,在矩形ABCD 中,3AB =,4BC =,点E 是边AD 上一点,点F 是矩形内一点,30BCF ∠=,则12EF CF +的最小值是( )A .3B .4C .5D .239.如果用总长为60m 的篱笆围成一个长方形场地,设长方形的面积为S (m 2)周长为p (m ),一边长为a (m ),那么S 、p 、a 中,常量是( ) A .aB .pC .SD .p ,a10.下列函数中,是反比例函数的为( ) A .21y x =+B .22y x =C .15y x=-D .3y x =11.化简2b a ba a a ⎛⎫--÷⎪⎝⎭的结果是( )A.a-b B.a+b C.1a b-D.1a b+12.按如下方法,将△ABC的三边缩小的原来的12,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得△DEF,则下列说法正确的个数是()①△ABC与△DEF是位似图形②△ABC与△DEF是相似图形③△ABC与△DEF的周长比为1:2 ④△ABC与△DEF的面积比为4:1.A.1 B.2 C.3 D.4 二、填空题(每题4分,共24分)13.化简:(22)2=_____.14.已知16xx+=,则221xx+=______15.将直线y=2x向下平移2个单位,所得直线的函数表达式是_____.16.如图,在△ABC中,BF平分∠ABC,AG⊥BF,垂足为点D,交BC于点G,E为AC的中点,连接DE,若DE=2.5 cm,AB=4 cm,则BC的长为_______cm.17.化简:21xx++11xx-+=___.18.请你写出一个一次函数,使它经过二、三、四象限_____.三、解答题(共78分)19.(8分)我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.20.(8分)如图,四边形ABCD2的正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将线段BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.(1)求证:△AMB≌△ENB;(2)当M点在何处时,AM+BM+CM的值最小,说明理由;并求出AM、BM、CM的值.21.(8分)如图:是某出租车单程收费y(元)与行驶路程x(千米)之间的函数关系图象,根据图象回答下列问题:(1)当行使8千米时,收费应为元;(2)从图象上你能获得哪些信息?(请写出2条)①________②____________________________(3)求出收费y(元)与行使x(千米)(x≥3)之间的函数关系式.22.(10分)学校规定学生的学期总评成绩满分为100分,学生的学期总评成绩根据平时成绩、期中考试成绩和期末考试成绩按照2∶3∶5的比确定,小欣的数学三项成绩依次是85、90、94,求小欣这学期的数学总评成绩.23.(10分)解方程:3x-1=x224.(10分)先化简,再求值:2321222x xxx x++⎛⎫-+÷⎪++⎝⎭,其中x是不等式组14210xx-<⎧⎨-⎩的整数解.25.(12分)计算:(1148312242()(2 232233223(32)-.26.解方程:(1)2342144x x x x x --+=--(2)2x 2﹣4x +1=0参考答案一、选择题(每题4分,共48分) 1、A 【解题分析】由AAS 证明△ABG ≌△DEG ,得出AG=DG ,证出OG 是△ACD 的中位线,得出OG=12 CD=12AB ,①正确;先证明四边形ABDE 是平行四边形,证出△ABD 、△BCD 是等边三角形,得出AB=BD=AD ,因此OD=AG ,得出四边形ABDE 是菱形,③正确;由菱形的性质得得出△ABG ≌△BDG ≌△DEG ,由SAS 证明△ABG ≌△DCO ,得出△ABO ≌△BCO ≌△CDO ≌△AOD ≌△ABG ≌△BDG ≌△DEG ,得出②不正确;证出OG 是△ABD 的中位线,得出OG//AB ,OG=12AB ,得出△GOD ∽△ABD ,△ABF ∽△OGF ,由相似三角形的性质和面积关系得出S 四边形ODGF =S △ABF ;④不正确;即可得出结果. 【题目详解】解:四边形ABCD 是菱形,,//,,,,AB BC CD DA AB CD OA OC OB OD AC BD BAG EDG ABO BCO CDO AODCD DE AB DE∴=====⊥∴∠=∠∆≅∆≅∆=∴=在△ABG 和△DEG 中,BAG EDG AGB DGE AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABG ≌△DEG (AAS ), ∴.AG=DG ,∴OG 是△ACD 的中位线, ∴OG=12CD=12AB ,①正确;∵AB//CE ,AB=DE ,∴四边形ABDE 是平行四边形, ∴∠BCD=∠BAD=60°,∴△ABD 、△BCD 是等边三角形, ∴AB=BD=AD ,∠ODC=60°,∴OD=AG ,四边形ABDE 是菱形,③正确; ∴AD ⊥BE ,由菱形的性质得:△ABG ≌△BDG ≌△DEG , 在△ABG 和△DCO 中,60OD AG ODC BAG AB DC ︒=⎧⎪∠=∠=⎨⎪=⎩∴△ABG ≌△DCO∴△ABO ≌△BCO ≌△CDO ≌△AOD ≌△ABG ≌△BDG ≌△DEG ,则②不正确。
无锡八年级下学期数学期末无锡统考
注意事项:1 .本卷考试时间为100分钟,满分120分.2 •卷中除要求近似计算的按要求给出近似结果外,其余结果均应给出精确结果.、选择题(本大题共有10小题,每小题3分,共30分,在每小题所给出的四个选项中,只有 项是正确的,请把正确选项前的字母代号填在题后的括号内.)51.要使分式二有意义,则X 的取值范围是A . X M 0B . X > 1C . x v 12.不改变分式的值,将 2役变形,可得6 .如图,△ ABC 和厶DBE 都是等腰直角三角形, 点E 在AB上,若△ ABC 经旋转后能与△ DBE 重合,则旋转中心为 ( )A .点AB .点BC .点CD .点E7.如图,在菱形 ABCD 中,对角线 AC 长为3cm , / ABC = 60 °,则菱形 ABCD 的周长为()2014年春学期无锡市八年级数学学业质量抽测试题2014.6XA . 一X - 2XB . X -2C . - x + 23.下列式子中, 属于最简二次根式的是A . .9B ..10C ..204.下列函数中, 图象经过点( 1,- 1)的是121A . y =_3XB . y=_3XC . y =- _3XD .X x + 2()D .()2D .y =- X( )D .(第 6题)(第 7题)A . 6 3cm B. 12 .3cm C. 12cm D. 24cm&在一次有24 000名学生参加的数学质量抽测的成绩中,随机抽取2 000名考生的数学成绩进行分析,则在该抽样中,样本指的是若将反比例函数 y =-的图象向上平移2个单位所得图象经过点 P ( m ,— 4),则m= _________x如图,在△ ABC 中,AB = AC ,/ A = 20o ,边AC 的垂直平分线交 AC 于点D ,交AB 于点E ,则/ BCE 等于 _____________ 0.如图,已知 口 ABCD 的对角线 AC 、BD 相交 于点O ,点E 是CD 的中点,若 BD = 12cm , △ DOE 的周长为15cm ,贝U □ ABCD 的周长 为 cm . 一个不透明的袋中装有红、白、黄 3种颜色的若干个小球,它们除颜色外完全相同.每次从袋中摸出1个球,记下颜色后放回搅匀再摸.摸球实验中,统计得到下表中的数据:摸球次数 10 20 50 100 150 200 250 300 400 500 出现红球的频数4 9 16 31 44 61 74 92 118 147 出现白球的频数5718335478101123159202由此可以估计摸到黄球的概率约为 _______________ (精确到0.1). 如图,已知菱形 OABC 的顶点A 在x 轴的负半轴上,反比例9. 10._ 、11. 12. 13.14. 15.16.17.18. A •所抽取的2 000名考生的数学成绩B . 24 000名考生的数学成绩C . 2 000 F 列事件中,属于必然事件的是A .抛一枚硬币,正面朝上 C .打开电视,正在播放动画片 D . 2 000名考生( )B .经过某一有交通信号灯的路口,恰好遇到红灯 D . 3个人分成两组,其中一组必有 2人 如图,P 为正方形 ABCD 的对角线BD 上任一点,过点 P 作PE 丄BC 于点E , PF 丄CD 于点F ,连接EF .给出以下4个结论:①AP = EF ; ②AP 丄EF :③厶APD 一定是等腰三角形;④/ PFE =Z BAP .其中, 所有正确的结论是 ()A .①②B .①③C .①②④D .①③④填空题(本大题共有8小题,每小题3分,共24分.请把结果直接填在题中的横线上. )x — 2 当x = ___________ 时,分式 ----- 的值为0. x若实数a 满足.a — 1 = 2,则a 的值为 _____________ 给出下列3个分式: 2 1ab ,a 2b ,佥,它们的最简公分母为(第 10 题)DA O x(第18题)4函数y= —4( x v 0)的图象恰好经过点C,且与AB交于点x . D,若△ OCD的面积为2也,则点B的坐标为_______________解答题(本大题共8小题,共66分,解答时应写出文字说明、说理过程或演算步骤.19.(本题共有2小题,每小题4分,共8分)计算:20.(本题共有2小题,每小题5分,共10分)ABCD 中,AB // CD ,/ B =Z D . P 为对角线 AC 上的一点,PE 丄AB 于E , PF 丄AD 于F ,且PE = PF ,求证:四边形 ABCD 是菱形.(1)12- | 3- 3|+ ( 3)2;(2) 逅声+ (2 + ^2)(2 -^2).(1)计算: 2x - 1 ;x 2-4 x + 2;(2)解方程: —+ - = 1.x -1 x21.(本题满分6分)先化简,再求值:2m — 1,其中 m = 1 + 2.22.(本题满分8分)如图,在四边形DCEB23. (本题满分8分)中学生带手机上学的现象越来越受到社会的关注•某市记者随机调查了一些家长对这种现象的态度(A :无所谓;B :反对;C:赞成),并将调査结果绘制成图①和图②的统计图(不完整)•家长对中学生带手机上学三种态度分布统计图请根据图中提供的信息,解答下列问题:(1) 在图①中,C部分所占扇形的圆心角度数为_______________ ° ;选择图①进行统计的优点是______________________________ ;(2) 将图②补充完整;(3) 根据抽样调查结果,可估计该市50 000名中学生家长中有 __________ 名家长持赞成态度.24. (本题满分9分)如图,直线y= ax+ 1 (0)与xk轴交于点A,与y轴交于点B,与双曲线y=-在第x四象限的交点为 C .若点B与点C关于点A对称,且厶BOC的面积为 3.(1)求a、k的值;(2)问:在x轴上是否存在这样的点P,使得△ PBC 为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.425. (本题9分)如图,直线y= -x+ 8分别交x轴、y轴于A、B两点,点C为0B的中点,点D在第二象限,且四边形AOCD为矩形.(1) 求证:AB、CD互相平分;(2) 动点P从A出发,以每秒2个单位长度的速度,沿A0、0C向点C作匀速运动.设点P的运动时间为t秒.在动点P从A出发的同时,动点Q从C出发,以每秒1个单位长度的速度,沿CM向点M作匀速运动.当P、Q中的一点到达终点后,该点停止运动,另一点继续运动,直至到达终点,整个运动停止.问:是否存在这样的t,使得直线PQ将四边形AOCM的面积分成1 : 3两部分?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.(备用图2)26.(本题满分8 分)南京青奥会开幕在即,某服装店老板小陈用 3 600 元购进甲、乙两款运动服,很快售完.小陈再次去购进同款、同数量的服装时,他发现甲、乙两款服装的进价分别上涨了20 元/件、5 元/件,结果比第一次多花了400 元.设小陈每次购买甲服装x 件,乙服装y 件.1)请直接写出y 与x 之间的函数关系式: _____________________ .2)小陈经计算后发现,进货时甲、乙两款服装的平均单价第二次比第一次上涨了8 元.①求x、y 的值;②第二次所购进的服装全部卖出后获利35%,小陈带着这批服装的全部销售款再去进货,这时两款服装均恢复了最初的进价,于是小陈花了 3 000 元购买乙服装,其余钱款全部购买甲服装,结果所购甲、乙两款服装数量恰好相等,问:这次小陈共购买了多少件服装?1. D2. A3. B4. C5. A 7. C & A9. D 10. C 二、填空题(本大题共有8小题.每小题3分,共24分•) 11. 2 18.(-2-2>/15. 60 16. 36 17. 0.3 三.解答題(本大题共8小题.共66分.解答时应写出文字说明、证明过程或演算步骤•) 19・(1〉原式=砧+审一3 + 3•・・・・・(3分)(2)原式=迪一 1+4—2・・・・・・(3分)(4分) (4分) x-220. (1)原式(2分)工+2 CH-2X X-2)"分)x-2 (5分〉(2)去分母.徇壬+/—1=”一x(2分)整理得2x=l3(4分)经检验是原方程的根,・•・原方程的根为 .....2 221原式=S+1X朋_】):(5分)(2分〉(4分)八年级敛学答案M1K2014年春学期无锡市学业质量抽测八年级数学参考答案及评分标准一.选择题(本大题共10小題,每小題3分,共30分•)22. 证明:•:AB〃CD、AD//BC.•••四边形ABCD &平行艸边形. ............. (2分)•应丄彳B 干 E. PF丄川)于F,且PE=PF,:・ZDAC= ZC/iB. ............. (3 分)•:AB〃CD.:・ZDCA = ZCAB・........................................................................... (4 分):.ZDAC=ZDCA..................................................................................................... (5 分):.DA=DC............................................................................................................ (6 分)・•・6BCD是菱形. ................................................. (8分)23. (1) 54. ............................................................................................................. (2 分)(2)..................................................................................................................... 能直观反映持不同态度家长人数所占总人数的百分比. ........................................ (4分)■(3) ..................................................................................................................... 补充条形图.标注60. (6分)(4) ..................................................................................................................... 7500・(&分)24. ( 1)当x=0 时.y=or+l = h •'•B (0・ 1) . ................................................ . ( 1 分)•・•点B与点C关于点4对称,:.AB=AC. ....................................................... (2分)又•••△BOC的面积为2,・•』&“=丄Sc,即^X1XO4 = 1.得OA=2,• 2 2:・A(2, 0) .................................................... . .................................................. (3 分)把* (2* 0)代入y=ox+l,可得2a+l=0, a=—扌. ......................... (4 分)•:A <2, 0), AC点的横坐标为4, AC点纵坐标尸一 1.把 C (4, —1)代入y=—» 可得*=—4. .................................................... (5 分)x(2)符合要求的点P有4个:(阳,0) , (-V19, 0) , (4+V19, 0), (4-V19, 0). ..................................... (9 分)25. (1)连结4C、BD,由题意可得应>〃8(?,且AD=CK>BC. .................................... (1 分〉・・・四边形ADBC是平行四边形. ...................................... (2分):・AB、CD互相平分. ........................ ...................... (4分)(备注:本题也可通过全等证得,相应给分・〉(2)由题意,得/ (-6, 0)、B(0, 8)、C(0, 4)•当点P 在上,即0 VW3 时,若直线PQ将四边形AOCM的面积分成1 : 3两部分,则可得/=一半或/=严,均不符合JRB................................................................................... .(6分〉八年级ft[学答案第2页(共3页)此时.显然冷曲二为卡“心不可能成立. ........................ ............... (7分〉4 符合题意.综上所述,当/为扌时,宜线尸仑将四边形AOCM 的面积分成1:3两部分. ................................. .... ................................. 《9分)■26. (1) j=80-4x. ........................................................................................................ <2 分)<2)①由题意.8仗+刈=400・.................. ................ . ......................................... (3分)由解得心分)I y=80—4xI 丿=40 ・②第二次所购进的眼装全部卖出后所得销售款为< •(3600+400)X (1+35%)=5400 (元〉• .................................. (5 分)■设甲、乙两救运动服的•初进价分别为毎件a 元、b 元,则 10o+402>=3600・ 即 a=360—"• ..................................................................... «6 分)解得6=75.・・・这次共购买了服装響X2-=80 (件〉.答:小陈这次共购买了 80件囉装 ..... ......................................... (8分〉由JK 意得3000T"240Q 360—42/(?分)nsFXM 可得 / =第3页(共3页)。
2024届江苏省无锡江阴市数学八下期末学业水平测试试题含解析
2024届江苏省无锡江阴市数学八下期末学业水平测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,菱形ABCD 的对角线AC 、BD 的长分别是3cm 、4cm ,AE ⊥BC 于点E ,则AE 的长是( )A .65 cmB .125cmC .245 cmD .23 cm 2.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-3.如图,y 1,y 2分别表示燃油汽车和纯电动汽车行驶路程S (单位:千米)与所需费用y (单位:元)的关系,已知纯电动汽车每千米所需的费用比燃油汽车每千米所需费用少0.54元,设纯电动汽车每千米所需费用为x 元,可列方程为( )A .3690.54x x =- B .3690.54x x =- C .3690.54x x =+ D .3690.54x x =+ 4.下列四个多项式中,不能因式分解的是( )A .a 2+aB .22m n -C .24x +D .269a a5.在实数范围内,x 有意义,则x 的取值范围是( ) A .x ≥0 B .x ≤0 C .x >0 D .x <0 6.下列计算正确的是( ) A .2(4)-=2 B .52=3- C .52=10⨯ D .62=3÷7.已知等腰△ABC 的两边长分别为2和3,则等腰△ABC 的周长为( )A .7B .8C .6或8D .7或88.弹簧挂上物体后伸长,已知一弹簧的长度(cm )与所挂物体的质量(kg )之间的关系如下表:下列说法错误的是( )物体的质量(kg )1 2 3 4 5弹簧的长度(cm )1012.5 15 17.5 20 22.5 A .在没挂物体时,弹簧的长度为10cmB .弹簧的长度随物体的质量的变化而变化,物体的质量是因变量,弹簧的长度是自变量C .如果物体的质量为mkg ,那么弹簧的长度ycm 可以表示为y=2.5m+10D .在弹簧能承受的范围内,当物体的质量为4kg 时,弹簧的长度为20cm9.一次函数y=-5x+3的图象经过的象限是( )A .一、二、三B .二、三、四C .一、二、四D .一、三、四 10.下列计算结果,正确的是( )A . 235+=B .3223-=C . 236⨯=D .6 32= 11.如图,直线,直线分别交直线、、于点、、,直线分別交直线,、于点、、,直线、交于点,则下列结论错误的是( )A .B .C .D .12.关于x 的一元二次方程kx 2+2x ﹣1=0有两个不相等的实数根,则k 的取值范围是( )A .k >﹣1B .k >﹣1且k≠0C .k≠0D .k≥﹣1二、填空题(每题4分,共24分)13.如图,在Rt ABC ∆中,角903, 4, A AB AC P ︒===,是BC 边上的一点,作PE 垂直AB , PF 垂直AC ,垂足分别为E F 、,则EF 的最小值是______.14.如图,在直角坐标系中,正方形A 1B 1C 1O 、 A 2B 2C 2C 1、A 3B 3C 3C 2、…、A n B n C n C n-1的顶点A 1、A 2、A 3、…、A n 均在直线y =kx +b 上,顶点C 1、C 2、C 3、…、C n 在x 轴上,若点B 1的坐标为(1,1),点B 2的坐标为(3,2),那么点A 4的坐标为 ,点A n 的坐标为 .15.甲、乙两地相距200千米,汽车从甲地匀速行驶到乙地,汽车行驶时间(h)t 关于行驶速度(km /h)v 的函数表达式是_____.16.一直角三角形的两条直角边分别是4cm 和3cm ,则其斜边上中线的长度为 ___________.17.如果一个n 边形的内角和等于它的外角和的3倍,则n=______.18.将函数22y x =-的图象向上平移3个单位长度,得到的函数图象的解析式为______.三、解答题(共78分)19.(8分)如图,四边形ABCD 中,∠C =90°,AD ⊥DB ,点E 为AB 的中点,DE ∥BC .(1)求证:BD 平分∠ABC ;(2)连接EC ,若∠A =30°,DC 3EC 的长.20.(8分)计算:(1)(3.14﹣π)0+(﹣12)﹣2﹣2×2﹣1(2)(2a2+ab﹣2b2)(﹣12 ab)21.(8分)某商场进行促销,购物满额即可获得1次抽奖机会,抽奖袋中装有红色、黄色、白色三种除颜色外都相同的小球,从袋子中摸出1个球,红色、黄色、白色分别代表一、二、三等奖.(1)若小明获得1次抽奖机会,小明中奖是事件.(填随机、必然、不可能)(2)小明观察一段时间后发现,平均每6个人中会有1人抽中一等奖,2人抽中二等奖,若袋中共有18个球,请你估算袋中白球的数量;(3)在(2)的条件下,如果在抽奖袋中增加三个黄球,那么抽中一等奖的概率会怎样变化?请说明理由.22.(10分)“书香校园”活动中,某校同时购买了甲、乙两种图书,已知两种图书的购书款均为360元,甲种图书的单价比乙种图书低50%,甲种图书比乙种图书多4本,甲、乙两种图书的单价分别为多少元?23.(10分)如图,在△ABC中,点D、E、F分别是边AB、AC、BC的中点,且BC=2AF。
江苏省江阴市第一初级中学2024届数学八年级第二学期期末复习检测模拟试题含解析
江苏省江阴市第一初级中学2024届数学八年级第二学期期末复习检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)1.若一组数据1-,0,2,4,x的极差为7,则x的值是( ).A.3-B.6 C.7 D.6或3-2.函数y5x1=-中,自变量x的取值范围是()A.x>1 B.x<1 C.1x5≥D.1x5≥-3.正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕D点顺时针方向旋转90°后,C点的坐标为()A.(﹣1,2)B.(2,0)C.(2,1)D.(2,﹣1)4.若(x-3)(x+5)是x2+px+q的因式,则q为( )A.-15 B.-2 C.8 D.25.如图,每个小正方形边长均为1,则下列图中的阴影三角形与左图中ABC∆相似的是()A.B.C.D.6.如图,△ABC中,CD是AB边上的高,若AB=1.5,BC=0.9,AC=1.2,则CD的值是()A.0.72 B.2.0 C.1.125 D.不能确定7.(2013年四川绵阳3分)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=【】A.2825cm B.2120cm C.2815cm D.2521cm8.一次函数的图象经过点,且与轴,轴分别交于点、,则的面积是A.B.1 C.D.29.下列长度的四根木棒,能与长度分别为2cm和5cm的木棒构成三角形的是()A.3 B.4 C.7 D.1010.一次函数y=x+4的图象不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限11.如图,直线y=x+32与y=kx-1相交于点P,点P的纵坐标为12,则关于x的不等式x+32>kx-1的解集在数轴上表示正确的是()A.B. C. D.12.直线y =-3x +2经过的象限为( )A .第一、二、四象限B .第一、二、三象限C .第一、三、四象限D .第二、三、四象限二、填空题(每题4分,共24分)13.如图,梯形ABCD 中,AB CD ∕∕,点,,E F G 分别是,,BD AC DC 的中点. 已知两底之差是6,两腰之和是12,则EFG ∆的周长是____.14.若a 4·a y =a 19,则 y=_____________. 15.如图,直线383y x =-+与x 轴、y 轴分别交于A ,B 两点,C 是OB 的中点,D 是AB 上一点,四边形OEDC 是菱形,则OAE ∆的面积为______.16.若一直角三角形的两直角边长为3,1,则斜边长为_____.17.如图,在Rt △ABC 中,∠ACB=90°,BC=3,AC=4,AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为___18.如图,在矩形ABCD 中,BC =20cm ,点P 和点Q 分别从点B 和点D 出发,按逆时针方向沿矩形ABCD 的边运动,点P 和点Q 的速度分别为3cm /s 和2cm /s ,则最快___s 后,四边形ABPQ 成为矩形.三、解答题(共78分)19.(8分)如图1,以□ABCD 的较短边CD 为一边作菱形CDEF,使点F 落在边AD 上,连接BE ,交AF 于点G .(1)猜想BG与EG的数量关系.并说明理由;(2)延长DE,BA交于点H,其他条件不变,①如图2,若∠ADC=60°,求DGBH的值;②如图3,若∠ADC=α(0°<α<90°),直接写出DGBH的值.(用含α的三角函数表示)20.(8分)解方程:23x-+x=1.21.(8分)如图,等腰△ABC中,已知AC=BC=210,AB=4,作∠ACB的外角平分线CF,点E从点B沿着射线BA以每秒2个单位的速度运动,过点E作BC的平行线交CF于点F.(1)求证:四边形BCFE是平行四边形;(2)当点E是边AB的中点时,连接AF,试判断四边形AECF的形状,并说明理由;(3)设运动时间为t秒,是否存在t的值,使得以△EFC的其中两边为邻边所构造的平行四边形恰好是菱形?不存在的,试说明理由;存在的,请直接写出t的值.答:t=________.22.(10分)某水厂为了了解A小区居民的用水情况,随机抽查了A小区10户家庭的月用水量,结果如下表:月用水量(3m)10 13 14 17 18户数 2 2 3 2 1如果A小区有500户家庭,请你估计A小区居民每月(按30天计算)共用水多少立方米?(答案用科学记数法表示)23.(10分)解下列不等式(组),并在数轴上表示解集:(1)322153x x-+≥﹣1;(2)11224(1)x x x -⎧⎪⎨⎪-<+⎩24.(10分)如图,在△ABC 中,∠C =90°,AM 平分∠CAB ,CM =20cm ,AB =70cm ,求△ABM 的面积.25.(12分)如图,直线y =-x +10与x 轴、y 轴分别交于点B ,C ,点A 的坐标为(8,0),P(x ,y)是直线y =-x +10在第一象限内的一个动点.(1)求△OPA 的面积S 与x 的函数解析式,并写出自变量x 的取值范围;(2)过点P 作PE ⊥x 轴于点E ,作PF ⊥y 轴于点F ,连接EF ,是否存在一点P 使得EF 的长最小,若存在,求出EF 的最小值;若不存在,请说明理由.26.如图,在边长为1的小正方形组成的网格中,ABC ∆的三个顶点均在格点上,请按要求完成下列各题:(1)画线段//AD BC ,且使AD BC =,连接CD ;(2)线段AC 的长为________,CD 的长为________,AD 的长为________;(3)ACD ∆是________三角形,四边形ABCD 的面积是________;(4)若点E 为BC 的中点,CAE ∠为27︒,则ABC ∠的度数为________.参考答案一、选择题(每题4分,共48分)1、D【解题分析】解:根据极差的计算法则可得:x-(-1)=7或4-x=7,解得:x=6或x=-3.故选D2、C【解题分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数的条件,要使5x1-在实数范围内有意义,必须15x105x-≥⇒≥.故选C.3、D【解题分析】利用网格特点和旋转的性质画出正方形ABCD绕D点顺时针方向旋转90°后所得的正方形CEFD,则可得到C点的对应点的坐标.【题目详解】如图,正方形ABCD绕D点顺时针方向旋转90°后得到正方形CEFD,则C点旋转后的对应点为F(2,﹣1),故选D.【题目点拨】本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.4、A【解题分析】直接利用多项式乘法或十字相乘法得出q的值.【题目详解】解:∵(x−3)(x+5)是x2+px+q的因式,∴q=−3×5=−1.故选:A.【题目点拨】此题主要考查了十字相乘法分解因式,正确得出q与因式之间关系是解题关键.5、B【解题分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【题目详解】解:由勾股定理得:,BC=2,,∴AB:BC:AC=1A、三边之比为1ABC不相似;B、三边之比为1ABC相似;C3,图中的三角形(阴影部分)与△ABC不相似;D、三边之比为2ABC不相似.故选:B.【题目点拨】此题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解本题的关键.6、A【解题分析】先根据勾股定理的逆定理证明△ABC是直角三角形,根据计算直角三角形的面积的两种计算方法求出斜边上的高CD.【题目详解】∵AB=1.5,BC=0.9,AC=1.2,∴AB2=1.52=2.25,BC2+AC2=0.92+1.22=2.25,∴AB2=BC2+AC2,∴∠ACB=90°,∵CD是AB边上的高,∴S △ABC =12AB·CD=12AC·BC , 1.5CD =1.2×0.9,CD =0.72,故选A .【题目点拨】该题主要考查了勾股定理的逆定理、三角形的面积公式及其应用问题;解题的方法是运用勾股定理首先证明△ABC 为直角三角形;解题的关键是灵活运用三角形的面积公式来解答.7、B 。
江阴八年级下期末数学试卷
一、选择题(每题5分,共30分)1. 下列各数中,有理数是()A. √2B. πC. 0.1010010001…D. -32. 若a=2,b=-1,则a²-b²的值为()A. 3B. -3C. 0D. 13. 已知一次函数y=kx+b的图象经过点(2,3),且斜率k>0,则b的取值范围是()A. b>0B. b<0C. b≥0D. b≤04. 下列各图中,图形的面积是2π的是()A. 圆B. 矩形C. 正方形D. 梯形5. 若sin∠A=1/2,则∠A的度数是()A. 30°B. 45°C. 60°D. 90°二、填空题(每题5分,共25分)6. 若a=-2,b=3,则a²+b²的值为______。
7. 一次函数y=2x-1的图象与x轴的交点坐标是______。
8. 已知三角形ABC的周长为10,AB=AC,则BC的长度为______。
9. 若∠A、∠B、∠C是三角形ABC的内角,且∠A=60°,∠B=45°,则∠C的度数是______。
10. 若a=√3,b=√2,则a²+b²的值为______。
三、解答题(每题15分,共60分)11. (15分)已知一次函数y=kx+b的图象经过点(1,2)和(-2,-3),求该函数的解析式。
12. (15分)已知等腰三角形ABC的底边BC=8,腰AB=AC=6,求三角形ABC的面积。
13. (15分)已知正方形的对角线长为10,求正方形的周长。
14. (15分)已知∠A、∠B、∠C是三角形ABC的内角,且∠A=2∠B,∠B=3∠C,求∠A、∠B、∠C的度数。
15. (15分)已知二次函数y=ax²+bx+c的图象开口向上,且与x轴有两个交点,求该函数的解析式。
答案:一、选择题1. D2. A3. A4. A5. C二、填空题6. 137. (1,0)8. 69. 75° 10. 7三、解答题11. 解析式为y=-x+3。
江苏省江阴市2014年八年级数学下学期期中考试试题
江苏省江阴市2014年八年级数学下学期期中考试试题江苏省江阴市2014年八年级数学下学期期中考试试题细心选一选(每题3分,共30分)1、下列调查中,适宜采用普查方式的是()A、调查市场上酸奶的质量情况B、调查我市中小学生的视力情况C、调查某品牌圆珠笔芯的使用寿命D、调查乘坐飞机的旅客是否携带危禁物品2、观察下列标志,从图案看既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个3、从标号分别为1、2、3、4、5的5张卡片中,随机抽出1张。
下列事件中,必然事件是()A、标号小于6B、标号大于6C、标号是奇数D、标号是34、菱形具有而矩形不一定具有的性质是()A.内角和等于3600B.对角相等C.对边平行且相等D.对角线互相垂直5、已知平行四边形ABCD中,∠A=∠B,则∠C=()A.120°B.90°C.60°D.30°6、不论x取何值,下列分式中一定有意义的是()A、B、C、D、7、如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.3S1=2S28、化简的结果是()A、B、C、D、9、若,则的值是()A、B、—1C、D、10、如图,已知△ABC的面积为24,点D在线段AC上,点F在线段BC的延长线上,且,四边形DCFE是平行四边形,则图中阴影部分的面积为().A.3B.4C.6D.8二、填空题(每题2分,共16分)11、在10个外观相同的产品中,有2个不合格产品,现从中任意抽取一个进行检测,抽到不合格产品的概率是________________.12、计算:,13、当x=___________时,分式的值为0。
14、如图,平行四边形ABCD的周长为20,对角线AC的长为5,则的周长为15、如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E,若DE=4,BF=3,则EF的长为.16.如图,在矩形ABCD中,对角线AC、BD相交于点O,若DFAC,ADF:FDC=3:2,则BDF=_________.17、如图,平行四边形ABCD中,BE⊥AD于E,BF⊥CD于F,BE=2,BF=3,平行四边形ABCD的周长为20,则平行四边形ABCD的面积为_____________.18、如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为________.三、简答题19、计算(每题3分,共6分)(1)(2)20、(本小题满分4分)化简代数式,再从-2,2,0,1四个数中选一个恰当的数作为a的值代入求值。
江苏省江阴市2014年八年级数学下学期期中试题
江苏省江阴市2014年八年级数学下学期期中试题江苏省江阴市2014年八年级数学下学期期中考试试题一、选择题(每题2分,共18分)1、要想了解10万名考生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析,以下说法正确的是()A、这1000名考生是总体的一个样本B、每位考生的数学成绩是个体C、10万名考生是个体D、1000名考生是是样本的容量2、某校测量了初二(1)班学生的身高(精确到1cm),按10cm为一段进行分组,得到如下频数分布直方图,则下列说法正确的是()A.该班人数最多的身高段的学生数为7人B.该班身高最高段的学生数为7人C.该班身高最高段的学生数为20人D.该班身高低于160.5cm的学生数为15人3、平行四边形的对角线长为x、y,一边长为12,则x、y的值可能是()A.8和14B.10和14C.18和20D.10和344、下列调查的样本具有代表性的是()A、利用当地的七月份的日平均最高气温值估计当地全年的日最高气温B、在农村调查市民的平均寿命C、利用一块实验水稻田的产量估水稻的实际产量D、为了了解一批洗衣粉的质量情况,从仓库中任意抽取100袋进行检验5、下列说法中的错误的是().A、一组邻边相等的矩形是正方形B、一组邻边相等的平行四边形是菱形C、一组对边相等且有一个角是直角的四边形是矩形D、一组对边平行且相等的四边形是平行四边形6、矩形的两条对角线所成的钝角为120°,若一条对角线的长是2,那么它的周长是()A、6B、C、2(1+)D、1+7.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球;B.摸出的三个球中至少有一个球是白球.C.摸出的三个球中至少有两个球是黑球;D.摸出的三个球中至少有两个球是白球.8.将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水(如图所示),则小水杯内水面的高度与注水时间的函数图象大致为()9、如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1,△CEF的面积为S2,若S△ABC=9,则S1-S2=()A、B、1C、D、2二、填空题(每题2分,共16分)10、□ABCD的周长为30cm,它的对角线AC和BD相交于O,且△AOB的周长比△BOC的周长大5cm,则AB=。
江苏省无锡地区八年级数学下学期期末复习试题2(无答案)(新版)苏科版
某某省某某地区八年级数学下学期期末复习试题2一、选择题(本大题共8个小题,每小题3分,共24分.)1.下列图形中,既是轴对称图形又是中心对称图形的是 ( )A .B .C .D2.为了了解我市2013年中考数学学科各分数段成绩分布情况,从中抽取150名考生的中考数学成绩进行统计分析。
在这个问题中,样本是指 ( )A .15B .被抽取的150名考生C .被抽取的150名考生的中考数学成绩D .我市2013年中考数学成绩 3.下面有四种说法:其中,正确的说法是 ( )①为了解一种灯泡的使用寿命,宜采用普查的方法;②“在同一年出生的367名学生中,至少有两人的生日是同一天”是必然事件;③“打开电视机,正在播放少儿节目”是随机事件;④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件. A .①②③ B .①②④ C .①③④ D .②③④ 4、在同一直角坐标系中,函数y = 3x 与xy 1-=的图象大致是 ( )5.已知甲车行驶30千米与乙车行驶40千米所用时间相同,并且乙车每小时比甲车多行驶15千米,若设甲车的速度为x 千米/小时,依题意列方程正确的是 ( ) A .30x =4015x +B .3015x -=40x C .30x =4015x -D .3015x +=40x 6.一个正方形和两个等边三角形的位置如图,若∠3 = 50°,则∠1+∠2 =( ) A .90° B .100° C .130° D .180°7.如图,在平行四边形ABCD 中,AB =3cm ,BC =5cm ,对角线AC ,BD 相交于点O ,则OA 的取值X 围是( )A .1cm <OA <4cmB 。
2cm <OA <8cmC .2cm <OA <5cmD .3cm <OA <8cm(第6题图) (第7题图) 8.若2 <a< 3,则()()2223a a ---等于 ( )A. 52a -B. 12a -C. 25a -D. 21a -二、填空题(本大题共10个小题,每小题2分,共20分.) 9.使式子4x -有意义的条件是。
江阴市徐霞客中学八年级数学下册第三单元《平行四边形》测试卷(有答案解析)
一、选择题1.如图,E 是直线CD 上的一点,且12CE CD =.已知ABCD 的面积为252cm ,则ACE △的面积为( )A .52B .26C .13D .392.如图,在ABCD 中,对角线AC ,BD 相交于点O ,E 、F 是对角线AC 上的两点,给出下列四个条件,其中不能判定四边形DEBF 是平行四边形的有( )A .AE CF =B .DE BF =C .ADE CBF ∠=∠D .ABE CDF ∠=∠ 3.下列说法正确的是( )A .有一个角是直角的平行四边形是正方形B .对角线互相垂直的矩形是正方形C .有一组邻边相等的菱形是正方形D .各边都相等的四边形是正方形 4.已知四边形ABCD 中,90A B C ∠=∠=∠=,如果添加一个条件,即可判定该四边形是正方形,那么所添加的这个条件可以是( )A .90D ∠=;B .AB CD =;C .AD BC =; D .BC CD =. 5.如图,已知正方形1234A A A A 的边长为1,延长12A A 到1B ,使得1212B A A A =,延长23A A 到2B ,使得2323B A A A =,以同样的方式得到34,B B ,连接1234,,,B B B B ,得到第2个正方形1234B B B B ,再以同样方式得到第3个正方形1234C C C C ,……,则第2020个正方形的边长为( )A .2020B .2019(5)C .2020(5)D .20205 6.菱形的一个内角是60︒,边长是3cm ,则这个菱形的较短的对角线长是( ) A .3cm 2 B .33cm 2 C .3cm D .33cm 7.如图,以AB 为斜边的Rt ABC 和Rt ABD △位于直线AB 的同侧,连接CD .若135,6BAC ABD AB ∠+∠=︒=,则CD 的长为( )A .3B .4C .32D .33 8.下列结论中,菱形具有而矩形不一定具有的性质是( ) A .对角线相等 B .对角线互相平分 C .对角线互相垂直 D .对边相等且平行 9.如图,直线L 上有三个正方形,,a b c ,若,a c 的边长分别为1和3,则b 的面积为( )A .8B .9C .10D .1110.如图,在直角三角形ABC 中,∠ACB =90°,AC =3,BC =4,点M 是边AB 上一点(不与点A ,B 重合),作ME ⊥AC 于点E ,MF ⊥BC 于点F ,若点P 是EF 的中点,则CP 的最小值是( )A .1.2B .1.5C .2.4D .2.511.如图,在△ABC 中,AB=BC ,∠ABC=90°,BM 是AC 边的中线,点D ,E 分别在边AC 和BC 上,DB=DE ,EF ⊥AC 于点F ,则以下结论;①∠DBM=∠CDE ;②BN=DN ;③AC=2DF ;④S BDE ∆﹤S BMFE 四边形其中正确的结论是( )A .①②③B .②③④C .①②④D .①③ 12.如图所示,已知Rt ABC 中,90B ︒∠=,3AB =,4BC =,D F 、分别为AB AC 、的中点,E 是BC 上动点,则DEF 周长的最小值为( )A .240+B .213+C .13D .6二、填空题13.如图,Rt ABC △中,90,5∠=︒=B AB ,D 为AC 的中点, 6.5=BD ,则BC 的长为__________.14.如图,先将正方形纸片对折,折痕为MN ,再把点B 折叠到折痕MN 上,折痕为AE ,点B 在MN 上的对应点为H ,则ABH ∠=______°.15.如图,矩形纸片ABCD 的长AD =6cm ,宽AB =2cm ,将其折叠,使点D 与点B 重合,那么折叠后DE 的长______cm .16.已知Rt ABC ,90C ∠=︒,4cm AC =,3cm BC =,若PAB △与ABC 全等,PC ________.17.如图,在Rt ABC △中,90A ︒∠=,2AB =,点D 是BC 边的中点,点E 在AC 边上,若45DEC ︒∠=,那么DE 的长是__________.18.如图,矩形ABCD 全等于矩形BEFG ,点C 在BG 上,连接DF ,点H 为DF 的中点,若20AB =,12BC =,则CH 的长为__________.19.如图,将一张长方形纸片折叠成一个等腰梯形,则这个梯形的面积是_____cm 2.20.如图(1)所示为长方形纸带,将纸带沿EF 折叠成图(2),再沿BF 折叠成图(3),继续沿EF 折叠成图(4),按此操作,最后一次折叠后恰好完全盖住EFG ;整个过程共折叠了8次,问图(1)中DEF ∠的度数是_________.三、解答题21.如图,已知点E 是ABCD 的边CD 延长线上的一点;连接AE ,BD ,且//AE BD ;过点E 作EF BC ⊥,交BC 的延长线于点F ,连接DF ;求证:DF DE =22.已知:如图,在ABCD 中,4,6,AC BD CA AB ==⊥,求ABCD 的周长和面积.23.已知点()0,6B ,点C 为x 轴正半轴上一动点,连接BC ,分别以OC 和BC 为边长作等边ODC △和EBC ,连接DE .(1)如图(a ),当D 点在OBC 内部时,求证:BO DE =;(2)如图(b ),当D 点在OBC 外部时,上述结论是否还成立?请说明理由.(3)当D 点恰好落在EBC 的边上时,利用图(c )探究分析后,直接写出ODC △的高的长度为______.24.如图,在四边形ABCD 中,90B D ∠=∠=︒,60C ∠=°,5AB =.2AD =.(1)求CD 的长;(2)求四边形ABCD 的面积.25.(问题提出)小颖发现某座房屋的侧面是一种特殊的五边形,她决定好好研究一下它的特点,并计算它的面积.(问题探究)定义:如图()1,我们把满足,,90AB AE CB DE C D ︒==∠=∠=的五边形ABCDE 叫做屋形.其中,AB AE 叫做脊,,BC DE 叫做腰,CD 叫做底.性质:边:屋形的腰相等,脊相等;角:①屋形腰与底的夹角相等;②脊与腰的夹角相等;对角线:①②屋形有两组对角线分别相等,且其中一组互相平分.对称性:屋形是以底的垂直平分线为对称轴的轴对称图形;(1)请直接填写屋形对角线的性质①;(2)请你根据定义证明“屋形的脊与腰的夹角相等”;己知:如图,五边形ABCDE 是屋形.求证:证明:(问题解决)(3)如图,在屋形ABCDE 中,若5,8,6AB BC CD ===,试求出屋形ABCDE 的面积.26.如图,在直角ABC 中,90BAC ∠=︒,点D 是BC 上一点,连接AD ,把AD 绕点A 逆时针旋转90°,得到AE ,连接DE 交AC 于点M .(1)如图1,若2,30,AB C AD BC =∠=︒⊥,求CD 的长;(2)如图2,若45ADB ∠=︒,点N 为ME 上一点,12MN BC =,求证:AN EN CD =+;(3)如图3,若30C ∠=︒,点D 为直线BC 上一动点,直线DE 与直线AC 交于点M ,当ADM △为等腰三角形时,请直接写出此时CDM ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】设平行四边形AB 边上的高为h ,分别表示出△ACE 的面积和平行四边形ABCD 的面积,从而求出结果.【详解】解:∵四边形ABCD 是平行四边形,12CE CD =, 设平行四边形AB 边上的高为h ,∴△ACE 的面积为:12CE h ⋅,平行四边形ABCD 的面积为2CE h ⋅, ∴△ACE 的面积为平行四边形ABCD 的面积的14, 又∵□ABCD 的面积为52cm 2,∴△ACE 的面积为13cm 2.故选C .【点睛】 本题考查平行四边形的性质,比较简单,解答本题的关键是根据图形的形状得出△ACE 的面积为平行四边形ABCD的面积的14.2.B解析:B【分析】根据全等三角形的判定和性质以及平行四边形的判定定理分别判断即可.【详解】解:A、∵AE CF,∴AO=CO,由于四边形ABCD是平行四边形,则BO=DO,∴四边形DEBF是平行四边形;B、不能证明四边形DEBF是平行四边形;C、∵四边形ABCD是平行四边形,∴AD=BC,∠DAE=∠BCF,又∠ADE=∠CBF,∴△DAE≌△BCF(ASA),∴AE=CF,同A可证四边形DEBF是平行四边形;D、同C可证:△ABE≌△CDF(ASA),∴AE=CF,同A可证四边形DEBF是平行四边形;故选:B.【点睛】本题考查了平行四边形的判定定理,对角线互相平分的四边形是平行四边形,熟练掌握平行四边形的判定定理是解题的关键.3.B解析:B【分析】根据正方形的判定:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个矩形有一个角为直角进行分析即可.【详解】解:A.有一个角是直角的平行四边形是正方形,说法错误,应是矩形,不符合题意;B.对角线互相垂直的矩形是正方形,说法正确,符合题意;C.一组邻边相等的矩形是正方形,说法错误,不合题意;D.各边都相等的四边形是菱形,不是正方形,不合题意.故选B.【点睛】本题主要考查了正方形的判定,关键是掌握正方形的判定方法.4.D解析:D【分析】由已知可得该四边形为矩形,再添加条件:一组邻边相等,即可判定为正方形.【详解】解:由∠A=∠B=∠C=90°可判定四边形ABCD 为矩形,因此再添加条件:一组邻边相等,即可判定四边形ABCD 为正方形,故选:D .【点睛】本题考查正方形的判定.掌握相关判定定理正确推理论证是解题关键.5.B解析:B【分析】结合题意分析每个正方形的边长,从而发现数字的规律求解【详解】解:由题意可得:第1个正方形1234A A A A 的边长为012A A∵1212B A A A =∴112A B =∴第2个正方形1234B B B B由题意,以此类推,21C B =22C B =∴第3个正方形1234C C C C 25==…∴第n 个正方形的边长为1n -∴第2020个正方形的边长为2019故选:B .【点睛】本题考查勾股定理及图形类规律探索,题目难度不大,正确理解题意求解每个正方形边长的规律是解题关键.6.C解析:C【分析】根据菱形的四边相等和一个内角是60°,可判断较短对角线与两边组成等边三角形,根据等边三角形的性质可求较短的对角线长.【详解】解:因为菱形的四边相等,当一个内角是60°,则较短对角线与两边组成等边三角形. ∵菱形的边长是3cm ,∴这个菱形的较短的对角线长是3cm .故选:C .【点睛】此题考查了菱形四边都相等的性质及等边三角形的判定,解题关键是判断出较短对角线与两边构成等边三角形.7.C解析:C【分析】取AB 的中点O ,连结OD ,OC ,根据直角三角形的性质可得OA OD OB OC ===,可得BAC OCA ∠=∠,ABD ODB ∠=∠,OCD ODC ∠=∠,在四边形ABCD 中,根据四边形的内角和为360︒,135BAC ABD ∠+∠=︒,可得出90OCD ODC ∠+∠=︒,由OC OD =,可证得COD ∆是等腰直角三角形,由6AB =,根据勾股定理,即可得出CD 的长.【详解】取AB 的中点O ,连结OD ,OC ,∵Rt ABD ∆和Rt ABC ∆的斜边为AB , ∴12OD AB =,12OC AB =, ∴OA OD OB OC ===, ∴BAC OCA ∠=∠,ABD ODB ∠=∠,OCD ODC ∠=∠,在四边形ABCD 中,360BAC OCA ABD ODB OCD ODC ∠+∠+∠+∠+∠+∠=︒, ∵135BAC ABD ∠+∠=︒,∴90OCD ODC ∠+∠=︒,∵OC OD =,∴45OCD ODC ∠=∠=︒,∴COD ∆是等腰直角三角形,∵6AB =,∴3OC OD ==, ∴22223332CD OC OD ++=,故选:C.【点睛】本题主要考查了直角三角形斜边上的中线,等腰三角形的性质和以及勾股定理,解题的关键是正确做出辅助线.8.C解析:C【分析】根据矩形和菱形的性质即可得出答案.【详解】解:A : 因为矩形的对角线相等,故此选项不符合题意;B :因为菱形和矩形的对角线都互相平分,故此选项不符合题意;C :因为对角线互相垂直是菱形具有的性质,故此选项符合题意;D :因为矩形和菱形的对边都相等且平分,故此选项不符合题意;故选:C .【点睛】本题考查矩形和菱形的性质,掌握矩形和菱形性质的区别是解题关键.9.C解析:C【分析】运用正方形边长相等,再根据同角的余角相等可得BAC DCE ∠=∠,然后证明ACB DCE ∆≅∆,再结合全等三角形的性质和勾股定理来求解即可.【详解】解:如图:由于a 、b 、c 都是正方形,所以AC CD =,90ACD ∠=︒;90ACB DCE ACB BAC ,即BAC ECD ∠=∠,在ABC ∆和CED ∆中,90ABC CED ACB CDEAC DC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()ACB CDE AAS ,AB CE ∴=,BC DE =; 在Rt ABC ∆中,由勾股定理得:22222221310AC AB BC AB DE , 即10b S , 则b 的面积为10,故选:C .【点睛】本题主要考查对全等三角形和勾股定理的综合运用,证明ACB DCE ∆≅∆是解题的关键. 10.A解析:A【分析】先由勾股定理求出AB=5,再证四边形CEMF 是矩形,得EF=CM ,当CM ⊥AB 时,CM 最短,此时EF 也最小,则CP 最小,然后由三角形面积求出CM=2.4,即可得出答案.【详解】解:连接CM,如图所示:∵∠ACB=90°,AC=3,BC=4,∴2222345AC BC++=,∵ME⊥AC,MF⊥BC,∠ACB=90°,∴四边形CEMF是矩形,∴EF=CM,∵点P是EF的中点,∴CP=12EF,当CM⊥AB时,CM最短,此时EF也最小,则CP最小,∵△ABC的面积=12AB×CM=12AC×BC,∴CM=•AC BCAB=342.45⨯=,∴CP=12EF=12CM=1.2,故选:A.【点睛】本题考查了矩形的判定与性质、勾股定理、三角形面积以及最小值等知识;熟练掌握矩形的判定与性质是解题的关键.11.D解析:D【分析】①设∠EDC=x,则∠DEF=90°-x从而可得到∠DBE=∠DEB=180°-(90°-x)-45°=45°+x,∠DBM=∠DBE-∠MBE=45°+x-45°=x,从而可得到∠DBM=∠CDE;③由△BDM≌△DEF,可知DF=BM,由直角三角形斜边上的中线的性质可知BM=12 AC;④可证明△BDM≌△DEF,然后可证明:△DNB的面积=四边形NMFE的面积,所以△DNB 的面积+△BNE的面积=四边形NMFE的面积+△BNE的面积;【详解】解:①设∠EDC=x,则∠DEF=90°-x,∵BD=DE ,∴∠DBE=∠DEB=∠EDC+∠C=x+45°,∴∠DBM=∠DBE-∠MBE=45°+x-45°=x .∴∠DBM=∠CDE ,故①正确;②由①得∠DBM=∠CDE ,如果BN=DN ,则∠DBM=∠BDN ,∴∠BDN=∠CDE ,∴DE 为∠BDC 的平分线,∴△BDE ≌△FDE ,∴EB ⊥DB ,已知条件∠ABC=90°,∴②错误的;③在△BDM 和△DEF 中,DBM CDE DMB DFE BD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDM ≌△DEF (AAS ),∴BM=DF ,∵∠ABC=90°,M 是AC 的中点,∴BM=12AC , ∴DF=12AC , 即AC=2DF ;故③正确.④由③知△BDM ≌△DEF (AAS )∴S △BDM =S △DEF ,∴S △BDM -S △DMN =S △DEF -S △DMN ,即S △DBN =S 四边形MNEF .∴S △DBN +S △BNE =S 四边形MNEF +S △BNE ,∴S △BDE =S 四边形BMFE ,故④错误;故选D .【点睛】本题主要考查了全等三角形的判定与性质、角平分线的性质,利用面积法证明S △BDE =S 四边形BMFE 是解题的关键.12.B解析:B先根据三角形的中位线定理可求得DF 的长为2,然后作出点F 关于BC 的对称点F′,连接DF′交BC 于点E ,此时DEF 周长的最小,由轴对称图形的性质可知EF=EF′,从而可得到ED+EF=DF′,再证明四边形DBMF 为矩形,得出FF′=3,然后在Rt △DFF′中,由勾股定理可求得DF′的长度,从而可求得三角形DEF 周长的最小值.【详解】解:如图,作点F 关于BC 的对称点F′,连接DF′交BC 于点E .此时DE+EF 最小∵点D 、F 分别是AB 和AC 的中点,BC=4,3AB =,∴DF=12BC=2,DF//BC ,BD=1.5, ∵点F 与点F ′关于BC 对称,∴EF=EF′,FF′⊥BC ,FM= F′M , ∴DE+EF 最小值为DE+ EF′=DF′,90DFF ∠'=︒,∵DF//BC ,90B ∠=︒,∴90B BDF FMB ∠=∠=∠=︒,∴四边形DBMF 为矩形,∴BD=FM=1.5,∴FF′=3,在Rt △DFF′中,2'2222313DF DF FF +=+='∴△DEF 周长的最小值13故选:B【点睛】本题主要考查的是轴对称路径最短问题,以及勾股定理,矩形的判定,作出点F 关于BC 的对称点,将DE+EF 转化为DF′的长是解题的关键.二、填空题13.12【分析】根据直角三角形斜边上的中线等于斜边的一半可求出再根据勾股定理求解即可【详解】解:∵D 为的中点∴∴故答案是:12【点睛】考查了勾股定理和直角三角形斜边上的中线熟悉相关性质是解题的关键解析:12.根据直角三角形斜边上的中线等于斜边的一半,可求出AC ,再根据勾股定理求解即可.【详解】解:∵90B ∠=︒,D 为AC 的中点, 6.5=BD∴22 6.513AC BD ==⨯=, ∴12BC =,故答案是:12.【点睛】考查了勾股定理和直角三角形斜边上的中线,熟悉相关性质是解题的关键.14.75【分析】由将正方形纸片对折折痕为MN 可得MA=MD=由折叠得AB=AH 由四边形ABCD 是正方形得AD=AB 可推出AH=AD=2AM 可求∠AHM=30°利用平行线性质可求∠BAH=30°在△AHB解析:75.【分析】由将正方形纸片对折,折痕为MN ,可得MA=MD=1AD 2,由折叠得AB=AH 由四边形ABCD 是正方形得AD=AB ,可推出AH=AD=2AM ,可求∠AHM=30°,利用平行线性质可求∠BAH=30°,在△AHB 中,AH=AB 由内角和可求∠ABH=75︒即可.【详解】解:∵正方形纸片对折,折痕为MN ,∴MN 是AD 的垂直平分线 ,∴MA=MD=1AD 2, ∵把B 点折叠在折痕MN 上,折痕为AE ,点B 在MN 上的对应点为H ,∴AB=AH ,∵四边形ABCD 是正方形 ,∴AD=AB ,∴AH=AD=2AM ,∵∠AMH=90°,AM=1AH 2, ∴∠AHM=30°,∵MN ∥AB ,∴∠BAH=30°,在△AHB 中,AH=AB , ∴∠ABH=()()11180BAH 180307522︒-∠=︒-︒=︒. 故答案为:75.【点睛】本题考查正方形折叠问题,涉及垂直平分线,正方形性质,等腰三角形性质,三角形内角和,关键是30°角所对直角边等于斜边一半逆用求角度.15.【分析】由矩形的性质和折叠的性质以及勾股定理得出方程解方程即可【详解】由折叠的性质得:BE =DE 设DE 长为xcm 则AE =(6−x )cmBE =xcm ∵四边形ABCD 是矩形∴∠A =90°根据勾股定理得: 解析:103【分析】由矩形的性质和折叠的性质以及勾股定理得出方程,解方程即可.【详解】由折叠的性质得:BE =DE ,设DE 长为xcm ,则AE =(6−x )cm ,BE =xcm ,∵四边形ABCD 是矩形,∴∠A =90°,根据勾股定理得:AE 2+AB 2=BE 2,即(6−x )2+22=x 2,解得:x =103, 即DE 长为103cm , 故答案为:103. 【点睛】本题考查了矩形的性质、翻折变换、勾股定理等知识;熟练掌握矩形和翻折变换的性质,运用勾股定理进行计算是解决问题的关键.16.5cm 或cm 或cm 【分析】利用勾股定理列式求出AB 然后分①点P 与点C 在AB 的两侧时AP 与BC 是对应边时四边形ACBP 是矩形然后利用勾股定理列式计算即可得解;AP 与AC 是对应边时根据对称性可知AB ⊥P解析:5cm 或245cm 或75cm . 【分析】利用勾股定理列式求出AB ,然后分①点P 与点C 在AB 的两侧时,AP 与BC 是对应边时,四边形ACBP 是矩形,然后利用勾股定理列式计算即可得解;AP 与AC 是对应边时,根据对称性可知AB ⊥PC ,再利用三角形的面积列式计算即可得解;②点P 与点C 在AB 的同侧时,利用勾股定理求出BD ,再根据PC=AB-2BD 计算即可得解.【详解】解:在Rt ABC 中,90C ∠=︒,4cm AC =,3cm BC =,由勾股定理得,5AB cm ===,如图,①点P 与点C 在AB 的两侧时,若AP 与BC 是对应边,则四边形ACBP 1是矩形, ∴P 1C=AB=5cm ,若AP 与AC 是对应边,则△ABC 和△ABP 关于直线AB 对称,∴AB ⊥PC设AB 与P 2C 相交于点D ,则S △ABC =12×5•CD=12×3×4, 解得CD=125, ∴P 2C=2CD=2×125=245, ②点P 3与点C 在AB 的同侧时,由勾股定理得,22221293()55BD BC CD =-=-=, 过点P 3作P 3E ⊥AB ,垂足E ,连接P 3C ,如图,则有12×5•P 3E=12×3×4, ∴P 3E=125∴P 3E=CD 又P 3E ⊥AB ,CD ⊥AB ,∴P 3E//CD ,∴四边形P 3CDE 是平行四边形,又∠CDE=90°∴四边形P 3CDE 是矩形,∴P 3C=DE∵3P AB △≌ABC∴P 3A=BC ,∠P 3AB=∠CBA又∠P 3EA=∠CDB=90°∴△P 3AE ≌△CBD∴AE=BD∴P3C=AB-2BD=5-2×95=75,综上所述,PC的长为5cm或245cm或75cm.故答案为:5cm或245cm或75cm.【点睛】本题考查了全等三角形的对应边相等的性质,勾股定理,轴对称性,难点在于分情况讨论,作出图形更形象直观.17.【分析】过D作DF⊥AC于F得到AB∥DF求得AF=CF根据三角形中位线定理得到DF=AB=1根据等腰直角三角形的性质即可得到结论【详解】解:过D 作DF⊥AC于F∴∠DFC=∠A=90°∴AB∥DF解析:2【分析】过D作DF⊥AC于F,得到AB∥DF,求得AF=CF,根据三角形中位线定理得到DF=12AB=1,根据等腰直角三角形的性质即可得到结论.【详解】解:过D作DF⊥AC于F,∴∠DFC=∠A=90°,∴AB∥DF,∵点D是BC边的中点,∴BD=DC,∴AF=CF,∴DF=12AB=1,∵∠DEC=45°,∴△DEF是等腰直角三角形,∴DE=2DF=2,故答案为:2.【点睛】本题考查了三角形的中位线定理,平行线的判定和性质,等腰直角三角形的性质,正确的作出辅助线构造等腰直角三角形是解题的关键.18.【分析】连接并延长交于Q由矩形的性质得出由平行线的性质得出由证得得出则是等腰直角三角形得出由直角三角形斜边上的中线性质即可得出结果【详解】如图所示:连接并延长交于Q∵矩形全等于矩形∴∴∵点H为的中点解析:42【分析】连接GH并延长GH交CD于Q,由矩形的性质得出20AB CD BG===,12BC FG==,////,90FG AE CD GCQ∠=,由平行线的性质得出HFG HDQ∠=∠,由ASA证得HFG HDQ≌,得出12DQ FG==,HG HQ=,8CG BG BC=-=,8CQ CD DQ=-=,则GCQ是等腰直角三角形,得出282GQ CQ==,由直角三角形斜边上的中线性质即可得出结果.【详解】如图所示:连接GH并延长GH交CD于Q,∵矩形ABCD全等于矩形BEFG,∴20AB CD BG===,12BC FG==,////FG AE CD,90GCQ∠=,∴HFG HDQ∠=∠,∵点H为DF的中点,∴HF HD=,在HFG和HDQ中,HFG HDQHF HDGHF QHD∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()HFG HDQ ASA≌,∴12DQ FG==,HG HQ=,20128CG BG BC=-=-=,20128CQ CD DQ=-=-=,∴GCQ是等腰直角三角形,∴282GQ CQ==在Rt GCQ中,HG HQ=,∴11824222CH GQ==⨯=故答案为:2【点睛】本题考查了矩形的性质、等腰直角三角形的判定与性质、全等三角形的判定与性质等知识;熟练掌握矩形的性质,通过作辅助线构建全等三角形是解题的关键.19.40【分析】先由矩形的性质得AD=BC=13cm∠A=∠D=90°AD∥BC再由折叠的性质得AB=AB=4cmAE=AE=3cmCD=CD=4cmDF=DF=3cm求出EF的长然后由梯形面积公式即可解析:40【分析】先由矩形的性质得AD=BC=13cm,∠A=∠D=90°,AD∥BC,再由折叠的性质得AB=A'B=4cm,AE=A'E=3cm,CD=CD'=4cm,DF=D'F=3cm,求出EF的长,然后由梯形面积公式即可得出答案.【详解】解:如图所示:∵四边形ABCD是矩形,∴AD=BC=13cm,∠A=∠D=90°,AD∥BC,∴EF∥BC,AB⊥AD,由折叠的性质得:AB=A'B=4cm,AE=A'E=3cm,CD=CD'=4cm,DF=D'F=3cm,∴EF=AD-AE-DF=13-3-3=7(cm),∴等腰梯形BCFE的面积=12(EF+BC)×AB=12(7+13)×4=40(cm2),故答案为:40.【点睛】本题考查了翻折变换的性质、矩形的性质、等腰梯形的性质等知识;熟练掌握翻折变换和矩形的性质是解题的关键.20.20°【分析】根据最后一次折叠后恰好完全盖住∠EFG;整个过程共折叠了8次可得CF与GF重合依据平行线的性质即可得到∠DEF的度数【详解】解:设∠DEF=α在图(1)中∵是长方形纸带∴AD//BC∴解析:20°【分析】根据最后一次折叠后恰好完全盖住∠EFG;整个过程共折叠了8次,可得CF与GF重合,依据平行线的性质,即可得到∠DEF的度数.【详解】解:设∠DEF=α,在图(1)中∵是长方形纸带,∴AD//BC ,∴∠EFB=∠DEF =α,∵折叠8次后CF 与GF 重合,∴∠CFE=8∠EFB=8α,∵CF ∥DE ,∴∠DEF+∠CFE=180°,∴α+8α=180°,∴α=20°,即∠DEF=20°.故答案为:20°.【点睛】本题考查了翻折变换以及矩形的性质.在本题中应理解∠DEF+∠CFE=180°.解决该题型题目时,根据翻折变换找出相等的边角关系是关键.三、解答题21.见解析【分析】根据平行四边形的性质可得AB CD =,//AB CD ,然后结合题意利用两组对边分别平行的四边形是平行四边形可判定四边形ABDE 是平行四边形,然后利用平行四边形的性质和直角三角形斜边中线等于斜边一半证明求解.【详解】证明:∵四边形ABCD 是平行四边形,∴AB CD =,//AB CD ,又∵//AE BD∴四边形ABDE 是平行四边形;∴AB DE =,即CD DE =;又EF BC ⊥于点F ;∴∠EFC=90°∴在Rt CEF △中,点D 是斜边CE 的中点∴DF DE =.【点睛】本题考查平行四边形的性质和判定以及直角三角形斜边中线等于斜边的一半,掌握相关性质定理正确推理论证是解题关键.22.+【分析】依据平行四边形的对角线互相平分,即可得到2AO =,3BO =,再根据勾股定理即可得出AB 与BC 的长,进而得到ABCD 的周长和面积.【详解】解:如图所示,4AC =,6BD =,2AO ∴=,3BO =,又CA AB ⊥, Rt AOB ∴∆中,2222325AB BO AO =-=-=,Rt ABC 中,2222(5)421BC AB AC =+=+=,ABCD ∴的周长2(521)25221=+=+,ABCD 的面积5445AB AC =⨯=⨯=.【点睛】本题主要考查了平行四边形的性质以及勾股定理的运用,解题时注意:平行四边形的对角线互相平分.23.(1)证明见解析;(2)还成立,理由见解析;(3)3或9.【分析】(1)利用“SAS”证明BCO ECD ≅△△即可解答;(2)同(1)利用“SAS”证明BCO ECD ≅△△即可解答;(3)分当D 点恰好落在EBC 的边BC 上或边BE 上两种情况讨论,利用全等三角形的性质以及三角形中位线或含30度角的直角三角形的性质求解即可.【详解】证明:(1)在等边ODC △与等边EBC 中,CO CD =,CB CE =,60OCD BCE ∠=∠=︒,∴OCD DCB DCB BCE ∠+∠=∠+∠,即OCB DCE ∠=∠,在BCO 与ECD 中,CO CD OCB DCE BC EC =⎧⎪∠=∠⎨⎪=⎩,∴()BCO ECD SAS ≅△△,∴BO DE =;(2)还成立.理由:连接DE ,与(1)同理,CO CD =,CB CE =,60OCD BCE ∠=∠=︒,∴OCD DCB BCE DCB ∠-∠=∠-∠,即OCB DCE ∠=∠,在BCO 与ECD 中,CO CD OCB DCE BC EC =⎧⎪∠=∠⎨⎪=⎩,∴()BCO ECD SAS ≌△△, ∴BO DE =;(3)当D 点恰好落在EBC 的边BC 上时,如图,作DG ⊥OC 于G ,由(2)知BCO ECD ≌△△,∴∠EDC=∠BOC=90︒,∵△EBC 是等边三角形,∴D 点恰好是边BC 的中点,∵DG ⊥OC ,∴DG 是△BOC 的中位线,∴DG=12BO=3; 当D 点恰好落在EBC 的边BE 上时,如图,作DF ⊥OC 于F ,由(2)知BCO ECD ≌△△,∴∠EDC=∠BOC=90︒,∠ECD=∠BCO ,∵△EBC 是等边三角形,∴D 点恰好是边BE 的中点,∴∠ECD=∠BCD=∠BCO=30︒,∴BC=2BO=12,∴2263BC BO -=∵△DOC 是等边三角形,∴DC=OC=3,FC=OF=33 ∴229DC CF -=,综上,ODC △的高的长度为3或9.故答案为:3或9.【点睛】本题是三角形综合题,考查了坐标与图形的性质、全等三角形的判定和性质、等边三角形的性质、直角三角形30度角的性质等知识,解题的关键是正确寻找全等三角形解决问题. 24.(1)432233 【分析】(1)作DM ⊥BC ,AN ⊥DM 垂足分别为M 、N ,易知四边形MNAB 是矩形,分别在Rt △ADN 中求出DN ,利用含60°的直角三角形求CD 即可;(2)由(1)可知,四边形ABCD 的面积就是△DCM 与梯形ADMB 的面积和.【详解】解:(1)如图作DM ⊥BC ,AN ⊥DM 垂足分别为M 、N .∵∠B =∠NMB =∠MNA =90°,∴四边形MNAB 是矩形,∴MN =AB =5,AN =BM ,∠BAN =90°,∵∠C +∠B +∠ADC +∠BAD =360°,∠C =60°,∠B =∠ADC =90°,∴∠DAN =∠BAD ﹣∠BAN =30°,在RT △AND 中,∵AD =2,∠DAN =30°,∴DN =12AD =1,AN =2222213AD DN -=-=, 在RT △DMC 中,∵DM =DN +MN =6,∠C =60°,∴∠CDM =30°,∴CD =2MC ,设MC =x ,则CD =2x ,∵CD 2=DM 2+CM 2,∴4x 2=x 2+62,∵x >0∴x =23,∴CD =43.(2)由(1)得,112366322DCM S CM DM =⨯⨯=⨯⨯=, 1111()3113222ADMB S AN DM AB =⨯⨯+=⨯⨯=梯形, 1123633322DCM ABCD ADMB S S S =+=+=四边形梯形.【点睛】本题考查了勾股定理和含有30°角的直角三角形的性质,通过作辅助线,构建特殊的直角三角形是解题关键.25.(1)屋形有一条对角线与底平行且相等;(2)见解析;(3)60【分析】(1)根据屋形的特点可得结论;(2)连接BE ,证明四边形BCDE 为平行四边形,再根据+CBE ABE DEB AEB ∠=∠+得出结论;(3)连接BE ,过A 作AH BE ⊥,先利用勾股定理得出AH 的值,再利用三角形和矩形的面积公式求解即可.【详解】解:(1)屋形有一条对角线与底平行且相等(2)求证:屋形的脊与腰夹角相等证明:连接BEAB AE =,ABE AEB ∴∠=∠,C D ∠=∠,//BC DE ∴,又BC DE =,∴四边形BCDE 为平行四边形,90CBE DEB ︒∴∠=∠=∵ABE AEB ∠=∠,∴+CBE ABE DEB AEB ∠=∠+,ABC AED ∴∠=∠.【问题解决】连接BE ,过A 作AH BE ⊥,5AB =,5AE ∴=,,AH BE AB AE ⊥=,142BH EH BE ∴===, 2222543AH AB BH ∴=--=,∴BE=2BH=6,183122ABE S ∆∴=⨯⨯=, BCDE 8648S =⨯=矩,481260+=,∴屋形ABCDE 的面积为60.【点睛】本题考查了平行四边形的判定与性质及勾股定理,解题的关键是正确作出辅助线. 26.(1)3;(2)见解析;(3)60︒或15︒或37.5︒【分析】(1)根据含30°角的直角三角形的性质可得BC=2AB=4,BD=12AB=1,即可得出CD 的长;(2)在BD 上截取DF=EN ,可证出AEN ADF △≌△,由全等三角形的性质得AN=AF ,,EAN DAF ANE AFD ∠=∠∠=∠,可得出,MAN BAF ANM AFB ∠=∠∠=∠,则AMN ABF △≌△,可得12BF MN BC ==,即F 是BC 的中点,可得出AN=AF=FC=DF+CD=EN+CD ;(3)由题意可得AD=AE ,90EAD ∠=︒,45EDA AED ∠=∠=︒,分三种情况:①AM=MD ,②AM=AD ,③AD=MD ,根据等腰三角形的性质求出AMD ∠的度数,再根据三角形外角的性质即可求解.【详解】解:(1)∵90BAC ∠=︒,2,30AB C =∠=︒,∴BC=2AB=4,60B ∠=︒,∵AD BC ⊥∴90,30ADB BAD ∠=︒∠=︒,∴BD=12AB=1, ∴CD =BC-BD=4-1=3;(2)证明:如图2,在BD 上截取DF=EN ,∵把AD 绕点A 逆时针旋转90°,得到AE ,∴AD=AE ,90EAD ∠=︒,45EDA AED ∠=∠=︒,∵45ADB ∠=︒,∴45ADF AEN ∠=∠=︒,∴AEN ADF △≌△,∴AN=AF ,,EAN DAF ANE AFD ∠=∠∠=∠,∵90EAD ∠=︒,EAN DAF ∠=∠,∴90NAF ∠=︒,∵90BAC ∠=︒,ANE AFD ∠=∠,∴,MAN BAF ANM AFB ∠=∠∠=∠,∵AN=AF ,∴AMN ABF △≌△, ∴12BF MN BC ==,即F 是BC 的中点, ∴AF=FC=DF+CD=EN+CD ,∵AN=AF ,∴AN EN CD =+; (3)解:由题意可得AD=AE ,90EAD ∠=︒,∴45EDA AED ∠=∠=︒,分三种情况:①AM=MD 时,∵AM=MD ,∴45EDA MAD ∠=∠=︒,∴90AMD ∠=︒,∵30C ∠=︒,∴CDM AMD C ∠=∠-∠=60︒;②AM=AD 时,∵AM=AD ,∴45EDA AMD ∠=∠=︒,∵30C ∠=︒,∴CDM AMD C ∠=∠-∠=15︒;③AD=MD 时,∵AD=MD ,∴AMD MAD ∠=∠,∴45EDA ∠=︒, ∴1804567.52AMD MAD ︒-︒∠=∠==︒, ∵30C ∠=︒,∴CDM AMD C ∠=∠-∠=37.5︒.∴当ADM △为等腰三角形时,CDM ∠的度数为60︒或15︒或37.5︒.【点睛】本题主要考查了几何变换综合题,需要熟练掌握旋转的性质,直角三角形的性质,直角三角形斜边上中线的性质以及全等三角形的判定与性质,等腰三角形的性质,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题.。
江阴初二数学期末试卷答案
一、选择题(每题3分,共30分)1. 若a > b,则下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 < b - 2C. a + 3 < b + 3D. a - 3 > b - 3答案:A2. 下列数中,不是有理数的是()A. 1/2B. √2C. -1D. 0.5答案:B3. 若x^2 = 4,则x的值为()A. ±2B. ±4C. ±1D. ±8答案:A4. 下列函数中,是二次函数的是()A. y = 3x - 2B. y = x^2 + 2x + 1C. y = 2x^3 - 3x + 1D. y = 4x^2 + 5答案:B5. 下列方程中,解为x = 2的是()A. 2x - 3 = 5B. 3x + 2 = 8C. x - 1 = 3D. 2x + 1 = 5答案:D6. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 圆D. 长方形答案:C7. 若a、b、c是等差数列,且a + b + c = 12,则b的值为()A. 4B. 6C. 8D. 10答案:B8. 下列等式中,成立的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^2答案:D9. 若m^2 - 5m + 6 = 0,则m的值为()A. 2B. 3C. 4D. 5答案:A10. 下列分数中,不是最简分数的是()A. 2/3B. 3/4C. 4/5D. 5/6答案:B二、填空题(每题5分,共25分)11. 若a > b,则a - b的符号为()答案:+12. 若x^2 = 25,则x的值为()答案:±513. 二次函数y = ax^2 + bx + c的对称轴方程为()答案:x = -b/2a14. 等差数列的通项公式为()答案:an = a1 + (n - 1)d15. 分数的乘法规则为()答案:a/b × c/d = (a × c) / (b × d)三、解答题(每题10分,共30分)16. 解方程:3x - 5 = 2x + 4答案:x = 917. 简化表达式:(2x - 3)^2答案:4x^2 - 12x + 918. 已知等差数列的前三项分别为1、4、7,求该数列的通项公式。
江阴市徐霞客中学八年级数学下册第四单元《一次函数》测试卷(有答案解析)
一、选择题1.若关于x 的不等式组20210x x a ->⎧⎨-+<⎩有解,则一次函数()32y a x =-+的图象一定不经过的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限 2.如图1,将正方形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,其余各边均与坐标轴平行,直线l :y =x -3沿x 轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD 的边所截得的线段长为m ,平移的时间为t (秒),m 与t 的函数图象如图2所示,则图2中b 的值为( )A .52B .42C .32D .53.如图①,在长方形MNPQ 中,动点R 从点N 出发,沿着N P Q M →→→方向运动至点M 处停止.设点R 运动的路程为,x MNR ∆的面积为y ,如果y 关于x 的函数图象如图②所示,那么下列说法错误的是( )A .5MN =B .长方形MNPQ 的周长是18C .当6x =时,10y =D .当8y =时,10x =4.如图,A 、M 、N 三点坐标分别为A (0,1),M (3,4),N (5,6),动点P 从点A 出发,沿y 轴以每秒一个单位长度的速度向上移动,且过点P 的直线l :y=-x+b 也随之移动,设移动时间为t 秒,若点M 、N 分别位于l 的异侧,则t 的取值范围是( )A .611t <<B .510t <<C .610t <<D .511t << 5.已知点()1,4P 在直线2y kx k =-上,则k 的值为( )A .43B .43-C .4D .4-6.将直线2y x =-向下平移后得到直线l ,若直线l 经过点(),a b ,且27a b +=-,则直线l 的解析式为( )A .22y x =--B .22y x =-+C .27y x =--D .27y x =-+ 7.如图,在四边形ABCD 中,AD ∥BC ,∠B =60°,∠D =90°,AB =4,AD =2,点P 从点B 出发,沿B→A→D→C 的路线运动到点C ,过点P 作PQ ⊥BC ,垂足为Q .若点P 运动的路程为x ,△BPQ 的面积为y ,则表示y 与x 之间的函数关系图象大致是( )A .B .C .D .8.如图,直线y =kx (k≠0)与y =23x+2在第二象限交于A ,y =23x+2交x 轴,y 轴分别于B 、C 两点.3S △ABO =S △BOC ,则方程组0236kx y x y -=⎧⎨-=-⎩的解为( )A.143 xy=-⎧⎪⎨=⎪⎩B.321xy⎧=-⎪⎨⎪=⎩C.223xy=-⎧⎪⎨=⎪⎩D.3432xy⎧=-⎪⎪⎨⎪=⎪⎩9.甲、乙两人从公司去健身房,甲先步行前往,几分钟后乙乘出租车追赶,出租车的速度是甲步行速度的5倍,乙追上甲后,立刻带上甲一同前往,结果甲比预计早到4分钟,他们距公司的路程y(米)与时间x(分)间的函数关系如图所示,则下列结论中正确的个数为()①甲步行的速度为100米/分;②乙比甲晚出发7分钟;③公司距离健身房1500米;④乙追上甲时距健身房500米.A.1个B.2个C.3个D.4个10.甲、乙两辆汽车分别从A、B两地同时出发,沿同一条公路相向而行,乙车出发2h 后休息,与甲车相遇后,继续行驶.设甲、乙两车与B地的距离分别为()y km甲、()y km乙,甲车行驶的时间为(h)x,y甲、y乙与x之间的函数图象如图所示,结合图象下列说法不正确的是()A.甲车的速度是80/km h B.乙车休息前的速度为100/km hC.甲走到200km时用时2.5h D.乙车休息了1小时11.已知,整数x满足1266,1,24x y x y x-≤≤=+=-+,对任意一个x,p都取12,y y中的大值,则p 的最小值是( )A .4B .1C .2D .-512.下列命题中,①()1,2A -关于y 轴的对称点为()1,2--;②216的平方根是2±;③2y x =-+与x 轴交于点()2,0;④22x y =-⎧⎨=⎩是二元一次方程23x y +=-的一个解.其中正确的个数有( )A .1B .2C .3D .4二、填空题13.已知A 、B 两地相距200千米,货车甲从A 地出发将一批物资运往B 地,行驶一段路程后出现故障,即刻停车与B 地联系.B 地收到消息后立即派货车乙从B 地出发去接运甲车上的物资,货车乙遇到货车甲后,用了30分钟将物资从货车甲搬运到货车乙上,随后以原速开往B 地,货车甲以原速的25返回A 地.两辆货车之间的路程()km y 与货车甲出发的时间()h x 的函数关系如图所示(通话等其他时间忽略不计).若点C 的坐标是()1.6,120,点D 的坐标是()3.6,0,则点E 的坐标是______.14.已知一次函数41y x =-和23y x =+的图像交于点(2,7)P ,则二元一次方程组4123y x y x =-⎧⎨=+⎩的解是_. 15.已知一次函数y kx b =+的图象与直线1y x =-+平行,且经过点(8,2),那么b 的值是________.16.如图,矩形ABCO 的对角线AC 、OB 交于点1A ,直线AC 的解析式33y x =-+1A 作11AO OC ⊥于1O ,过点1A 作11A B BC ⊥于1B ,得到第二个矩形111A B CO ,1A C 、11O B 交于点2A ,过点2A 作22A O OC ⊥于2O ,过点2A 作22A B BC ⊥于2B ,得到第三个矩形222A B CO ,…,依此类推,这样作的第n 个矩形对角线交点n A 的坐标为____________________.17.如图,一个直角三角形与一个正方形在同一水平线上,此三角形从图①的位置开始,匀速向右平移,到图③的位置停止运动.如果设运动时间为x ,三角形与正方形重叠部分的面积为y ,在下面的平面直角坐标系中,线段AB 表示的是三角形在正方形内部移动的面积图象,C 点表示的是停止运动后图象的结束点,下面有三种补全图象方案,正确的方案是______.①②③18.函数1y x=-的定义域是______. 19.如图,在平面直角坐标系xOy 中,一次函数12y x b =--与正比例函数32y x =的图象交于点()2,A m ,与x 轴交于点B (5,0),则△OAB 的面积是________.20.已知直线()0y kx b k =+≠过()1,0和()0,2-,则关于x 的不等式0kx b +<的解集是______.三、解答题 21.某剧院的观众席的座位为扇形,已知座位数与排数之间的关系如下:排数()x1 2 3 4 … 座位数()y 50 53 56 59 …(2)按照上表所示的规律,当x 每增加1时,y 如何变化?(3)写出座位数y 与排数x 之间的关系式;(4)按照上表所示的规律,某一排可能有90个座位吗?说说你的理由.22.已知:正比例函数y =kx 的图象经过点A ,点A 在第四象限,过A 作AH ⊥x 垂足为H ,点A 的横坐标为3,S △AOH =3.(1)求点A 坐标及此正比例函数解析式;(2)在x 轴上能否找到一点P 使S △AOP =5,若存在,求点P 坐标;若不存在,说明理由. 23.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x (h ),两车之间的距离为y ,图中的折线表示y 与x 之间的函数关系.(1)甲,乙两地之间的距离为 千米;图中点B 的实际意义是 ;(2)求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时? 24.天府七中科创小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,经过7min 同时到达C 点,乙机器人始终以60m/min 的速度行走,如图是甲、乙两机器人之间的距离y (m )与他们的行走时间x (min )之间的图象,请结合图象,回答下列问题.(1)A 、B 两点之间的距离是________m ,甲机器人前2min 的速度为________m/min . (2)若前3min 甲机器人的速度不变,求出前3min ,甲、乙两机器人之间的距离y (m )与他们的行走时间x (min )之间的关系式.(3)若前3min 甲机器人的速度依然不变,当两机器人相距不超过28m 时,求出时间a 的取值范围.25.某水果超市营销员的个人收入与他每月的销售量成一次函数关系,其图象如下,请你根据图象提供的信息,解答以下问题:(1)求营销员的个人收入y (元)与营销员每月销售量x (千克)(0x ≥)之间的函数关系式;(2)营销员佳妮想得到收入1600元,她应销售水果多少千克?26.在平面直角坐标系中,已知一次函数4y kx =+与12y x b =-+的图象都经过()2,0A -,且分别与y 轴交于点B 和点C .(1)求,k b 的值;(2)设点D 在直线12y x b =-+上,且在y 轴右侧,当ABD ∆的面积为15时,求点D 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先解不等式组,根据不等式组有解,求得a 的取值范围,即可判断一次函数()32y a x =-+的图象一定不经过的象限.【详解】∵20210x x a ->⎧⎨-+<⎩, ∴212x a x >⎧⎪⎨-<⎪⎩, ∵不等式组有解, ∴122->a , ∴5a >, ∴30a ->,∴()32y a x =-+经过第一、二、三象限,不经过第四象限,故选:D .【点睛】本题考查了一次函数的性质、解一元一次不等式组,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.2.A解析:A【分析】从图2中,判定从有截长到截长消失,用12-2=10秒,根据正方形的对称性,截长从0到最大用5秒,从而判断正方形的边长为5,对角线长即可确定.【详解】解:从图2中,判定从有截长到截长消失,用12-2=10秒,根据正方形的对称性, 截长从0到最大用5秒,所以正方形的边长为5,所以对角线长为故选A .【点睛】本题考查了坐标系中的平移问题,熟练掌握平移的规律,正方形的对称性,灵活运用数形结合的思想是解题的关键.3.D解析:D【分析】本题通过右侧的图象可以判断出长方形的边长,然后选项计算,选项A 、B 、C 都可证正确,选项D ,面积为8时,对应x 值不为10,所以错误.【详解】解:由图2可知,长方形MNPQ 的边长,MN=9-4=5,NP=4,故选项A 正确; 选项B ,长方形周长为2×(4+5)=18,正确;选项C ,x=6时,点R 在QP 上,△MNR 的面积y=12×5×4=10,正确; 选项D ,y=8时,即1852x =⨯,解得 3.2x =, 或()185132x =⨯-,解得9.8x =, 所以,当y=8时,x=3.2或9.8,故选项D 错误;故选:D .【点睛】本题考查了动点问题分类讨论,对运动中的点R 的三种位置都设置了问题,是一道很好的动点问题,读懂函数图象是解题关键.4.C解析:C【分析】分别求出直线l 经过点M 、点N 时的t 值,即可得到t 的取值范围.【详解】解:当直线y=-x+b 过点M (3,4)时,得4=-3+b ,解得:b=7,则7=1+t ,解得t=6.当直线y=-x+b 过点N (5,6)时,得6=-5+b ,解得:b=11,则11=1+t ,解得t=10.故若点M ,N 位于l 的异侧,t 的取值范围是:6<t <10.故选:C .【点睛】本题考查了坐标平面内一次函数的图象与性质,得出直线l 经过点M 、点N 时的t 值是解题关键.5.D解析:D【分析】根据一次函数图象上的点的坐标特征,将P (1,4)代入反比例函数的解析式2y kx k =-,然后解关于k 的方程即可.【详解】解:∵点P (1,4)在反比例函数2y kx k =-的图象上,∴4=k-2k ,解得,k=-4.故选:D .【点睛】本题考查了一次函数图象上点的坐标特征,图象上的点的坐标适合解析式是解题的关键. 6.C解析:C【分析】可设直线l 的解析式为y=-2x+c ,由题意可得关于a 、b 、c 的一个方程组,通过方程组消去a 、b 后可以得到c 的值,从而得到直线l 的解析式.【详解】解:设直线l 的解析式为y=-2x+c ,则由题意可得:227a c b a b -+=⎧⎨+=-⎩①②, ①+②可得:b+c=b-7,∴c=-7,∴直线l 的解析式为y=-2x-7,故选C .【点睛】本题考查用待定系数法求一次函数的解析式,设定一次函数解析式后再由题意得到含有待定系数的方程或方程组并由方程或方程组得到待定系数的值是解题关键.7.D解析:D【分析】分别求出点P 在BA 上运动、点P 在AD 上运动、点P 在DC 上运动时的函数表达式,进而求解.【详解】解:由题意得:①当点P 在BA 上运动时()04x ≤≤,2111133cos sin 2222y BQ PQ BP B BP B x x x ,图象为二次函数; ②当点P 在AD 上运动时46x , 1134322y BQ CD BQ BQ ,图象为一次函数;③当点P在DC上运动时,11142222y BQ CP y BC CP CP CP,图象为一次函数;所以符合题意的选项是D.故选:D.【点睛】本题考查的是动点图象问题,涉及到二次函数、一次函数、解直角三角形等知识,此类问题关键是,要弄清楚不同时间段,图象和图形的对应关系,进而求解.8.C解析:C【分析】先根据223y x=+可得B、C的坐标,进而确定OB、OC的长,然后根据3S△ABO=S△BOC结合点A在第二象限确定A点的纵坐标,然后再根据点A在y=23x+2上,可确定点A的横坐标即可解答.【详解】解:由223y x=+可得B(﹣3,0),C(0,2),∴BO=3,OC=2,∵3S△ABO=S△BOC,∴3×12×3×|yA|=12×3×2,解得y A=±23,又∵点A在第二象限,∴y A=23,当y=23时,23=23x+2,解得x=﹣2,∴方程组236kx yx y-=⎧⎨-=-⎩的解为223xy=-⎧⎪⎨=⎪⎩.故答案为C.【点睛】本题主要考查了一次函数与二元一次方程组,理解方程组的解就是两个相应的一次函数图象的交点坐标成为解答本题的关键.9.C解析:C【分析】根据一次函数的图象获取信息,可得到距公司的路程y (米)与时间x (分)间的函数关系,进而对四个结论进行判断,即可得出结果.【详解】解:观察图象,得:甲步行的速度为1000÷10=100米/分,故①正确; 10−1000500=10−2=8,即乙比甲晚出发8分钟,故②错误; 设公司距离健身房x 米,依题意得 x 100−(10+x 1000500-)=4, 解得x =1500,∴公司距离健身房1500米,故③正确;乙追上甲时距健身房1500−1000=500米,故④正确.故选:C .【点睛】本题考查了一次函数图象的应用,熟练掌握一次函数图象与性质及利用数形结合的思想是解题的关键.10.D解析:D【分析】根据题意和函数图象可以判断题目中的各个选项是否正确,从而可以解答本题;【详解】解:由图象可得,甲车的速度为:400580/km h ÷=,故A 正确;乙车休息前行驶的速度为:2002100/km h ÷=,故B 正确;甲车与乙车相遇时,甲车行驶的时间为:(400200)80 2.5h -÷=,故C 正确;乙车休息的时间为2.520.5h -=,故D 错误.故选:D .【点睛】本题考查一次函数的应用,解答此类问题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答;11.C解析:C【分析】先画出两个函数的图象,然后联立解析式即可求出两个函数的交点坐标,然后根据图象对x 分类讨论,分别求出对应p 的取值范围,即可求出p 的最小值.【详解】11y x =+,224y x =-+的图象如图所示联立124y x y x =+⎧⎨=-+⎩,解得:12x y =⎧⎨=⎩∴直线11y x =+与直线224y x =-+的交点坐标为(1,2),∵对任意一个x ,p 都取1,y 2y 中的较大值由图象可知:当61x -≤<时,1y <2y ,2y >2∴此时p=2y >2;当x=1时,1y =2y =2,∴此时p=1y =2y =2;当16x <≤时,1y >2y ,1y >2∴此时p=1y >2.综上所述:p≥2∴p 的最小值是2.故选:C .【点睛】此题考查的是画一次函数的图象、求两个一次函数的交点坐标和比较函数值的大小,掌握一次函数的图象的画法、联立函数解析式求交点坐标、根据图象比较函数值大小是解决此题的关键.12.A解析:A【分析】根据关于y 轴对称的坐标特征判断①;根据平方根定义判断②;根据直线与x 轴交点坐标判断③;根据方程的解的定义判断④.【详解】解:①()1,2A -关于y 轴的对称点为(1,2); ②1622±;③2y x =-+与x 轴交于点(2,0);④21xy=-⎧⎨=⎩是二元一次方程23x y+=-的一个解.∴正确的是:③,1个故选:A【点睛】本题考查关于y轴对称的坐标特征、平方根定义、直线与x轴交点坐标、方程的解,考查学生的辨析能力,熟知以上知识点是解答此题的关键.二、填空题13.【分析】由图像可知C点时正好甲车出现故障可求出甲车所走的路程为及时间为可求出甲车的速度进而可求出甲车返回A地时的速度D点为乙车遇到甲车并把货物搬运到乙车上可得乙车的行驶的总路程为和时间进而可求出乙车解析:()5.1,150【分析】由图像可知,C点时正好甲车出现故障,可求出甲车所走的路程为20012080km km km-=及时间为1.6h,可求出甲车的速度,进而可求出甲车返回A地时的速度,D点为乙车遇到甲车并把货物搬运到乙车上,可得乙车的行驶的总路程为120km 和时间3.6 1.60.5 1.5h--=,进而可求出乙车的速度,根据甲乙两车返回A地,B地的时间为甲车大于乙车,故乙车先到B地,点E是乙车先到达B地时甲乙两车相距的距离和对应的时间,进而可求出E点坐标.【详解】由题可知;点C(1.6,120)时正好甲车出现故障停车,∴甲车走的路程为:20012080km km km-=,所用时间为:1.6h,∴甲车的速度为:8050/1.6kmv km hh==,∴甲车返回A地的速度为:250/20/5km h km h ⨯=,∴甲车返回A地的时间为:80420/kmh km h=,点D(3.6,0)为乙车遇到甲车并把货物搬运到乙车上,∴乙车走的路程为:20080120km km km-=,所用时间为:3.6 1.60.5 1.5h--=,∴乙车的速度为:12080/1.5kmv km hh==,乙车返回B地按原速度返回,∴乙车返回B地时间为:1.5h,可得乙车先返回到B地点E是乙车先到达B地时甲乙两车相距的距离和对应的时间,设点E 的坐标为(,x y ),则 3.6 1.5 5.1x h =+=,甲乙两车各自返回1.5h 时相距的距离为:()20/80/ 1.5150y km h km h h km =+⨯=, 故答案为:(5.1,150 )【点睛】本题考查了一次函数的实际应用,读懂图像准确理解题意是解题关键14.【分析】根据一次函数数和的图象交点可知点P 的坐标就是的解【详解】解:根据题意可知二元一次方程组的解就是一次函数和的图象的交点P 的坐标∴二元一次方程组的解是故答案为:【点睛】此题考查了一次函数与二元一解析:27x y =⎧⎨=⎩【分析】根据一次函数数41y x =-和23y x =+的图象交点,可知点P 的坐标就是4123y x y x =-⎧⎨=+⎩的解.【详解】解:根据题意可知,二元一次方程组4123y x y x =-⎧⎨=+⎩的解就是一次函数41y x =-和23y x =+的图象的交点P 的坐标,∴二元一次方程组4123y x y x =-⎧⎨=+⎩的解是27x y =⎧⎨=⎩. 故答案为:27x y =⎧⎨=⎩. 【点睛】此题考查了一次函数与二元一次方程(组),解答此题的关键是熟知方程组的解与一次函数的图象交点P 之间的联系,考查了学生对题意的理解能力.15.10【分析】根据两条直线平行比例系数k 相同求出k=-1把点代入即可求b【详解】解:因为一次函数的图象与直线平行所以k=-1把点代入得解得b=10故答案为:10【点睛】本题考查了一次函数图象互相平行时解析:10【分析】根据两条直线平行,比例系数k 相同,求出k=-1,把点(8,2)代入即可求b .【详解】解:因为一次函数y kx b =+的图象与直线1y x =-+平行,所以k=-1,把点(8,2)代入y x b =-+,得28b =-+,解得,b=10,故答案为:10.【点睛】本题考查了一次函数图象互相平行时,比例系数的关系和待定系数法求解析式,解题关键是知道两条直线平行时比例系数k 相同.16.【分析】由矩形的性质和一次函数的性质先求出然后矩形的性质和三角形的中位线定理求出和根据规律即可得到和从而求出点的坐标【详解】解:根据题意∵直线的解析式为令x=0则;令y=0则∴由矩形的性质则点∴;同解析:11,22n n ⎛⎫- ⎪ ⎪⎝⎭【分析】由矩形的性质和一次函数的性质,先求出OA =1OC =,然后矩形的性质和三角形的中位线定理,求出1O C 和11A O ,根据规律,即可得到n O C 和n n A O ,从而求出点n A 的坐标.【详解】解:根据题意,∵直线AC 的解析式为y =+令x=0,则y =y=0,则1x =, ∴OA =1OC =, 由矩形的性质,则点112AC AC =,∴11122O C OC ==,1112AO AO ==同理可求:221111()242O C O C ===,2221111()22A O AO ===; ……111()22n n n O C O C -==,11()22n n n n n A O A O ===, ∴111()122n n n n OO OC O C =-=-=-,∴点n A 的坐标为:112n ⎛- ⎝⎭;故答案为:112n ⎛- ⎝⎭.【点睛】本题考查了矩形的性质,一次函数的性质,三角形的中位线定理,坐标与图形的规律,解题的关键是熟练掌握所学的知识,正确的找到点的规律进行解题.17.乙【分析】由题意可知三角形没全进入正方形之前重叠部分为直角三角形当三角形即将出正方形之后重叠部分为直角梯形利用面积公式求出两个图形的面积即可判断其图象【详解】设直角三角形的底为a 高为b 运行速度为v 由 解析:乙【分析】由题意可知三角形没全进入正方形之前,重叠部分为直角三角形.当三角形即将出正方形之后,重叠部分为直角梯形.利用面积公式求出两个图形的面积即可判断其图象.【详解】设直角三角形的底为a ,高为b ,运行速度为v .由题意可知当三角形没全进入正方形之前,重叠部分为与原三角形相似的直角三角形. ∵重叠部分的直角三角形的底为vx ,∴根据三角形相似,可知:vx a b =重叠直角三角形的高 , 即重叠直角三角形的高=bvx a, ∴22122bvx bv y vx x a a==, ∵a , b , v 都为常数且大于0,∴222bv y x a=是一个开口向上的曲线. 当三角形即将出正方形之后,重叠部分为去掉与原三角形相似的直角三角形的直角梯形. 设正方形边长为l ,则该梯形的高为()l vx a --,下底为b , 根据三角形相似可知:vx l b a -=梯形上底, 即梯形上底()b vx l a-=, ∴[]1()()2b vx l y b l vx a a -⎡⎤=⨯+⨯--⎢⎥⎣⎦. ∵a , b , v ,l 都为常数且大于0,∴[]1()()2b vx l y b l vx a a -⎡⎤=⨯+⨯--⎢⎥⎣⎦中2x 项的系数为202bv a-<, ∴[]1()()2b vx l y b l vx a a -⎡⎤=⨯+⨯--⎢⎥⎣⎦是一个开口向下的曲线. ∴只有乙符合.故答案为:乙.【点睛】本题考查动点问题的函数图象.理解三角形运动过程中的分界点,利用三角形和梯形的面积公式列出关于x 的方程来判断其图象是解题关键.18.x <1【分析】根据被开方数大于等于0分母不等于0列式进行计算即可求解【详解】解:根据题意得1-x >0解得x <1故答案是:x <1【点睛】本题考查了自变量的取值范围使函数解析式有意义列式求解即可是基础题解析:x <1.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可求解.【详解】解:根据题意得,1-x >0,解得x <1.故答案是:x <1.【点睛】本题考查了自变量的取值范围,使函数解析式有意义列式求解即可,是基础题,比较简单.19.【分析】先求出A 点坐标再过点A 作AC ⊥OB 垂足为C 用三角形面积公式即可求出面积【详解】解:把点代入得解得∴A 点坐标为(23)过点A 作AC ⊥OB 垂足为C ∵点B 坐标为(50)∴S △OAB=故答案为:【点 解析:152【分析】先求出A 点坐标,再过点A 作AC ⊥OB ,垂足为C ,用三角形面积公式即可求出面积.【详解】解:把点()2,A m 代入32m x =,得 322m =⨯, 解得,3m =,∴A 点坐标为(2,3),过点A 作AC ⊥OB ,垂足为C ,∵点B 坐标为(5,0),∴S △OAB =111553222OB AC ⨯⨯=⨯⨯=, 故答案为:152.【点睛】本题考查了求正比例函数图象上点的坐标和利用坐标求三角形面积,解题关键是求出A点坐标.20.【分析】由题意可以求得k和b的值代入不等式即可得到正确答案【详解】解:由题意可得:∴k=2b=-2∴原不等式即为2x-2<0解之可得:x<1故答案为x<1【点睛】本题考查一次函数与一元一次不等式的综解析:1x<【分析】由题意可以求得k和b的值,代入不等式即可得到正确答案.【详解】解:由题意可得:2k bb=+⎧⎨-=⎩,∴ k=2,b=-2,∴原不等式即为2x-2<0,解之可得:x<1,故答案为x<1 .【点睛】本题考查一次函数与一元一次不等式的综合应用,利用直线与坐标轴的交点求出不等式的系数是解题关键.三、解答题21.(1)56;(2)y增加3;(3)y=3x+47;(4)不能,理由见解析.【分析】(1)根据表格中的数据可以解答本题;(2)根据表格中的数据可以得到当x每增加1时,y如何变化;(3)根据表格中的数据可以得到座位数y与排数x之间的关系式;(4)根据题意和表格中的数据,先判断,然后说明理由即可解答本题.【详解】解:(1)由表格可知,此剧院第三排有56个座位;(2)由表格可知,当排数x 每增加1时,座位y 增加3;(3)由题意可得,y=50+3(x-1)=3x+47,即座位数y 与排数x 之间的关系式是y=3x+47;(4)按照上表所示的规律,某一排不可能有90个座位,理由:当y=90时,90=3x+47,得x=1413, ∵x 为正整数,∴此方程无解.即某一排不可能有90个座位.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.22.(1)A (3,-2),y =-23x ;(2)存在,P 点坐标为(5,0)或(-5,0) 【分析】(1)结合题意,得3OH =;再结合△AOH 的面积为3,通过计算得AH 的值以及点A 的坐标,将点A 坐标代入y =kx ,经计算即可得到答案;(2)设P (t ,0),结合S △AOP =5,列方程并求解,即可得到答案.【详解】(1)如图,∵过A 作AH ⊥x 垂足为H ,点A 的横坐标为3∴3OH =∵△AOH 的面积为3∴132OH AH ⨯⨯= ∴AH =2∵点A 在第四象限∴A (3,-2), 把A (3,-2)代入y =kx ,得3k =-2解得:23k =- ∴正比例函数解析式为y =-23x ; (2)设P (t ,0),即OP t =∵△AOP 的面积为5 ∴112522OP AH t ⨯⨯=⨯⨯= ∴t =5或t =-5 ∴能找到一点P 使S △AOP =5,P 点坐标为(5,0)或(-5,0).【点睛】本题考查了绝对值、正比例函数、一元一次方程、坐标的知识;解题的关键是熟练掌握正比例函数、一元一次方程的性质,从而完成求解.23.(1)900km ,4小时两车相遇;(2)()22590046y x x =-≤≤; (3)0.75小时【分析】(1)根据观察图象可得甲乙两地间的距离,根据图象中的点的实际意义即可得到答案; (2)根据观察图象先求得B 、C 两点的坐标,然后利用待定系数法求线段BC 的函数解析式即可;(3)求得第二列快车与慢车相遇所用的时间和此时第一列快车行驶的时间,即可求得第二列快车比第一列快车晚出发的时间.【详解】解:(1)由图象可知,甲乙两地间的距离是900km ;图中点B 的实际意义是:4小时两车相遇.(2)∵观察图象可得:慢车速度为9001275/km h ÷=;两车的速度和为9004225/km h ÷=∴快车的速度为22575150/km h -=∴两车相遇后快车到达乙地所用时间为90015042h ÷-=∴相遇后两小时两车行驶的距离和为2252450km ⨯=∴()4,0B ,()6,450C∴设线段BC 的解析式为:y kx b =+∴406450k b k b +=⎧⎨+=⎩ ∴225900k b =⎧⎨=-⎩ ∴线段BC 所表示的y 与x 之间的函数关系式为:()22590046y x x =-≤≤. (3)130min h 2=∵相遇时快车行驶的路程为1504600km ⨯=∴第二列快车与慢车相遇时行驶的路程为160075562.52km -⨯= ∴第二列快车与慢车相遇时所用时间为562.5150 3.75h ÷=,此时快车行驶了14 4.52h += ∴4.5 3.750.75h -= ∴第二列快车比第一列快车晚出发了0.75小时.【点睛】本题主要考查了用一次函数模型解决实际问题的能力和读图能力,会根据图象得出所需要的信息是解题的关键.24.(1)70,95;(2)3570y x =-;(3)1.2 2.8t ≤≤或4.67t ≤≤.【分析】(1)根据图象结合题意,即可得出A 、B 两点之间的距离是70m .设甲机器人前2min 的速度为xm/min ,根据2分钟甲追上乙列出方程,即可求解;(2)先求出F 点的坐标,再设线段EF 所在直线的函数解析式为y =kx +b ,将()2,0E 、()3,35F 两点的坐标代入,利用待定系数法即可求解;(3)设()0,70D ,()2,0E ,根据图象可知两机器人相距28m 时有三个时刻(0~2,2~3,4~7)分别求出DE 所在直线的解析式、GH 所在直线的解析式,再令28y =,列出方程求解即可.【详解】(1)由题意可知,A 、B 两点之间的距离是70m ,设甲机器人前2min 的速度为m /min x ,根据题意得2(60)70x -=,解得95x =.(2)若前3min 甲机器人的速度不变,由(1)可知,前3min 甲机器人的速度95m/min , 则点F 纵坐标为:(32)(9560)35-⨯-=,即()3,35F ,设线段EF 所在直线的函数解析为:y kx b =+,将()2,0E ,()3,35F 代入,得20335k b k b +=⎧⎨+=⎩,解得3570k b '=⎧⎨=-⎩, 则线段EF 所在直线的函数解析式为:3570y x =-.(3)如图:设()0,70D ,()7,0H ,∵()0,70D ,()2,0E ,∴线段DE 所在直线的函数解析式为:3570y x =-+,()4,35G ,()7,0H ,∴线段GH 所在直线的函数解析式为:3524533y x =-+, 设两机器人出发min t 时相距28m , 由题意得:357028t -+=或357028t -=,或352452833t -+=, 解得: 1.2t =或28t =.或 4.6t =, 1.2 2.8t ∴≤≤或4.67t ≤≤时,两机器人相距不超过28m .【分析】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.25.(1)0.2500y x =+;(2)营销员佳妮想得到收入1600元,她应销售5500斤水果.【分析】(1)设500y kx =+,用待定系数法求解即可;(2)令y=1600求解即可.【详解】解:(1)设500y kx =+,把x=4000,y=1300代入得40005001300k +=,解得 0.2k =,∴ y 与x 之间的函数关系式是0.2500y x =+.(2)当1600y =时,0.25001600x +=,解得 5500x =,答:营销员佳妮想得到收入1600元,她应销售5500斤水果.【点睛】本题考查了一次函数的应用,熟练掌握待定系数法是解答本题的关键.26.(1)2,k =1b =-;(2)()4,3D -.【分析】(1)依据一次函数4y kx =+与12y x b =-+的图象都经过点A (−2,0),将点A 的坐标分别代入两个一次函数表达式,即可得到k 和b 的值; (2)根据解析式求得B 、C 两点的坐标,然后依据S △ABC +S △BCD =15,即可得到点D 的横坐标,进而得出点D 的坐标.【详解】()1将()20A -,代入4y kx =+,得:240k -+= 解得2k =.将()20A -,代入12y x b =-+,得:10b +=,。
八年级下册数学江阴数学期末试卷测试与练习(word解析版)
八年级下册数学江阴数学期末试卷测试与练习(word 解析版) 一、选择题 1.如果72x x +-在实数范围内有意义,则x 的取值范围是( ) A .x ≠2B .x ≥﹣7C .x ≥2D .x ≥﹣7且x ≠2 2.若线段a ,b ,c 首尾顺次连接后能组成直角三角形,则它们的长度比可能为( ) A .2:3:4 B .3:4:5 C .4:5:6 D .5:6:7 3.下列能判定一个四边形是平行四边形的是( )A .对角线相等,且一组对角相等的四边形是平行四边形B .一对邻角的和为180°的四边形是平行四边形C .两条对角线相互垂直的四边形是平行四边形D .一组对边平行且相等的四边形是平行四边形4.某校评选先进班集体,从“学习”、“卫生”、“纪律”、“德育”四个方面考核打分,各项满分均为100,所占比例如下表:项目学习 卫生 纪律 德育 所占比例 30% 25% 25% 20%九年级5班这四项得分依次为80,86,84,90,则该班四项综合得分为( )A .84.5B .84C .82.5D .81.55.如图,已知矩形ABCD 的对角线AC 的长为10cm ,连结矩形各边中点E 、F 、G 、H 得四边形EFGH ,则四边形EFGH 的周长为( )cm .A .20B .202C .203D .256.在菱形ABCD 中,80ABC ∠=︒,BA BE =,则DAE =∠( )A .20︒B .30C .40︒D .50︒7.如图,在平行四边形ABCD 中,BD 为对角线,点O 是BD 的中点,且//AD EO ,//OF AB ,四边形BEOF 的周长为10,则平行四边形ABCD 的周长为( )A .10B .12C .15D .208.如图,把Rt △ABC 放在平面直角坐标系内,其中∠CAB =90°,BC =13,点A 、B 的坐标分别为(1,0),(6,0),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x ﹣4上时,线段BC 扫过的面积为( )A .84B .80C .91D .78二、填空题9.若式子21a a +-有意义,则实数a 的取值范围是_____________. 10.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,点M 、N 分别为边AB 、BC 的中点,连接MN ,若1MN =,23BD =,则菱形的面积为______.11.由四个全等的直角三角形组成如图所示的“赵爽弦图”,若直角三角形两直角边边长的和为3,面积为1,则图中阴影部分的面积为____________ .12.如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C ′处,BC ′交AD 于E ,AD =8,AB =4,则DE 的长为___.13.一次函数3y kx =+的图象过点(2,1),则k 的值为________.14.如图, 在矩形ABCD 中, 对角线AC , BD 交于点O , 已知∠AOD=120°, AB=1,则BC 的长为______15.如图,在△ABC 中,∠ACB =90°,边BC 在x 轴上,顶点A ,B 的坐标分别为(﹣2,6)和(7,0).将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,点D 的坐标为 ________.16.如图,在矩形ABCD 中,BC=4,CD=3,将△ABE 沿BE 折叠,使点A 恰好落在对角线BD 上的点F 处,则DE 的长是________.三、解答题17.解下列各题计算:(1)12188 (2181232(3)011(3)()6322|3π--+-; (4)2(32)(32)(51)-.18.如图,小明将升旗的绳子拉到旗杆底端,绳子末端刚好接触地面,然后将绳子末端拉到距离旗杆5m 处,发现此时绳子末端距离地面1m ,求旗杆的高度.(滑轮上方的部分忽略不计)19.如图,方格纸中每个小正方形的边长均为1,线段AB和线段CD的端点均在小正方形的顶点上.(1)在方格纸中画以AB为一边的正方形ABEF,点E和点F均在小正方形的顶点上;(2)在方格纸中画以CD为一边的菱形CDGH,点G和点H均在小正方形的顶点上,菱形CDGH的面积为20,连接FG,并直接写出线段FG的长.=,DE平分20.如图,在平行四边形ABCD中,M,N是对角线BD上的点,且BM DN∠交CD于点F.ADB∠交AB于点E,BF平分DBC(1)求证:四边形EMFN是平行四边形;(2)当四边形EMFN是菱形时,求证:四边形BEDF是菱形.21.观察与计算:3236;(31)(31)=2;137(7)3⨯-= ; (252)(252)+-= .象上面各式左边两因式均为无理数,右边结果为有理数,我们把符合上述等式的左边两个因式称为互为有理化因式.当有些分母为带根号的无理数时,我们可以分子、分母同乘分母的有理化因式进行化简.例如:22232333(3)==;26632322822(2)===;22(31)3 1.31(31)(31)-==-++- 【应用】(1)化简:①727; ②332332-+. (2)化简:111142648620202018+++⋅⋅⋅+++++ 22.学校准备印制一批纪念册.纪念册每册需要10张8K 大小的纸,其中4张为彩页,6张为黑白页.印刷费(y 元)与印数(x 千册)间的关系见下表:印数x (单位:千册) 15x ≤<510x ≤< 彩色(单位:元张)2.2 2.0 黑白(单位:元张) 0.7 0.5(1)若15x ≤<,求出y 与x 之间的函数解析式;(2)若510x ≤<,求出y 与x 之间的函数解析式;(3)若学校印制这批纪念册的印刷费为71500元则印刷的纪念册有多少册?23.如图,四边形ABCD 是边长为2的正方形,E 为线段BC 上一动点,EF AC ⊥,垂足为F .(1)如图1,连接DE 交AC 于点M ,若15DEF ∠=︒,求AM 的长;(2)如图2,点G 在BC 的延长线上,点E 在BC 上运动时,满足CG BE =,①连接BF ,DG ,判断BF ,DG 的数量关系并说明理由;②如图3,若Q 为CG 的中点,直接写出2DE DQ +的最小值为 .24.如图,在平面直角坐标系中,直线28y x =+与x 轴交于点A,与y 轴交于点B,过点B 的直线x 轴于点C ,且AB=BC .(1)求直线BC 的表达式(2)点P 为线段AB 上一点,点Q 为线段BC 延长线上一点,且AP=CQ,PQ 交x 轴于点P ,设点Q 的横坐标为m ,求PBQ ∆的面积(用含m 的代数式表示)(3)在(2)的条件下,点M 在y 轴的负半轴上,且MP=MQ ,若45BQM ︒∠=求点P 的坐标.25.如图1,ABC ∆中,CD AB ⊥于D ,且::2:3:4BD AD CD =;(1)试说明ABC ∆是等腰三角形;(2)已知Δ40ABC S =cm 2,如图2,动点M 从点B 出发以每秒1cm 的速度沿线段BA 向点A 运动,同时动点N 从点A 出发以相同速度沿线段AC 向点C 运动,当其中一点到达终点时整个运动都停止.设点M 运动的时间为t (秒).①若DMN ∆的边与BC 平行,求t 的值;②在点N 运动的过程中,ADN ∆能否成为等腰三角形?若能,求出t 的值;若不能,请说明理由.【参考答案】一、选择题1.D解析:D【分析】由已知可得x ﹣2≠0,x +7≥0,求出x 的范围即可.【详解】解:∵7x + ∴x ﹣2≠0,x +7≥0,∴x≠2,x≥﹣7,∴x≥﹣7且x≠2,故选:D.【点睛】此题主要考查二次根式与分式有意义的条件,解题的关键是熟知其各自的特点.2.B解析:B【分析】根据勾股定理的逆定理对各选项进行逐一判断即可.【详解】解:A、∵22+32≠42,∴不能够成直角三角形,故本选项不符合题意;B、∵32+42=52,∴能够成直角三角形,故本选项符合题意;C、∵52+42≠62,∴不能够成直角三角形,故本选项不符合题意;D、∵52+62≠72,∴不能够成直角三角形,故本选项不符合题意.故选:B.【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3.D解析:D【解析】【分析】分别利用平行四边形的判定方法结合梯形的判定方法分析得出答案.【详解】解:A、对角线相等,且一组对角相等的四边形无法确定是平行四边形,故此选项不合题意;B、一对邻角的和为180°的四边形是平行四边形,错误,有可能是梯形,故此选项不合题意;C、两条对角线相互垂直的四边形无法确定是平行四边形,故此选项不合题意;D、一组对边平行且相等的四边形是平行四边形,正确,符合题意.故选D.【点睛】本题主要考查了平行四边形的判定,解题的关键在于能够熟练掌握平行四边形的判定条件. 4.A解析:A【解析】【分析】根据题意和表格中的数据,可以利用每项分数乘以权重,再求和计算出该班四项综合得分.解:由题意可得,该班四项综合得分为:80×30%+86×25%+84×25%+90×20%,=24+21.5+21+18,=84.5(分).故选:A.【点睛】本题考查了加权平均数,解答本题的关键是明确加权平均数的含义,会计算一组数据的加权平均数.5.A解析:A【分析】连接BD,根据三角形中位线定理易得四边形EFGH的各边长等于矩形对角线的一半,而矩形对角线相等,从而算出周长即可.【详解】连接BD,∵H、G是AD与CD的中点,∴HG是△ACD的中位线,∴HG=1AC=5cm,同理EF=5cm,2∵四边形ABCD是矩形,∴根据矩形的对角线相等,即BD=AC=10cm,∵H、E是AD与AB的中点,∴EH是△ABD的中位线,∴EH=1BD=5cm,同理FG=5cm,2∴四边形EFGH的周长为20cm.故选A.【点睛】熟练掌握矩形对角线相等和三角形中位线等于第三边的一半的性质是解决本题的关键. 6.B解析:B【分析】利用菱形的性质和等腰三角形的性质即可求解.【详解】解:在菱形ABCD 中,80ABC ∠=︒,∴18080100BAD ∠=︒-︒=︒,40ABE ∠=︒,∵BA BE =, ∴18040702BAE BEA ︒-︒∠=∠==︒, ∴1007030DAE BAD BAE ∠=∠-∠=︒-︒=︒,故选:B .【点睛】本题考查了菱形的性质和等腰三角形的性质,运用知识准确计算是解题的关键. 7.D解析:D【解析】【分析】根据点O 是BD 的中点,且AD //EO ,OF //AB ,可得OE ,OF 分别是三角形ABD ,三角形BCD 的中位线,四边形OEBF 是平行四边形,则AD =2OE ,CD =2OF ,OE =BF ,OF =BE ,由此可以推出OE +OF =5,再由四边形ABCD 的周长=AB +BC +AD +CD =2(AD +CD )=4(OE +OF )进行求解即可.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∵点O 是BD 的中点,且AD //EO ,OF //AB ,∴OE ,OF 分别是三角形ABD ,三角形BCD 的中位线,BC //EO ,∴四边形OEBF 是平行四边形,AD =2OE ,CD =2OF ,OE =BF ,OF =BE ,∵四边形OEBF 的周长为10,∴OE +BE +BF +OF =10,∴OE +OF =5,∵四边形ABCD 是平行四边形,∴AB =CD ,AD =BC ,∴四边形ABCD 的周长=AB +BC +AD +CD =2(AD +CD )=4(OE +OF )=20,故选D .本题主要考查了平行四边形的性质与判定,中位线定理,解题的关键在于能够熟练掌握相关知识进行求解.8.A解析:A【分析】首先根据题意作出图形,则可得线段BC 扫过的面积应为平行四边形BCC′B′的面积,其高是AC 的长,底是点C 平移的路程.则可由勾股定理求得AC 的长,由点与一次函数的关系,求得A′的坐标,即可求得CC′的值,继而求得答案.【详解】解:如下图:∵点A 、B 的坐标分别为(1,0)、(6,0),∴AB =5.∵∠CAB =90°,BC =13,∴AC 22135 12.∴A′C′=12.∵点C′在直线y =2x ﹣4上,∴2x ﹣4=12,解得:x =8.即OA′=8.∴CC′=AA′=OA′﹣OA =8﹣1=7,∴''BCC B S =7×12=84,即线段BC 扫过的面积为84.故选:A .【点睛】此题考查了一次函数的性质、平移的性质、勾股定理以及平行四边形的性质.能根据性质得出''BCC B 的底'CC 和高'AC 是解决此题的关键.二、填空题9.a ≥-2且a ≠1【解析】【分析】直接利用二次根式的性质得出a 的取值范围.解:∵ ∴20a +≥,10a -≠,∴2a ≥-,且1a ≠;故答案为:2a ≥-且1a ≠;【点睛】此题主要考查了二次根式的性质,正确掌握二次根式的性质是解题关键.10.A解析:【解析】【分析】根据MN 是△ABC 的中位线,根据三角形中位线定理求的AC 的长,然后根据菱形的性质求解.【详解】解:∵M 、N 是AB 和BC 的中点,即MN 是△ABC 的中位线,∴AC =2MN =2, ∵BD =所以菱形的面积为11222BD AC =⨯⨯,故答案为:【点睛】本题考查了三角形的中位线定理和菱形的性质,理解中位线定理求的AC 的长是关键. 11.1【解析】【分析】设直角三角形的一条直角边长为x ,则另一条直角边长为3x -,由题意列方程()1312x x ⋅-⋅=,求出两直角边长,根据勾股定理求出斜边长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省无锡市江阴徐霞客中学2013-2014学年度第一学期
初二数学期末复习卷
一、细心填一填(本大题共12小题,每空2分,共28分) 1.16的算术平方根是 ;-27的立方根是 .
2. 2010年“元旦”期间无锡市旅游人数达136 000人次,数据“136 000”精确到万位是 人.
3. 点P (-3,4)关于y 轴的对称点的坐标是____ ____,到原点的距离是 ___.
4.函数1
2
y x =
+中,自变量x 的取值范围是 . 5.下列各数里:101001.0-,7, 4
1
,2π-
0中,无理数是 .
6.若等腰三角形的两边长分别为3和4,则它的周长是________.
7.写出同时具备下列两个条件的一次函数表达式(写出1个即可) (1)y 随x 的增大而减小;(2)不经过第三象限
8.若点(-4,y 1)、(2,y 2)都在直线y =-3x +5上,则y 1 y 2(填“>”、“=”或“<”). 9.如图,在正方形ABCD 中,以BC 为边在正方形外部作等边三角形BCE ,连结DE ,则∠CDE 的度数为 °.
10. 如图,在边长为2的正三角形ABC 中,已知点P 是三角形内任意一点,则点P 到三角
形的三边距离之和PD +PE +PF =__________
. 11.在平面直角坐标系中,已知点A (-
4,0)、
B (0,2),现将线段AB 向右平移,使A
与坐标原点O 重合,则B 平移后的坐标是 . 12.如图,将边长为1的正三角形OAP 沿x 轴正方向连续翻转48次,点A 依次落在点
1234A A A A ,,,,
…,48A 的位置上,则点A 48的横坐标x 48=___________ . 二、精心选一选(本大题共8小题,每小题3分,共24分)
13. 在平面直角坐标系中,点P (-3,2)在 ( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 14.下列四组线段中,不能..组成直角三角形的是 ( ) A .3,3, B 11 C .8,15,17 D .3.5,4.5,5.5
15. 一次函数y kx b =+,当k<0,b<0时,它的图象大致为 ( )
(第12题)
A
C
D
第9题
P
F
E
C
D B A
第10题
A B C
D
x 图1 图2 图 3
A
C B B
16.在等腰三角形中,有一个角是50°,它的一条腰上的高与底边的夹角是 ( )
A .25°
B .40°或30°
C .25°或40°
D .50°
17. 若一次函数y kx b =+,当x 的值减小1,y 的值就减小2,则当x 的值增加2时,y 的值 ( ) A .减小2 B .增加 2 C .减小 4 D .增加4
18. 一次函数y kx b =+的图象如图所示,当0y <时,x 的取值范围是 ( ) A .0x > B .0x < C .2x > D .2x <
19. 如图,某电信公司提供了A ,B 两种方案的移动通讯费用y (元)与通话时间x (元)之
间的关系,则以下说法错误..的是 ( ) A .若通话时间少于120分,则A 方案比B 方案便宜20元 B .若通话时间超过200分,则B 方案比A 方案便宜12元 C .若通讯费用为60元,则B 方案比A 方案的通话时间多
D .若两种方案通讯费用相差10元,则通话时间是145分或185分
20.如图,已知长方形ABCD 的边长AB =16cm ,BC =12cm ,点E 在边AB 上,AE =6cm ,如果点P 从点B 出发在线段BC 上以2cm/s 的速度向点C 向运动,同时,点Q 在线段CD 上由点D 向C 点运动.则当△BPE 与△CQP 全等时,时间t 为…( ) A .1s B .3s C .1s 或3s D .2s 或3s 三、认真答一答(本大题共5
小题,共31分) 21.(
本题满分6分)
(1
2
1+ (2)求()3
31240x -+=中的x
22.(本题满分6分)下面网格图中,每个小正方形的边长均为1,每个小格的顶点叫做格点.
(1)请在图1中,画一个格点三角形,使它的三边长都是有理数; (2)请在图2中,画一个有一边长为
5的格点直角三角形; (3)图3中的△ABC 的面积为
23.(本题满分6分)在平面直角坐标系中,直线1l 的解析式为
3-=x y ,直线2l 过原点且2l 与直线1l 交于点P (-2,a ).
(1)求直线2l 的解析式并在平面直角坐标系中画出直线1l 和2l ; (2)设直线1l 与x 轴交于点A ,试求△APO 的面积.
24.(本题满分5分)从旗杆的顶端系一条绳子,垂到地面还多2米,小敏拉起绳子下端绷紧,刚好接触地面,发现绳子下端距离旗杆底部8米,小敏马上计算出旗杆的高度,你知道她是如何解的吗?
25.(本题满分8分)如图,在平面直角坐标系中,直线11
:62
l y x =-+分别与x 轴、y 轴交于点B 、C ,且与直线21
:2
l y x =
交于点A . (1)分别求出点A 、B 、C 的坐标;
(2)若D 是线段OA 上的点,且△COD 的面积为12,求直线CD 的函数表达式;
(3)在(2)的条件下,设P 是x 轴上的点,使得P 到点A 、D 的距离和最小;求点P 的坐标.
26.(本题满分8分)甲乙两人同时登惠山,甲、乙两人距地面的高度y(米)与登山时间x (分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:
(1)甲登山的速度是每分钟______米,乙在A地提速时距地面的高度b为______米.(2)若乙提速后,乙的速度是甲登山速度的3倍,请分别求出甲、乙二人登山全过程中,登山时距地面的高度y(米)与登山时间x(分)之间的函数关系式.
(3)登山多长时间时,乙追上了甲?此时乙距A地的高度为多少米?
四、实践与探索(本大题只有1题,满分9分.)
27. 类比学习:
一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位.用实数加法表示为3+(2
-)=1.
若坐标平面上的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移a个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移b个单位),则把有序数对{a,b}叫做这一平移的“平移量”;“平移量”{a,b}与“平移量”{c,d}的加法运算法则为}
c
b
+
a+
+,
,.
,
=
c
{
}
d
{
}
{d
b
a
解决问题:
(1)计算:{3,1}+{1,2};{1,2}+{3,1}.
(2)①动点P从坐标原点O出发,先按照“平移量”{3,1}平移到A,再按照“平移量”
{1,2}平移到B;若先把动点P按照“平移量”{1,2}平移到C,再按照“平移量”
{3,1}平移,最后的位置还是点B吗? 在图1中画出四边形OABC.
②求四边形OABC的周长。
(3)如图2,一艘船从码头O出发,先航行到湖心岛码头P(2,3),再从码头P航行
到码头Q(5,5)
图1
附加题:
.如果定义:“到三角形的两个顶点距离相等的点,叫做此三角形的准外心。
”例如:如图1所示,若PC=PB,则称点P为△ABC的准外心
(1)观察并思考,△ABC的准外心有个
(2)如图2,△ABC是等边三角形,CD⊥AB,准外心点P在高CD上,且
1
2
PD AB
,在图
中画出点P,求∠APB的度数
(3)已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,在图中画出P点,并求PA的长。