茎叶图练习题
高中数学苏教版必修三 能力提升习题:(十二) 茎 叶 图含答案
课下能力提升(十二) 茎叶图一、填空题1.在茎叶图中比40大的数据有________个.1 2 32 3 4 53 4 5 6 740 7 8 92.在下面的茎叶图中茎表示数据的整数部分,叶表示数据的小数部分,则比数7.5小的有________个.6 1 2 37 2 3 4 6 78 1 2 43.数据123,127,131,151,157,135,129,138,147,152,134,121,142,143的茎叶图中,茎应取________.4.在如图所示的茎叶图中落在[20,40]上的频数为________.1 12 1 23 73 0 2 54 0 3 45 55.某中学高一(1)甲、乙两同学在高一学年度的考试成绩如下:甲乙6 567 25 4 3 28 1 26 75 4 190 3从茎叶图中可得出________同学成绩比较好.二、解答题6.某中学高二(1)班甲、乙两名同学自上高中以来每次数学考试成绩情况如下(单位:分):甲的得分:81,75,91,86,89,71,65,88,94,110,107;乙的得分:83,86,93,99,88,103,98,114,98,79,101;画出甲乙两人数学成绩的茎叶图,请根据茎叶图对两个人的成绩情况进行比较.7.50辆汽车经过某一段公路的时速记录如图所示:十位个位1 345667778889992 0000112222233334455566667778889301123将其分成7组并要求:(1)列出样本的频率分布表;(2)画出频率分布直方图以及频率分布折线图;(3)根据上述结果,估计汽车时速在哪组的几率最大?8.茎叶图是某班在一次测验时的成绩,伪代码用来同时统计女生、男生及全班成绩的平均分.试回答下列问题:(1)在伪代码中,“k=0”的含义是什么?横线①处应填什么?(2)执行伪代码,输出S,T,A的值分别是多少?(3)请分析该班男女生的学习情况.女生男生3 09 3 3 65 3 3 2 2 0080 2 3 6 665 3 1 07 1 4 566 2 2 875 3 7答案1.解析:由茎叶图中知比40大的有47、48、49,共3个.答案:32.解析:比7.5小的有6.1,6.2,6.3,7.2,7.3,7.4,共6个.答案:63.解析:在茎叶图中叶应是数据中的最后一位,从而茎就确定了.答案:12、13、14、154.解析:由茎叶图中给出了12个数据,其中在[20,40]上有8个.答案:85.解析:由图中数据可知甲同学的成绩多在80分以上,而乙相对差一些.答案:甲6.解:甲、乙两人数学成绩的茎叶图如图所示:甲乙5 65 1799 8 6 18 3 6 84 19 3 8 8 9710 1 3011 4从这个茎叶图可以看出,乙同学的得分集中在98分附近,数据分布是大致对称的;甲同学的得分集中在86分附近,分数数据分布也是大致对称的,但较分散.所以乙同学发挥比较稳定,得分情况好于甲.7.解:(1)由茎叶图知,数据最大值为33,最小值为13,分为7组,组距为3,则频率分布表为:分组频数频率[12.5,15.5)30.06[15.5,18.5)80.16[18.5,21.5)90.18[21.5,24.5)110.22[24.5,27.5)100.20[27.5,30.5)50.10[30.5,33.5]40.08合计50 1(2)频率分布直方图及频率分布折线图如图所示:(3)汽车时速在[21.5,24.5)内的几率最大,为0.22.8.解:(1)全班32名学生中,有15名女生,17名男生,在伪代码中,根据“S←S/15,T ←T/17”可推知,“k=1”和“k=0”分别代表男生和女生;S,T,A分别代表女生、男生及全班成绩的平均分;横线①处应填“(S+T)/32”.(2)女生、男生以及全班成绩的平均分分别为S=78,T=77,A≈77.47.(3)15名女生成绩的平均分为78,17名男生成绩的平均分为77.从中可以看出女生成绩比较集中.整体水平稍高于男生;男生中的高分段比女生高,低分段比女生多.相比较男生两极分化比较严重.。
茎叶图
二、例题:
某赛季甲、乙两名运动员每场比赛得分的原始记 录如下: 甲运动员得分:13,51,23,8,26,38,16, 33,14,28,39; 乙运动员得分:49,24,12,31,50,31,44, 36,15,37,25,36,39。 1、将这两组数据用茎叶图表示。 2、将这两组数据进行比较分析,能得出什么结 论?
(四)练习:
• • • • • 教材P71---3 练习册 P32-例3举一反三, P33-2, P34-12
五、作业
教材P81---1(1),(2),(3)
2.2.1用样本的频率分布估 计总体分布(三)茎叶图
一、茎叶图的概念:
统计中有一种被用来表示数据的图叫做茎叶图。 画茎叶图的步骤: 1.将每个数据分为茎(高位)和叶(低位)两部 分,如:当数据是两位有效数字时,用第一个 有效数字(十位数)表示为植物的茎,用第二 个有效数字(个位数),表示为植物的叶。 2.将最小茎和最大茎之间的数按大小次序排成一 列。 3.将各个数据的叶写在其茎右(左)侧.
茎叶图
甲 8 3 4 6 3 6 8 3 8 9 1
乙
0 1 2 3 4 5
中间的数字表示
得分的十位数字。 5 2 旁边的数字分别 5 字
0
三、茎叶图的优劣
茎叶图的优势: 1.从统计图上没有原始数据信息的损失, 所有数据信息都可以从茎叶图中得到; 2.茎叶图中的数据可以随时记录,随时添 加,方便记录与表示。 3.充分展示数据分布。 茎叶图的不足:只方便记录极差小,数 据少且最多两组数据的问题。
苏教版数学高一作业 频率分布直方图与折线图(二)- 茎叶图
2.2.2频率分布直方图与折线图(二)2.2.3茎叶图一、填空题1.某调查机构调查了某地100个新生婴儿的体重,并根据所得数据画出了样本的频率分布直方图(如图所示),则新生婴儿的体重(单位:kg)在[3.2,4.0)的人数是______.2.随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.根据茎叶图判断________班的平均身高较高.3.为了调查某厂工人生产某种产品的能力,现随机抽查了200名工人某天生产该产品的数量.产品数量的分组区间为[45,55),[55,65),[65,75),[75,85),[85,95],由此得到频率分布直方图如图所示,则这200名工人中一天生产该产品数量在[55,75)的人数是________.4.甲、乙两人在10天中每天加工零件的个数用茎叶图表示如下图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,则这10天甲、乙两人日加工零件的平均数分别为________和________.5.一次选拔运动员,测得7名选手的身高(单位:cm)分布茎叶图为⎪⎪⎪ 1817⎪⎪⎪0 10 3 x 8 9记录的平均身高为177 cm ,有一名候选人的身高记录不清楚,其末位数记为x ,那么x 的值为________________________________________________________________________. 6.在样本的频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形的面积和的14,且样本容量为160,则中间一组的频数为______.7.参加CBA 2013~2014赛季的甲、乙两支球队,统计两队队员的身高(单位:cm)茎叶图如下(以十位百位为茎,个位为叶):则由图知________队队员的身高更整齐些.8.某中学高一(2)班甲、乙两名同学自高中以来每次考试成绩的茎叶图如图,则________同学发挥较稳定,平均成绩________同学较高.(填“甲”或“乙”)9.某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示,以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是________.(填序号)10.某个容量为100的样本的频率分布直方图如下图所示,则在区间[4,5)上的数据的频数..为______.二、解答题11.有一个容量为50的样本,数据分组及各组的频数如下:[12.5,15.5),3;[15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),11;[24.5,27.5),10;[27.5,30.5),5;[30.5,33.5],4.(1)列出样本频率分布表;(2)画出频率分布直方图;(3)画出频率折线图.12.在某电脑杂志的一篇文章中,每个句子的字数如下:10,28,31,17,23,27,18,15,26,24,20,19,36,27,14,25,15,22,11,24,27,17.在某报纸的一篇文章中,每个句子的字数如下:27,39,33,24,28,19,32,41,33,27,35,12,36,41,27,13,22,23,18,46,32,22.(1)将这两组数据用茎叶图表示;(2)将这两组数据进行比较分析,你会得到什么结论?13.某市2014年4月1日-4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45.(1)完成频率分布表;(2)作出频率分布直方图;(3)根据国家标准,污染指数在0~50之间时,空气质量为优;在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染.请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.答案精析1.40解析 频率分布直方图反映样本的频率分布,每个小矩形的面积等于样本数据落在相应区间上的频率,故新生婴儿的体重在[3.2,4.0)的人数为100×(0.4×0.625+0.4×0.375)=40. 2.乙解析 由茎叶图可知:甲班身高集中于160~179之间,而乙班身高集中于170~180之间.因此乙班平均身高高于甲班. 3.130解析 由频率分布直方图可得,一天生产该产品数量在[55,75)的频率是(0.040+0.025)×10=0.65,所以人数为0.65×200=130. 4.24 23 解析 x 甲=110(10×2+20×5+30×3+17+6+7)=24, x乙=110(10×3+20×4+30×3+17+11+2)=23. 5.8解析 由茎叶图可知10+11+3+x +8+97=7,解得x =8. 6.32解析 设中间一个小长方形的面积为x , 由题意知,x +4x =1,所以x =15.则中间一组的频数为15×160=32.7.甲解析 由茎叶图知甲队身高大部分是2米零几,而乙队身高拉得较开. 8.乙 乙解析 从茎叶图可知乙同学的成绩在80~90分分数段的有9次,而甲同学的成绩在80~90分分数段的只有7次;再从题图上还可以看出,乙同学的成绩集中在90~100分分数段的最多,而甲同学的成绩集中在80~90分分数段的最多.故乙同学发挥较稳定且平均成绩也比甲同学高.9.①解析由于频率分布直方图的组距为5,去掉③④,又[0,5),[5,10)两组各一人,应选图①.10.30解析样本数据在(1,4)和(5,6)上的频率为(0.05+0.10+0.40+0.15)×1=0.7,故样本数据在(4,5)上的频率为1-0.7=0.3,其频数为100×0.3=30.11.解(1)频率分布表如下:累计频数频率分组频数[12.5,15.5)330.06[15.5,18.5)1180.16[18.5,21.5)2090.18[21.5,24.5)31110.22[24.5,27.5)41100.20[27.5,30.5)4650.10[30.5,33.5]5040.08合计50 1.00(2)频率分布直方图如下:(3)频率折线图为12.解(1)(2)电脑杂志上每个句子的字数集中在10~30之间;而报纸上每个句子的字数集中在20~40之间.还可以看出电脑杂志上每个句子的平均字数比报纸上每个句子的平均字数要少.说明电脑杂志作为科普读物需要通俗易懂、简明.13.解(1)频率分布表如下:分组累计频数频数频率[41,51)222 30[51,61)311 30[61,71)744 30[71,81)1366 30[81,91)231010 30[91,101)2855 30[101,111]3022 30合计301 (2)频率分布直方图如图所示:(3)答对下述两条中的一条即可:①该市有一个月中空气污染指数有2天处于优的水平,占当月天数的115;有26天处于良的水平,占当月天数的1315;处于优或良的天数为28,占当月天数的1415.说明该市空气质量基本良好.②轻微污染有2天,占当月天数的115;污染指数在80以上的接近轻微污染的天数15,加上处于轻微污染的天数2,占当月天数的1730,超过50%;说明该市空气质量有待进一步改善.。
数学苏教版3自我检测:2.2.3茎叶图含解析
自我检测基础达标一、选择题1.在用样本频率估计总体的过程中,下列说法中正确的是()A.总体容量越大,估计越精确B.总体容量越小,估计越精确C.样本容量越大,估计越精确D.样本容量越小,估计越精确答案:C2.对于样本频率分布直方图与总体密度曲线的关系,下列说法正确的是()A.频率分布直方图与总体密度无关B.频率分布直方图就是总体密度曲线C.样本容量很大的频率分布直方图就是总体密度曲线D.如果样本容量无限增大,各组的组距无限减小,那么相应的频率折线图会越来越接近一条光滑曲线,则这条光滑曲线为总体密度曲线答案:D3.某地一种植物一年生长的高度如下表:则该植物一年生长高度在[30,40)内的频率为()A.0。
3 B.0。
4C.0。
8 D.0.2答案:B4.频率分布直方图中,小长方形的面积等于()A.相应各组的频数B.相应各组的频率C.组数D.组距答案:B5.频率分布直方图中,小矩形的高表示()A.频率/样本容量B.组距×频率C.频率D.频率/组距答案:D二、填空题6。
完成下面的频率分布表:12345678组号频101314141513129数频率答案:0。
1 0。
13 0.14 0.14 0.15 0.13 0.12 0。
097. 一个容量为150的样本分成若干组,已知某组的频数和频率分别是30和x,则x=______。
答案:0.28。
作频率分布直方图时,横轴表示________,纵轴表示________,在横轴上以________为底,在纵轴上以_______为高作矩形.答案:样本数据频率/组距数据各组的两端点表示的线段频率/组距9。
条形图用_________来表示取各值的频率,直方图用_________来表示频率.答案:高度面积10.总体密度曲线是指______________;它反映了_____________。
答案:样本容量取得足够大,分组的组距足够小,相应的频率折线图将趋于一条曲线;它反映了总体的变化趋势.三、计算题11.有一容量为100的样本,数据的分组以及各组的频数如下:[0,5) 15,[5,10)20,[10,15)25,[15,20) 18,[20,25)12,[25,30)10.(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)估计总体在[5,20)之内的个体约占总体的多少?解:(1)。
第86题 茎叶图与频率分布直方图 -2018精品之高中数学(文)黄金100题系列 Word版含解析
第86题茎叶图与频率分布直方图I.题源探究·黄金母题【例1】若某校高一年级8个班参加合唱比赛的得分茎叶图如图所示,则这组数据的中位数和平均数分别是()A.91.5和91.5 B.91.5和92 C.91和91.5 D.92和92【答案】A【例2】如图是某城市100位居民去年的月均用水量(单位:t)的频率分布直方图,月均用水量在区间[)1.5,2.5的居民大约有()A.37位B.40位C.47位D.52位【答案】C【解析】由频率分布直方图月均用水量在区间[)1.5,2的频率为0.450.50.225⨯=,月均用水量在区间[)2,2.5的居民的频率为0.50050.25⨯=..月均用水量在区间[)1.5,2.5的居民的频数大约为()0.2250.2510047+⨯=,故选C.精彩解读【试题来源】例1:人教A版必修3P70改编;例2:人教A版必修3P65例题改编.【母题评析】这类题主要考查平均数、方差的计算以及茎叶图与频率分布直方图的简单应用.【思路方法】用样本估计总体是统计的基本方法:(1)最高的矩形的中点横坐标即众数;(2)中位数左边和右边的直方图的面积是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.II.考场精彩·真题回放【例1】【2017高考新课标1文2】为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数【答案】B【解析】刻画评估这种农作物亩产量稳定程度的指标是标准差,故选B.【例2】【2017高考山东文8】如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为A.3,5 B.5,5 C.3,7 D.5,7【答案】A得3x .故选A.【例3】【2017高考北京文17】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:【命题意图】这类重点题考查分层抽样和系统抽样的计算.考查考生基本计算能力.【考试方向】这类试题在考查题型上,主要以选择题或填空题为主,属于中低档题.【难点中心】1.将频率分布直方图中相邻的矩形的上底边的中点顺次连结起来,就得到一条折线,我们称这条折线为本组数据的频率折线图,频率分布折线图的的首、尾两端取值区间两端点须分别向外延伸半个组距,即折线图是频率分布直方图的近似,他们比频率分布表更直观、形象地反映了样本的分布规律.2.分清几个样本特征数:众数:一组数据出现次数最多的数叫众数,众数反应一组数据的多数水平;中位数:一组数据中间的数,(起到分水岭的作用)中位数反应一组数据的中间水平;平均数:反应一组数据的平均水平;方差:方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差.在样本容量相同的情况下,(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率; (Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数学不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例. 【答案】(Ⅰ)0.4;(Ⅱ)20;(Ⅲ):32.(Ⅱ)根据题意,样本中分数不小于50的频率为(0.010.020.040.02)100.9+++⨯=,分数在区间[40,50)内的人数为1001000.955-⨯-=.所以总体中分数在区间[40,50)内的人数估计为540020100⨯=. (Ⅲ)由题意可知,样本中分数不小于70的学生人数为(0.020.04)1010060+⨯⨯=,所以样本中分数不小于70的男生人数为160302⨯=. 所以样本中的男生人数为30260⨯=,女生人数为1006040-=,男生和女生人数的比例为60:403:2=.所以根据分层抽样原理,总体中男生和女生人数的比例估计为3:2.方差越大,说明数据的波动越大,越不稳定.标准差是方差的算术平方根,意义在于反映一个数据集的离散程度.3.用样本估计总体是统计的基本思想,而利用频率分布表和频率分布直方图来估计总体则是用样本的频率分布去估计总体分布的两种主要方法.分布表在数量表示上比较准确,直方图比较直观. 4.频率分布表中的频数之和等于样本容量,各组中的频率之和等于1;在频率分布直方图中,各小长方形的面积表示相应各组的频率,所以,所有小长方形的面积的和等于1.III .理论基础·解题原理⑴一表二图:①频率分布表——数据详实 ②频率分布直方图——分布直观③频率分布折线图——便于观察总体分布趋势 注:总体分布的密度曲线与横轴围成的面积为1. ⑵茎叶图:①茎叶图适用于数据较少的情况,从中便于看出数据的分布,以及中位数、众位数等. ②个位数为叶,十位数为茎,右侧数据按照从小到大书写,相同的数据重复写. 3.总体特征数的估计: ⑴平均数:nx x x x x n++++=321;取值为n x x x ,,,21 的频率分别为n p p p ,,,21 ,则其平均数为n n p x p x p x +++ 2211;注意:频率分布表计算平均数要取组中值.⑵方差与标准差:一组样本数据n x x x ,,,21 方差:212)(1∑=-=ni ix xns ;标准差:21)(1∑=-=ni ix xns注:方差与标准差越小,说明样本数据越稳定.平均数反映数据总体水平;方差与标准差反映数据的稳定水平.IV .题型攻略·深度挖掘【考试方向】这类试题在考查题型上,通常以选择题或填空题的形式出现,难度中等. 【技能方法】1.解题模板:第一步,根据频率分布直方图计算出相应的频率;第二步,运用样本的频率估计总体的频率;第三步,得出结论.2.用样本估计总体是统计的基本思想.用样本频率分布来估计总体分布的重点是频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布;难点是频率分布表和频率分布直方图的理解及应用.3.(1)众数、中位数及平均数都是描述一组数据集中趋势的量,平均数是最重要的量,与每个样本数据有关,这是中位数、众数所不具有的性质.(2)标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度就越大. 4.茎叶图、频率分布表和频率分布直方图都可直观描述样本数据的分布规律. 【易错指导】1.在使用茎叶图时,一定要注意看清楚所有的样本数据,弄清楚这个图中的数字特点,不要漏掉了数据,也不要混淆茎叶图中茎与叶的含义.2.利用频率分布直方图求众数、中位数与平均数时,应注意这三者的区分:(1)最高的矩形的中点横坐标即众数;(2)中位数左边和右边的直方图的面积是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.3.直方图与条形图不要搞混频率分布直方图的纵坐标为频率/组距,每一个小长方形的面积表示样本个体落在该区间内的频率;条形图的纵坐标为频数或频率,把直方图视为条形图是常见的错误.V .举一反三·触类旁通考向1 茎叶图及其应用【例1】【2018黑龙江齐齐哈尔高三第一次模】某校连续12天对同学们的着装进行检查,着装不合格的人数用茎叶图表示,如图,则该组数据的中位数是A .24B .26C .27D .32 【答案】CC . 【例2】【2018江西上饶高三下学期二模】如图1是某学习小组学生在某次数学考试中成绩的茎叶图,1号到20号同学的成绩依次为1220,,,a a a ,图2是统计茎叶图中成绩在一定范围内的学生人数的程序框图,那么该框图的输出结果是( )A .8B .9C .11D .12 【答案】A【解析】由算法流程图可知,其统计的是数学成绩不小于100的人数,所以由茎叶图知,数学成绩不小于100的人数为8,因此输出结果为8,故选A .【例3】某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲、乙两部门评分的中位数; (2)分别估计该市的市民对甲、乙两部门的评分高于90的概率; (3)根据茎叶图分析该市的市民对甲、乙两部门的评价.【答案】(1)75,75;(2)0.1,0.16;(3)该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.【解析】(1)由所给茎叶图知,50位市民对甲部门的评分由小到大排序,排在第25,26位的是75,75,故样本中位数为75,所以该市的市民对甲部门评分的中位数的估计值是75.50位市民对乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本中位数为66+682=67,所以该市的市民对乙部门评分的中位数的估计值是67.规律方法 (1)茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况. (2)①作样本的茎叶图时先要根据数据特点确定茎、叶,再作茎叶图;作“叶”时,要做到不重不漏,一般由内向外,从小到大排列,便于数据的处理.②根据茎叶图中数据数字特征进行分析判断考查识图能力,判断推理能力和创新应用意识;解题的关键是抓住“叶”的分布特征,准确提炼信息. 【跟踪练习】1.【2018河南安阳高三二模】在某校连续5次考试成绩中,统计甲,乙两名同学的数学成绩得到如图所示的茎叶图.已知甲同学5次成绩的平均数为81,乙同学5次成绩的中位数为73,则x y 的值为( )A .3B .4C .5D .6 【答案】A 【解析】7781+=因为乙同学5次成绩的中位数为73,所以33,y x y =∴+=选A .2.【2018山西平遥中学高三3月高考适应性调研】某学校A 、B 两个班的数学兴趣小组在一次数学对抗赛中的成绩绘制茎叶图如下,通过茎叶图比较两班数学兴趣小组成绩的平均值及方差①A 班数学兴趣小组的平均成绩高于B 班的平均成绩 ②B 班数学兴趣小组的平均成绩高于A 班的平均成绩 ③A 班数学兴趣小组成绩的标准差大于B 班成绩的标准差 ④B 班数学兴趣小组成绩的标准差大于A 班成绩的标准差 其中正确结论的编号为( )A .①③B .①④C .②③D .②④ 【答案】B【解析】A 班:53,63,64,76,74,78,78,76,81,85,86,88,82,92,95;B 班:45,48,51,3.【2018湖北武汉武昌区高三1月调研】将某选手的7个得分去掉1个最高分,去掉1个最低分,剩余5个分数的平均数为91,现场作的7个分数的茎叶图有一个数据模糊,无法辨认,在图中以x 表示,则5个剩余分数的方差为________.【答案】6 【解析】依题意8793909190915x +++++=,解得4x =.则方差为1641965+++=.【名师点睛】本题主要考查茎叶图的分辨,考查平均数的计算,考查方差的计算.从茎叶图可以看出最低分是87,最高分是99,去掉这两个分数后,可利用平均数的公式列方程来求出x 的值.根据前面求出的值再利用方差的计算公式()211n i i x x n =-∑来计算方差.考向2 频率分布直方图【例4】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A .56B .60C .120D .140【答案】D【例5】某校从高一年级学生中随机抽取100名学生,将他们期中考试的数学成绩(均为整数)分成六段:[40,50),[50,60),…,[90,100]后得到频率分布直方图(如下图所示),则分数在[70,80)内的人数是 .【答案】30【解析】由频率分布直方图知小长方形面积为对应区间概率,所有小长方形面积和为1,因此分数在[70,80)内的概率为3.010)005.0010.02015.0025.0(1=⨯++⨯+-,人数为301003.0=⨯ 【例6】我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),……,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a 的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由; (3)估计居民月均用水量的中位数.【答案】(1)0.30;(2)36 000;(3)2.04.【解析】(1)由频率分布直方图可知:月均用水量在[0,0.5)内的频率为0.08×0.5=0.04.同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=0.5×a +0.5×a ,解得a =0.30.(2)由(1)知,该市100位居民中月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000.(3)设中位数为x 吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5. 又前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5.所以2≤x <2.5. 由0.50×(x -2)=0.5-0.48,解得x =2.04.故可估计居民月均用水量的中位数为2.04吨.【名师点睛】(1)准确理解频率分布直方图的数据特点,频率分布直方图中纵轴上的数据是各组的频率除以组距的结果,不要误以为纵轴上的数据是各组的频率和条形图混淆.(2)“命题角度二”的例题中抓住频率分布直方图中各小长方形的面积之和为1,这是解题的关键.而利用频率分布直方图可以估计总体分布.【跟踪练习】1.【2018江西高三毕业班新课程教学质量监测】如图是60名学生参加数学竞赛的成绩(均为整数)的频率分布直方图,估计这次数学竞赛的及格率(60分及以上为及格)是()A.0.9 B.0.75 C.0.8 D.0.7【答案】B【解析】大于或等于60分的共四组,它们是:故选:B.【名师点睛】利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.2.【2018贵州黔东南州联考】近年呼吁高校招生改革的呼声越来越高,在赞成高校招生改革的市民中按年龄分组,得到样本频率分布直方图如图,其中年龄在[)30,40岁的有2500人,年龄在[)20,30岁的有1200人,则m 的值为( )A .0.013B .0.13C .0.012D .0.12 【答案】C3.【2018河南六市高三第一次联考(一模)】为了解学生在课外活动方面的支出情况,抽取了n 个同学进行调查,结果显示这些学生的支出金额(单位:元)都在[]10,50,其中支出金额在[]30,50的学生有117人,频率分布直方图如图所示,则n =( )A .180B .160C .150D .200 【答案】A【解析】[]30,50对应的概率为()10.010.025100.65-+⨯=,所以117=1800.65n =,选A .4.一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[)2500,3500(元)月收入段应抽出 人.【答案】40【解析】由图(2500,3500元/月)收入段的频率是0.0005×500+0.0003×500=0.4,故用分层抽样方法抽出100人作进一步调查,则在(2500,3500元/月)收入段应抽出人数为0.4×100=40. 考向3 样本的数字特征【例7】【2018内蒙古呼和浩特高三第一次质量调研】如图为某班35名学生的投篮成绩(每人投一次)的条形统计图,其中上面部分数据破损导致数据不完全.已知该班学生投篮成绩的中位数是5,则根据统计图,无法确定下列哪一选项中的数值( )A .3球以下(含3球)的人数B .4球以下(含4球)的人数C .5球以下(含5球)的人数D .6球以下(含6球)的人数 【答案】C【解析】因为共有35人,而中位数应该是第18个数,所以第18个数是5,从图中看出第四个柱状图故选C .【例8】【2018湖南衡阳高三第二次联考(二模)】已知样本12,,,n x x x 的平均数为x ;样本12,,,m y y y 的平均数为()y x y ≠,若样本12,,,n x x x ,12,,,m y y y 的平均数()z ax 1a y =+-;其中,则()*,,n m n m N ∈的大小关系为( ) A .n m = B .n m ≥ C .n m < D .n m > 【答案】C102a <<C . 这两个小组往年研发新产品的结果如下:(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b )(a ,b ),(a ,b ),(a ,b ),(a ,b ).其中a ,a 分别表示甲组研发成功和失败;b ,b 分别表示乙组研发成功和失败.(1)若某组成功研发一种新产品,则给该组记1分,否则记0分.试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;(2)若该企业安排甲、乙两组各自研发一种新产品,试估计恰有一组研发成功的概率. 【解析】(1)甲组研发新产品的成绩为1,1,1,0,0,1,1,1,0,0,1,1,1,0,1,因为x 甲>x 乙,s 2甲<s 2乙,所以甲组的研发水平优于乙组.(2)记E ={恰有一组研发成功}.在所抽得的15个结果中,恰有一组研发成功的结果是(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),共7个.因此事件E 发生的频率为715.用频率估计概率,即得所求概率为P (E )=715.【名师点睛】(1)平均数反映了数据的中心,是平均水平,而方差和标准差反映的是数据围绕平均数的波动大小.进行平均数与方差的计算,关键是正确运用公式;(2)平均数与方差所反映的情况有着重要的实际意义,一般可以通过比较甲、乙两组样本数据的平均数和方差的差异,对甲、乙两品种可以做出评价或选择. 【跟踪练习】1.【2018贵州黔东南州高三下学期二模】甲乙两名同学6次考试的成绩统计如下图,甲乙两组数据的平均数,标准差分别为σσ甲乙,,则ABCD 【答案】C中数据显示甲同学的成绩比乙同学稳定,故σσ<甲乙.故选C .2.【2018云南昆明高三教学质量检查(二统)】“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.下图是2017年9月到2018年2月这半年中,某个关键词的搜索指数变化的走势图.根据该走势图,下列结论正确的是( )A .这半年中,网民对该关键词相关的信息关注度呈周期性变化B .这半年中,网民对该关键词相关的信息关注度不断减弱C .从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差D .从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值 【答案】D【解析】根据走势图可知:这半年中,网民对该关键词相关的信息关注度不呈周期性变化,A 错;这半年中,网民对该关键词相关的信息关注度增减不确定,B 错;从网民对该关键词的搜索指数来看,去年10月份的搜索指数的稳定性小于11 月份的搜索指数的稳定性,所以去年10月份的方差大于11 月份的方差,C 错;从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值,D正确,故选D.3.【2018陕西榆林高三二模】为了反映各行业对仓储物流业务需求变化的情况,以及重要商品库存变化的动向,中国物流与采购联合会和中储发展股份有限公司通过联合调查,制定了中国仓储指数.由2016年1月至2017年7月的调查数据得出的中国仓储指数,绘制出如下的折线图.根据该折线图,下列结论正确的是()A.2016年各月的合储指数最大值是在3月份B.2017年1月至7月的仓储指数的中位数为55C.2017年1月与4月的仓储指数的平均数为52D.2016年1月至4月的合储指数相对于2017年1月至4月,波动性更大【答案】D7【解析】2016年各月的仓储指数最大值是在11月份,所以A是错误的;由图可知,2017年1月至则这5 天中,每天最高气温较为稳定(方差较小)的城市为_______.(填甲或乙). 【答案】甲【解析】甲、乙两个城市的最高气温平均值都是30,甲的方差为(方差较小)的城市为甲,故答案为甲.5.【2018山东枣庄高三二模】随着高校自主招生活动的持续开展,我市高中生掀起了参与数学兴趣小组的热潮.为调查我市高中生对数学学习的喜好程度,从甲、乙两所高中各随机抽取了40名学生,记录他们在一周内平均每天学习数学的时间,并将其分成了6个区间:(]0,10、(]10,20、(]20,30、(]30,40、(]40,50、(]50,60,整理得到如下频率分布直方图:根据一周内平均每天学习数学的时间t ,将学生对于数学的喜好程度分为三个等级:(Ⅰ)试估计甲高中学生一周内平均每天学习数学的时间的中位数m 甲(精确到0.01);(Ⅱ)判断从甲、乙两所高中各自随机抽取的40名学生一周内平均每天学习数学的时间的平均值及方差2S 甲与2S 乙的大小关系(只需写出结论)、2S 甲(同一组中的数据用该组区间的中点值作代表);(Ⅲ)从甲高中与乙高中随机抽取的80名同学中数学喜好程度为“痴迷”的学生中随机抽取2人,求选出的2人中甲高中与乙高中各有1人的概率.【答案】(Ⅰ) 26.67m ≈甲;(Ⅱ)答案见解析;(Ⅲ)【解析】试题分析:()11026.67⨯≈;()2根据所给数据求出,2S 甲,2S 乙,然后对比即可得到答案;()3求出甲高中随机选取的40名学生中“痴迷”的学生的个数,记为1A ,2A ;乙高中随机选取的40名解析:(Ⅰ)由样本估计总体的思想,甲高中学生一周内平均每天学习数学的时间的中位数21026.67⨯≈;;22S S >甲乙;350.2450.15550.0527.5+⨯+⨯+⨯=;()()21527.5400.2+-⨯⨯ ()()22527.5400.3+-⨯⨯ ()()23527.5400.2+-⨯⨯ ()()24527.5400.15+-⨯⨯ ()()25527.5400.05]+-⨯⨯178.75=.(Ⅲ)甲高中随机选取的40名学生中“痴迷”的学生有()400.005102⨯⨯=人,记为1A ,2A ;乙高中随机选取的40名学生中“痴迷”的学生有()400.015106⨯⨯=人,记为1B ,2B ,3B ,4B ,5B ,6B .随机选出2人有以下28种可能:()12,A A ,()11,A B ,()12,A B ,()13,A B ,()14,A B ,()15,A B ,()16,A B , ()21,A B ,()22,A B ,()23,A B ,()24,A B ,()25,A B ,()26,A B ,()12,B B , ()13,B B ,()14,B B ,()15,B B ,()16,B B ,()23,B B ,()24,B B ,()25,B B , ()26,B B ,()34,B B ,()35,B B ,()36,B B ,()45,B B ,()46,B B ,()56,B B ,甲、乙两所高中各有1人,有以下12种可能:()11,A B ,()12,A B ,()13,A B ,()14,A B ,()15,A B ,()16,A B , ()21,A B ,()22,A B ,()23,A B ,()24,A B ,()25,A B ,()26,A B .所以,从甲、乙两所高中数学喜好程度为“痴迷”的同学中随机选出2人,选出的2人中甲、乙两所高中各有16.【2018海南高三第二次联合考试】从某小区抽取50户居民进行月用电量调查,发现其用电量都在50到350度之间,频率分布直方图如下.(1)求频率分布直方图中x 的值并估计这50户用户的平均用电量;(2)若将用电量在区间[)50,150内的用户记为A 类用户,标记为低用电家庭,用电量在区间[)250,350内的用户记为B 类用户,标记为高用电家庭,现对这两类用户进行问卷调查,让其对供电服务进行打分,打分情况见茎叶图:①从B 类用户中任意抽取1户,求其打分超过85分的概率;②若打分超过85分视为满意,没超过85分视为不满意,请填写下面列联表,并根据列联表判断是否有95%的把握认为“满意度与用电量高低有关”?附表及公式:,n a b c d =+++.【答案】(1)0.0044x =,186(2【解析】试题分析:(1)由矩形面积和为1,求得x ,再由每一个矩形的中点横坐标乘以矩形面积求和可得平均值;试题解析: 解:(120.0012)0.0044⨯+=, 按用电量从低到高的六组用户数分别为6,9,15,11,6,3, 186=度.(2)①B 类用户共9人,打分超过85分的有6人,所以从B 类用户中任意抽取3户,恰好有2户打分超过85 ②因为2K 的观测值 1.6 3.841=<,所以没有95%的把握认为“满意与否与用电量高低有关”.【名师点睛】利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数; (2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.。
2.2.3 茎叶图 学案(含答案)
2.2.3 茎叶图学案(含答案)22.3茎叶图学习目标1.了解茎叶图的概念,会画茎叶图.2.了解频率分布直方图.频率折线图.茎叶图的各自特征,学会选择不同的方法分析样本的分布,从而作出总体估计知识点茎叶图思考茎叶图是表示样本数据分布情况的一种方法,那么“茎”.“叶”分别指的是哪些数答案茎是指中间的一列数,叶就是从茎的旁边生长出来的数梳理茎叶图的定义当数据是两位有效数字时,用中间的数字表示位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图适用范围当样本数据较少时,用茎叶图表示数据的效果较好优点它不但可以保留所有信息,而且可以随时记录,给数据的记录和表示都带来方便缺点当样本数据较多时,枝叶就会很长,茎叶图就显得不太方便1对于两位数的茎叶图,中间的数字表示位数,旁边的数字表示个位数2对于三位数的茎叶图,中间的数字表示百位数旁边的数字表示位和个位数3茎叶图的茎相当于频率分布表中的分组,茎上叶的数目相当于频率分布表中指定区间组的频数类型一茎叶图及其绘制例1有关部门从甲.乙两城市所有自动售货机中分别随机抽取了16台,记录了上午8001100间各自销售情况单位元甲18,8,10,43,30,10,22,6,27,25,58,5,14,18,30,41;乙22,31,32,42,20,27,48,23,38,43,12,34,18,10,34,23.试列出两个城市销售情况的茎叶图解画出两个城市销售情况的茎叶图,把茎放在中间共用,叶分列左.右两侧反思与感悟茎叶图的制作步骤将所有两位数的位数字作为“茎”,个位数字作为“叶”,茎相同者共用一个茎,茎按从小到大的顺序从上向下列出,共茎的叶一般按从大到小或从小到大的顺序同行列出跟踪训练1某赛季甲.乙两名篮球运动员每场得分情况如下甲的得分12,15,24,25,31,31,36,36,37,39,44,49,50.乙的得分8,13,14,16,23,26,28,33,38,39,51,9,17.用茎叶图表示上面的数据解如图所示的茎叶图中,中间的数字表示两位运动员得分的位数,两边的数字分别表示两个人各场比赛得分的个位数类型二茎叶图的画法及应用例2某良种培育基地正在培育一种小麦新品种A.将其与原有的一个优良品种B进行对照试验两种小麦各种植了25亩,所得亩产量数据单位千克如下品种A357,359,367,368,375,388,392,399,400,405,412,414,415,421, 423,423,427,430,430,434,443,445,445,451,454.品种B363,371,374,383,385,386,391,392,394,394,395,397,397,400, 401,401,403,406,407,410,412,415,416,422,430.1画出茎叶图;2用茎叶图处理现有的数据,有什么优点3通过观察茎叶图,对品种A与B的亩产量及其稳定性进行比较,得出统计结论解1茎叶图如图2样本容量不大,画茎叶图很方便,此时茎叶图不仅清晰明了地展示了数据的分布情况,便于比较,没有任何信息丢失,而且还可以随时记录新的数据3通过观察茎叶图可以看出品种A亩产量的平均数比品种B亩产量的平均数大;品种A的亩产量波动比品种B的亩产量波动大,故品种A 的亩产量稳定性较差反思与感悟利用茎叶图进行样本分析的角度及图形特点1角度要从数据分布的对称性.中位数.稳定性.平均数等几个方面来比较2图形特点平均水平大茎上的叶多,则平均值大;大茎上的叶少,则平均值小分散程度看叶集中在几个茎上,还是分散在多个茎上跟踪训练2某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下A地区6273819295857464537678869566977888827689B地区7383625191465373648293486581745654766579根据两组数据作出两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度不要求计算出具体值,给出结论即可解两地区用户满意度评分的茎叶图如图通过茎叶图可以看出,A地区用户满意度评分的平均值高于B地区用户满意度评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散类型三茎叶图与频率分布直方图的综合应用例3在某市的青少年才艺表演评比活动中,参赛选手成绩的茎叶图和频率分布直方图都受到不同程度的破坏,可见部分如图所示,据此回答以下问题求参赛总人数和频率分布直方图中80,90矩形的高,并补全频率分布直方图解由茎叶图知,分数在50,60的频数为2.由频率分布直方图知,分数在50,60的频率为0.008100.08,所以参赛总人数为25.所以分数在80,90的人数为25271024,所以分数在80,90的频率为0.16,故频率分布直方图中80,90矩形的高为0.016.补全频率分布直方图,如图所示反思与感悟茎叶图由所有样本数据构成,没有损失任何样本信息,可以在抽样的过程中随时记录,但样本容量较大,或者需要比较三组以上的数据时,使用茎叶图就不合适;而频率分布表和频率分布直方图可以处理样本容量很大的数据,但损失了样本的原始数据,而且必须在完成抽样后才能制作跟踪训练3某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示,以组距为5将数据分组成0,5,5,10,,30,35,35,40时,所作的频率分布直方图是下列所给直方图中的________填序号答案解析方法一由题意知样本容量为20,组距为5.列表如下分组频数频率0,510.015,1010.0110,1540.0415,2020.0220,2540.0425,3030.0330,3530.0335,4020.02合计201观察各选项的频率分布直方图知应为.方法二由茎叶图知落在区间0,5与区间5,10上的频数相等,故频率.也分别相等,比较四个直方图知正确.1数据123,127,131,151,157,135,129,138,147,152,134,121,142,143的茎叶图中,茎应取__________答案12,13,14,15解析在茎叶图中叶应是数据中的最后一位,从而茎就确定了2在茎叶图中比40大的数据有________个答案3解析由茎叶图中知比40大的有47,48,49,共3个3已知某工厂工人在6月份每天加工的零件个数的茎叶图如图所示以零件个数的百位.位数字为茎,个位数字为叶,那么该工厂工人在该月内加工的零件个数超过130的天数所占的百分比为________答案104某校举行演讲比赛,9位评委给选手A打出的分数如茎叶图所示,统计员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字茎叶图中的x无法看清,若统计员计算无误,则数字x应该是________答案2解析去掉最低分87,去掉最高分94假设x4,则791802989052321x,所以x2,符合题意同理可验证x4不合题意5在一次马拉松比赛中,35名运动员的成绩单位分钟的茎叶图如图所示若将运动员按成绩由好到差编为135号,再用系统抽样方法从中抽取7人,则其中成绩在区间139,151上的运动员人数是________答案4解析由题意知,将135号分成7组,每组5名运动员,成绩落在区间139,151的运动员共有4组,故由系统抽样法知,共抽取4名1估计总体的分布分两种情况当总体中的个体取值很少时,用茎叶图估计总体的分布;当总体中的个体取值较多时,将样本数据恰当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图2茎叶图.频率分布表和频率分布直方图都是用来描述样本数据的分布情况的茎叶图由所有样本数据构成,没有损失任何样本信息,可以在抽样的过程中随时记录;而频率分布表和频率分布直方图则损失了样本的原始信息,必须在完成抽样后才能制作3正确利用三种分布的描述方法,都能得到一些有关分布的主要特点如分布是否具有单峰性.是否具有对称性.样本点落在各分组中的频率等,这些主要特点受样本的随机性的影响比较小,更接近于总体分布相应的特点。
茎叶图
4.(2010·龙岩高一检测)如图是某赛季
甲、乙两名篮球运动员参加的每场比赛得 分的茎叶图,则甲、乙两人这几场比赛得 分的中位数之和是(
C)
(A)65 62
(B)64
(C)63
(D)
如何用频率分布直方图求中位数、平均数、众数
平均数是每组样本数据的中 间值乘频率再相加
“茎”是数据除了个位数以外的数,如12,69,118
某篮球运动员在某赛季各场比赛的得分情况如下: 12,36,49,31,24,37,15,31,36,39,50,44,25
茎 5 4 3 2 1
叶 0 49 116679 45 25
茎叶图的特征:
(1)用茎叶图表示数据有两个优点:一是从统计图上没有原始 数据信息的损失,所有数据信息都可以从茎叶图中得到;二 是茎叶图中的数据可以随时记录,随时添加,方便记录与表 示;
50 32 8754 2 9441 1
0 1 2 3 4 5
乙 8 247 199 36 2
答:( 1 ) 甲运动员的最高得分为51分 ,乙运动员的最 高分为52分;
( 2 ) 甲运动员的成绩好于 乙运动员 .
3.如图是某校举行的元旦诗歌朗 诵比赛中,七位评委为某位选手打出 分数的茎叶统计图, 去掉一个最高分 和一个最低分,所剩数据的平均数和 方差分别为( C ) (A)84,4.84 (B)84,1.6 (C)85,1.6 (D)85,0.4
(2)茎叶图只便于表示至多三位有效数字的数据,对位数多的
数据不太容易操作;而且茎叶图只方便记录两组的数据,两 个以上的数据虽然能够记录,但是没有表示两个记录那么直 观,清晰; (3)茎叶图能重复出现的数据重复记录,不遗漏.
最新高一数学题库 6.2.3茎叶图练习(苏教版必修3)
第6课时6.2.3茎叶图分层训练1.对两名学生一周的睡眠情况调查研究发现:甲同学每晚的睡觉时间为19时、21时、21时、24时、02时、01时和20时;乙同学每晚的睡觉时间为22时、21时、21时、22时、23时、24时、和19时。
请作出两名学生睡觉时间的茎叶图,并比较分析,能得出什么结论?2.用茎叶图表示数据,有哪些优缺点?3.某中学高三期中模拟考试的数学成绩数据如下:作出这个班数学成绩的茎叶图,并算出最高和最低分,及班级平均分。
4.非典期间某医院的发热门诊部对一天接待的16名病人的体温进行了测量,得到以下数据: 请作出当天病人体温数据的茎叶图,并计算出病人的平均体温。
5.为了分析某校英语四级考试情况,今抽查了列出样本的茎叶图。
思考 运用6.有一个容量为50的样本,其数据的茎叶图表示如下:1 345666788889992 00001122222333344555666677788893 01123将其分成7组并要求(1) 列出样本的频率分布表: (2) 画出频率分布直方图。
本节学习疑时:1.甲乙21 09 1 94110 2 112234从以上茎叶图中,我们发现乙同学的睡眠习惯比甲同学有规律2.用茎叶图刻画数据有两个优点,一是所有的数据信息都可以从这个茎叶图中一目了然地看到,比较直观;二是茎叶图便于记录和表示。
茎叶图的缺点在于只有两层,即茎和叶,对于三位数以上的数据,或者有三个层次的数据表示起来就不够方便。
3.茎叶图为4 125 3446 0367997 24667998 023*********9 055677班级最高分为97,最低分为41,平均成绩为76.7 4.当天病人体温的茎叶图为:3756883801255739122355病人的平均体温为38.531255.茎叶图:1 02582 01567333457740266788995011223334445566778889600122333344455667777788889970011235566789998003446669903576.略。
(完整版)茎叶图练习题
茎叶图练习题1.下列关于茎叶图的叙述正确的是()(A)将数据的数按位数进行比较,将数大小基本不变或变化不大的作为一个主杆(茎),将变化大的位数作为分枝(叶),列在主杆的后面(B)茎叶图只可以分析单组数据,不能对两组数据进行比较(C)茎叶图更不能表示三位数以上的数据(D)画图时茎要按照从小到大的顺序从下向上列出,共茎的叶可以随意同行列出2.下列关于茎叶图的叙述正确的是()(A)茎叶图可以展示未分组的原始数据,它与频率分布表以及频率分布直方图的处理方式不同(B)对于重复的数据,只算一个(C)茎叶图中的叶是“茎”十进制的上一级单位(D)画图时茎要按照从小到大的顺序从下向上列出,共茎的叶可以随意同行列出3.茎叶图012380 91 3 50 2 3 4 6中,茎2的叶子数为()(A)0 (B)1 (C)2 (D)34.数据8,51,33,39,38,23,26,28,13,16,14的茎叶图是()(A)01234583 4 636 83 8 91(B)1234583 4 636 83 8 91(C)1234583 4 636 83 8 91(D)1234583 4 636 83 8 9115.用茎叶图对两组数据进行比较时()(A)左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写(B)左侧的叶按从大到小的顺序写,右侧的叶也按从大到小的顺序写(C)左侧的叶按从小到大的顺序写,右侧的叶也按从小到大的顺序写(D)左侧的叶按从小到大的顺序写,右侧的叶按从大到小的顺序写6.茎叶图491166794525甲5432119838636438乙中,甲组数据的中位数是()(A)31 (B)5.3323631=+(C)36 (D)7.茎叶图4327538543339865的茎为,叶子最多的茎是。
8.茎叶图4321876532122中所记录的原始数据共有个。
9.在茎叶图9.8.7.6.5.3854196221854322中,样本的中位数为,众数为。
新高中数学苏教版必修三同步练习:2.2.3茎叶图(含答案解析)
数学·必修3( 苏教版 )第2章统计2.2 整体散布的预计2.2.3茎叶图基础巩固1.如图是甲、乙两名运动员某赛季一些场次得分的茎叶图,据图可知甲、乙两人得分最大值和为 ________.答案: 1032 .以下茎叶图记录了甲、乙两组各五名学生在一次英语听闻测试中的成绩(单位:分 ).已知甲组数据的中位数为13,乙组数据的均匀数为12,则 x, y 的值为 ()A .12, 13B . 13,12C. 13, 13 D . 13,14答案: C3.为了认识中年知识分子在知识分子中的比率,对某单位全体知识分子的年纪进行了登记,结果以下 (单位:岁 ):42, 38, 29, 36, 41, 43, 54, 43, 34,44, 40, 59, 39, 42, 44, 50, 37, 44 ,45, 29, 48, 45, 53, 48, 37, 28, 46, 50, 37, 44, 42, 39, 51, 52, 62, 47, 59, 46,45, 67, 53, 49, 65, 47, 54, 63, 57, 47, 46, 58.列出样本的频次散布表及茎叶图,并计算36~ 52 岁的知识分子所占的比率.分析:最大值为67,最小值为28,全距为 67- 28=39,分为 10 组,组距为4,频次散布表以下:分组频数频次[28 , 32)30.06[32 , 36)10.02[36 , 40)70.14[40 , 44)70.14[44 , 48)130.26[48 , 52)60.12[52 , 56)50.10[56 , 60)40.08[60 , 64)20.04[64 , 68]20.04用茎叶图表示为:28 9 93467778994500123344789962357从以上能够看出用频次散布表中的数据易得36~ 52 岁的知识分子所占的比率为0.14+0.14+ 0.26+ 0.12= 0.66.4.名著《简·爱》的中英文版中,第一节部分内容每句话所含单词(字 )数以下:英词句子所含单词数:10, 52,56, 40,79, 9,23, 11, 10, 21, 30, 31;中词句子所含字数:11,79,7,20,63,33, 45,36,87,9,11,37,17,18,71,75, 51.(1)作出这些数据的茎叶图.(2)比较茎叶图,你能获得什么结论?分析: (1)茎叶图以下列图所示.英词句子所含单词数中词句子所含字数907 91 0 0111783 1201 03 3 670456 2516397 1 5987(2) 从这个茎叶图看,英词句子所含单词数与中词句子所含字数都散布得比较分别,总的看来,每句话所含的字(单词 )数差异较大,但由于数目较少,不可以给出较有掌握的结论.能力升级5. (2014 ·湛江调研 )某中学高二 (2)班甲、乙两名同学自高中以来每场数学考试成绩状况以下 (单位:分 ):甲的得分: 95, 81,75, 89,71, 65,76, 88,94, 110, 107;乙的得分: 83, 86,93, 99,88, 103, 98, 114, 98, 79, 101.画出两人数学成绩的茎叶图,请依据茎叶图对两人的成绩进行比较.分析:用中间的数字表示两位同学得分的十位数字和百位数字,两边的数字分别表示两人每场数学考试成绩的个位数字.甲、乙两人数学成绩的茎叶图以下图,从这个茎叶图中能够看出,乙同学的得分状况大概是对称的,集中在 90 多分;甲同学的得分状况除一个特别得格外,也大概对称,集中在 80多分,所以乙同学发挥比较稳固,整体得分状况比甲同学好.6.某同学每日下午打半小时篮球,她把每日进球的状况都记了下来.下边是她从 2009 年 3 月 12 日至 4 月 10 日每日打球时进球的记录:231518151731211731181417161813184119 193217184167527161808178请依据这批数据绘制出茎叶图来反应这30 天中的进球状况.分析:以下列图所示 .134556777788888992 1 33 1 1 24 1 1526 1 77 1 880 17.某良种培养基地正在培养一种小麦新品种 A ,将其与原有的一个优秀品种 B 进行比较试验.两种小麦各样植了25 亩,所得亩产数据(单位:千克 )以下:品种 A : 357, 359, 367,368, 375, 388,392, 399, 400, 405, 412,414,415,421, 423,423, 427, 430, 430, 434, 443, 445, 445, 451, 454;品种 B : 363, 371, 374, 383, 385, 386, 391, 392, 394, 394, 395, 397, 397,400, 401,401, 403, 406, 407, 410, 412, 415, 416, 422, 430.(1)作出品种 A、 B 亩产量数据的茎叶图.(2)用茎叶图办理现有的数据,有什么长处?(3)经过察看茎叶图,对品种 A 与 B 的亩产量及其稳固性进行比较,写出统计结论.分析: (1)茎叶图以下列图所示.(2) 用茎叶图办理现有的数据不单能够看出数据的散布状况,并且还能够看出每组中的(3) 经过察看茎叶图,能够发现品种 A 的均匀亩产量为411.08 千克,品种 B 的均匀亩产量为397.8千克.由此可知,品种 A 的均匀亩产量比品种 B 的均匀亩产量高,但品种A 的亩产量不够稳固,而品种 B 的亩产量比较集中在其均匀亩产量邻近.。
【K12教育学习资料】高中数学 2.2.3 茎叶图检测试题 苏教版必修3
2.2.3 茎叶图基础巩固1.如图是甲、乙两名运动员某赛季一些场次得分的茎叶图,据图可知甲、乙两人得分最大值和为________.答案:1032.以下茎叶图记录了甲、乙两组各五名学生在一次英语听说测试中的成绩(单位:分).已知甲组数据的中位数为13,乙组数据的平均数为12,则x,y的值为( )A.12,13 B.13,12C.13,13 D.13,14答案:C3.为了了解中年知识分子在知识分子中的比例,对某单位全体知识分子的年龄进行了登记,结果如下(单位:岁):42,38,29,36,41,43,54,43,34,44,40,59,39,42,44,50,37,44,45,29,48,45,53,48,37,28,46,50,37,44,42,39,51,52,62,47,59,46,45,67,53,49,65,47,54,63,57,47,46,58.列出样本的频率分布表及茎叶图,并计算36~52岁的知识分子所占的比例.解析:最大值为67,最小值为28,全距为67-28=39,分为10组,组距为4,频率分布表如下:52)用茎叶图表示为:0.14+0.14+0.26+0.12=0.66.4.名著《简·爱》的中英文版中,第一节部分内容每句话所含单词(字)数如下:英文句子所含单词数:10,52,56,40,79,9,23,11,10,21,30,31;中文句子所含字数:11,79,7,20,63,33,45,36,87,9,11,37,17,18,71,75,51.(1)作出这些数据的茎叶图.(2)比较茎叶图,你能得到什么结论?解析:(1)茎叶图如下图所示.英文句子所含单词数中文句子所含字数(2)从这个茎叶图看,英文句子所含单词数与中文句子所含字数都分布得比较分散,总的看来,每句话所含的字(单词)数差别较大,但因为数量较少,不能给出较有把握的结论.能力升级5.(2014·湛江调研)某中学高二(2)班甲、乙两名同学自高中以来每场数学考试成绩情况如下(单位:分):甲的得分:95,81,75,89,71,65,76,88,94,110,107;乙的得分:83,86,93,99,88,103,98,114,98,79,101.画出两人数学成绩的茎叶图,请根据茎叶图对两人的成绩进行比较.解析:用中间的数字表示两位同学得分的十位数字和百位数字,两边的数字分别表示两人每场数学考试成绩的个位数字.甲、乙两人数学成绩的茎叶图如图所示,从这个茎叶图中可以看出,乙同学的得分情况大致是对称的,集中在90多分;甲同学的得分情况除一个特殊得分外,也大致对称,集中在80多分,因此乙同学发挥比较稳定,总体得分情况比甲同学好.6.某同学每天下午打半小时篮球,她把每天进球的情况都记了下来.下面是她从2009年3月12日至4月10日每天打球时进球的记录:23 15 18 15 17 31 21 17 31 18 14 17 16 18 13 18 41 19 19 32 17 18 41 67 52 71 61 80 81 78请根据这批数据绘制出茎叶图来反映这30天中的进球情况.解析:如下图所示.7.某良种培育基地正在培育一种小麦新品种A,将其与原有的一个优良品种B进行对照试验.两种小麦各种植了25亩,所得亩产数据(单位:千克)如下:品种A:357,359,367,368,375,388,392,399,400,405,412,414,415,421,423,423,427,430,430,434,443,445,445,451,454;品种B:363,371,374,383,385,386,391,392,394,394,395,397,397,400,401,401,403,406,407,410,412,415,416,422,430.(1)作出品种A、B亩产量数据的茎叶图.(2)用茎叶图处理现有的数据,有什么优点?(3)通过观察茎叶图,对品种A与B 的亩产量及其稳定性进行比较,写出统计结论.解析:(1)茎叶图如下图所示.(2)用茎叶图处理现有的数据不仅可以看出数据的分布情况,而且还可以看出每组中的具体数据.(3)通过观察茎叶图,可以发现品种A的平均亩产量为411.08千克,品种B的平均亩产量为397.8千克.由此可知,品种A的平均亩产量比品种B的平均亩产量高,但品种A 的亩产量不够稳定,而品种B的亩产量比较集中在其平均亩产量附近.。
(完整版)茎叶图练习题
茎叶图练习题1.下列关于茎叶图的叙述正确的是()(A)将数据的数按位数进行比较,将数大小基本不变或变化不大的作为一个主杆(茎),将变化大的位数作为分枝(叶),列在主杆的后面(B)茎叶图只可以分析单组数据,不能对两组数据进行比较(C)茎叶图更不能表示三位数以上的数据(D)画图时茎要按照从小到大的顺序从下向上列出,共茎的叶可以随意同行列出2.下列关于茎叶图的叙述正确的是()(A)茎叶图可以展示未分组的原始数据,它与频率分布表以及频率分布直方图的处理方式不同(B)对于重复的数据,只算一个(C)茎叶图中的叶是“茎”十进制的上一级单位(D)画图时茎要按照从小到大的顺序从下向上列出,共茎的叶可以随意同行列出3.茎叶图012380 91 3 50 2 3 4 6中,茎2的叶子数为()(A)0 (B)1 (C)2 (D)34.数据8,51,33,39,38,23,26,28,13,16,14的茎叶图是()(A)01234583 4 636 83 8 91(B)1234583 4 636 83 8 91(C)1234583 4 636 83 8 91(D)1234583 4 636 83 8 9115.用茎叶图对两组数据进行比较时()(A)左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写(B)左侧的叶按从大到小的顺序写,右侧的叶也按从大到小的顺序写(C)左侧的叶按从小到大的顺序写,右侧的叶也按从小到大的顺序写(D)左侧的叶按从小到大的顺序写,右侧的叶按从大到小的顺序写6.茎叶图491166794525甲5432119838636438乙中,甲组数据的中位数是()(A)31 (B)5.3323631=+(C)36 (D)7.茎叶图4327538543339865的茎为,叶子最多的茎是。
8.茎叶图4321876532122中所记录的原始数据共有个。
9.在茎叶图9.8.7.6.5.3854196221854322中,样本的中位数为,众数为。
高中数学 课时跟踪检测(十二)茎叶图 苏教版必修3
课时跟踪检测(十二)茎叶图层级一学业水平达标1.在茎叶图中比40大的数据有________个.解析:由茎叶图知比40大的有47,48,49,共3个.答案:32.在下面的茎叶图中茎表示数据的整数部分,叶表示数据的小数部分,则比数7.5小的有________个.解析:比7.5小的有6.1,6.2,6.3,7.2,7.3,7.4,共6个.答案:63.某中学高一(1)班甲、乙两同学在高一学年度的考试成绩如下:从茎叶图中可得出________同学成绩比较好.解析:由图中数据可知甲同学的成绩多在80分以上,而乙相对差一些.答案:甲4.在如图所示的茎叶图表示的数据中,众数和中位数分别是________.解析:把这组数据从小到大排列为12,14,20,23,25,26,30,31,31,41,42,43,所以这组数据众数为31,中位数为26+302=28. 答案:31,285.为缓解车堵现象,解决车堵问题,北京市交通局调查了甲、乙两个交通站的车流量,在2016年5月随机选取了14天,统计每天上午7:30~9:00间各自的车流量(单位:百辆)得到如图所示的茎叶图,根据茎叶图回答以下问题.(1)甲、乙两个交通站的车流量的中位数分别是多少?(2)甲、乙两个交通站哪个站更繁忙?说明理由.(3)试计算甲、乙两交通站的车流量在[10,40]之间的频率.解:根据茎叶图中的数据分析并作出判断.(1)甲交通站的车流量的中位数为58+552=56.5. 乙交通站的车流量的中位数为36+372=36.5. (2)甲交通站的车流量集中在茎叶图的下方,而乙交通站的车流量集中在茎叶图的上方,从数据的分布情况来看,甲交通站更繁忙.(3)甲站的车流量在[10,40]之间的有4天,故频率为414=27, 乙站的车流量在[10,40]之间的有6天,故频率为614=37. 层级二 应试能力达标1.数据123,127,131,151,157,135,129,138,147,152,134,121,142,143的茎叶图中,茎应取________.解析:在茎叶图中叶应是数据中的最后一位,从而茎就确定了.答案:12,13,14,152.在如图所示的茎叶图中落在[20,40]上的频数为________.解析:由茎叶图给出了12个数据,知在[20,40]上有8个.答案:83.甲、乙两名同学学业水平考试的9科成绩如茎叶图所示,请你根据茎叶图判断谁的平均分高________.以看出,x 甲=19(92解析:由茎叶图可+81+89×2+72+73+78×2+68)=80,x 乙=19(91+83+86+88+89+72+75+78+69)≈81.2,x 乙>x 甲,故乙的平均数大于甲的平均数.答案:乙4.从甲、乙两个品种的棉花中各抽测了25根棉花的纤维长度(单位:mm),结果如下: 甲品种:271 273 280 285 285 287 292294 295 301 303 303 307 308 310 314319 323 325 325 328 331 334 337 352乙品种:284 292 295 304 306 307 312313 315 315 316 318 318 320 322 322324 327 329 331 333 336 337 343 356由以上数据设计了茎叶图如图所示根据以上茎叶图,对甲、乙两品种棉花的纤维长度作比较,写出两个统计结论:①________________________________________________________________________;②________________________________________________________________________.解析:由茎叶图可以看出甲棉花纤维的长度比较分散,乙棉花纤维的长度比较集中(大部分集中在312~337之间),还可以看出乙的平均长度应大于310,而甲的平均长度要小于310等,通过分析可以得到答案.答案:①甲棉花纤维的长度比较分散,乙棉花纤维的长度比较集中②甲棉花纤维的长度的平均值小于乙棉花纤维长度的平均值(答案不唯一)5 .某校开展“爱我海西、爱我家乡”摄影比赛,9位评委为参赛作品A给出的分数如茎叶图所示.记分员在去掉一个最高分和一个最低分后,算的平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清.若记分员计算无误,则数字x 应该是________.解析:当x ≥4时,17(89+89+92+93+92+91+94)=6407≠91,∴x <4.∴17(89+89+92+93+92+91+x +90)=91,∴x =1.答案:16.某学校为准备参加市运动会,对本校甲、乙两个田径队中30名跳高运动员进行了测试,并采用茎叶图表示本次测试30人的跳高成绩(单位:cm),跳高成绩在175 cm 以上(包括175 cm)定义为“合格”,跳高成绩在175 cm 以下(不包括175 cm)定义为“不合格”.若用分层抽样的方法从甲、乙两队所有运动员中共抽取5人,则5人中“合格”与“不合格”的人数分别为________.解析:由茎叶图可知,30人中有12人“合格”,有18人“不合格”,用分层抽样的方法,则5人中“合格”与“不合格”的人数分别为2人,3人.答案:2,37.如图是某青年歌手大奖赛上七位评委为甲、乙两选手打出的分数的茎叶图(其中m 为数字0~9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手的平均分数分别为a 1,a 2,则下列结论成立的是________.(填序号)①a 1>a 2;②a 1<a 2;③a 1=a 2;④a 1,a 2的大小与m 无关.解析:甲去掉的两个分数为70和90+m ,故a 1=80+15(5+4+5+5+1)=84. 乙去掉的两个分数为79和93,故a 2=80+15(4+4+6+4+7)=85.故可知②和④正确. 答案:②④8.甲、乙两人在10天中每天加工零件的个数用茎叶图表示如图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,则这10天甲、乙两人日加工零件的平均数分别为________和________.解析:x甲=110×(18+19+20+20+21+22+23+31+31+35)=24,x乙=110×(11+17+19+21+22+24+24+30+30+32)=23.答案:24 239.有关部门从甲、乙两个城市所有的自动售货机中随机抽取了16台,记录了上午8:00~11:00之间各自的销售情况(单位:元):甲:18,8,10,43,5,30,10,22,6,27,25,58,14,18,30,41;乙:22,31,32,42,20,27,48,23,28,43,12,34,18,10,34,23.试用两种不同的方法分别表示上面的数据,并简要说明各自的优点.解:法一:从题目中数据不易直接看出各自的分布情况,为此,我们将以上数据用条形统计图表示,如图甲、乙.法二:茎叶图表示,如图.从法一可以看出,条形统计图能直观地反映数据分布的大致情况,并且能够清晰地表示出各个区间的具体数目.从法二可以看出,用茎叶图表示有关数据,不但可以保留有关信息,而且可以随时记录,给数据的记录和表示都带来方便.10.下面茎叶图是某班在一次测验时的成绩,伪代码用来同时统计女生、男生及全班成绩的平均分.试回答下列问题:(1)在伪代码中,“k=0”的含义是什么?横线①处应填什么?(2)执行伪代码,输出S,T,A的值分别是多少?(3)请分析该班男女生的学习情况.解:(1)全班32名学生中,有15名女生,17名男生,在伪代码中,根据“S←S/15,T←T/17”可推知,“k=1”和“k=0”分别代表男生和女生;S,T,A分别代表女生、男生及全班成绩的平均分;横线①处应填“(S+T)/32”.(2)女生、男生以及全班成绩的平均分分别为S=78,T=77,A≈77.47.(3)15名女生成绩的平均分为78,17名男生成绩的平均分为77.从中可以看出女生成绩比较集中.整体水平稍高于男生;男生中的高分段比女生高,低分段比女生多.相比较男生两极分化比较严重.。
茎叶图练习题
第6课时6.2.3茎叶图分层训练1.对两名学生一周的睡眠情况调查研究发现:甲同学每晚的睡觉时间为19时、21时、21时、24时、02时、01时和20时;乙同学每晚的睡觉时间为22时、21时、21时、22时、23时、24时、和19时。
请作出两名学生睡觉时间的茎叶图,并比较分析,能得出什么结论?2.用茎叶图表示数据,有哪些优缺点?4.非典期间某医院的发热门诊部对一天接待的16名病人的体温进行了测量,得到以下数据:请作出当天病人体温数据的茎叶图,并计算出病人的平均体温。
100份英语试卷,成绩如下(单位:分):列出样本的茎叶图。
思考•运用6.有一个容量为50的样本,其数据的茎叶图表示如下:1 345666788889992 00001122222333344555666677788893 01123将其分成7组并要求(1) 列出样本的频率分布表:(2) 画出频率分布直方图。
本节学习疑时:6.2.3 茎叶图1. 甲 乙21 0 9 1 94110 2 112234从以上茎叶图中,我们发现乙同学的睡眠习惯比甲同学有规律 2.用茎叶图刻画数据有两个优点,一是所有的 数据信息都可以从这个茎叶图中一目了然地看到,比较直观;二是茎叶图便于记录和表示。
茎叶图的缺点在于只有两层,即茎和叶,对于三位数以上的数据,或者有三个层次的数据表示起来就不够方便。
3.茎叶图为4 125 3446 0367997 24667998 023*********9 055677班级最高分为97,最低分为41,平均成绩为76.7 4.当天病人体温的茎叶图为:3756883801255739122355病人的平均体温为38.531255.茎叶图:1 02582 01567333457740266788995011223334445566778889600122333344455667777788889970011235566789998003446669903576.略。
专题04 茎叶图(原卷版)
专题4 茎叶图例1.张老师将某位高三学生10次选填题专测的成绩进行统计,得到的统计结果如图所示,但学习委员在将成绩登记在册的时候将62与68均登记成了65,则两个成绩相比,不变的数字特征是()A.众数B.中位数C.平均数D.方差例2.某社区安置了15个体温检测点,每个检测点每天检测的人数都是随机的,不受位置等因素影响,如图是由某天检测人数绘制的茎叶图,则某个检测点某天检测人数达145及以上的概率是()A.715B.815C.13D.23例3.随着移动互联网的发展,与餐饮美食相关的手机APP软件层出不穷.为调查某两家订餐软件的商家的服务情况,统计了它们订餐“送达时间”(时间:分钟),得到茎叶图如图所示,则()A.甲款APP送餐时间更稳定,中位数为26B.甲款APP送餐时间更稳定,中位数为27C.乙款APP送餐时间更稳定,中位数为31D.乙款APP送餐时间更稳定,中位数为36例4.如图为甲、乙两位同学在5次数学测试中得分的茎叶图,则平均成绩较小的那位同学的成绩的方差为()A.1B.2C.3D.4例5.某团支部随机抽取甲、乙两位同学连续9期“青年大学习”的成绩(单位:分),得到如图所示的成绩茎叶图,关于这9期的成绩,则下列说法正确的是()A.甲成绩的平均数高于乙成绩的平均数B.乙成绩的极差为40C.甲乙两人成绩的众数相等D.甲成绩的中位数为32例6.某校对甲、乙两个数学兴趣小组的同学进行了知识测试,现从两兴趣小组的成员中各随机选取15人的测试成绩(单位:分)用茎叶图表示,如图,根据以上茎叶图,对甲、乙两兴趣小组的测试成绩作比较,下列统计结论正确的有()A.甲兴趣小组测试成绩的平均分高于乙兴趣小组测试成绩的平均分B.甲兴趣小组测试成绩较乙兴趣小组测试成绩更分散C.甲兴趣小组测试成绩的中位数大于乙兴趣小组测试成绩的中位数D.甲兴趣小组测试成绩的众数小于乙兴趣小组测试成绩的众数例7.某赛季甲、乙两名篮球运动员5场比赛得分的茎叶图如图所示,已知甲得分的极差为32,乙得分的平均值为24,则下列结论正确的是()A.8x=B.甲得分的方差是736C.26y=D.乙得分的方差小于甲得分的方差例8.某中学高三年级从甲、乙两个班级各选出8名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班学生成绩的平均分是86,乙班学生成绩的中位数是83,则x y+的值为.例9.某次物理考试,小明所在的学习小组六名同学的分数茎叶图如图所示,发现有一个数字(茎叶图中的)x模糊不清,已知该组的物理平均分为88分,则数字x的值为.例10.如图所示的茎叶图是甲、乙两个代表队各7名队员参加“安全知识竞赛”的成绩,乙队成绩的众数为81m+,从甲、乙两队中各选取1名队员,则两名队员所得分数相同的概率为.例11.某研究机构对8名新型冠状病毒患者的潜伏期(单位:天)调查结果为如图茎叶图所示,则这组数据的平均数减去中位数的差为例12.一次体操比赛中,7位裁判为某运动员打出的分数如茎叶图所示(其中茎表示十位数,叶表示个位数),去掉一个最高分和一个最低分后,剩余数据的平均数为.例13.某班一学习小组8位学生参加劳动技能比赛所得成绩的茎叶图如图所示,那么这8位学生成绩的平均分与中位数的差为 .例14.A ,B 两名同学在5次数学考试中的成绩统计如图的茎叶图所示,若A ,B 两人的平均成绩分别是A x ,B x ,则A x B x (用“>”,“ < “”,“= “”填空)例15.如图所示的茎叶图是甲、乙两个队10场比赛的得分数据,则下列结论:①甲队得分的极差是27;②乙队得分的中位数是38;③乙队得分的众数是43;④甲、乙两队得分在(30,39]分数段频率相等;⑤甲队得分的稳定性比乙队好.其中正确结论的序号为 .例16.“学习强国”是由中央宣传部宣传情研究中心出品的学习平台,分PC 端、手机客户端两大终端,于2019年1月1日上线.某教育行政部门为了了解某校男、女党员教师学习“学习强国”的得分情况,随机调查了该校的18位党员教师,其中男党员教师有9人,女党员教师有9人,这18位党员教师2019年10月份的日均得分(单位:分)如表:(1)根据以上数据完成下面的茎叶图,利用茎叶图判断男党员教师学习“学习强国”的积极性是否比女党员教师高,并说明理由;(2)从这18位日均得分不低于35分的男、女党员教师中各随机抽取一名,求男党员教师的得分高于女党员教师得分的概率.例17.由于疫情,学生在家经过了几个月的线上学习,某高中学校为了了解学生在家学习情况,复学后进行了复学摸底考试,并对学生进行了问卷调查,如表(单位:人)是对高二年级数学成绩及“认为自己在家学习态度是否端正”的问卷调查的统计结果,其中成绩不低于120分为优秀,成绩不低于90分且小于120分的为及格,成绩小于90分的为不及格.按成绩用分层抽样的方法在高二年级中抽取50人,其中优秀的人数为5.(1)求a的值;(2)用分层抽样的方法在及格的学生中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2人,求至少有1人学习不端正的概率;(3)在及格的学生中随机抽取了10人,他们的分数如图所示的茎叶图,已知这10名学生的平均分为104.5,求a b的概率.例18.高新区某高中德育处为了调查学生对“一带一路”的关注情况,在全校组织了“一带一路”的知识问卷调查,并从中随机抽取了12份问卷,得到测试成绩(百分制)的茎叶图如图.(1)写出该样本的中位数,若该校共有3000名学生,试估计该校测试成绩在70分以上的人数;(2)从测试成绩为[70,90]的学生中随机抽取2人,求两位学生的测试成绩均落在[70,80]的概率.例19. 2.5PM标准采用PM是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.我国 2.5世卫组织设定的最宽限值,即 2.5PM日均值在35微克/立方米以下的空气质量为一级;在35微克/立方米与75微克/立方米之间的空气质量为二级(含边界值);在75微克/立方米以上的空气质量为超标.为了解A城市2019年的空气质量情况,从全年每天的 2.5PM日均值数据中随机抽取30天的数据作为样本,日均值如茎叶图所示(十位为茎,个位为叶).(1)求30天样本数据的平均数;(2)从A城市共采集的30个数据样本中,从 2.5PM日均值在[70,90]范围内随机取2天数据,求取到2天的 2.5PM均超标的概率;(3)以这30天的 2.5PM日均值数据来估计一年的空气质量情况,求A城市一年(按365天计算)中空气质量达到一级、二级分别有多少天?(结果四舍五入,保留整数)例20.某中学从甲、乙两个班中各选出7名学生参加数学竞赛,将他们的成绩(满分100分)进行统计分析,绘制成如图所示的茎叶图.已知甲班学生成绩的众数是83,乙班学生成绩的平均数是86.(1)求x,y的值;(2)设成绩在85分以上(含85分)的学生为优秀学生.从甲、乙两班的优秀学生中各取1人,记甲班选取的学生成绩不低于乙班选取的学生成绩为事件A,求事件A发生的概率P(A).例21.在新冠肺炎疫情的影响下,某高中响应“停课不停教,停课不停学”的号召进行线上教学.高一年级的甲、乙两个班中,需根据某次数学预赛成绩选出某班的5名学生参加数学竞赛决赛,已知这次预赛他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班5名学生成绩的平均分是83分,乙班5名学生成绩的中位数是86分.(1)求出x ,y 的值,且分别求甲、乙两个班中5名学生成绩的方差21S 、22S ,从稳定性出发,你认为应该选派哪一个班的学生参加决赛?(2)从成绩在85分及以上的学生中随机抽取2名,求至少有1名来自乙班的概率.例22.某省采用的“312++”模式新高考方案中,对化学、生物、地理和政治等四门选考科目,制定了计算转换T 分(即记入高考总分的分数)的“等级转换赋分规则”(详见附1和附2),具体的转换步骤为:①原始分Y 等级转换;②原始分等级内等比例转换赋分.某校的一次年级统考中,政治、化学两选考科目的原始分分布如表:现从政治、化学两学科中分别随机抽取了20个原始分成绩数据如下: 政治:64 72 66 92 78 66 82 65 76 67 74 80 70 69 84 75 68 71 60 79 化学:72 79 86 75 83 89 64 98 73 67 79 84 77 94 71 81 74 69 91 70 并根据上述数据制作了如下的茎叶图:(1)茎叶图中各序号位置应填写的数字分别是:①应填 ,②应填 ,③应填 ,④应填 ,⑤应填 ,⑥应填 .(2)该校的甲同学选考政治学科,其原始分为82分,乙同学选考化学学科,其原始分为91分.基于高考实测的转换赋分模拟,试分别探究这两位同学的转换分,并从公平性的角度谈谈你对新高考这种“等级转换赋分法”的看法.(3)若从该校政治、化学学科等级为A 的学生中,随机挑选2人次(两科都选,且两科成绩都为A 等的学生,可有两次被选机会),试估计这2人次挑选,其转换分都不少于91分的概率. 附1:等级转换的等级人数占比与各等级的转换分赋分区间.附2:计算转换分T 的等比例转换赋分公式:2211Y Y T T =--(其中:1Y ,2Y 别表示原始分Y 对应等级的原始分区间下限和上限;1T ,2T 分别表示原始分对应等级的转换分赋分区间下限和上限.T 的计算结果按四舍五入取整).。
2019年3月7日 《每日一题》人教必修3-茎叶图-
试卷第1页,总2页…○………____班级:_______…○………绝密★启用前2019年3月7日 《每日一题》人教必修3-茎叶图试卷副标题xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.在如图所示的茎叶图中,由茎2组成的数据的个数为( )A .0B .1C .2D .3试卷第2页,总2页…………○…………答※※题※※…………○…………第II卷(非选择题)请点击修改第II卷的文字说明二、解答题2.为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午8︰00~10︰00各自的点击量,得到如图所示的茎叶图,根据茎叶图回答下列问题.(1)甲、乙两个网站的点击量的极差分别是多少?(2)甲网站的点击量在[10,40]内的频率是多少(保留3位小数)?(3)甲、乙两个网站哪个更受欢迎?并说明理由.本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
参考答案1.D【解析】【分析】由茎2组成的数据为21,21,25,即可得到答案.【详解】由题意,可知由茎2组成的数据有21,21,25,共3个,故选D.【点睛】本题主要考查了茎叶图的应用,其中解答中明确茎叶图的制作和数据的读取是解答本题的关键,着重考查了分析问题和解答问题的能力,属于容易题.2.(1)甲:65,乙:66;(2)0.286;(3)见解析【解析】【分析】(1)根据茎叶图,得到甲乙两网站的最大点击量和最小点击量,即可求解极差;(2)由茎叶图可知,在中,有,共4个数据,即可求解相应的概率;(3)由茎叶图,可知甲网站的点击量集中在茎叶图的下方,而乙网站的点击量集中在茎叶图的上方,即可作出判定.【详解】(1)由茎叶图可知,甲网站最大点击量为73,最小的点击量为8,所以甲网站的点击量的极差为73–8=65,乙网站最大点击量为71,最小的点击量为5,所以乙网站的点击量的极差为71–5=66.(2)由茎叶图可知,在中,有,共4个数据,所以甲网站在内的概率为.(3)由茎叶图,可知甲网站的点击量集中在茎叶图的下方,而乙网站的点击量集中在茎叶图的上方,从数据的分布情况来看,可判定甲网站更受欢迎.【点睛】本题主要考查了古典概型及其概率的计算,以及茎叶图的应用,其中解答正确根据茎叶图读取相应的数据,及注意茎叶图的数据分布特点是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.答案第1页,总1页。
茎叶图高考真题教师版
茎叶图一.选择题(共9小题)1.(2017•山东)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为()A.3,5B.5,5C.3,7D.5,7︒数据的茎叶图如,则这组数据的中位数是() 2.(2015•重庆)重庆市2013年各月的平均气温(C)A.19B.20C.21.5D.233.(2015•山东)为比较甲,乙两地某月14时的气温,随机选取该月中的5天,将这5天中14时的气温数据(单︒制成如图所示的茎叶图,考虑以下结论:位:C)①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的编号为()A.①③B.①④C.②③D.②④4.(2015•湖南)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为135-号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是()A.3B.4C.5D.65.(2013•重庆)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A .2,5B .5,5C .5,8D .8,86.(2013•山东)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x 表示:则7个剩余分数的方差为( )A .1169B .367C .36D 7.(2012•陕西)从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为x 甲,x 乙,中位数分别为m 甲,m 乙,则( )A .x x <乙甲,m m >乙甲B .x x <乙甲,m m <乙甲C .x x >乙甲,m m >乙甲D .x x >乙甲,m m <乙甲8.(2012•陕西)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A .46,45,56B .46,45,53C .47,45,56D .45,47,539.(2010•福建)若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )A .91.5和91.5B .91.5和92C .91和91.5D .92和92二.填空题(共5小题)10.(2018•江苏)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 .11.(2015•湖南)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员成绩由好到差编号为135-号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是 .12.(2012•湖南)如图是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为 .(注:方差2222121[()()()]n s x x x x x x n=-+-+⋯+-,其中x 为1x ,2x ,⋯,n x 的平均数)13.(2010•天津)甲、乙两人在10天中每天加工零件的个数用茎叶图表示如图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,则这10天甲、乙两人日加工零件的平均数分别为 和 .14.(2010•浙江)在如图所示的茎叶图中,甲、乙两组数据的中位数分别是 .三.解答题(共3小题)15.(2013•安徽)为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,现从这两个学校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如图:(Ⅰ)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(Ⅱ)设甲、乙两校高三年级学生这次联考数学平均成绩分别为1x 、2x ,估计12x x -的值.16.(2011•北京)以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.(1)如果8X =,求乙组同学植树棵树的平均数和方差;(注:方差2222121[()()()]n S x x x x x x n=-+-+⋯+-,其中12,,,n x x x x ⋯为的平均数)(2)如果9X =,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.17.(2011•北京)以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.(Ⅰ)如果8X =,求乙组同学植树棵数的平均数和方差;(Ⅱ)如果9X =,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数Y 的分布列和数学期望. (注:方差2222121[()()()]n s x x x x x x n=-+-+⋯+-,其中x 为1x ,2x ,n x ⋯的平均数)茎叶图参考答案与试题解析一.选择题(共9小题)1.(2017•山东)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为()A.3,5B.5,5C.3,7D.5,7【解答】解:由已知中甲组数据的中位数为65,故乙组数据的中位数也为65,即5y=,则乙组数据的平均数为:66,故3x=,故选:A.2.(2015•重庆)重庆市2013年各月的平均气温(C)︒数据的茎叶图如,则这组数据的中位数是()A.19B.20C.21.5D.23【解答】解:样本数据有12个,位于中间的两个数为20,20,则中位数为2020202+=,故选:B.3.(2015•山东)为比较甲,乙两地某月14时的气温,随机选取该月中的5天,将这5天中14时的气温数据(单位:C)︒制成如图所示的茎叶图,考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的编号为()A .①③B .①④C .②③D .②④【解答】解:由茎叶图中的数据,我们可得甲、乙两地某月14时的气温抽取的样本温度分别为: 甲:26,28,29,31,31 乙:28,29,30,31,32;可得:甲地该月14时的平均气温:1(2628293131)295++++=,乙地该月14时的平均气温:1(2829303132)305++++=,故甲地该月14时的平均气温低于乙地该月14时的平均气温;甲地该月14时温度的方差为:(2222221[(2629)(2829)(2929)(3129)3129) 3.65S ⎤=-+-+-+-+-=⎦甲 乙地该月14时温度的方差为:(2222221[(2830)(2930)(3030)(3130)3230)25S ⎤=-+-+-+-+-=⎦乙, 故22S S >乙甲, 所以甲地该月14时的气温的标准差大于乙地该月14时的气温标准差. 故选:B .4.(2015•湖南)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为135-号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是( )A .3B .4C .5D .6【解答】解:由已知,将个数据分为三个层次是[130,138],[139,151],[152,153], 根据系统抽样方法从中抽取7人,得到抽取比例为15,所以成绩在区间[139,151]中共有20名运动员,抽取人数为12045⨯=;故选:B .5.(2013•重庆)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( )A .2,5B .5,5C .5,8D .8,8【解答】解:乙组数据平均数(915182410)516.8y =+++++÷=; 8y ∴=;甲组数据可排列成:9,12,10x +,24,27.所以中位数为:1015x +=,5x ∴=.故选:C .6.(2013•山东)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x 表示:则7个剩余分数的方差为( )A .1169B .367C .36D 【解答】解:由题意知去掉一个最高分和一个最低分后, 所剩数据的数据是87,90,90,91,91,94,90x +. ∴这组数据的平均数是87909091919490917x+++++++=,4x ∴=.∴这这组数据的方差是136(16110099)77++++++=.故选:B .7.(2012•陕西)从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为x 甲,x 乙,中位数分别为m 甲,m 乙,则( )A .x x <乙甲,m m >乙甲B .x x <乙甲,m m <乙甲C .x x >乙甲,m m >乙甲D .x x >乙甲,m m <乙甲【解答】解:甲的平均数568101014181822252730303841433451616x +++++++++++++++==甲, 乙的平均数101218202223232731323434384243484571616x +++++++++++++++==乙, 所以x x <乙甲.甲的中位数为20,乙的中位数为29,所以m m <乙甲 故选:B .8.(2012•陕西)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A.46,45,56B.46,45,53C.47,45,56D.45,47,53【解答】解:由题意可知茎叶图共有30个数值,所以中位数为第15和16个数的平均值:4547462+=.众数是45,极差为:681256-=.故选:A.9.(2010•福建)若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )A.91.5和91.5B.91.5和92C.91和91.5D.92和92【解答】解:由茎叶图可知:这组数据为87,89,90,91,92,93,94,96,所以其中位数为919291.52+=,平均数为1(8789909192939496)91.58+++++++=,故选:A.二.填空题(共5小题)10.(2018•江苏)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为90.【解答】解:根据茎叶图中的数据知,这5位裁判打出的分数为89、89、90、91、91,它们的平均数为1(8989909191)905⨯++++=.故答案为:90.11.(2015•湖南)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员成绩由好到差编号为135-号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是4 .【解答】解:根据茎叶图中的数据,得; 成绩在区间[139,151]上的运动员人数是20, 用系统抽样方法从35人中抽取7人, 成绩在区间[139,151]上的运动员应抽取 207435⨯=(人). 故答案为:4.12.(2012•湖南)如图是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为 6.8 .(注:方差2222121[()()()]n s x x x x x x n=-+-+⋯+-,其中x 为1x ,2x ,⋯,n x 的平均数)【解答】解:根据茎叶图可知这组数据的平均数是89101315115++++=∴这组数据的方差是222221[(811)(911)(1011)(1311)(1511)]5-+-+-+-+-1[941416]5=++++ 6.8=故答案为:6.8.13.(2010•天津)甲、乙两人在10天中每天加工零件的个数用茎叶图表示如图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,则这10天甲、乙两人日加工零件的平均数分别为 24 和 .【解答】解:由茎叶图知, 甲加工零件个数的平均数为1918202212223312352410++⨯++++⨯+=;乙加工零件个数的平均数为1917112122242302322310+++++⨯+⨯+=.故答案为:24;23.14.(2010•浙江)在如图所示的茎叶图中,甲、乙两组数据的中位数分别是 45,46 .【解答】解:由茎叶图可得甲组共有9个数据中位数为45 乙组共9个数据中位数为46 故答案为45、46三.解答题(共3小题)15.(2013•安徽)为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,现从这两个学校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如图:(Ⅰ)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(Ⅱ)设甲、乙两校高三年级学生这次联考数学平均成绩分别为1x 、2x ,估计12x x -的值. 【解答】解:()I 设甲校高三年级总人数为n ,则300.05n=,600n ∴=, 又样本中甲校高三年级这次联考数学成绩的不及格人数为5, ∴估计甲校高三年级这次联考数学成绩的及格率551306-=; ()II 由茎叶图可知,174013504246092670922805290220843030x +++⨯++⨯++⨯++⨯++⨯==; 254014503326010337010208059020843030x +++⨯++⨯++⨯++⨯+==, ∴利用样本估计总体,故估计12x x -的值为0.16.(2011•北京)以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.(1)如果8X =,求乙组同学植树棵树的平均数和方差; (注:方差2222121[()()()]n S x x x x x x n=-+-+⋯+-,其中12,,,n x x x x ⋯为的平均数) (2)如果9X =,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.【解答】解:(1)当8X =时,由茎叶图可知乙组同学的植树棵树是8,8,9,10,∴平均数是889103544X +++==, 方差是222213535353511[(8)(8)(9)(10)]4444416⨯-+-+-+-=.(2)由题意知本题是一个等可能事件的概率.若9X =,分别从甲、乙两组中随机选取一名同学,共有16种结果,满足条件的事件是这两名同学的植树总棵数为19,包括:(9,10),(11,8),(11,8),(9,10)共有4种结果,∴根据等可能事件的概率公式得到41164P ==. 17.(2011•北京)以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.(Ⅰ)如果8X =,求乙组同学植树棵数的平均数和方差;(Ⅱ)如果9X =,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数Y 的分布列和数学期望. (注:方差2222121[()()()]n s x x x x x x n=-+-+⋯+-,其中x 为1x ,2x ,n x ⋯的平均数)【解答】解:(Ⅰ)当8X =,乙组同学植树棵数是8,8,9,10, 平均数是889103544X +++==, 方差为222213535353511[(8)(8)(9)(10)]4444416⨯-+-+-+-=;(Ⅱ)当9X =时,甲组同学的植树棵数是9,9,11,11; 乙组同学的植树棵数是9,8,9,10,分别从甲和乙两组中随机取一名同学,共有4416⨯=种结果, 这两名同学植树的总棵数Y 可能是17,18,19,20,21, 事件17Y =,表示甲组选出的同学植树9棵,乙组选出的同学植树8棵, 21(17)168P Y ∴=== 1(18)4P Y == 1(19)4P Y == 1(20)4P Y ==, 1(21)8P Y ==∴随机变量的期望是17181920211984448EY =⨯+⨯+⨯+⨯+⨯=.。
2.2.3 茎叶图
茎叶图1.茎叶图中当数据是两位有效数字时,用中间的数字表示________位数,即第一个有效数字,两边的数字表示________位数,即第二个有效数字.解析 茎叶图中当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字.答案 十 个2.某篮球运发动在一个赛季的40场比赛中的得分的茎叶图如以下图,那么中位数与众数分别为________、________.解析 由题中茎叶图可知这40个数据中,中间两个数据都是23. 因此中位数为23+232=23.这40个数据中23出现的次数最多共4次,因此众数为23. 答案 23 233.某赛季,甲、乙两名篮球运发动都参加了11场比赛,他们每场比赛得分的情况用如以下图的茎叶图表示,那么甲、乙两名运发动得分的中位数分别________.解析 数据的个数为奇数时,中位数为最中间的数据. 答案 19、13解析 数据的个数为偶数时,中位数为最中间的两个数据的平均数. 答案 23、195.某市对上、下班交通情况做抽样调查,上、下班时间各抽取了12辆机动车行驶时速(km/h)如以下图,那么上、下班时间的中位数分别是________和________.解析将两组数据分别按从小到大排列,如上班时间的数据为:18,20,21,26,27,28,28,30,32,33,35,40,找出中间两个数为28,28,那么其中位数为28,同理得出下班时间的中位数为28.答案28,286.画出数据8,11,11,12,21,24,29,30,32的茎叶图.解综合提高限时30分钟解析由茎叶图可知:甲班身高集中于160~179之间,而乙班身高集中于170~180之间;因此乙班平均身高高于甲班.答案乙8.甲、乙两个小组各8名同学的英语口语测试成绩的茎叶图如以下图.甲、乙两组的平均数与中位数之差较大的组是________.解析由茎叶图可知,甲的平均数和中位数分别是83.625和83.5,乙的平均数和中位数分别是82.25和81,故乙的平均数和中位数的差较大.答案乙9.一次选拔运发动,测得7名选手的身高(:cm)分布茎叶图如图,记录的平均身高为177 cm ,有一名候选人的身高记录不清楚,其末位数记为x ,那么x 的值为________.解析10+11+0+3+x +8+97=7,∴x =8.答案 810.某校开展“爱我海西、爱我家乡〞摄影比赛,9位评委为参赛作品A 给出的分数如以下图所示.记分员在去掉一个最高分和一个最低分后,算得平均分为91.复核员在复核时,发现有一个数字(茎叶图中的x )无法看清.假设记分员计算无误,那么数字x 应该是________.解析 当x ≥4时,89+89+92+93+92+91+947=6407≠91,当x <4时,89+89+92+93+90+x +92+917=91,∴x =1. 答案 111.从高二年级的甲、乙两个班的期末成绩中每班任意抽取20名学生的数学成绩如下(总分150分):甲班:120,118,135,134,140,146,108,110,98,88,142,126,118,112,95,103,148,92,121,132; 乙班:138,124,147,96,108,117,125,137,119,108,132,121,97,104,114,135,127,124,135,107.试用茎叶图分析,哪个班成绩比较稳定.解 茎叶图如以下图(以十位百位为茎,个位为叶):从茎叶图可以看出:尽管甲班有4名同学超过140分,但成绩较乙班分散一些,所以乙班的成绩比较集中,比较稳定.12.参加某赛季的甲、乙两支球队,统计两队队员的身高(:cm)如下:甲队队员:194,187,199,207,203,205,209,199,183,215,219,206,201,208;乙队队员:179,192,218,223,187,194,205,207,185,197,199,209,214,189.(1)用茎叶图表示两队队员的身高;(2)根据茎叶图判断哪个队队员的身高整齐一些.解(1)茎叶图如下(以十位和百位为茎,个位为叶):(2)甲队队员的身高整齐一些.13.(创新拓展)下面是甲、乙两名射击运发动在15次射击中所得的环数(每次打5发子弹)甲:29 35 41 41 41 42 43 45 45 45 46 47 49 49 50乙:30 33 33 35 37 38 42 44 44 45 46 46 46 47 50画出两人射击环数的茎叶图,并比较两位射手的射击水平.解茎叶图如下:由图计算x甲=43.2,x乙≈41.甲、乙平均击中环数甲比乙高,且甲运发动成绩多数集中在40多环上,比较集中.乙运发动成绩集中在30多环与40多环之间,较分散.所以,甲的射击水平较好,且较稳定.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
茎叶图练习题
1.下列关于茎叶图的叙述正确的是 ( ) (A )将数据的数按位数进行比较,将数大小基本不变或变化不大的作为一个主杆(茎),将变化大的位数作为分枝(叶),列在主杆的后面 (B )茎叶图只可以分析单组数据,不能对两组数据进行比较 (C )茎叶图更不能表示三位数以上的数据
(D )画图时茎要按照从小到大的顺序从下向上列出,共茎的叶可以随意同行列出 2.下列关于茎叶图的叙述正确的是 ( ) (A )茎叶图可以展示未分组的原始数据,它与频率分布表以及频率分布直方图的处理方式不同
(B )对于重复的数据,只算一个
(C )茎叶图中的叶是“茎”十进制的上一级单位
(D )画图时茎要按照从小到大的顺序从下向上列出,共茎的叶可以随意同行列出
3.茎叶图
01238
0 91 3 50 2 3 4 6
中,茎2的叶子数为 ( )
(A )0 (B )1 (C )2 (D )3 4.数据8,51,33,39,38,23,26,28,13,16,14的茎叶图是
( )
(A )
01234583 4 6
3 6 83 8 91
(B )
012345
83 4 6
3 6 83 8 91
(C )01234583 4 63 6 83 8 901
(D )
01234583 4 6
3 6 83 8 911
5.用茎叶图对两组数据进行比较时
( )
(A )左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写 (B )左侧的叶按从大到小的顺序写,右侧的叶也按从大到小的顺序写 (C )左侧的叶按从小到大的顺序写,右侧的叶也按从小到大的顺序写 (D )左侧的叶按从小到大的顺序写,右侧的叶按从大到小的顺序写
6.茎叶图0 4 9 1 1 6 6 7 94 5 2 5
甲 5432101
9 8 38 6 36
4 38
乙
中,甲组数据的中位数是
( )
(A )31 (B )
5.332
3631=+(C )36 (D )
7.茎叶图4327 5 38 5 4 3 3 39
8 6 5 0的茎为 ,叶子最多的茎是 。
8.茎叶图
43218 7 6 53 2 12 20
中所记录的原始数据共有 个。
9.在茎叶图9.8.7.6.5.3
8 5 4 1 09 6 2 2 18
5 4 3 22
中,样本的中位数为 ,众数为 。
10.一个班的语文成绩的茎叶图为
98761
7 5 3 3 2 09 7 6 5 5 5 39
8 8 7 6 4 4 3 0,则优秀率(80及以上)为 ,
最低分是 。
11.为了了解各自受欢迎的程度,甲、乙两个网站分别随机选取了14天,记录了下午00:2~
请你用茎叶图表示上面的数据,并据此说明哪个网站更受欢迎。
12.有一个容量为50的样本,其数据的茎叶图表示如下:
3213
2 1 1 09 8 8 8 7 7 7 6 6 6 6 5 5 5 4 4
3 3 3 3 2 2 2 2 2 1 1 0 0 0 0
9 9 9 8 8 8 8 7 6 6 6 5 4 3,将其分成7个组并要求:(1)列出样本的频率分布表;(2)画出频率分布直方图。