2020届安徽省毛坦厂中学高三12月月考试题 数学(理)(应届)(PDF版)
安徽省毛坦厂中学2020届高三12月月考试题 数学(理)(应届) Word版含答案
2019 2020学年度高三年级12月份月考应届理科数学试卷命题人:李大乐 审题人:一、选择题(本题共12小题,每小题5分,共60分,每小题只有一个选项符合题意)1.i 1i =1i i -+- ( ) A .11i 22-+ B .11i 22- C .31i 22-- D .13i 22--2.已知定义在 上的函数 满足 ,且 为偶函数,若 在 内单调递减,则下面结论正确的是( )A .B .C .D .3、已知两个等差数列{}{}n n b a 和的前n 项和分别为n n T S 和,且n n T n S n )237()1+=+(,则使得nn b a为整数的正整数n 的个数是( ) A. 2 B. 3 C. 4 D. 5 4.某几何体的三视图如图所示(单位: ),则这个几何体的体积为( )第4题图 第5题图A .B .C .316cmD .5.已知函数()2sin()(0,||)f x x ωϕωϕπ=+><的部分图象如图所示,且(,1),(,1)2A B ππ-,则ϕ的值为( ) A .56πB .6πC .6π-D .56π-6.的内角的对边分别为.若成等比数列,且,则( )A .B .C .D .7.不等式2334a a x bx -≤++-(其中[]0,1b ∈)对任意实数x 恒成立,则实数a 的取值范围为( ) A .](),14,⎡-∞-⋃+∞⎣ B .[]1,4- C .[]1,2 D .](),12,⎡-∞-⋃+∞⎣8.已知函数()()()()24312311x ax x f x a x x ⎧-+<⎪=⎨-+≥⎪⎩在x ∈R 内单调递减,则的取值范围是( ).A .10,2⎛⎤⎥⎝⎦ B .12,23⎡⎫⎪⎢⎣⎭C .2,13⎛⎤ ⎥⎝⎦D .[)1,+∞ 9.已知0x >,0y >,lg 2lg8lg 2x y +=,则113xy+的最小值是( )A .2B .C .3D .4 10.平面内有三个向量,其中与夹角为120°,与的夹角为30°,且,若,(λ,μ∈R )则( )A .λ=4,μ=2B .C .D .11.中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑.如图为一个阳马与一个鳖臑的组合体,已知PA ⊥平面ABCE ,四边形ABCD 为正方形,2AD=,1ED =,若鳖臑P ADE -,则阳马P ABCD -的外接球的表面积等于第10题图 第11题图 第12题图A .18πB .17π C.16π D.15π12..如图,在Rt △ABC 中,AC=1,BC=x ,D 是斜边AB 的中点,将△BCD 沿直线CD 翻折,若在翻折过程中存在某个位置,使得CB ⊥AD ,则x 的取值范围是( )A .(0,]B .(,2]C .(,2] D .(2,4]二、填空题13.已知函数π()sin(π)0,0,2f x x a ωϕωϕ⎛⎫=+≠>≤ ⎪⎝⎭,直线y a =与()fx 的图象的相邻两个交点的横坐标分别是2和4,现有如下命题: ①该函数在[2,4]上的值域是[]a ;②在[2,4]上,当且仅当3x =时函数取最大值;③该函数的最小正周期可以是83; ④()f x 的图象可能过原点.其中的真命题有__________.(写出所有真命题的序号)14.记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. 求S n _________15.数列{}n a 中,11a =,以后各项由公式2123...n a a a a n ⋅⋅⋅⋅=给出,则35a a +等于_____.16.已知2:2310p x x -+≤,2:(21)(1)0q x a x a a -+++≤.若p ⌝是q ⌝的必要不充分条件,则实数a 的取值范围是__. 三、解答题17.已知函数2()cos cos 1f x x x x b ωωω=⋅+++. (1)若函数()f x 的图象关于直线6x π=对称,且[]0,3ω∈,求函数()f x 的单调递增区间;(2)在(1)的条件下,当70,12x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 有且只有一个零点,求实数b 的取值范围.18.如图,在直角梯形CD AB 中,//CD AB ,D AB ⊥A ,且1D CD 12AB =A ==.现以D A 为一边向梯形外作矩形D F A E ,然后沿边D A 将矩形D F A E 翻折,使平面D F A E 与平面CD AB 垂直.(1)求证:C B ⊥平面D B E ; (2)若点D 到平面C BEF D -B E 的体积. 19..已知x >0,y >0,且2x +8y -xy =0,求:(1)xy 的最小值; (2)x +y 的最小值.20.在直角梯形PBCD 中,,4,2,2====∠=∠PD CD BC C D πA 为PD 的中点,如图.将△PAB沿AB 折到△SAB 的位置,使SB ⊥BC ,点E 在SD 上,且SD SE 31=,如图.(Ⅰ)求证:SA ⊥平面ABCD ;(Ⅱ)求二面角E ﹣AC ﹣D 的正切值.21.已知以1a 为首项的数列{}n a 满足:11n n a a +=+(*n N ∈).(1)当113a =-时,且10n a -<<,写出2a 、3a ;(2)若数列{}n a (110n ≤≤,*n N ∈)是公差为1-的等差数列,求1a 的取值范围;22已知函数f (x )=λln x -e -x (λ∈R).(1)若函数f (x )是单调函数,求λ的取值范围;(2)求证:当0<x 1<x 2时,1211112x x e e xx ->---2019 2020学年度高三年级12月份月考13.④ 14.n n S n 82-=15.611616.10,2⎡⎤⎢⎥⎣⎦17..试题解析:(1)函数()2cos cos 1f x x x x b ωωω=+++ 3sin 262x b πω⎛⎫=+++ ⎪⎝⎭,......................2分 ∵函数()f x 的图象关于直线6x π=对称,∴2662k πππωπ⋅+=+,k Z ∈且[]0,3ω∈,∴1ω=(k Z ∈),.由222262k x k πππππ-≤+≤+解得36k x k ππππ-≤≤+(k Z ∈),.....................4分函数()f x 的单调增区间为,36k k ππππ⎡⎤-+⎢⎥⎣⎦(k Z ∈)......................5分(2)由(1)知()3sin 262f x x b πω⎛⎫=+++ ⎪⎝⎭,∵70,12x π⎡⎤∈⎢⎥⎣⎦,∴42,663x πππ⎡⎤+∈⎢⎥⎣⎦, ∴2,662x πππ⎡⎤+∈⎢⎥⎣⎦,即0,6x π⎡⎤∈⎢⎥⎣⎦函数()f x 单调递增;42,623x πππ⎡⎤+∈⎢⎥⎣⎦,即7,612x ππ⎡⎤∈⎢⎥⎣⎦函数()f x 单调递减......................7分 又()03f f π⎛⎫= ⎪⎝⎭,∴当03f π⎛⎫> ⎪⎝⎭ 712f π⎛⎫≥ ⎪⎝⎭或06f π⎛⎫= ⎪⎝⎭时,函数()f x 有且只有一个零点,即435sin sin 326b ππ≤--<或3102b ++=, ∴352,22b ⎛⎤⎧⎫∈-⋃- ⎨⎬⎥ ⎩⎭⎝⎦.............................................10分 18.(1)见解析;(2)61. 解析:(1)证明:在矩形D F A E 中,D D E ⊥A 因为面D F A E⊥面CD AB ,所以D E ⊥面CD AB ,所以D C E ⊥B又在直角梯形CD AB 中,D 1AB =A =,CD 2=,DC 45∠B =,所以C B = 在CD ∆B 中,D C B =B =CD 2=,.........................................4分所以:222D C CD B +B = 所以:C D B ⊥B ,所以:C B ⊥面D B E ...................................................6分(2)由(1)得:面D BE ⊥面C B E , 作D E ⊥BE 于H ,则D H ⊥面C B E所以:D 3H =.........................................8分 在D ∆B E 中,D D D B ⋅E =BE⋅HD E =,解得D 1E = 所以:F D FD 111V V 1326-B E B-E ==⨯⨯=........................................12分19.解 (1)由2x +8y -xy =0,得8x +2y =1,又x >0,y >0,则1=8x +2y ≥28x ·2y =8xy,得xy ≥64, 当且仅当x =4y ,即x =16,y =4时等号成立..........................................6分(2)解法一:由2x +8y -xy =0,得x =8yy -2,因为x >0,所以y >2,则x +y =y +8y y -2=(y -2)+16y -2+10≥18,当且仅当y -2=16y -2,即y =6,x =12时等号成立.........................................12分解法二:由2x +8y -xy =0,得8x +2y =1,则x +y =⎝ ⎛⎭⎪⎫8x +2y ·(x +y )=10+2x y +8y x ≥10+22x y ·8y x =18,当且仅当y =6,x =12时等号成立..........................................12分20.(Ⅰ)证明见解析(Ⅱ)【解析】试题分析:(法一)(1)由题意可知,翻折后的图中SA⊥AB①,易证BC⊥SA②,由①②根据直线与平面垂直的判定定理可得SA⊥平面ABCD;.........................................4分(2)(三垂线法)由考虑在AD上取一点O,使得,从而可得EO∥SA,所以EO⊥平面ABCD,过O作OH⊥AC交AC于H,连接EH,∠EHO为二面角E﹣AC﹣D的平面角,在Rt△AHO 中求解即可(法二:空间向量法)(1)同法一(2)以A为原点建立直角坐标系,易知平面ACD的法向为,求平面EAC的法向量,代入公式求解即可解法一:(1)证明:在题平面图形中,由题意可知,BA⊥PD,ABCD为正方形,所以在翻折后的图中,SA⊥AB,SA=2,四边形ABCD是边长为2的正方形,因为SB⊥BC,AB⊥BC,SB∩AB=B所以BC⊥平面SAB,又SA⊂平面SAB,所以BC⊥SA,又SA⊥AB,BC∩AB=B所以SA⊥平面ABCD,(2)在AD上取一点O,使,连接EO因为,所以EO∥SA因为SA⊥平面ABCD,所以EO⊥平面ABCD,过O作OH⊥AC交AC于H,连接EH,则AC⊥平面EOH,所以AC⊥EH.所以∠EHO为二面角E﹣AC﹣D的平面角,.在Rt△AHO中,∴,即二面角E﹣AC﹣D的正切值为.........................................12分解法二:(1)同方法一(2)解:如图,以A为原点建立直角坐标系,A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),S(0,0,2),E(0,)∴平面ACD的法向为.........................................6分设平面EAC的法向量为=(x,y,z),由n ACn AE⎧⋅=⎪⎨⋅=⎪⎩,所以,可取所以=(2,﹣2,1)..........................................9分所以所以即二面角E﹣AC﹣D的正切值为.........................................12分21.(1)223a=-,313a=-;(2)19a≤-【解析】(1)因为以1a为首项的数列{}n a满足:11n na a+=+,113a=-,10na-<<,所以21213a a=+=,所以223a=-;由32113a a=+=得313a=-;...........4分(2)因为数列{}n a(110n≤≤,*n N∈)是公差为1-的等差数列,所以111n n na a a+=-=+,所以()()2211n na a-=+,.......................6分所以22n n a a -=,所以0n a ≤, 所以n na a =-, .........................................8分故()11n a a n -=---,所以()110n a a n =+-≤, 因为110n ≤≤, .........................................10分 所以由题意只需:10190a a =+<,故19a ≤-..........................................12分22.解 (1)函数f (x )的定义域为(0,+∞),∵f (x )=λln x -e -x ,∴f ′(x )=λx +e -x =λ+x e -x x,∵函数f (x )是单调函数,∴f ′(x )≤0或f ′(x )≥0在(0,+∞)上恒成立,....2分①当函数f (x )是单调递减函数时,f ′(x )≤0, ∴λ+x e -x x ≤0,即λ+x e -x ≤0,λ≤-x e -x =-xe x , 令φ(x )=-xe x ,则φ′(x )=x -1e x ,当0<x <1时,φ′(x )<0,当x >1时,φ′(x )>0,则φ(x )在(0,1)上单调递减,在(1,+∞)上单调递增,∴当x >0时,φ(x )min =φ(1)=-1e ,∴λ≤-1e ;.........................................4分②当函数f (x )是单调递增函数时,f ′(x )≥0, ∴λ+x e -x x ≥0,即λ+x e -x ≥0,λ≥-x e -x =-x e x ,由①得φ(x )=-xe x 在(0,1)上单调递减,在(1,+∞)上单调递增,又φ(0)=0,x →+∞时,φ(x )<0,∴λ≥0.综上,λ≤-1e 或λ≥0..........................................6分(2)证明:由(1)可知,当λ=-1e 时,f (x )=-1e ln x -e -x 在(0,+∞)上单调递减,∵0<x 1<x 2,∴f (x 1)>f (x 2),即-1e ln x 1-e -x 1>-1e ln x 2-e -x 2,∴e -x 2-e -x 1>ln x 1-ln x 2.要证e 1-x 2-e 1-x 1>1-x 2x 1.只需证ln x 1-ln x 2>1-x 2x 1,即证ln x 1x 2>1-x 2x 1,令t =x 1x 2,t ∈(0,1),则只需证ln t >1-1t ,.........................................10分令h (t )=ln t +1t -1,则当0<t <1时,h ′(t )=t -1t2<0,∴h (t )在(0,1)上单调递减,又h (1)=0,∴h (t )>0,即ln t >1-1t ,得证....................12分。
2020届安徽省毛坦厂中学高三(应届)年级上学期12月月考英语试题及答案
绝密★启用前安徽省毛坦厂中学2020届高三(应届)年级上学期12月月考联考英语试题本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。
考试时间120分钟。
第Ⅰ卷(共90分)第一部分听力(共两节,满分20分)第二部分阅读理解(共两节,满分40分)第一节(共15小题; 每小题2分,满分30分)阅读下列短文,从每题所给的四个选项(A 、B 、C 和D)中,选出最佳选项,并在答题卡上将该项涂黑。
AEducational Programs for KidsAre you interested in helping your child continue his or her education beyond the typical school day?If so,then educational programs for kids may be what you're looking for. Where to Find Educational Programs?Many kids who are struggling in school may benefit from an after-school tutoring session or homework club.Check with your child's school,your local library or the park district for a list of available programs.You can also check with the local Boys and Girls Club,YMCA,church or youth center.Depending on your child's interests and strengths,consider art,community service,drama,music,creative writing,sports,cooking or environmental programs.What Educational Programs Are Provided by Organizations?The organizations mentioned above provide educational programs for kids,such as a community your child can be a part of and programs that focus on education,health,leadership,recreation and fitness.Another possibility is the Boy Scouts of America or the Girl Scouts.These are two separate organizations that can potentially provide your child with a sense of accomplishment,self-confidence and belonging.Both organizations will provide your child with many learning experiences and activities both indoors and outdoors.What Kind of Program Is Best for My Child?The type of educational program that's best for your child is subjective and based on many factors,including your child's age.If your child is in primary school,educational programs can help him or her develop as a person and gain leadership skills,a sense ofself-worth and the ability to cooperate with others.By the time your child is in high school,his or her involvement with educational programs and other extracurricular activates can be key elements when your child is applying to college.When you help your child to pick an educational program,carefully consider what your child needs and what every option offers.21 How should a parent choose a program that suits his child?A. Based on the child's age and needs.B. Considering what organization offers it.C. According to the child's school performance.D. Depending on the location of the program.22 What is the best program for a child according to the author?A. It must promote the child's leadership skills.B. It can contribute to applying to college.C. There is no standard answer to the question.D. There are activities a child likes best.23 Who is this text probably written for?A. Teachers.B. Parents.C. School kids.D. Program organizers.BSince the age of three,Chelsie Hill had dreamed of becoming a dancer. “The only thing I loved was dance,” she said. In 2010,however,a car accident left her paralyzed from the waist down. For Hill,it was not the end of a dancing career but the beginning.Hill danced in her wheelchair right alongside her nondisabled high school dance team. It definitely took a lot of learning and patience to dance in a wheelchair.After graduation,Hill met people online who had suffered various injuries but shared her determination,and she invited them to dance with her. It was an amazing experience for her.In 2014 Los Angeles,she formed a team of dancers with disabilities she called theRollettes. “I want to break down the stereotype of wheelchair users and show that dance is dance,wheth er you’re walking or you’re rolling,” she said. Dancing on wheels,the Rollettes discovered,can be just as fast-paced,artful,and fulfilling as the foot-based variety.Hill has attained what many people never will: her childhood dream. But the Rollettes have helped her find something else just as fulfilling. Every year she holds a dance camp for wheelchair users of all ages and abilities. She calls it the Rollettes Experience,and in 2019,173 participants from ten countries attended.For many,it was th e first time they’d felt they belonged. Steph Aiello said that working with Hill challenged her to be more independent. Edna Serrano said being part of the Rollettes team gave her the courage to get behind the wheel of a car because she had more confidence.The dancers aren’t the only ones feeling inspired. One woman saw the team competing and commented,“You guys are so awesome! I’m in tears when you rock! To be in a wheelchair can still be so beautiful!”24. What do we know about Chelsie Hill from the first two paragraphs?A. She got seriously injured in a dancing match.B. She stopped dancing right after a car accident.C. She dreamed of being a dancer at a young age.D. She danced in a disabled team in high school.25. What does the underlined word “stereotype” in paragraph 4 refer to?A. Conservative views.B. Improper behaviors.C. Incurable disabilities.D. Physical weaknesses.26. What do we know about the Rollettes Experience?A. Audience spoke ill of the competition.B. Participants benefited greatly from it.C. It is aimed to select the best dancers.D. It made Hill’s ch ildhood dream fulfilled.27. What can be a suitable title for the text?A. Chelsie Hill,An Artful DancerB. Disability,Good for DancingC. Help others; Help YourselfD. Attaining Dancing Dream In WheelchairCUniversity of Pennsylvania researchers say that for the first time they have linked social media use to increases in depression and loneliness.The idea that social media is anything but social when it comes to mental health has been talked about for years,but not many studies have managed to actually link the two.To do that,Penn researchers,led by psychologist Melissa Hunt,designed a study that focused on WeChat,Snapchat and Instagram.The study was conducted with 143 participants,who before they began,completed a mood survey and sent along photos of their battery screens,showing how often they were using their phones to access social media."We set out to do a much more complete study which attempts to imitate real life." Hunt said.The study divided the participants into two groups:The first group was allowed to maintain their normal social media habits.The other,the control group,was restricted to 10 minutes per day on social media.The restrictions were put in place for three weeks and then the participants returned and were tested for outcomes such as fear of missing out,anxiety,depression and loneliness.The results showed a very clear link between social media use and increased levels of depression and loneliness."Using less social media than you normally do would lead to significant decreases in both depression and loneliness," Hunt said.Social media invites what Hunt calls "downward social comparison." "When you're online,it can sometimes seem that everyone else is cooler and having more fun and included in more things and you're left out," Hunt said.And that's just generally discouraging."Every minute you spend online is a minute you are not doing your work or not meeting a friend for dinner or having a deep conversation with your roommate." And these real life activities are the ones that can encourage self﹣esteem and self﹣worth,Hunt added."People are on their devices,and that's not going to change," she said.But as in life,a bit of control goes a long way.28 Before the study was conducted,the participants completed a survey to.A. imitate people's real lifeB. link loneliness to depressionC. show their use of social mediaD. prove social media is important29 The results of the study showed using less social media would result in.A. people's fear of missing outB. higher levels of depressionC. obvious relief in lonelinessD. lower levels of happiness。
2020届高三12月月考数学(理)试题+参考答案
2020届高三12月月考数学试卷(理科)说明:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第(1)页至第(3)页,第Ⅱ卷第(4)页至第(6)页。
2、本试卷共150分,考试时间120分钟。
第Ⅰ卷(选择题,共60分)注意事项:1、答第Ⅰ卷前,考生务必将自己的姓名、班级填涂在答题卡上,贴好条形码。
答题卡不要折叠2、每小题选出答案后,用2B 铅笔把答题卡上对应的题目标号涂黑。
答在试卷上无效。
3、考试结束后,监考人员将试卷答题卡收回。
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}2|0|2M x x x N x x =-=<,<,则 ( )A .M N ⋂=∅B .M N M ⋂=C .M N M ⋃=D .M N R =U2. “”是“方程表示双曲线”的 ( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件3.正项等差数列{}n a 中的11a ,4027a 是函数()3214433f x x x x =-+-的极值点,则20192log a =( ) A .2B .3C .4D .54.函数1sin cos (0)y x a x a =+>的图象是由函数25sin 5cos y x x =+的图像向左平移ϕ个单位得到的,则cos ϕ=( )A .35B .45C 32D 225.新高考方案规定,普通高中学业水平考试分为合格性考试(合格考)和选择性考试(选择考).其中“选择考”成绩将计入高考总成绩,即“选择考”成绩根据学生考试时的原始卷面分数,由高到低进行排序,评定为A 、B 、C 、D 、E 五个等级.某试点高中2018年参加“选择考”总人数是2016年参加“选择考”总人数的2倍,为了更好地分析该校学生“选择考”的水平情况,统计了该校2016年和2018年“选择考”成绩等级结果,得到如下图表:针对该校“选择考”情况,2018年与2016年比较,下列说法正确的是 ( )A .获得A 等级的人数减少了B .获得B 等级的人数增加了1.5倍C .获得D 等级的人数减少了一半D .获得E 等级的人数相同6.设()0sin cos a x x dx π=+⎰,且21nx ax ⎛⎫- ⎪⎝⎭的展开式中只有第4项的二项式系数最大,那么展开式中的所有项的系数之和是 ( ) A .1 B .1256 C .64 D .1647.直线(1)(2)0()x y R λλλλ+-++=∈恒过定点A ,若点A 在直线20mx ny ++=上,其中0m >,0n >,则21m n+的最小值为 ( ) A .22B .4C .52D .928.《九章算术》是我国古代的数学巨著,其中《方田》章给出了计算弧田面积所用的经验公式为:弧田面积12=⨯(弦×矢+矢2),弧田(如图阴影部分所示)是由圆弧和弦围成,公式中的“弦”指圆弧所对的弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为23π,矢为2的弧田,按照上述方法计算出其面积是 ( )A .2+43B .13+2C .2+83D .4+839.执行如图所示的程序框图,则输出n 的值是 ( )A .3B .5C .7D .910.已知函数()sin (0)f x x ωω=>,点A ,B 分别为()f x 图像在y 轴右侧的第一个最高点和第一个最低点,O 为坐标原点,若OAB ∆为锐角三角形,则ω的取值范围为( )A .30,2π⎛⎫⎪ ⎪⎝⎭B .3,22ππ⎛⎫⎪ ⎪⎝⎭C .0,2π⎛⎫⎪⎝⎭D .,2π⎛⎫+∞ ⎪⎝⎭11.设函数()f x 在R 上存在导函数'()f x ,x R ∀∈,有3()()f x f x x --=,在(0,)+∞上有22'()30f x x ->,若2(2)()364f m f m m m --≥-+-,则实数m 的取值范围为( )A .[1,1]-B .(,1]-∞C .[1,)+∞D .(,1][1,)-∞-+∞U12.已知函数22,0()(2),0x x x f x f x x ⎧--<=⎨-≥⎩,以下结论正确的是( )A .(3)(2019)3f f -+=-B .()f x 在区间[]4,5上是增函数C .若方程() 1f x k x =+恰有3个实根,则11,24k ⎛⎫∈-- ⎪⎝⎭D .若函数()y f x b =-在(,4)-∞上有6个零点(1,2,3,4,5,6)i x i =,则()61i i i x f x =∑的取值范围是()0,6第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分. 13.已知34a b R a ib i i+=+∈,(,)其中i 为虚数单位,则a bi +=________; 14.已知数列{}n a的首项11a =,且满足11(2)n n n n a a a a n ---=≥,则122320142015a a a a a a +++=L ;15.如图,在矩形ABCD 中,4,2AB AD ==,E 为AB 的中点.将ADE V 沿DE 翻折,得到四棱锥1A DEBC -.设1A C 的中点为M ,在翻折过程中,有下列三个命题:①总有BM ∥平面1A DE ; ②线段BM 的长为定值;③存在某个位置,使DE 与1A C 所成的角为90°. 其中正确的命题是_______.(写出所有正确命题的序号)16.已知双曲线C :22221(0,0)x y a b a b-=>>的右焦点为F ,左顶点为A ,以F 为圆心,FA 为半径的圆交C 的右支于M ,N 两点,且线段AM 的垂直平分线经过点N ,则C 的离心率为_________.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)已知函数2()cos 2cos 2()3f x x x x R π⎛⎫=--∈⎪⎝⎭(1)求函数()f x 的单调递增区间;(2)ABC ∆内角,,A B C 的对边分别为,,a b c ,若3()2B f =-,1b =,3c =,且a b >,试求角B 和角C .18.(本小题满分10分)如图,在PBE △中,AB PE ⊥,D 是AE 的中点,C 是线段BE 上的一点,且5AC =,122AB AP AE ===,将PBA ∆沿AB 折起使得二面角P AB E --是直二面角. (l )求证:CD 平面PAB ;(2)求直线PE 与平面PCD 所成角的正切值.19.(本小题满分10分)2019年3月5日,国务院总理李克强作出的政府工作报告中,提到要“惩戒学术不端,力戒学术不端,力戒浮躁之风”.教育部2014年印发的《学术论文抽检办法》通知中规定:每篇抽检的学术论文送3位同行专家进行评议,3位专家中有2位以上(含3位)专家评议意见为“不合格”的学术论文,将认定为“存在问题学术论文”.有且只有1位专家评议意见为“不合格”的学术论文,将再送另外2位同行专家(不同于前3位专家)进行复评,2位复评专家中有1位以上(含1位)专家评议意见为“不合格”的学术论文,将认定为“存在问题学术论文”.设每篇学术论文被每位专家评议为“不合格”的概率均为()01p p <<,且各篇学术论文是否被评议为“不合格”相互独立.(1)若12p =,求抽检一篇学术论文,被认定为“存在问题学术论文”的概率;(2)现拟定每篇抽检论文不需要复评的评审费用为900元,需要复评的总评审费用1500元;若某次评审抽检论文总数为3000篇,求该次评审费用期望的最大值及对应p 的值.20.(本小题满分10分)在平面直角坐标系xOy中,椭圆G的中心为坐标原点,左焦点为F1(﹣1,0),离心率2e=.(1)求椭圆G 的标准方程;(2)已知直线11l y kx m=+:与椭圆G交于A B,两点,直线2212l y kx m m m=+≠:()与椭圆G交于C D,两点,且AB CD=,如图所示.①证明:120m m+=;②求四边形ABCD的面积S的最大值.21.(本小题满分10分)已知函数()22,02,0xx xf x xax ax xe⎧-<⎪=⎨+-≥⎪⎩在(),-∞+∞上是增函数.()1求实数a的值;()2若函数()()g x f x kx=-有三个零点,求实数k的取值范围.22.在平面直角坐标系xOy中,曲线C的参数方程为3cos3xyαα=⎧⎪⎨=⎪⎩(α为参数),在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为2sin42πρθ⎛⎫-=⎪⎝⎭.(1)求曲线C的普通方程和直线l的直角坐标方程;(2)设点()1,0P-,直线l和曲线C交于,A B两点,求||||PA PB+的值.23.已知函数()()210f x x a x a=++->.(1)当1a =时,求不等式()4f x >的解集;(2)若不等式()42f x x >-对任意的[]3,1x ∈--恒成立,求a 的取值范围.(数学理)1-5 BDCBB 6-10 DDADB 11.B 12 BCD13.5 14. 15. ①② 16. 4 317【解析】(1)233()cos2cos2sin2cos23sin23223f x x x x x xππ⎛⎫⎛⎫=--=-=-⎪ ⎪⎝⎭⎝⎭Q,令222,232k x k k Zπππππ--+∈剟,解得5,1212k x k k Zππππ-+∈剟∴故函数()f x的递增区间为5,()1212k k kππππ⎡⎤-+∈⎢⎥⎣⎦Z.(2)313sin,sin2332Bf B Bππ⎛⎫⎛⎫⎛⎫=-=-∴-=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,20,,,333366B B B Bπππππππ<<∴-<-<∴-=-=Q即,由正弦定理得:13sin sinsin6aA Cπ==,3sin2C∴=,0Cπ<<Q,3Cπ∴=或23π.当3cπ=时,2Aπ=:当23Cπ=时,6Aπ=(不合题意,舍)所以,63B Cππ==.18.如图,在PBE△中,AB PE⊥,D是AE的中点,C是线段BE上的一点,且5AC=,122AB AP AE===,将PBAV沿AB折起使得二面角P AB E--是直二面角.(l)求证:CD平面PAB;(2)求直线PE与平面PCD所成角的正切值.【答案】(1)证明见解析.(2)13.【解析】分析:(1)推导出4,AE AC =是Rt ABE ∆的斜边上的中线,从而C 是BE 的中点,由此能证明//CD 平面PAB ;(2)三棱锥E PAC -的体积为E PAC P ACE V V --=,由此能求出结果.详解:(1)因为122AE =,所以4AE =,又2AB =,AB PE ⊥, 所以22222425BE AB AE =+=+=,又因为152AC BE ==, 所以AC 是Rt ABE n 的斜边BE 上的中线,所以C 是BE 的中点,又因为D 是AE 的中点.所以CD 是ABE n 的中位线,所以CD AB n , 又因为CD ⊄平面PAB ,AB ⊂平面PAB ,所以CD n 平面PAB .(2)据题设分析知,AB ,AE ,AP 两两互相垂直,以A 为原点,AB ,AE ,AP 分别为x ,y ,z 轴建立如图所示的空间直角坐标系:因为122AB AP AE ===,且C ,D 分别是BE ,AE 的中点, 所以4AE =,2AD =,所以()040E n n ,()120C n n ,()002P n n ,()020D n n ,所以()042PE =-u u n v n u ,()122PC =-u u n v n u ,()100CD =-u u n vn u , 设平面PCD 的一个法向量为()n x y z '''=n n ,则00n CD n PC ⎧⋅=⎨⋅=⎩u u u v u u u v ,即0220x x y z ''''-=⎧⎨+-=⎩,所以0x z y =⎧⎨='''⎩,令1y '=,则()011n =n n ,设直线PE 与平面PCD 所成角的大小为θ,则10sin 10PE n PE nθ⋅==⋅u u u v u u u v . 故直线PE 与平面PCD 所成角的正切值为13.19.2019年3月5日,国务院总理李克强作出的政府工作报告中,提到要“惩戒学术不端,力戒学术不端,力戒浮躁之风”.教育部2014年印发的《学术论文抽检办法》通知中规定:每篇抽检的学术论文送3位同行专家进行评议,3位专家中有2位以上(含3位)专家评议意见为“不合格”的学术论文,将认定为“存在问题学术论文”.有且只有1位专家评议意见为“不合格”的学术论文,将再送另外2位同行专家(不同于前3位专家)进行复评,2位复评专家中有1位以上(含1位)专家评议意见为“不合格”的学术论文,将认定为“存在问题学术论文”.设每篇学术论文被每位专家评议为“不合格”的概率均为()01p p <<,且各篇学术论文是否被评议为“不合格”相互独立.(1)若12p =,求抽检一篇学术论文,被认定为“存在问题学术论文”的概率;(2)现拟定每篇抽检论文不需要复评的评审费用为900元,需要复评的总评审费用1500元;若某次评审抽检论文总数为3000篇,求该次评审费用期望的最大值及对应p 的值.【答案】(1) 2532 (2) 最高费用为350万元.对应13p =.(1)因为一篇学术论文初评被认定为“存在问题学术论文”的概率为()2233331C p p C p -+, 一篇学术论文复评被认定为“存在问题学术论文”的概率为()()2213111C p p p ⎡⎤---⎣⎦, 所以一篇学术论文被认定为“存在 问题学术论文”的概率为()()()()22223313331111f p C p p C p C p p p ⎡⎤=-++---⎣⎦()()()2223313111p p p p p p ⎡⎤=-++---⎣⎦5432312179p p p p =-+-+.∴12p =时,125232f ⎛⎫= ⎪⎝⎭所以抽检一篇的学术论文被认定为“存在问题学术论文”的概率为2532. (2)设每篇学术论文的评审费为X 元,则X 的可能取值为900,1500.()()21315001P X C p p ==-,()()21390011P X C p p ==--,所以()()()()2221133900111500190018001E X C p p C p p p p ⎡⎤=⨯--+⨯-=+-⎣⎦. 令()()21g p p p =-,()0,1p ∈,()()()()()2121311g p p p p p p '=---=--.当10,3p ⎛⎫∈ ⎪⎝⎭时,()0g p '>,()g p 在10,3⎛⎫⎪⎝⎭上单调递增;当1,13p ⎛⎫∈ ⎪⎝⎭时,()0g p '<,()g p 在1,13⎛⎫⎪⎝⎭上单调递减. 所以()g p 的最大值为14327g ⎛⎫= ⎪⎝⎭.所以评审最高费用为44300090018001035027-⎛⎫⨯+⨯⨯= ⎪⎝⎭(万元).对应13p =.20.在平面直角坐标系xOy 中,椭圆G 的中心为坐标原点,左焦点为F 1(﹣1,0),离心率22e =. (1)求椭圆G 的标准方程;(2)已知直线11l y kx m =+: 与椭圆G 交于 A B , 两点,直线2212l y kx m m m =+≠:()与椭圆G 交于C D , 两点,且AB CD = ,如图所示.①证明:120m m += ;②求四边形ABCD 的面积S 的最大值. (1)设椭圆G 的方程为(a >b >0)∵左焦点为F 1(﹣1,0),离心率e =.∴c =1,a =,b 2=a 2﹣c 2=1椭圆G 的标准方程为:.(2)设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4)①证明:由消去y 得(1+2k 2)x 2+4km 1x +2m 12﹣2=0 ,x 1+x 2=,x 1x 2=;|AB |==2;同理|CD |=2,由|AB |=|CD |得2=2,∵m 1≠m 2,∴m 1+m 2=0②四边形ABCD 是平行四边形,设AB ,CD 间的距离d =∵m 1+m 2=0,∴∴s =|AB |×d =2×=.所以当2k 2+1=2m 12时,四边形ABCD 的面积S 的最大值为221.已知函数()22,02,0x x x f x x ax ax x e⎧-<⎪=⎨+-≥⎪⎩在(),-∞+∞上是增函数. ()1求实数a 的值;()2若函数()()g x f x kx =-有三个零点,求实数k 的取值范围.【答案】(1)12a e =;(2)ln211,2e e ⎧⎫⎡⎫⋃-+∞⎨⎬⎪⎢⎩⎭⎣⎭解:()1当0x <时,()2f x x =-是增函数,且()()00f x f <=,故当0x ≥时,()f x 为增函数,即()'0f x ≥恒成立,当0x ≥时,函数的导数()()()211'2221120()x x x xx e xe x f x ax a a x x a e e e --⎛⎫=+-=+-=--≥ ⎪⎝⎭恒成立,当1x ≥时,10x -≤,此时相应120x a e -≤恒成立,即12x a e ≥恒成立,即max 112()x a e e≥=恒成立,当01x ≤<时,10x ->,此时相应120x a e -≥恒成立,即12x a e ≤恒成立,即12a e ≤恒成立, 则12a e =,即12a e=. ()2若0k ≤,则()g x 在R 上是增函数,此时()g x 最多有一个零点,不可能有三个零点,则不满足条件. 故0k >,当0x <时,()2g x x kx =--有一个零点k -,当0x =时,()()0000g f =-=,故0也是故()g x 的一个零点, 故当0x >时, ()g x 有且只有一个零点,即()0g x =有且只有一个解,即202x x x x kx e e e +--=,得22x x x xkx e e e+-=,(0)x >, 则112x x k e e e=+-,在0x >时有且只有一个根, 即y k =与函数()112x x h x e e e=+-,在0x >时有且只有一个交点,()11'2x h x e e=-+,由()'0h x >得1102x e e -+>,即112x e e <得2x e e >,得ln21ln2x e >=+,此时函数递增,由()'0h x <得1102x e e -+<,即112x e e>得2x e e <,得0ln21ln2x e <<=+,此时函数递减,即当1ln2x =+时,函数取得极小值,此时极小值为()1ln211ln211ln22h e e e+++=+- ln211ln2111ln21ln2222222e e e e e e e e e e=++-=++-=⋅, ()110101h e e=+-=-,作出()h x 的图象如图,要使y k =与函数()112x x h x e e e=+-,在0x >时有且只有一个交点, 则ln22k e =或11k e≥-, 即实数k 的取值范围是ln211,2e e ⎧⎫⎡⎫⋃-+∞⎨⎬⎪⎢⎩⎭⎣⎭.22.在平面直角坐标系xOy 中,曲线C 的参数方程为3cos 3x y αα=⎧⎪⎨=⎪⎩(α为参数),在以原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为2sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)设点()1,0P - ,直线l 和曲线C 交于,A B 两点,求||||PA PB +的值.【答案】(1)22193x y +=,10x y -+=;(266(1)因为曲线C 的参数方程为3cos 3x y αα=⎧⎪⎨=⎪⎩(α为参数),所以曲线C 的普通方程为22193x y +=.因为2sin 42πρθ⎛⎫-= ⎪⎝⎭,所以sin cos 1,10x y ρθρθ-=∴-+=. 所以直线l 的直角坐标方程为10x y -+=.(2)由题得点()1,0P -在直线l 上,直线l的参数方程为122x y ⎧=-+⎪⎪⎨⎪=⎪⎩,代入椭圆的方程得2280t -=,所以1212+402t t t t ==-<,所以12|PA|+|PB|=||t t -==. 23.已知函数()()210f x x a x a =++->. (1)当1a =时,求不等式()4f x >的解集;(2)若不等式()42f x x >-对任意的[]3,1x ∈--恒成立,求a 的取值范围.【答案】(1)5|13x x x >⎧⎫<-⎨⎬⎩⎭或;(2)()5,+∞(1)当1a =时,()121f x x x =++-,故()4f x >等价于1314x x ≤-⎧⎨-+>⎩或1134x x -<≤⎧⎨-+>⎩或1314x x >⎧⎨->⎩,解得1x <-或53x >.故不等式()4f x >的解集为5|13x x x >⎧⎫<-⎨⎬⎩⎭或.(2)当[]3,1x ∈--时,由()42f x x >-得22240x a x x ++-+->, 即2x a +>,即2a x >-或2a x <--对任意的[]3,1x ∈--恒成立. 又()max 25x -=,()min 21x --=-,故a 的取值范围为()(),15,-∞-+∞U . 又0a >,所以5a >, 综上,a 的取值范围为()5,+∞.。
安徽省毛坦厂中学2020届高三12月月考试题+英语(历届)
英语学习讲义2019-2020学年度高三年级12月份联考历届英语试题命题:莫广金审题:本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。
考试时间120分钟。
第Ⅰ卷(共90分)第一部分听力(共两节,满分20分)英语学习讲义第二部分阅读理解(共两节,满分40分)第一节(共15小题; 每小题2分,满分30分)阅读下列短文,从每题所给的四个选项(A 、B 、C 和D)中,选出最佳选项,并在答题卡上将该项涂黑。
AEducational Programs for KidsAre you interested in helping your child continue his or her education beyond the typical school day?If so,then educational programs for kids may be what you're looking for.Where to Find Educational Programs?Many kids who are struggling in school may benefit from an after-school tutoring session or homework club.Check with your child's school,your local library or the park district for a list of available programs.You can also check with the local Boys and GirlsClub,YMCA,church or youth center.Depending on your child's interests and strengths,consider art,community service,drama,music,creative writing,sports,cooking or environmental programs.What Educational Programs Are Provided by Organizations?The organizations mentioned above provide educational programs for kids,such as a community your child can be a part of and programs that focus oneducation,health,leadership,recreation and fitness.Another possibility is the Boy Scouts of America or the Girl Scouts.These are two separate organizations that can potentially provide your child with a sense ofaccomplishment,self-confidence and belonging.Both organizations will provide your child with many learning experiences and activities both indoors and outdoors.What Kind of Program Is Best for My Child?The type of educational program that's best for your child is subjective and based on many factors,including your child's age.If your child is in primary school,educational programs can help him or her develop as a person and gain leadership skills,a sense of self-worth and the ability to cooperate with others.By the time your child is in high school, his or her involvement with educational programs and other extracurricular activates can be key elements when your child is applying to college.When you help your child to pick an educational program,carefully consider what your child needs and what every option offers.21 How should a parent choose a program that suits his child?A. Based on the child's age and needs.B. Considering what organization offers it.C. According to the child's school performance.D. Depending on the location of the program.22 What is the best program for a child according to the author?A. It must promote the child's leadership skills.B. It can contribute to applying to college.C. There is no standard answer to the question.D. There are activities a child likes best.23 Who is this text probably written for?A. Teachers.B. Parents.C. School kids.D. Program organizers.BSince the age of three, Chelsie Hill had dreamed of becoming a dancer. “The only thing I loved was dance,” she said. In 2010, however, a car accident left her paralyzed from the waist down. For Hill, it was not the end of a dancing career but the beginning.Hill danced in her wheelchair right alongside her nondisabled high school dance team. It definitely took a lot of learning and patience to dance in a wheelchair.After graduation, Hill met people online who had suffered various injuries but shared her determination, and she invited them to dance with her. It was an amazing experience for her.In 2014 Los Angeles, she formed a team of dancers with disabilities she called the Rollettes. “I want to break down the stereotype of wheelchair users and show that dance is dance, whether you’re walking or you’re rolling,” she said. Dancing on wheels, the Rollettes discovered, can be just as fast-paced, artful, and fulfilling as the foot-based variety.Hill has attained what many people never will: her childhood dream. But the Rollettes have helped her find something else just as fulfilling. Every year she holds a dance camp for wheelchair users of all ages and abilities. She calls it the Rollettes Experience, and in 2019, 173 participants from ten countries attended.For many, it was the first time they’d felt they belonged. Steph Aiello said that working英语学习讲义with Hill challenged her to be more independent. Edna Serrano said being part of the Rollettes team gave her the courage to get behind the wheel of a car because she had more confidence.The dancers aren’t the only ones feeling inspired. One woman saw the team competing and commented, “You guys are so awesome! I’m in tears when you rock! To be in a wheelchair can still be so beautiful!”24. What do we know about Chelsie Hill from the first two paragraphs?A. She got seriously injured in a dancing match.B. She stopped dancing right after a car accident.C. She dreamed of being a dancer at a young age.D. She danced in a disabled team in high school.25. What does the underlined word “stereotype” in paragraph 4 refer to?A. Conservative views.B. Improper behaviors.C. Incurable disabilities.D. Physical weaknesses.26. What do we know about the Rollettes Experience?A. Audience spoke ill of the competition.B. Participants benefited greatly from it.C. It is aimed to select the best dancers.D. It made Hill’s childhood dream fulfilled.27. What can be a suitable title for the text?A. Chelsie Hill, An Artful DancerB. Disability, Good for DancingC. Help others; Help YourselfD. Attaining Dancing Dream In WheelchairCUniversity of Pennsylvania researchers say that for the first time they have linked social media use to increases in depression and loneliness.The idea that social media is anything but social when it comes to mental health has been talked about for years,but not many studies have managed to actually link the two.To do that,Penn researchers,led by psychologist Melissa Hunt,designed a study that focused on WeChat,Snapchat and Instagram.The study was conducted with 143 participants,who before they began,completed a mood survey and sent along photos of their battery screens,showing how often they were using their phones to access social media."We set out to do a much more complete study which attempts to imitate real life." Hunt said.The study divided the participants into two groups:The first group was allowed to maintain their normal social media habits.The other,the control group,was restricted to 10 minutes per day on social media.The restrictions were put in place for three weeks and then the participants returned and were tested for outcomes such as fear of missing out,anxiety,depression and loneliness.The results showed a very clear link between social media use and increased levels of depression and loneliness."Using less social media than you normally do would lead to significant decreases in both depression and loneliness," Hunt said.Social media invites what Hunt calls "downward social comparison." "When you're online,it can sometimes seem that everyone else is cooler and having more fun and included in more things and you're left out," Hunt said.And that's just generally discouraging."Every minute you spend online is a minute you are not doing your work or not meeting a friend for dinner or having a deep conversation with your roommate." And these real life activities are the ones that can encourage self﹣esteem and self﹣worth,Hunt added."People are on their devices,and that's not going to change," she said.But as in life,a bit of control goes a long way.28 Before the study was conducted,the participants completed a survey to.A. imitate people's real lifeB. link loneliness to depressionC. show their use of social mediaD. prove social media is important29 The results of the study showed using less social media would result in.A. people's fear of missing outB. higher levels of depressionC. obvious relief in lonelinessD. lower levels of happiness30 In Hunt's opinion,which activity benefits more to mental health?A. Hiking out with friends.B. Making comparison with others.C. Playing computer games in spare time.D. Logging onto social media and having fun.31 Which can be the best title of the passage?A. A Study on Social Media.B. How to Improve Mental Health.C. People Addicted to Social Media.D. Social Media Influences Mental Health.英语学习讲义DThe discussion on renewable energy has been going on for at least a decade and people have relied on fossil fuels almost entirely for more than a century. However, the situation when fossil fuels were the most efficient and the cheapest source of energy has been left far in the past. Many countries such as Germany and Sweden have already made significant efforts to fix this situation, employing numerous power plants working on the renewable resources of energy. The most effective among these resources is geothermal(地热的)energy.Geothermal energy does not depend on the world’s economic and political situation as strongly as fossil fuels do. Besides, extracting(提炼)fossil fuels adds to the price of energy produced from them. Therefore, geothermal energy is much cheaper than traditional ones, saving up to 80% of the costs over fossil fuels.Being a renewable resource, geothermal energy produces less waste and pollution than traditional energy sources. In geothermal systems, carbon dioxide makes up about 10% of air produced. Overall, in order to produce the electricity that can be used for one hour, the geothermal systems produce 0.1 pound of carbon dioxide and other harmful gases. For a comparison, a power plant producing from gas produces up to 2 pounds of carbon dioxide into the atmosphere, and those power plants that work on coal(煤)produce an astonishing 3.6 pounds of greenhouse gases.Low costs is another reason why using geothermal power plants should be the first choice for many countries. Geothermal heat systems require 25% to 50% less energy for work compared with the traditional systems for heating or cooling. Besides, geothermal equipment is less big: due to the very nature of geothermal energy, geothermal power plants have only a few moving parts, all of which can be easily sheltered inside a relatively small building. What’s more, the life span of geothermal equipment is rather long. All these make geothermal power stations easy to build and keep.32 Fossil fuels are more expensive than geothermal energy partly because ______.A. the production of fossil fuels costs a lotB. fossil fuels are nearly used upC. it is free to use geothermal energyD. geothermal energy doesn’t depend on political situation 33 According to Paragraph 3, what can be concluded from the comparison?A. Coal is much more efficient than gas.B. Gas and coal are often used to produce electricity.C. Geothermal energy is environmentally friendly.D. The geothermal systems don’t produce harmful gases.34 Geothermal equipment is usually not as big as that of traditional energy because of ____.A. the life span of geothermal equipmentB. the nature of geothermal energyC. the small buildingsD. geothermal power plants35 What is the main idea of this passage?A. Geothermal energy has many advantages.B. Geothermal energy is well accepted.C. Fossil fuels are being run out of.D. Many countries have benefited from geothermal energy.第二节(共5小题;每小题2分,满分10 分)根据短文内容,从短文后的选项中选出能填入空白处的最佳选项。
安徽省毛坦厂中学2020届高三12月月考试题 数学(理)(历届) Word版
20192020学年度高三年级12月份联考历届理科数学试卷 命题:费远志 审题:第Ⅰ卷 (选择题,共60分)一、选择题(本题共12小题,每小题5分,共60分,每小题只有一个选项符合题意)1.已知集合A={},B={},则A B=( )A .() B .C .(2,3)D .()2.已知m 、n 、l 是不同直线,是不同平面,则以下命题正确的是( )A .若m 、n ,则B .若n n ,则C .若m ,n ,m ,,则D .若,,则3.在等差数列{a n }中,已知则公差d ( )A .2B .3C . 2D . 3 4. 已知平面向量a 、b 满足,(a)(a ),则向量a 、b 的夹角为( )A .B .C .D .5. 在递增的等比数列{a n }中,已知64,且前n 项和S n 42,则n ( )A .6B .5C .4 D .3 6.已知函数,则定积分的值为( )A .B .C .D .7.已知某个几何体的三视图如图所示,则该几何体可能是( ) A .B .C.D.第7题图8.将函数的图象向右平移个单位长度得到奇函数的图象,则的最小值为()A.B.C.D.9.已知数列a n,则数列{a n}前30项中的最大项与最小项分别是()A.B.C.D.10.已知,函数,则“”是“在上单调递减”的()A.充分不必要条件B. 必要不充分条件C.充要条件D. 既不充分又不必要条件11. 在正三棱锥S中,,D为的中点,SD与底面所成角为,则正三棱锥S外接球的直径为()A.B.C.D.12. 已知函数f(x),若函数g(x)有三个零点,则实数的取值范围是()A.B.C.D.第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13. 已知数列{a n}的前n项和为,若,则a n_________.14. 已知半径为R的球内接一个圆柱,则圆柱侧面积的最大值是_________.15. 如图,在ABC中,相交于P,若,则_________.16. 给出以下命题:①ABC中,若A B,则sin A sin B;②边长为2的正方形其斜二侧画法的直观图面积为;③若数列{a n}为等比数列,则,……也成等比数列;④对于空间任意一点,存在实数x、y、z,使得则P、A、B、C四点共面.其中所有正确命题的序号是.三、解答题(共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17. (本小题满分10分)已知函数f(x).⑴求函数f(x)的单调递增区间;⑵在ABC中,内角A、B、C的对边分别是、b、c,若f(B),b,且、b、c成等差数列,求ABC的面积.18.(本小题满分12分)已知数列{a n}的前n项和,数列{b n}满足().(1)求数列{a n}、{b n}的通项公式;(2)求数列{a n b n}的前n项和.19.(本小题满分12分)如图,在四棱锥P ABCD中,PA底面正方形ABCD,E为侧棱PD的中点,F为AB的中点,PA AB.(1)证明:AE面PFC;(2)求平面与平面所成锐二面角的余弦值.20.(本小题满分12分)已知数列{a n}与{b n}满足:,且{a n}为正项等比数列,=2,.⑴求数列{a n}与{b n}的通项公式;⑵数列{c n}满足c n,求数列{c n}的前n项和.21.(本小题满分12分)在如图所示的多面体中,平面平面,四边形是边长为2的菱形,四边形为直角梯形,四边形为平行四边形,且AB CD,AB BC,CD.⑴若E,F分别为的中点,求证:EF平面;⑵若BC,求二面角的余弦值.22.(本小题满分12分)已知函数f(x),且直线y=1+b与函数y=f(x)相切.(1)求实数的值;(2)若函数f(x)有两个零点为,求证:。
2020届安徽省毛坦厂中学高三12月月考试题 数学(理)(应届)
2019~2020学年度高三年级12月份月考应届理科数学试卷一、选择题(本题共12小题,每小题5分,共60分,每小题只有一个选项符合题意)1.i 1i =1i i -+- ( ) A .11i 22-+ B .11i 22- C .31i 22-- D .13i 22--2.已知定义在R 上的函数f(x)满足f(x +6)=f(x),且y =f(x +3)为偶函数,若f(x)在(0,3)内单调递减,则下面结论正确的是( )A .f(−4.5)<f(3.5)<f(12.5)B .f(3.5)<f(−4.5)<f(12.5)C .f(12.5)<f(3.5)<f(−4.5)D .f(3.5)<f(12.5)<f(−4.5)3、已知两个等差数列{}{}n n b a 和的前n 项和分别为n n T S 和,且n n T n S n )237()1+=+(,则使得nn b a为整数的正整数n 的个数是( ) A. 2 B. 3 C. 4 D. 5 4.某几何体的三视图如图所示(单位:cm ),则这个几何体的体积为( )第4题图 第5题图A .20cm 3B .24cm 3C .316cmD .5.已知函数()2sin()(0,||)f x x ωϕωϕπ=+><的部分图象如图所示,且(,1),(,1)2A B ππ-,则ϕ的值为( )A .56πB .6πC .6π-D .56π-6.的内角的对边分别为.若成等比数列,且,则( )A .B .C .D .7.不等式2334a a x bx -≤++-(其中[]0,1b ∈)对任意实数x 恒成立,则实数a 的取值范围为( ) A .](),14,⎡-∞-⋃+∞⎣ B .[]1,4- C .[]1,2 D .](),12,⎡-∞-⋃+∞⎣8.已知函数()()()()24312311x ax x f x a x x ⎧-+<⎪=⎨-+≥⎪⎩在x ∈R 内单调递减,则的取值范围是( ).A .10,2⎛⎤ ⎥⎝⎦B .12,23⎡⎫⎪⎢⎣⎭C .2,13⎛⎤⎥⎝⎦D .[)1,+∞ 9.已知0x >,0y >,lg 2lg8lg 2x y +=,则113x y+的最小值是( )A .2B .22C .3D .4 10.平面内有三个向量,其中与夹角为120°,与的夹角为30°,且,若,(λ,μ∈R )则( )A .λ=4,μ=2B .C .D .11.中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑.如图为一个阳马与一个鳖臑的组合体,已知PA ⊥平面ABCE ,四边形ABCD 为正方形,2AD =,1ED =,若鳖臑P ADE -的外接球的体积为7143π,则阳马P ABCD -的外接球的表面积等于第10题图 第11题图 第12题图A .18πB .17π C.16π D.15π12..如图,在Rt △ABC 中,AC=1,BC=x ,D 是斜边AB 的中点,将△BCD 沿直线CD 翻折,若在翻折过程中存在某个位置,使得CB ⊥AD ,则x 的取值范围是( )A .(0,] B .(,2]C .(,2] D .(2,4]二、填空题13.已知函数π()2sin(π)0,0,2f x a x a ωϕωϕ⎛⎫=+≠>≤ ⎪⎝⎭,直线y a =与()f x 的图象的相邻两个交点的横坐标分别是2和4,现有如下命题: ①该函数在[2,4]上的值域是[2]a a ;②在[2,4]上,当且仅当3x =时函数取最大值;③该函数的最小正周期可以是83; ④()f x 的图象可能过原点.其中的真命题有__________.(写出所有真命题的序号)14.记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. 求S n _________15.数列{}n a 中,11a =,以后各项由公式2123...n a a a a n ⋅⋅⋅⋅=给出,则35a a +等于_____.16.已知2:2310p x x -+≤,2:(21)(1)0q x a x a a -+++≤.若p ⌝是q ⌝的必要不充分条件,则实数a 的取值范围是__. 三、解答题17.已知函数2()cos cos 1f x x x x b ωωω=⋅+++. (1)若函数()f x 的图象关于直线6x π=对称,且[]0,3ω∈,求函数()f x 的单调递增区间;(2)在(1)的条件下,当70,12x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 有且只有一个零点,求实数b 的取值范围.18.如图,在直角梯形CD AB 中,//CD AB ,D AB ⊥A ,且1D CD 12AB =A ==.现以DA 为一边向梯形外作矩形D F A E ,然后沿边D A 将矩形D F A E 翻折,使平面D F A E 与平面CD AB 垂直.(1)求证:C B ⊥平面D B E ; (2)若点D 到平面C BE的距离为3,求三棱锥F D -B E 的体积. 19..已知x >0,y >0,且2x +8y -xy =0,求:(1)xy 的最小值; (2)x +y 的最小值.20.在直角梯形PBCD 中,,4,2,2====∠=∠PD CD BC C D πA 为PD 的中点,如图.将△PAB沿AB 折到△SAB 的位置,使SB ⊥BC ,点E 在SD 上,且SD SE 31=,如图.(Ⅰ)求证:SA ⊥平面ABCD ;(Ⅱ)求二面角E ﹣AC ﹣D 的正切值.21.已知以1a 为首项的数列{}n a 满足:11n n a a +=+(*n N ∈).(1)当113a =-时,且10n a -<<,写出2a 、3a ;(2)若数列{}n a (110n ≤≤,*n N ∈)是公差为1-的等差数列,求1a 的取值范围;22已知函数f (x )=λln x -e -x (λ∈R).(1)若函数f (x )是单调函数,求λ的取值范围;(2)求证:当0<x 1<x 2时,1211112x x e e xx ->---2019~2020学年度高三年级12月份月考13.④ 14.n n S n 82-=15.611616.10,2⎡⎤⎢⎥⎣⎦17..试题解析:(1)函数()2cos cos 1f x x x x b ωωω=+++ 3sin 262x b πω⎛⎫=+++ ⎪⎝⎭,......................2分 ∵函数()f x 的图象关于直线6x π=对称,∴2662k πππωπ⋅+=+,k Z ∈且[]0,3ω∈,∴1ω=(k Z ∈),.由222262k x k πππππ-≤+≤+解得36k x k ππππ-≤≤+(k Z ∈),.....................4分函数()f x 的单调增区间为,36k k ππππ⎡⎤-+⎢⎥⎣⎦(k Z ∈)......................5分(2)由(1)知()3sin 262f x x b πω⎛⎫=+++ ⎪⎝⎭,∵70,12x π⎡⎤∈⎢⎥⎣⎦,∴42,663x πππ⎡⎤+∈⎢⎥⎣⎦, ∴2,662x πππ⎡⎤+∈⎢⎥⎣⎦,即0,6x π⎡⎤∈⎢⎥⎣⎦函数()f x 单调递增;42,623x πππ⎡⎤+∈⎢⎥⎣⎦,即7,612x ππ⎡⎤∈⎢⎥⎣⎦函数()f x 单调递减......................7分 又()03f f π⎛⎫= ⎪⎝⎭,∴当03f π⎛⎫> ⎪⎝⎭ 712f π⎛⎫≥ ⎪⎝⎭或06f π⎛⎫= ⎪⎝⎭时,函数()f x 有且只有一个零点,即435sin sin 326b ππ≤--<或3102b ++=, ∴52b ⎛⎧⎫∈-⋃- ⎨⎬ ⎩⎭⎝⎦.............................................10分 18.(1)见解析;(2)61.解析:(1)证明:在矩形D F A E 中,D D E ⊥A因为面D F A E ⊥面CD AB ,所以D E ⊥面CD AB ,所以D C E ⊥B又在直角梯形CD AB 中,D 1AB =A =,CD 2=,DC 45∠B =,所以C B =在CD ∆B 中,D C B =B =CD 2=,.........................................4分 所以:222D C CD B +B = 所以:C D B ⊥B ,所以:C B ⊥面D B E ...................................................6分(2)由(1)得:面D BE ⊥面C B E , 作D E ⊥BE 于H ,则D H ⊥面C B E所以:D H =分 在D ∆B E 中,D D D B ⋅E =BE⋅HD 3E =,解得D 1E = 所以:F D FD 111V V 1326-B E B-E ==⨯⨯=........................................12分19.解 (1)由2x +8y -xy =0,得8x +2y =1,又x >0,y >0,则1=8x +2y ≥28x ·2y =8xy,得xy ≥64, 当且仅当x =4y ,即x =16,y =4时等号成立..........................................6分(2)解法一:由2x +8y -xy =0,得x =8yy -2,因为x >0,所以y >2,则x +y =y +8y y -2=(y -2)+16y -2+10≥18,当且仅当y -2=16y -2,即y =6,x =12时等号成立.........................................12分解法二:由2x +8y -xy =0,得8x +2y =1,成立..........................................12分20.(Ⅰ)证明见解析(Ⅱ)【解析】试题分析:(法一)(1)由题意可知,翻折后的图中SA⊥AB①,易证BC⊥SA②,由①②根据直线与平面垂直的判定定理可得SA⊥平面ABCD;.........................................4分(2)(三垂线法)由考虑在AD上取一点O,使得,从而可得EO∥SA,所以EO⊥平面ABCD,过O作OH⊥AC交AC于H,连接EH,∠EHO为二面角E﹣AC﹣D的平面角,在Rt△AHO 中求解即可(法二:空间向量法)(1)同法一(2)以A为原点建立直角坐标系,易知平面ACD的法向为,求平面EAC的法向量,代入公式求解即可解法一:(1)证明:在题平面图形中,由题意可知,BA⊥PD,ABCD为正方形,所以在翻折后的图中,SA⊥AB,SA=2,四边形ABCD是边长为2的正方形,因为SB⊥BC,AB⊥BC,SB∩AB=B所以BC⊥平面SAB,又SA⊂平面SAB,所以BC⊥SA,又SA⊥AB,BC∩AB=B所以SA⊥平面ABCD,(2)在AD上取一点O,使,连接EO因为,所以EO∥SA因为SA⊥平面ABCD,所以EO⊥平面ABCD,过O作OH⊥AC交AC于H,连接EH,则AC⊥平面EOH,所以AC⊥EH.所以∠EHO为二面角E﹣AC﹣D的平面角,.在Rt△AHO中,∴,即二面角E﹣AC﹣D的正切值为.........................................12分解法二:(1)同方法一(2)解:如图,以A为原点建立直角坐标系,A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),S(0,0,2),E(0,)∴平面ACD的法向为.........................................6分设平面EAC的法向量为=(x,y,z),由n ACn AE⎧⋅=⎪⎨⋅=⎪⎩,所以,可取所以=(2,﹣2,1)..........................................9分所以所以即二面角E﹣AC﹣D的正切值为.........................................12分21.(1)223a =-,313a =-;(2)19a ≤- 【解析】(1)因为以1a 为首项的数列{}n a 满足:11n n a a +=+,113a =-,10n a -<<,所以21213a a =+=,所以223a =-;由32113a a =+=得313a =-;...........4分(2)因为数列{}n a (110n ≤≤,*n N ∈)是公差为1-的等差数列,所以111n n n a a a +=-=+,所以()()2211n n a a-=+,.......................6分 所以22n n a a -=,所以0n a ≤, 所以n na a =-, .........................................8分故()11n a a n -=---,所以()110n a a n =+-≤, 因为110n ≤≤, .........................................10分 所以由题意只需:10190a a =+<,故19a ≤-..........................................12分22.解 (1)函数f (x )的定义域为(0,+∞),∵f (x )=λln x -e -x,∴f ′(x )=λx +e -x =λ+x e -xx ,∵函数f (x )是单调函数,∴f ′(x )≤0或f ′(x )≥0在(0,+∞)上恒成立,....2分①当函数f (x )是单调递减函数时,f ′(x )≤0, ∴λ+x e -x x ≤0,即λ+x e -x ≤0,λ≤-x e -x =-x e x , 令φ(x )=-xe x ,则φ′(x )=x -1e x ,当0<x <1时,φ′(x )<0,当x >1时,φ′(x )>0,则φ(x )在(0,1)上单调递减,在(1,+∞)上单调递增,∴当x >0时,φ(x )min =φ(1)=-1e ,∴λ≤-1e ;.........................................4分②当函数f (x )是单调递增函数时,f ′(x )≥0,∴λ+x e -x x ≥0,即λ+x e -x ≥0,λ≥-x e -x =-x ex ,由①得φ(x )=-xe x 在(0,1)上单调递减,在(1,+∞)上单调递增,又φ(0)=0,x →+∞时,φ(x )<0,∴λ≥0.综上,λ≤-1e 或λ≥0..........................................6分(2)证明:由(1)可知,当λ=-1e 时,f (x )=-1e ln x -e -x 在(0,+∞)上单调递减,∵0<x 1<x 2,∴f (x 1)>f (x 2),即-1e ln x 1-e -x 1>-1e ln x 2-e -x 2,∴e -x 2-e -x 1>ln x 1-ln x 2.要证e 1-x 2-e 1-x 1>1-x 2x 1.只需证ln x 1-ln x 2>1-x 2x 1,即证ln x 1x 2>1-x 2x 1,令t =x 1x 2,t ∈(0,1),则只需证ln t >1-1t ,.........................................10分令h (t )=ln t +1t -1,则当0<t <1时,h ′(t )=t -1t 2<0,∴h (t )在(0,1)上单调递减,又h (1)=0,∴h (t )>0,即ln t >1-1t ,得证....................12分。
安徽省毛坦厂中学2020届高三数学12月月考试题文(历届)
安徽省毛坦厂中学2020 届高三数学12 月月考试题 文(历届)A . y 4sin( x) B . y 4sin( x) 84 84 一、单项选择题C . y 4sin(8x) D . y4sin( x)4841.会合 A x x 2 x6 0 ,会合Bx | log 2 x1,则 A UB() 9.一个几何体的三视图如下图,则该几何体的体积为()A .2,3B .,3C .2,2D . 0,22.已知 f ( x )x sinx则以下正确的选项是()A . f (sin1)f (cos1 ) B . f (sin2)f (cos2)C . f(sin3)f (cos3)D . f(sin4)f (cos4)正视图俯视图侧视图3.复数 z 知足: (z2)iz( i 为虚数单位), z 为复数 z 的共轭复数,则以下说法正确的选项是()A .7B .9C .7D .9A . z 22iB . zz 2C . | z | 2D . zz032244.函数 f ( x )= x 3﹣ 2x ﹣3 必定存在零点的区间是()10.函数 fxx 2 ln x 的图象大概是()A .( 2,+∞)B .(1, 2)C .( 0, 1)D .(﹣ 1, 0)5.已知ABC三条边分别是 a , b , c ,且 ab c a, b,c N *,若当 bn n N * 时,记知足条件的所A .B .有三角形的个数为 a n ,则数列 a n 的通项公式为() .A . a n2n 1B . a nn 2n2C . a nn 3 17 n 6D . a n212n n 16.数列 1,1 ,1, , 1的前 n 项和为C .D .12 3 2n1 2 1A .2nB .2 nC .n2 D . n2n 1n1n12n 17.以下四个命题:①随意两条直线都能够确立一个平面②在空间中,若角1与角2的两边分别平行,则12C 1 : y2 sin 2x , C 2 : y sin 2xcos2x,则下边结论正确的11.已知曲线 ③若直线 l 上有一点在平面 内,则 l 在平面 内④同时垂直于一条直线的两条直线平行;此中正确命题的个A .把曲线 C 1C个长度单位获得曲线数是()向右平移 8 2A . 3B . 2C . 1D . 0B .把曲线C 1向左平移个长度单位获得曲线 C 248.函数 yA sin( x)(0,| | , x R ) 的部分图象如下图,则函数表达式为C .把曲线2个长度单位获得曲线 12C 向左平移 4 CD.把曲线C2向右平移个长度单位获得曲线C1812.对实数a和b,定义运算“”:a b a,a b 12 2 x x2 , x R 若函数b, a b设函数 f xx1y f x c 的图象与x轴恰有两个公共点,则实数 c 的取值范围是()A., 2 1, 3B., 23 21,4C.1 1D.1,3 1 1, ,4,4 4 4第 II卷(非选择题)二、填空题r r r r13.已知向量 a ( 1 , 0), b (4,3) ,则 a 在b方向上的投影是 ________.14.设等差数列a n 的公差d不为零, a1 9d,若a k是 a1与 a2 k的等比中项,则k _____.15.已知正四棱锥P ABCD 的极点均在球 O 上,且该正四棱锥的各个棱长均为 2 ,则球 O 的表面积为____. 16.函数 f ( x )为定义在(- ,0 )( 0,)上的奇函数,且 f (2) 1,关于随意 x1 , x2 0,, x1 x2,都x1 f ( x1 ) x 2 f ( x 2 ) 0建立 . 则 f ( x) 2 有x 2 的解集为 _________.x1 x三、解答题17.在中,角所对的边分别为, 且知足( 2a-c ) cosB=bcosC.(1)求角 B 的大小;(2)设,且的最大值是 5 ,求 k 的值 .a n 的前 n 项和为S, 且S n 2 , n 知足 a 4log 2b n 3 ,18.已知数列2n n .nnN * , 数列 b n nN * (1) 求a和b的通项公式;n n(2)求数列 { a n b n } 的前 n 项和T n .19.如图 1,四棱锥P ABCD的底面ABCD是正方形,PD垂直于底面ABCD,已知四棱锥的正视图,如图2所示.( I )若 M是PC的中点,证明:DM平面PBC;( II )求棱锥A BDM的体积.20.已知函数 f ( x ) 3 e x1x 2 ax .2( 1)若函数 f ( x )的图象在x 0 处的切线方程为y2 x b ,求a , b的值;( 2)若函数 f ( x )在R上是增函数,务实数a的最大值 .21.如图,在直三棱柱ABC ABC中,ACB90,点D是AB的中点 .1 1 1(1)求证: AC BC1;(2) 求证:AC1 平面 CDB1.22.已知 f ( x)1 xln x, (a R, a 0) .ax( 1)试议论函数y f ( x ) 的单一性;( 2)若x0(0, ) 使得x (0, ) 都有 f (x) f ( x0 ) 恒建立,且 f (x0 ) 0 ,求知足条历届文科数学 12 月份联考参照答案一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ADBBBBDDCADB二、填空题13.4 .4 15. 8π16., 20,2145三、解答题17.( 1) ( 2)18.( 1) b n 2 n 1 ; ( 2) T n (4 n 5)2 n 5【分析】( 1)∵ S n 2n 2 n, n N * ,∴当 n 1 时, a 1 S 13 .当 n2 时, a nS n S n12n 2 n [2( n 1)2 ( n 1)] 4n 1 .∵ n 1 时, a 1 3 知足上式,∴ a n4n 1,nN * .又∵ a n 4log 2 b n 3, n N * ,∴ 4n 1 4log 2 b n 3,解得: b n 2n 1.故 a4n 1,, b n2n 1 ,n N * .n( 2)∵ a4n 1, , b n 2n 1 , n N *n∴ T n a 1b 1 a 2b 2 L a n b n3 20 7 21L (4 n 5) 2n 2(4 n 1) 2n 1 ①2T n 3 21 7 22L (4 n 5) 2n 1(4 n 1) 2n ②由① - ②得: T n 3 4 21422 L 4 2n 1 (4 n 1) 2n3 4 2(1 2n 1 ) (4 n 1) 2n (5 4n)2n 51 2∴ T(4 n 5) 2n5,n N *.n考点: 1. 数列通项公式求解; 2. 错位相减法乞降【点睛】 求数列 a n 的通项公式主要利用 a 1S 1 , a n S n S n 1 n 2 分状况求解后, 考证 a 1 的值能否知足a n S n S n 1n2 关系式,解决非等差等比数列乞降问题,主要有两种思路:其一,转变的思想,马上一般数列想法转变为等差或等比数列, 这一思想方法常常经过通项分解(即分组乞降) 或错位相减来达成, 其二,不可以转变为等差等比数列的,常常经过裂项相消法,倒序相加法来乞降,此题中a nb n 4n 1 ?2n 1 ,依据特点采纳错位相减法乞降19.( I )证明看法析;( II )2 .3【分析】 ( Ⅰ) 由正视图可知,PD DC 2∵PD⊥平面ABCD,∴ PD⊥BC又∵ ABCD是正方形,∴ BC⊥CD.∵ PD CD D ,∴BC⊥平面PCD∵DM 平面PCD,∴DM⊥BC.又 PCD 是等腰三角形,E是斜边PC的中点,因此∴DM⊥PC 又∵ BC PC C ,∴DM⊥平面PBC.( Ⅱ) 在平面 PCD内过 M作 MN//PD 交 CD于 N,因此MN 1PD 1且MN平面ABCD,因此棱锥M-ABD的体2积为VM ABD 1 S ABD MN 1 1AB AD MH 1 1 2 2 1 23 3 2 3 2 3 又∵棱锥 A- BDM的体积等于棱锥M- ABD的体积,∴棱锥 A- BDM的体积等于2 . 3【点睛】此题主要考察棱锥的体积、线面垂直的判断定理,属于中档题. 解答空间几何体中垂直关系时,一般要依据已知条件把空间中的线线、线面、面面之间垂直关系进行转变,转变时要正确运用相关的定理,找出足够的条件进行推理;证明直线和平面垂直的常用方法有:( 1)利用判断定理;( 2)利用判断定理的推论;( 3)利用面面平行的性质;( 4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面 .20.( 1)a 1ln3 . b;(2)13【分析】( 1)由题意,函数 f ( x) 3e x1 x2 ax .2故 f ( x) 3e x x a ,则 f (0) 3 a ,由题意,知 3 a 2 ,即a 1 .又 Q f (x) 3e x 1 x2 x ,则 f (0) 3 .22 0 b3 ,即 b 3 .a 1.b 3( 2)由题意,可知 f (x) 0 ,即 3e x x a0 恒建立,a 3exx..7g ( x ) 3 xxg (x) 3e x1 .e g ( ) 3 x 1 0x ln3 .x eg (x) 0 xln3 .g (x)0 x xln3 .g ( x)( , ln 3)( ln 3,)xln3.g( x)min g(ln 3) 1 ln 3 .a1 ln 3a 1 ln3 ..1221 (1) (2)(1)ACB 90AC CBABCA 1B 1C 1ACBB 1AC BB 1C 1C .BC 1BB 1C 1C AC BC ..6(2)BC 1 B 1C P DP P BC 1 D AB AC 1 DPDPCDB 1 AC 1CDB 1AC 1CDB 1 ..12“” “ ” “ ” “ ” “ ”“ ”22 1 2 1 .1f (x)1 x ln xf ( x)1 ax ( x 0) ..2ax ax 2a 0f ( x)0 (0,)f (x)(0,)增; ........................................................................................... (4)分②当 a时,由 f (x) 0 得 x1 (x),得 0 x 1,由 f,aaf (x) 在 0,1上单一递减,在 1 ,上单一递加 .aa综上:①当 a 0 时, f ( x) 在 0,1上单一递加,无递减区间;a②当 a0 时, f (x) 在 0,1上单一递减,在1 , 上单一递加..6 分aa( 2)由题意函数存在最小值 f x 0 且 f (x 0 ) 0 ,①当 a 0 时,由( 1)上单一递加且 f (1)0 ,当 x x(0,1) 时, f ( x) 0 ,不切合条件; .......................................................................8分②当 a0 时, f (x) 在 0,1上单一递减,在1 , 上单一递加,aaf ( x)minf 111 ln 1,aa a只要 f ( x) min 0 即 1 1 1ln 0 ,a a 1记 g( x) 1 x ln x(x 0) 则 g ( x)1,x 由 g (x)0 得 0 x 1,由 g (x) 0 得 x 1 ,g ( x) 在 (0,1) 上单一递加,在 (1, ) 上单一递减,g( x)g (1) 0,1 1, a 1,a即知足条件 a 的取值会合为1 .【点睛】 此题考察了利用导数求函数的单一区间和导数的综合应用, 考察了分类议论思想和函数思想, 属难题.。
2020届安徽省毛坦厂中学高三12月月考试题 数学(理)(应届)
2020届安徽省毛坦厂中学高三12月月考试题应届理科数学试卷一、选择题(本题共12小题,每小题5分,共60分,每小题只有一个选项符合题意)1.i 1i =1i i -+- ( ) A .11i 22-+ B .11i 22- C .31i 22-- D .13i 22--2.已知定义在R 上的函数f(x)满足f(x +6)=f(x),且y =f(x +3)为偶函数,若f(x)在(0,3)内单调递减,则下面结论正确的是( )A .f(−4.5)<f(3.5)<f(12.5)B .f(3.5)<f(−4.5)<f(12.5)C .f(12.5)<f(3.5)<f(−4.5)D .f(3.5)<f(12.5)<f(−4.5)3、已知两个等差数列{}{}n n b a 和的前n 项和分别为n n T S 和,且n n T n S n )237()1+=+(,则使得nnb a 为整数的正整数n 的个数是( )A. 2B. 3C. 4D. 54.某几何体的三视图如图所示(单位:cm ),则这个几何体的体积为( )第4题图 第5题图A .20cm 3B .24cm 3C .316cmD .5.已知函数()2sin()(0,||)f x x ωϕωϕπ=+><的部分图象如图所示,且(,1),(,1)2A B ππ-,则ϕ的值为( )A .56πB .6πC .6π-D .56π-6.的内角的对边分别为.若成等比数列,且,则( )A .B .C .D .7.不等式2334a a x bx -≤++-(其中[]0,1b ∈)对任意实数x 恒成立,则实数a 的取值范围为( ) A .](),14,⎡-∞-⋃+∞⎣ B .[]1,4- C .[]1,2 D .](),12,⎡-∞-⋃+∞⎣8.已知函数()()()()24312311x ax x f x a x x ⎧-+<⎪=⎨-+≥⎪⎩在x ∈R 内单调递减,则的取值范围是( ).A .10,2⎛⎤ ⎥⎝⎦B .12,23⎡⎫⎪⎢⎣⎭C .2,13⎛⎤ ⎥⎝⎦D .[)1,+∞9.已知0x >,0y >,lg 2lg8lg 2x y+=,则113x y+的最小值是( )A .2B .2C .3D .410.平面内有三个向量,其中与夹角为120°,与的夹角为30°,且,若,(λ,μ∈R )则( )A .λ=4,μ=2B .C .D .11.中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑.如图为一个阳马与一个鳖臑的组合体,已知PA ⊥平面ABCE ,四边形ABCD 为正方形,2AD =,1ED =,若鳖臑P ADE -的外接球的体积为143π,则阳马P ABCD -的外接球的表面积等于第10题图 第11题图 第12题图A .18πB .17π C.16π D.15π12..如图,在Rt △ABC 中,AC=1,BC=x ,D 是斜边AB 的中点,将△BCD 沿直线CD 翻折,若在翻折过程中存在某个位置,使得CB ⊥AD ,则x 的取值范围是( )A .(0,]B .(,2] C .(,2]D .(2,4]二、填空题 13.已知函数π()2sin(π)0,0,2f x a x a ωϕωϕ⎛⎫=+≠>≤ ⎪⎝⎭,直线y a =与()f x 的图象的相邻两个交点的横坐标分别是2和4,现有如下命题: ①该函数在[2,4]上的值域是[2]a a ; ②在[2,4]上,当且仅当3x =时函数取最大值;③该函数的最小正周期可以是83; ④()f x 的图象可能过原点. 其中的真命题有__________.(写出所有真命题的序号)14.记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. 求S n _________15.数列{}n a 中,11a =,以后各项由公式2123...n a a a a n ⋅⋅⋅⋅=给出,则35a a +等于_____.16.已知2:2310p x x -+≤,2:(21)(1)0q x a x a a -+++≤.若p ⌝是q ⌝的必要不充分条件,则实数a 的取值范围是__. 三、解答题17.已知函数2()cos cos 1f x x x x b ωωω=⋅+++. (1)若函数()f x 的图象关于直线6x π=对称,且[]0,3ω∈,求函数()f x 的单调递增区间;(2)在(1)的条件下,当70,12x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 有且只有一个零点,求实数b 的取值范围.18.如图,在直角梯形CD AB 中,//CD AB ,D AB ⊥A ,且1D CD 12AB =A ==.现以D A 为一边向梯形外作矩形D F A E ,然后沿边D A 将矩形D F A E 翻折,使平面D F A E 与平面CD AB 垂直.(1)求证:C B ⊥平面D B E ;(2)若点D 到平面C BE F D -B E 的体积.19..已知x >0,y >0,且2x +8y -xy =0,求:(1)xy 的最小值; (2)x +y 的最小值.20.在直角梯形PBCD 中,,4,2,2====∠=∠PD CD BC C D πA 为PD 的中点,如图.将△PAB 沿AB 折到△SAB 的位置,使SB ⊥BC ,点E 在SD 上,且SD SE 31=,如图.(Ⅰ)求证:SA ⊥平面ABCD ; (Ⅱ)求二面角E ﹣AC ﹣D 的正切值.21.已知以1a 为首项的数列{}n a 满足:11n n a a +=+(*n N ∈). (1)当113a =-时,且10n a -<<,写出2a 、3a ; (2)若数列{}n a (110n ≤≤,*n N ∈)是公差为1-的等差数列,求1a 的取值范围;22已知函数f (x )=λln x -e -x (λ∈R).(1)若函数f (x )是单调函数,求λ的取值范围; (2)求证:当0<x 1<x 2时,1211112x x e e x x ->---数学答案13.④ 14.nn S n 82-=15.611616.10,2⎡⎤⎢⎥⎣⎦17..试题解析:(1)函数()2cos cos 1f x x x x b ωωω=+++ 3sin 262x b πω⎛⎫=+++ ⎪⎝⎭,......................2分 ∵函数()f x 的图象关于直线6x π=对称,∴2662k πππωπ⋅+=+,k Z ∈且[]0,3ω∈,∴1ω=(k Z ∈),.由222262k x k πππππ-≤+≤+解得36k x k ππππ-≤≤+(k Z ∈),.....................4分函数()f x 的单调增区间为,36k k ππππ⎡⎤-+⎢⎥⎣⎦(k Z ∈)......................5分(2)由(1)知()3sin 262f x x b πω⎛⎫=+++ ⎪⎝⎭,∵70,12x π⎡⎤∈⎢⎥⎣⎦,∴42,663x πππ⎡⎤+∈⎢⎥⎣⎦, ∴2,662x πππ⎡⎤+∈⎢⎥⎣⎦,即0,6x π⎡⎤∈⎢⎥⎣⎦函数()f x 单调递增;42,623x πππ⎡⎤+∈⎢⎥⎣⎦,即7,612x ππ⎡⎤∈⎢⎥⎣⎦函数()f x 单调递减......................7分 又()03f f π⎛⎫= ⎪⎝⎭,∴当03f π⎛⎫> ⎪⎝⎭ 712f π⎛⎫≥ ⎪⎝⎭或06f π⎛⎫= ⎪⎝⎭时,函数()f x 有且只有一个零点,即435sin sin 326b ππ≤--<或3102b ++=,∴352,22b ⎛⎤⎧⎫∈-⋃- ⎨⎬⎥ ⎩⎭⎝⎦.............................................10分 18.(1)见解析;(2)61.解析:(1)证明:在矩形D F A E 中,D D E ⊥A 因为面D F A E ⊥面CD AB ,所以D E ⊥面CD AB ,所以D C E ⊥B又在直角梯形CD AB 中,D 1AB =A =,CD 2=,DC 45∠B =o,所以C B =在CD ∆B 中,D C B =B =CD 2=,.........................................4分所以:222D C CD B +B =所以:C D B ⊥B ,所以:C B ⊥面D B E ...................................................6分(2)由(1)得:面D BE ⊥面C B E , 作D E ⊥BE 于H ,则D H ⊥面C B E所以:D H =分 在D ∆B E 中,D D D B ⋅E =BE⋅HD E =,解得D 1E =所以:F D FD 111V V 1326-B E B-E ==⨯⨯=........................................12分 19.解 (1)由2x +8y -xy =0,得8x +2y =1,又x >0,y >0,则1=8x +2y≥28x ·2y=8xy,得xy ≥64,当且仅当x =4y ,即x =16,y =4时等号成立..........................................6分(2)解法一:由2x +8y -xy =0,得x =8yy -2,因为x >0,所以y >2, 则x +y =y +8yy -2=(y -2)+16y -2+10≥18,当且仅当y -2=16y -2,即y =6,x =12时等号成立.........................................12分解法二:由2x +8y -xy =0,得8x +2y=1,则x +y =⎝ ⎛⎭⎪⎫8x +2y ·(x +y )=10+2x y +8yx ≥10+22x y ·8yx=18,当且仅当y =6,x =12时等号成立..........................................12分20.(Ⅰ)证明见解析(Ⅱ)【解析】试题分析:(法一)(1)由题意可知,翻折后的图中SA ⊥AB ①,易证BC ⊥SA ②,由①②根据直线与平面垂直的判定定理可得SA ⊥平面ABCD ;.........................................4分 (2)(三垂线法)由考虑在AD 上取一点O ,使得,从而可得EO ∥SA ,所以EO ⊥平面ABCD ,过O 作OH ⊥AC 交AC 于H ,连接EH ,∠EHO 为二面角E ﹣AC ﹣D 的平面角,在Rt △AHO 中求解即可 (法二:空间向量法) (1)同法一(2)以A 为原点建立直角坐标系,易知平面ACD 的法向为,求平面EAC 的法向量,代入公式求解即可解法一:(1)证明:在题平面图形中,由题意可知,BA ⊥PD ,ABCD 为正方形, 所以在翻折后的图中,SA ⊥AB ,SA=2,四边形ABCD 是边长为2的正方形, 因为SB ⊥BC ,AB ⊥BC ,SB ∩AB=B 所以BC ⊥平面SAB , 又SA ⊂平面SAB , 所以BC ⊥SA ,又SA ⊥AB ,BC ∩AB=B 所以SA ⊥平面ABCD , (2)在AD 上取一点O ,使,连接EO因为,所以EO ∥SA因为SA ⊥平面ABCD , 所以EO ⊥平面ABCD ,过O 作OH ⊥AC 交AC 于H ,连接EH , 则AC ⊥平面EOH , 所以AC ⊥EH .所以∠EHO 为二面角E ﹣AC ﹣D 的平面角,.在Rt △AHO 中,∴,即二面角E ﹣AC ﹣D 的正切值为.........................................12分解法二:(1)同方法一(2)解:如图,以A 为原点建立直角坐标系,A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),S (0,0,2),E (0,)∴平面ACD 的法向为.........................................6分设平面EAC 的法向量为=(x ,y ,z ),由00n AC n AE ⎧⋅=⎪⎨⋅=⎪⎩r u u u r r u u u r ,所以,可取所以=(2,﹣2,1)..........................................9分 所以所以即二面角E ﹣AC ﹣D 的正切值为.........................................12分21.(1)223a =-,313a =-;(2)19a ≤-【解析】(1)因为以1a 为首项的数列{}n a 满足:11n n a a +=+,113a =-,10n a -<<, 所以21213a a =+=,所以223a =-;由32113a a =+=得313a =-;...........4分 (2)因为数列{}n a (110n ≤≤,*n N ∈)是公差为1-的等差数列,所以111n n n a a a +=-=+,所以()()2211n n a a-=+,.......................6分所以22n n a a -=,所以0n a ≤, 所以n na a =-, .........................................8分故()11n a a n -=---,所以()110n a a n =+-≤,因为110n ≤≤, .........................................10分 所以由题意只需:10190a a =+<,故19a ≤-..........................................12分22.解 (1)函数f (x )的定义域为(0,+∞), ∵f (x )=λln x -e -x ,∴f ′(x )=λx+e -x =λ+x e -xx,∵函数f (x )是单调函数,∴f ′(x )≤0或f ′(x )≥0在(0,+∞)上恒成立,....2分①当函数f (x )是单调递减函数时,f ′(x )≤0, ∴λ+x e -xx≤0,即λ+x e -x ≤0,λ≤-x e -x =-xe x,令φ(x )=-x e x ,则φ′(x )=x -1ex ,当0<x <1时,φ′(x )<0,当x >1时,φ′(x )>0, 则φ(x )在(0,1)上单调递减,在(1,+∞)上单调递增,∴当x >0时,φ(x )min =φ(1)=-1e ,∴λ≤-1e;.........................................4分②当函数f (x )是单调递增函数时,f ′(x )≥0, ∴λ+x e -xx≥0,即λ+x e -x ≥0,λ≥-x e -x =-xe x,由①得φ(x )=-xe x 在(0,1)上单调递减,在(1,+∞)上单调递增,又φ(0)=0,x →+∞时,φ(x )<0,∴λ≥0.综上,λ≤-1e或λ≥0..........................................6分(2)证明:由(1)可知,当λ=-1e 时,f (x )=-1e ln x -e -x 在(0,+∞)上单调递减,∵0<x 1<x 2,∴f (x 1)>f (x 2),即-1e ln x 1-e -x 1>-1eln x 2-e -x 2,∴e -x 2-e -x 1>ln x 1-ln x 2. 要证e 1-x2-e 1-x 1>1-x 2x 1.只需证ln x 1-ln x 2>1-x 2x 1,即证lnx 1x 2>1-x 2x 1,令t =x 1x 2,t ∈(0,1),则只需证ln t >1-1t,.........................................10分令h (t )=ln t +1t -1,则当0<t <1时,h ′(t )=t -1t2<0,∴h (t )在(0,1)上单调递减,又h (1)=0,∴h (t )>0,即ln t >1-1t,得证....................12分。
2020届安徽省毛坦厂中学高三12月月考试题 数学(文)(历届)(PDF版)
A. f (sin1) f (cos1)
B. f (sin 2) f (cos 2)
C. f (sin 3) f (cos 3)
D. f (sin 4) f (cos 4)
3.复数 z 满足: (z 2) i z ( i 为虚数单位), z 为复数 z 的共轭复数,则下列说法正确的是()
有三角形的个数为 an ,则数列an 的通项公式为().
A. an 2n 1
B. an
n2 n 2
C. an
n3
17n 6 12
D. an n2 n 1
6.数列 1, 1 , 1 ,…,
1
的前 n 项和为
1 2 1 23
1 2 n
A. 2n 2n 1
B. 2n n 1
C. n 2 n 1
A. z 2 2i
B. z z 2
C.| z | 2
4.函数 f(x)=x3﹣2x﹣3 一定存在零点的区间是( )
D. z z 0
A.(2,+∞)
B.(1,2)
C.(0,1)
D.(﹣1,0)
5.已知 ABC 三条边分别是 a , b , c ,且 a b c a,b, c N * ,若当 b n n N* 时,记满足条件的所
C.
1,
1 4
1 4
,
B.
,
2
1,
3 4
D.
1,
3 4
1 4
,
第 II 卷(非选择题)
二、填空题
13.已知向量 a (1, 0) , b (4, 3) ,则 a 在 b 方向上的投影是________.
14.设等差数列 an 的公差 d 不为零, a1 9d,若 ak 是 a1 与 a2k 的等比中项,则 k _____.
安徽省毛坦厂中学2020届高三数学12月月考试题文应届202001070211
安徽省毛坦厂中学2020届高三数学12月月考试题 文(应届)一、选择题(本题共12小题,每小题5分,共60分,每小题只有一个选项符合题意)1.设全集U =R ,集合{}2lg(1)M x y x ==-,{}02N x x =<<,则()RC M N =I( )A .{}21x x -≤≤ B .{}01x x <≤C .{}11x x -≤≤D .{}1x x <2.已知 3.10.20.50.2, 3.1,log 3.1a b c ===,则,,a b c 的大小关系为( ) A .a b c >> B .b a c >>C .a c b >>D .b c a >>3.设复数21iz i=+ (其中i 为虚数单位),则复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限4.双曲线的离心率为,则其渐近线方程为A .B .C .D .5.设向量a b r r ,满足(13a b ==r r ,,,且a r 与b r 的夹角为3π,则2a b +r r =( ) A .2 B .4 C .12 D .236.已知椭圆22221(0)x y a b a b+=>>的一条弦所在的直线方程是50,x y -+=弦的中点坐标是()4,1,M -则椭圆的离心率是( )A .12 B 2 C .32D 57.已知1F 、2F 为双曲线C :221x y -=的左、右焦点,点P 在C 上,∠1F P 2F =060,则12·PF PF =( )A .2B .4C .6D .88.过抛物线24y x =的焦点作两条垂直的弦,AB CD ,则11AB CD+=( ) A .2 B .4 C .12D .149、一个几何体的三视图如图所示, 则这个几何的体积为( )A 、π638+B 、31638π+C 、π63332+D 、3163332π+ 10、下面四个推理,不属于演绎推理的是( )A. 因为函数)(sin R x x y ∈=的值域为[−1,1],R x ∈-12,所以))(12sin(R x x y ∈-=的值域也为[−1,1]B. 昆虫都是6条腿,竹节虫是昆虫,所以竹节虫有6条腿C. 在平面中,对于三条不同的直线a,b,c,若a∥b,b∥c 则a∥c,将此结论放到空间中也是如此D. 如果一个人在墙上写字的位置与他的视线平行,那么,墙上字迹离地的高度大约是他的身高,凶手在墙上写字的位置与他的视线平行,福尔摩斯量得墙壁上的字迹距地面六尺多,于是,他得出了凶手身高六尺多的结论11、已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别为.21,F F ,若在直线a x 2=上存在点P 使线段1PF 的中垂线过点2F ,则椭圆的离心率的取值范围是( ) A 、⎥⎦⎤ ⎝⎛320, B 、⎪⎭⎫⎢⎣⎡1,32 C 、⎥⎦⎤ ⎝⎛210, D 、⎪⎭⎫⎢⎣⎡1,2112、定义在R 上的函数)(x f 满足),()x f x f =-(且对任意的不相等的实数[)有+∞∈,0,21x x ,0)()(2121<--x x x f x f 成立,若关于x 的不等式-≥--)3(2)3ln 2(f x mx f[]3,1)3ln 2(∈++-x x mx f 在上恒成立,则实数m 的取值范围是( )A.⎥⎦⎤⎢⎣⎡+66ln 1,e 21 B. ⎥⎦⎤⎢⎣⎡+36ln 2,e 1 C.⎥⎦⎤⎢⎣⎡+33ln 2,e 1 D. ⎥⎦⎤⎢⎣⎡+63ln 1,e 21 二、填空题(本大题共4小题,每小题5分,共20分)13、若实数y x ,满足约束条件⎪⎩⎪⎨⎧≤-≥+-≥++,02,042,032x y x y x 则y x +3的最大值是14.记n S 为数列{}n a 的前n 项和.若21n n S a =+,则6S =_____________.15、已知函数,sin cos 4)(x x f x f +⎪⎭⎫⎝⎛'=π则曲线)(x f y =在点))0(0f ,(处的切线方程是 16、设21,F F 分别是椭圆1162522=+y x 的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则||||1PF PM +的最大值为三、解答题:本大题共6题,共70分,解答应写出文字说明,证明过程或演算步骤.17.的内角的对边分别为,,a b c ,已知2sin()8sin 2B AC +=. (1)求cos B ;(2)若6a c +=,ABC ∆面积为2,求b .18.已知{}n a 是等差数列,{}n b 是各项为正数的等比数列,且111a b ==,3521a b +=,5313a b +=. ⑴求数列{}n a 和{}n b 的通项公式;⑵若nn na cb =,求数列{}nc 的前n 项和n S .19、(12分)如图,在多面体ABCDEF 中,底面ABCD 是菱形,,60,0O DAB BD AC =∠=I//,2FC AB ED EA ===平面BDE,且FC=OE,A,E,F,C 四点共面。
2020届安徽省毛坦厂中学高三12月月考试题 数学(文)(历届)
…………○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○………… 绝密★启用前 2020届安徽省毛坦厂中学高三12月月考试题 历届文科数学试卷 第I 卷(选择题) 一、单选题 1.集合{}260A x x x =--<,集合{}2|log 1B x x =<,则A B =U () A .()2,3- B .(),3-∞ C .()2,2- D .()0,2 2.已知()sin f x x x =+则下列正确的是() A .(sin1)(cos1)f f < B .(sin 2)(cos 2)f f < C .(sin 3)(cos 3)f f < D .(sin 4)(cos 4)f f < 3.复数z 满足:(2)i z z -⋅=(i 为虚数单位),z 为复数z 的共轭复数,则下列说法正确的是() A .22i z = B .2z z ⋅= C .||2z = D .0z z += 4.函数f (x )=x 3﹣2x ﹣3一定存在零点的区间是( ) A .(2,+∞) B .(1,2) C .(0,1) D .(﹣1,0) 5.已知ABC ∆三条边分别是a ,b ,c ,且()*,,≤≤∈a b c a b c N ,若当()*b n n N =∈时,记满足条件的所有三角形的个数为n a ,则数列{}n a 的通项公式为(). A .21n a n =- B .22n n n a += C .317612n n n a +-= D .21n a n n =-+ 6.数列1,112+,1123++,…,112n ++⋯+的前n 项和为 A .221n n + B .21n n + C .12++n n D .21n n + 7.下列四个命题:①任意两条直线都可以确定一个平面②在空间中,若角1θ与角2θ的两边分别平行,则12θθ=③若直线l 上有一点在平面α内,则l 在平面α内④同时垂直于一条直线的两条直线平行;其中正确命题的个数是() A .3 B .2 C .1 D .0 8.函数sin()(0,||,)2y A x x ωϕωϕπ=+><∈R 的部分图象如图所示,则函数表达式为 A .4sin()84y x ππ=-- B .4sin()84y x ππ=- C .4sin()84y x ππ=+ D .4sin()84y x ππ=-+9.一个几何体的三视图如图所示,则该几何体的体积为() 正视图 俯视图 侧视图 A .73 B .92 C .72 D .94 10.函数()2ln f x x x =的图象大致是() A . B . C . D . 11.已知曲线1:22C y x =,2:sin 2cos 2C y x x =+,则下面结论正确的是()A .把曲线1C 向右平移8π个长度单位得到曲线2CB .把曲线1C 向左平移4π个长度单位得到曲线2C C .把曲线2C 向左平移4π个长度单位得到曲线1C…………○…………外…………○…………装…………○…………订…………○…………线…………○………… ※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※ …………○…………内…………○…………装…………○…………订…………○…………线…………○………… D .把曲线2C 向右平移8π个长度单位得到曲线1C 12.对实数a 和b ,定义运算“⊗”:b a ⊗ ,1,1a a b b a b -≤⎧=⎨->⎩设函数()()22f x x =-⊗()2,x x x R -∈若函数()y f x c =-的图象与x 轴恰有两个公共点,则实数c 的取值范围是() A .(]3,21,2⎛⎫-∞-⋃- ⎪⎝⎭ B .(]3,21,4⎛⎫-∞-⋃-- ⎪⎝⎭ C .111,,44⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭ D .311,,44⎛⎤⎛⎫--⋃+∞ ⎪⎥⎝⎦⎝⎭第II 卷(非选择题)二、填空题13.已知向量(1,0)a =-r ,(4,3)b =r ,则a r 在b r 方向上的投影是________14.设等差数列{}n a 的公差d 不为零,19a d =,若k a 是1a 与2k a 的等比中项,则k =_____.15.已知正四棱锥P ABCD -的顶点均在球O 上,且该正四棱锥的各个棱长均为2,则球O 的表面积为____. 16.函数()f x 为定义在-00∞⋃+∞(,)(,)上的奇函数,且(2)1f =,对于任意()1212,0x x x x ∈+∞≠,,,都有112212()()0x f x x f x x x ->-成立.则2()f x x≤的解集为_________.三、解答题17.在中,角所对的边分别为,且满足(2a-c )cosB=bcosC .(1)求角B 的大小;(2)设,且的最大值是5,求k 的值.18.已知数列{}n a 的前n 项和为n S ,且22n S n n =+,*n N ∈,数列{}n b 满足24log 3n n a b =+,*n N ∈.(1)求n a 和n b 的通项公式;(2)求数列{n n a b ⋅}的前n 项和n T .19.如图1,四棱锥P ABCD -的底面ABCD 是正方形,PD 垂直于底面ABCD ,已知四棱锥的正视图,如图2所示. (I )若M 是PC 的中点,证明:DM ⊥平面PBC ; (II )求棱锥A BDM -的体积. 20.已知函数21()32x f x e x ax =--. (1)若函数()f x 的图象在0x =处的切线方程为2y x b =+,求,a b 的值; (2)若函数()f x 在R 上是增函数,求实数a 的最大值. 21.如图,在直三棱柱111ABC A B C -中,90ACB ∠=︒,点D 是AB 的中点. (1)求证:1AC BC ⊥; (2)求证:⊥1AC 平面1CDB . 22.已知1()ln ,(,0)x f x x a R a ax -=+∈≠. (1)试讨论函数()y f x =的单调性; (2)若0(0,)x ∃∈+∞使得(0,)x ∀∈+∞都有)()(0x f x f ≥ 恒成立,且0)(0≥x f ,求满足条件的实数a 的取值集合.…………○…………内…………○…………装…………○…………订…………○…………线…………○………… 历届文科数学12月份联考参考答案 一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A D B B B B D D C A D B 二、填空题 13.45- 14.4 15.8π 16.(](]20,2-∞-⋃, 三、解答题 17.(1)(2) 18.(1)12-=n n b ; (2)(45)25n n T n =-+ 【解析】 (1)∵2*2,n S n n n N =+∈,∴当1n =时,113a S ==. 当2n ≥时,2212[2(1)(1)]41n n n a S S n n n n n -=-=+--+-=-. ∵1n =时,13a =满足上式,∴*41,n a n n N =-∈. 又∵*24log 3,n n a b n N =+∈,∴2414log 3n n b -=+,解得:12n n b -=. 故41,n a n =-,12n n b -=,*n N ∈. (2)∵41,n a n =-,12n n b -=,*n N ∈ ∴1122n n n T a b a b a b =+++L 01213272(45)2(41)2n n n n --=⨯+⨯++-⨯+-⨯L ① 12123272(45)2(41)2n n n T n n -=⨯+⨯++-⨯+-⨯L ② 由①-②得:1213424242(41)2n n n T n --=+⨯+⨯++⨯--⨯L 12(12)34(41)2(54)2512n n n n n --=+⨯--⨯=-⨯-- ∴(45)25n n T n =-⨯+,*n N ∈. 考点:1.数列通项公式求解;2.错位相减法求和 【点睛】求数列{}n a 的通项公式主要利用11a S =,()12n n n a S S n -=-≥分情况求解后,验证1a 的值是否满足()12n n n a S S n -=-≥关系式,解决非等差等比数列求和问题,主要有两种思路:其一,转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解(即分组求和)或错位相减来完成,其二,不能转化为等差等比数列的,往往通过裂项相消法,倒序相加法来求和,本题中()141?2n n n a b n -=-,根据特点采用错位相减法求和19.(I )证明见解析;(II )23. 【解析】(Ⅰ)由正视图可知,2PD DC ==∵PD ⊥平面ABCD ,∴ PD ⊥BC又∵ABCD 是正方形,∴BC ⊥CD.∵PD CD D ⋂=,∴BC ⊥平面PCD∵DM ⊂平面PCD ,∴DM ⊥BC.又PCD ∆是等腰三角形,E 是斜边PC 的中点,所以∴DM ⊥PC又∵BC PC C ⋂=,∴DM ⊥平面PBC.(Ⅱ)在平面PCD 内过M 作MN//PD 交CD 于N ,所以112MN PD ==且MN ⊥平面ABCD ,所以棱锥M -ABD 的体积为 111112221332323M ABD ABD V S MN AB AD MH -∆=⋅=⨯⋅⋅=⨯⨯⨯⨯= 又∵棱锥A -BDM 的体积等于棱锥M -ABD 的体积,∴棱锥A -BDM 的体积等于23. 【点睛】本题主要考查棱锥的体积、线面垂直的判定定理,属于中档题.解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论;(3)利用面面平行的性质;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.20.(1)13a b =⎧⎨=⎩;(2)1ln3+. 【解析】(1)由题意,函数21()32x f x e x ax =--. 故()3x f x e x a '=--,则(0)3f a '=-,由题意,知32a -=,即1a =. 又21()32x f x e x x =--Q ,则(0)3f =. 203b ∴⨯+=,即3b =.13a b =⎧∴⎨=⎩. (2)由题意,可知0)(≥''x f ,即03≥--a x e x 恒成立, ∴x e a x -≤3恒成立…………………………………………………………………..7分 设()3x g x e x =-,则()31x g x e '=-. 令()310x g x e '=-=,解得ln3x <-. 令()0g x '<,解得ln3x <-. 令()0g x '>,解得x ln3x >-. ()g x ∴在(,ln 3)-∞-上单调递减,在(ln 3,)-+∞上单调递增,在ln3x =-处取得极小值. min ()(ln 3)1ln 3g x g ∴=-=+. 所以3ln 1+≤a 故a 的最大值为1ln3+.………………………………………………………………………….12分 【点睛】本题主要考查利用某点处的一阶导数分析得出参数的值,参变量分离方法的应用,不等式的计算能力.本题属中档题. 21. (1)证明见解析;(2) 证明见解析 【解析】证明:(1)∵90ACB ∠=︒,∴AC CB ⊥, 又在直三棱柱111ABC A B C -中,有1AC BB ⊥, ∴AC ⊥平面11BB C C . 因为BC 1⊂平面11BB C C ,∴AC ⊥BC . ………………………………….6分 (2)设1BC 与1B C 交于点P ,连DP ,易知P 是1BC 的中点,又D 是AB 中点, ∴AC 1∥DP , ∵DP ⊂平面1CDB ,1AC ⊄平面1CDB , ∴AC 1∥平面1CDB . …………………………………………………………….12分 【点睛】证明线与平面平行,一般可用判定定理,转化为证明线线平行,一般可通过构造平行四边形,或是三角形中位线证明线线平行,或是证明面面平行,则线面平行,在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而在应用性质定理时,其顺序恰好相反,但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”. 22.(1)分类讨论,详见解析;(2){}1.【解析】(1)由1()ln x f x x ax -=+,得21()(0)ax f x x ax -+'=>…………………………..2分 ①当0a <时,()0f x '>在(0,)+∞上恒成立,()f x ∴在(0,)+∞上单调递增;..................................................................................................4分②当0a >时,由()0f x '>得1x a >,由()0f x '<,得10x a<<, ()f x ∴在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增. 综上:①当0a <时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,无递减区间; ②当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增…………………..6分 (2)由题意函数存在最小值()0f x 且0)(0≥x f ,①当0a <时,由(1)上单调递增且(1)0f =,当x (0,1)x ∈时,()0f x <,不符合条件;.......................................................................8分②当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增, min 111()1ln f x f a a a ⎛⎫∴==-+ ⎪⎝⎭, ∴只需0)(min ≥x f 即 01ln 11≥+-aa , 记()1ln (0)g x x x x =-+>则1()1g x x'=-+, 由()0g x '>得01x <<,由()0g x '<得1x >,()g x ∴在(0,1)上单调递增,在(1,)+∞上单调递减,,1,11,0)1()(g =∴=∴=≤∴a ag x 即满足条件a 的取值集合为{}1.【点睛】本题考查了利用导数求函数的单调区间和导数的综合应用,考查了分类讨论思想和函数思想,属难题.。
安徽省毛坦厂中学2020届高三物理12月月考试题(应届)
安徽省毛坦厂中学2020届高三物理12月月考试题(应届)一、单选题(共6题,每题4分)1.用相同的灵敏电流计作表头改装成电流表A 和电压表V ,分别将其串联和并联在一起,然后接入电路中.通电后关于指针的偏角情况的叙述正确的是( )A .图甲中电压表的指针偏角与电流表的相等B .图甲中电压表的指针偏角比电流表的小C .图乙中电压表的指针偏角与电流表的相等D .图乙中电压表的指针偏角比电流表的小2.A 、B 两灯的额定电压都是110V ,A 灯的额定功率P A =100W ,B 灯的额定功率P B =40W ,若将两灯同时接入电压恒为220V 的电路上,且使两灯均能正常发光,同学们设计了如图所示的甲、乙两种电路,则甲、乙两电路消耗的电功率之比为( )A .2∶7B .2∶5C .5∶7D .3∶73.如图所示,三个完全相同的半圆形光滑轨道竖直放置,分别处在真空、匀强磁场和匀强电场中,轨道两端在同一高度上,P 、M 、N 分别为轨道的最低点。
三个相同的带正电小球同时从轨道左端最高点由静止开始沿轨道运动且均能通过最低点。
如图所示,则下列有关判断正确的是( )A .小球第一次到达轨道最低点的速度关系P M N v v v << B .小球第一次到达轨道最低点时对轨道的压力关系M P N F F F >>C .小球从开始运动到第一次到达轨道最低点所用的时间关系P M N t t t <<D .三个小球到达轨道右端的高度都不相同,但都能回到原来的出发点位置4.如图,圆形区域内有一垂直纸面的匀强磁场,P 为磁场边界上的一点。
有无数带有同样电荷、具有同样质量的粒子在纸面内沿各个方向以同样的速率通过P 点进入磁场。
这些粒子射出边界的位置均处于边界的某一段弧上,这段圆弧的弧长是圆周长的1/3。
将磁感应强度的大小从原来的变为,结果相应的弧长变为原来的一半,则:等于 A .2 B . C . D .35.有关电动势的说法中不正确的是( ) A .电源的电动势在数值上等于非静电力把1C 的正电荷在电源内从负极移送到正极所做的功 B .当外电路断开时,电源的电压与电源电动势相等 C .电源提供的电能越多,电源的电动势越大D .当电路中通过1库仑电荷量时,电源消耗的其他形式能的数值等于电源电动势的值6.硅光电池是一种太阳能电池,具有低碳环保的优点.如图所示,图线a 是该电池在某光照强度下路端电压U 和电流I 的关系图象(电池内阻不是常数),图线b 是某电阻R 的U -I 图象.在该光照强度下将它们组成闭合回路时,硅光电池的内阻为( )A .5.5ΩB .7.0ΩC .12.0ΩD .12.5Ω二、多选题(共4题,每题4分,少选得2分,错选不得分)7.用比值法定义物理量是物理学中的一种常用的方法。
高三数学12月月考试题理历届试题
毛坦厂中学2021届高三数学12月月考试题理〔历届〕创作人:历恰面日期:2020年1月1日第一卷(选择题,一共60分)一、选择题(此题一共12小题,每一小题5分,一共60分,每一小题只有一个选项符合题意)1.集合A={},B={},那么A B=〔〕 A.〔〕 B. C.〔2,3〕 D.〔〕2.m、n、l是不同直线,是不同平面,那么以下命题正确的选项是〔〕 A.假设m、n,那么B.假设n n,那么C.假设m,n,m,,那么D.假设,,那么3.在等差数列{a n}中,那么公差d〔〕A.2 B.3 C. 2 D. 34.平面向量a、b满足,〔a〕〔a〕,那么向量a、b的夹角为〔〕A. B. C. D.5. 在递增的等比数列{a n}中,64,且前n项和那么n〔〕A.6 B.5 C.4 D.36.函数,那么定积分的值是〔〕A. B . C. D.7.某个几何体的三视图如下图,那么该几何体可能是〔〕A .B .C . D.第7题图8.将函数的图象向右平移个单位长度得到奇函数的图象,那么的最小值为〔〕A. B. C . D.9.数列a n,那么数列{a n}前30项中的最大项与最小项分别是〔〕A . B. C . D.10.,函数,那么“〞是上单调递减〞的〔〕A.充分不必要条件B. 必要不充分条件C.充要条件D. 既不充分又不必要条件11. 在正三棱锥S中,,D为的中点,SD与底面所成角为,那么正三棱锥S外接球的直径为〔〕A. B. C. D.12. 函数f(x),假设函数g(x)有三个零点,那么实数的取值范围是〔〕A. B. C. D.第二卷(非选择题,一共90分)二、填空题(本大题一一共4小题,每一小题5分,一共20分)13. 数列{a n}的前n项和为,假设,那么a n_________.14. 半径为R的球内接一个圆柱,那么圆柱侧面积的最大值是_________.15. 如图,在ABC中,相交于P,假设,那么_________.16. 给出以下命题:①ABC中,假设A B,那么sin A sin B;②边长为2的正方形其斜二侧画法的直观图面积为;③假设数列{a n}为等比数列,那么,……也成等比数列;④对于空间任意一点,存在实数x、y、z,使得那么P、A、B、C四点一共面.其中所有正确命题的序号是 .三、解答题(一共6小题,一共70分,解容许写出文字说明、证明过程或者演算步骤)17. (本小题满分是10分)函数f(x).⑴求函数f(x)的单调递增区间;⑵在ABC中,内角A、B、C的对边分别是、b、c,假设f(B),b,且、b、c成等差数列,求ABC的面积.18.(本小题满分是12分)数列{a n}的前n项和,数列{b n}满足().〔1〕求数列{a n}、{b n}的通项公式;〔2〕求数列{a n b n}的前n项和.19.(本小题满分是12分)如图,在四棱锥P ABCD中,PA底面正方形ABCD,E为侧棱PD的中点,F为AB的中点,PA AB.〔1〕证明:AE面PFC;〔2〕求平面与平面所成锐二面角的余弦值.20.(本小题满分是12分)数列{a n}与{b n}满足:,且{a n}为正项等比数列,=2,.⑴求数列{a n}与{b n}的通项公式;⑵数列{c n}满足c n,求数列{c n}的前n项和.21.(本小题满分是12分)在如下图的多面体中,平面平面,四边形是边长为2的菱形,四边形为直角梯形,四边形为平行四边形,且AB CD,AB BC,CD.⑴假设E,F分别为的中点,求证:EF平面;⑵假设BC,求二面角的余弦值.22.(本小题满分是12分)函数f(x),且直线y=1+b与函数y=f(x)相切. 〔1〕务实数的值;〔2〕假设函数f(x)有两个零点为,求证:创作人:历恰面日期:2020年1月1日。
安徽省毛坦厂中学2020届高三数学12月月考试题文历届.docx
A.尸B.尸“*-}c.,Y*咛D.9. 一个几何体的三祝图切图所示,则设几何体的体枳为()11,己知曲tt G:r = ^«n2x q:Z-iin2x4co»2x则下面结论正确的是()*A.把曲戏G向右平移,个长度单位得到曲JjGnB.把曲场。
向左平移5个长度单位得到曲经G«c.把曲戏G向左平修彳个长度单位得到曲安蒙省毛坦厂中学2020届菖三数学12月月考试题 文(历届)第 I 卷(a.»a )一、单逸st1. 集合如{申,-6<0|}集合* =也岫x<l }则4U-. <) A.(V3) B .(F3) C .(-2.2) D .他© 2. 已知则下列正确的是C A. /(■•■!) < /(<•■)) B. /(•*• C. /(■»• >) < /(«••»D. /(•*• < /(«••<)3. 复数z 满足,(i 为虚数单位),亍为复敷z 的共圳复跖 则下列说法正痛的是。
A. «,-iiB ・ a • - i C. ”卜,D. i*4. 函数,(*) = 4* - 2x - 3 —定存在零点的区间是.( )A. (2, +8)B. (1. 2)C. (0. 1)D. ( - 1, 0)5. 己知如c 三条边分别是.».且mdWceN),若当&="("")时.记娜足条件的所 有三角形的个效为则数列{%}的通项公式为(>.n l nB. "."丁6.数列 I, 1 + 2, 1 + 2,3,…,1 > 2 ♦... + « 的前 n 项和为2nA.商7. 下列四个命题,(D 任意两条直线都可以确定一个平面②在空间中,若角q 与角司的两边分别平行,则③若直线,上有一点、在平面"内.则】在平面"内④同时垂直于一条直线的两条直线平行,其中正确分 题的个数是()A. 3B. 2C. 1 D ・ 0y - A siB (a»r -* •X <v > 0,1^1 < —,x c R)8.画裁2的部分图象如图所示,则函数表达式为图2所示.JI + 2 C. "1D.A. °* = 2"1♦17i« -6图1 @2(I)若M是户。