Vehicle Tracking and Speed Measure

合集下载

汽车行业英文词汇翻译

汽车行业英文词汇翻译
文案大全
实用标准文档
snip 剪、剪马口铁用剪刀
Snow chains 雪炼
socket wrench 套头扳手
soldering copper 铜头烙铁
soldering lamp 焊灯、焊锡加热灯
Solenoid Valve 电磁阀
solid reamer 固定式绞刀
Solid White Line 实白线
Vehic1e Measurement 汽车丈量
Vehicle 车辆
Vehicle Model 汽车型式
Vehicle Speed Sensor (V.S.S) 进汽歧管空气温度传感器
vehicle identification number (VIN) vehicle-speed sensor
车辆识别号码
Traffic 1s1and 安全岛
Traffic Regulations 交通规则
Traffic Check 前后左右交通状况之不断检视
trailer 房车
Transistor Ignition System Transit
让渡书 transmission (汽车等之) 传动系统;变速器 Tread 轮距 Trunk 行李箱 turbin bleed 涡轮叶片 turbo combined engine 涡轮复合型引擎 turbo unite 涡轮组件 Turn Signal Light 方向灯 turn-signal switch 转向开关 safety goggles 安全护目镜 sand bag 样本瓦斯导入管 sand paper 喷砂清洁器 scanner 锯 screw dies 刮刀 screw gauge 拔栓、螺丝退除器 screw-plate 螺丝模板 Sea1 密封 Seat Belt 安全带 seat cutter (某)座绞刀 Seating

海康威视(Hikvision)线路运输管理解决方案说明书

海康威视(Hikvision)线路运输管理解决方案说明书

Hikvision's Line Haul Management SolutionBoost productivity and minimize transportation risksLogistics operators and drivers face numerous hassles for the goods they transport and the unpredictable transportation process. This makes transportation security paramount to their business.For logistics operators, the primary concerns center on getting timely, accurate, and comprehensive status updates of their freight trucks. They are seeking answers to dispatch monitor and schedule the trucks precisely, to ensure the trucks arrive safely, to examine the containers in real-time.Now, Hikvision figures out the real challenges and offers the optimal solution. Read on to find out more.BackgroundHikvision’s SolutionsCommon ChallengesAbsent of Data or Evidence of AccidentsDifficult to determine accident causes and trace back the evidenceof traffic accidents Vehicle Tracking & MonitoringSupport real-time GPS tracking and post-event video evidence trace back with HD video securityCostly Operation with At-Risk DrivingCarry more driving risks due to long working hours, physical burdens, harsh weather, etc.ZDriver Protection & AssistanceHigh Operation Costs Due to Loss and TheftFuel lossGoods loss due to spoilage, rejected loads, etc.Property Management & ProtectionEstablish extensive IOT applications with assorted sensors, including door status sensors, temperature sensors, fuel level sensor, and mobile recorders.Performance & Operation AnalysisSupport holistic management to improve decision making efficiency with assorted reports from HikCentral ProfessionalInefficient Operations ManagementDifficult to optimize operation Isolated data cannot accurately reflect the state of operationsProvide audio communication and alarm for in-time respondAchieve comprehensive protection with the intelligent driving assistance• Forward Collision Warning (FCW) • Lane Departure Warning (LDW) • Pedestrian Collision Warning (PCW) • Blind Spot Detection (BSD)• Headway Monitoring Warning (HMW) •Driver Safety Management (DSM)Solution FunctionsVideo SecuritySafe and stable transportation are always the priority for logistic operators. However, the driving process can be tough to manage, especially when determining the cause of an accident and exonerate innocent drivers. The lack of data or evidence can be a serious impediment. What can be done?Hikvision’s Line Haul Management Solution provides real-time monitoring to support drivers and continually records video to provide evidence of incidents. Operators can browse alarm records or timestamps.A 360° panoramic camera with all-around views supports safe driving. Drivers can improve awareness of surroundings and operate vehicles more safely with the all-around views when turning or moving in reverse. In emergencies, they can notify the platform using a convenient alarm button or by speaking directly through a two-way intercom . Additionally, driving alarms for events such as deviations and speeding go straight to the platform with real-time video and vehicle location to maintain safe operations.Deviation/Fence-crossing Incidents Panic stop Sharp turnAlarm triggerAuto pops up the incident messageHanding the alarmReportAlarm check and settlement Send to admins ForensicsEmergency Anomaly detection Overspeed FCW LDW PCWHMWBSDADASManual alarmCollision alarm Anomaly detection alarmAlarm ManagementReal-time Tracking HD MonitoringMoving vehicleStopped vehicle Vehicle in alarm O ine vehicleGoods ManagementDamage, vandalism, and theft of goods and merchandise are always the uncontrollable threats for operators, because they cannot examine those goods during the transportation process. Here, Hikvision’s IoT Module can help to enhance goods management with extensive IoT applications and assorted sensors, consisting of door status sensors, temperature sensors, fuel level sensor, and mobile recorders .*Door Status Sensors and Temperature Sensors support third-party sensors and are ready for project deployment. Door Status Sensor needs no integration. For Temperature Sensor, DVR customization is needed.Intelligent Driving AssistanceDifficulties like long hours, physical burdens, harsh weather, and more, make driving safely a challenge. And at-risk driving is very dangerous for merchandise, drivers, and general road safety. Our intelligent driving assistance system offers intelligent driver protection and assistance. It features Forward Collision Warning (FCW) , Lane Departure Warning (LDW) , Pedestrian Collision Warning (PCW) , Blind Spot Detection (BSD) , Headway Monitoring Warning (HMW) and Driver Safety Management (DSM). Drivers can enjoy a safe driving with intelligent analysis server to help identify potential dangers and trigger audio warnings.Moreover, drivers can navigate prudently with optimal awareness with the abnormal driving behavior detection from DSM camera.Door Open 16: 50 PMDoor Open 18: 13 PMDoor Status RecordsEventsT his advanced module provides temperature and fuel consumption monitoring and integrity assurance of merchandise. An operator can inspect the rear door status throughout the journey to make sure that all goods are intact during transit. For cold chain services, temperature sensors can help shipping professionals check container temperatures to maintain product quality , with temperature history and real-time alarms for abnormalities. Also, the IOT module can identify a sudden drop in fuel level, and analyze usage for maximum efficiency .Command Center - HikCentral ProfessionalOperators have difficulty evaluating their drivers’ performance, because isolated data cannot accurately reflect the real state of operations. However, HikCentral Professional can centralize management with helpful functions like video monitoring, recording, playing back footage, real-time positioning, data & statistics, and more. A variety of reports present operators with great visibility across every aspect, helping operators handle emergencies instantly and make smarter decision.*Note: Units of measure vary across regions. Hikvision applies the appropriate units in any given application/installation.Number of events per 100 km8612Event & Alarm StatisticsLiter per 100 kilometers202119LLLFuel Consumption StatisticsPunctual delivery989597Arrival StatisticsMileage StatisticsMiles covered this month9,800km11,50013,200kmkmOnline Hour StatisticsHours worked this month181205234hourshourshoursDriver A Driver B Driver C%number of eventsnumber of eventsnumber of events%%Solution StructureCommand CenterHikCentralMonitorIntercom Mobile Camera Panic Button 360° Surround View Camera360° Surround View Monitor HostVideo SecurityVideo, Alarm & IntercomRS232Mobile RecorderBSD Camera DSM Camera ADAS Camera Door status IO RS485RS485Fuel LevelTemperature RecordIntelligent Driving AssistanceVideo-based Intelligent Analysis Video, ADAS & AlarmGoods ManagementSolution Extension with Assorted SensorsFor large-scale trucks, they carry more risks due to the great inertia and more blind zones. Hikvision provides com-prehensive solution to guarantee the safe transportation, including video security, intelligent driving assistance, and goods management, etc.Front Camera 360° Surround View System Rear CameraDoor Closed Sensor Temperature SensorDVRBSD Camera IntercomSide Camera Indoor Camera ADAS CameraLCD PanelDBA CameraFuel Level Sensor Panic ButtonBox trucks or lorries and single-chassis vehicles360° Surround View SystemCommon Applications360° Surround View Host 5LCD Panel6360° Surround View Camera 14~View of cam 4Cam 1Cam 3View of cam 2256413DSMSide CameraDVRFuel Level SensorBSD Camera Indoor CameraADAS CameraLCD PanelDBA CameraPanic ButtonIntercom2For big rigs without power supply in container, the solution canfocus on the video security and intelligent driving assistancepart to assure the safety of driving and transportation.Big rigs and varioustrucks with trailersVideo Recording & RetrievalFence Crossing AlarmReal-time MonitoringRoute & Speed ControlDSMProduct FeaturesHD Video Security•All-round cameras with high definition, including 720p and 1080p, can provide better recording, tracking, and deterrenceMobile CameraMobile DVRsReliable Supply, Modular Design• Power supply supports 8-36 VDC• Electromagnetic immunity design conforms to the automobile ISO-7637 electromagnetic standard •Suitable for all types of vehiclesAnti-Seismic Design• Top-rated shockproof hard drives installed •Patented metal air bag damping technologyUninterrupted Power Design• First to be utilized in the industry•Ensures video is written to the hard drive at the moment of power failure5sPerfect Video Recording• Supports a variety of storage media• Supports SD card redundancy recording when if hard drive is damaged•Supports fire box storage / redundancy recordingSDGPS Filtering•Equipped with high-sensitivity antenna and GPS filtering algorithms, GPS Filtering resolves problems with fixed-point drift, velocity drift, and other abnormal data. Moreover, regarding data transmission, information will be maintained when offline or Internet disconnection; transmission will be restored when back online.Aviation Gyroscope•Built-in G-sensor & gyroscope sensor provide emergency response to collision and rollover accidents to restrict or eliminate dangerous driving habits such as rapid acceleration, deceleration or braking, and turning too sharplyDual System Backup•Dual system firmware is built in the vehicle host to ensure normal operation of the device after restartingIP68 Waterproof Rating• Water pressure: 400 KPa • Water flow: 100L/min • Depth: 2.5 – 4 m •Test duration: >3 mins*Only outdoor analog camera achieves IP68.AE-VC163T-ITS AE-VC263T-ITS• Front and Rear Dual-Channel Vehicle-Mounted Camera • 720p / 1080p @ 30 fps• Min. illumination: 0.1 Lux @ (F1.2, AGC ON) , 0 Lux with IR • ICR for rear camera and full color for front camera • Built-in microphone• Rear Camera: 2.1 mm; Field of View: H: 125°, V: 80°, Diag: 148°• Front Camera: 2.1 mm; Field of View: H: 125°, V: 66°, Diag: 154°• Adjustment Angle: Tilt: 0 - 360°•CE / FCC / E-markAE-VC159T-S AE-VC259T-S• Front Vehicle-Mounted Camera • 720p / 1080p @ 30 fps• Min. illumination: 0.01 Lux @ (F1.2, AGC ON) • Supports full color• Wide-angle lens, 2.1 mm, Field of View: H: 127°, V: 73°• SNR: 42 dB• Consumption: ≤ 2.2 W • CE / FCC / E-mark AE-VA136T• Front Vehicle-Mounted Camera • 720p @ 30 fps• Min. illumination: 0.01 Lux @ (F1.2, AGC ON) • Supports full color• Wide-angle lens, 2.1 mm, H FOV 127°, V FOV 73°• SNR: 42 dB• Consumption: ≤ 1 W •CE / FCC / E-mark• 720p / 1080p @ 30 fps • Metal Case• 0.1 Lux @ (F1.2, AGC ON)• Operating temperature: -40 - 75° C • Ingress protection: IP68• Adjustment Angle: Tilt: 0°to 90°• Supports auto day & night switch • Supports right & left monitor mode •SNR: 62 dBAE-VC153T-IT AE-VC253T-ITWorks with AI DVR to achieve BSDAE-VC154T-IT• 6 mm lens • 720p @ 30 fps• Min. illumination: 0.1 Lux @ (F1.2, AGC ON) , 0 Lux with IR • Tilt: 0 - 50°, Pan: 0 - 5°, Rotate: 0 - 360°• 2 x 940 nm IR • 3 m IR distance • SNR: 42 dB• Consumption: ≤ 2.5 W Works with AI DVR to achieve DSMAE-VC155T• Windshield camera • 6 mm lens • 720p @ 30 fps• Min. illumination: 0.1 Lux @ (F1.2, AGC ON) • Tilt: 0 - 65°• WDR: 120 dB • SNR: 42 dB•Consumption: ≤ 2 WWorks with AI DVR to achieve ADASHikvision Colombia****************************Hikvision CzechT +420 29 6182640*********************Hikvision Europe T +31 23 5542770 **********************Hikvision Egypt T +20223066117**********************Hikvision Azerbaijan T +994 50 369 81 57*****************************Hikvision BrazilT +55-11-3318-0050***************************Hikvision Canada T +1-866-200-6690**************************Hikvision Australia T +61-2-8599-4233*********************Hikvision IndiaT +91-22-6855 9944************************Hikvision Indonesia T +6221 2933 9366*****************************Hikvision IsraelT +972 79 5555590**************************Hikvision ItalyT +39 0438 6902 *********************Hikvision FranceT +33(0)1 85 330 450 *********************Hikvision Hungary KFT*********************Hikvision Hong Kong , China **********************Hikvision Germany************************Hikvision New Zealand T 09 217 3127*********************Hikvision New Panama Sales.centralamerica @Hikvision Mexico T +52 55 2624 0110**************************Hikvision Pakistan T +92-2135147526************************Hikvision South Africa T +27 877018113*************************Hikvision Tashkent T +99-87-1238-9438 ****************Hikvision Singapore T +65 6684 4718 ****************Hikvision SpainT +34 91 737 16 55 *********************Hikvision Philippines************************Hikvision Russia T +7-495-669-67-99********************Hikvision Romania**************************Hikvision PolandT +48 22 460 01 50 *********************Hikvision Thailand****************************Hikvision Turkey T +90 216 521 70 70************************Hikvision UAET +971-4-4432090*********************Hikvision UK & Ireland T +44(0)1628 902 140 *********************Hikvision Uzbekistan T +998-71-233-55-50************************Hikvision USAT +1-909-895-0400***********************Hikvision Vietnam T +84 24 7300 7586*********************Hikvision Kenya**************************Hikvision Malaysia T +60327224000**********************Hikvision Korea T +82-1661-8138*************************Hikvision Kazakhstan T +7 (727) 291-75-88********************DS-1350HM• 1-ch build-in speaker and 1-ch build-in Mic • 12 VDC / 30 mA • 85 x 85 x 26 mm• Operating Temperature: -10 to 55° C • Wiring length: 6,000 mmDS-1530HMI• Built-in Gyroscope and Sensor • 5 VDC / 30 mA • 80 x 30 x 19 mm• Operating Temperature: -20 to 60° C • 100 ms sampling interval• 7-inch TFT-LCD, 800 x 480 RGB • 130° visual angle• Manual switch or Auto switch• 1-ch connect to the DVR, 1-ch connect to the rear camera • 2-ch alarm input • IP 54DS-MP1301DS-MP1302 (Touch Screen)Hikvision’s Line Haul Management Solution Boost productivity and minimize transportation risks。

车辆纵向速度估算算法现状及趋势

车辆纵向速度估算算法现状及趋势

车辆纵向速度估算算法现状及趋势专业:控制理论与控制工程班级:2008学生姓名:梁晋昌学号:20080201008导师:韩峻峰2010年3月8日车辆纵向速度估算算法现状及趋势梁晋昌(广西工学院电子信息与控制工程系,广西柳州545006)摘要:在车辆行驶过程中,纵向速度是车辆主动安全系统中的重要信息。

在制动防抱死(ABS)和驱动防滑系统 (ASR)中,纵向车速是计算纵向滑移率、保持车辆行驶稳定性的重要参数。

对现存的车辆纵向速度算法进行了分类综述,将其分为基于基本信息的直接计算方法和基于模型信息的间接计算方法两大类,对各种方法的优缺点进行了讨论,并对其发展趋势进行了展望。

关键词:纵向速度;速度估计;车辆模型Abstract: Vehicle is in motion the process, the vertical velocity of vehicle active safety systems in the important information. Anti-lock braking (ABS) and drive-slip system (ASR), the vertical speed is to calculate the vertical slip rate to maintain the stability of vehicles an important parameter. Vehicle longitudinal speed of the existing algorithms are classified overview of basic information will be divided into based on the direct calculation method and model-based information on the indirect method of calculating two categories, the advantages and disadvantages of various methods were discussed, and its development trends predicted.Key words: Longitudinal velocity; Velocity estimation; Vehicle Model0 引言在车辆行驶过程中,纵向速度是车辆主动安全系统中的重要信息。

自动驾驶最全简称和英文缩写

自动驾驶最全简称和英文缩写
L3
人车交互驾驶,车自动控制驾驶,人参与指挥车辆驾驶,车自动驾驶为主,人驾驶为辅助
L4
全自动驾驶,人不做任何指挥或控制车辆驾驶,由车辆全自助驾驶
L5
完全自动驾驶
Blind Spot Monitoring
盲点检测(并线辅助)
RCTA
Rear-Cross Traffic Alert
后排路口交通警报
DDD
Drive Drowsiness Detection
驾驶员疲劳探测
HDC
Hill Descent control
下坡控制系统
Electric Vehicle warning sounds
坡道起步辅助
AVH
Auto vehicle Hold
车辆自动驻车
FBS
Fading brake support
制动衰退补偿
TVBB
Torque Vectoring by Brake
制动力矩矢量控制
STO
Steering Torque Overlay
转向力矩干预
HMI
Human Machine Interface
Autonomous vehicles
自动驾驶汽车
Self—piloting automobile
自动驾驶汽车
L0
ADAS
Advanced driver Assistant System
辅助驾驶系统,提醒与警示作用,不干涉驾驶员得驾驶
LDW
Lane Departure Warning
车道偏离预警
FCW
同时定位与建图
核心技术:定位技术(localization),建图(Mapping),导航(Navigation)—路径规划(path Planning)与跟踪技术(tracking),控制执行技术(Controlling)

基于双目视觉的车辆检测跟踪与测距

基于双目视觉的车辆检测跟踪与测距

第13卷㊀第4期Vol.13No.4㊀㊀智㊀能㊀计㊀算㊀机㊀与㊀应㊀用IntelligentComputerandApplications㊀㊀2023年4月㊀Apr.2023㊀㊀㊀㊀㊀㊀文章编号:2095-2163(2023)04-0147-05中图分类号:TP389.1文献标志码:A基于双目视觉的车辆检测跟踪与测距郭鹏宇(上海工程技术大学机械与汽车工程学院,上海201620)摘㊀要:由于道路上存在各种不安全因素,车辆检测跟踪并测距是自动驾驶技术的重要组成部分㊂本文将YOLOv4-tiny作为检测器使之加快模型检测速度且更适合在车辆嵌入式设备中使用㊂考虑到目标检测失败的情况,本文在历史缓冲区中存储以前的跟踪细节(唯一ID)和每个对象的相应标签,提出了一个基于中值的标签估计方案(MLP),使用存储在前一帧的历史标签的中值来预测当前帧中对象的检测标签,使得跟踪错误最小化,并用双目摄像头获取图像检测车辆距离㊂测试新网络结构后,检测精度(MeanAveragePrecision,mAP)为80.14%,检测速度较YOLOv4相比提高了184%,检测到的距离误差平均在0.5%左右㊂关键词:YOLOv4-tiny;目标跟踪;中值算法;双目测距Vehicledetection,trackingandrangingbasedonbinocularvisionGUOPengyu(SchoolofMechanicalandAutomotiveEngineering,ShanghaiUniversityofEngineeringScience,Shanghai201620,China)ʌAbstractɔDuetovariousunsafefactorsontheroad,vehicledetection,trackingandrangingaretheimportantpartofautomaticdrivingtechnology.Inthispaper,YOLOv4-tinyisusedasadetectortospeedupmodeldetectionandismoresuitableforvehicleembeddeddevices.Consideringthefailureofobjectdetection,thispaperstorestheprevioustrackingdetails(uniqueID)andthecorrespondinglabelofeachobjectinthehistorybuffer,andproposesamedium-basedlabelestimationscheme(MLP),whichusesthemedianvalueofthehistorylabelstoredinthepreviousframetopredictthedetectionlabeloftheobjectinthecurrentframe,sothattrackingerrorsareminimized.Theimagesobtainedbybinocularcameraareusedtodetectvehicledistance.Aftertestingthenewnetworkstructure,thedetectionaccuracy(MeanAveragePrecision,mAP)is80.14%,thedetectionspeedis184%higherthanthatofYOLOv4,andthedetecteddistanceerrorisabout0.5%onaverage.ʌKeywordsɔYOLOv4-tiny;targettracking;medianalgorithm;binoculardistancemeasurement作者简介:郭鹏宇(1995-),女,硕士研究生,主要研究方向:智能网联汽车㊂收稿日期:2022-05-240㊀引㊀言在自动驾驶辅助系统中,基于传感器,采用车辆检测㊁跟踪㊁测距等一系列计算机视觉算法进行环境感知,辅助系统就能得到车辆周围信息,以保证驾驶员安全驾驶㊂基于视觉的车辆检测及测距系统主要应用在道路交通场景下,用于辅助检测前方目标以及进行距离预警,其性能好坏主要依赖于采用的车辆检测算法㊂目前,在使用相机进行目标检测时,多采用传统的机器视觉检测方法㊂对于前方车辆目标,该方法首先根据车辆的局部特征,如阴影㊁边缘纹理㊁颜色分布等特征生成感兴趣区域;然后利用对称特征等整体特征对感兴趣区域进行验证㊂在从产生感兴趣区域到验证感兴趣区域的过程中,为了达到实时检测的要求,一般需要对图像进行灰度化,并对灰度化后的图像进行阴影分割和边缘分析㊂因此,对于相机获得的图像,传统的机器视觉的车辆检测方法通常找到感兴趣区域的车辆的特点和梯度直方图特征(HOG[1]),SIFT[2]特征或Haar-like[3]特征通常用于获得前面的假设检验区域车辆,即ROI区域;此后用这些特征训练SVM[4]或Adaboost[5]车辆检测分类器,计算车辆图像的特征值,并根据车辆特征值的大小与前方车辆进行判断,得到前车的假设测试区域验证,完成对前车的检测㊂而上述传统的机器视觉检测方法本质上是通过人工选择特征进行识别和分类㊂在复杂场景中,人工特征的数量会呈几何级数增长,这对前面车辆的识别率也有很大的影响㊂这种方法更适合在某种特定场景下的车辆识别,因为其数据规模并不大,泛化能力则较差,很难实现快速和准确的复杂应用场景的检测㊂近年来,随着卷积神经网络(CNN)的应用,出现了许多算法㊂一阶段方法包括SSD[6]㊁YOLO系列[7-8]㊁RetinaNet[9]㊂两阶段方法包括FastR-CNN[10]和FasterR-CNN[11]㊂最近提出的最先进的YOLO-v4[12]具有很高的检测精度和检测速度㊂目前,对于多目标车辆轨迹跟踪技术主要可分为两大类㊂一类是传统方法,如利用背景差分法㊁帧差法㊁光流法等方法提取运动目标,传统方法部署方便,资源消耗低,但受先验知识限制,跟踪稳定性差,准确性不高㊂另一类是基于卷积神经网络的㊁称为深度学习的方法,深度学习方法可以学习更多的目标特征,能在连续的视频帧中检测出目标对象㊂深度学习方法精度高,但其计算量较大,实时性不高,因此,基于视频跟踪的车辆检测算法仍需改进㊂研究可知,基于视觉相机的测距方法主要有单目测距和双目测距两种㊂这2种方法的共同特点是通过相机采集图像数据,随后从图像数据中得到距离信息㊂单目检测方法的优点是成本低,缺点是对检测精度的依赖过大㊂此外,从实用的角度来看,在汽车上安装单目相机时,由于汽车的颠簸,汽车的俯仰角经常发生变化,导致精度显著下降㊂双目测距的方法是通过计算2幅图像的视差直接测量距离㊂1㊀车辆检测与跟踪本文使用的目标检测算法是YOLOv4-tiny,其中YOLO表示YouOnlyLookOnce,由Bochkovskiy等学者开发㊂YOLOv4-tiny是YOLOv4的压缩版本,虽在平均精度方面受到了影响,但却可以在低计算能力下高效运行㊂与未压缩版本的4个YOLO头相比,YOLOv4-tiny只使用了2个YOLO头,并使用了29个预训练卷积层作为基础㊂YOLO各变量参数设置见表1,卷积层各变量参数设置见表2㊂㊀㊀上一代YOLO的非maxpool抑制(NMS)等遗留特性和一些新特性㊁包括加权剩余连接(WRC)㊁Mosaic数据增强在内有效提高了算法在模糊图像中识别类的能力,降低了识别类所需的处理能力㊂YOLOv4-tiny提供了较高的帧率,同时具有中间地带平均精度与常用模型并列㊂在本文中,使用YOLOv4-tiny算法作为车辆的检测器,并且使用DeepSORT[13]算法作为初始车辆跟踪器㊂表1㊀YOLO各变量参数设置Tab.1㊀YOLOparametersettingsYOLO变量参数Mask0,1,2anchors10,14,㊀23,27㊀37,58㊀81,82㊀135,169㊀344,319classes4num6jitter0.3scale_x_y1.05cls_normalizer1.0iou_lossciouignore_thresh0.7truth_thresh1random0Resize1.5nms_kindgreedynmsbeta_nms0.6表2㊀卷积层各变量参数设置Tab.2㊀Theconvolutionlayerparametersettings卷积层变量参数batch_normalize1filters64size3stride2pad1activationleaky㊀㊀图1显示了2个ID及其前3个标签㊂对于ID#137的车辆,本文方法预测的标签用加黑来标记㊂[1255,739,1421,856][960,719,1006,758]车辆I D 137[1255,739,1421,859][955,721,1006,758][1255,739,1421,856][952,722,1006,758]目标检测标签1图1㊀应用MLP后的历史缓冲区示例图Fig.1㊀AhistorybufferexampleafterapplyingMLP841智㊀能㊀计㊀算㊀机㊀与㊀应㊀用㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第13卷㊀㊀㊀本文使用历史缓冲区来调整和改进每个检测标签的视觉质量和在帧中的显示㊂如果有任何车辆检测标签缺失,那么本文的MLP为该车辆生产一个估计的检测标签㊂延时使用一系列的检测标签前存储在历史缓冲区来预测未检测到车辆的检测标签ID在给定的框架(见图1)㊂条件估计为特定车辆检测标签,标签ID应该至少在2个连续帧出现㊂为了预测缺失的检测标签,本文对当前帧t应用以下公式:Ñ=l(t-1)(i)-l(t-2)(i)(1)l(t)(i)=l(t-1)(i)+Ñ(2)㊀㊀这里,lxmin,ymin,xmax,ymax()表示每个车辆ID基于调整边界框标签的中值,Ñ表示边界框位置的变化从时间戳(t-2)到(t-1);i表示每辆车唯一的ID㊂2㊀双目测距双目视差示意如图2所示㊂由图2可知,2个摄像头的中心距是B,两个摄像头观察同一点P,P1的坐标为(X1,Y1),P2的坐标为(X2,Y2),由于2台相机始终是平行的,高度相同,所以在左右2张图像中P点的Y坐标是相同的,在X方向上存在视差㊂因此,可以通过标定相机内外参数来确定图像坐标与世界坐标之间的关系㊂双目视差原理如图3所示㊂PZ 2X 2P 2Z 1P 1O 2Y 2Y 1BC 2X 1O 1C 1x 1y 1y 2x 2图2㊀双目视差示意图Fig.2㊀SchematicdiagramofbinocularparallaxdfB aP RC RA RbP LX LX RPC LA L图3㊀双目视差原理图Fig.3㊀Principleofbinocularparallax㊀㊀图3中,CL和CR是2个摄像头的光学中心,摄像头之间的距离是b,相机的焦距为f,P点在左右图像的投影点为PlXl,Yl(),PrXr,Yr(),AL,PL=XL,AR,PR=XR,PR,B=a,从三角形相似关系可知:d-fd=aa+xRd-fd=b-xL+xR+ab+xR+a(3)㊀㊀由式(3)可知:a=bxRxL-xR-xR(4)㊀㊀由此,空间中P点到相机的距离为:d=fa+xRxR=bfxL-xR(5)㊀㊀P在相机坐标系中的三维坐标可以由几何关系得到:X=bxLxL-xRY=byxL-xRZ=bfᶄxL-xMìîíïïïïïïïï(6)㊀㊀对于车辆的测距,本文取检测到的边界框内每辆车的中心来表示被检测物体到双目相机中心的距离㊂3㊀实验结果与分析将YOLOv4-tiny与其他常用的目标检测算法进行比较,将其mAP与FPS进行比较,得到表3中的结果㊂本文提出的车辆检测与跟踪方法使用了TensorFlow库和基于YOLOv4-tiny模型的DeepSORT算法㊂经综合比较,使用YOLOv4-tiny的精度和检测速度是可以接受的,精度比YOLOv3-tiny高,速度比YOLOv4的方法更快㊂YOLOv4-tiny模型检测车辆效果如图4所示㊂表3㊀各模型帧率和mAP对比Tab.3㊀FramerateandmAPcomparison模型mAP/%帧率(FPS)YOLOv485.0814.12YOLOv4-tiny80.1440.11YOLOv383.3216.99YOLOv3-tiny69.0352.77941第4期郭鹏宇:基于双目视觉的车辆检测跟踪与测距图4㊀YOLOv4-tiny模型检测车辆效果Fig.4㊀CarsvideodetectionusingYOLOv4-tinymodel㊀㊀使用本文方法前后汽车的标签变化曲线如图5所示㊂对于ID#39的车辆,图5(a)是使用方法前,图5(b)是使用本文方法后,相同的汽车标签变得更加平滑㊂X (b o u n d i n g b o x 的中心)100200300400500600700800730720710700690680670Y (b o u n d i n g b o x 的中心)(a)使用本文方法前100200300400500600700800730720710700690680670X (b o u n d i n g b o x 的中心)Y (b o u n d i n g b o x 的中心)(b)使用本文方法后图5㊀使用本文方法前后汽车的标签变化Fig.5㊀Thelabelchangesbeforeandafterusingthemethodinthispaper㊀㊀在目标跟踪时,从历史缓冲区中预测缺失标签的方法往往会产生不好的结果,因为对象检测器的可视化结果经常显示不稳定和闪烁的边框标签㊂在应用本文的基于中值的算法后,可以得到高度稳定的标签㊂因此,本文方法提高了目标检测器的视觉性能,并为目标检测器和跟踪器提供了对缺失标签的更好估计㊂利用双目相机取检测到的边界框内每辆车的中心来表示被检测物体到双目相机中心的距离㊂仿真测试结果见表4㊂从距离测试的结果来看,测试精度相对较高,基本保持在0.5% 0.6%之间㊂表4㊀测量结果分析Tab.4㊀Themeasuredresultsanalysis实验组数测量距离/cm实际距离/cm误差/%11567.001559.110.503521655.001646.140.535331738.001729.160.508641893.001883.170.519351983.001971.200.595162236.002223.220.571672489.002475.260.55204㊀结束语本文介绍了一种用于自动驾驶的实时检测跟踪与测距系统㊂通过本文提出的实时同步方法,该系统方便了车辆实时同步检测;利用双目摄像头,YOLOv4-tiny和DeepSORT算法对车辆进行检测和跟踪,并提出中值标签预测方法优化跟踪效果,同时实现了对前方车辆的精确测距㊂整个系统在检测和测距方面取得了较高的精度和实时性㊂对于自动驾驶的应用,该系统可以结合许多智能技术,如目标预警㊁自动避障等㊂与此同时,该系统还有很大的改进空间㊂在检测方面,通过优化算法提高检测性能,通过训练更多类型的物体,如行人㊁非机动车等,为自动驾驶提供更多的道路信息㊂在这个系统中,测距是指从双目相机的中心到物体的距离㊂在实际情况下,车辆的具体位置到物体的距离可以根据相机的安装位置和车辆的实际长度来计算㊂通过优化双目测距算法,可以提高测距精度㊂参考文献[1]TAIGMANY,YANGMing,RANZATOMA,etal.DeepFace:Closingthegaptohuman-levelperformanceinfaceverification[C]//2014IEEEConferenceonComputerVisionandPatternRecognition.Columbus,OH,USA:IEEE,2014:1701-1708.[2]MAXiaoxu,GRIMSONWEL.Grimson.Edge-basedrichrepresentationforvehicleclassification[C]//TenthIEEEInternationalConferenceonComputerVision.Beijing:IEEE,2005:1185-1192.[3]XUQing,GAOFeng,XUGuoyan.Analgorithmforfront-vehicledetectionbasedonHaar-likefeature[J].AutomotiveEngineering,2013,35(4):381-384.(下转第157页)051智㊀能㊀计㊀算㊀机㊀与㊀应㊀用㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第13卷㊀参考文献[1]SHIJianping,TAOXin,XULi,etal.Breakamesroomillusion:depthfromgeneralsingleimages[J].ACMTransactionsonGraphics(TOG),2015,34(6):1-11.[2]YANGDong,QINShiyin,Restorationofdegradedimagewithpartialblurredregionsbasedonblurdetectionandclassification[C]//IEEEInternationalConferenceonMechatronicsandAutomation.Beijing,China:IEEE,2015:2414–2419.[3]ABBATEA,ARENAR,ABOUZAKIN,etal.Heartfailurewithpreservedejectionfraction:refocusingondiastole[J].InternationalJournalofCardiology,2015,179:430-440.[4]LYUW,LUWei,MAMing.No-referencequalitymetricforcontrast-distortedimagebasedongradientdomainandHSVspace[J].JournalofVisualCommunicationandImageRepresentation,2020,69:102797.[5]YIXin,ERAMIANM.LBP-basedsegmentationofdefocusblur[J].IEEETransactionsonImageProcessing,2016,25(4):1626-1638.[6]GOLESTANEHSA,KARAMLJ.Spatially-varyingblurdetectionbasedonmultiscalefusedandsortedtransformcoefficientsofgradientmagnitudes[C]//IEEEConferenceonComputerVisionandPatternRecognition(CVPR).Honolulu,Hawaii:IEEE,2017:596-605.[7]SUBolan,LUShijian,TANCL.Blurredimageregiondetectionandclassification[C]//Proceedingsofthe19thACMinternationalconferenceonMultimedia.ScottsdaleArizona,USA:ACM,2011:1397-1400.[8]SHIJianping,XULi,JIAJiaya.Discriminativeblurdetectionfeatures[C]//ProceedingsoftheIEEEConferenceonComputerVisionandPatternRecognition.Columbus,USA:IEEE,2014:2965-2972.[9]TANGChang,WUJin,HOUYonghong,etal.Aspectralandspatialapproachofcoarse-to-fineblurredimageregiondetection[J].IEEESignalProcessingLetters,2016,23(11):1652-1656.[10]王雪玮.基于特征学习的模糊图像质量评价与检测分割研究[D].合肥:中国科学技术大学,2020.[11]CHENQifeng,LIDingzeyu,TANGCK,etal.KNNMatting[J].IEEETransactionsonPatternAnalysis&MachineIntelligence,2013,35(9):2175-2188.[12]OJALAT,PIETIKAINENM,MAENPAAT.Multiresolutiongray-scaleandrotationinvarianttextureclassificationwithlocalbinarypatterns[J].IEEETransactionsonPatternAnalysisandMachineIntelligence,2002,24(7):971-987.[13]ACHANTAR,SHAJIA,SMITHK,etal.SLICsuperpixelscomparedtostate-of-the-artsuperpixelmethods[J].IEEETransactionsonPatternAnalysisandMachineIntelligence,2012,34(11):2274-2282.[14]WANGJingdong,JIANGHuaizu,YUANZejian,etal.Salientobjectdetection:Adiscriminativeregionalfeatureintegrationapproach[J].InternationalJournalofComputerVision,2017,123:251-268.[15]ZHAOMinghua,LIDan,SHIZhenghao,etal.BlurfeatureextractionplusautomaticKNNmatting:Anoveltwostageblurregiondetectionmethodforlocalmotionblurredimages[J].IEEEAccess,2019,7:181142-181151.[16]OTSUN.Athresholdselectionmethodfromgray-levelhistograms[J].IEEETransactionsonSystems,Man,andCybernetics,1979,9(1):62-66.[17]GASTALESL,OLIVEIRAMM.Domaintransformforedge-awareimageandvideoprocessing[J].Eurographics,2010,29(2):753-762.(上接第150页)[4]KAZEMIFM,SAMADIS,POORREZAHR,etal.VehiclerecognitionusingcurvelettransformandSVM[C]//Proc.ofthe4thInternationalConferenceonInformationTechnology.LasVegas,NV,USA:IEEE,2007:516-521.[5]FREUNDY,SCHAPIRERE.Adecision-theoreticgeneralizationofon-linelearningandanapplicationtoboosting[J].JournalofComputerandSystemSciences,1997,55:119-139.[6]LIUWei,ERHAND,SZEGEDYC,etal.SSD:Singleshotmultiboxdetector[C]//EuropeonConferenceonComputerVision(ECCV).Switzerland:Springer,2016:21-37.[7]REDMONJ,DIVVALAS,GIRSHICKR,etal.Youonlylookonce:Unified,real-timeobjectdetection[C]//IEEEConferenceonComputerVisionandPatternRecognition.LasVegas,NV,USA:IEEE,2016:779-788.[8]REDMONJ,FARHADIA.YOLOv3:Anincrementalimprovement[J].arXivpreprintarXiv:1804.02767,2018.[9]LINTY,GOYALP,GIRSHICKR,etal.Focallossfordenseobjectdetection[C]//IEEEInternationalConferenceonComputerVision(ICCV).Venice,Italy:IEEE,2017:2980-2988.[10]GIRSHICKR.FastR-CNN[C]//IEEEInternationalConferenceonComputerVision(ICCV).Santiago,Chile:IEEE,2015:1440-1448.[11]RENShaoqing,HEKaiming,GIRSHICKR,etal.FasterR-CNN:Towardsrealtimeobjectdetectionwithregionproposalnetworks[J].IEEETransactionsonPatternAnalysisandMachineIntelligence,2016,39(6):1137-1149.[12]BOCHKOVSKIYA,WANGCY,LIAOHYM.YOLOv4:Optimalspeedandaccuracyofobjectdetection[J].arXivpreprintarXiv:2004.10934,2020.[13]AZHARMIH,ZAMANFHK,TAHIRNM,etal.PeopletrackingsystemusingDeepSORT[C]//10thIEEEInternationalConferenceonControlSystem,ComputingandEngineering(ICCSCE).IEEE,2020:137-141.751第4期李浩伟,等:基于LBP特征与图像显著性的散焦模糊区域检测。

专英词汇(交通)

专英词汇(交通)

Word Translation警告标志Warning sign禁令标志Prohibition sign指路标志Guide sign旅游标志Tourist sign国道National road省道Provincial road县道County road服务区Service area轮渡Ferry车道封闭Lane closed车辆慢行Slow down双向交通Two-way traffic交通规则traffic regulation里程碑milestone红绿灯traffic light断头路,死胡同dead end速度限制speed limit路旁,设路旁,迂回bypass停车场car parking车载的car-borne车道,马路carriageway十字路crossroad十字路口intersection自行车道cycle track设计视距design sight distance起讫点调查OD--------origin and destination survey通行权,路权right-of–way环境污染environmental pollution功能分级functional classes分离式立体交叉口grade-separate d junctions立体交叉口Grade-separated junc tions环形交叉口roundabout intersecti ons实时自适应控制系统SCATS:Sydney Co-ordinated Adaptive t raffic system绿信比-信号周期-绿时差优化技术S COOT:split cycle-offset optimization te chnique城市公共交通系统urban public transport system地下铁道,地铁subway公共交通优先public transport priorityUnit1Transport n.&v. 运输Urban transportation planning 城市运输规划Transport demand 运输需求Transport modes 运输模式Mobility n. 机动性Energe-supply 能源供应Operating costs 运营成本Haul /tow 拖Both direct and indirect effects 直接和间接影响Initial and recurrent cost 初始和周期成本Vehicle operating costs 车辆运营费用Vehicle operating-cost saving 节省车辆运营费用Saving in travel time 节省运行时间Accident costs 事故成本Accident reduction 减少事故Time saving 省时Freeway 高速公路Expressway 快速路Highway 公路Port 港口Deep-water port 深水港Airport /terminal 机场/候机厅Airline cost 航线成本Rail 铁路Signalized street 由信号控制的街道Earth/gravel/bitumen 土/砂砾/沥青Aggregate 骨料Cement 水泥Asphalt / bitumenBlock 木块,石块Brick 砖块Mortar 灰浆,砂浆PlasticsWoodAdmixtureIn cementIn concreteIn mortarAsphalt –aggregate mixture (沥青骨料混合物)Asphalt (asphaltic) binder 沥青结合料Asphalt concrete(pavement) /bitulithic/bituminous concrete pavement沥青混凝土(路面)Asphalt covering/carpeting 沥青面层Asphalt/ bituminous macadam 沥青碎石Base 基层bituminous Mat 沥青垫层cement and sand cushion 水泥砂浆垫层Unit2V orad----Vehicle On-board Radar 车载雷达系统CHAUFFEUR (法)司机Longitude collision avoidance 纵向防撞Lateral collision avoidance 横向防撞Vision enhancement 防撞视野强化Safety readiness 危险预警Pre-crash restraint deployment 撞前避伤Automated vehicle operation 自动机车操作Warning systems 预警系统Forward collision warning 前防撞预警Truck lane departure warning systems Short-range warning of parking hazardsAdaptive cruise control 自适应式定速巡航系统Collision avoidance braking 防撞制动Full automation systems 全自动系统Urban transit systems 城市运输系统On-board sensors 车载感应器infrared LED taillight 红外液晶显示尾灯Fluorescent paint striping 银光涂料车道标线Smartway 智能道路Intersection collision warning 交叉口防撞预警Information processing 信息处理Control 控制Electronics 电子学Communications 通信Controlling technology 控制技术Four-way traffic signal 四路交通信号Traffic accidents and congestion 交通事故和交通拥挤Intelligent transportation society of America(ITS America) 美国智能运输系统协会Automatically collecting tolls 自动收费系统Rerouting traffic flow 交通流改道Weigh-in-motion systems 动态称重系统Automated tracking 自动跟踪Destination 目的地Navigation systems 导航系统Route guidance 指路Sight distanceDiesel 柴油机police car 警车Ambulance 急救车Motorcycle 摩托车,机车Motorway 汽车专用道number plate survey 车牌号调查one-way street 单向交通stopping sight distance 停车视距three-way junctions 三路交叉口Unit4public transport priority 公交优先urban transport strategy 城市交通发展战略Bus 公共汽车Tram 有轨电车bus route corridors 公交路线走廊traffic signal control 交通信号控制bus stop 公交车站with-flow 顺流Contraflow 逆车流方向,反向车流no-entry 禁止进入banned turn 禁止掉头traffic metering 咪表car-borne 车载的Design speed 设计车速Average running speed 平均行驶车速Operating speed 运行车速Average overall travel speed 平均行程车速Control of access 进口控制Full control 全控制Partial control 部分控制Curvature 曲率Superelevation 超高Gradient 坡度Major rural highways 主要乡村道路Vehicle and Pedestrians 车辆与行人Accident hazard 事故灾害Two-way left-turn lane 双向左转车道Initial allowance 预留Unit5urban transit systems 城市运输系统motor vehicle 机动车railroad engineering 铁路工程right- of- way 路权urban transit =mass transitMRT= Mass rapid transit Paratransit 辅助客运系统Fixed/established routes and fixed schedules 固定路线和行程时间表Taxisvanpool//carpool// 拼车,共用车辆club busesvanMinibusTrolley bus 电车Articulated bus 铰接车charter service 租赁服务High-occupancy-vehicle 高占有率的车辆Rolling stock 全部车辆Passenger transportation 客运Guideway 导沟,导轨Internal combustion engine 内燃发动机A diesel engine 柴油发动机Local transit 当地公交(客运运输)系统Express service 快速交通服务Peak service 高峰小时服务Short-haul transit 短途拖车运输Reading materialRail transit 轨道运输Exclusive facilities 专用设施Turning radii 转弯半径Sharp curve 急弯Commuter railroad 市郊列车Unit8Sight distance 视距Passing sight distance 超车视距Design sight distance 设计视距Stopping sight distance 停车视距Street 街道Two-lane rural highways 双车道乡村公路Two-lane two-way highways 双向双车道公路Arterial 主干道The opposing traffic lane 对向车道Overtaken vehicle 超载车辆Brakes reaction distance 反应距离Braking distance 制动距离Cross the centerline of four-lane undivided roadways or crossing the median of four lane divided roadways 穿越无分割的四车道的道路中线或是跨越分隔四车道的中央分割带Reading materialHorizontal and vertical alignment 平面与纵断面线形Economically feasible 经济可行Design speed 设计车速Curvature 曲率Laws of mechanics 力学原理(定律)Centrifugal force 离心力The vehicle weight component 车辆重力分力Roadway superelevation 道路超高Side friction 横向摩阻力Side friction factor 横向摩阻系数At constant speed =at the same speed Terrain 地形Level Terrain 平原区Rolling Terrain 丘陵区Mountainous Terrain 山岭区Steep slopes= abruptRise above and fall below 起伏Grades 纵坡Geometric features 几何特征Unit 15Traffic planning 交通规划Transportation planning 运输规划Traffic mode 交通模式Transportation system 运输系统Traffic flow simulation 交通流模拟Planning process 规划程序Data collection 数据采集Forecast 预测Socioeconomic impact estimation 社会经济影响评价Energy/environmental impact estimation 能源/环境影响评估Policy planning 政策规划Systems planning 系统规划Corridor planning 高速通道走廊规划Preliminary engineering 初期工程Engineering design 工程设计Human resources 人力资源Crude oil 原油Slurry 泥浆Gas 天然气Petroleum product 石油产品Road 道路Railway 铁路Transit line 运输线路Bus line 公交线路Waterway 水路Pipeline 管道Transportation congestion 交通运输拥挤Transport mode 交通运输模式Transportation survey 交通运输调查Trip generation 出行产生Trip distribution 出行分布Traffic assignment 交通分配Modal split 交通方式划分Unit 16 Community viewpoint 公众观点Urban transportation planning 城市运输规划Transportation facilities and operations 运输设施和运营The ratio of transit fares to personal income 交通费和个人收入之比Tabulation of O-D matrix O-D矩阵表Trip origins 起点Trip attractions 出行吸引量Fratar method 福雷特法Intervening opportunities model 插入机会模型Gravity model 重力模型Target planning year 目标规划年(远景规划年)Subroutine 子程序All-or-nothing assignment 全有全无分配法Capacity restrained assignment 交通容量限制分配法Multiple proportional assignment 多路径概率分配法Trip ends 出行端点The route of least cost 最少费用路径Traffic zones 交通区Unit 17Highway capacity 公路通行能力Level of services 服务水平At or near capacity 达到或接近通行能力Ideal condition 理想条件Uninterrupted flow 非间断流Intersection approaches 接近交叉口处Traffic stream 交通流Curb parking 路边停车Non-central business district area 非商务中心区Signalized intersection 有信号灯控制的交叉口Service flow rate 服务流率Level of service 服务水平Crawl speeds 爬坡车速Traffic stream 交通流Median 中央分割带Signalized intersections 信号交叉口Vehicle per hour(vph)辆/小时Left, through , right 左转、直行、右转Pedestrian crossing flows 过街行人流量Signal phasing 信号相位Timing 信号配时Type of control 控制类型Saturation flow 饱和流量Saturation flow rate 饱和流率Effective green time 有效绿灯时间Vehicle per hour of Effective green time (vphg)辆/有效绿灯小时Start-up lost time 启动损失时间Cycle length 周期长road marking 道路标线traffic sign regulations 交通标志规则。

鹰眼车载定位终端使用说明书

鹰眼车载定位终端使用说明书

> GPS+GSM+SMS/GPRS+OBD II <使用说明书User ManualV1.0O B D I I车载定位终端感谢您选用购买本机器,请您在使用之前认真阅读本说明书,以便得到正确的安装方法及操作指南,以下描述中终端等同于本机器。

产品外观及配色如有改动,请以实物为准,恕不另行通知。

本车用定位跟踪产品借助GPS卫星定位、OBD自动诊断系统、GPRS通信、Internet,通过强大的WEB服务平台可以实现对车辆进行实时远程定位监控和远程汽车诊断。

帮助客户实现透明管理、降低成本、保障安全、提高效率的目标。

目前已广泛应用于商业运输、物流配送、企业车队、汽车租赁、智能交通、工程机械、船舶航运、应急指挥、抢险施救、军警安监、智慧城市。

本设备分3种不同功能型号以适应不同需求:A:GPS+OBDB:GPS+电子狗C:GPS目 录一、功能特点 (7)二、构件名称 (7)三、使用环境 (9)四、基本参数 (9)五、安装说明 (9)5.1安装前准备事项 (9)5.2 SIM卡的安装 (10)六、配置终端 (12)七、使用终端 (12)7.1开机 (12)7.2指示灯 (12)7.3查看位置 (14)7.3.1短信查询 (14)7.3.2终端服务平台查询 (14)7.4碰撞/跌落报警 (14)八、登录终端定位服务平台 (14)8.1浏览器平台 (14)8.2 智能手机客户端 (15)九、故障排除 (15)9.1无法连接服务平台 (15)9.2后台显示离线状态 (15)9.3长时间不定位 (16)9.4定位漂移严重 (16)9.5指令接收异常 (16)十、设备保修细则 (17)10.1特别声明 (17)10.2保修期 (17)10.3售后服务 (17)十一、操作指令 (18)User Manual (19)Ⅰ. Product Features (20)Ⅱ. Components & Accessories (21)2.1 Components (21)2.2 Accessories(reference pictures)22 Ⅲ. Environment for use (22)Ⅳ. Basic Specifications (23)Ⅴ. Installation (23)5.1 Before Installation (23)5.2 Install the SIM card (24)Ⅵ. Set up the terminal (26)Ⅶ. Use the terminal (26)7.1 Power on (26)7.2 LED indicators (27)7.3 Inquiry position (28)7.4 Collision / falling Alarm (28)Ⅷ. Login the position server (29)Ⅸ. Trouble shooting (29)9.1 Cannot connect to the position server (29)9.2 Show offline status on the positionserver (30)9.3 Cannot position for a long time (31)9.4 Position drift (31)9.5 Instructions receiving abnormally.31 Ⅹ. Warranty rules (32)10.1 Special statement (32)10.2 Warranty period (32)10.3 After sales (32)Ⅻ. Operation Commands (33)Customer’s Information (34)保修卡资料 (34)Maintenance records / 维修记录 (35)一、功能特点■GSM四频系统,全球通用■安装极方便,连上OBD接口即可工作■GPS连续定位,OBD实时数据,GPRS定时上报■车辆定位追踪,浏览器、手机、短信远程查询■OBD转速检测,车辆参数,精度超ACC(A款)■电子狗语音播报(B款)■车辆发生碰撞、跌落时通过短信、平台报警二、构件名称-机身正面--机身背面-配件名称(以下图片仅供参考,以实物为准)OBD II延长线此配件为设备选配,当OBD接口位置不佳导致GPS信号接收不好的时候,可加配此延长线。

自动驾驶最全简称和英文缩写

自动驾驶最全简称和英文缩写
L3
人车交互驾驶,车自动控制驾驶,人参与指挥车辆驾驶,车自动驾驶为主,人驾驶为辅助
L4
全自动驾驶,人不做任何指挥或控制车辆驾驶,由车辆全自助驾驶
L5
完全自动驾驶
Forward collision warning
前方碰撞预警
RCW
Rear Collision warning
后方碰撞预警
MOD
NV
Night Vision
夜视
PDS
Pedestrian Detection system
行人检测
TSR
Traffic sign Recognition
交通标示识别
BSM
卡尔曼滤波器
RTK
Real time Kinematic
实时动态
Fuzz logic
模糊逻辑
MODAT
Moving Object Detection and Tracking
Stixel
Sticks above the ground in the image
Radar
Radio Detection and Ranging
Blind Spot Monitoring
盲点检测(并线辅助)
RCTA
Rear-Cross Traffic Alert
后排路口交通警报
DDD
Drive Drowsiness Detection
驾驶员疲劳探测
HDC
Hill Descent control
下坡控制系统
Electric Vehicle warning sounds
同时定位与建图
核心技术:定位技术(localization),建图(Mapping),导航(Navigation)—路径规划(path Planning)与跟踪技术(tracking),控制执行技术(Controlling)

空车走行率名词解释英文

空车走行率名词解释英文

空车走行率名词解释英文Title: An Explanation of the Term "Empty Car Travel Rate"The term "empty car travel rate" is a metric commonly used in the transportation industry, particularly in rail and freight transport. It refers to the percentage of total trips made by a vehicle that are without passengers or cargo. In other words, it measures the efficiency of a vehicle's use by assessing how often it is traveling without carrying its intended load.This metric is important for several reasons. Firstly, it provides a quantifiable measure of the efficiency of a transportation system. If a high proportion of trips are made with empty vehicles, it suggests that there may be inefficiencies in the system, such as imbalanced demand and supply, routing issues, or insufficient utilization of available resources.Secondly, the empty car travel rate can help transportation providers identify areas for improvement. By analyzing the factors that contribute to high empty travel rates, companies can make more informed decisions about routing, scheduling, and capacity management. This can lead to cost savings, increased efficiency, and better customer satisfaction.Thirdly, the empty car travel rate is also relevant for environmental considerations. Reducing the number of empty trips can help to decrease fuel consumption and greenhouse gas emissions, which are significant contributors to climate change. By optimizing vehicle utilization, transportation companies can make a positive contribution to sustainable development.To calculate the empty car travel rate, the total number of trips made by a vehicle is divided by the number of trips that are carried out with a full load. The resulting percentage provides a measure of the efficiency of vehicle utilization. While the ideal empty travel rate would be as low as possible, it is important to note thatsome empty trips may be necessary to maintain theefficiency of the transportation system, such as repositioning vehicles between routes or to service maintenance facilities.There are several factors that can contribute to high empty car travel rates. Imbalanced demand and supply, where the availability of vehicles does not match the demand for transportation services, can lead to a higher proportion of empty trips. Routing issues, such as inefficient routing algorithms or a lack of real-time data to optimize routes, can also contribute to empty travel. Additionally, insufficient utilization of available resources, such as underutilized vehicles or unoccupied seats on public transport, can lead to increased empty travel rates.To address these issues and improve vehicle utilization, transportation providers can implement a number of strategies. One approach is to use advanced analytics and data-driven decision-making tools to optimize routing and scheduling. By analyzing historical data and real-time information, companies can better predict demand patternsand adjust their operations to match supply and demand more closely.Another strategy is to enhance the use of technology to improve vehicle tracking and management. GPS tracking systems, for example, can provide real-time information on vehicle locations and loads, enabling companies to makemore informed decisions about routing and repositioning. Similarly, smart scheduling systems can help to optimizethe allocation of vehicles and reduce the number of empty trips.Moreover, transportation providers can collaborate with other companies or organizations to share resources and improve the efficiency of the overall transportation system. For instance, ride-sharing or freight-sharing platforms can match supply and demand more effectively, reducing the need for empty trips. Similarly, intermodal transportation systems that combine different modes of transport, such as rail, road, and water, can improve the efficiency of the overall network and reduce empty travel.In conclusion, the empty car travel rate is a critical metric for assessing the efficiency of transportation systems. By understanding the factors that contribute to high empty travel rates and implementing strategies to address them, transportation providers can improve their operations, reduce costs, and make a positive contribution to sustainable development. As the demand for transportation services continues to grow, it will be increasingly important for companies to prioritize efficiency and sustainability in their operations.。

汽车移动速度测量方法的探究

汽车移动速度测量方法的探究

汽车移动速度测量方法的探究摘要:本文简要介绍了几种在现实生活中常用的测量汽车移动速度的方法,着重分析了激光雷达测速原理,推导了连续激光脉冲数字、多普勒频移测速的方法,给出车载激光雷达基本原理图,为车载激光雷达系统测距测速提供了基本方法。

关键字:激光雷达,测距,测速Vehicle Speed Measurement Methods of InquiryAuthor:DongHaoTutor:BaiXiaoLei Abstract:This paper briefly introduces several kinds of commonly used in real life the measurement method of vehicle speed, speed measuring principle of laser radar is analyzed emphatically, laser pulse number is derived, the doppler frequency shift speed measuring method, gives the principle diagram of the vehicular laser radar basic, for vehicular laser ranging radar system provides a basic method of speed.Key words:laser radar, range, speed目录绪论 (1)一、交通中常用的测量移动速度的方法 (2)1. 雷达测速 (2)2. 激光测速 (2)3. 视频测速 (2)4. IC卡测速 (2)二、目标距离测量原理 (3)1. 测距原理 (3)2. 测距方法的选择 (3)三、目标相对速度的测量原理 (5)1. 相对速度测量原理 (5)2. 相对速度的测量方法 (7)结语 (8)参考文献 (9)绪论随着我国高速公路网的不断完善,高速公路给人们带来了交通便利和能源的节省,同时车辆在高速公路上超速行驶也会容易引发交通事故。

CI10949-LKeepTrackoftheVehiclesUsingVehicle…

CI10949-LKeepTrackoftheVehiclesUsingVehicle…

CI10949-LKeep Track of the Vehicles Using Vehicle TrackingVincent SheehanTimmons GroupLearning Objectives∙Create parking lots.∙Sweep vehicles through a site.∙Create roundabout junction corridors.∙Print and export reports.∙Change object styles.DescriptionIn this lecture, you’ll learn how to generate parking lots, sweep vehicles around a site and create a roundabout junction corridor. Step-by-step, you’ll learn how t o choose a parking lot style that is right for your site. Select the appropriate vehicle to check for turning movements and height clearances. Create a roundabout junction corridor to add to an existing Civil 3D® road corridor. You’ll also generate reports, customize the settings and standards to for a specific project.Your AU ExpertsVince has been using Autodesk® products since 1992. He has been working in the GIS, Civil Engineering and Surveying field since 1995. He currently serves as Sr. Designer for Timmons Group, a civil engineering consulting firm located in Richmond, Virginia. He is also a Design Specialist and Blogger on the site Poly In 3D where he writes tutorials and how to tips for Autodesk® products and a lab presenter at Autodesk University 2012. Vince has also been 3D modeling and rendering for over 10 years using a verity of Autodesk® products and other non Autodesk® products.********************Vehicle Tracking Drawing and System SettingsEnter the Drawing and System settings by clicking the Settings icon on the Vehicle Tracking ribbon. This will launch the Settings Wizard. I’m going to keep the default settings for this lab.Scale: Adjust the drawing scale.Vehicle Editing Units: Adjust distance, speed and angular units.Layers: Object on layers.Turn Spirals: Set vehicle steering angle based on speed.Design Speed: Set the vehicle design speed.Steering Limits: Set the angle of the steering input.Articulation Limits: Set the articulation angle of a semi.Dynamics: Set the turning dynamics based on various design criteria.Finish: Apply the above settings for current session or for all future sessions.Parking Design1.Open Parking Design - 01.dwg drawing in the project folder.2.Click the Vehicle Tracking tab on the Ribbon.3.Click the New Row button. This will launch the Parking Standard Explorer.4.Select the US Parking Standards, ITE Guideline for Parking Facility Location and DesignParking Standard design guide. (The parking standards can be modified to suit your design or company standards.)5.Click ok on the Name.6.Click ok on the scale and surface settings.7.In the Parking Row Properties dialog box, select the aligned icon (second icon) under Bayaligned. The design calls for:a.Two Wayb.Small carsc.90 degrees8.Snap to the end point of the magenta guide line.9.Drag and snap the parking row to the other end of the magenta guide line.10.Right click to exit command and right click again to place bays on both sides.Create Parallel Parking Rows1.To place additional bays, click the lower half of the new Row button on the ribbon.2.Click Parallel Row.3.Select the parking row.4.Slide the new parking row to the west or left and close as possible to the first row then clickto place the new row.5.Right click to place bays on both sides. The red arrow(s) allows for placement of stalls on eitheror both sides of the row.6.Repeat steps 2-5 to place additional rows.At each the end of the parking lot, we only need parking stalls on one side of the row.7.Repeat the last command to place an additional row.8.Place the row then left click to the inside of the parking lot.9.Repeat steps 7 & 8 for the other side of parking.Run Parking Report1.Click Parking Report on the Parking panel on the ribbon.2.The report can be exported to CSV, HTML and TXT file formats.3.Leave the Parking Bay Report open.Modifying the Parking RowsThe row geometry can be modified either by grips or buttons on the Parking panel on the ribbon.1.Click on a parking row.2.Adjust the parking row with the following grips.a.Add Vertex (Plus)b.Adjust Vertex (Outer Box)c.Adjust Vertex Curve (Arrow) ►d.Insert Vertex (Plus)e.Extend Row (Arrow)f.Adjust Island Angle Both Sides (Inner Diamond) ♦g.Adjust Island Angle This Side (Outer Diamond)♦h.Adjust Bay Angle (Near Bay Diamond)♦i.Change Direction (Middle of Row Box)j.Move Row (Inner Box)k.Join Parking Row.3.Click the Extend Vertex grip.4.Drag to the yellow edge of pavement. (Note the parking report updating.)5.Repeat steps 1 – 4 to adjust the other rows.Modifying the Parking Bays1.Click the Edit Parking Bay button on the ribbon.2.Select a parking row.3.Blue boxes will appear.4.Pick the stall. A red box will appear in the stall.5.Click the edit Bay Type button.6.Add bay symbols, markings or other items.7.Select Disabled from the Bay Type pull down at the top. (This will add thehandicap symbol and striping to the parking bay.)8.Click the Copy To button then select additional bays.9.Right click or Esc to exit the command.Modifying the Parking Islands1.Click the Edit Parking Island button on the ribbon.2.Select a parking island. A red box will appear at the end of the island3.Pick near the red box.4.Check the Custom non-standard properties box.5.Adjust the Bay side curb return to 1.6.Adjust the Outer curb returns to 5.7.Adjust the Minimum internal width to 1.8.Uncheck Allow width to increase.9.Adjust Minimum width at curb to 10.10.Uncheck the Hatch box.11.Click OK.Creating an Access RoadThere are two ways of creating an access road.Create an access road from a polyline or Civil 3D alignment.1.Click the Create Access Road from Line button in the parking panel on theribbon.2.Select the white center line through the parking lot.3.Leave setting with default values except for Custom Width.4.Check the box then adjust the width to 30.5.Click OK.Create an access road from two base points.1.Click the Create Access Road button in the parking panel on the ribbon.2.Pick the first point point on one side of the parking lot then pick the second point on the otherside of the parking lot.3.Leave setting with default values except for Custom Width.4.Check the box then adjust the width to 30.5.Click OK.Swept Paths1.Open Vehicle Turning Movement - 01.dwg in the project folder.2.Click the Vehicle Tracking tab on the Ribbon.3.Click the Auto Drive Arc button on the Swept Paths panel on the ribbon. This will launchthe Vehicle Library Explorer and Vehicle Diagram.4.Select the US Design Vehicles, State-wide (AASHTO), AASHTO 2011 (US Customary) andWB-40 – Intermediate Semi-Trailer Tractor.5.Click the Vehicle Diagram button to see information about the vehicle.6.Close the Vehicle Diagram and click Proceed to close the Vehicle LibraryExplorer.7.Click to position the vehicle in the entrance travel lane of the site.8.Rotate the vehicle in a travel direction.9.The vehicle orientation and drawing views can be adjusted in thePosition Vehicle dialog box.10.Click the Proceed button.11.Move the cursor down the travel lane then click a point in the travellane.12.To make a right tur n, click the Pick Alignment… button on the AutoDrivedialog box.13.Select a datum object such as the edge of pavement line.14.Continue to drive the vehicle around the site.15.To reverse the vehicle, move the cursor towards the rear of the vehicle.16.Right click or Esc to exit the command.Follow a Line1.Click the Follow button on the Swept Paths panel pulldown on the ribbon.2.Select the WB-40 – Intermediate Semi-Trailer Tractor inthe Vehicle Library Explorer list.3.Select the magenta Civil 3D road alignment.4.Click OK to accept the default settings5.Click Yes to accept the warning.6.Adjust the end of the swept path to back the WB-40into the loading dock.I nsert the Vehicle Profile into the drawing.1.Click the Insert Profile button on the Swept Paths panel on the ribbon.2.Select the WB-40 vehicle path.3.Place the profile in the drawing.Check Vertical Clearance.1.Zoom to the Vehicle Tracking Profile.2.Click the Vertical Clearance button on the Swept Paths panel on the ribbon.3.Select the WB-40 – Intermediate Semi-Trailer Tractor in the Vehicle Library Explorer list.4.Click the Proceed button.5.Select the magenta Finished Ground profile near station 0+00.6.Click Yes to the Warning.7.Click the Place Outline button on the Swept Paths panel on theribbon.8.Select the Vertical Clearance profile.9.Place a vehicle outline along the profile to analyze.Check conflict with the ground.1.Click the Insert Ground Conflict Report button on the SweptPaths panel on the ribbon.2.Select the WB-40 vehicle path.3.Select EG-GISM for the Existing Surface and FG-Site for theFinal Surface.4.Click OK.5.Click Yes to accept the notice.6.Zoom to the plan sections and cross sections of conflict and orhit F2 to view the deepest ground penetration found.Modifying the Swept PathEnd of Swept Path1.AutoDrive Bearing Forward (Arrow)2.AutoDrive Arc Forward (Plus)3.Adjust Target Point (Box)4.Trim End Of Path (Arrow) ►5.Insert Target Point (Plus)6.AutoDrive Arc Reverse (Plus)7.AutoDrive Bearing Reverse (Arrow)Along Swept Path8.Insert Target Point (Plus)Beginning of Swept Path9.Adjust Steering Angle (Diamond)♦10.Move Path (Box)11.Adjust Target Point (Box)12.Adjust Spine Angle (Diamond)♦13.Adjust Spine Angle (Diamond)♦Animate a Swept Path1.Click the Animate button on the Review Panel on the ribbon.2.Click the Animate in 3D button on the Vehicle Tracking Animation tool bar to set the view.3.Click play to view the animation.Camera Control.Roundabout Junctions1.Open Roundabout Junction Design - 01.dwg in the project folder.2.Click the Vehicle Tracking tab on the Ribbon.3.Click the New Roundabout button on the Junctions panel on the ribbon. This will launchthe Junction Standard Explorer.4.Select the US Federal Highways Administration guideline, Roundabouts: An InformationalGuide 2010 the FHWA 2010: Rural Single Lane Roundabout for this lab.5.Click Proceed to continue.6.Click Yes to set as default standard for this project.7.Click OK to accept the drawing scale of 1 unit = 1 feet. the junct ion “Roundabout”.9.Click OK to continue.10.Place Roundabout at the intersection.11.Right click or press Enter to accept the placement.Modifying the Junction Object.1.Adjust Roundabout Center Point (Box)2.Move Entire Junction (Box)3.Adjust Island Radius (Box)4.Adjust Apron Width (Box)5.Adjust Inscribed Radius (Box)Add Approach and Departure Roads.1.Click the New Road button on the Junctions panel on the ribbon.2.Select the Junction object.3.Select the North approach road centerline. the New Leg “Road North”.5.Click OK.6.Select the south approach road centerline. the New Leg “Road South”.8.Click OK.9.Continue creating the East and West approach roads.10.Right click or press Enter to accept the placement.Add Splitter Islands.1.Click the New Splitter Island button on the Junctions panel.2.Select the roundabout junction object.3.Select the location of the splitter island. A green plus will appear at the location.4.Click to place the splitter island then repeat to place additional splitter islands around thejunction.Modify the Splitter Island.1.Adjust the left and right width of the splitter island (Arrow) ►Add Cross Walks.1.Click the New Crosswalk button on the Junctions panel.2.Select the roundabout junction object.3.Select the location of the crosswalk. The crosswalk striping object will appear.4.Click to place the crosswalk striping then repeat to place additional crosswalk striping aroundthe junction.Modify the Crosswalk.1.Adjust the offset location of the crosswalk (Box)2.Adjust the width of the crosswalk (Box)Add Speed Striping.1.Click the New Speed Striping button on the Junctions panel.2.Select the roundabout junction object.3.Select the location of the speed striping. The speed striping object will appear.4.Click to place the speed striping then repeat to place additional speed striping around thejunction.Modify the Speed Striping.1.Adjust Speed Strip Inner Offset (Box)2.Adjust Speed Strip Inner Spacing (Box)3.Adjust Speed Strip Outer Offset (Box)4.Adjust Speed Strip Outer Spacing (Box)Add Rumble Strips.1.Click the New Rumble Strips button on the Junctions panel.2.Select the roundabout junction object.3.Select the location of the rumble strips. The rumble strips object will appear.4.Click at the location and repeat to place additional rumble strips.Modify the Rumble Strips.1.Adjust Rumble Strip Inner Offset (Box)2.Adjust Rumble Strip Inner Spacing (Box)3.Adjust Rumble Strip Outer Offset (Box)4.Adjust Rumble Strip Outer Spacing (Box)All the parameters of a roundabout junctioncan be modified in the Junction Propertiesdialog box.Note: The roundabout corridor can be createdbased on a surface or profiles.1.Open Roundabout Junction Design -02.dwg in the project folder.2.Click the Edit Roundabout button on the Junctions panel.3.Select the roundabout junction object.4.Set the Existing Surface to RG-GISM.5.Click Apply.6.Expand the Roundel element then Crown Lines in the left panel.7.Set Primary Crown Line Offset % to 100.8.Click Levels & Grades.9.Set Take Elevation From to User Defined Elevation.10.Set Elevation at Center to 277.27.11.Click Apply.12.Expand Road North then Levels & Grades.13.Set Take Elevation and Grade From to Profile: Entrance Road FGCL.14.Do the same for the South, East and West Roads.15.Additional settings shown on page 12 of this handout.16.Click Apply but do not close.1.Click the 3D Corridor element.2.Check Create Alignments and Create Corridor.3.Click the Rebuild Now button then click Close.Note: Creating a corridor also creates the associatedassemblies. These assemblies can be modified to suit thedesign such as adding curbing, sidewalks and daylighting.Create a Surface from the corridor.1.Select the corridor.2.Click the Corridor Properties on the Ribbon.3.Click the Surfaces tab.4.Click the Create a Corridor Surface button. the surface FG-CORRIDOR.6.Select the Top Code then click the plus button.7.Click the Boundary tab.8.Right Click the surface name.9.Click Corridor Extents as Outer Boundary.10.Click OK.Thanks for attending!。

中国新四大发明扬名海外英语作文

中国新四大发明扬名海外英语作文

中国新四大发明扬名海外英语作文China's New Four Great Inventions Going GlobalHi there! My name is Lily and I'm a 10-year-old student from Beijing. Today I want to tell you all about China's newest four great inventions that are becoming really popular all over the world! You've probably heard of the Four Great Inventions from ancient China - the compass, gunpowder, papermaking, and printing. Well, these new four inventions are just as amazing and useful. Get ready to be impressed!The first one is this really cool thing called the high-speed rail. Basically, it's a super-fast train that can go over 300 kilometers per hour! That's like driving on the highway at top speed. These bullet trains make travel way quicker and easier. My family just took one from Beijing to Shanghai and instead of it taking like 12 hours, we got there in only 4 hours! The best part is they have super comfy seats, food you can buy, and even WiFi so you can watch movies or play games. China has the biggest high-speed rail network in the world with over 37,000 kilometers of tracks crisscrossing the country. More and more countries are buying these trains from China or using Chinese technology to build their own high-speed rail lines.Next up is something my older brother is absolutely obsessed with - mobile payment! I'm sure a lot of you have heard of apps like Alipay and WeChat Pay. They are these awesome smartphone apps that let you pay for stuff easily by just scanning a QR code instead of using cash or cards. My brother always uses his phone to pay for everything - snacks, movie tickets, taxi rides, you name it. It's super convenient and secure. You just load money into your app's wallet and can pay merchants with a couple taps. No need to carry a bunch of cash or cards around. These mobile payment apps were first created by Chinese tech companies like Alibaba and Tencent, but now they're spreading all over the place. Lots of businesses in places like Southeast Asia, Africa, and even Europe are adopting QR code payments through partnerships with Alipay and WeChat Pay. Mobile payment is really taking over!Invention number three is something I personally find fascinating - the Beidou Navigation Satellite System. You've definitely heard of GPS, which is the American global navigation satellite system. Well, Beidou is China's version and it's becoming a major global player. Beidou's satellite network provides positioning, navigation, and timing services across the entire planet. It helps guide missiles, aircraft, and ships but is also used for civilian purposes like mapping, vehicle tracking, and evenaiding rescue efforts during natural disasters. What's really cool is Beidou can locate you down to just a few centimeters - way more precise than GPS! Beidou is going head-to-head with GPS and other global navigation systems like Galileo from Europe and GLONASS from Russia. Over half the world's countries have given approval for Beidou and many industries like construction, mining, shipping, and farming now rely on it worldwide.Last but definitely not least is 5G mobile networks. I'm sure you all use 4G on your phones for surfing the web, watching videos, etc. Well 5G is the next generation and it is blazing fast - like 100 times faster than 4G! It also has way more capacity and super low latency so everything is smooth with no delays. China took an early lead in developing and deploying 5G technology with companies like Huawei at the forefront. Already over 600,000 5G base stations have been installed across China making it the biggest 5G network globally. But 5G is rapidly expanding across Asia, Europe, Africa and the rest of the world too. 5G will enable so many cool new technologies - self-driving cars, cloud gaming, remote surgery, you name it. The future is here thanks to 5G!So those are the incredible new four great inventions from China shaping our modern world - high-speed rail, mobilepayment, Beidou navigation, and 5G networks. Thesecutting-edge innovations originated in China but are now being exported and adopted everywhere. We Chinese people are so proud to have contributed these awesome advancements to humanity. From ancient inventions like paper to modern marvels, China just keeps on amazing the world with its creativity and ingenuity! I can't wait to see what incredible new Chinese inventions come along in the future.。

基于自适应非线性跟踪微分器的直线电机位置和速度检测方法

基于自适应非线性跟踪微分器的直线电机位置和速度检测方法

第27卷㊀第10期2023年10月㊀电㊀机㊀与㊀控㊀制㊀学㊀报Electri c ㊀Machines ㊀and ㊀Control㊀Vol.27No.10Oct.2023㊀㊀㊀㊀㊀㊀基于自适应非线性跟踪微分器的直线电机位置和速度检测方法周世炯1,2,㊀李耀华1,2,㊀史黎明1,㊀范满义1,㊀张明远1,2,㊀刘进海1,2(1.中国科学院电工研究所中国科学院电力电子与电力驱动重点实验室,北京100190;2.中国科学院大学,北京100049)摘㊀要:为了解决直线电机的位置和速度检测的问题,设计了基于激光器阵列的光栅传感器位置检测系统,提出一种利用非线性跟踪微分器的直线电机速度测量方法,对电机动子位置进行准确跟踪以及对动子的速度进行测量㊂针对传统的非线性跟踪微分器在一定速度下处理测量噪声干扰和相位延迟存在矛盾的问题,设计了一种自适应非线性跟踪微分器,其参数能够跟随电机动子的运动速度自动调整,频率特性分析证明了其良好的微分特性㊂仿真和实验结果均证明了所设计的直线电机光栅位置检测方法和自适应非线性跟踪微分器测速的有效性,在电机运行的全速范围内都能够很好地抑制测量误差以及滤波效应带来的延迟,获得全程精确且快速的电机动子位置信号和速度输出信号㊂关键词:直线电机;光栅传感器;位置和速度检测;自适应参数;非线性跟踪微分器;全速范围DOI :10.15938/j.emc.2023.10.003中图分类号:TM359.4文献标志码:A文章编号:1007-449X(2023)10-0024-10㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀收稿日期:2021-10-30基金项目:中国科学院电工研究所科研基金(2021E1393201)作者简介:周世炯(1995 ),男,博士研究生,研究方向为大功率电力电子变换技术与直线电机驱动控制;李耀华(1966 ),男,博士,研究员,博士生导师,研究方向为电机与控制㊁大功率电力电子变流器;史黎明(1964 ),男,博士,研究员,博士生导师,研究方向为特种电机设计和驱动控制㊁无线电能传输技术;范满义(1988 ),男,博士,助理研究员,研究方向为直线电机驱动控制㊁无线电能传输技术;张明远(1995 ),男,博士,研究方向为大功率电力电子变换技术与直线电机驱动控制;刘进海(1995 ),男,博士研究生,研究方向为大功率电力电子变换技术与直线电机驱动控制㊂通信作者:周世炯Linear motor position and speed measurement method based onadaptive nonlinear tracking differentiatorZHOU Shijiong 1,2,㊀LI Yaohua 1,2,㊀SHI Liming 1,㊀FAN Manyi 1,㊀ZHANG Mingyuan 1,2,㊀LIU Jinhai 1,2(1.Key Laboratory of Power Electronics and Electric Drive,Institute of Electrical Engineering,Chinese Academy ofSciences,Beijing 100190,China;2.University of Chinese Academy of Sciences,Beijing 100049,China)Abstract :To solve the problems of linear motor s position and speed measurement,a grating sensor posi-tioning system based on the laser array is designed,and a linear motor speed measurement method using a nonlinear tracking differentiator is proposed to track the mover position and measure the mover speed.Considering the contradictory problem of the traditional nonlinear tracking differentiator in dealing with measurement noise interference and phase delay at a certain speed,an adaptive nonlinear tracking differ-entiator is designed and its parameters can be adjusted automatically following the speed of the mover.Its good differential characteristic is proved by the frequency characteristic analysis.The effectiveness of the designed linear motor grating positioning method and adaptive nonlinear tracking differentiator for speedmeasurement is proved by both simulation and experimental results.The measurement error and the lagproblem caused by the filtering effect are well suppressed in the full speed range,and the accurate and fast mover position and speed output signals throughout the entire process are obtained. Keywords:linear motor;grating sensor;position and speed measurement;adaptive parameters;nonlin-ear tracking differentiator;full speed range0㊀引㊀言直线电机具有传动机构简单㊁运行效率高㊁动态响应快等优点㊂直线电机在很多场合已经得到了应用,如高速直线电机电磁驱动系统㊁磁悬浮列车㊁直线电机电梯以及工业运用的各种机械传送设备等㊂直线电机的速度闭环是实现电机高精度闭环控制的重要一环,特别是在速度较高㊁运行距离较远的场合,需要精准的直线电机位置和速度检测系统来满足位置和速度控制所需要求㊂随着直线电机的广泛应用,直线电机的位置和速度检测技术在不断发展㊂文献[1]采用相位差光栅涡流传感器进行位置的跟踪,文中提出一种特定的组合码,采用单轨编码定位方法实现光栅涡流传感器线圈的粗定位,但是这种方法只是进行电机位置的粗跟踪,在很多精度要求高的场合不适用㊂文献[2-3]利用图尔克公司的电感式接近开关构成传感器阵列,根据直线感应电机次级感应板运动过程中与传感器的电涡流效应来生成直线感应电机的位置信号,这种方法虽然能够适应十分苛刻的工况,但是测量的精度不高㊂霍尔传感器是一种磁场传感器,检测准确度依赖于霍尔元件离磁场的距离,如果距离太近易受直线电机漏磁场干扰,尤其是在高速电磁驱动强磁场㊁大电流的工况下,位置检测精度并不高[4]㊂文献[5-6]利用了磁栅式的速度传感器,也有一定的抗振和抗干扰能力,且结构较为简单,但是无法适应动子高速运动带来的横向振动,同时这种传感器的磁头容易退磁,因此使用寿命不长㊂文献[7]研究表明激光位移传感器的位置检测精度受测量距离的限制,距离过长导致检测精度下降㊂由于其位置测量信号是连续的,易受周遭环境的影响而存在噪声,会被微分作用放大,淹没速度测量信息㊂文献[8-9]在电机动子上安装高速摄像机,随着动子运动扫描刻在定子两侧的非周期正弦条纹图像,利用特定的算法将二维图像转化成简单的一维信号处理,快速㊁高精度地解码出速度与位置,同样这种方法也不适合高速运动的直线电机带来的抖振㊂而基于直线光栅传感器的位置检测方法简单有效,成本低,不受长行程㊁强磁场限制,测量精确度较高[10],特别适用于长定子直线电机㊂但是在高速大推力的电磁驱动工况下,光栅传感器的机械强度受到考验,且所用激光的光斑大小会限制光栅的栅格宽度[11],光栅格的设计往往相对于精密伺服系统设计的要宽,因此不能单纯的从减小光栅的栅格宽度来提高位置检测的精度,有必要从检测位置和速度的算法上着手㊂速度信号常由对位置信号的微分获得,普通的微分处理主要是采用差分方法,极易因为测量误差而对噪声进行放大作用,获得的速度信号误差大而无法采用㊂针对这个问题,韩京清等[12]提出跟踪微分器(tracking differentiator,TD),不直接对输入信号进行微分运算,而是先对给定输入信号进行跟踪,随后对跟踪信号处理并输出微分信号,这样可以有效抑制微分的噪声放大效应㊂文献[13]又在此基础上根据最优控制原理设计了基于离散最速控制函数的非线性跟踪微分器(nonlinear tracking differentia-tor,NL-TD),进一步抑制了测量噪声,且有效降低了信号延迟,使得跟踪信号总能在有效的最短步长内跟上给定信号㊂但是,根据文献[14]发现,传统控制参数固定的NL-TD输出信号的精确性会因为输入信号的变化速度而发生改变:速度较低时,会有较大的测量误差,延迟较小;随着速度升高,误差减小,但输出信号延迟越来越明显㊂因此,低速时需要提高微分器的滤波因子来改善,但很可能会造成输出信号延迟;高速时需要提高速度因子加快信号跟踪,但很可能会造成测量误差增大㊂因此,这种微分器在同时处理测量误差和输出延迟问题上存在矛盾,想要在被测目标运动的全过程都能够较为准确快速地测量比较困难㊂目前解决的方法主要分为两大类,第一类主要是从NL-TD的可调控制参数着手,如文献[15]提出通过获得输入输出信号差值构造自适应函数控制速度因子,随着被测目标速度增大而增大,使得微分器的跟踪速度能够满足要求,但是未考虑滤波作用,易受噪声影响㊂文献[16]提出速度因子和滤波因子都能跟随输入信号的变化速率自适应调整的改进型52第10期周世炯等:基于自适应非线性跟踪微分器的直线电机位置和速度检测方法微分器,很好地解决了上述矛盾,但是由于其用到了复杂的统计学函数而不利于实现㊂第二类则是从NL-TD本身的控制函数着手,文献[17]利用二阶连续系统最速控制设计中的综合函数,提出一种新型快速离散非线性跟踪微分器,经分析表明,这种跟踪微分器在良好跟踪输入信号的前提下,可较好地滤除噪声提取微分信号,且相位延迟小㊂文献[18-19]重新设计了一种基于边界特征线且特征点可变的二阶离散非线性跟踪微分器,并且运用在磁悬浮列车的位置和速度检测系统当中㊂文献[20]采用反双曲正弦函数离散化得到二阶微分器,严格证明了所设计的微分器具有良好的跟踪性能,但仅仅局限于仿真阶段㊂此外,第二类方法采用更为复杂的控制函数设计跟踪微分器,因此实用性不强㊂本文采用第一类方法,设计了自适应非线性跟踪微分器(adaptive nonlinear tracking differentiator,ANL-TD),采用相对简单的自适应控制函数,拟合速度因子和滤波因子的变化规律,并将其应用于长定子直线电机的位置和速度检测系统中㊂本文利用基于激光器阵列的光栅传感器位置和速度检测系统具有精度高㊁检测速度快㊁设计相对简单经济且不受电磁干扰的优点,经过仿真和实验证明,在电机加速㊁匀速和减速的全过程中,与传统的NL-TD相比,本文提出的ANL-TD都能很好地对直线电机的动子进行位置和速度的检测,测量误差小且延迟低㊂1㊀光栅传感器位置速度检测系统图1给出了利用基于激光器阵列的光栅传感器进行位置和速度检测的系统㊂由于定子长度较长,供电和控制系统都固定在地面上,将激光器阵列安装于定子上,光栅条安装于动子上,这种简单的传感器形式能较为方便地重构出电机动子的位移,并作为跟踪微分器的信号输入,随后跟踪微分器经计算输出动子更平滑的位置跟踪信号和速度测量信号,作为电机控制的反馈信号输入㊂光栅条安装在动子板上(图1中简化了动子,以光栅条代替),激光收发器阵列安装在定子上,如图1中所示的灰色部分㊂光栅条分为白色透光区域和黑色不透光区域(宽度等长,均设为D),当动子产生位移时,光栅条就会遮挡或者不遮挡激光,对应的每对激光收发器会得到一系列高低电平的变化,经信号处理模块产生对应的脉冲序列㊂计数模块能够对每列脉冲进行计数(跳变沿计数得到的脉冲数设为N),累加(ND得到动子的位移粗信号)并经过线性插值得到位移输入信号(如图2所示),通过下文设计的非线性跟踪微分器跟踪输出得到电机动子平滑的位置信号和速度信号㊂最后,根据具体情况在不同时刻都选通输出某一对激光器得到的电机动子位置和速度信号作为最终信号输出㊂图1㊀光栅传感器位置和速度的检测系统结构Fig.1㊀Structure of the grating sensor speed and posi-tion measurementsystem图2㊀位置线性插值Fig.2㊀Position linear interpolation图2中:X1为光栅传感器位置和速度的检测系统重构出的位置(X1=ND);X2为对X1进行插值得到的位置信号,X2作为跟踪微分器的位移输入信号㊂如果直接采用光栅传感器输出的位置X1作为电机控制的位置反馈信号输入,如图2所示带有明显的阶梯形状会对控制系统造成额外的影响㊂2㊀自适应非线性跟踪微分器2.1㊀非线性跟踪微分器原理根据文献[21],经典的微分作用通过下式实现:y=s Ts+1u=1T(1-1Ts+1)u㊂(1)式中:u为输入信号;T为惯性环节的时间常数,若T 越小,则使微分信号y(t)越接近u㊃(t)㊂但是当输入信号中混入噪声时,y(t)中会存在与T成反比的62电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀噪声放大信号,不利于对电机动子速度的测量㊂为了解决微分放大噪声的影响,文中还提出通过减少积分的步长来抑制噪声的方法,但是需要较长的调节时间进入稳态㊂为了加快进入稳态的时间,出现了跟踪微分器的概念[22],跟踪微分器是对经典微分器的高阶扩展㊂跟踪微分器一方面能够利用其中的惯性环节来跟踪输入信号,另一方面能够通过求解微分方程来输出微分信号㊂但是,这种跟踪微分器跟踪信号的能力依然有限㊂为了使微分器能够快速地跟踪输入信号,文献[23]将最优快速控制综合函数代入二阶积分串联型系统并且经过离散化得到非线性跟踪微分器㊂当跟踪点远离目标点时,非线性结构的控制函数能够使其以幂级数的曲线轨迹快速逼近,而当跟踪点靠近目标点时,它又能以一次函数的轨迹以较低的速度缓慢接近目标,因此,相比于传统的跟踪微分器,NL-TD 的跟踪信号能力和抑制噪声的效果都比较好,即NL-TD 的效率要高于传统的跟踪微分器[24]㊂NL-TD 的表达式为:x ㊃1=x 2;x ㊃2=u ,|u |ɤr ㊂}(2)式中:u 为控制输入的函数;r 为常数㊂而实际中应用更多的是NL-TD 的离散形式,表达式为:x 1(k +1)=x 1(k )+Tx 2(k );x 2(k +1)=x 2(k )+T fhan(x 1(k )-u (k ),x 2(k ),r ,h )㊂üþýïïï(3)d =rh ;d 0=hd ;y =x 1-u +hx 2;a 0=d 2+8r |y |;a =x 2+y h ,|y |ɤd 0;x 2+0.5(a 0-d )sgn(y ),|y |>d 0㊂{fhan =-r sgn(a ),|a |>d ;-r a d,|a |ɤd ㊂{üþýïïïïïïïïïïïïïï(4)式中:u (k )为位置输入信号;x 1(k )为对u (k )的跟踪信号;x 2(k )为对x 1(k )的微分信号,当x 1(k )能够快速跟踪u (k )时,x 2(k )便可以作为u (k )的近似微分,最后输出信号x 1(k )作为系统的位置信号,输出信号x 2(k )作为系统的速度信号;T 为微分器离散化步长;r 为速度因子,增大r 可以更快地跟踪输入信号;h 为滤波因子,增大h 可以更好地滤除噪声;fhan(x 1,x 2,r ,h )为离散最优快速控制综合函数[25]㊂由式(3)和式(4)可以看出,NL-TD 只需调节速度因子r 和滤波因子h 两个参数,调节简单㊂2.2㊀自适应设计当采用一组固定的速度因子r 和滤波因子h 参数时,在测量目标的移动速度较低时,NL-TD 输出的速度微分信号x 2(k )误差较大,位置跟踪信号x 1(k )的滞后相对较小;随着目标移动速度的不断增大,速度微分信号x 2(k )的误差越来越小,而位置跟踪信号x 1(k )的滞后越来越明显[14,16]㊂为了解决NL-TD 存在的问题,需要根据输入信号的情况实时调整速度因子r 和滤波因子h 的值㊂因此提出自适应非线性跟踪微分器,使非线性跟踪微分器的两个可调参数r 和h 跟随测量目标运动速度而改变,即r =r (v )和h =h (v ),其中r (v )跟随目标移动速度v 成正比变化,h (v )跟随目标移动速度v 成反比变化㊂根据以上分析,被测目标速度较低时速度因子取较小值,滤波因子取较大值;速度升高时,速度因子能够快速增大以便能够快速跟踪输入信号,并且速度较低时较大的滤波因子能够减小噪声㊂如此,ANL-TD 在高㊁低速时都可以输出高精度㊁低延时的跟踪信号x 1(k )和微分信号x 2(k )㊂文献[14]根据统计学的原理提出自适应律,函数结构显得复杂,为了简化系统运算,节省硬件逻辑资源,本文重新提出可调参数的自适应规律,表达式为:α(x )=arctan(xγ1);β(x )=e -(x γ2)2㊂üþýïïï(5)式中:α(x )随x 的增大而快速增大;β(x )随x 的增大快速减小;γ1和γ2为可调参数,调整他们的大小可以改变α(x )和β(x )的变化速率㊂α(x )由简单的反正切函数所得,β(x )由标准正态分布简化而得㊂利用α(x )和β(x )拟合速度因子r 和滤波因子h 的变化㊂经设计,自适应非线性跟踪微分器的形式变为:x 1(k +1)=x 1(k )+Tx 2(k );x 2(k +1)=x 2(k )+T fhan(x 1(k )-u (k ),x 2(k ),r (x 2),h (x 2))㊂üþýïïï(6)72第10期周世炯等:基于自适应非线性跟踪微分器的直线电机位置和速度检测方法其中:r =α(x 2,γ1)=A arctan(x 2γ1)+B ;h =β(x 2,γ2)=1γ2e -12(x 2γ2)2㊂üþýïïïï式(6)中A 和B 分别为速度因子r 的变化范围和初始值㊂根据系统实际要求的输入信号的带宽,调节γ1和γ2的大小,使ANL-TD 获得全程精确且快速的输出信号㊂2.3㊀频率特性ANL-TD 的跟踪信号和抑制噪声的能力能够通过系统的开环频率特性反映,由于是非线性的环节,无法常规获取伯德图,本文采用扫频法[26]㊂假设正弦输入信号为y =A sin(ωt +Φ),在输入信号的某一个周期内选取对应的输出信号的最大值A (ω)和其对应的时间t ,计算获得输出信号的幅值和相位㊂这样,通过改变频率便可以得到输出信号的一系列不同的幅值和相位,得到输出信号近似的幅频㊁相频信号[26]㊂ANL-TD 的频域特性已用MATLAB 绘制而出,如图3所示㊂图3㊀ANL-TD 伯德图Fig.3㊀ANL-TD Bode diagram图3中,保持γ1的值不变,改变γ2的值分别得到ANL-TD1㊁ANL-TD2㊁ANL-TD3的曲线㊂代表常规微分作用s 的幅频和相频曲线也在图中给出作为参考㊂对于正弦输入信号,改变γ1的值只决定跟踪信号能否跟上输入信号变化,对ANL-TD 输出信号的频率响应没有影响㊂从幅频曲线可以看出,幅频特性近似于一条折线,在高频处的最高点(称为转折频率)出现转折,所以该跟踪微分器可以有效地滤除高频噪声㊂从相频曲线可以看出,在转折频率之前一段区间内几乎保持超前90ʎ的相角,且在转折频率之后快速降低至-90ʎ,所以该跟踪微分器在一定范围内具有良好的微分作用㊂因此,ANL-TD 的频率特性类似于二阶带通滤波器㊂对比常微分s 的频率特性曲线,ANL-TD 在一定的频带范围内能够表现出良好的近似微分的作用,并且能够有效地抑制高频噪声㊂除此之外,ANL-TD1㊁ANL-TD2㊁ANL-TD3对应的参数γ2满足条件:γ21<γ22<γ32㊂可以发现,增大γ2的值可以增加通频带的范围㊂3㊀仿真结果分析为了验证新设计的ANL-TD(见式(6))的效果,本文取动子的参考速度V ref (m /s)㊂首先动子速度由0以50m /s 2的加速度匀加速至100m /s,随后匀速运行1s,然后又以50m /s 2的加速度匀减速至0,如图4所示㊂图4㊀动子运动参考速度Fig.4㊀Reference speed of mover图5为基于跟踪微分器位置和速度检测方法的结构框图㊂由图可知,输入速度参考信号V ref 经过积分得到位置输入信号X 1,模拟光栅传感器每1e -4s更新一次数据得到离散位置信号,并以5e -9s 的周期线性插值之后输出位置信号X 2㊂图5㊀跟踪微分器的位置和速度检测方法结构框图Fig.5㊀Block diagram of the position and speed detec-tion method of the tracking differentiator82电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀X 2作为跟踪微分器ANL-TD 的输入,利用传统跟踪微分器得到低质量的微分速度信号,经过自适应控制函数得到随速度输入信号变化的速度因子和滤波因子,从而有效地调节ANL-TD(式(6)所示),在目标物体高㊁低速运动时都可以保持比传统的NL-TD 更加精确的输出信号㊂X 2经傅里叶分析如图6所示㊂图6㊀输入位置信号傅里叶分析Fig.6㊀Fourier analysis of input position signal根据图6,该输入位置信号频谱的主要成分大致集中在2Hz 以内,通过上节对跟踪微分器的频率特性分析,可以选择合适的参数来使得ANL-TD 对该输入信号具有良好的微分作用,这里γ1和γ2分别取10和110较为合适㊂根据式(6),经过调试取A =1e 6,B =2e 6,T =1e -4s,由ANL-TD 得到的位置跟踪信号及速度输出信号,相比于传统的NL-TD 更加精确㊂位置㊁速度㊁自适应控制函数r =α(x 2,γ1),h =β(x 2,γ2)跟随时间变化的Simulink 仿真波形如图7~图9所示㊂加速度阶段,动子位置和速度经过放大后的波形也分别在图7和图8中给出㊂图7和图8中,X ref (X ref =X 2)和V ref 分别为电机动子位置和速度的参考信号㊂图9中,速度因子随着动子的运动速度呈正比变化,滤波因子呈反比变化㊂调节γ1和γ2可以改变r 和h 的变化速率和轨迹㊂图7㊀位置及加速段放大结果Fig.7㊀Position and acceleration section zoom insimulation图8㊀速度及加速段放大结果Fig.8㊀Speed and acceleration section zoom in simulation在电机动子的初始运动状态下,ANL-TD 首先选择合适的速度因子r 和滤波因子h 初始值,寻找合适的参数γ1和γ2来得到合适的r 和h 的变化规92第10期周世炯等:基于自适应非线性跟踪微分器的直线电机位置和速度检测方法律㊂根据前文的分析,随着电机动子的运动速度增大,测量的位置和速度信号的滞后越来越明显,滤波因子较小可以适当牺牲微分器的降噪性,速度因子快速增大使微分器跟上输入信号,如图7所示,位置信号滞后随着速度升高而增大,但是ANL-TD 的滞后明显小于NL-TD;当被测物运动速度较低时,速度因子较小可以适当牺牲跟踪的快速性,而较大的滤波因子能够滤除一些低速段的测量噪声,如图8所示,虽然初始速度较低时误差较大,但是ANL-TD 的误差明显小于NL-TD㊂所以,由图7~图9可以看出,本文设计的ANL-TD 在速度全程可以获得比NL-TD 质量更好的测量信号㊂图9㊀自适应控制函数仿真结果Fig.9㊀Simulation results of adaptive control functions另外,为了更加直观地验证ANL-TD 的效果,将图7中的ANL-TD 和NL-TD 的位置跟踪信号分别与位置参考信号X ref (X ref =X 2)作比较,得到位置误差信号ΔX 1和ΔX 2;将图8中ANL-TD 和NL-TD 的速度检测信号分别与速度参考信号V ref 比较,得到速度误差信号ΔV 1和ΔV 2,如图10所示㊂图10㊀位置和速度误差仿真结果Fig.10㊀Simulation results of position and speed error由图10可知,NL-TD 存在输出滞后输入信号随着速度增大越来越明显的问题,而ANL-TD 能够明显改善这个问题,它的位置滞后更小,位置跟踪误差在稳速时比NL-TD 减小了0.68m,位置跟踪精度提高了大约70%;速度误差主要集中在低速区域,且相比NL-TD,ANL-TD 在整个运行过程的速度测量误差都较小,它的速度误差比NL-TD 减小了0.2m /s,速度检测精度提高了大约30%㊂进一步证明,相比于传统的NL-TD,ANL-TD 能够在全程获得更加准确的位置信号和速度信号,这也与理论分析的结果一致㊂4㊀实验验证为了进一步验证本文提出ANL-TD 的有效性,采用基于RT-LabOP5607的半实物平台进行验证㊂实验机器主要包含CPU 板卡和Xilinx Virtex7的FP-GA 板卡(如图11所示)㊂在FPGA 板卡中搭建基于激光器阵列的光栅传感器位置和速度检测系统,CPU 控制系统中建立ANL-TD 和NL-TD 算法,跟踪微分器离散化步长为500ns㊂根据表1给出的光栅传感器参数以及图1的系统设计算法,具体流程为:上位机根据速度参考信号03电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀V ref 生成位置参考信号下发给FPGA,FPGA 中的传感器模型产生位置检测信号,以500ns 的周期线性插值后,进入CPU 中的传统NL-TD 和ANL-TD 进行计算得到位置跟踪信号和速度检测信号,最后两者反馈回上位机,分别与速度和位置的参考信号进行比较,跟踪微分器相关的控制参数设计同Simulink 仿真㊂图11㊀基于RT-Lab OP5607的实验平台Fig.11㊀Experiment platform based on the RT-LabOP5607表1㊀光栅传感器参数Table 1㊀Parameters of grating sensor㊀㊀参数数值光栅条长度l /mm 4200栅格宽度D /mm 10激光器间距L /mm1707输出全程的位置和速度波形如图12所示㊂匀速段(高速段)的局部放大图如图13所示㊂低速时位置和速度的波形图如图14所示㊂由图12和图13可知,从3.5~5.5s 处,随着动子运动速度的增大,NL-TD 所测得速度和位置信号滞后越来越明显,最终在最高速处导致速度测量信号误差太大(如5.5~6.5s 处),因而微分放大噪声的作用被进一步放大,最终导致高速下误差也增大㊂然而ANL-TD 全程输出的位置信号和速度信号滞后较小且速度信号更加精确,相较于传统的NL-TD 都有明显的提升,尤其在高速段时与参考信号几乎吻合,这说明ANL-TD 通过参数自适应调整克服了传统跟踪微分器在高速段延迟大的缺点㊂图12㊀位置和速度实验波形Fig.12㊀Position and speed experimentwaveform图13㊀位置和速度高速段放大图Fig.13㊀Enlarged view of position and velocity in thehigh-speed section13第10期周世炯等:基于自适应非线性跟踪微分器的直线电机位置和速度检测方法。

汽车技术状况的参数指标

汽车技术状况的参数指标

汽车技术状况的参数指标英文回答:Vehicle Speed: The speed at which the vehicle is traveling, measured in kilometers per hour (km/h) or miles per hour (mph).Engine Speed: The number of revolutions per minute (RPM) of the vehicle's engine.Fuel Consumption: The amount of fuel consumed by the vehicle over a given distance, measured in liters per 100 kilometers (L/100km) or miles per gallon (mpg).Acceleration: The rate at which the vehicle increases its speed, measured in meters per second squared (m/s²) or feet per second squared (ft/s²).Braking Distance: The distance required for the vehicle to come to a complete stop from a given speed,measured in meters (m) or feet (ft).Turning Radius: The minimum radius at which the vehicle can make a turn without losing control, measured in meters (m) or feet (ft).Payload Capacity: The maximum weight of cargo or passengers that the vehicle can carry, measured in kilograms (kg) or pounds (lbs).Towing Capacity: The maximum weight that the vehicle can tow behind it, measured in kilograms (kg) or pounds (lbs).Ground Clearance: The distance between the lowest point of the vehicle's chassis and the ground, measured in millimeters (mm) or inches (in).Wheelbase: The distance between the center of thefront wheels and the center of the rear wheels, measured in millimeters (mm) or inches (in).Track Width: The distance between the center of theleft wheels and the center of the right wheels, measured in millimeters (mm) or inches (in).Height: The distance from the ground to the highest point of the vehicle, measured in millimeters (mm) orinches (in).Length: The distance from the front bumper to the rear bumper, measured in millimeters (mm) or inches (in).Width: The distance from one side mirror to the other, measured in millimeters (mm) or inches (in).中文回答:汽车技术状况参数指标。

无人驾驶车辆路径跟踪控制研究现状

无人驾驶车辆路径跟踪控制研究现状

无人驾驶车辆路径跟踪控制研究现状白国星1),孟 宇1)✉,刘 立1),顾 青1,2),王国栋1),周碧宁1)1) 北京科技大学机械工程学院,北京 100083 2) 北京科技大学顺德研究生院,顺德 528300✉通信作者,E-mail :************.cn摘 要 近年来路径跟踪控制的发展十分迅猛,研究者们发表了大量的研究成果. 考虑到在相同或相近工况下的路径跟踪控制存在一些共性的技术问题与解决思路,从低速路径跟踪控制和高速路径跟踪控制两个角度对近年来的研究成果进行了回顾. 在关于低速路径跟踪控制的研究工作中,研究者们较为重视前轮转角速度约束等系统约束对路径跟踪精确性的影响. 目前减少系统约束影响的方法包括在规划参考路径时将系统约束纳入考虑,采用预瞄控制使控制器提前响应,以及采用线性模型预测控制(LMPC )或非线性模型预测控制(NMPC )等模型预测控制方法作为路径跟踪控制方法等. 考虑到NMPC 既能减少系统约束的影响,又无需人为设置预瞄距离,且对定位误差等扰动因素具有较强的鲁棒性,加之低速路径跟踪控制对实时性的需求较低,因此可以认为NMPC 能够满足低速路径跟踪控制的绝大多数需求. 高速路径跟踪控制在受系统约束影响之外,还面临着较高车速带来的行驶稳定性不足问题的挑战,因此常采用能够将动力学层面的复杂系统约束纳入考虑且计算成本较低的LMPC 作为路径跟踪控制方法. 不过仅采用动力学层面的LMPC 控制方法无法完全解决高速路径跟踪控制中路径跟踪精确性和车辆行驶稳定性之间存在耦合的问题,目前常见的解决思路是在路径跟踪控制中加入额外的速度调节或权重分配模块. 此外,在高速路径跟踪控制中,地面附着系数等环境参数的影响也较大,因此地面附着系数等环境参数的估算也成为了高速路径跟踪控制领域的重要研究方向.关键词 无人驾驶;车辆;路径跟踪;系统约束;跟踪精确性;行驶稳定性分类号 U471.15Current status of path tracking control of unmanned driving vehiclesBAI Guo-xing 1),MENG Yu 1)✉,LIU Li 1),GU Qing 1,2),WANG Guo-dong 1),ZHOU Bi-ning 1)1) School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China 2) Shunde Graduate School of University of Science and Technology Beijing, Shunde 528300, China✉Corresponding author, E-mail: ************.cnABSTRACT Path tracking control is a key technology in the hierarchical unmanned driving system. Its function is to control thevehicle so that it drives along the reference path given by the path planning system. The information such as the position and posture of the vehicle required for path tracking control is provided by the perception and positioning system. In recent years, the development of path tracking control has been very rapid, and researchers have published considerable research. As there are some common technical problems and solutions in path tracking control under the same or similar scenarios, recent research results are reviewed from the perspective of both low-speed and high-speed path tracking control. In the research of low-speed path tracking control, researchers pay more attention to the influence of system constraints on the accuracy of path tracking such as front-wheel angle speed. At present,methods to reduce the influence of system constraints include: (1) taking the system constraints into consideration when planning a reference path; (2) using preview control to make the controller respond early; and (3) using model predictive control methods, such as收稿日期: 2020−11−12基金项目: 国家重点研发计划资助项目(2018YFE0192900,2018YFC0604403,2018YFC0810500,2019YFC0605300);广东省基础与应用基础研究基金资助项目(2019A1515111015);中央高校基本科研业务费专项资金资助项目(FRF-TP-20-052A1)工程科学学报,第 43 卷,第 4 期:475−485,2021 年 4 月Chinese Journal of Engineering, Vol. 43, No. 4: 475−485, April 2021https:///10.13374/j.issn2095-9389.2020.11.12.003; linear model predictive control (LMPC) or non-linear model predictive control (NMPC), as path tracking control methods. NMPC can reduce the impact of system constraints and does not need manual setting of preview distance. It has strong resistance to disturbance factors such as positioning errors. Since low-speed path tracking control has low real-time requirements, it can be considered that NMPC can meet most needs of low-speed path tracking control. High-speed path tracking control, in addition to being affected by system constraints, is also challenged by insufficient driving stability caused by higher vehicle speeds. Therefore, LMPC, which can take the dynamics-level complex system constraints into account, has a lower computational cost. It is often used as the path tracking control method. However, due to high-speed path tracking control, there is a coupling relationship between path tracking accuracy and vehicle driving stability. The use of dynamics-level LMPC or other dynamics-level control methods cannot completely solve the problem caused by this coupling relationship. The current common solution is to add an extra speed adjustment module or weight distribution module to path tracking control. Additionally, in high-speed path tracking control, the influence of environmental parameters, such as ground adhesion coefficient, is also greater. Hence, the estimation of environmental parameters, such as ground adhesion coefficient, has also become an important research direction in the field of high-speed path tracking control.KEY WORDS unmanned driving;vehicle;path tracking;system constraint;tracking accuracy;driving stability分层递阶式体系结构是目前较为常见的一种无人驾驶车辆体系结构[1],而路径跟踪控制是这个体系结构中至关重要的一环,其作用是根据传感器给出的车辆状态信息和路径规划层给出的参考路径向执行器发出控制信号,从而控制车辆沿着参考路径行驶,并尽量减少车辆与参考路径之间的偏差. 近年来路径跟踪控制的发展十分迅猛,研究者们发表了大量的成果. 在这些研究工作中,存在一些共性的技术问题与解决思路.在相同或相近的工况下,这些问题与思路也更加趋同. 对于自动泊车和铰接转向车辆等特种车辆作业过程中的路径跟踪控制,其特点是车辆行驶速度较低,无需考虑车辆行驶稳定性对路径跟踪的影响,控制目标仅包括路径跟踪精确性. 而对于高速换道、高速过弯等工况下的路径跟踪控制,车辆行驶稳定性是路径跟踪精确性和安全性的重要影响因素,必须同时保证路径跟踪的精确性和车辆的行驶稳定性. 这两种工况下的路径跟踪控制虽然可以采用相同的控制理论,但是由于控制目标存在差异,控制器设计中的要点也完全不同. 因此可以按照工况,将无人驾驶车辆路径跟踪控制分为两类,即低速路径跟踪控制和高速路径跟踪控制. 在此基础上,可以对不同工况下的路径跟踪控制面临的问题以及研究学者们采取的方法进行梳理,以期理清近年来无人驾驶车辆路径跟踪控制的发展趋势,为这项技术的发展提供一定的参考.1 低速路径跟踪控制研究现状低速路径跟踪控制的特点是车辆的行驶速度较低,通常不超过20 km·h−1. 在这种情况下由于车辆存在最小转弯半径约束,侧向加速度较小,因此不必考虑车辆行驶的稳定性,可以采用运动学层面的控制方法实现路径跟踪控制.自动泊车是一种较为常见的低速路径跟踪控制工况[2−10]. 2018年,Xu等提出了一种基于滑模变结构控制(Sliding mode variable structure control, SMVSC)和模糊逻辑控制(Fuzzy logical control)的自动泊车系统,用以解决基于模糊逻辑控制的路径跟踪控制在车辆初始位置不在有效泊车位置时无法完成自动泊车的问题[2]. SMVSC也常简称为滑模控制(Sliding mode control, SMC).2019年,姜立标与杨杰提出了一种基于趋近律的终端滑模路径跟踪控制方法,降低了路径跟踪控制的稳态误差,并减弱了抖振现象. 同时姜立标与杨杰注意到自动泊车过程中存在系统约束问题,采用路径规划获得了符合系统约束的自动泊车参考路径[3]. 姜立标与杨杰考虑的约束包括最大曲率约束、速度约束和横摆角速度约束,由于在低速工况中最大曲率约束可以由前轮转角约束推导获得,横摆角速度可以由转弯曲率和速度计算获得[3],因此该系统考虑的约束可以等效为前轮转角约束和速度约束.Ye等同样注意到了系统约束对自动泊车路径跟踪控制的影响,提出了一种基于线性模型预测控制(Linear model predictive control, LMPC)的自动泊车路径跟踪控制方法,并采用通过加入松弛因子将硬约束转化为软约束的方法来避免系统无最优解的情况[4]. Ye等考虑的系统约束包括速度约束、速度增量约束、前轮转角约束和前轮转角增量约束,其中速度增量约束即加速度约束与控制周期的乘积,前轮转角增量约束即前轮转角速度约束与控制周期的乘积.· 476 ·工程科学学报,第 43 卷,第 4 期陈龙等则针对自动泊车路径跟踪控制中参考路径曲率变化较为复杂的问题,提出了一种采用模糊控制自动调整预瞄距离的改进的纯跟踪路径跟踪控制方法[5]. 顾青等同样指出了自动泊车路径跟踪控制面临参考路径曲率较大的问题,提出了一种基于非线性模型预测控制(Nonlinear model predictive control, NMPC)的路径跟踪控制方法,并证明了在自动泊车工况下,该方法相比基于LMPC 的路径跟踪控制方法具有更高的精确性. 顾青等也考虑了速度增量约束、前轮转角约束和前轮转角增量约束等系统约束对自动泊车路径跟踪控制的影响,指出了前轮转角速度约束的影响较大[6].Song等提出了一个完整的自动泊车控制系统,采用基于LMPC的路径跟踪控制方法,并证明了在自动泊车路径跟踪控制中,LMPC相比纯跟踪(Pure pursuit)、比例积分微分(Proportion integral differential, PID)等控制方法精确性更高. 在Song 等的控制器中,考虑的系统约束包括最小转弯半径约束和前轮转角速度约束[7]. 由于最小转弯半径约束可以由前轮转角约束推导获得[3],所以该系统考虑的系统约束可以等效为前轮转角约束和前轮转角速度约束.2020年,张家旭等设计了包括规划层和控制层的自动泊车系统,在规划层考虑了速度约束、加速度约束、加加速度约束等系统约束,而路径跟踪控制方法分别采用了不考虑系统约束的非时间基准滑模路径跟踪控制、L2增益控制和快速终端滑模控制[8−10].特种车辆的作业过程是另一种典型的低速路径跟踪控制工况[11−17]. 2018年,刘正铎等提出了用于农用车辆的NMPC和LMPC路径跟踪控制器[11−12].孟宇等指出考虑到铰接转向车辆存在铰接角速度约束,其转向机构反应速度较慢,可以通过预瞄控制引入前馈信息改善路径跟踪控制的精确性[13−14]. Nayl等则提出了一种基于滑模控制的铰接转向车辆路径跟踪控制系统. 采用模型车测试该系统时,为了避免控制输入超出系统约束,Nayl等在规划参考路径时引入了速度约束、铰接角约束和铰接角速度约束等系统约束[15]. 此后,白国星等、罗维东等提出了基于NMPC的铰接转向车辆路径跟踪控制器,并证明了这种控制器相比基于LMPC的控制器具有更高的精确性[16−17],在这些控制器的设计过程中,均考虑了速度约束、铰接角约束和铰接角速度约束等系统约束,其中铰接角约束等价于前轮转向车辆的前轮转角约束,铰接角速度约束等价于前轮转角速度约束.2 高速路径跟踪控制研究现状相比无需考虑车辆行驶稳定性的低速路径跟踪控制,高速路径跟踪控制不仅需要保证路径跟踪的精确性,还需保证车辆行驶的稳定性,因此高速路径跟踪控制是一个具有较强挑战性的科学问题,近年来逐渐成为了一个研究热点.2018年,林棻等针对运动学层面的路径跟踪控制在车速较高时无法保证行驶稳定性的问题,提出了一种能够兼顾路径跟踪精确性和车辆行驶稳定性的基于反推法的路径跟踪控制方法[18]. Norouzi等研究了不同附着条件下的路径跟踪控制,同样属于考虑行驶稳定性的路径跟踪控制研究[19]. 许德智等考虑了前轮转角约束和前轮转角速度约束等系统约束的影响,提出了基于数据驱动的无模型控制方法[20]. 冀杰等基于LMPC设计了路径跟踪控制器,同时考虑了前轮转角约束和用于保证行驶稳定性的侧偏角约束,但是未引入前轮转角速度约束[21]. Sun等提出了基于LMPC的路径跟踪控制器,并采用调节速度的方式提高了控制精确性,他们考虑了由前轮转角约束和前轮转角速度约束换算得到的前轮侧向力约束和前轮侧向力增量约束[22].Ji等考虑到车辆行驶稳定性,基于动态博弈理论(Dynamic game theory)提出了一种四轮转向车辆的路径跟踪控制方法,并通过双移线工况和蛇形变道工况进行了仿真测试[23]. Cui等基于LMPC提出了考虑前轮转角约束、前轮转角速度约束和行驶稳定性的车辆路径跟踪控制器,并且针对地面附着系数不确定等问题提出了一种基于无迹卡尔曼滤波(Unscented Kalman filter)的估计方法[24]. 赵治国等提出了一种引入驾驶员预瞄模型的SMC路径跟踪控制方法[25]. Cao等针对侧向风影响下的路径跟踪控制,提出了一种基于驾驶员模型的路径跟踪控制器[26]. Yu等提出了一种包含路径规划和路径跟踪的控制系统,在路径规划层面考虑了系统约束[27].Guo等提出了一种双包络的LMPC路径跟踪控制器,考虑了前轮转角约束和前轮转角速度约束,并考虑了地面附着系数较低时的情况[28]. Ji等针对模型参数不确定和外来扰动的影响,提出了一种基于自适应神经网络的鲁棒路径跟踪控制方法[29]. 为了在不同车速下协调路径跟踪精确性和车辆行驶稳定性,Guo等提出了一种引入模糊决策因子的LMPC控制器,与其他基于LMPC的路径跟踪控制研究成果一样,Guo等也在论文中考虑了白国星等: 无人驾驶车辆路径跟踪控制研究现状· 477 ·前轮转角约束、前轮转角速度约束等系统约束[30].2019年,Yang等提出了一种结合主动转向控制和直接横摆力矩控制的LMPC控制方法,以提高在地面附着较低时的路径跟踪精确性和车辆行驶稳定性[31]. Ren等提出了一种结合路径跟踪控制、横向稳定控制、最佳转矩矢量控制的控制系统,其中路径跟踪控制部分采用了LMPC为控制方法[32]. Zhang等设计了一种包含路径规划和路径跟踪的控制系统,采用LMPC作为路径跟踪控制方法,并采用路径规划的方法进一步降低参考路径曲率突变带来的影响[33]. Wei等提出了用于前车跟随的车辆纵向、横向协同控制系统,其中横向控制即基于LMPC的路径跟踪控制,考虑了前轮转角约束、前轮转角速度约束和侧偏角约束,而且考虑了地面附着系数较低时的情况[34]. Mata等提出了一种基于管道的LMPC(Tube-LMPC)控制方法,增强了对参考路径曲率突变的鲁棒性[35].Lin等提出了一种在线估计轮胎侧偏刚度和地面附着系数的方法,提出了自适应的LMPC路径跟踪控制方法[36]. 赵治国等采用基于模糊控制的速度调节提高了路径跟踪控制的精确性[37]. Yuan等的工作中也采用了LMPC作为路径跟踪控制方法,同样考虑了前轮转角约束、前轮转角速度约束等系统约束[38]. 刘志强等提出了一种用于避障的换道控制系统,采用五次多项式法实现了路径规划,采用结合前馈控制的线性反馈控制方法实现了路径跟踪控制[39]. 李玉善等提出了基于Pareto 最优均衡理论的防侧倾路径跟踪控制方法[40].李爽等提出了一种基于预瞄的路径跟踪控制方法,其仿真结果表明在转弯时降低车速可以保证路径跟踪精确性和车辆行驶稳定性[41]. 周苏等建立了用于四轮独立转向车辆的LMPC路径跟踪控制器,考虑了转向轮转角约束和转向轮转角速度约束[42]. Hu等提出了一种基于最小模型误差拓展卡尔曼滤波(Minimum model error extended Kalman filter, MME-EKF)的状态估计方法,用来改善SMC 路径跟踪控制的性能[43]. 陈特等针对四轮驱动四轮转向车辆提出了一种包含路径跟踪和驱动力分配的分层控制系统,其中路径跟踪控制采用了基于Hamilton理论的控制方法[44]和SMC[45].汪若尘等提出了加入预瞄的LMPC路径跟踪控制方法,预瞄信息主要用于调节纵向速度[46]. 李海青等提出了一种用于紧急避障的防侧倾换道控制方法,通过主动制动驾驶员模型在侧翻可能性超过安全阈值时制动车辆来实现防侧倾,系统中路径跟踪控制部分采用的也是基于驾驶员模型的控制方法[47]. 吴艳等提出了一种结合非奇异终端滑模(Nonsingular terminal sliding mode, NTSM)和主动干扰抑制控制(Active disturbance rejection control, ADRC)的路径跟踪控制方法[48−49],不过仅考虑了前轮转角约束. 王艺等也提出了基于LMPC 的路径跟踪控制器,考虑了前轮转角约束、前轮转角速度约束、轮胎侧偏角约束等系统约束[50].刘凯等提出了一种考虑地面坡度的LMPC路径跟踪控制方法[51]. 白国星等提出了一种根据参考路径曲率调节速度的NMPC路径跟踪控制器,避免了高速过弯导致的行驶稳定性问题[52]. 王威等提出了一种考虑执行器时滞的NMPC路径跟踪控制方法[53]. 刁勤晴等提出了一种双预瞄点调节策略,能够有效调节车速,提高车辆过弯时的安全性[54]. Zhang等分别提出了自适应调整预瞄距离的LMPC路径跟踪控制方法[55]和基于拉盖尔函数(Laguerre function)和指数权重(Exponential weight)降低计算复杂度的LMPC路径跟踪控制方法[56].Yao等指出在对LMPC路径跟踪控制器进行优化求解时,车辆会按照上一个控制周期的指令继续行驶,所以预测模型的初始位姿信息和实际的车辆位姿信息并不一致,因此他们提出了一种速度补偿方案[57]. Lee等设计了基于全状态反馈控制的路径跟踪控制器,并通过引入预瞄距离提高了控制效果[58]. Sun等针对固定框架的LMPC无法在不同速度下保证路径跟踪精确性和车辆行驶稳定性提出了一种协调策略[59]. Wang等提出了一种基于模糊权重系数调节的改进LMPC控制器[60]. Guo等提出了一种LMPC路径跟踪控制方法,并采用差分进化(Differential evolution)作为求解算法来提升控制器的实时性[61]. Chen等提出了一种基于汉密尔顿能量函数(Hamilton energy function)的协调控制策略以同时保证路径跟踪精确性和车辆行驶稳定性[62].2020年,苏树华与陈刚提出了一种基于模糊自适应反演控制的机器人驾驶车辆控制系统,仿真结果表明该控制系统相比人类驾驶员具有更高的精确性[63]. Guo等采用连续/广义最小残差(Continuation/generalized minimal residual, C/ GMRES)算法改进了NMPC路径跟踪控制器的实时性[64],不过考虑到Guo等同时采用了动态预测时域,而动态预测时域也能够减少整个仿真过程中NMPC消耗的时间[65],因此还需进一步确定基于C/GMRES的NMPC控制器能否满足路径跟踪控制在每个控制周期内的实时性需求. 李军等提· 478 ·工程科学学报,第 43 卷,第 4 期出了一种加入预瞄模型调节车速进而提高LMPC 路径跟踪控制精确性的方法[66]. Feng等提出了一种基于状态估计的鲁棒反馈路径跟踪控制方法并进行了仿真验证[67].蔡英凤等提出了一种在低速情况下使用PID (Proportion integration differentiation),高速情况下使用LMPC的路径跟踪控制系统[68]. 邓海鹏等提出了一种分层避障控制系统,其中路径规划层采用的是NMPC算法,路径跟踪层采用的是LMPC 算法,考虑了前轮转角约束和前轮转角速度约束[69]. Hu等提出了一种包含路径规划和路径跟踪的避障控制系统,考虑了侧向加速度约束和侧向位移约束[70]. 张亮修等考虑了整车质量和转动惯量变化带来的模型失配问题,提出了一种基于误差校正的LMPC路径跟踪控制方法[71]. Mohammadzadeh 与Taghavifar提出了一种基于鲁棒模糊控制的路径跟踪控制器,在不超过地面附着极限的情况下,能够以很高的精确性完成路径跟踪[72].Yuan等提出了一种基于速度调节的路径跟踪控制器,提高了路径跟踪控制的精确性[73]. 周维等提出了一种包括路径规划和路径跟踪的换道控制系统,其中路径跟踪部分采用的是LMPC算法,考虑了前轮转角约束、前轮转角速度约束、质心侧偏角约束、侧向加速度约束等系统约束[74]. Sun等提出了一种横纵向协同控制系统,通过调节车速保证路径跟踪精确性和车辆行驶稳定性[75]. Tang 等提出了一种基于NMPC的路径跟踪控制器,在不超过地面附着极限的情况下可以完成换道路径跟踪[76]. Cui等提出了一种带转向角包络的LMPC 路径跟踪控制方法[77].Zhang等提出了一种主动外倾控制,用以改善路径跟踪控制的性能[78]. 张家旭等提出了包含路径规划和路径跟踪的换道控制系统,采用五次多项式曲线保证参考路径符合侧向加速度约束,采用SMC实现路径跟踪控制[79−80]. 王国栋等提出了一种预估轮胎刚度的方法,用于解决在接近极限工况时线性化轮胎模型无法用于精确预测车辆行驶状态的问题,提高了LMPC路径跟踪控制器的精确性[81].3 路径跟踪控制研究现状分析在近年来关于低速路径跟踪控制的研究工作中,较多研究者关注了系统约束的影响,包括速度约束、加速度约束、加加速度约束、前轮转角约束、前轮转角速度约束. 速度约束通常即指将车辆维持在低速行驶状态的约束,加速度约束和加加速度约束影响的主要是行驶的舒适性,前轮转角约束和前轮转角速度约束则对路径跟踪控制的精确性存在较大的影响.前轮转角约束等价于车辆的最小转向半径约束,当参考路径的半径小于车辆最小转向半径时车辆必然无法跟踪参考路径,因此前轮转角约束的影响较为直观也较容易避免. 前轮转角速度约束则会导致车辆转向时出现转向不足的现象. 当车辆以恒定速度行驶,前轮转角以图1所示的变化趋势快速转向时,车辆的轨迹通常如图2所示,图中0.1745 rad·s−1、0.3491 rad·s−1、0.5236 rad·s−1为前轮转角速度约束上下限的绝对值,X为横坐标,Y为纵坐标,车辆轴距假设为2.7m. 因此范围较小的前轮转角速度约束可能导致车辆无法跟踪曲率变化幅度较大的参考路径.目前,在规划参考路径时将系统约束纳入考虑[3, 8−10, 15]、采用预瞄控制使控制器提前响应[5, 13−14]、采用LMPC或NMPC等模型预测控制方法作为路径跟踪控制方法[4, 6−7, 11−12, 16−17]均可有效解决这个问题.0510Time/s150.1745 rad·s0.5236 rad·s0.3491 rad·s图 1 不同前轮转角速度约束下的前轮转角变化趋势Fig.1 The changing trend of front-wheel angle under different front wheel angle speed constraintsX/m05Start point0.1745 rad·s−10.5236 rad·s−10.3491 rad·s−1图 2 车辆在不同前轮转角速度约束下的响应特性示意Fig.2 Schematic diagram of vehicle response characteristics under different front-wheel angle speed constraints白国星等: 无人驾驶车辆路径跟踪控制研究现状· 479 ·由于在规划参考路径时将系统约束纳入考虑、采用预瞄控制使控制器提前响应、采用LMPC或NMPC等模型预测控制方法作为路径跟踪控制方法,均以提升前轮转角速度约束影响下的路径跟踪控制的精确性为目的,所以在精确性方面不存在显著差异. 但是在规划参考路径时将系统约束纳入考虑,无法改善路径跟踪控制器对曲率大幅变化之外的其他扰动的鲁棒性,当系统存在较大幅度的定位误差时,路径跟踪控制系统的精确性仍然无法得到保障. 而采用预瞄控制使控制器提前响应的方法,还面临着预瞄距离需要人为设置的问题,如果预瞄距离并非最优值,路径跟踪控制系统的精确性也无法得到保障. 采用LMPC或NMPC等模型预测控制方法作为路径跟踪控制方法无需人为设置预瞄距离,而且控制器对定位误差等扰动也具有较好的鲁棒性,所以相对其他两种方案具有一定的优势. 此外,NMPC相对LMPC精确性更好,且低速路径跟踪控制对实时性的要求相对较低,因此对于低速路径跟踪控制,以运动学模型作为预测模型的NMPC是一种较好的控制方法.此外,由于前轮转角速度约束范围越小,该约束导致的转向不足效应越强,因此在上述处理系统约束的方法之外,还可以通过增大转向机构功率放大前轮转角速度约束范围的方式减少该约束对路径跟踪控制的影响. 不过增大转向机构功率通常只能通过改变车辆的硬件结构实现,在涉及大批量的无人驾驶车辆时,该方法可能会导致较高的经济成本. 此外,由于车速越高,前轮转角速度约束导致的转向不足效应越强,所以还可以通过降低车速减少前轮转角速度约束的影响. 然而降低速度会影响车辆的行驶效率,这种方法仅适用于采用其他方法均已无法避免前轮转角速度约束影响的情况.表1所示即上述低速路径跟踪控制中减少前轮转角速度速度约束影响的方法的特点,表中+表示较好,−表示较差.表 1 低速路径跟踪控制中减少前轮转角速度速度约束影响的方法的特点Table 1 The characteristics of the method to reduce the influence of the front-wheel angle speed constraint in the low-speed path following controlMethodRobustness to disturbancesother than curvature changesRobustness toparametersSaving cost Driving efficiencyTaking system constraints into considerationwhen planning the reference path−+++ Using preview control to make the controller respond early−−++ Using model predictive control methods such as LMPC orNMPC as path tracking control methods++++ Relaxing the front-wheel angle speed constraint++−+ Reducing speed+++−在关于高速路径跟踪控制的研究工作中,由于前轮转角速度约束导致的转向不足现象在车速较高时更加显著,所以对于高速路径跟踪控制,前轮转角速度约束等系统约束的影响也十分强烈.与低速路径跟踪控制相似,高速路径跟踪控制中减少系统约束影响的方法也包括在规划参考路径时将系统约束纳入考虑和采用LMPC或NMPC等模型预测控制方法作为路径跟踪控制方法. 不过高速路径跟踪控制面临的另一个关键问题是较高车速带来的行驶稳定性不足,除少数仅针对无需考虑行驶稳定性的工况展开的研究工作[20, 25, 33, 52−53, 76]之外,大多数研究工作中,均采用了动力学层面的路径跟踪控制算法,所以高速路径跟踪控制与低速路径跟踪控制的研究现状有所不同.由于动力学层面的路径跟踪控制受到更加复杂的系统约束的影响,在规划参考路径时很难将所有系统约束都纳入考虑,所以一些研究学者仅考虑了侧向加速度约束、侧向位移约束等部分系统约束[27, 39, 70, 79−80]. 采用LMPC或NMPC等模型预测控制方法作为路径跟踪控制方法,则可以将前轮转角速度约束、前轮转角约束、侧向加速度约束、侧向位移约束等系统约束都纳入考虑,所以目前基于LMPC或NMPC的高速路径跟踪控制研究相对较多. 此外,由于高速路径跟踪控制对实时性的要求相对较高,而且动力学层面的NMPC计算成本更高,所以在关于高速路径跟踪控制的研究工作中,LMPC相比NMPC更加常见.与低速路径跟踪控制不同,高速路径跟踪控制面临的问题无法通过LMPC完全解决. 由于在动力学层面的路径跟踪控制中,位置误差、航向误差等优化目标和侧向速度、侧向加速度等优化目标之间存在耦合关系,即存在增大前轮转角能够· 480 ·工程科学学报,第 43 卷,第 4 期。

汽车路径跟踪误差运动学方程

汽车路径跟踪误差运动学方程

汽车路径跟踪误差运动学方程引言在自动驾驶和智能车辆领域,路径跟踪是一个重要的任务。

路径跟踪的目标是使车辆能够按照给定的路径行驶,并保持与该路径的最小误差。

在路径跟踪中,误差是指车辆当前位置与所期望位置之间的差异。

为了实现精确的路径跟踪,我们需要了解汽车的运动学方程以及误差的计算方法。

汽车运动学方程汽车运动学方程描述了汽车的运动状态。

在路径跟踪中,我们通常使用二自由度模型来描述汽车的运动。

该模型假设汽车只能在纵向和横向两个方向上运动,忽略了车辆的悬挂系统和轮胎滑移等因素。

纵向运动方程汽车的纵向运动方程描述了车辆的速度和加速度。

假设车辆的质量为m,纵向力的合力为F,空气阻力为D,那么汽车的纵向运动方程可以表示为:m * a = F - D其中,a为车辆的纵向加速度。

纵向力F可以由油门踏板的位置控制,而空气阻力D则与车辆速度有关。

横向运动方程汽车的横向运动方程描述了车辆的转向和侧向加速度。

假设车辆的质量为m,横向力的合力为Fy,转向角为δ,车辆的横向运动方程可以表示为:m * δ' = Fy其中,δ’为车辆的转向角速度。

横向力Fy可以由车辆的转向角度和速度计算得出。

路径跟踪误差计算路径跟踪误差是指车辆当前位置与所期望位置之间的差异。

在路径跟踪中,我们通常使用横向偏差和航向角误差来衡量路径跟踪的精度。

横向偏差横向偏差是指车辆当前位置与所期望路径的横向距离。

横向偏差可以通过车辆的位置和所期望路径的方程计算得出。

例如,假设车辆当前位置为(x, y),所期望路径的方程为y = f(x),那么横向偏差可以表示为:e = y - f(x)航向角误差航向角误差是指车辆当前航向角与所期望航向角之间的差异。

航向角误差可以通过车辆的航向角和所期望航向角计算得出。

例如,假设车辆当前航向角为θ,所期望航向角为θe,那么航向角误差可以表示为:δθ = θ - θe控制器设计路径跟踪的目标是使车辆的横向偏差和航向角误差尽可能小。

基于视频图像的车辆行驶速度技术鉴定标准

基于视频图像的车辆行驶速度技术鉴定标准

基千视频图像的车辆行驶速度技术鉴定Vehicle speed identification based on videoGA/T 1133一2014目次前吉 (I)1 范围...................................................................,. (I)2 术语和定义............................................................................................................l3 鉴定要求................................. (2)4 固定式视烦图像的车辆行驶速度汁算方法............ (3)5 车载式视频图像的车辆行驶速度汁笲方法... (5)6 鉴定意见表述.........................................................................................................57 附图要求...............................................................................................................,附录A(资料性附录)鉴定委托书式样 (6)附采B(资料性附录)固定式视敖图像两轴汽车转弯或沿曲线路行驶速度计莽方法 (7)附录C(资料性附录)车载式视频图伐的车辆行驶速度计抒方法..........................................令..9附录D(资料性附录)附图示例........................................................,.............,..,. (13)参考文献.......................................................................................................... (14)龙牛网 下载龙牛网 下载龙牛网 下载龙牛网 下载龙牛网 下载龙牛网 下载龙牛网 下载。

车辆调度(Vehiclescheduling)

车辆调度(Vehiclescheduling)

车辆调度(Vehicle scheduling)W indows.Distribution vehicle scheduling should be carried out according to the principle of rationalization of distributionThat's ok。

The principle of rationalization of distribution calls for timely, accurate and safe transportation,Economics。

To select the best with the short distance, fast speed, low costOrganize goods delivery by way of delivery. But we should also note that reasonable transportation is oneA relative concept. It is affected by many factorsThe current traffic conditions and possible, to develop a reasonable distribution meterMark. If only from the best route conditions, without considering the vehicleOther factors, such as energy and road conditions, may backfireTo the purpose of reasonable distribution.Vehicle operation often encounter some affiliated in the organizationUnforeseen problems, such as household demand change, loadingand unloading machinesEquipment failure, vehicle running on the technical failure, temporaryBridge circuit breaker resistance and so on, which need to be targeted to analyze and reconcileNo. The dispatching department shall keep abreast of the status of goods supply, the condition of the car and the road condition,Climate change, the driver thought state, to ensure traffic safety.Line of work plan carried out smoothly. Specific functions are as follows: guarantee transportationFinish on time; understand the implementation of transportation task in timeEnter the transportation and related work in an orderly manner, to achieve minimum capacity investment;People.Exact algorithms generally use linear programming (includingBranch and bound method for gate processing, cut plane method and labeling method) and nonMathematical programming techniques, such as linear programming, are used to obtain the optimal problemSolution. In the early stage of VRP research, is the main source of single car some pies,Study how to use the shortest route (or in the shortest possible time) to a certain numberThe number of demand points for vehicle scheduling, and therefore the main use of accurate calculationThe optimal solution of the problem is obtained. Accurate algorithms generally have the followingMethods: Branch definition method, cut plane method, network flow algorithm and dynamic methodState programming method, etc.. The exact algorithm follows the complexity and tuning of the distribution systemWith the increase of degree target, the computation amount increases exponentiallyThe exact optimal solution of a system is becoming more and more difficult and solved by computerThe time and cost of large optimization problems are too large, and hence the advantages of such optimizationsThe method is now generally used to solve the local optimizationof distribution schedulingQuestion.In order to overcome the shortcomings of the exact optimization method, someThe rule of thumb reduces the mathematical accuracy of the optimization model and leads to excellenceThe tracking correction process is used to obtain the satisfactory solution of the transportation system. Heuristic methodThe algorithm can satisfy the needs of describing and solving problems in detailThe exact algorithm is more practical. The most representative of heuristic algorithmsThis is the savings method proposed by Clarke and Wright.At present, parallel algorithms are based on parallel computersGenetic algorithm, neural network theory and so onThere are some applications and developments in the VRP problem. Among them, taboo searchArtificial neural network, genetic algorithm, simulated annealing algorithm and artificial neural networkThe method is mainly applied to heuristic algorithms for solving and improvingThe category of hair shaping algorithms.In the above several modern optimization methods, the neural network methodIn the past few years relatively hot, but now has obviously cool down, because it onlyWith an anti propagation algorithm, it is difficult to develop ideas and letters from peopleInterest. But tabu search algorithm, simulated annealing algorithm and genetic algorithm are usedThe application of solving the problem of vehicle scheduling in logistics has just begun,Although some studies have been made, the potential remains to be further exploredDig.Then how to solve the vehicle scheduling problem in the ideal condition?We analyze it with a typical saving method.W ULIUL a few UNYUSHU NWhen the distribution center uses the same type of delivery vehicle (mainly loading)When the volume and volume are the same, the vehicle scheduling problem is called the ideal stateMathematical models can be established as follows:Distribution center: P, mark 0;The available vehicle sets are [Q, k=l, M], and Q is the payloadThe amount of;User T, i=1, N, J, GI for the user I freight volume, ifCan be mixed, are: Sigma &;The shortest distance between the user I and the user J is denoted as dii.Define 0 - 1 variables as follows:= 1, indicating that the user I is completed by vehicle K, otherwise =0.OneIndicates that the vehicle K travels from I to j, otherwise =0;MinZ= sigma sigma SigmaSubject to: sigma GJ, G, VkSigma Yki=1 i:1?,"Yki=:or0, i=0, nVk?Sigma class = j=0, nVkISigma Xi and =Yhi j=0, nVkJ= 1or0, I, j:0, nVkIn the formula Ci table is not from the sword bearing Yin also sacrifice a stable, meaningThe distance, the cost, the time, and so on.The basic idea of solving this problem is to guarantee each lineThe sum of the freight volume of the user is not greater than the carrying capacity of the vehicle,Connection point pair.First, separate each point with the distribution center and build onlyThe initial line with a pointZ=Zc0i+ SigmaThen, calculate if the connection point I and point J are on the same lineEarned savings) =cm+cm+CoJ+ o - +c +c,. J=G. +coj-cOr, z) =c o+c - CIn this design, S6,) =s0, z)The larger the S (I, J), the better to connect the dot I with the dot j,The more the cost is reduced; if it is negative, the cost increases after the connectionPlus, you should not connect the point I with the point J to the same line at this pointTo.According to the principle of saving method and the basic idea mentioned above, it can be designedThe specific steps of solving the vehicle scheduling problem are as follows: l meterThe S (I, J) is the sum of the set s= (s (I, >0, e, J));2 pairs, the elements in the collection s from large to 4, t4~ order;3 if the collection = = the end of the calculation. Otherwise, for the firstEach element examines whether the corresponding S (I, I) satisfies the following conditionsA: (1) points I and j are no longer on the already formed lines;(2) point I or J on a line that has already been constructed, but not with itConnect the center;(3) points I and j are not on the two lines that have already been formedThe distribution center is connected, one of which is the starting point of the line, and the other isEnd of line. Turn around, or else turn step 5;4 check the total freight volume on the line after the pointI and point I connection Q,If G, turn to next, otherwise turn step 6;5 connect point I and point I to IJ on the same line;6 order =s - s, J), turn step 3.Due to the complexity of the vehicle routing problem in logistics and distribution, as well asThe quality of the proposed algorithm is considered in terms of the quality of the vehicle on the road networkMany factors, such as the speed of travel, have not been dealt with specially, and will be developed in the futureThe trend is the vehicle scheduling problem that closely combines the GIS system and the GPS system,Urban vehicle management system, urban road management system, etc.. Therefore,The content of this article is only the logistics and vehicle scheduling problem, this iceThere are many problems in the mountain corner that need to be addressed in future researchSolveReference:[1] Li Jun, Guo gang. Theory of optimal dispatch of logistics vehicle [M]Beijing: China material press, 2001.2-3.[2] Lin Qianli. Facilities planning and design of logistics center [M]. Beijing: QingUniversity Press of China, 2003.。

英语作文关于共享汽车

英语作文关于共享汽车

英语作文关于共享汽车Title: The Revolution of Shared Mobility: Exploring the World of Car-Sharing。

In recent years, the concept of shared mobility has revolutionized the way people commute and travel. Among the various forms of shared transportation, shared cars have emerged as a prominent solution to urban mobility challenges. This essay delves into the phenomenon of shared cars, examining its benefits, challenges, and impact on society.Shared cars, also known as car-sharing or carpooling, refer to the practice of multiple individuals or households sharing the use of a single car. This concept has gained traction primarily due to its potential to alleviatetraffic congestion, reduce carbon emissions, and promote efficient use of resources. 。

One of the primary advantages of shared cars is theircontribution to reducing traffic congestion in urban areas. By enabling multiple individuals to share a single vehicle for their daily commutes or occasional trips, car-sharing helps decrease the number of vehicles on the road. This, in turn, leads to less traffic congestion, shorter travel times, and improved overall efficiency of transportation systems.Furthermore, shared cars play a significant role in promoting environmental sustainability by reducing the carbon footprint associated with private vehicle ownership. Studies have shown that shared mobility services result in lower emissions per capita compared to traditional car ownership models. By encouraging people to share rides and utilize vehicles more efficiently, shared cars contribute to mitigating air pollution and combating climate change.Additionally, shared cars offer economic benefits to both users and society as a whole. Individuals who participate in car-sharing programs can save money on fuel, maintenance, and parking expenses, as they share the costs with other users. Moreover, shared mobility services canlead to reduced demand for private vehicle ownership, resulting in lower overall spending on transportation infrastructure and maintenance by governments and municipalities.Despite its numerous advantages, the widespread adoption of shared cars faces several challenges. One of the primary concerns is the issue of trust and reliability among users. Participants in car-sharing programs musttrust each other to adhere to scheduling agreements, maintain the cleanliness and condition of the vehicle, and follow safety protocols. Building trust among users and establishing reliable mechanisms for resolving conflicts are essential aspects of ensuring the success of shared mobility initiatives.Another challenge is the need for robust infrastructure and technological support to facilitate seamless car-sharing experiences. This includes developing user-friendly mobile applications for booking and accessing shared vehicles, implementing efficient vehicle tracking and monitoring systems, and establishing designated parking andpick-up/drop-off locations for shared cars. Governments, private companies, and other stakeholders must collaborateto invest in and develop the necessary infrastructure to support the growth of shared mobility services.Furthermore, the regulatory environment surrounding shared cars can pose obstacles to their widespread adoption. Issues such as insurance coverage, liability, and compliance with local transportation regulations need to be addressed to ensure the legality and safety of car-sharing operations. Policymakers must work closely with industry stakeholders to develop clear and consistent regulatory frameworks that promote innovation while safeguarding the interests of consumers and the public.In conclusion, shared cars represent a promisingsolution to the challenges of urban mobility, offering numerous benefits in terms of reducing traffic congestion, lowering carbon emissions, and promoting economic efficiency. However, realizing the full potential of shared mobility requires addressing various challenges related to trust, infrastructure, and regulation. By overcoming thesehurdles through collaboration and innovation, we can unlock the transformative power of shared cars and create more sustainable and accessible transportation systems forfuture generations.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Vehicle Tracking and Speed Measurement at Intersections Using Video Detection Systems
Most commercially INTRODUCTION
Video detection systems provide available video a way to automate data collection and significantly reduce the efforts of many detection systems are traffic data collection tasks. This feature describes a unique use of video detecunable to differentiate tion systems to track main-street through vehicles and measure speeds at two-way, turning movements at stop-controlled (TWSC) intersections. The initial intent of this research was intersections. Therefore, to find an automated method to measure main-street vehicle speeds and study special applications driver gap nce characteristics at TWSC intersections. The first task was need to be developed. to identify whether or not commercially available video detection systems were Using the basic time capable of tracking main-street through vehicles and measuring their speeds at events recorded by a TWSC intersections. In the literature search, two commercial video detection video detection system, systems with similar functions were available. Mobilizer and VideoTrak are dea vehicle-tracking signed to track vehicles along travel paths by matching a series of images. algorithm was developed Only a small portion of the vehicles (about 18 percent) were correctly tracked to track Vehicles and during tests of Mobilizer.1,2 In testing Video­ Trak, more than 20 percent of the measure speeds at twoerrors were due to volume counts. While some errors were caused by vehicle ocway, stop-controlled clusion (vehicles being obstructed from the field of view) and low-quality video intersections. images, the majority of the errors were due to lack of accuracy in vehicle tracking. Furthermore, the test results were based primarily on freeway segments, where there By ZONG TIAN, MICHAEL KYTE, PH.D, P.E. were no vehicle interAND HONGCHAO LIU, Ph.D. ferences among turning movements.3 Researchers in the area of general machine-vision technology have recognized the lack of vehicle tracking capabilities in most commercial video detection systems. Efforts have been made to develop ad42
ITE Journal / January 2009
However, these detectors do not associate counts with specific traffic movements. AUTOSCOPE uses speed traps to measure vehicle speeds and estimate vehicle lengths. It has an internal algorithm for calibrating the field of view based on the geometric information provided by the user. Vehicles are tracked along a speed trap, then the vehicles’ speeds are estimated from travel time and the length of the speed trap. As part of this study, a test of the speed trap was conducted for its potential in measuring vehicle speeds at TWSC intersections. Based on the results of the test, the speed trap could not fulfill the requirements of this study. The specific problems identified included the following: • The speed trap lacked the capability of differentiating turning movements. Speeds of all vehicles that passed the speed trap were reported. • Large errors usually resulted when a turning vehicle traversed only a portion of the speed trap. The internal algorithm did not have a feature to detect and correct such errors. • The measured speeds were sensitive to the length of the speed trap. Using a longer speed trap normally improved the accuracy of speed measurements under low-volume conditions but resulted in larger-volume errors when traffic volumes were high. Due to these limitations, a special algorithm was needed to achieve the study objective—tracking main-street vehicles and measuring their speeds at TWSC intersections. The following section documents the details of the tracking method as well as the results from field tests.
BASIC AUTOSCOPE FEATURES AND LIMITATIONS
The specific system used in this study was AUTOSCOPE, a video detection system manufactured by Econolite Control Products Inc.10,11 AUTOSCOPE provides basic point detection capabilities with two types of detectors: count and presence. Several detectors can be logically connected to provide combined detections.
vanced algorithms using machine-vision technology to address the limitations of those systems.4–7 Most algorithms developed in these studies focus on addressing the occlusion issues while performing vehicle tracking along freeway sections. For example, a segmentation algorithm was developed to track vehicles under severe occlusion conditions. This algorithm was based on videos collected from freeway segments and could lead to the next generation of video detection systems.8 However, such advanced algorithms have not been adopted by any video detection system manufacturers. Additional data collection problems occur when using video detection systems to track turning movements at TWSC intersections. Previous studies have attempted to solve this specific problem. One study developed a method of tracking vehicles at all-way, stop-controlled intersections based on the principle of flow conservation and data redundancy. This method used multiple detectors for each movement and established a matrix to relate each detector’s counts to a specific turning movement.9 While the method was theoretically correct, actual field trials illustrated the difficulties in obtaining quality detector counts to satisfy the volume count solution requirements. One such challenge was vehicle occlusion, where multiple detections resulted from a single vehicle movement.
相关文档
最新文档