2020-2021高三数学上期末第一次模拟试卷(及答案)(8)

合集下载

2021-2022学年高三理科数学期末试题及答案

2021-2022学年高三理科数学期末试题及答案

2021 — 2022学年度第一学期期末试卷高三数学(理科)第Ⅰ卷(选择题 共40分)一、 选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{|1}A x x =>,集合{2}B a =+,若A B =∅,则实数a 的取值范围是( )(A )(,1]-∞- (B )(,1]-∞(C )[1,)-+∞(D )[1,)+∞2. 下列函数中,值域为R 的偶函数是( )(A )21y x =+ (B )e e x x y -=- (C )lg ||y x = (D)y =3. 设命题p :“若1sin 2α=,则π6α=”,命题q :“若a b >,则11a b<”,则( ) (A )“p q ∧”为真命题 (B )“p q ∨”为假命题 (C )“q ⌝”为假命题 (D )以上都不对4. 在数列{}n a 中,“对任意的*n ∈N ,212n n n a a a ++=”是“数列{}n a 为等比数列”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 5. 一个几何体的三视图如图所示,那么这个 几何体的表面积是( ) (A)16+ (B)16+ (C)20+ (D)20+侧(左)视图正(主)视图俯视图6. 设x ,y 满足约束条件1,3,,x y y m y x +-⎧⎪⎨⎪⎩≤≤≥ 若3z x y =+的最大值与最小值的差为7,则实数m =( )(A )32 (B )32- (C )14(D )14-7.某市乘坐出租车的收费办法如下:相应系统收费的程序框图如图所示,其中x (单位:千米)为行驶里程,y (单位:元)为所收费用,用[x ]表示不大于x 的最大整数,则图中○1 (A )12[]42y x =-+(B )12[]52y x =-+(C )12[]42y x =++(D )12[]52y x =++8. 如图,正方形ABCD 的边长为6,点E ,F 分别在边AD ,BC 上,且2DE AE =,2CF BF =.如果对于常数λ,在正方形ABCD 的四条边上,有且只有6个不同的点P 使得=PE PF λ⋅成立,那么λ的取值范围是( ) (A )(0,7) (B )(4,7) (C )(0,4) (D )(5,16)-FD P C B第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9. 已知复数z 满足(1i)24i z +=-,那么z =____.10.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c . 若A B =,3a =,2c =,则cos C =____.11.双曲线C :221164x y -=的渐近线方程为_____;设12,F F 为双曲线C 的左、右焦点,P 为C 上一点,且1||4PF =,则2||PF =____.12.在ABC ∆中,90ABC ∠=,3AB =,4BC =,点O 为BC 的中点,以BC 为直径的半圆与AC ,AO 分别相交于点M ,N ,则AN =____;AMMC= ____.13. 现有5名教师要带3个兴趣小组外出学习考察,要求每个兴趣小组的带队教师至多2人,但其中甲教师和乙教师均不能单独带队,则不同的带队方案有____种.(用数字作答)14. 某食品的保鲜时间t (单位:小时)与储藏温度x (单位:C )满足函数关系60,264, , 0.kx x t x +⎧=⎨>⎩≤ 且该食品在4C 的保鲜时间是16小时.已知甲在某日上午10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间变化如图所示. 给出以下四个结论: ○1 该食品在6C 的保鲜时间是8小时;○2 当[6,6]x ∈-时,该食品的保鲜时间t 随着x 增大而逐渐减少;○3 到了此日13时,甲所购买的食品还在保鲜时间内; ○4 到了此日14时,甲所购买的食品已然过了保鲜时间. 其中,所有正确结论的序号是____.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)已知函数()cos(sin)f x x x x=,x∈R.(Ⅰ)求()f x的最小正周期和单调递增区间;(Ⅱ)设0α>,若函数()()g x f xα=+为奇函数,求α的最小值.16.(本小题满分13分)甲、乙两人进行射击比赛,各射击4局,每局射击10次,射击命中目标得1分,未命中目标得0分. 两人4局的得分情况如下:(Ⅰ)若从甲的4局比赛中,随机选取2局,求这2局的得分恰好相等的概率;(Ⅱ)如果7x y==,从甲、乙两人的4局比赛中随机各选取1局,记这2局的得分和为X,求X的分布列和数学期望;(Ⅲ)在4局比赛中,若甲、乙两人的平均得分相同,且乙的发挥更稳定,写出x的所有可能取值.(结论不要求证明)17.(本小题满分14分)如图,在四棱锥P ABCD-中,底面ABCD是平行四边形,135BCD∠=,侧面PAB⊥底面ABCD,90BAP∠=,2AB AC PA===, ,E F分别为,BC AD的中点,点M在线段PD上.(Ⅰ)求证:EF⊥平面PAC;(Ⅱ)若M为PD的中点,求证://ME平面PAB;(Ⅲ)如果直线ME与平面PBC所成的角和直线ME与平面ABCD所成的角相等,求PMPD的值.18.(本小题满分13分)已知函数2()1f x x=-,函数()2lng x t x=,其中1t≤.FCA DPMB E(Ⅰ)如果函数()f x 与()g x 在1x =处的切线均为l ,求切线l 的方程及t 的值; (Ⅱ)如果曲线()y f x =与()y g x =有且仅有一个公共点,求t 的取值范围.19.(本小题满分14分)已知椭圆C :)0(12222>>=+b a by a x 的离心率为23,点A 在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设动直线l 与椭圆C 有且仅有一个公共点,判断是否存在以原点O 为圆心的圆,满足此圆与l 相交两点1P ,2P (两点均不在坐标轴上),且使得直线1OP ,2OP 的斜率之积为定值?若存在,求此圆的方程;若不存在,说明理由.20.(本小题满分13分)在数字21,2,,()n n ≥的任意一个排列A :12,,,n a a a 中,如果对于,,i j i j *∈<N ,有i j a a >,那么就称(,)i j a a 为一个逆序对. 记排列A 中逆序对的个数为()S A .如=4n 时,在排列B :3, 2, 4, 1中,逆序对有(3,2),(3,1),(2,1),(4,1),则()4S B =.(Ⅰ)设排列 C : 3, 5, 6, 4, 1, 2,写出()S C 的值;(Ⅱ)对于数字1,2,,n 的一切排列A ,求所有()S A 的算术平均值;(Ⅲ)如果把排列A :12,,,n a a a 中两个数字,()i j a a i j <交换位置,而其余数字的位置保持不变,那么就得到一个新的排列A ':12,,,n b b b ,求证:()()S A S A '+为奇数.参考答案一、选择题:本大题共8小题,每小题5分,共40分.1.A 2.C 3.B 4.B 5.B 6.C 7.D 8.C 二、填空题:本大题共6小题,每小题5分,共30分. 9.13i -- 10.7911.12y x =±12 12. 2 91613.54 14.○1 ○4 注:第11,12题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:()cos (sin )f x x x x =+2sin cos 1)x x x =+-1sin 22x x=+ ………………4分πsin(2)3x =+,………………6分所以函数()f x 的最小正周期2π=π2T =. ………………7分由ππππ2π+23222x k k -+≤≤,k ∈Z ,得5ππππ+1212x k k -≤≤, 所以函数()f x 的单调递增区间为5ππππ+]1212[k k -,,k ∈Z . ………………9分 (注:或者写成单调递增区间为5ππππ+)1212(k k -,,k ∈Z . ) (Ⅱ)解:由题意,得π()()sin(22)3g x f x x αα=+=++,因为函数()g x 为奇函数,且x ∈R ,所以(0)0g =,即πsin(2)03α+=, ………………11分所以π2π3k α+=,k ∈Z ,解得ππ26k α=-,k ∈Z ,验证知其符合题意. 又因为0α>, 所以α的最小值为π3. ………………13分16.(本小题满分13分)(Ⅰ)解:记 “从甲的4局比赛中,随机选取2局,且这2局的得分恰好相等”为事件A , ………………1分 由题意,得2421()C 3P A ==, 所以从甲的4局比赛中,随机选取2局,且这2局得分恰好相等的概率为13. ……4分(Ⅱ)解:由题意,X 的所有可能取值为13,15,16,18, ………………5分且3(13)8P X ==,1(15)8P X ==,3(16)8P X ==,1(18)8P X ==,………………7分所以X 的分布列为:……………… 8分 所以3131()13151618158888E X =⨯+⨯+⨯+⨯=. ………………10分(Ⅲ)解:x 的可能取值为6,7,8. ………………13分17.(本小题满分14分)(Ⅰ)证明:在平行四边形ABCD 中,因为AB AC =,135BCD ∠=, 所以AB AC ⊥.由,E F 分别为,BC AD 的中点,得//EF AB ,所以EF AC ⊥. ………………1分 因为侧面PAB ⊥底面ABCD ,且90BAP ∠=,所以PA ⊥底面ABCD . ………………2分又因为EF ⊂底面ABCD ,所以PA EF ⊥. ………………3分又因为PA AC A =,PA ⊂平面PAC ,AC ⊂平面PAC ,所以EF ⊥平面PAC . ………………4分 (Ⅱ)证明:因为M 为PD 的中点,F 分别为AD 的中点, 所以//MF PA ,又因为MF ⊄平面PAB ,PA ⊂平面PAB , 所以//MF 平面PAB . ………………5分同理,得//EF 平面PAB . 又因为=MFEF F ,MF ⊂平面MEF ,EF ⊂平面 所以平面//MEF 平面PAB . ………………7分又因为ME ⊂平面MEF ,所以//ME 平面PAB . ………………9分(Ⅲ)解:因为PA ⊥底面ABCD ,AB AC ⊥,所以,,AP AB AC 两两垂直,故以,,AB AC AP 分别为x 轴、y 轴和z 轴,如上图建立空间直角坐标系,则(0,0,0),(2,0,0),(0,2,0),(0,0,2),(2,2,0),(1,1,0)A B C P D E -,所以(2,0,2)PB =-,(2,2,2)PD =--,(2,2,0)BC =-, ………………10分 设([0,1])PMPDλλ=∈,则(2,2,2)PM λλλ=--, 所以(2,2,22)M λλλ--,(12,12,22)ME λλλ=+--,易得平面ABCD 的法向量(0,0,1)=m . ………………11分 设平面PBC 的法向量为(,,)x y z =n , 由0BC ⋅=n ,0PB ⋅=n ,得220,220,x y x z -+=⎧⎨-=⎩ 令1x =, 得(1,1,1)=n . ………………12分因为直线ME 与平面PBC 所成的角和此直线与平面ABCD 所成的角相等,所以|cos ,||cos ,|ME ME <>=<>m n ,即||||||||||||ME ME ME ME ⋅⋅=⋅⋅m n m n , ………………13分所以 |22|λ-=, 解得λ=λ=. ………………14分 D18.(本小题满分13分)(Ⅰ)解:求导,得()2f x x '=,2()tg x x'=,(0)x >. ………………2分 由题意,得切线l 的斜率(1)(1)k f g ''==,即22k t ==,解得1t =. ……………3分 又切点坐标为(1,0),所以切线l 的方程为220x y --=. ………………4分 (Ⅱ)解:设函数2()()()12ln h x f x g x x t x =-=--,(0,)x ∈+∞. ………………5分 “曲线()y f x =与()y g x =有且仅有一个公共点”等价于“函数()y h x =有且仅有一 个零点”.求导,得2222()2t x th x x x x-'=-=. ………………6分① 当0t ≤时,由(0,)x ∈+∞,得()0h x '>,所以()h x 在(0,)+∞单调递增.又因为(1)0h =,所以()y h x =有且仅有一个零点1,符合题意. ………………8分② 当1t =时,当x 变化时,()h x '与()h x 的变化情况如下表所示:所以()h x 在(0,1)上单调递减,在(1,)+∞上单调递增,所以当1x =时,min()(1)0h x h ==,故()y h x =有且仅有一个零点1,符合题意. ………………10分③ 当01t <<时,令()0h x '=,解得x =.当x 变化时,()h x '与()h x 的变化情况如下表所示:所以()h x在上单调递减,在)+∞上单调递增,所以当x =时,min()h x h =. ………………11分因为(1)0h =1<,且()h x在)+∞上单调递增,所以(1)0h h <=.又因为存在12e (0,1)t -∈ ,111122()12ln 0t t t t h t ----=--=>e e e e ,所以存在0(0,1)x ∈使得0()0h x =,所以函数()y h x =存在两个零点0x ,1,与题意不符.综上,曲线()y f x =与()y g x =有且仅有一个公共点时,t 的范围是0{|t t ≤,或1}t =.………………13分19.(本小题满分14分)(Ⅰ)解:由题意,得c a =,222a b c =+, ………………2分又因为点A 在椭圆C 上,所以221314ab+=, ………………3分解得2a =,1b =,c ,所以椭圆C 的方程为1422=+y x . ………………5分(Ⅱ)结论:存在符合条件的圆,且此圆的方程为225x y +=. ………………6分 证明如下:假设存在符合条件的圆,并设此圆的方程为222(0)x y r r +=>.当直线l 的斜率存在时,设l 的方程为m kx y +=. ………………7分由方程组22,1,4y kx m x y =+⎧⎪⎨+=⎪⎩ 得0448)14(222=-+++m kmx x k , ………………8分 因为直线l 与椭圆C 有且仅有一个公共点,所以2221(8)4(41)(44)0km k m ∆=-+-=,即2241m k =+. ………………9分由方程组222,,y kx m x y r =+⎧⎨+=⎩ 得2222(1)20k x kmx m r +++-=, ………………10分则22222(2)4(1)()0km k m r ∆=-+->.设111(,)P x y ,222(,)P x y ,则12221km x x k -+=+,221221m r x x k -⋅=+, ………………11分 设直线1OP ,2OP的斜率分别为1k ,2k , 所以221212121212121212()()()y y kx m kx m k x x km x x m k k x x x x x x +++++=== 222222222222222111m r km k km m m r k k k m r m r k --⋅+⋅+-++==--+, ………………12分将2241m k =+代入上式,得221222(4)14(1)r k k k k r -+⋅=+-.要使得12k k 为定值,则224141r r-=-,即25r =,验证符合题意. 所以当圆的方程为225x y +=时,圆与l 的交点12,P P 满足12k k 为定值14-. ………………13分当直线l 的斜率不存在时,由题意知l 的方程为2x =±, 此时,圆225x y +=与l 的交点12,P P 也满足1214k k =-. 综上,当圆的方程为225x y +=时,圆与l 的交点12,P P 满足斜率之积12k k 为定值14-. ………………14分 20.(本小题满分13分)(Ⅰ)解:()10S C =; ………………2分 (Ⅱ)解:考察排列D :121,,,,n n d d d d -与排列1121,,,,n n D d d d d -:,因为数对(,)i j d d 与(,)j i d d 中必有一个为逆序对(其中1i j n <≤≤), 且排列D 中数对(,)i j d d 共有2(1)C 2n n n -=个, ………………3分 所以1(1)()()2n n S D S D -+=. ………………5分所以排列D 与1D 的逆序对的个数的算术平均值为(1)4n n -. ………………6分 而对于数字1,2,,n 的任意一个排列A :12,,,n a a a ,都可以构造排列A 1:121,,,,n n a a a a -,且这两个排列的逆序对的个数的算术平均值为(1)4n n -. 所以所有()S A 的算术平均值为(1)4n n -. ………………7分 (Ⅲ)证明:○1当1j i =+,即,i j a a 相邻时, 不妨设1i i a a +<,则排列A '为12112,,,,,,,,i i i i n a a a a a a a -++,此时排列A '与排列A :12,,,n a a a 相比,仅多了一个逆序对1(,)i i a a +,所以()()1S A S A '=+,所以()()2()1S A S A S A '+=+为奇数. ………………10分 ○2当1j i ≠+,即,i j a a 不相邻时,假设,i j a a 之间有m 个数字,记排列A :1212,,,,,,,,,,i m j n a a a k k k a a ,先将i a 向右移动一个位置,得到排列A 1:12112,,,,,,,,,,,,i i m j n a a a k a k k a a -,由○1,知1()S A 与()S A 的奇偶性不同, 再将i a 向右移动一个位置,得到排列A 2:121123,,,,,,,,,,,,i i m j n a a a k k a k k a a -,由○1,知2()S A 与1()S A 的奇偶性不同,以此类推,i a 共向右移动m 次,得到排列A m :1212,,,,,,,,,,m i j n a a k k k a a a ,再将j a 向左移动一个位置,得到排列A m +1:1211,,,,,,,,,,i m j i n a a a k k a a a -,以此类推,j a 共向左移动m +1次,得到排列A 2m +1:121,,,,,,,,,j m i n a a a k k a a ,即为排列A ',由○1,可知仅有相邻两数的位置发生变化时,排列的逆序对个数的奇偶性发生变化, 而排列A 经过21m +次的前后两数交换位置,可以得到排列A ', 所以排列A 与排列A '的逆序数的奇偶性不同, 所以()()S A S A '+为奇数.综上,得()()S A S A '+为奇数. ………………13分。

2020-2021学年度山西省高考第一次模拟考试数学(理)试题及答案

2020-2021学年度山西省高考第一次模拟考试数学(理)试题及答案

理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知单元素集合(){}2|210A x x a x =-++=,则a =( ) A . 0 B . -4 C . -4或1 D .-4或02. 某天的值日工作由4名同学负责,且其中1人负责清理讲台,另1人负责扫地,其余2人负责拖地,则不同的分工共有( )A .6种B . 12种C .18种D .24种3. 已知函数()sin f x x x =+,若()()()23,2,log 6a f b f c f ===,则,,a b c 的大小关系是( ) A .a b c << B .c b a << C .b a c << D .b c a <<4.在平行四边形ABCD 中,点E 为CD 的中点,BE 与AC 的交点为F ,设,AB a AD b ==u u u r u u u r ,则向量BF =u u u r( ) A .1233a b+B .1233a b -- C. 1233a b -+ D .1233a b - 5.已知抛物线2:C y x =,过点(),0P a 的直线与C 相交于,A B 两点,O 为坐标原点,若0OA OB <u u u r u u u rg,则a 的取值范围是 ( )A .(),0-∞B .()0,1 C. ()1,+∞ D .{}16.《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵.将一堑堵沿其一顶点与相对的棱刨开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均匀直角三角形的四面体).在如图所示的堑堵111ABC A B C -中,15,3,4AA AC AB BC ====,则阳马111C ABB A -的外接球的表面积是 ( )A .25πB . 50π C. 100π D .200π7. 若,x y 满足约束条件44030y x x y x y ≤⎧⎪+-≥⎨⎪+-≤⎩,则1x y +的取值范围是( )A .5,113⎡⎤⎢⎥⎣⎦B .13,115⎡⎤⎢⎥⎣⎦ C. 3,115⎡⎤⎢⎥⎣⎦ D .15,113⎡⎤⎢⎥⎣⎦8. 执行如图所示的程序框图,如果输入的n 是10,则与输出结果S 的值最接近的是( )A . 28eB . 36e C. 45e D .55e9.在ABC ∆中,点D 为边AB 上一点,若3,32,3,sin 3BC CD AC AD ABC ⊥==∠=,则ABC ∆的面积是( ) A .922 B .1522C. 62 D .122 10.某市1路公交车每日清晨6:30于始发站A 站发出首班车,随后每隔10分钟发出下一班车.甲、乙二人某日早晨均需从A 站搭乘该公交车上班,甲在6:35-6:55内随机到达A 站候车,乙在6:50-7:05内随机到达A 站候车,则他们能搭乘同一班公交车的概率是 ( ) A .16 B . 14 C. 13 D .51211.如图,Rt ABC ∆中,,6,2AB BC AB BC ⊥==,若其顶点A 在x 轴上运动,顶点B 在y 轴的非负半轴上运动.设顶点C 的横坐标非负,纵坐标为y ,且直线AB 的倾斜角为θ,则函数()y f θ=的图象大致是 ( )A .B .C. D .12. 定义在R 上的函数()f x 满足()()f x f x -=,且当0x ≥时,()21,0122,1xx x f x x ⎧-+≤<=⎨-≥⎩,若对任意的[],1x m m ∈+,不等式()()1f x f x m -≤+恒成立,则实数m 的最大值是( ) A . -1 B .12-C. 13- D .13二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上13.在复平面内,复数()228z m m m i =+--对应的点位于第三象限,则实数m 的取值范围是. 14.已知tan 24πα⎛⎫+=-⎪⎝⎭,则1sin 2cos 2αα-=.15.过双曲线()2222:10,0x y E a b a b-=>>的右焦点,且斜率为2的直线与E 的右支有两个不同的公共点,则双曲线离心率的取值范围是.16.一个正方体的三视图如图所示,若俯视图中正六边形的边长为1,则该正方体的体积是.三、解答题 :共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17. 已知等比数列{}n a 中,*11211120,,,64n n n n a a n N a a a ++>=-=∈. (1)求{}n a 的通项公式;(2)设()()221log nn n b a =-g ,求数列{}n b 的前2n 项和2n T .18.某快递公司收取快递费用的标准是:重量不超过1kg 的包裹收费10元;重量超过1kg 的包裹,除1kg 收费10元之外,超过1kg 的部分,每超出1kg (不足1kg ,按1kg 计算)需再收5元.该公司将最近承揽的100件包裹的重量统计如下: 包裹重量(单位:kg )1234 5包裹件数43 30 15 8 4包裹件数范围 0100: 101200: 201300: 301400: 401500:包裹件数(近似处理)50 150 250 350 450 天数6630126(1)计算该公司未来3天内恰有2天揽件数在101400:之间的概率; (2)①估计该公司对每件包裹收取的快递费的平均值;②公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用作其他费用.目前前台有工作人员3人,每人每天揽件不超过150件,工资100元.公司正在考虑是否将前台工作人员裁减1人,试计算裁员前后公司每日利润的数学期望,并判断裁员是否对提高公司利润更有利?19.如图,在多面体ABCDEF 中,四边形ABCD 为菱形,//,AF DE AF AD ⊥,且平面BED ⊥平面ABCD .(1)求证:AF CD ⊥; (2)若0160,2BAD AF AD ED ∠===,求二面角A FB E --的余弦值.20.已知椭圆()2222:10x y E a b a b +=>>过点⎛ ⎝⎭,且两个焦点的坐标分别为()()1,0,1,0-. (1)求E 的方程;(2)若,,A B P 为E 上的三个不同的点,O 为坐标原点,且OP OA OB =+u u u r u u u r u u u r,求证:四边形OAPB 的面积为定值.21. 已知函数()()()221ln f x x m x x m R =-++∈. (1)当12m =-时,若函数()()()1ln g x f x a x =+-恰有一个零点,求a 的取值范围; (2)当1x >时,()()21f x m x <-恒成立,求m 的取值范围.(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22. 【选修4-4:坐标系与参数方程】在平面直角坐标系xOy 中,曲线1C 的参数方程为:cos sin x y θθ=⎧⎨=⎩(θ为参数,[]0,θπ∈),将曲线1C 经过伸缩变换:x xy '=⎧⎪⎨'=⎪⎩得到曲线2C .(1)以原点为极点,x 轴的正半轴为极轴建立坐标系,求2C 的极坐标方程;(2)若直线cos :sin x t l y t αα=⎧⎨=⎩(t 为参数)与12,C C 相交于,A B两点,且1AB ,求α的值.23. 【选修4-5:不等式选讲】 已知函数()()1f x x a a R =--∈.(1)若()f x 的最小值不小于3,求a 的最大值;(2)若()()2g x f x x a a =+++的最小值为3,求a 的值.试卷答案一、选择题1-5: DBDCB 6-10: BABCA 11、12:AC 二、填空题13. ()2,0- 14. 12-15. (16.三、解答题17.解:(1)设等比数列{}n a 的公比为q ,则0q >, 因为12112n n n a a a ++-=,所以11111112n n n a q a q a q -+-=, 因为0q >,解得2q =, 所以17*122,64n n n a n N --=⨯=∈; (2)()()()()()()2227221log 1log 217nnnn n n b a n -=-=-=--g g g ,设7n c n =-,则()()21nn n b c =-g ,()()()()()()222222212342121234212n n n n n T b b b b b b c c c c c c --⎡⎤⎡⎤=++++++=-++-+++-+⎣⎦⎣⎦L L()()()()()()12123434212212n n n n c c c c c c c c c c c c --=-+++-++++-++L ()()2123421226272132132n n n n c c c c c c n n n n --+-⎡⎤⎣⎦=++++++==-=-L .18.解:(1)样本中包裹件数在101400:之间的天数为48,频率484605f ==, 故可估计概率为45, 显然未来3天中,包裹件数在101400:之间的天数X 服从二项分布,即43,5X B ⎛⎫ ⎪⎝⎭:,故所求概率为223414855125C ⎛⎫⨯⨯=⎪⎝⎭; (2)①样本中快递费用及包裹件数如下表:故样本中每件快递收取的费用的平均值为1530201525830415100+⨯+⨯+⨯+⨯=(元), 故该公司对每件快递收取的费用的平均值可估计为15元.②根据题意及(2)①,揽件数每增加1,可使前台工资和公司利润增加11553⨯=(元), 将题目中的天数转化为频率,得若裁员1人,则每天可揽件的上限为300件,公司每日揽件数情况如下:EY500.11500.12500.53000.23000.1235⨯+⨯+⨯+⨯+⨯=因9751000<,故公司将前台工作人员裁员1人对提高公司利润不利.19.(1)证明:连接AC,由四边形ABCD为菱形可知AC BD⊥,∵平面BED⊥平面ABCD,且交线为BD,∴AC⊥平面BED,∴AC ED⊥,又//AF DE,∴AF AC⊥,∵,AC AD AAF AD⊥=I,∴AF⊥平面ABCD,∵CD⊂平面ABCD,∴AF CD⊥;(2)解:设AC BD O=I,过点O作DE的平行线OG,由(1)可知,,OA OB OG两两互相垂直,则可建立如图所示的空间直角坐标系O xyz-,设()1202AF AD ED a a===>,则)()()()3,0,0,0,,0,3,0,2,0,,4A aB a F a a E a a-,所以()()()()3,,0,0,0,2,0,2,4,3,,2 AB a a AF a BE a a BF a a a=-==-=-u u u r u u u r u u u r u u u r,设平面ABF的法向量为(),,m x y z=u r,则m ABm AF⎧=⎪⎨=⎪⎩u r u u u rgu r u u u rg,即3020x yz⎧+=⎪⎨=⎪⎩,取3y=()3,0m=u r为平面ABF的一个法向量,同理可得()0,2,1n=r为平面FBE的一个法向量.则2315cos,525m n==⨯,又二面角A FB E--的平面角为钝角,则其余弦值为1520.解:(1)由已知得1,2c a ===∴1a b ==,则E 的方程为2212x y +=; (2)当直线AB 的斜率不为零时,可设:AB x my t =+代入2212x y +=得: ()2222220my mty t +++-=,设()()1122,,,A x y B x y ,则212122222,22mt t y y y y m m -+=-=++,()2282m t ∆=+-,设(),P x y ,由OP OA OB =+u u u r u u u r u u u r,得()121212122224,222mt ty y y x x x my t my t m y y t m m =+=-=+=+++=++=++, ∵点P 在椭圆E 上,∴()()22222221641222t m t m m+=++,即()()22224212t m m+=+,∴2242t m =+,AB ===原点到直线x my t =+的距离为d =∴四边形OAPB的面积:22122242OABS S AB d t ∆==⨯⨯===. 当AB的斜率为零时,四边形OAPB的面积112222S =⨯⨯=,∴四边形OAPB 21.解:(1)函数()g x 的定义域为()0,+∞,当12m =-时,()2ln g x a x x =+,所以()222a x a g x x x x +'=+=,①当0a =时,()2,0g x x x =>时无零点,②当0a >时,()0g x '>,所以()g x 在()0,+∞上单调递增, 取10ax e-=,则21110aa g e e --⎛⎫⎛⎫=-+< ⎪ ⎪⎝⎭⎝⎭,因为()11g =,所以()()010g x g <g ,此时函数()g x 恰有一个零点,③当0a <时,令()0g x '=,解得x =当0x <<()0g x '<,所以()g x 在⎛ ⎝上单调递减;当x >()0g x '>,所以()g x 在⎫+∞⎪⎪⎭上单调递增.要使函数()f x 有一个零点,则ln 02ag a ==即2a e =-,综上所述,若函数()g x 恰有一个零点,则2a e =-或0a >;(2)令()()()()22121ln h x f x m x mx m x x =--=-++,根据题意,当()1,x ∈+∞时,()0h x <恒成立,又()()()()1211221x mx h x mx m x x--'=-++=, ①若102m <<,则1,2x m ⎛⎫∈+∞⎪⎝⎭时,()0h x '>恒成立,所以()h x 在1,2m ⎛⎫+∞ ⎪⎝⎭上是增函数,且()1,2h x h m ⎛⎫⎛⎫∈+∞ ⎪ ⎪⎝⎭⎝⎭,所以不符题意. ②若12m ≥,则()1,x ∈+∞时,()0h x '>恒成立,所以()h x 在()1,+∞上是增函数,且()()()1,h x h ∈+∞,所以不符题意.③若0m ≤,则()1,x ∈+∞时,恒有()0h x '<,故()h x 在()1,+∞上是减函数,于是“()0h x <对任意()1,x ∈+∞,都成立”的充要条件是()10h ≤,即()210m m -+≤,解得1m ≥-,故10m -≤≤.综上,m 的取值范围是[]1,0-.22.解:(1)1C 的普通方程为()2210x y y +=≥,把,3x x y y ''==代入上述方程得,()22103y x y '''+=≥, ∴2C 的方程为()22103y x y +=≥, 令cos ,sin x y ρθρθ==, 所以2C 的极坐标方程为[]()2222230,3cos sin 2cos 1ρθπθθθ==∈++;(2)在(1)中建立的极坐标系中,直线l 的极坐标方程为()R θαρ=∈,由1ρθα=⎧⎨=⎩,得1A ρ=, 由2232cos 1ρθθα⎧=⎪+⎨⎪=⎩,得B ρ=,11=,∴1cos 2α=±, 而[]0,απ∈,∴3πα=或23π. 23.解:(1)因为()()min 1f x f a ==-,所以3a -≥,解得3a ≤-,即max 3a =-;(2)()()212g x f x x a a x x a =+++=-++,当1a =-时,()310,03g x x =-≥≠,所以1a =-不符合题意,当1a <-时,()()()()()()()12,12,112,1x x a x a g x x x a x a x x a x -++≥-⎧⎪=--+≤<-⎨⎪---+<⎩,即()312,12,1312,1x a x a g x x a x a x a x -+≥-⎧⎪=---≤<-⎨⎪-+-<⎩, 所以()()min 13g x g a a =-=--=,解得4a =-,当1a >-时,同法可知()()min 13g x g a a =-=+=,解得2a =,综上,2a =或-4.。

2024北京东城区高三(上)期末数学试卷及答案

2024北京东城区高三(上)期末数学试卷及答案

东城区2023—2024学年度第一学期期末统一检测高三数学参考答案及评分标准 2024.1一、选择题(共10小题,每小题4分,共40分)(1)C (2)D (3)C(4) D (5) B (6) A (7)C (8)B(9) A (10)D 二、填空题(共5小题,每小题5分,共25分)(11)()()0,11,∞+ (12) y = (13) π3(答案不唯一 ) (14)①2− ② (],1∞−- (15)②③三、解答题(共6小题,共85分)(16)(共14分)解:(Ⅰ)取11A C 中点G ,连接,FG AG . 在直三棱柱111ABC A B C −中,因为,,E F G 分别为1111,A C B B A C ,的中点,所以1111,AE B GF A A B ,111=2A GFB ,1112A A E B =. 所以GF AE ,GF AE =.所以四边形EFGA 为平行四边形,所以EF AG .又因为EF ⊄平面11ACC A ,AG ⊂平面11ACC A ,所以//EF 平面11ACC A . ................................6分 (Ⅱ)在直三棱柱111ABC A B C −中,1BB ⊥平面ABC .而BA ⊂平面ABC ,BC ⊂平面ABC ,所以1BB BA ⊥,1BB BC ⊥因为90ABC ∠=︒,BA BC ⊥,所以BA BC ,,1BB 两互相垂直.如图,建立空间直角坐标系B xyz −.则A (0,2,0),B (0,0,0),C (2,0,0),E (0,1,0),F(1,0,2). 设[]00,2Pm m ∈(0,,),, 则()0,2,AP m =−,()0,1,0BE =,()1,0,2BF = .设平面BEF 的一个法向量为(),,x y z =n ,所以0,0,BE BF n n ⎧⋅=⎪⎨⋅=⎪⎩即0,20.y x z =⎧⎨+=⎩设1z =−,则()2,0,1n =−设AP 与平面BEF 所成的角为θ, 则221sin cos ,552)AP m AP AP m nn n θ⋅−=〈〉===⋅−+(.解得21,1m m ==±.因为[]0,2m ∈,所以1m =.于是,1BP =...............................................................................14分(17)(本小题13分)解:(Ⅰ)在ABC △中,由余弦定理得222cos 2BC AB AC B BC AB+−=⋅又因为4BC =,AC =1AB =,所以cos B 2224112412+−==⨯⨯. 又()0,πB ∈,所以π3B ∠=. ......................................... (5)分 (II )选择条件①:π4ADB ∠=. 在ADB △中,由正弦定理 sin sin AD AB B ADB =∠,得=, 所以AD =所以sinsin()BAD B ADB∠=∠+∠sin cos cos sin B ADB B ADB =∠+∠12222=+⨯4=.所以1sin 2ABD S AB AD BAD ∆=⋅∠. 112=⨯38+= . ......................................................................13分选择条件③:由余弦定理 2222cos AD AB BD AB BD B =+−⋅,AB BD AD ++=得()2221BD BD BD =+−,解得 2BD =,所以11sin 122222ABD S AB BD B ∆=⋅=⨯⨯⨯=. ........................ ...............13分 (18)(本小题13分)解:(Ⅰ)由表格中的数据可知:2022年100名参加第一次考试的考生中有60名通过考试,所以估计考生第一次考试通过的概率为5310060=; 2023年100名参加第一次考试的考生中有50名通过考试,所以估计考生第一次考试通过的概率为2110050=; 从2022年、2023年第一次参加考试的考生中各随机抽取一位考生,这两位考生都通过考试的概率为1032153=⨯ . .......................................................4分 (Ⅱ)记“2022年考生在第i 次考试通过”为事件1,2,3)i A i =(,“小明2022年参加考试,他通过不超过两次考试该科目成绩合格”为事件A , 则1233707804(),(),().5100101005P A P A P A ===== 小明一次考试该科目成绩合格的概率13()5P A =, 小明两次考试该科目成绩合格的概率12377()151025P A A =−⨯=(), 所以小明不超过两次考试该科目成绩合格的概率1121123722()()()()52525P A P A A A P A P A A ==+=+= . ................................10分 (III )88. .................................................................................... .........13分(19)(本小题15分)解:(Ⅰ)由题意得 22222,a b c a c a c ⎧⎪⎨⎪=++=+−=⎩−解得2,1,c a b ⎧===⎪⎨⎪⎩所以椭圆C 的标准方程为2214x y +=. ............... ...............................................5分(Ⅱ)证明:由(Ⅰ)得,()2,0A −,()2,0B .设(),M m n ,则(),N m n −,且满足2244m n +=.因为E 为线段OM 的中点,所以,22m n E ⎛⎫ ⎪⎝⎭. 所以直线():24n AE y x m =++. 设()11,D x y , 由()222444n y x m x y ⎧=+⎪+⎨⎪+=⎩得 ()()222222441616440m n x n x n m ⎡⎤++++−+=⎣⎦. 因为2244m n +=,所以 ()22225(4)(2812)0m x m x m m ++−−++=. 所以212812225m m x m ++−=−+, 解得214625m m x m ++=+,则()1425n m y m +=+, 所以()2446,2525n m m m D m m +⎛⎫++ ⎪++⎝⎭. 因为G 为线段MB 的中点,所以2,22m n G +⎛⎫ ⎪⎝⎭. 所以直线GN 的方程为()32n y n x m m +=−−−, 代入D 点坐标,得左式=()()4332525n m n m n m m +++=++,右式=2346225n m m m m m ⎛⎫++− ⎪−+⎝⎭()3325n m m +=+. 所以左式=右式.所以,,D G N 三点共线..................................................... .......................15分 (20)(本小题15分)解:(Ⅰ)若1k =,则1()1x x f x e x −=−+, 所以22'()(1)x f x e x =−+, 所以022'(0)1(01)f e =−=+, 又因为001(0)201f e −=−=−+, 所以曲线()y f x =在(0,(0))f 处的切线方程为(2)(0)y x −−=−,即2y x =−. ............. .......................................................................6分 (Ⅱ)若12k ≤<,因为22'()(1)x f x ke x =−+, 设函数22()(1)=−+x g x ke x , 则34'()0(1)=−−<+xg x ke x ((0))x ∈+∞, 所以22'()(1)=−+x f x ke x 为(0)+∞,上的减函数. 当时12k ≤<时,022'(0)20(01)f ke k =−=−≤+, 11122221288'()01299(1)2f ke ke e =−=−<−<+,所以存在01(0,)2x ∈,使得0'()0=f x ,即02020(1)−=+x ke x .x所以当12k ≤<时,函数()y f x =在(0)+∞,上有极大值. 00001()1−==−+x x m f x ke x , 由2020(1)−=+x ke x ,得0200121(1)−=−++x m x x 200221(1)1x x =−−+++. 因为00x >,所以()010,11x ∈+. 得31−<<m . ..................................................15分(21)(本小题15分)解:(Ⅰ)由于数列23226A a a −:,,,,具有性质c P , 所以15264a a c +=−+==.由244a a +=以及42a =,得22a =.由334a a +=,得32a =. .....................4分 (Ⅱ)由于数列A 具有性质0P ,且12n a a a <<<,n 为奇数,令21n k =+,可得10k a +=,设12123210k k k k k a a a a a a a ++++<<<<=<<<<.由于当0(1)i j a a i j n >≤≤,,时,存在正整数k ,使得j i k a a a −=,所以324252212k k k k k k k k a a a a a a a a ++++++++−−−−,,,,这1k −项均为数列A 中的项, 且324252212210k k k k k k k k k a a a a a a a a a +++++++++<−<−<−<<−<,因此一定有3224235242122k k k k k k k k k k k k a a a a a a a a a a a a +++++++++++−=−=−=−=,,,,,即:3224325422122k k k k k k k k k k k k a a a a a a a a a a a a +++++++++++−=−=−=−=,,,,, 这说明:2321k k k a a a +++,,,为公差为2k a +的等差数列,再由数列A 具有性质0P ,以及10k a +=可得,数列A 为等差数列. ..................................................................9分(III )(1)当*42()n k k =+∈N 时,设122122+1222+3244+142:k k k k k k k k A a a a a a a a a a a −+++,,,,,,,,,,,. 由于此数列具有性质c P ,且满足2122k k a a m +++=, 由2122k k a a m +++=和2122k k a a c +++=得c m =±.① c m =时,不妨设12a a m +=,此时有:21a m a =−,411k a a +=,此时结论成立. ② c m =−时,同理可证. 所以结论成立.(2)当*4()n k k =∈N 时,不妨设01c m ==,. 反例如下:22122231122322212k k k k k k k k −−−+−−−+−−+,,,,,,,,,,,,.(3)当*23()n k k =+∈N 时,不妨设01c m ==,. 反例如下:112(1)(1)(1)(1)(1)1012(1)(1)k k k k k k k k +−−−⋅+−⋅−⋅−−−−⋅−,,,,,,,,,,1(1)(1)(1)k k k k −−⋅−⋅+,综上所述,*42()n k k =+∈N 符合题意. ...........................................15分.。

2025届泸州市泸县五中高三数学上学期第一次模拟考试卷及答案解析

2025届泸州市泸县五中高三数学上学期第一次模拟考试卷及答案解析

泸县五中高2022级高三上期第一次诊断性考试数学试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至4页.共150分.考试时间120分钟.第I 卷(选择题 共58分)一、选择题:本大题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1. 已知全集U =R ,集合{|11}A x x =-<,{|1B x x =<或4}x ³,则()U A B =U ð( )A. {|12}x x <<B. {|04}x x <<C. {|12}x x £<D. {|04}x x <£【答案】B 【解析】【分析】根据并集、补集的定义进行计算得出结果.【详解】由{|1B x x =<或4}x ³得{|14}U B x x =£<ð,又{{|11}|02}A x x x x =-<=<<,所以(){|04}U x A x B =<<U ð.故选:B.2. 命题“(),1x $Î-¥,3210x x +-<”的否定是( )A. [1,]x $Î+¥,3210x x +-≥ B. (),1x $Î-¥,3210x x +-≥C. [1,]x "Î+¥,3210x x +-≥ D. (),1x "Î-¥,3210x x +-≥【答案】D 【解析】【分析】根据全称命题与存在性命题的关系,准确改写,即可求解.【详解】根据全称命题与存在性命题的关系,可得:命题“(),1x $Î-¥,3210x x +-<”的否定是“(),1x "Î-¥,3210x x +-≥”.故选:D.3. 已知sin 4πsin 3aa =æö-ç÷èø,则tan a =( )A. -B.C.D.【答案】D 【解析】【分析】由正弦展开式和三角函数化简求值得出.【详解】sin 4πsin 3a a ==æö-ç÷èø,4=,所以tan 2tan a a =,解得tan a =故选:D4.已知tan q =,则cos2q =( )A. 89-B.89C. 79-D.79【答案】C 【解析】【分析】根据给定条件,利用二倍角公式,结合正余弦齐次式法计算即得.【详解】由tan q =,得22222222cos sin 1tan 7cos2cos sin cos sin 1tan 9q q q q q q q q q --=-===-++.故选:C5. 将函数()cos3f x x =的图象向右平移π6个单位,得到函数()g x 的图象,则函数()g x 的一条对称轴方程是( )A. π2x =B. π3x =C. π9x = D. π18x =【答案】A【解析】【分析】根据三角函数的图象变换及诱导公式结合三角函数的性质即可判定.【详解】由题意得()ππcos 3cos 3sin 362g x x x x éùæöæö=-=-=ç÷ç÷êúèøèøëû显然由()()πππ3πZ Z 263k x k k x k =+ÎÞ=+Î,当1k =时,π2x =是其一条对称轴,而B 、C 、D 三项,均不存在整数k 满足题意.故选:A6. {}n a 为等差数列,若11100a a +<,1190a a +>,那么n S 取得最小正值时,n 的值( )A. 11 B. 17C. 19D. 21【答案】C 【解析】【分析】由等差数列的性质可得10110,0a a ><,从而得0d <,由1()2n n n a a S +=,结合条件得到19200,0S S ><,即可求解.【详解】因为11100a a +<,1191020a a a +=>,所以10110,0a a ><,故等差数列{}n a 的公差0d <,又1()2n n n a a S +=,又11120100a a a a +=+<,1191020a a a +=>,得到1202020()02a a S +=<,1191919()02a a S +=>,所以n S 取得最小正值时,n 的值为19,故选:C.7. 如图,在正方形ABCD 中,E 为BC 的中点,P 是以AB 为直径的半圆弧上任意一点,设(,)AE xAD y AP x y =+ÎR uuu r uuu r uuu r,则2x y +的最小值为( )A. 1-B. 1C. 2D. 3【答案】B 【解析】【分析】建立平面直角坐标系,设00(,)P x y ,利用坐标法将,x y 用P 点坐标表示,即可求出2x y +的最小值.【详解】以A 点为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴,建立如图所示的平面直角坐标系,设2AB =,00(,)P x y ,则(0,0)A ,(0,2)D ,(2,1)E ,半圆的方程为22(1)1(0)x y y -+=³,所以(2,1)AE =uuu r ,(0,2)AD =uuu r ,00(,)AP x y =uuu r,因为(,)AE xAD y AP x y =+ÎR uuu r uuu r uuu r,即00(2,1)(0,2)(,)x y x y =+,所以00212yx x yy =ìí=+î,即0002221y x y x x ì=ïïíï=-ïî,所以01212y x y x -+=+×,又00(,)P x y 是半圆上的任意一点,所以01cos x θ=+,0sin y q =,[0,]q p Î,所以1sin 2121cos θx y θ-+=+×+,所以当2pq =时,2x y +取得最小值1.故选:B【点睛】关键点点睛:本题主要考查二元变量的最值求法,关键是根据已知把几何图形放在适当的坐标系中,把有关点与向量用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决.8. 已知函数ln ,0()ln(),0ax x x f x ax x x ->ì=í+-<î,若()f x 有两个极值点12,x x ,记过点11(,())A x f x ,22(,())B x f x 的直线的斜率为k ,若02e k <£,则实数a 的取值范围为( )A. 1,e e æùçúèûB. 1,2eæùçúèûC. (e,2e]D. 12,2eæ+ùçúèû【答案】A【解析】【分析】当0x >时,求导,根据()f x 有两个极值点可得0a >,由奇函数的定义可得()f x 为奇函数,不妨设210x x =->,则有21x a =,所以1,1ln B a a æö+ç÷èø,()1,1ln A a a æö--+ç÷èø.由直线的斜率公式k 的表达式,可得1(1ln ),e k a a a =+>,令1()(1ln ),e h a a a a =+>,利用导数可得()h a 在1,e æö+¥ç÷èø上单调递增,又由10,(e)2e e h h æö==ç÷èø,根据单调性可得实数a 的取值范围.【详解】当0x >时,函数()ln f x ax x =-的导数为()11ax f x a x x-¢=-=,由函数()f x 由两个极值点得0a >.当10x a<<时,()0f x ¢<,()f x 单调递减;当1x a>时,()0f x ¢>,()f x 单调递增.故当0x >时,函数()f x 的极小值点为1x a=.当0x <时,则0x ->,则()()()()()ln ln f x a x x ax x f x -=---=-+-=-éùëû,同理当0x >时,也有()()f x f x -=-,故()f x 为奇函数.不妨设210x x =->,则有21x a =,所以1,1ln B a a æö+ç÷èø,可得()1,1ln A a a æö--+ç÷èø,由直线的斜率公式可得2121()()(1ln ),0f x f x k a a a x x -==+>-,又0,1ln 0k a >+>,所以1e >a 设()1(1ln ),eh a a a a =+>,得()2ln 1(1ln )0h a a a =+=++>¢,所以()h a 在1,eæö+¥ç÷èø上单调递增,又由10,(e)2e e h h æö==ç÷èø,.由02e k <<,得()1()e e h h a h æö<£ç÷èø,所以1e ea <£.故选:A.【点睛】对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知关于x 的不等式20ax bx c ++>的解集为()(),12,-¥+¥U ,则()A. 0a >且0c >B. 不等式0bx c +>的解集是23x x ìü>íýîþC. 0a b c -+>D. 不等式20cx bx a ++<的解集为1,12æöç÷èø【答案】ACD 【解析】【分析】由题意可知a >0且1和2是方程ax 2+bx +c =0的两个根,根据韦达定理可得3,2b a c a =-=,由此易判断A,将b c 、替换成a ,由此可求B 、D ,结合二次函数的图象可以判断C.【详解】Q 关于的的不等式20ax bx c ++>的解集为()(),12,¥¥-È+,0a \>且1和2是方程ax 2+bx +c =0的两个根,12123,2b cx x x x a a\+=-===,3,2b a c a \=-=对A,0,20a c a >\=>Q ,故A 正确.对B,3,2,0b a c a bx c =-=\+>Q 可化为320ax a -+>0320a x >\-+>Q ,解的23x <,\不等式0bx c +>的解集为23x x ìü<íýîþ,故B 错误.对C,0a >Q ,1和2是方程ax 2+bx +c =0的两个根,且二次函数y =ax 2+bx +c 开口向上,\当x =―1时,0y >,即0a b c -+>,故C 正确.对D ,不等式20cx bx a ++<可化为2230ax ax a -+<,202310a x x >\-+<Q ,即()()2110x x --<,解得112x <<,\不等式20cx bx a ++<的的集为1{1}2x x <<∣,故D 正确.故选:ACD10. 已知函数2()log (1)f x x =-,若12x x <,12()()f x f x =,则( )A. 122x x << B. 122x x << C.12111x x +=D. 1223x x ++>【答案】ACD 【解析】【分析】作出函数2()log (1)f x x =-的图象,根据12x x <,12()()f x f x =,结合函数图象逐项判断.【详解】作出函数2()log (1)f x x =-的图象,如图所示:因为12x x <,12()()f x f x =,由图象可知:12122,x x <<<,故A 正确;B 错误;由12()()f x f x =,得2122log (1)log (1)x x -=-,即2122log (1)log (1)x x --=-,所以12(1)(1)1x x --=,即1212x x x x =+,所以12111x x +=,故C 正确;因为121223(1)2(1)x x x x +=-+-³=-12(1)2(1)x x -=-时,等号成立,因12x x <,所以122(1)12(1)x x x -<-<-,所以取不到等号,故D 正确.故选:ACD【点睛】关键点点睛:本题关键是将12()()f x f x =转化为12(1)(1)1x x --=而得解.11. 已知数列{}n a 满足11a =,211n n a a +=+,则( )A. 2n a n³ B. 12n n a -³C. 12161n n a -³+ D. 122log 4n n a -³【答案】BCD 【解析】【分析】先证明{}n a 是递增数列,且各项均为正,由递推公式求得234,,a a a 发现A 错误,然后由递推关系利用基本不等式变成不等式2n n a a ³,让n 依次减1进行归纳得出B 正确,由递推式适当放缩得222421()n n n n a a a a ++>>=,这样对2n a 进行归纳得出21444222242()()()n n n n a a a a --->>>>L 142n -=,此不等式两边取以2为底的对数可证明选项D ,对142n -由指数幂运算法则变形为1244216n n --=,然后证明241n n ->-,再结合{}n a 是正整数可得证C .【详解】221131()024n n n n n a a a a a +-=-+=-+>,∴1n n a a +>,{}n a 是递增数列,又11a =,所以0n a >,22a =,35a =,426a =,233a <,A 显然错误;2211112222n n n n n n a a a a a +-=+³³³³=L ,∴12n n a -³,B 正确;对选项C ,222421()n n n n a a a a ++>>=,∴244442222424()()n n n n a a a a --->>=,依此类推:21444222242()()()n n n n a a a a --->>>>L 142n -=,1244216n n --=,下证241n n -³-,1n =时,140-³,2n =时,0411=³,3n =时,242>,假设n k =时,241k k -³-成立,2k >,为则1n k =+时,1224444(1)(1)1k k k k +--=׳->+-,所以对任意不小于3的正整数n ,241n n ->-,所以24121616n n n a --=>,又2n a 是正整数,所以12161n n a -³+,C 正确;对选项D ,由选项C 得1422n n a -³,所以141222log log 24n n n a --³=, D 正确.故选:BCD .第II 卷(非选择题共92分)注意事项:(1)非选择题的答案必须用0.5毫米黑色签字笔直接答在答题卡上,作图题可先用铅笔绘出,确认后再用0.5毫米黑色签字笔描清楚,答在试题卷和草稿纸上无效.(2)本部分共8个小题,共92分.三、填空题:本大题共3小题,每小题5分,共计15分.12. 已知函数()2log ,02,12,2,2x x f x x x ì<£ï=í-+>ïî则()()3f f =______.【答案】1【解析】【分析】结合分段函数解析式,由内向外计算即可.【详解】由题意得()1133222f =-´+=,211log 122f æö==ç÷èø.所以((3))1f f =,故答案为:1.13. 计算:14cos10tan10-=o o____________【解析】【分析】切化弦,通分后结合二倍角和两角和差正弦公式可化简求得结果.【详解】1cos10cos104sin10cos10cos102sin 204cos104cos10tan10sin10sin10sin10---=-==o o o o o o o oo o o o()cos102sin 3010sin10--====o o o o.14. 已知函数2()(1)ln 2x f x mx x mx =-+-,函数()()g x f x ¢=有两个极值点12,x x .若110,e x æùÎçúèû,则()()12g x g x -的最小值是______.【答案】4e【解析】【分析】求导后可知12,x x 是方程210x mx ++=在()0,¥+上的两根,结合韦达定理可得211x x =,111a x x æö=-+ç÷èø;将()()12g x g x -化为11111112ln 2x x x x x æöæö-++-ç÷ç÷èøèø,令()11122ln 0e h x x x x x x x æöæöæö=--+<£ç÷ç÷ç÷èøèøèø,利用导数可求得()min h x ,从而得到结果.【详解】因为2()(1)ln 2x f x mx x mx =-+-,令()()g x f x ¢=()11ln ln 0mx m x x m m x x x x x-=++-=+->,因为()222111m x mx g x x x x++=++=¢,()g x 有两个极值点12,x x ,所以12,x x 是方程210x mx ++=在()0,¥+上的两根,所以12x x m +=-,121x x =,所以211x x =,111m x x æö=-+ç÷èø,所以()()1211221211ln ln g x g x m x x m x x x x -=+---+111111*********ln ln 2ln 2m x x m x x x x x x x x x æöæö=+-+-+=-++-ç÷ç÷èøèø,设()11122ln ,0e h x x x x x x x æöæöæö=--+<£ç÷ç÷ç÷èøèøèø,则()()()222221122122ln 21ln x x h x x x x x x x +-æöæö¢=+---+=-ç÷ç÷èøèø,所以当10,ex æùÎçúèû时,()0h x ¢<,所以()h x 在10,e æùçúèû上单调递减,所以()min 11142e 2e e e e eh x h æöæöæö==-++=ç÷ç÷ç÷èøèøèø,即()()12g x g x -的最小值为4e .故答案为:4e.【点睛】思路点睛:本题考查利用导数求解函数最值的问题;本题求解最值的基本思路是将多个变量统一为关于一个变量的函数的形式,通过构造函数将问题转化为函数最值的求解问题.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知函数()()sin f x x w j =+(其中0w >,π02j <<)的最小正周期为π,且___________.①点π,112æöç÷èø在函数()y f x =的图象上;②函数()f x 的一个零点为π6-;③()f x 的一个增区间为5ππ,1212æö-ç÷èø.请你从以上三个条件选择一个(如果选择多个,则按选择的第一个给分),补充完整题目,并求解下列问题:(1)求()f x 的解析式;(2)用“五点作图法”画出函数()f x 一个周期内的图象.【答案】(1)无论选哪个条件,函数()f x 的解析式均为()πsin 23f x x æö=+ç÷èø. (2)答案见解析【解析】【分析】(1)若选①,则ππsin 211212f j æöæö=´+=ç÷ç÷èøèø,若选②,则ππsin 063f j æöæö-=-+=ç÷ç÷èøèø,若选③,则5ππππ,,6622j j æöæö-++=-ç÷ç÷èøèø,由此求出分别求出j 即可得解.(2)直接用“等距法”按照五点画图的步骤作图即可.【小问1详解】由题意最小正周期为2ππ,>0T w w==,解得2w =,所以()()sin 2f x x j =+,若选①,则ππsin 211212f j æöæö=´+=ç÷ç÷èøèø,所以ππ2π,Z 62k k j +=+Î,又π02j <<,所以π0,3k j ==,所以函数()f x 的解析式为()πsin 23f x x æö=+ç÷èø;若选②,则ππsin 063f j æöæö-=-+=ç÷ç÷èøèø,所以ππ,Z 3k k j -+=Î,又π02j <<,所以π0,3k j ==,所以函数()f x 的解析式为()πsin 23f x x æö=+ç÷èø;若选③,即()f x 的一个增区间为5ππ,1212æö-ç÷èø,当5ππ,1212x æöÎ-ç÷èø时,5ππ2,66t x j j j æö=+Î-++ç÷èø,又π02j <<,由复合函数单调性可知,只能5ππππ,,6622j j æöæö-++=-ç÷ç÷èøèø,π3j =,所以函数()f x 解析式为()πsin 23f x x æö=+ç÷èø;综上所述,无论选哪个条件,函数()f x 的解析式均为()πsin 23f x x æö=+ç÷èø.【小问2详解】列表如下:xπ6-π12π37π125π6π23t x =+π2π3π22π()πsin 23f x x æö=+ç÷èø0101-0的描点、连线(光滑曲线)画出函数()f x 一个周期内的图象如图所示:16. 已知定义在R 上的函数1()1xxa f x a-=+(0a >且1a ¹).(1)判断函数奇偶性,并说明理由;(2)若1(1)2f =-,试判断函数()f x 的单调性并加以证明;并求()10f x m +-=在[2,3]-上有解时,实数m 的取值范围.【答案】(1)()f x 为奇函数,理由见解析 (2)()f x 为减函数,证明见解析;51914,m éùÎêúëû【解析】【分析】(1)先判断函数的奇偶性,再利用定义证明即可.(2)求出参数值得到原函数,再转化为交点问题求解参数范围即可.【小问1详解】()f x 为奇函数对任意x ÎR ,都有R x -Î,且该函数的定义域为R ,显然关于原点对称,可得1111()()01111x x x x x x xx a a a a f x f x a a a a ------+-=+=+=++++.()f x \为奇函数.【小问2详解】当1(1)2f =-时,可得2111a a -+=-,解得3a =,此时13()13xxf x -=+在R 上为严格减函数,证明如下:任取21x x >,且12,R x x Î,则()()21212113131313x x x x f x f x ---=-++的()()()()()12121122123(13)(13)(13)(13)2131313133x x x x x x x x x x -+--++++=+-=,21x x >Q ,21330x x >>,()()210f x f x \-<,()f x \在R 上为严格减函数,而413(2),(4)513f f -=-=-,13()13xxf x -\=+在[2,3]-上的值域为13,5414éù-êúëû,要使()10f x m +-=在[2,3]-上有零点,此时等价于y m =与()1y f x =+在[2,3]-上有交点,而当[2,3]x Î-时,可得()1,,51914f x éù+Îêúëû故51914,m éùÎêúëû.17. 在ABCV 中,已知)tan tan tan tan 1A B A B +=-.(1)求C ;(2)记G 为ABC V 的重心,过G 的直线分别交边,CA CB 于,M N 两点,设,CM CA CN CB l m ==uuuu r uuu r uuu r uuu r .(i )求11lm+的值;(ii )若CA CB =,求CMN V 和ABC V 周长之比的最小值.【答案】(1)π3C = (2)(i )3(ii )23【解析】【分析】(1)借助三角形内角关系及两角和的正切公式化简并计算即可得;(2)(i )设D 为AB 的中点,结合重心的性质及向量运算可得1133CG CM CN l m=+uuu r uuuu r uuu r,再利用三点共线定理即可得解;(ii )由题意可得ABC V 为等边三角形,可设其边长为1,则可用,l m 表示两三角形周长之比,结合(i )中所得与基本不等式即可得解.【小问1详解】由题可知()()tan tan tan tan πtan 1tan tan A BC A B A B A B+=--=-+=-=-又()0,πC Î,所以π3C =;【小问2详解】(i )设D 为AB 的中点,则1122CD CA CB =+uuu r uuu r uuu r,又因为23CG CD =uuu r uuu r,所以11113333CG CA CB CM CN l m=+=+uuu r uuu r uuu r uuuu r uuu r ,因,,M G N 三点共线,所以11133l m +=,所以113l m+=;(ii )由CA CB =,π3C =,可得ABC V 为等边三角形,设ABC V 的边长为1,CMN V 与ABC V 周长分别为12,C C ,则23C =,MN =,所以1C l m =+所以12C C =由113lm+=可得,3lm l =+,解得49lm ³,易知函数y x =4,9éö+¥÷êëø上单调递增,所以12C C lm =³所以CMN V 和ABC V 的周长之比的最小值为23.18. 已知等比数列{}n a 的各项均为正数,5462,,4a a a 成等差数列,且满足2434a a =,等差数列数列{b n }的前n 项和244,6,10n S b b S +==.(1)求数列{}n a 和{b n }的通项公式;(2)设{}*252123,,n n n n n n b d a n d b b +++=ÎN 的前n 项和n T ,求证:13n T <.(3)设()()n n n n b n c a b n ìï=í×ïî为奇数为偶数,求数列{}n c 的前2n 项和.【答案】(1)1()2nn a =;n b n =(2)证明见解析 (3)2868994nn n ++-×【解析】为【分析】(1)设等比数列{}n a 的公比为q ,等差数列{b n }的公差为d ,根据题意,列出方程组,分别求得11,,,a q b d 的值,即可求得数列{}n a 和{b n }的通项公式;(2)由(1)求得111(21)2(23)2[]2n n n d n n +-=+×+×,结合裂项法求和,求得数列{}n d 的前n 项和113(23)2n nT n =-+×,即可得证;(3)根据题意,求得数列{}n c 的通项公式,结合等差数列的求和公式和乘公比错位法求和,即可求解.【小问1详解】解:由等比数列{}n a 的各项均为正数,设公比为(0)q q >,因为5462,,4a a a 成等差数列,且满足2434a a =,可得4562432244a a a a a =+ìí=î,即()3451112321124a q a q a q a q a q ì=+ïí=ïî,即211214q q a q ì=+í=î,解得111,22a q ==,所以1111((222n nn a -=×=,设等差数列{b n }的公差为d ,因为2446,10b b S +==,可得112464610b d b d +=ìí+=î,解得11b d ==,所以1(1)1n b n n =+-´=,即数列{b n }的通项公式为n b n =.【小问2详解】证明:由(1)知1()2nn a =,n b n =,可得252123125111()(21)(23[)2(21)2(23)22n n n n n n n n b d a b b n n n n n +++++=×-+++×+×=,则()()11111111123254547878916212232n n n T n n +éùæöæöæöæö=-+-+-++-êúç÷ç÷ç÷ç÷ç÷××××××+×+×èøèøèøêúèøëûL 111112[]6(23)23(23)2n nn n +=×-=-+×+×,因为10(23)2n n >+×,所以1113(23)23n n -<+×,故13nT <.【小问3详解】解:因为()()n n n n b n c a b n ìï=í×ïî为奇数为偶数,可得,1,2n n n n c n n ìï=íæö×ïç÷èøî为奇数为偶数,则数列{}n c 的前2n 项和2111(1321)(2424162n n M n n =+++-+×+×++×L L ,令()2(121)13212n n n U n n +-=+++-==L ,令21112424162n n V n =×+×++×L ,则221111242416642n n V n +=×+×++×L ,两式相减得21222211(1)3111111242214283222214n n n n n n n -++×-=++++-×=-×-L 21212141112341()3222332n n n n n ++++=×--×=-×,所以8681868994994n n nn n V ++=-×=-×,所以数列{}n c 的前2n 项和2868994n n n nn M U V n +=+=+-×.19. 已知函数()()()ln 3cos 2f x x x =-+-的图象与()g x 的图象关于直线1x =对称.(1)求函数()g x 的解析式;(2)若()1g x ax -£在定义域内恒成立,求a 的取值范围;(3)求证:()2*11ln 2ni n g n n i =+æö<+Îç÷èøåN .【答案】(1)()()ln 1cos g x x x =++ (2)1 (3)证明见解析【解析】【分析】(1)根据两函数关于1x =对称求解析式即可;(2)先探求1a =时成立,再证明当1a =时恒成立,证明过程利用导数求出函数极大值即可;(3)根据(2)可得111g i i æö£+ç÷èø,转化为211111112212ni n g n i n n n n =+æöæö£+++++ç÷ç÷++-èøèøåL ,再由()11ln ln 1ln 1n n n n n+<=+-+,累加相消即可得证.【小问1详解】设()g x 图象上任意一点00(,)P x y ,则其关于直线1x =的对称点为00(2,)P x y ¢-,由题意知,P ¢点在函数()f x 图象上,所以()()()000002ln 1cos y g x f x x x ==-=++,所以()()ln 1cos g x x x =++.【小问2详解】不妨令()()1ln(1)cos 1(1)h x g x ax x x ax x =--=++-->-,则()0≤h x 在(1,)-+¥上恒成立,注意到(0)0h =且()h x 在(1,)Î-+¥x 上是连续函数,则0x =是函数()h x 的一个极大值点,所以(0)0h ¢=,又()1sin 1h x x a x ¢=--+,所以()010h a =¢-=,解得 1.a =下面证明:当1a =时,()0≤h x 在()1,x ¥Î-+上恒成立,令()()()ln 11x x x x j =+->-,则()1111x x x x j -=-=¢++,当(1,0)x Î-时,()0x j ¢>,()j x 单调递增;当(0,)x Î+¥时,()0,()x x j j ¢<单调递减,所以()(0)0x j j £=,即ln(1)x x +£在(1,)Î-+¥x 上恒成立,又cos 10x -£,所以()0≤h x ,综上,1a =.【小问3详解】由(2)知,()1g x x -£,则111g i iæö-£ç÷èø,111g i iæö\£+ç÷èø,211111112212ni n g n i n n n n =+æöæö\£+++++ç÷ç÷++-èøèøåL ,又由(2)知:ln(1)x x +£在(1,)-+¥恒成立,则ln 1£-x x 在(0,+∞)上恒成立,当且仅当1x =时取等号,则令()*0,1,N 1nx n n =ÎÎ+,则1<1ln 1n n n +-+,()11ln ln 1ln .1n n n n n +\<=+-+()()()()()111ln 1ln ln 2ln 1ln 2ln 21ln 2.122n n n n n n n n n\+++<+-++-+++--=++L L()2*11ln 2ni n g n n i =+æö\<+Îç÷èøåN ,证毕.【点睛】关键点点睛:在证明第(3)问时,关键应用(2)后合理变形,得到211111112212ni n g n i n n n n =+æöæö£+++++ç÷ç÷++-èøèøåL ,再令()*0,1,N 1n x n n =ÎÎ+,利用(2)中式子得()11ln ln 1ln 1n n n n n+<=+-+,能够利用累加相消是证明的关键.。

(完整版)高三数学模拟试题及答案

(完整版)高三数学模拟试题及答案

高三数学模拟试卷(满分150 分)一、选择题(每题 5 分,共 40 分)1.已知全集 U={1,2,3,4,5} ,会集 M ={1,2,3} , N = {3,4,5} ,则 M ∩ ( e U N)=()A. {1,2}B.{ 4,5}C.{ 3}D.{ 1,2,3,4,5} 2. 复数 z=i 2(1+i) 的虚部为()A. 1B. iC.- 1D. -i3.正项数列 { a } 成等比, a +a =3, a +a =12,则 a +a 的值是()n1 23445A. - 24B. 21C.24D. 484.一组合体三视图如右,正视图中正方形 边长为 2,俯视图为正三角形及内切圆, 则该组合体体积为()A.2 34B.3C.2 3 4 54 3 4 3+D.2735.双曲线以一正方形两极点为焦点,另两极点在双曲线上,则其离心率为( )A. 2 2B.2 +1C.2D. 1uuur uuur6. 在四边形 ABCD 中,“ AB =2 DC ”是“四边形ABCD 为梯形”的()A. 充足不用要条件B. 必要不充足条件C.充要条件D. 既不充足也不用要条件7.设 P 在 [0,5] 上随机地取值,求方程x 2+px+1=0 有实根的概率为( )A. 0.2B. 0.4C.0.5D.0.6y8. 已知函数 f(x)=Asin( ωx +φ)(x ∈ R, A>0, ω>0, |φ|<)5f(x)的解析式是(2的图象(部分)以下列图,则)A .f(x)=5sin( x+)B. f(x)=5sin(6 x-)O256 66xC. f(x)=5sin(x+)D. f(x)=5sin(3x- )366- 5二、填空题:(每题 5 分,共30 分)9. 直线 y=kx+1 与 A ( 1,0), B ( 1,1)对应线段有公共点,则 k 的取值范围是 _______. 10.记 (2x1)n 的张开式中第 m 项的系数为 b m ,若 b 32b 4 ,则 n =__________.x311 . 设 函 数 f ( x) xx 1x 1、 x 2、 x 3、 x 41 2的 四 个 零 点 分 别 为 , 则f ( x 1 +x 2 +x 3 +x 4 );12、设向量 a(1,2), b (2,3) ,若向量a b 与向量 c (4, 7)共线,则x 111. lim______ .x 1x 23x 414. 对任意实数 x 、 y ,定义运算 x* y=ax+by+cxy ,其中a、 b、c 常数,等号右的运算是平时意的加、乘运算 .已知 2*1=3 , 2*3=4 ,且有一个非零数m,使得任意数x,都有 x* m=2x, m=.三、解答:r r15.(本 10分)已知向量 a =(sin(+x), 3 cosx),b =(sin x,cosx),f(x)=⑴求 f( x)的最小正周期和增区;2⑵若是三角形 ABC 中,足 f(A)=3,求角 A 的.216.(本 10 分)如:直三棱柱(棱⊥底面)ABC — A 1B1C1中,∠ ACB =90°, AA 1=AC=1 , BC= 2,CD ⊥ AB, 垂足 D.C1⑴求: BC∥平面 AB 1C1;A1⑵求点 B 1到面 A 1CD 的距离 .PCA D r r a ·b .B 1B17.(本 10 分)旅游公司 4 个旅游供应 5 条旅游路,每个旅游任其中一条.( 1)求 4 个旅游互不一样样的路共有多少种方法;(2)求恰有 2 条路被中的概率 ;(3)求甲路旅游数的数学希望.18.(本 10 分)数列 { a n} 足 a1+2a2 +22a3+⋯+2n-1a n=4 n.⑴求通a n;⑵求数列 { a n} 的前 n 和S n.19.(本 12 分)已知函数f(x)=alnx+bx,且 f(1)= - 1, f′(1)=0 ,⑴求 f(x);⑵求 f(x)的最大;⑶若 x>0,y>0, 明: ln x+lny≤xy x y 3.220.(本 14 分) F 1, F 2 分 C :x2y 21(a b 0) 的左、右两个焦点,若 Ca 2b 2上的点 A(1,3124.)到 F , F 两点的距离之和等于2⑴写出 C 的方程和焦点坐 ;⑵ 点 P ( 1,1)的直 与 交于两点 D 、 E ,若 DP=PE ,求直 DE 的方程 ;4⑶ 点 Q ( 1,0)的直 与 交于两点 M 、N ,若△ OMN 面 获取最大,求直 MN 的方程 .21. (本 14 分) 任意正 数 a 1、 a 2、 ⋯ 、an ;求1/a 1+2/(a 1 +a 2)+⋯ +n/(a 1+a 2+⋯ +a n )<2 (1/a 1+1/a 2+⋯ +1/a n )9 高三数学模 答案一、 :. ACCD BAD A二、填空 :本 主要考 基 知 和基本运算.每小 4 分,共 16 分 .9.[-1,0] 10.5 11.19 12. 2 13.1 14. 35三、解答 :15.本 考 向量、二倍角和合成的三角函数的公式及三角函数性 ,要修业生能运用所学知 解决 .解:⑴ f(x)= sin xcosx+3 + 3 cos2x = sin(2x+ )+ 3⋯⋯⋯2 23 2 T=π, 2 k π - ≤ 2x+≤ 2 k π +, k ∈ Z,232最小正周期 π, 增区[ k π -5, k π + ], k ∈ Z.⋯⋯⋯⋯⋯⋯⋯⋯1212⑵由 sin(2A+ )=0 , <2A+ <7 ,⋯⋯⋯⋯⋯33 或533∴ 2A+ =π或 2π,∴ A=⋯⋯⋯⋯⋯⋯⋯⋯33616.、本 主要考 空 、 面的地址关系,考 空 距离角的 算,考 空 想象能力和推理、 能力, 同 也可考 学生灵便利用 形, 建立空 直角坐 系, 借助向量工具解决 的能力. ⑴ 明:直三棱柱ABC — A 1B 1C 1 中, BC ∥ B 1C 1,又 BC 平面 A B 1C 1,B 1C 1 平面 A B 1C 1,∴ B 1C 1∥平面 A B 1C 1;⋯⋯⋯⋯⋯⋯⑵(解法一)∵ CD ⊥ AB 且平面 ABB 1A 1⊥平面 AB C,C 11 1 1∴ CD ⊥平面 ABBA ,∴ CD ⊥AD 且 CD ⊥A D ,∴∠ A DA 是二面角 A 1— CD —A 的平面角,1A 1B 1在 Rt △ ABC,AC=1,BC= 2 ,PC∴ AB= 3 , 又 CD ⊥ AB ,∴ AC 2=AD × ABADB∴ AD=3, AA1131=1,∴∠ DA 1B 1=∠ A DA=60 °,∠ A 1 B 1A=30°,∴ A B 1 ⊥A D又 CD ⊥ A 1D ,∴ AB 1⊥平面 A 1CD , A 1D ∩ AB 1=P, ∴ B 1P 所求点 B 1 到面 A 1CD 的距离 . B P=A 1 B 1cos ∠ A 1 B 1A= 33cos30 =° .12即点 B 1 到面 A 1 CD 的距离 3.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯21 × 3 1 z ( 2)(解法二) 由 V B 1- A 1CD =V C - A 1B 1D =C 132×6 = 2,而 cos ∠ A 1 CD= 2 × 6 = 3 ,AB13 6 2 3 31△A 1CD1 ×2 ×6 ×6 =2,B 1 到平面CS=3 332A ByA 1CD 距离 h, 1×22, 得 h= 3所求 .Dx h=33 6 2⑶(解法三)分 以CA 、CB 、CC 1 所在直 x 、y 、z 建立空 直角坐 系(如 )A ( 1,0, 0), A 1( 1, 0, 1),C (0, 0, 0), C 1( 0, 0, 1),B (0,2 , 0), B 1( 0, 2 , 1),uuurr∴ D ( 2 , 2, 0) CB =( 0, 2 , 1), 平面 A 1CD 的法向量 n =( x , y , z ),3 31r uuur3n CD2x2y 0rruuur,取 n=( 1, -2 , - 1)n CA 1 x z 0r uuur点 B 1 到面 A 1CD 的距离d= n CB 13r⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯n217.本 主要考 排列,典型的失散型随机 量的概率 算和失散型随机 量分布列及希望等基 知 和基本运算能力.解:( 1) 4 个旅游 互不一样样的 路共有:A 54=120 种方法; ⋯(2)恰有两条 路被 中的概率 :P 2 C 52 (2 42) 28=54⋯125(3) 甲 路旅游 数ξ, ξ~ B(4, 1)14⋯⋯⋯⋯⋯⋯ 5∴希望 E ξ=np=4×=5 5答 : ( 1) 路共有120 种,(2)恰有两条 路被 中的概率 0.224, ( 3)所求希望 0.8 个数 .⋯⋯⋯⋯⋯⋯⋯⋯⋯18.本 主要考 数列的基 知 ,考 分 的数学思想,考 考生 合 用所学知 造性解决 的能力.解:( 1) a 1+2 a 2+22a 3+⋯ +2n - 1a n =4n ,∴ a 1+2 a 2+22a 3+⋯ +2n a n+1=4n+1,相减得 2n a n+1=3× 4n , ∴ a n+1=3× 2n ,4(n1) 又 n=1 a 1=4,∴ 上 a n =2n 1所求;⋯⋯⋯⋯⋯⋯⋯⋯⋯3(n 2)⑵ n ≥2 , S n=4+3(2 n- 2), 又 n=1 S 1=4 也建立, ∴ S n =3× 2 n - 2⋯⋯⋯⋯⋯⋯ 12 分19.本 主要考 函数、 数的基本知 、函数性 的 理以及不等式的 合 ,同 考 考生用函数放 的方法 明不等式的能力.解:⑴由 b= f(1)= - 1, f ′(1)= a+b=0, ∴ a=1, ∴f(x)=ln x- x 所求; ⋯⋯⋯⋯⋯⑵∵ x>0,f ′(x)=1- 1=1x ,xxx 0<x<1x=1 x>1 f (′x) +0 - f(x)↗极大↘∴ f (x)在 x=1 获取极大 - 1,即所求最大 - 1; ⋯⋯⋯⋯⋯⑶由⑵得 lnx ≤x- 1 恒建立, ∴ln x+ln y=ln xy+ ln x ln y ≤ xy 1 + x 1 y 1 = xy x y 3建立⋯⋯⋯22 22220.本 考 解析几何的基本思想和方法,求曲 方程及曲 性 理的方法要求考生能正确分析 , 找 好的解 方向, 同 兼 考 算理和 推理的能力, 要求 代数式合理演 ,正确解析最 .解:⑴ C 的焦点在 x 上,由 上的点A 到 F 1、F 2 两点的距离之和是 4,得 2a= 4,即 a=2 .;3134 1.得 b 2=1,于是 c 2=3 ;又点 A(1,) 在 上,因此222b 2因此 C 的方程x 2y 2 1,焦点 F 1 ( 3,0), F 2 ( 3,0). ,⋯⋯⋯4⑵∵ P 在 内,∴直DE 与 订交,∴ D( x 1,y 1),E(x 2,y 2),代入 C 的方程得x 12+4y 12- 4=0, x 22+4y 22- 4=0,相减得 2(x 1- x 2 )+4× 2× 1 (y 1- y 2)=0 , ∴斜率 k=-11 4∴ DE 方程 y- 1= - 1(x-), 即 4x+4y=5; ⋯⋯⋯4(Ⅲ )直 MN 不与 y 垂直,∴MN 方程 my=x- 1,代入 C 的方程得( m 2+4) y 2+2my- 3=0,M( x 1,y 1 ),N( x 2 ,y 2), y 1+y 2=-2m 3 ,且△ >0 建立 .m 2 4, y 1y 2=-m 2 4又 S △ OMN = 1|y 1- y 2|= 1 ×4m212(m 24) = 2 m23, t=m 2 3 ≥ 3 ,2 2m 2 4m 24S△OMN =2,(t+1t1tt ) ′=1 - t-2>0t≥ 3 恒建立,∴t=3t+1获取最小, S△OMN最大,t此 m=0, ∴ MN 方程 x=1⋯⋯⋯⋯⋯。

2020-2021上海曹杨二中附属江桥实验中学高三数学上期中第一次模拟试卷(及答案)

2020-2021上海曹杨二中附属江桥实验中学高三数学上期中第一次模拟试卷(及答案)

2020-2021上海曹杨二中附属江桥实验中学高三数学上期中第一次模拟试卷(及答案)一、选择题1.设x ,y 满足不等式组110750310x y x y x y +-≤⎧⎪--≥⎨⎪--≤⎩,若Z ax y =+的最大值为29a +,最小值为2a +,则实数a 的取值范围是( ).A .(,7]-∞-B .[3,1]-C .[1,)+∞D .[7,3]--2.下列函数中,y 的最小值为4的是( )A .4y x x=+B.2y =C .4x x y e e -=+D .4sin (0)sin y x x xπ=+<< 3.设等差数列{}n a 的前n 项和为n S ,且()*11n n nS S n N n +>∈+.若870a a +<,则( ) A .n S 的最大值是8S B .n S 的最小值是8S C .n S 的最大值是7SD .n S 的最小值是7S4.若正数,x y 满足20x y xy +-=,则32x y+的最大值为( ) A .13B .38C .37D .15.若ABC V 的对边分别为,,a b c ,且1a =,45B ∠=o ,2ABC S =V ,则b =( ) A .5B .25CD.6.已知AB AC ⊥u u u v u u u v ,1AB t=u u uv ,AC t =u u u v ,若P 点是ABC V 所在平面内一点,且4AB AC AP AB AC=+u u u v u u u v u u u v u u u v u u u v ,则·PB PC u u u v u u u v 的最大值等于( ). A .13B .15C .19D .217.已知:0x >,0y >,且211x y+=,若222x y m m +>+恒成立,则实数m 的取值范围是( ) A .()4,2- B .(][),42,-∞-+∞U C .()2,4-D .(][),24,-∞-⋃+∞8.已知等比数列{}n a 的各项均为正数,若3132312log log log 12a a a ++⋯+=,则67a a =( )A .1B .3C .6D .99.已知ABC ∆的三边长是三个连续的自然数,且最大的内角是最小内角的2倍,则最小角的余弦值为( ) A .34B .56C .78D .2310.已知正数x 、y 满足1x y +=,则141x y++的最小值为( ) A .2B .92 C .143D .511.在等差数列{}n a 中,如果123440,60a a a a +=+=,那么78a a +=( ) A .95B .100C .135D .8012.设{}n a 是首项为1a ,公差为-2的等差数列,n S 为其前n 项和,若1S ,2S ,4S 成等比数列,则1a = ( ) A .8B .-8C .1D .-1二、填空题13.已知对满足4454x y xy ++=的任意正实数x ,y ,都有22210x xy y ax ay ++--+≥,则实数a 的取值范围为______.14.已知数列111112123123n+++++++L L L ,,,,,,则其前n 项的和等于______. 15.已知的三边长分别为3,5,7,则该三角形的外接圆半径等于_________.16.已知各项为正数的等比数列{}n a 满足7652a a a =+,若存在两项,m n a a 使得122m n a a a ⋅=,则14m n+的最小值为__________. 17.已知数列{}n a 的前n 项和为n S ,11a =,且1n n S a λ=-(λ为常数).若数列{}n b 满足2n n a b n =-920n +-,且1n n b b +<,则满足条件的n 的取值集合为________.18.我国古代数学名著《九章算术》里有问题:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢,问:__________日相逢? 19.在ABC ∆中,,,a b c 分别是角,,A B C 的对边,已知,,a b c 成等比数列,且22a c ac bc -=-,则sin cb B的值为________. 20.设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++等于______.三、解答题21.已知等差数列{}n a 满足12231()()()2(1)n n a a a a a a n n +++++++=+L (*n N ∈). (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)求数列12n n a -⎧⎫⎨⎬⎩⎭的前n 项和n S . 22.若n S 是公差不为0的等差数列{}n a 的前n 项和,且124,,S S S 成等比数列,24S =. (1)求数列{}n a 的通项公式;(2)设13,n n n n b T a a +=是数列{}n b 的前n 项和,求使得20n m T <对所有n N +∈都成立的最小正整数m .23.已知n S 是数列{}n a 的前n 项之和,*111,2,n n a S na n N +==∈.(1)求数列{}n a 的通项公式; (2)设211(1)n n n n a b a a ++=-⋅⋅,数列{}n b 的前n 项和n T ,若112019n T +<,求正整数n 的最小值.24.在ABC ∆角中,角A 、B 、C 的对边分别是a 、b 、c,若asinB =. (1)求角A ;(2)若ABC ∆的面积为5a =,求ABC ∆的周长. 25.在ABC ∆中,内角,,A B C 的对边分别是,,a b c,已知222,3A b c a π=+=. (1)求a 的值;(2)若1b =,求ABC ∆的面积.26.已知函数()[)22,1,x x af x x x++=∈+∞.(1)当12a =时,求函数()f x 的最小值; (2)若对任意[)1,x ∈+∞,()0f x >恒成立,试求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z 的最大值.作出不等式组110750310x y x y x y +-≤⎧⎪--≥⎨⎪--≤⎩对应的平面区域(如图阴影部分),目标函数z ax y =+的几何意义表示直线的纵截距,即y ax z =-+,(1)当0a <时,直线z ax y =+的斜率为正,要使得z 的最大值、最小值分别在,C A 处取得,则直线z ax y =+的斜率不大于直线310x y --=的斜率, 即3a -≤,30a ∴-≤<.(2)当0a >时,直线z ax y =+的斜率为负,易知最小值在A 处取得,要使得z 的最大值在C 处取得,则直线z ax y =+的斜率不小于直线110x y +-=的斜率 1a -≥-, 01a ∴<≤.(3)当0a =时,显然满足题意. 综上:31a -≤….故选:B . 【点睛】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法,确定目标函数的斜率关系是解决本题的关键.2.C解析:C 【解析】 【分析】由基本不等式求最值的规则:“一正,二定,三相等”,对选项逐一验证即可.选项A 错误,x Q 可能为负数,没有最小值;选项B错误,化简可得2y ⎫=,=,即21x =-,显然没有实数满足21x =-;选项D 错误,由基本不等式可得取等号的条件为sin 2x =, 但由三角函数的值域可知sin 1x ≤; 选项C 正确,由基本不等式可得当2x e =, 即ln 2x =时,4xxy e e -=+取最小值4,故选C.【点睛】本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).3.D解析:D 【解析】 【分析】将所给条件式变形,结合等差数列前n 项和公式即可证明数列的单调性,从而由870a a +<可得7a 和8a 的符号,即可判断n S 的最小值.【详解】由已知,得()11n n n S nS ++<, 所以11n n S S n n +<+, 所以()()()()1111221n n n a a n a a n n ++++<+, 所以1n n a a +<,所以等差数列{}n a 为递增数列. 又870a a +<,即871a a <-, 所以80a >,70a <,即数列{}n a 前7项均小于0,第8项大于零,所以n S 的最小值为7S , 故选D. 【点睛】本题考查了等差数列前n 项和公式的简单应用,等差数列单调性的证明和应用,前n 项和最值的判断,属于中档题.4.A解析:A 【解析】 【分析】根据条件可得出2x >,212y x =+-,从而33222(2)52x y x x =+-++-,再根据基本不等式可得出3123x y ≤+,则32x y +的最大值为13.【详解】0x Q >,0y >,20x y xy +-=,2122x y x x ∴==+--,0x >, 333222212(2)522x y x x x x ∴==+++-++--,22(2)5592x x -++≥=-Q , 当且仅当122x x -=-,即3x =时取等号, 31232(2)52x x ∴≤-++-,即3123x y ≤+, 32x y ∴+的最大值为13. 故选:A. 【点睛】本题考查了利用基本不等式求最值的方法,注意说明等号成立的条件,考查了计算和推理能力,属于中档题.5.A解析:A 【解析】在ABC ∆中,1a =,045B ∠=,可得114522ABC S csin ∆=⨯⨯︒=,解得c =.由余弦定理可得:()222222142214252b ac accosB =+-=+-⨯⨯⨯=. 6.A解析:A 【解析】以A 为坐标原点,建立平面直角坐标系,如图所示,则1(,0)B t,(0,)C t ,10)4(0,1)(1,4)AP =+=u u u r (,,即14)P (,,所以114)PB t=--u u u r (,,14)PC t =--u u u r (,,因此PB PC ⋅u u u r u u u r11416t t =--+117(4)t t =-+,因为114244t t t t+≥⋅=,所以PB PC ⋅u u u r u u u r 的最大值等于13,当14t t =,即12t =时取等号.考点:1、平面向量数量积;2、基本不等式.7.A解析:A 【解析】 【分析】若222x y m m +>+恒成立,则2x y +的最小值大于22m m +,利用均值定理及“1”的代换求得2x y +的最小值,进而求解即可. 【详解】 由题,因为211x y+=,0x >,0y >, 所以()214422242448x y x yx y x y y x y x ⎛⎫++=+++≥+⋅=+= ⎪⎝⎭,当且仅当4x y y x =,即4x =,2y =时等号成立,因为222x y m m +>+恒成立,则228m m +<,即2280m m +-<,解得42m -<<, 故选:A 【点睛】本题考查均值不等式中“1”的代换的应用,考查利用均值定理求最值,考查不等式恒成立问题.8.D解析:D 【解析】 【分析】首先根据对数运算法则,可知()31212log ...12a a a =,再根据等比数列的性质可知()6121267.....a a a a a =,最后计算67a a 的值.【详解】由3132312log log log 12a a a +++=L ,可得31212log 12a a a =L ,进而可得()6121212673a a a a a ==L ,679a a ∴= .【点睛】本题考查了对数运算法则和等比数列性质,属于中档题型,意在考查转化与化归和计算能力.9.A解析:A 【解析】 【分析】设三角形的三边分别为,1,2(*)n n n n N ++∈,根据余弦定理求出最小角的余弦值,然后再由正弦定理求得最小角的余弦值,进而得到n 的值,于是可得最小角的余弦值. 【详解】由题意,设ABC ∆的三边长分别为,1,2(*)n n n n N ++∈,对应的三角分别为,,A B C , 由正弦定理得222sin sin sin 22sin cos n n n n A C A A A+++===, 所以2cos 2n A n+=. 又根据余弦定理的推论得222(2)(1)5cos 2(2)(1)2(2)n n n n A n n n +++-+==+++.所以2522(2)n n n n ++=+,解得4n =,所以453cos 2(42)4A +==+,即最小角的余弦值为34. 故选A . 【点睛】解答本题的关键是求出三角形的三边,其中运用“算两次”的方法得到关于边长的方程,使得问题得以求解,考查正余弦定理的应用及变形、计算能力,属于基础题.10.B解析:B 【解析】 【分析】由1x y +=得(1)2x y ++=,再将代数式(1)x y ++与141x y++相乘,利用基本不等式可求出141x y++的最小值. 【详解】1x y +=Q ,所以,(1)2x y ++=,则1414412()[(1)]()559111x y x y x y x y y x ++=+++=++=+++…, 所以,14912x y ++…, 当且仅当4111x y y x x y +⎧=⎪+⎨⎪+=⎩,即当2313x y ⎧=⎪⎪⎨⎪=⎪⎩时,等号成立,因此,141x y ++的最小值为92, 故选B . 【点睛】本题考查利用基本不等式求最值,对代数式进行合理配凑,是解决本题的关键,属于中等题.11.B解析:B 【解析】 【分析】根据等差数列{}n a 性质可知:1234a a a a ++,,56a a +,78a a +构成新的等差数列,然后求出结果 【详解】由等差数列的性质可知:1234a a a a ++,,56a a +,78a a +构成新的等差数列,()()()()781234124140320100a a a a a a a a ⎡⎤∴+=++-+-+=+⨯=⎣⎦故选B 【点睛】本题主要考查了等差数列的性质运用,等差数列中连续的、等长的、间隔相等的几项的和依然成等差,即可计算出结果。

高三数学试卷模拟题及答案

高三数学试卷模拟题及答案

高三数学试卷模拟题及答案
第一部分:选择题
1.下列函数中,是奇函数的是() A. y=x3+x B. y=2x2−3x C.
y=2x+x D. y=x2−x
答案:A
2.在等差数列 $2, 5, 8, \\ldots$ 中,第n项为a n,则a10=() A. 19
B. 20
C. 21
D. 22
答案:D
3.若 $\\log_2 a = 3$,$\\log_5 b = 2$,则 $\\log_{10}(a^2b)=$ () A.
12 B. 15 C. 18 D. 24
答案:A
4.已知P是(−1,3)点到直线2x−y+1=0的距离,Q是(−2,1)点到
直线x−3y+1=0的距离,则P:Q=() A. 2:1 B. 1:2 C. 3:1 D. 1:3
答案:B
5.函数 $f(x)=\\frac{x}{x-3}$,则f(f(x))的定义域是() A. x eq3 B.
x eq0 C. x eq3且x eq0 D. 全体实数
答案:A
第二部分:解答题
1.已知函数 $f(x)=\\log_ax$,a eq1,求证:
$f(x)+f\\left(\\frac{1}{x}\\right)=0$ 成立的充分必要条件是a=1或a=−1。

(证明过程略)
2.某数列的前n项和S n满足关系式S n=2n2+n,求该数列的通项公
式。

(解答过程略)
3.已知二次函数y=ax2+bx+c的图像过点(1,2),且对称轴为直线
x=2,求a,b,c的值。

(解答过程略)
以上为高三数学试卷模拟题及答案,同学们可以仔细查阅,认真思考,争取取
得好成绩。

2020-2021学年辽宁省营口市高三(上)期末数学试题(原卷+答案)_

2020-2021学年辽宁省营口市高三(上)期末数学试题(原卷+答案)_

2020-2021学年辽宁省营口市高三(上)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)已知集合M={x|﹣x2+2x>0},,则M∩N=()A.(0,2)B.[0,2)C.(2,+∞)D.[1,2)2.(5分)在复平面内,复数z对应的点的坐标是(2,3),则iz=()A.2+3i B.2﹣3i C.﹣3+2i D.﹣3﹣2i3.(5分)已知空间中不过同一点的三条直线a,b,l,则“a,b,l两两相交”是“a,b,l共面”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)勒洛三角形是定宽曲线所能构成的面积最小的图形,它是德国机械学家勒洛首先进行研究的,其画法是:先画一个正三角形,再以正三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形,如图所示,若正三角形ABC的边长为2,则勒洛三角形面积为()A.B.C.D.4π5.(5分)某射击运动员进行射击训练,若他连续射击7次,其中射中5发,2发未中,则他前4发均射中的概率是()A.B.C.D.6.(5分)设{a n}是公差为d的等差数列,{b n}是公比为q的等比数列,若数列{a n+b n}的前n项和为S n=n﹣1+2n (n∈N*),则d﹣q的值是()A.2B.1C.﹣1D.﹣27.(5分)酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:100ml血液中酒精含量低于20mg的驾驶员可以驾驶汽车,酒精含量大于等于20mg且小于80mg的驾驶员即为酒后驾车,80mg及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了1.5mg/ml,如果在停止喝酒以后,他血液中酒精含量会以每小时36%的速度减少,那么他至少经过几个小时才能驾驶汽车?()(参考数据:lg2≈0.301,lg3≈0.477)A.3B.4C.5D.68.(5分)已知圆C的半径为3,AB是圆C的一条直径,M,N为圆上动点,且MN=4,点E在线段MN上,则的最小值为()A.﹣3B.﹣4C.﹣5D.﹣6二、选择题:本题共4小题,每小题5分,共20分.在每个小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分.9.(5分)下列四个函数中,以π为周期的偶函数为()A.f(x)=sin2x B.f(x)=cos2xC.D.f(x)=|tan x|10.(5分)若a,b,c满足a>b>c,且ac<0,则下列选项正确的是()A.B.ac<bcC.a5>b5D.11.(5分)曲线G是平面内到直线l1:x=2和直线l2:y=3的距离之积等于常数t(t>0)的点的轨迹,动点M在曲线G上,以下结论正确的有()A.曲线G关于点(2,3)对称B.曲线G共有2条对称轴C.若点A,B分别在直线l1,l2上,则|MA|+|MB|不小于D.点M关于l1,l2的对称点分别为P,Q,则△MPQ的面积为4t12.(5分)函数,则()A.f(x)存在对称中心B.f(x)存在对称轴C.D.|f(x)|≤2|x|三、填空题:本题共4小题,每小题5分,共20分.13.(5分)若a>0,b>0,且a,4,b成等差数列,则ab的最大值是.14.(5分)若直线l1:y=kx+4与直线l2关于点M(1,2)对称,则当l2经过点N(0,﹣1)时,点M到直线l2的距离为.15.(5分)定义在R的偶函数f(x)在(﹣∞,0]上单调递增,且f(3)=0,则不等式(m+1)f(m﹣2)≤0的解集是.16.(5分)直三棱柱ABC﹣A1B1C1的棱长均为,M为AB的中点,过点M的平面截三棱柱ABC﹣A1B1C1的外接球,则所得的截面面积的取值范围为.四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.在△ABC中,内角A、B、C所对的边分别为a、b、c,且sin2B﹣sin2A=sin2C﹣sin A sin C.(1)求角B的大小;(2)若△ABC的周长为9,且b=4,求△ABC的面积.18.设正项等比数列{a n}中,a1=1,前n项和为S n,且____.(1)求数列{a n}的通项公式;(2)若,求数列{a n b n}的前n项和T n.在①;②;③S3=13.这三个条件中,请选择一个满足题意的正确的条件将上面的题目补充完整,并解答本题.19.三棱锥P﹣ABC中,AC⊥BC,平面PAC⊥平面ABC,PA=PC=AC=2,BC=4,E,F分别为PC和PB的中点,平面ABC∩平面AEF=l.(1)证明:直线l∥BC;(2)设直线PM与直线EF所成的角为α,直线PM与平面AEF所成的角为β,则在直线l上是否存在一点M,使得.若存在,求出|AM|的值;若不存在,说明理由.20.某医院已知5名病人中有一人患有一种血液疾病,需要通过化验血液来确定患者,血液化验结果呈阳性的即为患病,呈阴性即没患病.院方设计了两种化验方案:方案甲:对患者逐个化验,直到能确定患者为止;方案乙:先将3人的血液混在一起化验,若结果呈阳性则表明患者在此三人中,然后再逐个化验,直到能确定患者为止;若结果呈阴性则在另外2人中选取1人化验.(1)求方案甲化验次数X的分布列;(2)求甲方案所需化验次数不少于乙方案所需化验次数的概率.21.已知椭圆过点P(0,﹣1),离心率为.(1)求椭圆C的方程;(2)l1,l2是过点P且互相垂直的两条直线,其中l1交圆x2+y2=a2于A,B两点,l2交椭圆C于另一个点Q,求△QAB面积取得最大值时直线l1的方程.22.已知函数f(x)=e x﹣a(lnx+1)(a>0)(1)若f(x)在区间上存在极值,求实数a的范围;(2)若f(x)在区间上的极小值等于0,求实数a的值;(3)令g(x)=x2﹣ax+a2,h(x)=a(f(x)﹣e x)+g(x).曲线y=h(x)与直线y=m交于A(x1,y1),B(x2,y2)两点,求证:.2020-2021学年辽宁省营口市高三(上)期末数学试卷参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)已知集合M={x|﹣x2+2x>0},,则M∩N=()A.(0,2)B.[0,2)C.(2,+∞)D.[1,2)【解答】解:∵集合M={x|﹣x2+2x>0}={x|0<x<2},={y|≥0},∴M∩N={x|1≤x<2}=(0,2).故选:A.2.(5分)在复平面内,复数z对应的点的坐标是(2,3),则iz=()A.2+3i B.2﹣3i C.﹣3+2i D.﹣3﹣2i【解答】解:复平面内,复数z对应的点的坐标是(2,3),则z=2+3i,所以iz=i(2+3i)=2i﹣3=﹣3+2i.故选:C.3.(5分)已知空间中不过同一点的三条直线a,b,l,则“a,b,l两两相交”是“a,b,l共面”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:空间中不过同一点的三条直线m,n,l,若m,n,l在同一平面,则m,n,l相交或m,n,l有两个平行,另一直线与之相交,或三条直线两两平行.而若“m,n,l两两相交”,则“m,n,l在同一平面”成立.故“a,b,l两两相交”是“a,b,l共面”的充分不必要条件,故选:A.4.(5分)勒洛三角形是定宽曲线所能构成的面积最小的图形,它是德国机械学家勒洛首先进行研究的,其画法是:先画一个正三角形,再以正三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形,如图所示,若正三角形ABC的边长为2,则勒洛三角形面积为()A.B.C.D.4π【解答】解:如图:BC=2,以B为圆心的扇形面积是=,△ABC的面积是×2×2×=,∴勒洛三角形的面积为3个扇形面积减去2个正三角形面积,即×3﹣2=2π﹣2.故选:A.5.(5分)某射击运动员进行射击训练,若他连续射击7次,其中射中5发,2发未中,则他前4发均射中的概率是()A.B.C.D.【解答】解:某射击运动员进行射击训练,若他连续射击7次,其中射中5发,2发未中,基本事件总数n==21,他前4发均射中包含的基本事件个数m==3,∴他前4发均射中的概率是P===.故选:D.6.(5分)设{a n}是公差为d的等差数列,{b n}是公比为q的等比数列,若数列{a n+b n}的前n项和为S n=n﹣1+2n (n∈N*),则d﹣q的值是()A.2B.1C.﹣1D.﹣2【解答】解:设{a n}是公差为d的等差数列,{b n}是公比为q的等比数列,若数列{a n+b n}的前n项和为S n=n﹣1+2n(n∈N*),则a1+b1=2,a2+b2=a1+d+b1q=3,a3+b3=a1+2d+b1q2=5,a4+b4=a1+3d+b1q3=9,解得a1=1,d=0,b1=1,q=2,则d﹣q=﹣2,故选:D.7.(5分)酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:100ml血液中酒精含量低于20mg的驾驶员可以驾驶汽车,酒精含量大于等于20mg且小于80mg的驾驶员即为酒后驾车,80mg及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了1.5mg/ml,如果在停止喝酒以后,他血液中酒精含量会以每小时36%的速度减少,那么他至少经过几个小时才能驾驶汽车?()(参考数据:lg2≈0.301,lg3≈0.477)A.3B.4C.5D.6【解答】解:设他至少经过x个小时才能驾驶汽车,则150(1﹣36%)x<20,∴0.64x<,∴x>==≈≈4.51,∴他至少经过5个小时才能驾驶汽车,故选:C.8.(5分)已知圆C的半径为3,AB是圆C的一条直径,M,N为圆上动点,且MN=4,点E在线段MN上,则的最小值为()A.﹣3B.﹣4C.﹣5D.﹣6【解答】解:由题意得,,=()•()=++,=++,=,当时,||取最小值,此时||min==.故的最小值为﹣9+5=4.故选:B.二、选择题:本题共4小题,每小题5分,共20分.在每个小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分.9.(5分)下列四个函数中,以π为周期的偶函数为()A.f(x)=sin2x B.f(x)=cos2xC.D.f(x)=|tan x|【解答】解:因为f(x)=sin2x,所以周期为,又f(﹣x)=sin(﹣2x)=﹣sin2x=﹣f(x),所以函数为奇函数,故选项A错误;因为f(x)=cos2x,所以周期为,又f(﹣x)=cos(﹣2x)=cos2x=f(x),所以函数为偶函数,故选项B正确;因为=cos x,所以周期为2π,故选项C错误;因为f(x)=|tan x|,所以周期为π,又f(﹣x)=|tan(﹣x)|=|tan x|=f(x),所以函数为偶函数,故选项D正确.故选:BD.10.(5分)若a,b,c满足a>b>c,且ac<0,则下列选项正确的是()A.B.ac<bcC.a5>b5D.【解答】解:a>b>c,且ac<0,则a>0,c<0,由于<,故A错误;∵a>b,∴ac<bc,a5>b5,故B,C正确;由于y=()x为减函数,故D错误.故选:BC.11.(5分)曲线G是平面内到直线l1:x=2和直线l2:y=3的距离之积等于常数t(t>0)的点的轨迹,动点M在曲线G上,以下结论正确的有()A.曲线G关于点(2,3)对称B.曲线G共有2条对称轴C.若点A,B分别在直线l1,l2上,则|MA|+|MB|不小于D.点M关于l1,l2的对称点分别为P,Q,则△MPQ的面积为4t【解答】解:由题意设动点坐标为(x,y),则利用题意及点到直线的距离公式可得曲线G的方程为|x﹣2||y﹣3|=t,对比曲线方程|xy|=t,可知曲线G是由|xy|=t向右平移2个单位,再向上平移3个单位得到的,平移只改变位置,不改变曲线的性质,对于A,因为|xy|=t关于原点(0,0)对称,可得曲线G:|x﹣2||y﹣3|=t关于点(2,3)对称,故A正确;对于B,因为|xy|=t有4条对称轴,x=0,y=0,y=±x,可得曲线G有四条对称轴,故B错误;对于C,设点M到直线l1的距离为d1,点M到直线l2的距离为d2,则|MA|+|MB|≥d1+d2≥2=2,故C 正确;对于D,点M关于l1,l2的对称点分别为P,Q,则|PM|=2d1,|QM|=2d2,S△MPQ=|PM||QM|=2d1d2=2t,故D错误.故选:AC.12.(5分)函数,则()A.f(x)存在对称中心B.f(x)存在对称轴C.D.|f(x)|≤2|x|【解答】解:因为函数y=sinπx的值域为[﹣1,1],对称轴为x=+k(k∈Z),对称中心为(k,0)(k∈Z),而函数y=x2+3x+4=(x+)2+≥,对称轴为x=﹣,没有对称中心,故函数f(x)存在对称轴x=﹣,没有对称中心,且f(x)≤,因为函数y=x﹣sin x,y′=1﹣cos x,在[0,+∞)上,y′=1﹣cos x≥0,所以y=x﹣sin x递增,所以x≥sin x,因为函数y=|x|和y=|sin x|都为偶函数,所以总有|x|≥|sin x|.即|πx|≥|sinπx|.故|f(x)|≤≤π|x≤2|x|,结合选项可知BCD正确.故选:BCD.三、填空题:本题共4小题,每小题5分,共20分.13.(5分)若a>0,b>0,且a,4,b成等差数列,则ab的最大值是16.【解答】解:若a>0,b>0,且a,4,b成等差数列,则a+b=8,则ab≤()2=16,当且仅当a=b=4时取等号,故答案为:16.14.(5分)若直线l1:y=kx+4与直线l2关于点M(1,2)对称,则当l2经过点N(0,﹣1)时,点M到直线l2的距离为.【解答】解:因为直线l1:y=kx+4恒过定点P(0,4),所以P(0,4)关于点M(1,2)对称,所以P(0,4)关于点M(1,2)的对称点为(2,0),此时(2,0)和N(0,﹣1)都在直线l2上,由直线方程的两点式可得,即x﹣2y﹣2=0,所以点M到直线l2的距离为.故答案为:.15.(5分)定义在R的偶函数f(x)在(﹣∞,0]上单调递增,且f(3)=0,则不等式(m+1)f(m﹣2)≤0的解集是{m|m=﹣1或m≥5}.【解答】解:∵偶函数f(x)在(﹣∞,0]上单调递增,且f(3)=0,∴f(x)的图象如图:当m﹣2=3时,即m=5,则不等式等价为6f(3)≤0成立,当m﹣2=﹣3时,即m=﹣1,则不等式等价为0f(﹣3)≤0成立,当m≠﹣1且m≠5时,不等式等价为或,得或,即或,得m>5或是空集,综上m≥5或m=﹣1,即不等式的解集为{m|m=﹣1或m≥5},故答案为:{m|m=﹣1或m≥5}.16.(5分)直三棱柱ABC﹣A1B1C1的棱长均为,M为AB的中点,过点M的平面截三棱柱ABC﹣A1B1C1的外接球,则所得的截面面积的取值范围为[3π,7π].【解答】解:依题意可知,三棱柱ABC﹣A1B1C1的外接球球心O为上下底面的外接圆的圆心的连线的中点,如图所示:即可知当过点M的平面为平面ABC时,截得的截面圆最小,圆的半径为,当过点M的平面与上下底面垂直且过球心时,截得的截面圆最大,圆的半径即为球的半径.设上底面的外接圆半径为r,则2r=,所以r=2,设三棱柱ABC﹣A1B1C1的外接球的半径为R,则R2=r2+=7,即R=.所以截面圆最大为πR2=7π,截面圆最小为π=3π.所以所得的截面面积的取值范围为[3π,7π].故答案为:[3π,7π].四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.在△ABC中,内角A、B、C所对的边分别为a、b、c,且sin2B﹣sin2A=sin2C﹣sin A sin C.(1)求角B的大小;(2)若△ABC的周长为9,且b=4,求△ABC的面积.【解答】解:(1)由题意可得:sin2C+sin2A﹣sin2B=sin A sin C,由正弦定理得c2+a2﹣b2=ac,∴,∵0<B<π,∴.(2)∵△ABC周长a+b+c=9,且b=4,∴a+c=5,由已知,16=a2+c2﹣ac=(a+c)2﹣3ac,可得:ac=3,∴.18.设正项等比数列{a n}中,a1=1,前n项和为S n,且____.(1)求数列{a n}的通项公式;(2)若,求数列{a n b n}的前n项和T n.在①;②;③S3=13.这三个条件中,请选择一个满足题意的正确的条件将上面的题目补充完整,并解答本题.【解答】解:(Ⅰ)若选①,∵,∴a2=9又∵S3=28=1+9+a3∴a3=18,,所以不满足{a n}是等比数列(或a1≠1).若选②,因为,所以a2=3,,.若选③,因为a1=1,S3=13,所以,q2+q﹣12=(q+4)(q﹣3)=0,解得q=3或q=﹣4,因为a n>0,所以q=3,则:.(Ⅱ).令,前n项和为T n,①,②,①﹣②得:=,所以.19.三棱锥P﹣ABC中,AC⊥BC,平面PAC⊥平面ABC,PA=PC=AC=2,BC=4,E,F分别为PC和PB的中点,平面ABC∩平面AEF=l.(1)证明:直线l∥BC;(2)设直线PM与直线EF所成的角为α,直线PM与平面AEF所成的角为β,则在直线l上是否存在一点M,使得.若存在,求出|AM|的值;若不存在,说明理由.【解答】(Ⅰ)证明:∵E、F分别为PB、PC的中点,∴BC∥EF,又∵EF⊂面EFA,BC⊄面EFA,∴BC∥面EFA,又∵BC⊂面ABC,面EFA∩面ABC=1,∴BC∥l(Ⅱ)解:以C为坐标原点,CB所在直线为x轴,CA所在直线为y轴,过C垂直于面ABC的直线为z轴,建立空间直角坐标系,则A(0,2,0),B(4,0,0),,,,设M(m,2,0),则,,=,,可求得面AEF法向量,设PM与面AEF所成角为β,则,∵,∴cosα=sinβ,即,∴m±1,即存在M满足题意,此时|AM|=1.20.某医院已知5名病人中有一人患有一种血液疾病,需要通过化验血液来确定患者,血液化验结果呈阳性的即为患病,呈阴性即没患病.院方设计了两种化验方案:方案甲:对患者逐个化验,直到能确定患者为止;方案乙:先将3人的血液混在一起化验,若结果呈阳性则表明患者在此三人中,然后再逐个化验,直到能确定患者为止;若结果呈阴性则在另外2人中选取1人化验.(1)求方案甲化验次数X的分布列;(2)求甲方案所需化验次数不少于乙方案所需化验次数的概率.【解答】解:(1)依题知X的可能取值为1,2,3,4,,,故方案甲化验次数X的分布列为:X1234P (2)若乙验两次时,有两种可能:①验3人结果为阳性,再从中逐个验时,恰好一次验中,②先验3人结果为阴性,再从其他两人中验出阳性,故乙用两次的概率为,若乙验三次时,只有一种可能:先验3人结果为阳性,再从中逐个验时,第一次为阴性,第二次为阴性或阳性,其概率为,故甲方案的次数不少于乙次数的概率为.21.已知椭圆过点P (0,﹣1),离心率为.(1)求椭圆C 的方程;(2)l 1,l 2是过点P 且互相垂直的两条直线,其中l 1交圆x 2+y 2=a 2于A ,B 两点,l 2交椭圆C 于另一个点Q ,求△QAB 面积取得最大值时直线l 1的方程.【解答】解:(1)由题意得,解得,所以椭圆C 的方程为.(2)由题知,直线l 1的斜率存在,不妨设为k ,则l 1:y =kx ﹣1.若k =0时,直线l 1的方程为y =﹣1,l 2的方程为x =0,易求得,|PQ |=2,此时.若k ≠0时,则直线l 2:.圆心(0,0)到直线l 1的距离为.直线l1被圆x2+y2=4截得的弦长为|AB|=,联立,得(k2+4)x2+8kx=0,则,所以|PQ|=.所以===.当且仅当即时,等号成立.因为,所以△ABQ面积取得最大值时,直线l1的方程应该是.22.已知函数f(x)=e x﹣a(lnx+1)(a>0)(1)若f(x)在区间上存在极值,求实数a的范围;(2)若f(x)在区间上的极小值等于0,求实数a的值;(3)令g(x)=x2﹣ax+a2,h(x)=a(f(x)﹣e x)+g(x).曲线y=h(x)与直线y=m交于A(x1,y1),B(x2,y2)两点,求证:.【解答】解:(1)由f(x)=e x﹣a(lnx+1)(a>0),得,∴,∴f'(x)在上为增函数,∵f(x)在区间上存在极值,∴且f'(2)>0,解得,∴a的取值范围为.(2)由(1)知,设x0为f(x)在区间上的极小值点,故,∴.设,,则,∴g'(x)<0,即g(x)在上单调递减,易得出g(1)=0,故f(x0)=0,∴x0=1,代入,可得a=e,满足,故a=e.(3)证明:∵g(x)=x2﹣ax+a2,h(x)=a(f(x)﹣e x)+g(x),∴h(x)=﹣a2lnx+x2﹣ax,则,由题意,知h(x)=m有两解x1,x2,不妨设x1<x2,要证,即证,只需证(*),又,,∴两式相减,并整理,得.把代入(*)式,得,即.令,则.令,则,∴φ(t)在其定义域上为增函数,∴φ(t)<φ(1)=0,∴成立.。

2020-2021高三数学上期末模拟试题(及答案)(3)

2020-2021高三数学上期末模拟试题(及答案)(3)

2020-2021高三数学上期末模拟试题(及答案)(3)一、选择题1.数列{}n a 满足()11nn n a a n ++=-⋅,则数列{}n a 的前20项的和为( )A .100B .-100C .-110D .1102.若,x y 满足1010330x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则2z x y =+的最大值为( )A .8B .7C .2D .13.已知正数x 、y 满足1x y +=,且2211x y m y x +≥++,则m 的最大值为( ) A .163B .13C .2D .44.若0a b <<,则下列不等式恒成立的是 A .11a b> B .a b -> C .22a b > D .33a b <5.数列{}{},n n a b 为等差数列,前n 项和分别为,n n S T ,若3n 22n n S T n +=,则77a b =( ) A .4126B .2314C .117 D .1166.已知ABC ∆的三个内角、、A B C 所对的边为a b c 、、,面积为S,且2S =,则A 等于( )A .6π B .4π C .3π D .2π 7.“0x >”是“12x x+≥”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件8.已知01x <<,01y <<,则)AB .CD .9.已知x 、y 满足约束条件50{03x y x y x -+≥+≥≤,则24z x y =+的最小值是( )A .6-B .5C .10D .10-10.已知x ,y 均为正实数,且111226x y +=++,则x y +的最小值为( ) A .20B .24C .28D .3211.在△ABC 中,若1tan 15013A C BC ︒===,,,则△ABC 的面积S 是( ) A.38- B.34- C.38+ D12.一个递增的等差数列{}n a ,前三项的和12312a a a ++=,且234,,1a a a +成等比数列,则数列{}n a 的公差为 ( ) A .2±B .3C .2D .1二、填空题13.若,a b ∈R ,0ab >,则4441a b ab++的最小值为___________.14.已知lg lg 2x y +=,则11x y+的最小值是______. 15.已知变数,x y 满足约束条件340{210,380x y x y x y -+≥+-≥+-≤目标函数(0)z x ay a =+≥仅在点(2,2)处取得最大值,则a 的取值范围为_____________. 16.关于x 的不等式a 34≤x 2﹣3x +4≤b 的解集为[a ,b ],则b -a =________. 17.已知数列{}n a 的前n 项和为2*()2n S n n n N =+∈,则数列{}n a 的通项公式n a =______.18.已知函数()2xf x =,等差数列{}n a 的公差为2,若()2468104f a a a a a ++++=,则()()()()212310log f a f a f a f a ⋅⋅⋅⋅=⎡⎤⎣⎦L ___________.19.已知等比数列{}n a 满足232,1a a ==,则12231lim ()n n n a a a a a a +→+∞+++=L ________________.20.已知x ,y 满足3010510x y x y x y +-≤⎧⎪-+≥⎨⎪-+≤⎩,则2z x y =+的最大值为______.三、解答题21.已知a ,b ,c 分别为ABC ∆三个内角A ,B ,C的对边,且sin cos 20A a B a --=.(Ⅰ)求B 的大小;(Ⅱ)若b =ABC ∆的面积为2,求a c +的值. 22.解关于x 的不等式()222ax x ax a R -≥-∈. 23.等差数列{}n a 中,71994,2a a a ==. (1)求{}n a 的通项公式; (2)设1n nb na =,求数列{}n b 的前n 项和n S . 24.已知等比数列{a n }的前n 项和为S n ,a 114=,公比q >0,S 1+a 1,S 3+a 3,S 2+a 2成等差数列.(1)求{a n }; (2)设b n ()()22212n n n n c n b b log a +==+,,求数列{c n }的前n 项和T n .25.已知各项均为正数的等比数列{}n a 的首项为12,且()3122123a a a -=+。

山东省枣庄市、滕州市2020届高三上期末数学试卷及答案

山东省枣庄市、滕州市2020届高三上期末数学试卷及答案

小岛
三、填空题:本题共 4 小题,每小题 5 分,共 20 分.
13.谈祥柏先生是我国著名的数学科普作家,他写的《数学百草园》、《好玩的数学》、《故
事中的数学》等书,题材广泛、妙趣横生,深受广大读者喜爱.下面我们一起来看《好
玩的数学》中谈老的一篇文章《五分钟内挑出埃及分数》:文章首先告诉我们,古埃
及人喜欢使用分子为1 的分数(称为埃及分数).如用两个埃及分数 1 与 1 的和表示 2
2 19
10.在平面直角坐标系 xOy 中,抛物线 C :y2 2 px( p 0) 的焦点为 F ,准线为 l .设 l 与
x 轴的交点为 K ,P 为 C 上异于 O 的任意一点,P 在 l 上 的射影为 E ,EPF 的外角平分线交 x 轴于点 Q ,过 Q 作 QM PF 于 M ,过 Q 作 QN PE 交线段 EP 的延长线 于点 N ,则
3 15
5
等.从 1 , 1 , 1 ,…, 1 , 1 这100 个埃及分数中挑出不同的 3 个,使得它们
234
100 101
的和为1 ,这三个分数是
.(按照从大到小的顺序排列)
14.在平面直角坐标系 xOy 中,角 的顶点是 O ,始边是 x 轴的非负半轴, 0 2π ,
点 P(1 tan π ,1 tan π ) 是 终边上一点,则 的值是
需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡 上.写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回. 一、单项选择题:本大题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,
只有一项是符合题目要求的.
1.已知集合 A {x | 1 x 1},则 A N

【2023年上海高三数学一模】2023届浦东新区高三一模数学试卷及答案

【2023年上海高三数学一模】2023届浦东新区高三一模数学试卷及答案

浦东一模高三数学一、填空题(本大题满分54分)本大题共有12题,1-6题每题4分,7-12题每题5分.考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分或5分,否则一律得零分.1. 设集合()2,2A =-,()3,1B =-,则A B = ______.2. 若幂函数ay x =的图象经过点),则实数a =______.3. 函数()2log 2y x =-定义域为______.4. ()52x +的二项展开式中2x 的系数为______.5. 若圆锥的轴截面是边长为1的正三角形.则圆锥的侧面积是_________.6. 已知α为锐角,若π3sin 25α⎛⎫+= ⎪⎝⎭,则πtan 4α⎛⎫+= ⎪⎝⎭______.7. 已知某射击爱好者的打靶成绩(单位:环)的茎叶图如图所示,其中整数部分为“茎”,小数部分为“叶”,则这组数据的方差为______.(精确到0.01)8. 已知抛物线2:16C y x =的焦点为F ,在C 上有一点P 满足13PF =,则点P 到x 轴的距离为______.9. 某医院需要从4名男医生和3名女医生中选出3名医生去担任“中国进博会”三个不同区域的核酸检测服务工作,则选出的3名医生中,恰有1名女医生的概率是______.10. 如图,在ABC 中,点D 、E 是线段BC 上两个动点,且AD AE xAB y AC +=+,,则19x y+的最小值为______.11. 已知定义在()π,π-上的函数()()()cos cos 0πf x x x x ϕϕ=+-<<为偶函数,则()f x 的严格递减区间为______.12. 已知项数为m 的有限数列{}(),2n a m m ∈≥N 是1,2,3,…,m 的一个排列.若的12231m m a a a a a a --≤-≤⋅⋅⋅≤-,且1112m k k k a a m -+=-=+∑,则所有可能的m 值之和为______.二、选择题(本大题满分18分)本大题共有4题,每题有且只有一个正确答案,考生必须在答题纸的相应编号上,将代表答案的小方格涂黑,13-14题每题选对得4分,15-16题每题选对得5分,否则一律得零分.13. 已知x ,y ∈R ,则“||x y +=||||x y +”是“0xy >”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分又不必要条件 14. 虚数的平方是( )A. 正实数B. 虚数C. 负实数D. 虚数或负实数15. 已知直线l 与平面α相交,则下列命题中,正确个数为( ) ①平面α内的所有直线均与直线l 异面; ②平面α内存在与直线l 垂直的直线; ③平面α内不存在直线与直线l 平行; ④平面α内所有直线均与直线l 相交. A 1B. 2C. 3D. 416. 已知平面直角坐标系中的直线1:3l y x =、2:3l y x =-.设到1l 、2l 距离之和为12p 的点的轨迹是曲线1C ,1l 、2l 距离平方和为22p 的点的轨迹是曲线2C ,其中1p 、20p >.则1C 、2C 公共点的个数不可能为( )A. 0个B. 4个C. 8个D. 12个三.解答题(本大题满分78分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17. 已知数列{}n a 是公差不为0的等差数列,14a =,且1a ,3a ,4a 成等比数列. (1)求数列{}n a 的通项公式;(2)求当n 为何值时,数列{}n a 前n 项和n S 取得最大值.18. 如图,三棱锥P ABC -中,侧面P AB 垂直于底面ABC ,PA PB =,底面ABC 是斜边为AB 的直角三角形,且30ABC ∠=︒,记O 为AB 的中点,E 为OC 的中点.的.的(1)求证:PC AE ⊥;(2)若2AB =,直线PC 与底面ABC 所成角的大小为60°,求四面体P AOC 的体积. 19. 在临港滴水湖畔拟建造一个四边形的露营基地,如图ABCD 所示.为考虑露营客人娱乐休闲的需求,在四边形ABCD 区域中,将三角形ABD 区域设立成花卉观赏区,三角形BCD 区域设立成烧烤区,边AB 、BC 、CD 、DA 修建观赏步道,边BD 修建隔离防护栏,其中100CD =米,200BC =米,π3A ∠=.(1)如果烧烤区是一个占地面积为9600平方米的钝角三角形,那么需要修建多长的隔离防护栏(精确到0.1米)?(2)考虑到烧烤区的安全性,在规划四边形ABCD 区域时,首先保证烧烤区的占地面积最大时,再使得花卉观赏区的面积尽可能大,则应如何设计观赏步道?20. 已知1F 、2F 分别为椭圆221:14x C y +=的左、右焦点,直线1l 交椭圆1C 于A 、B 两点.(1)求焦点1F 、2F 的坐标与椭圆1C 的离心率1e 的值;(2)若直线1l 过点2F 且与圆221x y +=相切,求弦长AB 的值;(3)若双曲线2C 与椭圆共焦点,离心率为2e ,满足212e e =,过点2F 作斜率为()0k k ≠的直线2l 交2C 的渐近线于C 、D 两点,过C 、D 的中点M 分别作两条渐近线的平行线交2C 于P 、Q 两点,证明:直线PQ 平行于2l .21. 已知定义域为R 的函数()y f x =.当a ∈R 时,若()()()()f x f a g x x a x a-=>-是严格增函数,则称()f x 是一个“()T a 函数”.(1)分别判断函数()153f x x =+、()2222f x x x =++是否为()1T 函数;(2)是否存在实数b ,使得函数()e ,01,0x x h x bx x ⎧<=⎨+≥⎩,是()1T -函数?若存在,求实数b 取值范围;否则,证明你的结论;(3)已知()()2e 1x J x qx =+,其中q ∈R .证明:若()J x '是R 上的严格增函数,则对任意n ∈Z ,()J x 都是()T n 函数.的参考答案1. ()2,1-.2. 4.3. (),2-∞.4. 805.π2. 6. 7-. 7. 0.36. 8. 12.9.183510. 8. 11. ππ,2⎛⎫-- ⎪⎝⎭和π0,2⎛⎫⎪⎝⎭. 12.9. 13. B .14. D.15. B .16. D17. 解(1)设数列{}n a 的公差为d ,0d ≠,由1a ,3a ,4a 成等比数列,得2314a a a =,即()()242443d d +=+,解得1d =-.所以数列{}n a 的通项公式为()()4115n a n n =+-⨯-=-. (2)由()112n n n S na d -=+得()2211919422818222n n n S n n n n -⎛⎫=-=-+=-- +⎪⎝⎭,N n *∈, 当4n =或5时,n S 取得最大值,最大值为10.18. 解(1)连接PO ,因为PA PB =,所以PO AB ⊥,侧面PAB 垂直于底面ABC ,PO ⊂平面PAB ,平面PAB ⋂平面ABC AB =, 所以PO ⊥底面ABC ,AE ⊂底面ABC ,所以PO AE ⊥,ABC 是斜边为AB 直角三角形,且30ABC ∠= ,所以12AC AB =, 又因为O 为AB 的中点,所以12CO AO AB ==,所以AOC 为等边三角形, 又E 为OC 的中点,所以AE OC ⊥,因为PO AE ⊥,AE OC ⊥,PO OC O = ,,PO OC ⊂POC , 所以AE ⊥平面POC ,又PC ⊂平面POC , 所以PC AE ⊥;的(2)由(1)知PO ⊥底面ABC ,所以直线PC 与底面ABC 所成角为PCO ∠,因为直线PC 与底面ABC 所成角的大小为60 ,60PCO ∠= , 因为2AB =,所以1OC =,在Rt POC △中,tan60PO =︒=,11sin6024AOC S =⨯⨯︒=,所以11344PAOC V =⨯=.19. 解(1)11sin 100200sin 960022BCD S BC CD C C =⋅⋅=⨯⨯= , 解得:24sin 25C =, 因为C 是钝角,所以7cos 25C =-.由余弦定理得:BD =247.4=≈,故需要修建247.4m 的隔离防护栏; (2)11sin 1000022BCD S BC CD C BC CD =⋅⋅≤⋅= , 当且仅达π2C =时取到等号,此时BD =m ,设ABD α∠=,20,π3α⎛⎫∈ ⎪⎝⎭, 在ABD △中,π2sin sin sin π33ADAB αα===⎛⎫- ⎪⎝⎭解得:2,π3AD AB αα⎛⎫==- ⎪⎝⎭,故12sin sin sin π233ABDSAD AB A αα⎛⎫=⋅⋅=- ⎪⎝⎭12cos 2π323α⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭,因为20,π3α⎛⎫∈ ⎪⎝⎭,所以2ππ222,π333α⎛⎫-∈- ⎪⎝⎭,故当2=02π3α-,即π31α=时,2cos 2π3α⎛⎫- ⎪⎝⎭取的最大值为1,1132ABD S ⎛⎫≤⨯+= ⎪⎝⎭, 当且仅当π3α=时取到等号,此时AB AD ==答:修建观赏步道时应使得AB AD ==,π2C ∠=. 20. 解(1)设椭圆的长半轴长为a ,短半轴长为b ,半焦距为c ,因为椭圆1C 的方程为2214x y +=,所以2,1,a b c ==== 所以左焦点1F的坐标为()、右焦点2F的坐标为),离心率12c e a ==.(2)圆221x y +=圆心为原点,半径为1, 当直线AB 的斜率不存在时,因为直线AB过点)2F,所以其方程为x =221x y +=的圆心到直线x =x =与圆221x y +=不相切,与条件矛盾,故直线AB斜率存在,因而设直线方程为(y k x ='-,则2112k ='⇒=. 联列方程:())()22222214124044y k x k x k x k x y '''⎧=⎪⎡⎤⇒+-+-=⎨⎩'⎣+=⎪'⎦,化简得2320x-+=,方程2320x -+=的判别式(2432240∆=--⨯⨯=>,设()11,A x y ,()22,B x y ,则12122,33x x x x +==,所以1223AB x =-===, 的即弦长AB 的值为2;(3)设双曲线的实半轴长为m ,虚半轴长为n ,因为双曲线2C 与椭圆共焦点,所以双曲线的左焦点1F的坐标为()、右焦点2F的坐标为),由题可知212e e ==m=,223n m =-,故221,2m n ==,因而双曲线方程:2212y x -=,双曲线2212y x -=的渐近线方程为y =, 设()00,M x y,直线(:CD y k x =,联立C y kx x y ⎧=⎪⇒=⎨=⎪⎩,Cy =,同理D y kx x y ⎧=⎪⇒=⎨=⎪⎩,Dy =,所以2120222x x x k +==-,120222y y y k +-==-, 设()33,P x y ,()44,Q x y则)002222y x x y x y ⎧=-+⎪⎨-=⎪⎩,化简得()()200002y y =--,所以030x y ⎛⎫=⎪⎪⎭同理400x y ⎛⎫=+⎪⎪⎭所以300040x x y y ⎛⎫+=-+++⎪⎪⎭403022002x x y x -⎛⎫-+=+⎪⎪⎭,所以3022040212x x x y x ⎛⎫+=- ⎪⎝⎭- 所以3002222040000022112222x x x y x y x x x x ⎛⎫⎛⎫+=-+ ⎪ ⎪⎝⎭=--⎝--⎭-300040x x y y ⎛⎫-=-+-⎪⎪⎭3020042422yx x yy x⎛⎫-=---⎪⎭,所以322004221x xy x⎛⎫-=+⎪⎭-因而)))34343434000000343422PQx x y x x y x x xy y xk k x x x x x x y-++--+--===== ---因而直线//CD直线PQ.21. 解(1)当1x>时,()()()1115385111f x f xg xx x-+-===--不是严格增函数,故()1f x不是()1T函数;当1x>时,()()()222222523111f x f x xg x xx x-++-===+--,是严格增函数,故()2f x是()1T函数;(2)令()()()()()111h x hH x xx--=>---,当10x-<<时,由()1e e1xH xx--=+,得()()12e e1x xH xx-++'=,令()1e ex xu x-+=,10x-<<,则()()e10xu x x'=+>在10x-<<上恒成立,故()1e ex xu x-+=在10x-<<上单调递增,所以()()11e e01u x u-->+=-=-,故此时1e ex x->-,得()0H x'>,从而()H x严格增.当0x≥时,()111e1e11bx bH x bx x--+---==+++,后者严格增,当且仅当11e0b---<,即11eb->-,又因为当10x-<<时,()()101eH x H-<=-,从而1x>-上,()()()()()111h x hH x xx--=>---严格增,故11eb->-为所求.(3)()()()22e12e e21x x xJ x qx qx qx qx'=++++=,令()()()2e21xv x J x qx qx='=++,()()2e421xv x qx qx q'=+++,若“()J x '严格增”等同于24210qx qx q +++>(或0≥), 当0q =时,10>恒成立,故符合要求, 当0q ≠时,()20Δ164210q q q q >⎧⎨=-+≤⎩,解得:102q <≤,当12q =时,()2e 210xqx qx '⎡⎤++≥⎣⎦,等号成立当且仅当2x =-, 故()J x '在(),2-∞-与()2,-+∞上分别严格增,且当<2x -时,()()2J x J '<'-; 当2x >-时,()()2J x J '>'-.故此时()J x '也是R 上的严格增函数. 综上:10,2q ⎡⎤∈⎢⎥⎣⎦,下设10,2q ⎡⎤∈⎢⎥⎣⎦.则对任意n ∈Z ,()()()()()()()()2J x x n J x J n J x J n x n x n ''----⎛⎫= ⎪--⎝⎭. 令()()()()()()j x J x x n J x J n =---',则()()()2e 421x j x qx qx q x n =+++-'.当10,2q ⎡⎤∈⎢⎥⎣⎦时,24210qx qx q +++≥,等号成立当且仅当122q x ⎧=⎪⎨⎪=-⎩. 因x n >,故同上可知,()j x 为(),n +∞上的严格增函数,且()()0j x j n >=.因而,当x n >时()()0J x J n x n '-⎛⎫> ⎪-⎝⎭,从而()J x 为()T n 函数.。

2020-2021北京丰台区第二中学高三数学上期末模拟试题及答案

2020-2021北京丰台区第二中学高三数学上期末模拟试题及答案

2020-2021北京丰台区第二中学高三数学上期末模拟试题及答案一、选择题1.记n S 为等比数列{}n a 的前n 项和.若2342S S S =+,12a =,则2a =( )A .2B .-4C .2或-4D .42.等差数列{}n a 中,已知70a >,390a a +<,则{}n a 的前n 项和n S 的最小值为( ) A .4SB .5SC .6SD .7S3.程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第八个孩子分得斤数为( ) A .65B .184C .183D .1764.设,x y 满足约束条件3002x y x y x -+≥⎧⎪+≥⎨⎪≤⎩, 则3z x y =+的最小值是 A .5-B .4C .3-D .115.已知x ,y 满足2303301x y x y y +-≤⎧⎪+-≥⎨⎪≤⎩,z =2x +y 的最大值为m ,若正数a ,b 满足a +b =m ,则14a b+的最小值为( ) A .3B .32C .2D .526.若ABC ∆的三个内角满足sin :sin :sin 5:11:13A B C =,则ABC ∆( ) A .一定是锐角三角形 B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形7.已知数列{}n a的首项110,1n n a a a +==+,则20a =( ) A .99 B .101C .399D .4018.若直线()10,0x ya b a b+=>>过点(1,1),则4a b +的最小值为( ) A .6 B .8 C .9 D .10 9.已知01x <<,01y <<,则)AB .CD .10.等差数列{}n a 中,34512a a a ++=,那么{}n a 的前7项和7S =( )A .22B .24C .26D .2811.已知数列{}n a 中,()111,21,n n na a a n N S *+==+∈为其前n 项和,5S的值为( ) A .63B .61C .62D .5712.已知数列{}n a 的前n 项和2n S n n =-,数列{}n b 满足1sin2n n n b a π+=,记数列{}n b 的前n 项和为nT,则2017T =( ) A .2016B .2017C .2018D .2019二、填空题13.已知实数,且,则的最小值为____14.已知,x y 满足约束条件420y x x y y ≤⎧⎪+≤⎨⎪+≥⎩,则2z x y =+的最大值为__________.15.已知数列{}n a ,11a =,1(1)1n n na n a +=++,若对于任意的[2,2]a ∈-,*n ∈N ,不等式1321t n a a n +<-⋅+恒成立,则实数t 的取值范围为________ 16.已知向量()()1,,,2a x b x y ==-r r ,其中0x >,若a r 与b r 共线,则yx的最小值为__________. 17.观察下列的数表: 2 4 68 10 12 1416 18 20 22 24 26 28 30 …… ……设2018是该数表第m 行第n 列的数,则m n ⋅=__________.18.若正项数列{}n a 满足11n n a a +-<,则称数列{}n a 为D 型数列,以下4个正项数列{}n a 满足的递推关系分别为:①2211n n a a +-= ②1111n na a +-= ③121n n n a a a +=+④2121n n a a +-=,则D 型数列{}n a 的序号为_______.19.若无穷等比数列{}n a 的各项和为2,则首项1a 的取值范围为______. 20.若log 41,a b =-则+a b 的最小值为_________.三、解答题21.已知函数()21f x x =-.(1)若不等式121(0)2f x m m ⎛⎫+≥+> ⎪⎝⎭的解集为][(),22,-∞-⋃+∞,求实数m 的值; (2)若不等式()2232y yaf x x ≤+++对任意的实数,x y R ∈恒成立,求正实数a 的最小值.22.ABC △的内角,,A B C 的对边分别为,,a b c,且cos )()cos a B C c b A -=-.(1)求A ; (2)若b =D 在BC 边上,2CD =,3ADC π∠=,求ABC △的面积.23.在ABC ∆中,,A B C 的对边分别,,a b c ,若()2sin(2)()26f x x f C π=+=-,,c =sin B =2sin A ,(1)求C (2)求a 的值.24.已知函数()11f x x x =-++. (1)解不等式()2f x ≤;(2)设函数()f x 的最小值为m ,若a ,b 均为正数,且14m a b+=,求+a b 的最小值.25.设递增等比数列{a n }的前n 项和为S n ,且a 2=3,S 3=13,数列{b n }满足b 1=a 1,点P (b n ,b n +1)在直线x ﹣y +2=0上,n ∈N *. (1)求数列{a n },{b n }的通项公式; (2)设c n nnb a =,求数列{c n }的前n 项和T n . 26.已知{}n a 是递增数列,其前n 项和为n S ,11a >,且10(21)(2)n n n S a a =++,*n ∈N . (Ⅰ)求数列{}n a 的通项n a ;(Ⅱ)是否存在*,,m n k N ∈使得2()m n k a a a +=成立?若存在,写出一组符合条件的,,m n k 的值;若不存在,请说明理由;(Ⅲ)设32n n n b a -=-,若对于任意的*n N ∈,不等式12111(1)(1)(1)31n b b b ≤+++L m 的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】利用等比数列的前n 项和公式求出公比,由此能求出结果. 【详解】∵n S 为等比数列{}n a 的前n 项和,2342S S S =+,12a =,∴()()()34212122211q q q qq--+=+--,解得2q =-,∴214a a q ==-,故选B . 【点睛】本题主要考查等比数列的性质以及其的前n 项和等基础知识,考查运算求解能力,是基础题.2.C解析:C 【解析】 【分析】先通过数列性质判断60a <,再通过数列的正负判断n S 的最小值. 【详解】∵等差数列{}n a 中,390a a +<,∴39620a a a +=<,即60a <.又70a >,∴{}n a 的前n 项和n S 的最小值为6S . 故答案选C 【点睛】本题考查了数列和的最小值,将n S 的最小值转化为{}n a 的正负关系是解题的关键.3.B解析:B 【解析】分析:将原问题转化为等差数列的问题,然后结合等差数列相关公式整理计算即可求得最终结果.详解:由题意可得,8个孩子所得的棉花构成公差为17的等差数列,且前8项和为996, 设首项为1a ,结合等差数列前n 项和公式有:811878828179962S a d a ⨯=+=+⨯=, 解得:165a =,则81765717184a a d =+=+⨯=. 即第八个孩子分得斤数为184. 本题选择B 选项.点睛:本题主要考查等差数列前n 项和公式,等差数列的应用,等差数列的通项公式等知识,意在考查学生的转化能力和计算求解能力.4.C解析:C 【解析】画出不等式组表示的可行域如图阴影部分所示.由3z x y =+可得3y x z =-+.平移直线3y x z =-+,结合图形可得,当直线3y x z =-+经过可行域内的点A 时,直线在y 轴上的截距最小,此时z 也取得最小值.由300x y x y -+=⎧⎨+=⎩,解得3232x y ⎧=-⎪⎪⎨⎪=⎪⎩,故点A 的坐标为33(,)22-.∴min 333()322z =⨯-+=-.选C . 5.B解析:B 【解析】 【分析】作出可行域,求出m ,然后用“1”的代换配凑出基本不等式的定值,从而用基本不等式求得最小值. 【详解】作出可行域,如图ABC ∆内部(含边界),作直线:20l x y +=,平移该直线,当直线l 过点(3,0)A 时,2x y +取得最大值6,所以6m =.1411414143()()(5)(5)6662b a b a a b a b a b a b a b +=++=++≥+⨯=,当且仅当4b a a b =,即12,33a b ==时等号成立,即14a b +的最小值为32. 故选:B. 【点睛】本题考查简单的线性规划,考查用基本不等式求最值,解题关键是用“1”的代换凑配出基本不等式的定值,从而用基本不等式求得最小值.6.C解析:C 【解析】 【分析】由sin :sin :sin 5:11:13A B C =,得出::5:11:13a b c =,可得出角C 为最大角,并利用余弦定理计算出cos C ,根据该余弦值的正负判断出该三角形的形状. 【详解】由sin :sin :sin 5:11:13A B C =,可得出::5:11:13a b c =, 设()50a t t =>,则11b t =,13c t =,则角C 为最大角,由余弦定理得2222222512116923cos 022511110a b c t t t C ab t t +-+-===-<⨯⨯,则角C 为钝角,因此,ABC ∆为钝角三角形,故选C. 【点睛】本题考查利用余弦定理判断三角形的形状,只需得出最大角的属性即可,但需结合大边对大角定理进行判断,考查推理能力与计算能力,属于中等题.7.C解析:C 【解析】 【分析】 【详解】由1211n n n a a a +=++,可得)211111111n n n n a a a a +++=+++=,,是以1为公差,以1为首项的等差数列.2,1n n a n ==-,即220201399a =-=.故选C.8.C解析:C 【解析】 【详解】 因为直线()10,0x ya b a b+=>>过点()1,1,所以11+1a b = ,因此114(4)(+)5+59b a a b a b a b +=+≥+= ,当且仅当23b a ==时取等号,所以选C.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.9.B解析:B 【解析】 【分析】2+≥x y ,边分别相加求解。

北京市2020-2021学年高三上学期期末数学试题汇编:平面解析几何

北京市2020-2021学年高三上学期期末数学试题汇编:平面解析几何

2021北京高三数学上学期期末汇编:平面解析几何一.选择题(共18小题)1.(2020秋•倍,且一个顶点的坐标为(0,2),则双曲线的标准方程为( )A .22144x y -=B .22144y x -=C .2214y x -=D .2214x y -=2.(2020秋•朝阳区期末)已知双曲线2222:1(0,0)x y C a b a b -=>>的左焦点为F ,右顶点为A ,过F 作C 的一条渐近线的垂线FD ,D 为垂足.若||||DF DA =,则C 的离心率为( )A .B .2C D3.(2020秋•丰台区期末)若关于x ,y 的方程组4210()210x y a R x ay ++=⎧∈⎨++=⎩无解,则(a = )A .2BC .1D .24.(2020秋•昌平区期末)已知抛物线24y x =上一点P 到焦点F 的距离为5,那么点P 到y 轴的距离是( ) A .2B .3C .4D .55.(2020秋•东城区期末)与圆22(1)5x y +-=相切于点(2,2)的直线的斜率为( ) A .2-B .12-C .12D .26.(2020秋•石景山区期末)若抛物线24y x =上的点A 到焦点的距离为10,则点A 到y 轴的距离是( ) A .6B .7C .8D .97.(2020秋•海淀区期末)抛物线2y x =的准线方程是( ) A .12x =-B .14x =-C .12y =-D .14y =-8.(2020秋•通州区期末)抛物线24y x =的准线方程是( ) A .2x =-B .1x =-C .1x =D .2x =9.(2020秋•通州区期末)如图是等轴双曲线形拱桥,现拱顶离水面5m ,水面宽30AB m =.若水面下降5m ,则水面宽是( )(结果精确到0.1)m 1.41≈ 2.24 2.65)A .43.8mB .44.8mC .52.3mD .53.0m10.(2020秋•西城区期末)已知半径为2的圆经过点(1,0),其圆心到直线34120x y -+=的距离的最小值为( )A .0B .1C .2D .311.(2020秋•西城区期末)已知双曲线22221x y a b -=的焦距等于实轴长的2倍,则其渐近线的方程为( )A .y =B .2y x =±C .y =D .12y x =±12.(2020秋•朝阳区期末)设抛物线2:4C y x =的焦点为F ,准线l 与x 轴的交点为M ,P 是C 上一点.若||4PF =,则||(PM = )A B .5C .D .13.(2020秋•石景山区期末)直线:1l y kx =+与圆22:(1)4C x y +-=的位置关系是( ) A .相切B .相交C .相离D .不确定14.(2020秋•东城区期末)已知抛物线22(0)y px p =>的焦点F 到准线的距离为2,过焦点F 的直线与抛物线交于A ,B 两点,且||3||AF FB =,则点A 到y 轴的距离为( )A .5B .4C .3D .215.(2020秋•海淀区期末)已知直线:20l x ay ++=,点(1,1)A --和点(2,2)B ,若//l AB ,则实数a 的值为( ) A .1B .1-C .2D .2-16.(2020秋•昌平区期末)已知直线1y kx =+与圆2240x x y -+=相交于M ,N 两点,且||23MN ,那么实数k 的取值范围是( ) A .143k --B .403kC .0k 或43k -D .403k -17.(2020秋•朝阳区期末)在平面直角坐标系xOy 中,已知直线(0)y mx m =>与曲线3y x =从左至右依次交于A ,B ,C 三点.若直线:30()l kx y k R -+=∈上存在点P 满足||2PA PC +=,则实数k 的取值范围是( )A .(2,2)-B .[-C .(-∞,2)(2-⋃,)+∞D .(,[22,)-∞-+∞18.(2020秋•海淀区期末)如图所示,在圆锥内放入两个球1O ,2O ,它们都与圆锥相切(即与圆锥的每条母线相切),切点圆(图中粗线所示)分别为1C ,2.C 这两个球都与平面α相切,切点分别为1F ,2F ,丹德林()G Dandelin ⋅利用这个模型证明了平面α与圆锥侧面的交线为椭圆,1F ,2F 为此椭圆的两个焦点,这两个球也称为Dandelin 双球.若圆锥的母线与它的轴的夹角为30︒,1C ,2C 的半径分别为1,4,点M 为2C 上的一个定点,点P 为椭圆上的一个动点,则从点P 沿圆锥表面到达点M 的路线长与线段1PF 的长之和的最小值是( )A .6B .8C .D .二.填空题(共10小题)19.(2020秋•东城区期末)已知双曲线2222:1(0,0)x y M a b a b-=>>,ABC ∆为等边三角形.若点A 在y 轴上,点B ,C 在双曲线M 上,且双曲线M 的实轴为ABC ∆的中位线,则双曲线M 的离心率为 .20.(2020秋•海淀区校级期末)已知F 是双曲线22:18y C x -=的右焦点,P 是双曲线C 上的点,A .①若点P 在双曲线右支上,则||||AP PF +的最小值为 ; ②若点P 在双曲线左支上,则||||AP PF +的最小值为 .21.(2020秋•通州区期末)在平面直角坐标系中,O 为坐标原点,点A 的坐标为(4,0),若以线段OA 为直径的圆与直线2y x =在第一象限交于点B ,则直线AB 的方程是 .22.(2020秋•顺义区期末)设抛物线2y mx =的焦点为(1,0)F ,则m = ;若点A 在抛物线上,且||3AF =,则点A 的坐标为 .23.(2020秋•房山区期末)在平面直角坐标系xOy 中,直线l 过抛物线24y x =的焦点F ,且与该抛物线相交于A ,B 两点.若直线l 的倾斜角为45︒,则OAB ∆的面积为 .24.(2020秋•石景山区期末)已知双曲线的两个焦点为(3,0)-,(3,0),一个顶点是,则C 的标准方程为 ;C 的焦点到其渐近线的距离是 .25.(2020秋•海淀区期末)已知双曲线2212y x -=的左、右焦点分别为1F ,2F ,点(3,4)M -,则双曲线的渐近线方程为 ;12||||MF MF -= .26.(2020秋•昌平区期末)已知双曲线2221(0)9x y a a -=>的离心率是54,则双曲线的右焦点坐标为 .27.(2020秋•顺义区期末)已知椭圆22:1168x y C +=的左、右焦点分别为1F ,2F ,直线(44)x m m =-<<与椭圆C 相交于点A ,B .给出下列三个命题:①存在唯一一个m ,使得△12AF F 为等腰直角三角形; ②存在唯一一个m ,使得1ABF ∆为等腰直角三角形; ③存在m ,使1ABF ∆的周长最大. 其中,所有真命题的序号为 .28.(2020秋•丰台区期末)已知双曲线22221(0,0)x y a b a b -=>>的一条渐近线方程为12y x =,那么该双曲线的离心率为 .三.解答题(共9小题)29.(2020秋•海淀区校级期末)已知椭圆2222:1(0)x y C a b a b +=>>,且经过点.(Ⅰ)求椭圆C 的方程;(Ⅰ)已知O 为坐标原点,A ,B 为椭圆C 上两点,若0OA AB ⋅=,且||3||2AB OA =,求OAB ∆的面积. 30.(2020秋•通州区期末)已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为点A ,B ,且||4AB =,椭圆C 离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅰ)过椭圆C 的右焦点,且斜率不为0的直线l 交椭圆C 于M ,N 两点,直线AM ,BN 的交于点Q ,求证:点Q 在直线4x =上.31.(2020秋•顺义区期末)已知椭圆2222:1(0)x y C a b a b +=>>经过点(0,1)M 和1)2N .(Ⅰ)求椭圆C 的方程;(Ⅰ)若直线:l y kx m =+与椭圆C 交于A ,B 两点,且坐标原点O 到直线l .求证:以AB 为直径的圆经过点O .32.(2020秋•丰台区期末)已知椭圆2222:1(0)x y W a b a b +=>>过(0,2)A ,(3,1)B --两点.(Ⅰ)求椭圆W 的方程;(Ⅰ)直线AB 与x 轴交于点(,0)M m ,过点M 作不垂直于坐标轴且与AB 不重合的直线l ,l 与椭圆W 交于C ,D 两点,直线AC ,BD 分别交直线x m =于P ,Q 两点,求证:||||PM MQ 为定值.33.(2020秋•石景山区期末)已知椭圆2222:1(0)x y C a b a b+=>>的离心率e ,且经过点(0,1)D .(Ⅰ)求椭圆C 的方程;(Ⅰ)已知点(1,0)A -和点(4,0)B -,过点B 的动直线l 交椭圆C 于M ,N 两点(M 在N 左侧),试讨论BAM ∠与OAN ∠的大小关系,并说明理由.34.(2020秋•东城区期末)已知椭圆2222:1(0)x y C a b a b +=>>过点(2,0)A -,(2,0)B ,且离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅰ)设直线l 与椭圆C 有且仅有一个公共点E ,且与x 轴交于点(G E ,G 不重合),ET x ⊥轴,垂足为T .求证:||||||||TA GA TB GB =.35.(2020秋•海淀区期末)已知椭圆2222:1(0)x y W a b a b +=>>,且经过点C .(Ⅰ)求椭圆W 的方程及其长轴长;(Ⅰ)A ,B 分别为椭圆W 的左、右顶点,点D 在椭圆W 上,且位于x 轴下方,直线CD 交x 轴于点Q .若ACQ ∆的面积比BDQ ∆的面积大D 的坐标.36.(2020秋•房山区期末)已知椭圆2222:1(0)x y G a b a b +=>>,且过(0,1)点.(Ⅰ)求椭圆G 的方程;(Ⅰ)设不过原点O 且斜率为13的直线l 与椭圆G 交于不同的两点C ,D ,线段CD 的中点为M ,直线OM 与椭圆G 交于E ,F ,证明:||||||||MC MD ME MF ⋅=⋅.37.(2020秋•昌平区期末)已知椭圆2222:1(0)x y C a b a b +=>>的长轴长为4,且离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅰ)设过点(1,0)F 且斜率为k 的直线l 与椭圆C 交于A ,B 两点,线段AB 的垂直平分线交x 轴于点D ,判断||||AB DF 是否为定值?如果是定值,请求出此定值;如果不是定值,请说明理由.2021北京高三数学上学期期末汇编:平面解析几何参考答案一.选择题(共18小题)1.【分析】由顶点坐标可知双曲线的焦点在y 轴上,再根据双曲线的几何性质,列得关于a 、b 、c 的方程组,解之即可.【解答】解:由题意知,双曲线的焦点在y轴上,且222222a b a a b c ⎧+=⎪=⎨⎪+=⎩,解得2a =,2b =,c =所以双曲线的标准方程为22144y x -=.故选:B .【点评】本题考查双曲线标准方程的求法,熟练掌握a 、b 、c 的含义与关系是解题的关键,考查学生的运算求解能力,属于基础题.2.【分析】过点D 作DC AF ⊥于点C ,易知C 为AF 的中点,从而有||2a cCF +=,由点到直线的距离公式可知||DF b =,再由||||cos ||||DF CF AFD OF DF ∠==,代入相关数据,进行运算即可. 【解答】解:过点D 作DC AF ⊥于点C ,||||DF DA =,∴点C 为AF 的中点,1||||22a cCF AF +∴==, 而点(,0)F c -到渐近线b y x a =-的距离为||||bc DF b ==, ||||cos ||||DF CF AFD OF DF ∴∠==,即2a cbc b +=,222()22()c a c b c a ∴+==-,即2220c ac a --=,2c a ∴=或c a =-(舍),∴离心率2ce a==. 故选:B .【点评】本题考查双曲线的几何性质,主要包含渐近线、离心率,考查学生的数形结合思想、逻辑推理能力和运算能力,属于基础题.3.【分析】由方程组无解得到直线4210x y ++=与直线210x ay ++=平行,再由直线与直线平行的性质能求出a . 【解答】解:关于x ,y 的方程组4210()210x y a R x ay ++=⎧∈⎨++=⎩无解, ∴直线4210x y ++=与直线210x ay ++=平行, ∴21421a =≠, 解得1a =. 故选:C .【点评】本题考查实数值的求法,考查直线与直线平行的性质等基础知识,考查运算求解能力,是基础题. 4.【分析】由抛物线的方程即可求出p 的值,再由抛物线的定义即可求解. 【解答】解:由抛物线的方程可得:2p =,又由抛物线的定义可知点P 到F 的距离等于点P 到抛物线的准线的距离, 则点P 到y 轴的距离为||5142pPF -=-=, 故选:C .【点评】本题考查了抛物线的方程以及定义,属于基础题.5.【分析】根据题意,求出圆的圆心坐标,设圆心为C ,切点(2,2)为P ,求出PC 的斜率,由切线的性质分析可得答案.【解答】解:根据题意,圆22(1)5x y +-=,其圆心为(0,1),设圆心为C ,切点(2,2)为P , 则211202PC K -==-, 则切线的斜率2k =-, 故选:A .【点评】本题考查直线与圆的位置关系,涉及切线的性质,属于基础题. 6.【分析】求出抛物线的准线方程,利用抛物线的定义转化求解即可.【解答】解:抛物线24y x =的准线方程为:1x =-,抛物线24y x =上的点A 到焦点的距离为10,可得9A x =,则A 到y 轴的距离是:9. 故选:D .【点评】本题考查抛物线的简单性质的应用,考查计算能力.7.【分析】抛物线2y x =的焦点在x 轴上,且开口向右,21p =,由此可得抛物线2y x =的准线方程. 【解答】解:抛物线2y x =的焦点在x 轴上,且开口向右,21p =,∴124p =, ∴抛物线2y x =的准线方程为14x =-. 故选:B .【点评】本题考查抛物线的标准方程,考查抛物线的几何性质,定型与定位是关键. 8.【分析】直接利用抛物线方程,求解准线方程即可. 【解答】解:抛物线24y x =的准线方程是1x =-, 故选:B .【点评】本题考查抛物线的简单性质的应用,准线方程的求法,是基础题.9.【分析】建立平面直角坐标系,设等轴双曲线的方程为22(0)y x t t -=>,写出点A 的坐标,并将其代入方程,求得t 的值,再令30y =-,解出x 的值即可. 【解答】解:建立如图所示的平面直角坐标系,设等轴双曲线的方程为22(0)y x t t -=>, 拱顶离水面5m ,水面宽30AB m =,∴点A 为(15,5)-,将其代入22y x t -=得,22(5)(15)t --=, 解得400t =, 22400y x ∴-=,设水面下降5m 后,水面宽为CD ,此时点C 和D 的纵坐标均为30-,把30y =-代入22400y x -=,有2900400x -=,解得x =±44.8CD m ∴=≈.故选:B .【点评】本题考查等轴双曲线的概念,双曲线方程的应用,考查学生将所学知识运用于实际的能力,属于基础题.10.【分析】求出(1,0)到直线的距离,结合圆的半径,判断求解即可. 【解答】解:点(1,0)到直线34120x y -+=3=,因为半径为2的圆经过点(1,0),所以圆心到直线34120x y -+=的距离的最小值为:321-=. 故选:B .【点评】本题考查直线与圆的位置关系的应用,点到直线的距离的应用,是基础题. 11.【分析】利用双曲线方程列出方程,推出a ,b 的关系,即可得到渐近线方程.【解答】解:双曲线22221x y a b -=的焦距等于实轴长的2倍,b =,其渐近线的方程为:y =. 故选:A .【点评】本题考查双曲线的简单性质的应用,渐近线方程的求法,是基础题. 12.【分析】根据条件求出P 的纵坐标,进而求解结论.【解答】解:P 是C 上一点.且||4PF =,413P PD x x ∴==+⇒=代入24y x =得212Py =,PM ∴===故选:C .【点评】本题考查抛物线的性质以及计算能力,属于基础题.13.【分析】由直线l 过定点圆C 的圆心,可知直线与圆相交. 【解答】解:直线:1l y kx =+过点(0,1)P , 而(0,1)P 是圆22:(1)4C x y +-=的圆心,∴直线:1l y kx =+与圆22:(1)4C x y +-=的位置关系是相交.故选:B .【点评】本题考查直线与圆位置关系的应用,是基础题.14.【分析】根据题意得到p 的值,过点A 作AD 垂直于准线l 于点D ,过点B 作BE 垂直于l 于点E ,延长AB 交l 于点C ,再利用三角形相似得到BC 和AC 的关系,从而得到BF ,AF ,CF 的关系,求出4AD =,即可得到答案.【解答】解:焦点F 到准线的距离为2p =,过点A 作AD 垂直于准线l 于点D ,过点B 作BE 垂直于l 于点E ,延长AB 交l 于点C , 则BCE ACD ∆∆∽, 所以13BC BE BF AC AD AF ===, 记BC x =,则3AC x =, 因为||3||AF FB =, 所以1142BF AB x ==,332AF BF x ==, 因为32CF BC BF x =+=,F 为AC 的中点, 所以24AD FG ==, 即点A 到y 轴的距离为432p-=. 故选:C .【点评】本题考查了抛物线性质的应用,涉及了抛物线定义的理解和应用,在涉及抛物线上的点到焦点距离的问题时,一般会转化为到准线的距离开解决.15.【分析】由题意利用斜率公式,两直线平行的性质,求得a 的值. 【解答】解:直线:20l x ay ++=,点(1,1)A --和点(2,2)B ,∴直线AB 的斜率为21121+=+, 若//l AB ,则11a-=,求得1a =-, 故选:B .【点评】本题主要考查斜率公式,两直线平行的性质,属于基础题.16.【分析】当弦长||MN =利用弦长公式求得弦心距1d =,故当||23MN ,则1d ,由此求得k 的范围.【解答】解:当弦长||MN =1d = 若||23MN ,则1d ,即圆心(2,0)到直线20kx y -+=的距离1d =,求得4[3k ∈-,0],故选:D .【点评】本题主要考查直线和圆的位置关系,点到直线的距离公式、弦长公式的应用,属于基础题.17.【分析】根据奇函数对称性得出A ,C 关于原点对称,于是||1PB =,从而直线l 与单位圆有交点,根据点到直线的距离公式列出不等式求出k 的范围. 【解答】解:3()f x x =和y mx =都是奇函数,B ∴为原点,且A ,C 两点关于原点对称.∴原点O 为线段AC 的中点, ∴2PA PC PB +=,直线:30()l kx y k R -+=∈上存在点P 满足||2PA PC +=, |||2|2||2PA PC PB PB ∴+===,||1PB ∴=.即P 为单位圆221x y +=上的点.∴直线:3l y kx =+与单位圆有交点, ∴1,解得22k 或22k -.故选:D .【点评】本题考查了函数图象与方程的关系,考查直线与圆的位置关系,属于中档题.18.【分析】在椭圆上任取一点P ,连接VP 交1C 于Q ,交2C 于点R ,连接1O Q ,11O F ,1PO ,1PF ,2O R ,利用△1O PF ≅△1O PQ 全等,得到1PF PQ =,当点P 沿圆锥表面到达点M 的路线长与线段1PF 的长之和最小时,即当P 为直线VM 与椭圆的交点时,求解即可得到答案.【解答】解:如图所示,在椭圆上任取一点P ,连接VP 交1C 于Q ,交2C 于点R , 连接1O Q ,11O F ,1PO ,1PF ,2O R ,在△1O PF 与△1O PQ 中,111O Q O F r ==,其中1r 为球1O 半径, 1190O QP O FP ∠=∠=︒,1O P 为公共边,所以△11O PF ≅△1O PQ ,所以1PF PQ =, 设P 沿圆锥表面到达M 的路径长为d , 则1PF d PQ d PQ PR QR +=++=,当且仅当P 为直线VM 与椭圆的交点时取等号,21416tan 30tan 30O R O Q QR VR VQ -=-=-===︒︒,故从点P 沿圆锥表面到达点M 的路线长与线段1PF 的长之和的最小值是6. 故选:A .【点评】本题以Dandelin 双球作为几何背景考查了椭圆知识的综合应用,涉及了两条线段距离之和最小的求解,解题的关键是确定当P 为直线VM 与椭圆的交点时取得最值. 二.填空题(共10小题)19.【分析】易知,等边ABC ∆的边长为4a ,不妨取点B 为(2)a ,将其代入双曲线的方程可得a b =,再由e =【解答】解:双曲线M 的实轴为ABC ∆的中位线,∴等边ABC ∆的边长为4a ,假设点B 在第一象限,则点B 的坐标为(2)a ,将其代入双曲线M 的方程有,2222431a a a b-=,∴1ab =,离心率e ==.【点评】本题考查双曲线的几何性质,包含a 、b 、c 的含义与关系,离心率,考查学生的逻辑推理能力和运算求解能力,属于基础题.20.【分析】由题意知,(3,0)F ,①当A ,P ,F 按此顺序三点共线时,||||AP PF +取得最小值;②设双曲线的左焦点为F ',由双曲线的定义可知,||||2PF PF '=+,当A ,P ,F '按此顺序三点共线时,||||AP PF +取得最小值.【解答】解:由题意知,(3,0)F ,①||||||9AP PF AF +=,当且仅当A ,P ,F 按此顺序三点共线时,等号成立,所以||||AP PF +的最小值为9;②设双曲线的左焦点为(3,0)F '-,由双曲线的定义知,||||22PF PF a'-==,所以||||||||2||2211AP PF AP PF AF ''+=+++==,当且仅当A ,P ,F '按此顺序三点共线时,等号成立,所以||||AP PF +的最小值为11. 故答案为:9;11.【点评】本题考查双曲线的定义与几何性质,考查数形结合思想、逻辑推理能力和运算能力,属于基础题. 21.【分析】求出OA 的中点即为圆心,求出||OA 即为圆的半径,得到圆的方程与直线2y x =联立,求出点B 的坐标,即可得到直线AB 的方程.【解答】解:因为O 为坐标原点,点A 的坐标为(4,0), 所以OA 的中点坐标为(2,0),且||4OA =,所以以线段OA 为直径的圆的圆心为(2,0),半径2r =, 所以圆的方程为22(2)4x y -+=,联立方程22(2)42x y y x ⎧-+=⎨=⎩,解得00x y =⎧⎨=⎩或4585x y ⎧=⎪⎪⎨⎪=⎪⎩,因为点B 在第一象限,所以48(,)55B ,又(4,0)A ,所以直线AB 的方程为8050(4)445y x --=--,即240x y +-=. 故答案为:240x y +-=.【点评】本题考查了直线方程的求解,涉及了圆的标准方程的求解、直线与圆交点的求解,属于中档题. 22.【分析】利用抛物线的焦点坐标,求解m 即可;利用抛物线的定义,转化求解A 的坐标. 【解答】解:抛物线2y mx =的焦点为(1,0)F , 可得14m=,解得4m =; 点A 在抛物线24y x =上,且||3AF =,设点A 的横坐标为x ,则13x +=,2x =, 把2x =代入抛物线方程,可得A的纵坐标为:±所以(2,A ±. 故答案为:4;(2,±.【点评】本题考查抛物线的简单性质的应用,抛物线的定义的应用,是基础题.23.【分析】由抛物线的方程可得焦点的坐标及准线方程,由题意设直线l 的方程与抛物线联立求出两根之和,由抛物线的性质可得到焦点的距离等于到准线的距离可得弦长||AB 的值,求出原点到直线的距离,代入面积公式可得面积的值.【解答】解:抛物线24y x =的焦点(1,0)F ,准线方程为1x =- 由题意设直线l 的斜率1y x =-,设1(A x ,1)y ,2(B x ,2)y , 联立214y x y x=-⎧⎨=⎩,整理可得:2610x x -+=,可得126x x +=,所以弦长12||628AB x x p =++=+=, 原点O 到直线l的距离d =,所以11||822AOB S AB d ∆=⋅==故答案为:【点评】本题考查求抛物线的性质及点到直线的距离公式和三角形的面积公式,属于中档题.24.【分析】设双曲线方程为22221(0,0)x y a b a b-=>>,则2a =,3c =,由此能求出C 的方程,再求焦点到其渐近线的距离即可.【解答】解:双曲线C 的两个焦点为(3,0)-,(3,0),一个顶点是0),∴设双曲线方程为22221(0,0)x y a b a b-=>>,且a ,3c =,2963b ∴=-=,C ∴的方程为:22163x y -=.故其渐近线为y =,即0x ±=,C ∴的焦点到其渐近线的距离为:d ==故答案为:22163x y -=【点评】本题考查双曲线的方程的求法,是基础题,解题时要认真审题,注意双曲线性质的合理运用.25.【分析】利用双曲线方程直接求解渐近线方程;求出焦点坐标,然后利用双曲线的定义求解即可得到12||||MF MF -.【解答】解:双曲线2212y x -=的渐近线方程为:y =,双曲线的焦点坐标(,0),M 在双曲线上,所以12||||22MF MF a -=-=-,故答案为:y =;2-.【点评】本题考查双曲线的简单性质的应用,双曲线的渐近线方程的求法,定义的应用,是基础题. 26.【分析】利用离心率求出a ,然后求解双曲线的焦点坐标.【解答】解:双曲线2221(0)9x y a a -=>的离心率是54,54=,解得4a =,则5c =, 所以双曲线的右焦点坐标为(5,0). 故答案为:(5,0).【点评】本题考查双曲线的简单性质的应用,焦点坐标的求法,是基础题.27.【分析】当0m =时,12F AF ∠最大,求出△12AF F 为等腰直角三角形即可判断①;求出1ABF ∆为等腰直角三角形时,m 的值,即可判断②;利用椭圆定义可得1ABF 的周长最大值,结合m 的取值范围即可判断③.【解答】解:由方程知4a =,b =c ,当0m =时,12F AF ∠最大,此时122145AF F AF F ∠=∠=︒,所以12F AF ∠的最大值为90︒, 又12AF AF =,所以△12AF F 为等腰直角三角形,即存在唯一一个0m =,使得△12AF F 为等腰直角三角形,故①正确;当0m =时,1245AF F ∠=︒,由椭圆的对称性可得121245BF F AF F ∠=∠=︒,11AF BF =, 所以190AF B ∠=︒,此时1ABF ∆为等腰直角三角形,当0m ≠时,若1ABF ∆为等腰直角三角形,则4m -<<-,此时点A 的坐标为(,m m --,代椭圆方程,解得(4,m =--,故当0m =或1ABF ∆为等腰直角三角形,故②错误; 由椭圆的定义得,1ABF ∆的周长11||||||AB AF BF =++ 2222||(2||)(2|)4||||||AB a AF a BEF a AB AF BF =+-+-=+--,因为22||||||AF BF AB +,所以22||||||0AB AF BF --,当AB 过点2F 时取等号,所以1122||||||4||||||4AB AF BF a AB AF BF a ++=+--,即直线x m =过椭圆的右焦点2F 时,1ABF ∆的周长最大,此时直线AB 的方程为x m c ===44m -<<, 所以存在m ,使1ABF ∆的周长最大,故③正确. 故答案为:①③.【点评】本题主要考查椭圆的性质,考查数形结合的解题思想,考查分析问题与求解问题的能力,是中档题.28.【分析】由题意可得12b a =,即224a b =,结合222a b c +=,可得2254c a =,开方可得c e a=的值.【解答】解:由题意可得双曲线的渐近线方程为by x a =±,故可得12b a =,即224a b =,又222a bc +=,故2224a a c +=,2254c a =,解得c e a ==【点评】本题考查双曲线的简单性质,涉及离心率的求解,属中档题. 三.解答题(共9小题) 29.【分析】(Ⅰ,且经过点,列方程组,解得a ,b ,c ,进而可得答案. (Ⅰ)设直线AB 的方程为y kx m =+,1(A x ,1)y ,2(B x ,2)y ,联立直线AB 与椭圆的方程,得224()4x kx m ++=,由△0>,得2241k m +>,结合韦达定理可得12x x +,12x x ,由0OA AB ⋅=,推出OA AB ⊥,进而设直线OA 的方程为1y x k=-,联立直线AB 的方程得1y ,1x ,代入椭圆的方程可得22224(1)4k m k +=+,再计算222222144(1)||(41)(4)k k AB k k +=++,2224(1)||4k OA k +=+,进而可得22222||369||(41)4AB k OA k ==+,解得214k =,进而可得OAB ∆的面积213||||||24S OA AB OA ==,即可得出答案. 【解答】解:(Ⅰ)由题意可得222221314c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得2a =,1b =,c =,∴椭圆方程为2214x y +=.(Ⅰ)设直线AB 的方程为y kx m =+,1(A x ,1)y ,2(B x ,2)y , 联立y kx m =+与2244x y +=,得224()4x kx m ++=, 222(41)8440k x kmx m ∴+++-=,∴△22222(8)4(41)(44)16(41)0km k m k m =-+-=+->,即2241k m +>,则122841kmx x k -+=+,21224441m x x k -=+,因为0OA AB ⋅=,所以OA AB ⊥,设直线OA 的方程为1y x k =-,联立直线AB 的方程得121m y k =+,1121kmx ky k -=-=+, 代入221144x y +=,所以222()4()411km m k k -+=++,化简得22224(1)4k m k +=+,所以2222222222224(1)(41)(4)4(1)94141444k k k k k k m k k k k +++-++-=+-==+++,所以||AB =, 所以2222222222216(1)(41)144(1)||(41)(41)(4)k k m k k AB k k k ++-+==+++, 所以2222222112224(1)||()(1)()114m m k OA ky y k k k k +=-+=+==+++, 所以22222||369||(41)4AB k OA k ==+, 得22216(41)k k =+,解得214k =, 此时222224(1)2541417k m k k +==<++,满足△0>, 由22214(1)4(1)204||141744k OA k ++===++, 所以OAB ∆的面积2113315||||||||||222417S OA AB OA OA OA ==⨯==. 【点评】本题考查椭圆的方程,直线与椭圆的相交问题,解题中需要一定的计算能力,属于中档题. 30.【分析】(Ⅰ)根据题意列方程组,得a ,b ,进而可得椭圆的方程.(Ⅰ)分两种情况①若直线l 的斜率不存在时,②若直线l 的斜率存在时,直线AM ,BN 的交于点Q ,是否早定直线4x =上.【解答】解:(Ⅰ)因为||4AB =,椭圆C 离心率为12, 所以22224,1,2.a c a abc =⎧⎪⎪=⎨⎪=+⎪⎩解得24a =,23b =.所以椭圆C 的方程是22143x y +=.(Ⅰ)①若直线l 的斜率不存在时,如图,因为椭圆C 的右焦点为(1,0),所以直线l 的方程是1x =.所以点M 的坐标是3(1,)2,点N 的坐标是3(1,)2-.所以直线AM 的方程是1(2)2y x =+,直线BN 的方程是3(2)2y x =-.所以直线AM ,BN 的交点Q 的坐标是(4,3).所以点(4,3)在直线4x =上.②若直线l 的斜率存在时,如图.设斜率为k . 所以直线l 的方程为(1)y k x =-.联立方程组22(1),1,43y k x x y =-⎧⎪⎨+=⎪⎩消去y ,整理得2222(34)84120k x k x k +-+-=, 显然△0>.不妨设1(M x ,1)y ,2(N x ,2)y ,所以2122834k x x k +=+,212241234k x x k-⋅=+. 所以直线AM 的方程是11(2)2y y x x =++.令4x =,得1162y y x =+.直线BN 的方程是22(2)2y y x x =--.令4x =,得2222y y x =-. 所以12121212121212626(1)2(1)6(1)(2)2(2)(1)2222(2)(2)y y k x k x k x x k x x x x x x x x -----+--=-=+-+-+- 1212122112126(1)(2)2(2)(1)2[3(22)(22)]k x x k x x k x x x x x x x x ---+-=--+--+- 12122[25()8]k x x x x =-++22222(412)582[8]3434k k k k k -⨯=-+++22228244024322()034k k k k k --++==+.所以点Q 在直线4x =上.【点评】本题考查椭圆的方程,直线与椭圆的相交问题,解题中需要一定的计算能力,属于中档题. 31.【分析】(Ⅰ)根据题意可得所以1b =,22311a b +=,解得2a =,进而可得椭圆的方程. (Ⅰ)联立直线l 与椭圆的方程可得关于x 的一元二次方程,设1(A x ,1)y ,2(B x ,2)y ,由韦达定理得12x x +,12x x ,由点到直线的距离公式可得原点O 到直线l的距离d ==,解得2254(1)m k =+,计算1212OA OB x x y y ⋅=+为0,即可得出结论.【解答】解:(Ⅰ)因为椭圆经过点(0,1),所以1b =,又因为椭圆经过点1)2,所以23114a +=,解得2a =,所以椭圆的方程为2214x y +=,(Ⅰ)证明:由2214y kx m x y =+⎧⎪⎨+=⎪⎩,可得222(14)8440k x kmx m +++-=, 由题意,△22222(8)4(14)(44)1616640km k m k m =-+-=-++>,即22140k m +->, 设1(A x ,1)y ,2(B x ,2)y ,所以122841kmx x k +=-+,21224441m x x k -=+,因为原点O 到直线l,所以d ==即2254(1)m k =+,因为12121212()()OA OB x x y y x x kx m kx m ⋅=+=+++22222121222448(1)()(1)4141m kmk x x km x x m k km m k k -=++++=+-+++222544041m k k --==+,所以OA OB ⊥.因此以AB 为直径的圆过原点O .【点评】本题考查椭圆的方程,直线与椭圆的相交问题,定点问题,解题中需要一定的计算能力,属于中档题. 32.【分析】(Ⅰ)把点A ,B 的坐标代入椭圆方程,求出a ,b 的值,即可得到椭圆W 的方程;(Ⅰ)先求出m 的值,设直线l 的方程为(2)(0y k x k =+≠,1)k ≠,与椭圆方程联立,设1(C x ,1)y ,2(D x ,2)y ,利用韦达定理得到22121222121212,1313k k x x x x k k -+=-=++,再求出点P ,Q 的纵坐标,得到||||PM MQ 的表达式,把上式代入化简,即可得到||||PM MQ 为定值1. 【解答】解:(Ⅰ)由椭圆2222:1(0)x y W a b a b +=>>过(0,2)A ,(3,1)B --两点,得2b =,29114a +=,所以212a =.所以椭圆W 的方程为221124x y +=.(Ⅰ)(0,2)A ,(3,1)B --,∴直线AB 的方程为:2y x =+,令0y =得:2m =-,设直线l 的方程为(2)(0y k x k =+≠,1)k ≠,由22(2),1124y k x x y =+⎧⎪⎨+=⎪⎩得2222(13)1212120k x k x k +++-=,且△0>,设1(C x ,1)y ,2(D x ,2)y ,则22121222121212,1313k k x x x x k k -+=-=++, 记直线AC 的方程为1122y y x x --=,令2x =-,得P 点的纵坐标11(22)(2)P k x y x -+=,记直线BD 的方程为2211(3)3y y x x ++=++, 令2x =-,得Q 点的纵坐标22(1)(2)3Q k x y x -+=+,112122122212212121212112221221(22)(2)2(3)(2)||||||||(1)(2)||(2)31212122412224()1221313||||1212221312122(13)|| 1.12122(13)PQ k x y x x x PM k x MQ y x x x k k x x x x x x k k k x x x x k k k x k k x -+++===-+++--⨯+⨯++++++++==-+++-++==-++ 所以||||PM MQ 为定值1. 【点评】本题主要考查了椭圆的标准方程,考查了直线与椭圆的定义,考查了学生的计算能力,是中档题. 33.【分析】(Ⅰ)利用已知条件求出b ,结合离心率求解a ,即可得到椭圆方程.(Ⅰ)依题意设直线l 的方程为(4)y k x =+,设1(M x ,1)y ,2(N x ,2)y .联立221,4(4),x y y k x ⎧+=⎪⎨⎪=+⎩消去y ,得2222(41)326440k x k x k +++-=,求出M ,N 的坐标,然后求解AM AN k k +.的表达式,推出结果即可.【解答】解:(Ⅰ)由已知1b =,c e a = 又222a b c =+,解得2a =,1b =.所以椭圆C 的方程为2214x y +=.(Ⅰ)依题意设直线l 的方程为(4)y k x =+,设1(M x ,1)y ,2(N x ,2)y .联立221,4(4),x y y k x ⎧+=⎪⎨⎪=+⎩消去y ,得2222(41)326440k x k x k +++-=,则△216(112)0k =->,解得k <.(*) 则21223241k x x k -+=+,212264441k x x k -=+.若11x =-,则1y =,k =(*)式矛盾,所以11x ≠-. 同理21x ≠-.所以直线AM 和AN 的斜率存在,分别设为AM k 和AN k . 因为121211AM AN y yk k x x +=+++ 121212(4)(4)3321111k x k x k kk x x x x ++=+=++++++ 12121212123(2)3(2)22(1)(1)1k x x k x x k k x x x x x x ++++=+=++++++ 222222323(2)1426443211414k k k k k k k k -++=+--++++ 223(242)20363k k k k -+=+=-, 所以AM AN k k =-. 所以BAM OAN ∠=∠.【点评】本题考查椭圆的简单性质,以及椭圆方程的求法,直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力,是中档题.34.【分析】(Ⅰ)由题意及a ,b ,c 之间的关系求出a ,b 的值,进而求出椭圆的方程;(Ⅰ)由题意开始直线l 的方程,与椭圆联立,由判别式为0求出参数之间的关系,设G ,E 的坐标,由题意可得G ,E 用直线的参数表示的坐标,进而求出||||TA TB 与||||GA GB 的表示,可证得||||||||TA GA TB GB =.【解答】解:(Ⅰ)由题意可得222212a c e a a b c=⎧⎪⎪==⎨⎪=+⎪⎩,解得:24a =,23b =,所以椭圆的方程为:22143x y +=;(Ⅰ)由题意可得直线l 的斜率存在且不为0,设直线l 的方程为:(0)y kx m m =+≠,22143y kx m x y =+⎧⎪⎨+=⎪⎩,整理可得:222(34)84120k x kmx m +++-=, 由题意可得△0=,即22226416(34)(3)0k m k m -+-=,解得:2234m k =+ 设1(G x ,0),0(E x ,0)y 则1m x k =-,024434km kx k m-==-+, 因为ET x ⊥轴,所以4(kT m-,0), 4|2||||42||2|4|||24||2||2()|k TA k m m k m k TB m k m k m -+-+-===++--, 又因为|2||||2||||2||2|m GA m k k m GB m k k-+-==++, 所以可证:||||||||TA GA TB GB =. 【点评】本题考查求椭圆的方程及直线与椭圆相切的性质,及证明的方法,属于中档题. 35.【分析】(Ⅰ)由已知点,椭圆的离心率以及a ,b ,c 的关系式即可求解;(Ⅰ)根据已知条件推出OD 与BC 平行,设出点D 的坐标,利用平行关系以及点D 在椭圆上联立方程即可求解. 【解答】解:(Ⅰ)由已知可得:22222431c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得4a =,2b =,c =故椭圆的方程为:221164x y +=,且长轴长为28a =;(Ⅰ)因为点D 在x 轴下方,所以点Q 在线段AB (不包括端点)上, 由(Ⅰ)可知(4,0)A -,(4,0)B ,所以AOC ∆的面积为142⨯=因为ACQ ∆的面积比BDQ ∆的面积大所以点Q 在线段OB (不包括端点)上,且OCQ ∆的面积等于BDQ ∆的面积, 所以OCB ∆的面积等于BCD ∆的面积, 所以//OD BC , 设(,)D m n ,0n <,则n m ==, 因为点D 在椭圆W 上,所以221164m n +=,解得2m =,n = 所以点D的坐标为(2,.【点评】本题考查了椭圆的方程以及直线与椭圆的位置关系的应用,涉及到三角形面积问题,考查了学生的运算能力,属于中档题. 36.【分析】()I利用离心率为3,且过(0,1)点,列出方程组求解a ,b ,得到椭圆方程. ()II 设直线l 的方程为:1(0)3y x m m =+≠,由221913x y y x m⎧+=⎪⎪⎨⎪=+⎪⎩消去y 得:2219()903x x m ++-=,通过△0>,推出m 的范围,设1(C x ,1)y ,2(D x ,2)y ,利用韦达定理,求直线OM 的方程,与椭圆联立,求解E 、F ,利用弦长公式,计算证明即可.【解答】()I解:根据题意:2222311c a a b a c b b c ⎧=⎪⎧=⎪⎪⎪=-⇒=⋯⋯⋯⋯⋯⋯⋯⋯⋯⎨⎨⎪⎪==⎩⎪⎪⎩(4分)所以椭圆G 的方程为2219x y +=.⋯⋯⋯⋯⋯⋯⋯⋯⋯(5分)()II 证明:设直线l 的方程为:1(0)3y x m m =+≠⋯⋯⋯⋯⋯⋯⋯⋯⋯(6分)由221913x y y x m⎧+=⎪⎪⎨⎪=+⎪⎩消去y 得:2219()903x x m ++-=⋯⋯⋯⋯⋯⋯⋯⋯⋯(7分)即2226990x mx m ++-=,需△22368(99)0m m =-->即202m <<⋯⋯⋯⋯⋯⋯⋯⋯⋯(8分) 设1(C x ,1)y ,2(D x ,2)y ,CD 中点0(M x ,0)y ,则123x x m +=-,2129(1)2x x m =-⋯⋯⋯⋯⋯⋯⋯⋯⋯(9分)12000311,2232x x x m y x m m +==-=+=⋯⋯⋯⋯⋯⋯⋯⋯⋯(10分) 那么直线OM 的方程为:00y y x x =即13y x =-⋯⋯⋯⋯⋯⋯⋯⋯⋯(11分)由22191232x x y y x y ⎧⎧=+=⎪⎪⎪⎪⇒⎨⎨⎪⎪=-=⎪⎪⎩⎩, 不妨令(E F ⋯⋯⋯⋯⋯⋯⋯⋯⋯(12分) 那么221212111||||||(1)[()4]449MC MD CD x x x x ⋅==++-2259[(3)4(1)]182m m =--⋅-25(2)2m =-⋯⋯⋯⋯⋯⋯⋯⋯⋯(13分)||||ME MF ⋅=25(2)2m -⋯⋯⋯⋯⋯⋯⋯⋯⋯(14分)所以||||||||MC MD ME MF ⋅=⋅.【点评】本题考查椭圆方程的求法,直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力,是难题. 37.【分析】(Ⅰ)依题意长轴长为4,且离心率为12.求出a ,c ,然后求解b ,得到椭圆方程. ()II 直线:(1)l y k x =-,代入椭圆方程,利用韦达定理以及弦长公式求出||AB ,求出AB 中点坐标,通过(1)当0k =时,所以||4||AB DF =.(2)当0k ≠时,线段AB 的垂直平分线方程求出D ,得到||DF ,然后转化求解即可、【解答】解:(Ⅰ)依题意24a =,2a =,离心率为12,1c =,则23b =,(4分) 故椭圆C 的方程为22143x y +=.(5分) ||()||AB II DF 是定值.(6分) 理由如下:由已知得直线:(1)l y k x =-,(7分)代入椭圆方程22143x y +=,消去y 得2222(43)84120k x k x k +-+-=,(8分) 所以△22222(8)4(43)(412)1441440k k k k =--+-=+>,(9分)设1(A x ,1)y ,2(B x ,2)y 则2122843k x x k +=+,212241243k x x k -=+,(10分)所以2222221211212||()()(1)[()4]AB x x y y k x x x x =-+-=++-。

2020-2021学年北京市人大附中高三(上)期末数学试卷

2020-2021学年北京市人大附中高三(上)期末数学试卷

2020-2021学年北京市人大附中高三(上)期末数学试卷试题数:21,总分:1501.(单选题,4分)已知集合A={x∈R|-1≤x≤3},B={x∈N|2x<4},则集合A∩B中元素的个数为()A.1B.2C.3D.42.(单选题,4分)若z(1-i)=2i,则z的虚部为()A.1B.-1C.iD.-i3.(单选题,4分)在(√x2−√x)6的二项展开式中,x2的系数为()A. 1516B. −1516C. 316D. −3164.(单选题,4分)已知平面向量a⃗=(√3,−1),|b⃗⃗|=4,且(a⃗−2b⃗⃗)⊥a⃗,则|a⃗−b⃗⃗| =()A.2B.3C.4D.55.(单选题,4分)如图,AB是⊙O的直径,PA垂直于⊙O所在平面,C是圆周上不同于A,B两点的任意一点,且AB=2,PA=BC=√3,则二面角A-BC-P的大小为()A.30°B.45°C.60°D.90°6.(单选题,4分)已知f(x)=√32sinωx+sin2ωx2−12(ω>0),则下列说法错误的是()A.若f(x)在(0,π)内单调,则0<ω≤23B.若f(x)在(0,π)内无零点,则0<ω≤16C.若y=|f(x)|的最小正周期为π,则ω=2D.若ω=2时,直线x=−2π3是函数f(x)图象的一条对称轴7.(单选题,4分)数列{a n}的前n项和记为S n,则“数列{S n}为等差数列”是“数列{a n}为常数列”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件8.(单选题,4分)设抛物线C:x2=2py(p>0)的焦点为F,点P在C上,|PF|= 174,若以线段PF为直径的圆过点(1,0),则C的方程为()A.x2=y或x2=8yB.x2=2y或x2=8yC.x2=y或x2=16yD.x2=2y或x2=16y9.(单选题,4分)在△ABC中,a=2 √3,√7 bcosA=3asinB,则△ABC面积的最大值是()A. 3√7B. 6√7C. 9√7D. 18√710.(单选题,4分)已知函数f(x)=sin[cosx]+cos[sinx],其中[x]表示不超过实数x的最大整数,关于f(x)有下述四个结论:① f(x)的一个周期是2π;② f(x)是偶函数;③ f(x)的最大值大于√2;④ f(x)在(0,π)单调递减.其中所有正确结论编号是()A. ① ②B. ① ③C. ① ④D. ② ④11.(填空题,5分)某单位有青年职工160人,中年职工人数是老年职工人数的2倍,老、中、青职工共有430人,为了解职工身体状况,现采用分层抽样方法进行抽查,在抽取的样本中有青年职工64人,则该样本中的老年职工人数为___ .12.(填空题,5分)在各项均为正数的等比数列{a n}中,已知a2•a4=16,a6=32,记b n=a n+a n+1,则数列{b n}的前六项和S6为___ .13.(填空题,5分)已知F是双曲线C:x2- y28=1的右焦点,P是双曲线C上的点,A(0,6√2).① 若点P在双曲线右支上,则|AP|+|PF|的最小值为 ___ ;② 若点P在双曲线左支上,则|AP|+|PF|的最小值为 ___ .14.(填空题,5分)已知函数f(x)={3x−1+kx−1,x≤0|lnx|+kx−2,x>0,若f(x)恰有4个零点,则实数k的取值范围为 ___ .15.(填空题,5分)某校开展“我身边的榜样”评选活动,现对3名候选人甲、乙、丙进行不记名投票,投票要求见选票,如下所示.这3名候选人的得票数(不考虑是否有效)分别为总票数的84%,75%,46%,则本次投票的有效率(有效票数与总票数的比值)最高可能为___ .乙2.每张选票“〇”的个数不超过2时才为有效票.丙16.(问答题,13分)已知△ABC中,bcosA-c>0.(Ⅰ)△ABC中是否必有一个内角为钝角,说明理由.(Ⅱ)若△ABC同时满足下列四个条件中的三个:① sinA=√22;② sinC=√32;③ a=2;④ c=√2.请证明使得△ABC存在的这三个条件仅有一组,写出这组条件并求出b的值.17.(问答题,13分)如图,在四面体ABCD中,E,F,M分别是线段AD,BD,AC的中点,∠ABD=∠BCD=90°,EC=√2,AB=BD=2.(Ⅰ)证明:EM || 平面BCD;(Ⅱ)证明:EF⊥平面BCD;(Ⅲ)若直线EC与平面ABC所成的角等于30°,求二面角A-CE-B的余弦值.18.(问答题,14分)某企业发明了一种新产品,其质量指标值为m(m∈[70,100]),其质量指标等级如表:质量指标值m [70,75)[75,80)[80,85)[85,90)[90,100]质量指标等级良好优秀良好合格废品为了解该产品的经济效益并及时调整生产线,该企业先进行试产生.现从试生产的产品中随机抽取了1000件,将其质量指标值m的数据作为样本,绘制如下频率分布直方图:(Ⅰ)若将频率作为概率,从该产品中随机抽取2件产品,求抽出的产品中至少有1件不是废品的概率;(Ⅱ)若从质量指标值m≥85的样本中利用分层抽样的方法抽取7件产品中任取3件产品,求m∈[90,95)的件数X 的分布列及数学期望;(Ⅲ)若每件产品的质量指标值m 与利润y (单位:元)的关系如表(1<t <4):均利润达到最大(参考数值:ln2≈0.7,ln5≈1.6).19.(问答题,15分)已知函数f (x )= 12 x 2-alnx- 12 (a∈R ,a≠0). (Ⅰ)当a=2时,求曲线y=f (x )在点(1,f (1))处的切线方程; (Ⅱ)求函数f (x )的单调区间;(Ⅲ)若对任意的x∈[1,+∞),都有f (x )≥0成立,求a 的取值范围.20.(问答题,15分)已知椭圆C : x 2a 2+y 2b 2=1(a >b >0) 的离心率为 √32 ,且经过点 (1,√32) . (Ⅰ)求椭圆C 的方程;(Ⅱ)已知O 为坐标原点,A ,B 为椭圆C 上两点,若 OA ⃗⃗⃗⃗⃗⃗•AB ⃗⃗⃗⃗⃗⃗=0 ,且 |AB||OA|=32 ,求△OAB的面积.21.(问答题,15分)已知项数为m (m∈N*,m≥2)的数列{a n }为递增数列,且满足a n ∈N*,若b n =(a 1+a 2+⋯+a m )−a nm−1∈Z ,则{b n }为{a n }的“关联数列”.(Ⅰ)数列1,4,7,10是否存在“关联数列”?若存在,求其“关联数列”;若不存在,请说明理由.(Ⅱ)若{b n }为{a n }的“关联数列”,{b n }是否一定具有单调性?请说明理由. (Ⅲ)已知数列{a n }存在“关联数列”{b n },且a 1=1,a m =2021,求m 的最大值.2020-2021学年北京市人大附中高三(上)期末数学试卷参考答案与试题解析试题数:21,总分:1501.(单选题,4分)已知集合A={x∈R|-1≤x≤3},B={x∈N|2x<4},则集合A∩B中元素的个数为()A.1B.2C.3D.4【正确答案】:B【解析】:求解指数不等式化简B,再由交集运算求得A∩B,得到集合A∩B中元素的个数.【解答】:解:∵A={x∈R|-1≤x≤3},B={x∈N|2x<4}={x∈N|x<2}={0,1},∴A∩B={x∈R|-1≤x≤3}∩{0,1}={0,1},∴集合A∩B中元素的个数为2.故选:B.【点评】:本题考查指数不等式的解法,交集及其运算,是基础题.2.(单选题,4分)若z(1-i)=2i,则z的虚部为()A.1B.-1C.iD.-i【正确答案】:B【解析】:把已知等式变形,利用复数代数形式的乘除运算化简,再由复数的基本概念得答案.【解答】:解:由z(1-i)=2i,得z= 2i1−i =2i(1+i)(1−i)(1+i)=2i+2i212+12= −2+2i2=−1+i,∴ z=−1−i,则z的虚部为-1.故选:B.【点评】:本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.(单选题,4分)在(√x2−√x)6的二项展开式中,x2的系数为()A. 1516B. −1516C. 316D. −316【正确答案】:D【解析】:求出二项展开式的通项公式,令x的指数为2,求出r的值,即可得解.【解答】:解:(√x2−√x)6的二项展开式的通项公式为T r+1= C6r•(-1)r•2r-6•x3-r,令3-r=2,求得r=1,故x2的系数为- C61•2-5=- 316.故选:D.【点评】:本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.4.(单选题,4分)已知平面向量a⃗=(√3,−1),|b⃗⃗|=4,且(a⃗−2b⃗⃗)⊥a⃗,则|a⃗−b⃗⃗| =()A.2B.3C.4D.5【正确答案】:C【解析】:由向量的模的定义和向量垂直的性质,求得a⃗• b⃗⃗,再由向量的平方即为模的平方,化简计算可得所求值.【解答】:解:由平面向量a⃗=(√3,−1),可得| a⃗ |= √3+1 =2,由(a⃗−2b⃗⃗)⊥a⃗,可得a⃗•(a⃗ -2 b⃗⃗)=0,即a⃗2=2 a⃗• b⃗⃗ =4,则a⃗• b⃗⃗ =2,|a ⃗−b ⃗⃗| = √(a ⃗−b ⃗⃗)2= √a ⃗2−2a ⃗•b ⃗⃗+b ⃗⃗2 = √4−2×2+16 =4, 故选:C .【点评】:本题考查向量数量积的性质和运用,考查方程思想和运算能力,属于中档题. 5.(单选题,4分)如图,AB 是⊙O 的直径,PA 垂直于⊙O 所在平面,C 是圆周上不同于A ,B 两点的任意一点,且AB=2, PA =BC =√3 ,则二面角A-BC-P 的大小为( )A.30°B.45°C.60°D.90°【正确答案】:C【解析】:以A 为原点,在平面ABC 内过A 作AC 的垂线为x 轴,AC 为y 轴,AP 为z 轴,建立空间直角坐标系,利用向量法能求出二面角A-BC-P 的大小.【解答】:解:∵AB 是⊙O 的直径,PA 垂直于⊙O 所在平面,C 是圆周上不同于A ,B 两点的任意一点,且AB=2, PA =BC =√3 ,∴AC⊥BC ,AC= √AB 2−BC 2 = √4−3 =1,以A 为原点,在平面ABC 内过A 作AC 的垂线为x 轴,AC 为y 轴,AP 为z 轴,建立空间直角坐标系,P (0,0, √3 ),B ( √3 ,1,0),C (0,1,0), PB ⃗⃗⃗⃗⃗⃗ =( √3,1 ,- √3 ), PC⃗⃗⃗⃗⃗⃗ =(0,1,- √3 ), 设平面PBC 的法向量 n ⃗⃗ =(x ,y ,z ),则 {n ⃗⃗•PB ⃗⃗⃗⃗⃗⃗=√3x +y −√3z =0n ⃗⃗•PC⃗⃗⃗⃗⃗⃗=y −√3z =0 ,取z=1,得 n ⃗⃗ =(0, √3 ,1),平面ABC 的法向量 m ⃗⃗⃗ =(0,0,1), 设二面角A-BC-P 的平面角为θ, 则cosθ= |m ⃗⃗⃗⃗•n ⃗⃗||m ⃗⃗⃗⃗|•|n ⃗⃗| = 12 ,∴θ=60°, ∴二面角A-BC-P 的大小为60°, 故选:C .【点评】:本题考查二面角的大小的求法,涉及到空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想,是中档题. 6.(单选题,4分)已知 f (x )=√32sinωx +sin 2ωx2−12(ω>0) ,则下列说法错误的是( )A.若f (x )在(0,π)内单调,则 0<ω≤23 B.若f (x )在(0,π)内无零点,则 0<ω≤16 C.若y=|f (x )|的最小正周期为π,则ω=2 D.若ω=2时,直线 x =−2π3是函数f (x )图象的一条对称轴【正确答案】:C【解析】:根据题意,将函数的解析式变形可得f (x )=sin (ωx - π6 ),据此依次分析选项,综合可得答案.【解答】:解:根据题意,f (x )= √32 sinωx+sin 2 ωx 2 - 12 = √32 sinωx - 12 cosωx=sin (ωx - π6), 由此依次分析选项:对于A ,若f (x )在(0,π)内单调,则有ωπ- π6 ≤ π2 ,解可得ω≤ 23 ,A 正确,对于B,当x∈(0,π)时,则ωx- π6∈(- π6,ωπ- π6)若f(x)在(0,π)上无零点,则ωπ- π6≤0,解可得0<ω≤ 16,B正确,对于C,若y=|f(x)|的最小正周期为π,则πω=π,解可得ω=1,C错误,对于D,若ω=2,则f(x)=sin(2x- π6),当x=- 2π3时,2x- π6=- 3π2,则直线x=−2π3是函数f(x)图象的一条对称轴,D正确,故选:C.【点评】:本题考查三角函数的性质,涉及三角函数的恒等变形,属于中档题.7.(单选题,4分)数列{a n}的前n项和记为S n,则“数列{S n}为等差数列”是“数列{a n}为常数列”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【正确答案】:B【解析】:求出数列的通项公式,利用等差数列的定义及充分条件和必要条件概念进行判断即可.【解答】:解:若数列{a n}为常数列,则设a n=a,所以S n=na,于是S1=a1=a,S n+1-S n=a,所以{S n}为等差数列,所以“数列{S n}为等差数列”是“数列{a n}为常数列”的必要条件;若数列{S n}为等差数列,设公差为d,则S n=S1+(n-1)d,于是a1=S1,a n+1=S n+1-S n=(S1+nd)-(S1+(n-1)d)=d,当a1=S1≠d时,数列{a n}不是常数列,所以,“数列{S n}为等差数列”不是“数列{a n}为常数列”的充分条件;综上所述,“数列{S n}为等差数列”是“数列{a n}为常数列”的必要不充分条件.故选:B.【点评】:本题主要考查充分条件和必要条件的基本概念,考查了等差数列的基本性质,属于基础题.8.(单选题,4分)设抛物线C:x2=2py(p>0)的焦点为F,点P在C上,|PF|= 174,若以线段PF为直径的圆过点(1,0),则C的方程为()A.x2=y或x2=8yB.x2=2y或x2=8yC.x2=y或x2=16yD.x2=2y或x2=16y【正确答案】:C【解析】:设出点P坐标,根据抛物线定义和性质,可将点P坐标代入即可解出.【解答】:解:由题意可知F(0,p2),准线方程为y=- p2,设点P(m.n),|PF|=n+ p2 = 174,又线段PF为直径的圆过点(1,0),∴圆的半径为178,圆心坐标为(m2,178),√(m2−1)2+(178−0)2=178,∴m=2,即P(2,174−p2)代入抛物线方程得,4=2p×(174−p2),解得p=8或12,故选:C.【点评】:本题考查抛物线的性质,圆的方程,属于基础题.9.(单选题,4分)在△ABC中,a=2 √3,√7 bcosA=3asinB,则△ABC面积的最大值是()A. 3√7B. 6√7C. 9√7D. 18√7【正确答案】:A【解析】:由已知结合正弦定理及同角基本关系可求sinA,cosA,然后结合余弦定理及基本不等式可求bc的范围,进而可求.【解答】:解:由正弦定理及√7 bcosA=3asinB,得√7 sinBcosA=3sinAsinB,因为sinB>0,所以√7 cosA=3sinA,A为锐角,结合sin2A+cos2A=1,所以sinA= √74,cosA= 34,由余弦定理得,cosA= 34 = b2+c2−122bc,整理得,24=2b2+2c2-3bc≥4bc-3bc=bc,当且仅当b=c时取等号,即bc≤24,则△ABC面积S= 12bcsinA≤12×24×√74=3 √7,故选:A.【点评】:本题主要考查了正弦定理,余弦定理,三角形的面积公式,基本不等式在三角形求解中的应用,属于中档题.10.(单选题,4分)已知函数f(x)=sin[cosx]+cos[sinx],其中[x]表示不超过实数x的最大整数,关于f(x)有下述四个结论:① f(x)的一个周期是2π;② f(x)是偶函数;③ f(x)的最大值大于√2;④ f(x)在(0,π)单调递减.其中所有正确结论编号是()A. ① ②B. ① ③C. ① ④D. ② ④【正确答案】:B【解析】:① ,利用周期定义判断;② ,利用f(π4)和f(- π4)的值判断;③ 利用f(0)的值判断;④ 判断函数f(x)在(0,π2)的函数值判断即可.【解答】:解:① :因为f(x+2π)=sin[cos(x+2π)]+cos[sin (x+2π)]=sin[cosx]+sin[cosx]=f(x),所以函数的一个周期为2π,故① 正确;② :因为f(π4)=sin[cos π4]+cos[sin π4]=sin0+cos0=1,f(- π4)=sin[cos(- π4)]+cos[sin(- π4)]=sin0+cos(-1)=cos1,所以f(π4)≠f(−π4),故函数不是偶函数;故② 错误;③ 因为f(0)=sin[cos0]+cos[sin0]=sin1+1 >√22+1>√2,故③ 正确;④ :当x∈(0,π2)时,0<sinx<1,0<cosx<1,所以[sinx]=[cosx]=0,所以f(x)=sin[cosx]+cos[sinx]=sin0+cos0=1,即当x ∈(0,π2)时,f(x)=1为定值,故④ 错误; 故选:B .【点评】:本题考查了简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题. 11.(填空题,5分)某单位有青年职工160人,中年职工人数是老年职工人数的2倍,老、中、青职工共有430人,为了解职工身体状况,现采用分层抽样方法进行抽查,在抽取的样本中有青年职工64人,则该样本中的老年职工人数为___ . 【正确答案】:[1]36【解析】:设老年职工有x 人,列方程求出x 的值,再设该样本中的老年职工人数为y 人,列方程求出y 的值即可.【解答】:解:设老年职工有x 人,则中年职工有2x 人,所以x+2x+160=430, x=90,所以老年职工有90人,设该样本中的老年职工人数为y 人,则 y90 = 64160 , 解得y=36,所以该样本中的老年职工人数为36人.【点评】:本题考查了分层抽样方法的应用问题,也考查了运算求解能力,是基础题. 12.(填空题,5分)在各项均为正数的等比数列{a n }中,已知a 2•a 4=16,a 6=32,记b n =a n +a n+1,则数列{b n }的前六项和S 6为___ . 【正确答案】:[1]189【解析】:先由题设求得a 3,进而求得公比q 与a n ,再求得b n ,然后利用等比数列的前n 项和公式求得结果.【解答】:解:设等比数列{a n }的公比为q , ∵a 2•a 4=16=a 32,a n >0,∴a 3=4, 又∵a 6=32,∴ a 6a 3=q 3=8,解得:q=2, ∴a n =a 6q n-6=2n-1, ∴b n =2n-1+2n =3×2n-1, ∴S 6=3(1−26)1−2=189,故答案为:189.【点评】:本题主要考查等比数列的性质及基本量的计算,属于基础题.=1的右焦点,P是双曲线C上的点,13.(填空题,5分)已知F是双曲线C:x2- y28A(0,6√2).① 若点P在双曲线右支上,则|AP|+|PF|的最小值为 ___ ;② 若点P在双曲线左支上,则|AP|+|PF|的最小值为 ___ .【正确答案】:[1]9; [2]11【解析】:由题意知,F(3,0),① 当A,P,F按此顺序三点共线时,|AP|+|PF|取得最小值;② 设双曲线的左焦点为F',由双曲线的定义可知,|PF|=|PF'|+2,当A,P,F'按此顺序三点共线时,|AP|+|PF|取得最小值.【解答】:解:由题意知,F(3,0),① |AP|+|PF|≥|AF|= √(0−3)2+(6√2−0)2 =9,当且仅当A,P,F按此顺序三点共线时,等号成立,所以|AP|+|PF|的最小值为9;② 设双曲线的左焦点为F'(-3,0),由双曲线的定义知,|PF|-|PF'|=2a=2,所以|AP|+|PF|=|AP|+|PF'|+2≥|AF'|+2= √(0+3)2+(6√2−0)2 +2=11,当且仅当A,P,F'按此顺序三点共线时,等号成立,所以|AP|+|PF|的最小值为11.故答案为:9;11.【点评】:本题考查双曲线的定义与几何性质,考查数形结合思想、逻辑推理能力和运算能力,属于基础题.14.(填空题,5分)已知函数f(x)={3x−1+kx−1,x≤0|lnx|+kx−2,x>0,若f(x)恰有4个零点,则实数k的取值范围为 ___ .【正确答案】:[1](-e-3,0)【解析】:首先将问题进行等价转化,然后结合函数的图像即可确定实数k的取值范围.【解答】:解:原问题等价于函数g(x)={2x−1−1|lnx|−2与函数y=-kx存在4个不同的交点.绘制函数g(x)的图像如图所示,很明显,当k≥0时,不满足题意,当k<0时,两函数在区间(-∞,0)和区间(0,1)上必然各存在一个交点,则函数g(x)与函数y=-kx在区间(1,+∞)上存在两个交点,临界条件为函数y=-kx与函数h(x)=lnx-2相切,考查函数h(x)=lnx-2过坐标原点的切线:由函数的解析式可得:ℎ′(x)=1x,设切点坐标为(x0,lnx0-2),则切线方程为:y−(lnx0−2)=1x0(x−x0),切线过坐标原点,则:0−(lnx0−2)=1x0(0−x0),解得:x0=e3,此时切线的斜率为:−k=ℎ′(x0)=e−3,据此可得:实数k的取值范围是(-e-3,0).故答案为:(-e-3,0).【点评】:本题主要考查由函数零点个数求参数的方法,等价转化的数学思想,数形结合的数学思想等知识,属于中等题.15.(填空题,5分)某校开展“我身边的榜样”评选活动,现对3名候选人甲、乙、丙进行不记名投票,投票要求见选票,如下所示.这3名候选人的得票数(不考虑是否有效)分别为总票数的84%,75%,46%,则本次投票的有效率(有效票数与总票数的比值)最高可能为___ .【解析】:假设总票数为100张,投1票的x,投2票的y,投3票的z,则可得{x+2y+3z=84+75+46x+y+z=100x,y,z∈N,整理后得到当x=0时z取最小值5,进而可计算出投票的有效率.【解答】:解:不妨设共有选票100张,投1票的x,投2票的y,投3票的z,则根据题意得{x+2y+3z=84+75+46x+y+z=100x,y,z∈N,整理可得z-x=5,即z=x+5,由题意,若要投票有效率越高,则z需越小,故当x=0时,z最小为5,此时y=95,此时投票的有效率为95÷100=95%,故答案为:95%.【点评】:本题考查了函数模型的选择,考查简单的逻辑推理,属于中档题.16.(问答题,13分)已知△ABC中,bcosA-c>0.(Ⅰ)△ABC中是否必有一个内角为钝角,说明理由.(Ⅱ)若△ABC同时满足下列四个条件中的三个:① sinA=√22;② sinC=√32;③ a=2;④ c=√2.请证明使得△ABC存在的这三个条件仅有一组,写出这组条件并求出b的值.【正确答案】:【解析】:(Ⅰ)由题意及正弦定理可得sinAcosB<0,再由A,B的范围可得cosB<0,求出B为钝角;(Ⅱ)由(Ⅰ)可得B为钝角,当① ② 条件时,求出A,C的值,进而求出B的值,不符合B为钝角的条件,所以① ② 不能同时成立;当① ③ ④ 时,求出C角,进而求出B的值,再由余弦定理可得b的值;当② ③ ④ 时,由正弦定理求出A的值,进而由三角形内角和可得B的值,由于不满足B 为钝角的条件故舍弃.【解答】:解:(Ⅰ)因为bcosA-c>0,由正弦定理可得sinBcosA-sinC>0,在△ABC中,C=π-A-B,sinC=sin(A+B)=sinAcosB+cosAsinB,所以不等式整理为sinAcosB+cosAsinB<sinBcosA,即sinAcosB<0,因为A∈(0,π),sinA>0,所以cosB<0,所以B为钝角;(Ⅱ)(i)若满足① ③ ④ ,则正弦定理可得asinA = csinC,即√22 = √2sinC,所以sinC= 12,又a>c,所以A>C,在三角形中,sinA= √22,所以A= π4或A= 34π,而由(Ⅰ)可得A= π4,所以可得C= π6,B=π-A-C=π- π4- π6= 712π;所以b= √a2+c2−2accosB = √4+2−2×2×√2(−√6−√24) = √3 +1;(ii)若满足① ② ,由(Ⅰ)B为钝角,A,C为锐角,及sinA= √22,sinC= √32,可得A= π4,C= π3,所以B= 512π 不符合B为钝角,故① ② 不同时成立;(iii)若满足② ③ ④ ,由B为钝角,sinC= √32,所以C= π3,而a>c,所以A>C,这时B <π3,不符合B为钝角的情况,所以这种情况不成立;综上所述:只有满足① ③ ④ 时b= √3 +1.【点评】:本题考查三角形的性质大边对大角及三角形正余弦定理的应用,属于中档题.17.(问答题,13分)如图,在四面体ABCD中,E,F,M分别是线段AD,BD,AC的中点,∠ABD=∠BCD=90°,EC=√2,AB=BD=2.(Ⅰ)证明:EM || 平面BCD;(Ⅱ)证明:EF⊥平面BCD;(Ⅲ)若直线EC与平面ABC所成的角等于30°,求二面角A-CE-B的余弦值.【正确答案】:【解析】:(Ⅰ)由中位线的性质知EM || CD,再由线面平行的判定定理,得证;(Ⅱ)由中位线的性质知EF || AB,EF=1,从而有EF⊥BD,再结合直角三角形的性质和勾股定理的逆定理可得EF⊥CF,然后由线面垂直的判定定理,得证;(Ⅲ)由(Ⅱ)中的EF⊥平面BCD,推出AB⊥CD,再利用线面垂直的判定定理可得CD⊥平面ABC,从而有EM⊥平面ABC,于是∠ACE=30°,然后可证明△BCD是等腰直角三角形,故以B为原点建立空间直角坐标系,求得平面ACE和平面BCE的法向量m⃗⃗⃗与n⃗⃗,由cos<m⃗⃗⃗,n⃗⃗>,得解.= m⃗⃗⃗⃗•n⃗⃗|m⃗⃗⃗⃗|•|n⃗⃗|【解答】:(Ⅰ)证明:∵E,M分别是线段AD,AC的中点,∴EM || CD,又EM⊄平面BCD,CD⊂平面BCD,∴EM || 平面BCD.AB=1,(Ⅱ)证明:∵E,F分别是线段AD,BD的中点,∴EF || AB,EF= 12∵∠ABD=90°,即AB⊥BD,∴EF⊥BD,BD=1,∵∠BCD=90°,F为BD的中点,∴CF= 12∵ EC=√2,∴EC2=EF2+CF2,即EF⊥CF,又BD∩CF=F,BD、CF⊂平面BCD,∴EF⊥平面BCD.(Ⅲ)由(Ⅱ)知,EF⊥平面BCD , ∵EF || AB ,∴AB⊥平面BCD ,∴AB⊥CD ,∵∠BCD=90°,即BC⊥CD ,且AB∩BC=B ,AB 、BC⊂平面ABC , ∴CD⊥平面ABC ,∵EM || CD ,∴EM⊥平面ABC ,∴∠ACE 为直线EC 与平面ABC 所成的角,即∠ACE=30°, ∵CD⊥平面ABC ,∴CD⊥AC ,∵E 为AD 的中点,∴CE= 12AD=AE ,即△ACE 是底角为30°的等腰三角形, ∵ EC =√2 ,∴AC= √6 ,BC= √AC 2−AB 2 = √6−4 = √2 , ∵BD=2,∠BCD=90°,∴△BCD 是等腰直角三角形,∴CF⊥BD ,以B 为原点,BD ,BA 所在直线分别为y ,z 轴,在平面BCD 内作Bx || CF ,建立如图所示的空间直角坐标系,则B (0,0,0),A (0,0,2),E (0,1,1),C (1,1,0), ∴ CE ⃗⃗⃗⃗⃗⃗ =(-1,0,1), AC ⃗⃗⃗⃗⃗⃗ =(1,1,-2), BC⃗⃗⃗⃗⃗⃗ =(1,1,0), 设平面ACE 的法向量为 m ⃗⃗⃗ =(x ,y ,z ),则 {m ⃗⃗⃗•CE ⃗⃗⃗⃗⃗⃗=0m ⃗⃗⃗•AC ⃗⃗⃗⃗⃗⃗=0 ,即 {−x +z =0x +y −2z =0 ,令z=1,则x=1,y=1,∴ m ⃗⃗⃗ =(1,1,1), 同理可得,平面BCE 的法向量为 n ⃗⃗ =(1,-1,1), ∴cos < m ⃗⃗⃗ , n ⃗⃗ >= m⃗⃗⃗⃗•n ⃗⃗|m ⃗⃗⃗⃗|•|n ⃗⃗|= √3×√3 = 13 , 由图可知,二面角A-CE-B 为锐角, 故二面角A-CE-B 的余弦值为 13 .【点评】:本题考查空间中线与面的位置关系、线面角和二面角的求法,熟练掌握线与面平行、垂直的判定定理或性质定理,理解线面角的定义,以及利用空间向量处理二面角的方法是解题的关键,考查学生的空间立体感、逻辑推理能力和运算能力,属于中档题.18.(问答题,14分)某企业发明了一种新产品,其质量指标值为m(m∈[70,100]),其质量指标等级如表:质量指标值m [70,75)[75,80)[80,85)[85,90)[90,100]质量指标等级良好优秀良好合格废品为了解该产品的经济效益并及时调整生产线,该企业先进行试产生.现从试生产的产品中随机抽取了1000件,将其质量指标值m的数据作为样本,绘制如下频率分布直方图:(Ⅰ)若将频率作为概率,从该产品中随机抽取2件产品,求抽出的产品中至少有1件不是废品的概率;(Ⅱ)若从质量指标值m≥85的样本中利用分层抽样的方法抽取7件产品中任取3件产品,求m∈[90,95)的件数X的分布列及数学期望;(Ⅲ)若每件产品的质量指标值m与利润y(单位:元)的关系如表(1<t<4):质量指标值m [70,75)[75,80)[80,85)[85,90)[90,100]利润y(元)4t 9t 4t 2t −5e t3试分析生产该产品能否盈利?若不能,请说明理由;若能,试确定t为何值时,每件产品的平均利润达到最大(参考数值:ln2≈0.7,ln5≈1.6).【正确答案】:【解析】:(Ⅰ)设事件A的合格率为P(A),则根据概率分布直方图求出一件产品为合格或合格以上等级的概率,由此能求出事件A发生的概率;(Ⅱ)由频率分布直方图和分层抽样求出抽取的7件产品中,m∈[85,90)的有4件,m∈[90,95)的有2件,m∈[95,100)的有1件,从这7件产品中,任取3件,质量指标值m∈[90,95)的件数X的所有可能取值为0,1,2,分别求出相应的概率,由此能求出X的分布列和E(X);(Ⅲ)由频率分布直方图可得该产品的质量指标值k与利润y(元)的关系,从而求出每件产品的利润y=-0.5e t+2.5t,(1<t<4),则y′=-0.5e t+2.5,利用导数性质能求出生产该产品能够实现盈利,当t=ln5≈1.5时,每件产品的利润取得最大值为1.5元.【解答】:解:(Ⅰ)设事件A的概率为P(A),则由频率分布直方图可得,1件产品为废品的概率为P=5(0.04+0.02)=0.3,则P(A)=1-0.32=1-0.09=0.91,(Ⅱ)由频率分布直方图得指标值大于或等于85的产品中,m∈[85,90)的频率为0.08×5=0.4,m∈[90,95)的频率为0.04×5=0.2,m∈[95,100]的频率为0.02×5=0.1,∴利用分层抽样抽取的7件产中,m∈[85,90)的有4件,m∈[90,95)的有2件,m∈[95,100)的有1件,从这7件产品中,任取3件,质量指标值m∈[90,95)的件数X的所有可能取值为0,1,2,P(X=0)= C53C73 = 27,P(X=1)= C21C52C73 = 47,P(X=2)= C22C51C73 = 17,∴X的分布列为:E(X)=0×7 +1×7+2×7=7.(Ⅲ)由频率分布直方图可得该产品的质量指标值m与利润y(元)的关系与表所示(1<t <4),y=-0.5e t+0.8t+0.6t+0.9t+0.2t=-0.5e t+2.5t,(1<t<4),则y′=-0.5e t+2.5,令y′=-0.5e t+2.5=0,解得t=ln5,∴当t∈(1,ln5)时,y′>0,函数y=-0.5e t+2.5单调递增,当t∈(ln5,4)时,y′<0,函数y=-0.5e t+2.5t,单调递减,∴当t=ln5时,y取最大值,为-0.5e ln5+2.5×ln5=1.5,∴生产该产品能够实现盈利,当t=ln5≈1.6时,每件产品的利润取得最大值为1.5元.【点评】:本题考查离散型随机变量的分布列、数学期望、利润最大值的求法,考查频率分布直方图、分层抽样、导数性质等基础知识,考查运算求解能力,属于中档题.19.(问答题,15分)已知函数f(x)= 12 x2-alnx- 12(a∈R,a≠0).(Ⅰ)当a=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)若对任意的x∈[1,+∞),都有f(x)≥0成立,求a的取值范围.【正确答案】:【解析】:(Ⅰ)当a=2时,写出f(x)的表达式,对f(x)进行求导,求出x=1处的斜率,再根据点斜式求出切线的方程;(Ⅱ)求出函数的定义域,令f′(x)大于0求出x的范围即为函数的增区间;令f′(x)小于0求出x的范围即为函数的减区间;(Ⅲ)由题意可知,对任意的x∈[1,+∞),使f(x)≥0成立,只需任意的x∈[1,+∞),f (x)min≥0.下面对a进行分类讨论,从而求出a的取值范围;【解答】:解:(Ⅰ)a=2时,f(x)=12x2−2lnx−12,f(1)=0f′(x)=x−2x,f′(1)=−1曲线y=f(x)在点(1,f(1))处的切线方程x+y-1=0(Ⅱ)f′(x)=x−ax =x2−ax(x>0)① 当a<0时,f′(x)=x2−ax>0恒成立,函数f(x)的递增区间为(0,+∞)② 当a>0时,令f'(x)=0,解得x=√a或x=−√a所以函数f (x )的递增区间为 (√a ,+∞) ,递减区间为 (0,√a)(Ⅲ)对任意的x∈[1,+∞),使f (x )≥0成立,只需任意的x∈[1,+∞),f (x )min ≥0 ① 当a <0时,f (x )在[1,+∞)上是增函数, 所以只需f (1)≥0 而 f (1)=12−aln1−12=0 所以a <0满足题意;② 当0<a≤1时, 0<√a ≤1 ,f (x )在[1,+∞)上是增函数, 所以只需f (1)≥0 而 f (1)=12−aln1−12=0 所以0<a≤1满足题意;③ 当a >1时, √a >1 ,f (x )在 [1,√a] 上是减函数, [√a ,+∞) 上是增函数, 所以只需 f(√a)≥0 即可 而 f(√a)<f (1)=0 从而a >1不满足题意;综合 ① ② ③ 实数a 的取值范围为(-∞,0)∪(0,1].【点评】:考查利用导数研究曲线上某点切线方程、利用导数研究函数的极值和单调性.恒成立的问题,一般都要求函数的最值,此题是一道中档题. 20.(问答题,15分)已知椭圆C : x 2a 2+y 2b 2=1(a >b >0) 的离心率为 √32 ,且经过点 (1,√32) . (Ⅰ)求椭圆C 的方程;(Ⅱ)已知O 为坐标原点,A ,B 为椭圆C 上两点,若 OA ⃗⃗⃗⃗⃗⃗•AB ⃗⃗⃗⃗⃗⃗=0 ,且 |AB||OA|=32 ,求△OAB的面积.【正确答案】:【解析】:(Ⅰ)由椭圆离心率为 √32 ,且经过点 (1,√32) ,列方程组,解得a ,b ,c ,进而可得答案.(Ⅱ)设直线AB 的方程为y=kx+m ,A (x 1,y 1),B (x 2,y 2),联立直线AB 与椭圆的方程,得x 2+4(kx+m )2=4,由Δ>0,得4k 2+1>m 2,结合韦达定理可得x 1+x 2,x 1x 2,由OA ⃗⃗⃗⃗⃗⃗•AB ⃗⃗⃗⃗⃗⃗=0 ,推出OA⊥AB ,进而设直线OA 的方程为y=- 1k x ,联立直线AB 的方程得y 1,x 1,代入椭圆的方程可得m 2=4(k 2+1)2k 2+4,再计算|AB|2=144(1+k 2)k 2(4k 2+1)2(k 2+4) ,|OA|2= 4(k 2+1)k 2+4,进而可得 |AB|2|OA|2 = 36k 2(4k 2+1)2 = 94 ,解得k 2= 14 ,进而可得△OAB 的面积S= 12 |OA||AB|= 34 |OA|2,即可得出答案.【解答】:解:(Ⅰ)由题意可得 { c a =√321a 2+34b 2=1a 2=b 2+c 2,解得a=2,b=1,c= √3 ,∴椭圆方程为 x 24 +y 2=1.(Ⅱ)设直线AB 的方程为y=kx+m ,A (x 1,y 1),B (x 2,y 2), 联立y=kx+m 与x 2+4y 2=4,得x 2+4(kx+m )2=4, ∴(4k 2+1)x 2+8kmx+4m 2-4=0,∴Δ=(8km )2-4(4k 2+1)(4m 2-4)=16(4k 2+1-m 2)>0,即4k 2+1>m 2, 则x 1+x 2=−8km 4k 2+1 ,x 1x 2= 4m 2−44k 2+1, 因为 OA ⃗⃗⃗⃗⃗⃗•AB ⃗⃗⃗⃗⃗⃗=0 ,所以OA⊥AB , 设直线OA 的方程为y=- 1k x ,联立直线AB 的方程得y 1= m k 2+1 ,x 1=-ky 1= −kmk 2+1 , 代入x 12+4y 12=4,所以( −km k 2+1 )2+4( mk 2+1 )=4,化简得m 2=4(k 2+1)2k 2+4,所以4k 2+1-m 2=4k 2+1-4(k+1)2k 2+4 = (4k 2+1)(k 2+4)−4(k 2+1)2k 2+4=9k 2k 2+4, 所以|AB|= √1+k 2 √(x 1+x 2)2−4x 1x 2 = √1+k 2 √(−8km 4k 2+1)2−4•4m 2−44k 2+1 = 4√1+k 2√4k 2+1−m 24k 2+1, 所以|AB|2=16(1+k 2)(4k 2+1−m 2)(4k 2+1)2 = 144(1+k 2)k 2(4k 2+1)2(k 2+4), 所以|OA|2=(-ky 1)2+y 12=(k 2+1)( mk 2+1 )2= m 2k 2+1 =4(k 2+1)k 2+4,所以 |AB|2|OA|2 = 36k 2(4k 2+1)2 = 94 ,得16k 2=(4k 2+1)2,解得k 2= 14 , 此时m 2= 4(k 2+1)2k 2+4= 2517 <4k 2+1,满足Δ>0,由|OA|2=4(k 2+1)k 2+4=4(14+1)14+4 = 2017 ,所以△OAB 的面积S= 12|OA||AB|= 12|OA|× 32|OA|= 34|OA|2= 1517.【点评】:本题考查椭圆的方程,直线与椭圆的相交问题,解题中需要一定的计算能力,属于中档题.21.(问答题,15分)已知项数为m (m∈N*,m≥2)的数列{a n }为递增数列,且满足a n ∈N*,若b n =(a 1+a 2+⋯+a m )−a nm−1∈Z ,则{b n }为{a n }的“关联数列”.(Ⅰ)数列1,4,7,10是否存在“关联数列”?若存在,求其“关联数列”;若不存在,请说明理由.(Ⅱ)若{b n }为{a n }的“关联数列”,{b n }是否一定具有单调性?请说明理由. (Ⅲ)已知数列{a n }存在“关联数列”{b n },且a 1=1,a m =2021,求m 的最大值.【正确答案】:【解析】:(Ⅰ)利用等差数列的通项公式求出a 1+a 2+a 3+a 4=22,再利用“关联数列”的定义进行分析求解即可;(Ⅱ)利用“关联数列”的定义结合数列单调性的判断方法,即作差法进行判断即可; (Ⅲ)利用已知条件分析得到a n+1-a n ≥m -1,然后表示出a m -1≥(m-1)2,从而得到m 的取值范围,再利用“关联数列”{b n },得到 b 1−b m =2020m−1∈N ∗ ,利用m-1为2020的正约数分析求解即可.【解答】:解:(I )1,4,7,10是项数为4的递增等差数列, 其中a 1=1,d=3,a n =1+(n-1)×3=3n-2,所以a 1+a 2+a 3+a 4=22, 则 b n =a 1+a 2+a 3+a 4−a n4−1=22−3n+23, 故b n =8-n ,1≤n≤4,n∈N*, 所以b 1=7,b 2=6,b 3=5,b 4=4,所以数列1,4,7,10存在“关联数列”为7,6,5,4;(Ⅱ)因为{a n}为递增数列,所以a n+1-a n>0,则b n+1−b n=(a1+a2+⋯+a m)−a n+1m−1 - (a1+a2+⋯+a m)−a nm−1= a n−a n+1m−1<0,所以b n+1<b n,故数列{b n}具有单调递减性;(Ⅲ)由于b n∈Z,则b n-b n+1≥1,故a n+1−a nm−1≥1,所以a n+1-a n≥m-1,又a m-1=(a m-a m-1)+(a m-1-a m-2)+…+(a2-a1)≥(m-1)+(m-1)+…+(m-1)=(m-1)2,所以(m-1)2≤2020,解得m≤45,所以{a n}存在“关联数列”{b n},所以b1−b m=(a1+a2+⋯+a m)−a1m−1 - (a1+a2+⋯+a m)−a mm−1=a m−a1m−1= 2020m−1∈N∗,因为m-1为2020的正约数,且m≤45,故m-1的最大值为20,所以m的最大值为21.【点评】:本题考查了新定义问题,解决此类问题,关键是读懂题意,理解新定义的本质,把新情境下的概念、法则、运算化归到常规的数学背景中,运用相关的数学公式、定理、性质进行解答,属于难题.。

2024学年河南省开封市兰考县等五县联考高三数学第一学期期末达标检测模拟试题含解析

2024学年河南省开封市兰考县等五县联考高三数学第一学期期末达标检测模拟试题含解析

2024学年河南省开封市兰考县等五县联考高三数学第一学期期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.如图是一个算法流程图,则输出的结果是( )A .3B .4C .5D .62.将函数22cos 128x y π⎛⎫=+- ⎪⎝⎭的图像向左平移()0m m >个单位长度后,得到的图像关于坐标原点对称,则m 的最小值为( ) A .3πB .4π C .2π D .π3.双曲线2212y x -=的渐近线方程为( )A .3y x =B .y x =±C .2y x =D .3y x =4.已知半径为2的球内有一个内接圆柱,若圆柱的高为2,则球的体积与圆柱的体积的比为( ) A .43B .916C .34D .1695.已知全集为R ,集合122(1),{|20}A x y x B x x x -⎧⎫⎪⎪==-=-<⎨⎬⎪⎪⎩⎭,则()A B =R ( )A .(0,2)B .(1,2]C .[0,1]D .(0,1]6.已知,a b 为非零向量,“22a b b a =”为“a a b b =”的( ) A .充分不必要条件 B .充分必要条件C .必要不充分条件D .既不充分也不必要条件7.给出下列四个命题:①若“p 且q ”为假命题,则p ﹑q 均为假命题;②三角形的内角是第一象限角或第二象限角;③若命题0:p x R ∃∈,200x ≥,则命题:p x R ⌝∀∈,20x <;④设集合{}1A x x =>,{}2B x x =>,则“x A ∈”是“x B ∈”的必要条件;其中正确命题的个数是( ) A .1 B .2 C .3D .48.抛物线的焦点是双曲线的右焦点,点是曲线的交点,点在抛物线的准线上,是以点为直角顶点的等腰直角三角形,则双曲线的离心率为( ) A .B .C .D .9.设m ,n 为非零向量,则“存在正数λ,使得λ=m n ”是“0m n ⋅>”的( ) A .既不充分也不必要条件 B .必要不充分条件 C .充分必要条件D .充分不必要条件10.函数()cos2xf x x =的图象可能为( )A .B .C .D .11.设函数()()21ln 11f x x x=+-+,则使得()()1f x f >成立的x 的取值范围是( ). A .()1,+∞ B .()(),11,-∞-+∞ C .()1,1-D .()()1,00,1-12.我国著名数学家陈景润在哥德巴赫猜想的研究中取得了世界瞩目的成就,哥德巴赫猜想内容是“每个大于2的偶数可以表示为两个素数的和”( 注:如果一个大于1的整数除了1和自身外无其他正因数,则称这个整数为素数),在不超过15的素数中,随机选取2个不同的素数a 、b ,则3a b -<的概率是( ) A .15B .415C .13D .25二、填空题:本题共4小题,每小题5分,共20分。

八省联考2023届高三(T8联考)数学试题及答案

八省联考2023届高三(T8联考)数学试题及答案

八省联考2023届高三(T8联考)数学试题及答案2023届高三第一次学业质量评价(T8联考)数学试题及答案新高考八省联考八省联考是指河北、辽宁、江苏、福建、湖北、湖南、广东、重庆等8个省份的高考考生的一次高考前模拟考试。

这次模拟考试是由教育部统一组织的一次大规模的高考模拟考试,被广大考生称为“八省联考”。

为了让考生能够提前适应新高考的考试题型、考试方式,尤其是熟悉新高考的赋分方式,由教育部组织各试点省市区开展了这次高考模拟考试。

八省联考能够让广大考生熟悉新高考的流程,题型以及模式,这也是教育部组织广大考生进行八省联考的主要的目的,通过进行模拟测试,能够让考生提前熟悉这些政策的改变,有利于在高考当中正常的发挥。

八省联考的“3”指的是:语文、数学、外语,这三门科目考试参加统一高考,由教育部考试中心统一命题,以原始成绩计入考生总成绩。

八省联考的“1”指的是:物理和历史,考生必须从物理和历史两个科目中选择一科,由各省自主命题,以原始成绩计入考生总成绩。

八省联考的“2”指的是:考生从化学、生物、地理和政治四门科目中选两门,选考由各省命题,通过等级赋分的方式,将赋分后的成绩计入考生总成绩。

高三怎么数学复习1、立足基础知识高三复习数学的时候老师平时讲的大多数都是基础知识,很少讲特别难的,因为只有高考考察的大部分内容还是基础,并且只有基础知识掌握好了才能进一步学好难的。

再者平时考试结束以后,很多同学都会出现这种情况:明明是很简单的题,但是不知道为什么当时考虑错了,这也是因为基础知识没有学好,考试的时候一紧张就会出现思维混乱,简单的题就会做错。

2、做题注重审题减少错误审题是做题的第一步,只有读懂了题干,清楚了题目的要求才能继续分析解题,如果题干内容都不清楚就半猜测的做题,就很容易做错。

就像考试卷子发下来以后,发现明明是会做的题却做错了,就是因为审题不清楚、不谨慎。

所以高三学生备考数学的时候不仅要注重知识的掌握,还要改善自身的小毛病,那些可以避免的错误以后就不要再犯。

2024届山东省菏泽烟台高三上学期期末考试数学试题及答案

2024届山东省菏泽烟台高三上学期期末考试数学试题及答案

2023~2024学年度第一学期期末学业水平诊断高三数学参考答案一、选择题A B D B A C C C二、选择题9.AD 10.ACD 11.BCD 12.ABD三、填空题13.200− 14.1 15.e 2a <−16.54π,四、解答题17.解:(1)因为(2)sin tan cos a b A a C B−=, 所以2sin sin cos 2s cos co in s n sin s i A C B A A B C C =−, ··························· 2分所以2sin (sin cos s cos )co in n s 2si A C B B A C C +=, 所以2)sin sin(2sin cos A B A C C +=, 所以22sin 2si c n os C A A =, ······························································· 3分 因为sin 0A ≠,所以1cos 2C =, ·························································· 4分 又因为(0,)C π∈,所以3C π=; ························································ 5分 (2)由余弦定理,2793b b =+−, ·························································· 6分 即2320b b −+=, 解得1b =或2b =,当1b =时,11sin 3122S ab C ==××=, ······························· 8分当2b =时,11sin 3222S ab C ==××= ································ 10分 18.解:(1)因为137,2,S S S −成等比数列,所以2(7)(1)(49)m m m +=++, ························································ 2分 解得0m =,所以2n S n =, ································································ 3分 当2n ≥时,221(1)21n n n a S S n n n −=−=−−=−, ································ 5分当1n =时,11a =符合上式,所以21na n =−; ············································································· 6分 (2)2212142n n nn b n −−==, 所以23135214444n n n T −=+++⋅⋅⋅+, 23113232144444n n n T n n +−−=++⋅⋅⋅++, ··················································· 7分 两式相减得23131111212()444444n n n T n +−=+++⋅⋅⋅+−, ······························ 8分 1522156599434994n n n n n n T −−+=−−=−×××, ··············································· 11分 因为当n ∗∈N 时,65094nn +>×, 所以56559949n n n T +=−<×. ··································································· 12分 19.解:(1)证明:因为底面ABCD 为菱形,所以AC BD ⊥, ························ 1分因为平面VBD ⊥底面ABCD ,且平面VBD 底面ABCD BD =,AC ⊂底面ABCD ,所以AC ⊥平面VBD , ········································· 3分 又因为VD ⊂平面VBD ,所以AC VD ⊥; ············································ 4分(2)设AC BD O = ,点V 到底面ABCD 的距离为h ,则有1223h ×=,解得h =······· 5分在平面VBD 内,过点V 作VO BD ′⊥,因为平面VBD ⊥底面ABCD ,所以VO ′⊥底面ABCD ,VO ′=,在Rt VO B ′ 中,2VB =,VO ′=,可得1BO ′=,所以O ′与点O 重合, ··················································· 6分 故VO ⊥底面ABCD ,以O 为原点,,,OA OB OV 方向分别为,,x y z 轴的正方向,建立如图所示的空间直角坐标系O xyz −,则有(AB ,(AV ,CV = ,·············· 8分设(,,)x y z =n 为平面VAB 的一个法向量,则有00y += +=,令1x =,可得=n , ···························· 10分所以cos ,||CV CV CV <>== n n |n |, 故直线VC 与平面VAB······································ 12分 20.解:(1)在一局比赛中,甲投篮命中次数2(3,)3B ξ~, 甲被称为“好投手”需要投中2次或者3次, ······································· 1分所以甲在一局比赛中被称为“好投手”的概率 ······················································· 4分(2)同理,乙在一局比赛中被称为“好投手”的概率························································ 5分 因为每人每次投篮结果互不影响,所以在一局比赛中甲、乙同学获得“神投手组合” ······················································ 6分 设n 局比赛中,甲、乙同学获得“神投手组合”的局数为X ,则10(,)27X B n ~,且3331017(3)()()2727n n P X C −==, ······························ 7分 设3331017()()()2727n n f n C −=,则()(1)f n f n ≥+且()(1)f n f n ≥−, 由333332110171017()()()()27272727n n n n C C −−+≥, 化简得17(2)(1)27n n −≥+,解得7.1n ≥. ··········································· 9分 由333334110171017()()()()27272727n n n n C C −−−≥, 化简得17327n n ≥−,解得8.1n ≤. ····················································· 11分 又*n ∈N ,所以n 的值为8,即总局数为8时,对该小组更有利. ·············· 12分21.解:(1)22221(21)(1)()(12)()1(1)(1)ax x ax x ax a x f x x x x ++−+−+−′=−=+++. ······· 1分 当0a =时,2()(1)x f x x ′=+,当(1,0)x ∈−,()0f x ′<,()f x 单增;当(0,)x ∈+∞, ()0f x ′>,()f x 单增,故()f x 在(1,0)−上单减,在(0,)+∞上单增. ········ 2分当0a ≠时,令212()(12)()a g x ax a x ax x a−=−+−=−−. ····················· 3分 注意到,当01a <<时,121(1)0a a a a−−−−=>, 当102a <<时,120a a −>,()f x 在(1,0)−上递减,在12(0,)a a−上递增, 在12(,)a a−+∞上递减; ······························································· 4分 当112a <<时,1210a a−−<<, ()f x 在12(1,)a a −−上递减, 在12(,0)a a−上递增,在(0,)+∞上递减; ········································ 5分 当12a =时21()02g x x =−≤,所以()f x 在(1,)−+∞上单调递减; ········· 6分 当0a <时,121(1)0a a a a −−−−=<, ()f x 在(1,0)−上单调递减,在(0,)+∞上单调递增.综上,当0a ≤时,()f x 在(1,0)−上单减,(0,)+∞上单增;当102a <<时,()f x 在(1,0)−上单减,12(0,)a a −上单增,12(,)a a−+∞上单减;当12a =时,()f x 在(1,)−+∞上单减;当112a <<时, ()f x 在12(1,)a a−−上单减,12(,0)a a −上单增,(0,)+∞上单减. ················································································ 7分(2)由(1)可知当0a =时()f x 在[0,)+∞上单增,所以()(0)0f x f ≥=, 即ln(1)1x x x +≥+(当且仅当0x =时等式成立), ·································· 8分 令1x n =可以得到,11ln()1n n n +>+, ················································· 9分 所以11ln()ln(1)ln 1n n n n n +<=+−+, 1ln(2)ln(1)2n n n <+−++, ,1ln()ln(21)n n n n n <+−−+, ··························································· 11分 累加可得111ln 2ln ln 2122n n n n n+++<−=++ .······························· 12分 22.解:(1)由题意,设11(,)P x y ,22(,)M x y ,当直线PM 斜率不为0时,直线:PM x my t =+因为直线与圆221x y +=1=,即221t m =+ ·················· 2分 联立2214x y n x my t+= =+ 得,222(4)240m n y mnty nt n +++−=, 所以212122224,44mnt nt n y y y y m n m n −−+==++, ················································ 3分 222212*********()()()4t m n x x my t my t m y y mt y y t m n −=++=+++=+, 所以22121224(4)44m n n t n OP OM x x y y m n −++−=+=+ ,因为221t m =+ 所以212122(43)434n m n x x y y m n −+−+=+, ·················································· 5分 所以只需43434n n n −−=,所以4n =或43n =; ········································ 6分 当直线PM 斜率为0时,121243x x y y n +=−+也符合上式. 综上,4n =或43n =. ·········································································· 7分(2)当43n =时,由(1)知,0OP OM •= ,即OP OM ⊥,同理OP ON ⊥. 即,,M O N 三点共线,所以2||||PMN PMO S S PM r PM ==⋅= . ··················· 8分当直线PM 斜率不为0时,由(1)可知212122224,33mt t y y y y m m −−+==++.故||PMN S PM = · 9分因为221t m =+,PMNS , 令233m k +=≥,所以PMN S === , ············ 10分所以,当3k =时,PMN S 的最小值为2,当6k =时,PMN S ,当直线PM 斜率为0时,PMN S = 2∈,综上,PMN S 的取值范围为. ······················································· 12分。

【2023年上海高三数学一模】2023届虹口区高三一模数学试卷及答案

【2023年上海高三数学一模】2023届虹口区高三一模数学试卷及答案

虹口区2022学年度第一学期期终学生学习能力诊断测试高三数学试卷一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)考生应在答题纸的相应位置直接填写结果.1. 不等式02xx x ≤+的解集为______. 2. 对于正实数,代数式4x x+的最小值为______. 3. 已知球的半径为3,则该球的体积为 _________ .4. 在7x⎛+ ⎝的二项展开式中x 项的系数为______.5. 设m ,n ∈R ,i 为虚数单位,若1是关于x 的二次方程20x mx n ++=的一个虚根,则m n +=______.6. 已知首项为2的等比数列{}n b 的公比为13,则这个数列所有项的和为______. 7. 设曲线ln 2y x x =+的斜率为3的切线为l ,则l 的方程为______.8. 第5届中国国际进口博览会在上海举行,某高校派出了包括甲同学在内的4名同学参加了连续5天的志愿者活动.已知甲同学参加了2天的活动,其余同学各参加了1天的活动,则甲同学参加连续两天活动的概率为______.(结果用分数表示) 9. 设a ,b ∈R ,若函数4()lg 2f x a b x=++-为奇函数,则a b +=______. 10. 设函数()()cos f x x ωϕ=+(其中0ω>,π2ϕ<),若函数()y f x =图象的对称轴π6x =与其对称中心的最小距离为π8,则()f x =______. 11. 在ABC 中,5AB =,6AC =,1cos 5A =,O 是ABC 的外心,若OP xOB yOC =+,其中x ,[0,1]y ∈,则动点P 的轨迹所覆盖图形的面积为______.12. 已知1F ,2F 是双曲线2222:1(,0)x y C a b a b-=>的左、右焦点,过2F 的直线交双曲线的右支于A ,B 两点,且122AF AF =,1212AF F F BF ∠=∠,则在下列结论中,正确结论的序号为______.①双曲线C 的离心率为2;②双曲线C; ③线段AB 的长为6a ;④12AF F △2.二、选择题(本大题共有4题,满分18分,第13-14题每题4分,第15-16题每题5分)每题有且只有一个正确答案,考生应在答题纸的相应位置上,将所选答案的代号涂黑.13. 设R m ∈,已知直线:1l y mx =+与圆22:1C x y +=,则“0m >”是“直线l 与圆C 相交”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件14 若复数z 满足||1z <且152z z +=,则||z = A.45B.34 C.12D.2315. 已知F 是椭圆221:143x y C +=与抛物线22:2(0)C y px p =>的一个共同焦点,1C 与2C 相交于A ,B 两点,则线段AB 的长等于( )A.B.C.53D.10316. 已知函数()sin3x f x π=,数列{}n a 满足11a =,且1111n na a n n +⎛⎫=++ ⎪⎝⎭(n 为正整数).则()2022f a =( ) A 1-B. 1C.D.三、解答题(本大题共有5题,满分78分)17. 设ABC 内角,,A B C 所对的边分别为,,a b c ,已知π32cos(π)sin 2022A A ⎛⎫++++= ⎪⎝⎭.(1)求角A ; (2)若c b a-=,求证:ABC 是直角三角形.18. 在等差数列{}n a 中,12a =,且2a ,32a +,8a 构成等比数列...的(1)求数列{}n a 的通项公式;(2)令29n a n b =+,记n S 为数列{}n b 的前n 项和,若2022n S ≥,求正整数n 的最小值.19. 如图,在三棱柱111ABC A B C -中,底面ABC 是以AC 为斜边的等腰直角三角形,侧面11AA C C 为菱形,点1A 在底面上的投影为AC 的中点D ,且2AB =.(1)求证:1BD CC ⊥;(2)求点C 到侧面11AA B B 的距离;(3)在线段11A B 上是否存在点E ,使得直线DE 与侧面11AA B B 若存在,请求出1A E 的长;若不存在,请说明理由.20. 本市某区对全区高中生的身高(单位:厘米)进行统计,得到如下的频率分布直方图.(1)若数据分布均匀,记随机变量X 为各区间中点所代表的身高,写出X 的分布列及期望;(2)已知本市身高在区间[]180,210的市民人数约占全市总人数的10%,且全市高中生约占全市总人数的1.2%.现在要以该区本次统计数据估算全市高中生身高情况,从本市市民中任取1人,若此人的身高位于区间[]180,210,试估计此人是高中生的概率;(3)现从身高在区间[)170,190的高中生中分层抽样抽取一个80人的样本.若身高在区间[)170,180中样本的均值为176厘米,方差为10;身高在区间[)180,190中样本的均值为184厘米,方差为16,试求这80人的方差.21. 设0a >,已知函数()()32f x x ax =--. (1)求函数()y f x =的单调区间;(2)对于函数()y f x =的极值点0x ,存在()110x x x ≠,使得()()10f x f x =,试问对任意的正数a ,102x x +是否为定值若是,求出这个定值;若不是,请说明理由; (3)若函数()()g x f x =在区间[]0,6上的最大值为40,试求a 的取值集合.参考答案1. (]2,0-2. 43. 364. 355. 26. 37. 310x y --= 8.25##0.4 9. 1-10. πcos 43x ⎛⎫+⎪⎝⎭11.12. ①④ 13. A14. C15. B16. C17. 解:(1)由条件π32cos(π)sin 2022A A ⎛⎫++++=⎪⎝⎭,得32cos cos 202A A -++=,即212cos 2cos 02A A -+=,亦即21cos 02A ⎛⎫-= ⎪⎝⎭,故1cos 2A =,因为(0,π)A ∈,所以π3A =.(2)证明:由正弦定理及c b a -=得sin sin C B A -=,由(1)知π3A =,故2π3B C +=,于是2ππsin sin 33B B ⎛⎫--= ⎪⎝⎭,11sin 22B B -=,即π1cos 62B ⎛⎫+= ⎪⎝⎭,因2π03B <<,故ππ5π666B <+<,又0,c b C B -=>>,从而ππ63B +=, 所以π6B =,则π2C =, 因此ABC 是直角三角形.18. 解(1)设等差数列{}n a 的公差为d ,则由2a ,32a +,8a 成等比数列及12a =, 得()23282a a a +=,即2(42)(2)(27)d d d +=++,解得2d =±. 当2d =时,24a =,328a +=,816a =构成等比数列,符合条件;当2d =-时,20a =,320a +=,812a =-不能构成等比数列,不符合条件.因此2d =,于是数列{}n a 的通项公式为2n a n =;(2)由(1)知2n a n =,故229n n b =+,所以()()()()246212329292929n n n S b b b b =++++=++++++++()()22222149419213nn n n ⎡⎤-⎢⎥⎣⎦=+=-+- 易知()44193nn S n =-+在正整数集上严格递增,且51409S =,65514S =. 故满足2022n S ≥的正整数n 的最小值为6.19. 解:(1)证明:由点1A 在底面ABC 上的投影为AC 的中点D ,知1A D ⊥平面ABC , 又BD ⊂平面ABC ,故1A D BD ⊥,因ABC 是以AC 为斜边的等腰直角三角形,故ACBD ⊥,而1A D ,AC ⊂平面11ACC A ,1A D AC D ⋂=,故BD ⊥平面11ACC A , 由1CC ⊂平面11ACC A ,得1BD CC ⊥.(2)由点1A D AC ⊥,D 为AC 的中点,侧面11AA C C 为菱形,知11A C A A AC ==, 由ABC 是以AC 为斜边的等腰直角三角形,2AB =,可得DB DA DC ===1DA =,由(1)知直线DB ,DC ,1DA 两两垂直,故以点D 为坐标原点, 直线DB ,DC ,1DA 分别为x ,y ,z 轴,建立空间直角坐标系,则(0,0,0)D,(0,A,B,C,1A ,)AB =,(1AA =,设平面11AA B B 的一个法向量为(,,)n x y z =,则100n AB n AA ⎧⋅=+=⎪⎨⋅==⎪⎩ ,取1z =,得n = ,又(0,AC =,故点C 到平面11AA B B 的距离为:AC nd n ⋅==(3)假设存在满足条件的点E,并111[0,1])A E A B AB λλλλ=⋅=⋅=⋅∈,则11DE DA A E λ=+=+⋅=,于是,由直线DE 与侧面11AA B Bcos ,DE n DE n DE n ⋅=<〉===⋅,=,解得214λ=. 又[0,1]λ∈,故12λ=. 因此存在满足条件的点E ,且1112A E AB ==.20. 解:(1)由(0.0270.0250.0220.010.001)101x +++++⨯=,解得0.015x =. 所以X 的分布列为X 155 165 175 185 195 205 P0.220.270.250.150.10.01()0.221550.271650.251750.151850.11950.01205171.7E X =⨯+⨯+⨯+⨯+⨯+⨯=(2)设事件A 为任取一名本市市民的身高位于区间[180,210], 事件B 为任取一名本市市民为高中生,则()10%P A =,()()()31.2%0.150.100.01 3.1210P B A P A B -⋂=⋂=⨯++=⨯.所以()()()0.0312P B A P B A P A ⋂==.于是,此人是高中生的概率为0.0312.(3)由于身高在区间[)170,180,[)180,190的人数之比为5:3, 所以分层抽样抽取80人,区间[)170,180,[)180,190内抽取的 人数分别为50人与30人.在区间[)170,180中抽取的50个样本记为1x ,2x ,…,50x 其均值为176, 方差为10,即176x =,2110s =.在区间[)180,190中抽取的30个样本记为1y ,2y ,…,30y .其均值为184,方差为16,即184y =,2216s =;所以这80人身高的均值为501763018417980z ⨯+⨯==.从而这80人身高的方差为()()503022211180i i i i s x z y z ==⎡⎤=-+-⎢⎥⎣⎦∑∑()()50302211180i i i i x x x z y y y z ==⎡⎤=-+-+-+-⎢⎥⎣⎦∑∑ ()()1122505012(50(80i i i i x x x z x x x z ==⎡=∑-+-∑-+-⎢⎣()()112230302()30()i i i i y y y z y y y z ==⎤+∑-+-∑-+-⎦22221215050()3030(80s x z s y z ⎡⎤=+-++-⎣⎦ 221501050(176179)301630(184179)27.2580⎡⎤=⨯+-+⨯+-=⎣⎦ 因此,这80人身高的方差为27.25.21. 解:(1)解:由()()32f x x ax =--,x R ,可得()()232f x x a -'=-. 因0a >,由()0f x '=,解得2x =±当x 变化时,()f x ',()f x 的变化情况如下表:所以,()f x 的单调递增区间为:,2⎛-∞ ⎝与2⎛⎫+∞ ⎪ ⎪⎝⎭;单调递减区间为:22⎛ ⎝.(2)方法1:因为()f x 存在极值点0x ,所以由(1)知:0a >,且02x ≠. 因为()()30002f x x ax =--,()()31112f x x ax =--,故由()()10f x f x =,得()()33110022x ax x ax --=--即()()()()()2210110022220x x x x x x a ⎡⎤--+--+--=⎣⎦.因为10x x ≠,所以()()()()22110022220x x x x a -+--+--=(*) 由题意,得()()200320f x x a '=--=,即()20203ax -=>.由(1)知,2x =和2x =是函数()f x 的极值点,故当02x =-时,由(*)可得())21122203x x a ---=,解得12x -=,即12x =+,此时1022226x x ⎛⎛+=++-=⎝⎝.当02x =+*)可得())21122203x x a -+--=,解得12x -=-,即12x =-,此时1022226x x ⎛⎛+=-+= ⎝⎝.综上,可得结论成立.方法2:因为()f x 存在极值点0x ,所以由(1)知:0a >,且02x ≠. 因为()()30002f x x ax =--,()()31112f x x ax =--,故由()()10f x f x =, 得()()33110022x ax x ax --=--即()()()()()2210110022220x x x x x x a ⎡⎤--+--+--=⎣⎦.因为10x x ≠,所以()()()()22110022220x x x x a -+--+--=(*) 由题意,得()()200320f x x a '=--=,即()2032a x =-,将其代入(*), 得()()()()221100222220x x x x -+----=(**) 即()()()()1010222220x x x x ----+-=⎡⎤⎡⎤⎣⎦⎣⎦ 亦即()()1010260x x x x -+-=. 由于10x x ≠,因此1026x x +=.(3)解:因函数3()(2)g x x ax =--在闭区间[0,6]上最大值只有可能在0,6,2,2这4处取得.又(0)8g =,(6)646g a =-,22g a ⎛⎝,22222g a a a g ⎛⎛++=+= ⎝⎝(因0a >)①若22g a ⎛=+ ⎝为()g x 在区间[]0,6上的最大值(等于40),u =,则0u >,且23a u =240a +=,得32320u u +=. 设32()3h u u u =+,则2()360h u u u '=+>恒成立,故()h u 在(0,)+∞上严格递增,于是在(0,)+∞上存在唯一的0u ,使3200320u u +=,易知02u =,进而相应的12a =.而此时24[0,6]+=∈,(6)646840g a =-=<,因此12a =符合题意. ②若(6)646g a =-为()g x 在区间[]0,6上的最大值(等于40),则4a =,或523. 的(i )当4a =时,2[0,6]+,22840g a ⎛+=+=< ⎝, (6)64640g a =-=为()g x 在区间[0,6]上的最大值,因此4a =符合题意.(ii )当523a =时,20-<,2[0,6],22g a ⎛= ⎝104403=+>, 于是523a =不符合题意,舍去. 综上所述,符合条件的a 的取值集合为{}4,12.。

2020~2021北京市朝阳区高三上学期期末数学试卷及答案

2020~2021北京市朝阳区高三上学期期末数学试卷及答案

高三数学试卷 第1页(共14页)北京市朝阳区2020~2021学年度第一学期期末质量检测高三年级数学试卷 2021.1(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知全集{1,0,1,2,3,4}U =-,集合{0,1,2}A =,则UA =(A ){3,4}(B ){1,3,4}-(C ){0,1,2}(D ){1,4}-(2)已知向量(1,2)=-a ,(,4)x =b ,且⊥a b ,则||=b(A )25(B )43(C )45(D )8(3)某三棱锥的三视图如图所示,已知网格纸上小正方形的边长为1,则该三棱锥的体积为(A )43(B )83(C )3 (D )4(4)已知等比数列{}n a 的各项均为正数,且39a =,则3132333435log log log log log a a a a a ++++=(A )52(B )53(C )10 (D )15(5)设抛物线2:4C y x =的焦点为F ,准线l 与x 轴的交点为M ,P 是C 上一点.若||4PF =,则||PM =(A )21 (B )5 (C )27(D )42高三数学试卷 第2页(共14页)(6)已知函数()cos(2)6f x x π=-,给出下列四个结论:①函数()f x 是周期为π的偶函数; ②函数()f x 在区间[,]1212π7π上单调递减;③函数()f x 在区间[0,]2π上的最小值为1-;④将函数()f x 的图象向右平移π6个单位长度后,所得图象与()sin 2g x x =的图象重合. 其中,所有正确结论的序号是 (A )①③ (B )②③ (C )①④(D )②④(7)已知定义在R 上的奇函数()f x 满足(2)()f x f x +=,且(1)0f =,当(0,1)x ∈时,()2x f x x =+.设(5)a f =,1()3b f =,5()2c f =-,则,,a b c 的大小关系为(A )b a c >> (B )a c b >> (C )c a b >> (D )b c a >>(8)已知圆22: 4C x y +=,直线: 0l x y t ++=,则“l 与C 相交”是“||2t <”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(9)已知双曲线2222:1x y C a b-=(0a >,0b >)的左焦点为F ,右顶点为A ,过F 作C 的一条渐近线的垂线FD ,D 为垂足.若||||DF DA =,则C 的离心率为 (A)(B )2(C(D(10)在平面直角坐标系xOy 中,已知直线y mx =(0m >)与曲线3y x =从左至右依次交于A ,B ,C 三点.若直线l :30kx y -+=(k ∈R )上存在点P 满足2PA PC +=,则实数k 的取值范围是 (A )(2,2)- (B)[-(C )(,2)(2,)-∞-+∞(D )(,2][22,)2-∞-+∞。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021高三数学上期末第一次模拟试卷(及答案)(8)一、选择题1.等差数列{}n a 中,已知70a >,390a a +<,则{}n a 的前n 项和n S 的最小值为( ) A .4SB .5SC .6SD .7S2.数列{}n a 满足()11nn n a a n ++=-⋅,则数列{}n a 的前20项的和为( ) A .100B .-100C .-110D .1103.在ABC ∆中,,,a b c 分别为角,,A B C 的对边,若,1,3A b π==ABC ∆的面积为32,则a 的值为( ) A .2B .3C .3 D .14.在ABC ∆中,2AC =,22BC =,135ACB ∠=o ,过C 作CD AB ⊥交AB 于D ,则CD =( ) A .25B .2C .3D .55.已知实数,x y 满足0{20x y x y -≥+-≤则2y x -的最大值是( )A .-2B .-1C .1D .26.在ABC ∆中,,,a b c 是角,,A B C 的对边,2a b =,3cos 5A =,则sinB =( ) A .25B .35C .45 D .857.若直线()10,0x ya b a b+=>>过点(1,1),则4a b +的最小值为( ) A .6 B .8C .9D .108.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若∠C=120°,c=a ,则A .a >bB .a <bC .a =bD .a 与b 的大小关系不能确定9.已知数列{}n a 的前n 项和为n S ,且()*21n n S a n N =-∈,则5a 等于( )A .16-B .16C .31D .3210.已知数列{}n a 中,()111,21,n n na a a n N S *+==+∈为其前n 项和,5S的值为( ) A .63 B .61 C .62 D .5711.在中,,,,则A .B .C .D .12.已知函数1()2xf x ⎛⎫= ⎪⎝⎭,则不等式()24(3)f a f a ->的解集为( )A .(4,1)-B .(1,4)-C .(1,4)D .(0,4)二、填空题13.在等差数列{}n a 中,首项13a =,公差2d =,若某学生对其中连续10项进行求和,在遗漏掉一项的情况下,求得余下9项的和为185,则此连续10项的和为 .14.计算:23lim 123n n nn→+∞-=++++L ________15.若正数,a b 满足3ab a b =++,则+a b 的取值范围_______________。

16.已知等比数列{}n a 满足232,1a a ==,则12231lim ()n n n a a a a a a +→+∞+++=L ________________.17.在等比数列中,,则__________.18.等比数列{}n a 的首项为1a ,公比为q ,1lim 2n n S →∞=,则首项1a 的取值范围是____________.19.已知n S 是数列{}n a 的前n 项和,122n n S a +=-,若212a =,则5S =__________. 20.设x ,y 满足则220,220,20,x y x y x y --≤⎧⎪-+≥⎨⎪++≥⎩则3z x y =-的最小值是______.三、解答题21.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足sin cos 6b A a B π⎛⎫=- ⎪⎝⎭.(1)求角B 的大小;(2)若D 为AC 的中点,且1BD =,求ABC S ∆的最大值. 22.如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D . 现测得BCD α∠=,BDC β∠=,CD s =,并在点C 测得塔顶A 的仰角为θ,求塔高AB .23.等差数列{}n a 中,71994,2a a a ==. (1)求{}n a 的通项公式; (2)设1n nb na =,求数列{}n b 的前n 项和n S . 24.已知函数()()22f x x x a x R =++∈(1)若函数()f x 的值域为[0,)+∞,求实数a 的值;(2)若()0f x >对任意的[1,)x ∈+∞成立,求实数a 的取值范围。

25.在等差数列{}n a 中,2723a a +=-,3829a a +=-. (1)求数列{}n a 的通项公式.(2)若数列{}n n a b +的首项为1,公比为q 的等比数列,求{}n b 的前n 项和n S .26.已知()f x a b =⋅v v ,其中()2cos ,32a x x =-v,()cos ,1b x =v ,x ∈R .(1)求()f x 的单调递增区间;(2)在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,()1f A =-,7a =且向量()3,sin m B =v 与()2,sin n C =v共线,求边长b 和c 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】先通过数列性质判断60a <,再通过数列的正负判断n S 的最小值.【详解】∵等差数列{}n a 中,390a a +<,∴39620a a a +=<,即60a <.又70a >,∴{}n a 的前n 项和n S 的最小值为6S . 故答案选C 【点睛】本题考查了数列和的最小值,将n S 的最小值转化为{}n a 的正负关系是解题的关键.2.B解析:B 【解析】 【分析】数列{a n }满足1(1)nn n a a n ++=-⋅,可得a 2k ﹣1+a 2k =﹣(2k ﹣1).即可得出.【详解】∵数列{a n }满足1(1)nn n a a n ++=-⋅,∴a 2k ﹣1+a 2k =﹣(2k ﹣1).则数列{a n }的前20项的和=﹣(1+3+……+19)()101192⨯+=-=-100.故选:B . 【点睛】本题考查了数列递推关系、数列分组求和方法,考查了推理能力与计算能力,属于中档题.3.B解析:B 【解析】试题分析:由已知条件及三角形面积计算公式得131sin ,2,232c c π⨯⨯=∴=由余弦定理得考点:考查三角形面积计算公式及余弦定理.4.A解析:A 【解析】 【分析】先由余弦定理得到AB 边的长度,再由等面积法可得到结果. 【详解】根据余弦定理得到222222AC BC AB AC BC +-=-⨯⨯将2AC =,22BC =,代入等式得到AB=5再由等面积法得到11225252222225CD CD ⨯⨯=⨯⨯⨯⇒=故答案为A. 【点睛】这个题目考查了解三角形的应用问题,涉及正余弦定理,面积公式的应用,在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.5.C解析:C 【解析】作出可行域,如图BAC ∠内部(含两边),作直线:20l y x -=,向上平移直线l ,2z y x =-增加,当l 过点(1,1)A 时,2111z =⨯-=是最大值.故选C .6.A解析:A 【解析】试题分析:由3cos 5A =得,又2a b =,由正弦定理可得sin B =.考点:同角关系式、正弦定理.7.C解析:C 【解析】 【详解】 因为直线()10,0x y a b a b+=>>过点()1,1,所以11+1a b = ,因此1144(4)(+)5+59b a b aa b a b a b a b+=+≥+⋅= ,当且仅当23b a ==时取等号,所以选C.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.8.A解析:A 【解析】 【分析】由余弦定理可知c 2=a 2+b 2﹣2ab cos C ,进而求得a ﹣b 的表达式,根据表达式与0的大小,即可判断出a 与b 的大小关系. 【详解】解:∵∠C =120°,ca ,∴由余弦定理可知c 2=a 2+b 2﹣2ab cos C ,()2=a 2+b 2+ab .∴a 2﹣b 2=ab ,a ﹣b ,∵a >0,b >0, ∴a ﹣b ,∴a >b 故选A . 【点睛】本题考查余弦定理,特殊角的三角函数值,不等式的性质,比较法,属中档题.9.B解析:B 【解析】 【分析】令1n =,由11a S =可求出1a 的值,再令2n ≥,由21n n S a =-得出1121n n S a --=-,两式相减可得出数列{}n a 为等比数列,确定出该数列的公比,利用等比数列的通项公式可求出5a 的值. 【详解】当1n =时,1121S a =-,即1121a a =-,解得11a =;当2n ≥时,由21n n S a =-,得1121n n S a --=-,两式相减得122n n n a a a -=-,得12n n a a -=.所以,数列{}n a 是以1为首项,以2为公比的等比数列,则451216a =⨯=,故选:B. 【点睛】本题考查利用n S 来求通项n a ,一般利用公式11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,同时也要注意等差数列和等比数列定义的应用,考查运算求解能力,属于中等题.10.D解析:D 【解析】解:由数列的递推关系可得:()11121,12n n a a a ++=++= , 据此可得:数列{}1n a + 是首项为2 ,公比为2 的等比数列,则:1122,21n n n n a a -+=⨯⇒=- ,分组求和有:()5521255712S ⨯-=-=- .本题选择D 选项.11.D解析:D 【解析】 【分析】根据三角形内角和定理可知,再由正弦定理即可求出AB .【详解】 由内角和定理知,所以,即,故选D. 【点睛】本题主要考查了正弦定理,属于中档题.12.B解析:B 【解析】 【分析】先判断函数1()2xf x ⎛⎫= ⎪⎝⎭的单调性,把()24(3)f a f a ->转化为自变量的不等式求解.【详解】可知函数()f x 为减函数,由2(4)(3)f a f a ->,可得243a a -<,整理得2340a a --<,解得14a -<<,所以不等式的解集为(1,4)-. 故选B. 【点睛】本题考查函数不等式,通常根据函数的单调性转化求解,一般不代入解析式.二、填空题13.200【解析】试题分析:等差数列中的连续10项为遗漏的项为且则化简得所以则连续10项的和为考点:等差数列解析:200 【解析】试题分析:等差数列{}n a 中的连续10项为*+129,,,,,()x x x x a a a a x N ++⋯∈,遗漏的项为*+,x n a n N ∈且19,n ≤≤则9()10(18)10(2)22x x x x x n x a a a a a a n +++⨯++⨯-=-+,化简得4494352x n ≤=+≤,所以5x =,511a =,则连续10项的和为(1111+18)10=2002+⨯.考点:等差数列.14.【解析】【详解】结合等差数列前n 项和公式有:则: 解析:6【解析】 【详解】结合等差数列前n 项和公式有:()11232n n n +++++=L ,则:()()226231362lim lim lim lim61123111n n n n n n n n n n n n n n n→+∞→+∞→+∞→+∞----====+++++++L . 15.【解析】【分析】先根据基本不等式可知a+b≥2代入题设等式中得关于不等式a+b 的方程进而求得a+b 的范围【详解】∵正数ab 满足a+b≥2∴ab≤又ab=a+b+3∴a+b+3≤即(a+b )2﹣4(a 解析:[)6,+∞【解析】 【分析】先根据基本不等式可知ab a+b 的方程,进而求得a+b 的范围. 【详解】∵正数a ,b 满足 ab ab ≤22a b +⎛⎫ ⎪⎝⎭.又ab=a +b+3,∴a+b+3≤22a b +⎛⎫ ⎪⎝⎭,即(a+b )2﹣4(a+b )﹣12≥0.解得 a+b≥6.故答案为:[6,+∞). 【点睛】本题主要考查了基本不等式在最值问题中的应用,考查了学生对基本不等式的整体把握和灵活运用.16.【解析】【分析】求出数列的公比并得出等比数列的公比与首项然后利用等比数列求和公式求出即可计算出所求极限值【详解】由已知所以数列是首项为公比为的等比数列故答案为【点睛】本题考查等比数列基本量的计算同时 解析:323【解析】 【分析】求出数列{}n a 的公比,并得出等比数列{}1n n a a +的公比与首项,然后利用等比数列求和公式求出12231n n a a a a a a ++++L ,即可计算出所求极限值. 【详解】 由已知3212a q a ==,23112()()22n n n a --=⨯=,3225211111()()()2()2224n n n n n n a a ----+=⋅==⋅,所以数列{}1n n a a +是首项为128a a =,公比为1'4q =的等比数列, 11223118[(1()]3214[1()]13414n n n n a a a a a a -+-+++==--L ,1223132132lim ()lim [1()]343n n n n n a a a a a a +→+∞→∞+++=-=L . 故答案为323. 【点睛】本题考查等比数列基本量的计算,同时也考查了利用定义判定等比数列、等比数列求和以及数列极限的计算,考查推理能力与计算能力,属于中等题.17.64【解析】由题设可得q3=8⇒q=3则a7=a1q6=8×8=64应填答案64解析:【解析】由题设可得,则,应填答案。

相关文档
最新文档