教育最新2018年高考数学二轮复习第一部分专题二三角函数平面向量第二讲三角恒等变换与解三角形习题

合集下载

(通用版)2018年高考数学二轮复习 第一部分 专题一 平面向量、三角函数与解三角形教学案 理

(通用版)2018年高考数学二轮复习 第一部分 专题一 平面向量、三角函数与解三角形教学案 理

专题一 平面向量、三角函数与解三角形[研高考·明考点]2016卷Ⅱ ———T 9·诱导公式、三角恒等变换求值问题T 13·同角三角函数的基本关系、两角和的正弦公[析考情·明重点]第一讲 小题考法——平面向量[典例感悟][典例] (1)(2017·合肥质检)已知向量a =(1,3),b =(-2,k ),且(a +2b )∥(3a -b ),则实数k =( )A .4B .-5C .6D .-6(2)(2018届高三·湘中名校联考)若点P 是△ABC 的外心,且PA ―→+PB ―→+λPC ―→=0,∠ACB =120°,则实数λ的值为( )A.12B .-12C .-1D .1[解析] (1)a +2b =(-3,3+2k ),3a -b =(5,9-k ),由题意可得-3(9-k )=5(3+2k ),解得k =-6.(2)设AB 的中点为D ,则PA ―→+PB ―→=2PD ―→.因为PA ―→+PB ―→+λPC ―→=0,所以2PD ―→+λPC ―→=0,所以向量PD ―→,PC ―→共线.又P 是△ABC 的外心,所以PA =PB ,所以PD ⊥AB ,所以CD ⊥AB .因为∠ACB =120°,所以∠APB =120°,所以四边形APBC 是菱形,从而PA ―→+PB ―→=2PD ―→=PC ―→,所以2PD ―→+λPC ―→=PC ―→+λPC ―→=0,所以λ=-1,故选C.[答案] (1)D (2)C[方法技巧]解决以平面图形为载体的向量线性运算问题的方法(1)充分利用平行四边形法则与三角形法则,结合平面向量基本定理、共线定理等知识进行解答.(2)如果图形比较规则,向量比较明确,则可考虑建立平面直角坐标系,利用坐标运算来解决.[演练冲关]1.(2017·南昌调研)设a ,b 都是非零向量,下列四个选项中,一定能使a |a |+b|b |=0成立的是( )A .a =2bB .a ∥bC .a =-13bD .a ⊥b解析:选C “a |a |+b|b |=0,且a ,b 都是非零向量”等价于“非零向量a ,b 共线且反向”,结合各选项可知选C.2.(2017·福州模拟)已知△ABC 和点M 满足MA ―→+MB ―→+MC ―→=0.若存在实数m ,使得AB ―→+AC ―→=m AM ―→成立,则m =( )A .2B .3C .4D .5解析:选B 由MA ―→+MB ―→+MC ―→=0知,点M 为△ABC 的重心,设点D 为边BC 的中点,则AM ―→=23AD ―→=23×12(AB ―→+AC ―→)=13(AB ―→+AC ―→),所以AB ―→+AC ―→=3AM ―→,则m =3,故选B. 3.(2017·沈阳质检)已知向量AC ―→,AD ―→和AB ―→在正方形网格中的位置如图所示,若AC ―→=λAB ―→+μAD ―→,则λμ=( )A .-3B .3C .-4D .4解析:选A 建立如图所示的平面直角坐标系xAy ,设网格中小正方形的边长为1,则AC ―→=(2,-2),AB ―→=(1,2),AD ―→=(1,0),由题意可知(2,-2)=λ(1,2)+μ(1,0),即⎩⎪⎨⎪⎧2=λ+μ,-2=2λ,解得⎩⎪⎨⎪⎧λ=-1,μ=3,所以λμ=-3.故选A.[典例感悟][典例] (1)(2018届高三·广西三市联考)已知向量a ,b 满足|a |=1,|b |=23,a 与b 的夹角的余弦值为sin 17π3,则b ·(2a -b )=( )A .2B .-1C .-6D .-18(2)(2017·全国卷Ⅱ)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则PA ―→·(PB ―→+PC ―→)的最小值是( )A .-2B .-32C .-43D .-1(3)(2018届高三·湖北七市(州)联考)平面向量a ,b ,c 不共线,且两两所成的角相等,若|a |=|b |=2,|c |=1,则|a +b +c |=________.[解析] (1)∵|a |=1,|b |=23,a 与b 的夹角的余弦值为sin 17π3=-32,∴a ·b =-3,则b ·(2a -b )=2a ·b -b 2=-18.(2)如图,以等边三角形ABC 的底边BC 所在直线为x 轴,以BC的垂直平分线为y 轴建立平面直角坐标系,则A (0,3),B (-1,0),C (1,0),设P (x ,y ),则PA ―→=(-x, 3-y ),PB ―→=(-1-x ,-y ),PC ―→=(1-x ,-y ),所以PA ―→·(PB ―→+PC ―→)=(-x ,3-y )·(-2x ,-2y )=2x 2+2⎝ ⎛⎭⎪⎫y -322-32,故当x =0,y =32时,PA ―→·(PB ―→+PC ―→)取得最小值,为-32.(3)∵平面向量a ,b ,c 不共线,且两两所成的角相等,∴它们两两所成的角为120°,∴|a+b +c |2=(a +b +c )2=a 2+b 2+c 2+2a ·b +2b ·c +2a ·c =|a |2+|b |2+|c |2+2|a ||b |·cos120°+2|b ||c |cos 120°+2|a ||c |cos 120°=22+22+12+2×2×2×⎝ ⎛⎭⎪⎫-12+2×2×1×⎝ ⎛⎭⎪⎫-12+2×2×1×⎝ ⎛⎭⎪⎫-12=1,故|a +b +c |=1.[答案] (1)D (2)B (3)1[方法技巧]解决以平面图形为载体的向量数量积问题的方法(1)选择平面图形中的模与夹角确定的向量作为一组基底,用该基底表示构成数量积的两个向量,结合向量数量积运算律求解.(2)若已知图形中有明显的适合建立直角坐标系的条件,可建立直角坐标系将向量数量积运算转化为代数运算来解决.[演练冲关]1.(2017·云南调研)平面向量a 与b 的夹角为45°,a =(1,1),|b |=2,则|3a +b |=( ) A .13+6 2 B .2 5 C.30D.34解析:选D 依题意得|a |=2,a ·b =2×2×cos 45°=2,则|3a +b |=a +b2=9a 2+6a ·b +b 2=18+12+4=34,故选D.2.(2018届高三·湖南五市十校联考)△ABC 是边长为2的等边三角形,向量a ,b 满足AB ―→=2a ,AC ―→=2a +b ,则向量a ,b 的夹角为( )A .30°B .60°C .120°D .150°解析:选C BC ―→=AC ―→-AB ―→=2a +b -2a =b ,则向量a ,b 的夹角即为向量AB ―→与BC ―→的夹角,故向量a ,b 的夹角为120°.3.(2017·天津高考)在△ABC 中,∠A =60°,AB =3,AC =2.若BD ―→=2DC ―→,AE ―→=λAC ―→-AB ―→ (λ∈R),且AD ―→·AE ―→=-4,则λ的值为________.解析:法一:AD ―→=AB ―→+BD ―→=AB ―→+23BC ―→=AB ―→+23(AC ―→-AB ―→)=13AB ―→+23AC ―→.又AB ―→·AC ―→=3×2×12=3,所以AD ―→·AE ―→=⎝ ⎛⎭⎪⎫13AB ―→+23AC ―→·(-AB ―→+λAC ―→)=-13AB ―→2+⎝ ⎛⎭⎪⎫13λ-23AB ―→·AC ―→+23λAC ―→2=-3+3⎝ ⎛⎭⎪⎫13λ-23+23λ×4=113λ-5=-4,解得λ=311.法二:以点A 为坐标原点,AB ―→的方向为x 轴正方向,建立平面直角坐标系(图略),不妨假设点C 在第一象限,则A (0,0),B (3,0),C (1,3). 由BD ―→=2DC ―→,得D ⎝ ⎛⎭⎪⎫53,233,由AE ―→=λAC ―→-AB ―→,得E (λ-3,3λ),则AD ―→·AE ―→=⎝ ⎛⎭⎪⎫53,233·(λ-3,3λ)=53(λ-3)+233×3λ=113λ-5=-4,解得λ=311.答案:311[必备知能·自主补缺] (一) 主干知识要记牢 1.平面向量的两个充要条件若两个非零向量a =(x 1,y 1),b =(x 2,y 2),则 (1)a ∥b ⇔a =λb (b ≠0)⇔x 1y 2-x 2y 1=0. (2)a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0. 2.平面向量的性质(1)若a =(x ,y ),则|a |=a ·a =x 2+y 2. (2)若A (x 1,y 1),B (x 2,y 2),则|AB ―→|=x 2-x 12+y 2-y 12.(3)若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21 x 22+y 22. (4)|a ·b |≤|a |·|b |. (二) 二级结论要用好 1.三点共线的判定(1)A ,B ,C 三点共线⇔AB ―→,AC ―→共线.(2)向量PA ―→,PB ―→,PC ―→中三终点A ,B ,C 共线⇔存在实数α,β使得PA ―→=αPB ―→+βPC ―→,且α+β=1.[针对练1] 在▱ABCD 中,点E 是AD 边的中点,BE 与AC 相交于点F ,若EF ―→=m AB ―→+n AD ―→(m ,n ∈R),则mn=________.解析:如图,AD ―→=2AE ―→,EF ―→=m AB ―→+n AD ―→,∴AF ―→=AE ―→+EF―→=m AB ―→+(2n +1)AE ―→,∵F ,E ,B 三点共线,∴m +2n +1=1,∴mn=-2. 答案:-22.中点坐标和三角形的重心坐标(1)设P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),则线段P 1P 2的中点P 的坐标为x 1+x 22,y 1+y 22.(2)三角形的重心坐标公式:设△ABC 的三个顶点的坐标分别为A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则△ABC 的重心坐标是G ⎝⎛⎭⎪⎫x 1+x 2+x 33,y 1+y 2+y 33.3.三角形“四心”向量形式的充要条件设O 为△ABC 所在平面上一点,角A ,B ,C 所对的边长分别为a ,b ,c ,则 (1)O 为△ABC 的外心⇔|OA ―→|=|OB ―→|=|OC ―→|=a2sin A.(2)O 为△ABC 的重心⇔OA ―→+OB ―→+OC ―→=0.(3)O 为△ABC 的垂心⇔OA ―→·OB ―→=OB ―→·OC ―→=OC ―→·OA ―→. (4)O 为△ABC 的内心⇔a OA ―→+b OB ―→+c OC ―→=0. (三) 易错易混要明了1.要特别注意零向量带来的问题:0的模是0,方向任意,并不是没有方向;0与任意向量平行;λ0=0(λ∈R),而不是等于0;0与任意向量的数量积等于0,即0·a =0;但不说0与任意非零向量垂直.2.当a ·b =0时,不一定得到a ⊥b ,当a ⊥b 时,a ·b =0;a ·b =c ·b ,不能得到a =c ,即消去律不成立;(a ·b )·c 与a ·(b ·c )不一定相等,(a ·b )·c 与c 平行,而a ·(b·c )与a 平行.3.两向量夹角的范围为[0,π],向量的夹角为锐角与向量的数量积大于0不等价. [针对练2] 已知向量a =(-2,-1),b =(λ,1),若a 与b 的夹角为钝角,则λ的取值范围是________.解析:依题意,当a 与b 的夹角为钝角时,a ·b =-2λ-1<0,解得λ>-12.而当a 与b 共线时,有-2×1=-λ,解得λ=2,即当λ=2时,a =-b ,a 与b 反向共线,此时a 与b 的夹角为π,不是钝角,因此,当a 与b 的夹角为钝角时,λ的取值范围是⎝ ⎛⎭⎪⎫-12,2∪(2,+∞). 答案:⎝ ⎛⎭⎪⎫-12,2∪(2,+∞) [课时跟踪检测]A 组——12+4提速练一、选择题1.(2017·沈阳质检)已知平面向量a =(3,4),b =⎝ ⎛⎭⎪⎫x ,12,若a ∥b ,则实数x 为( ) A .-23B.23C.38D .-38解析:选C ∵a ∥b ,∴3×12=4x ,解得x =38,故选C.2.已知向量a =(1,2),b =(2,-3).若向量c 满足c ⊥(a +b ),且b ∥(a -c ),则c =( )A.⎝ ⎛⎭⎪⎫79,73B.⎝ ⎛⎭⎪⎫-79,73C.⎝ ⎛⎭⎪⎫79,-73D.⎝ ⎛⎭⎪⎫-79,-73解析:选A 设c =(x ,y ),由题可得a +b =(3,-1),a -c =(1-x,2-y ).因为c ⊥(a +b ),b ∥(a -c ),所以⎩⎪⎨⎪⎧3x -y =0,-y +-x =0,解得⎩⎪⎨⎪⎧x =79,y =73,故c =⎝ ⎛⎭⎪⎫79,73.3.已知平面直角坐标系内的两个向量a =(1,2),b =(m,3m -2),且平面内的任一向量c 都可以唯一的表示成c =λa +μb (λ,μ为实数),则实数m 的取值范围是( )A .(-∞,2)B .(2,+∞)C .(-∞,+∞)D .(-∞,2)∪(2,+∞)解析:选D 由题意知向量a ,b 不共线,故2m ≠3m -2,即m ≠2.4.(2017·西安模拟)已知向量a 与b 的夹角为120°,|a |=3,|a +b |=13,则|b |=( ) A .5 B .4 C .3D .1解析:选B 因为|a +b |=13,所以|a +b |2=a 2+2a ·b +b 2=13,即9+2×3×|b |cos 120°+|b |2=13,得|b |=4.5.(2018届高三·西安八校联考)已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量CD ―→在AB ―→方向上的投影是( )A.322B .-322C .3 5D .-3 5解析:选C 依题意得,AB ―→=(2,1),CD ―→=(5,5),AB ―→·CD ―→=(2,1)·(5,5)=15,|AB ―→|=5,因此向量CD ―→在AB ―→方向上的投影是AB ―→·CD ―→|AB ―→|=155=3 5.6.已知A ,B ,C 三点不共线,且点O 满足OA ―→+OB ―→+OC ―→=0,则下列结论正确的是( ) A .OA ―→=13AB ―→+23BC ―→B .OA ―→=23AB ―→+13BC ―→C .OA ―→=13AB ―→-23BC ―→D .OA ―→=-23AB ―→-13BC ―→解析:选D ∵OA ―→+OB ―→+OC ―→=0,∴O 为△ABC 的重心,∴OA ―→=-23×12(AB ―→+AC ―→)=-13(AB ―→+AC ―→)=-13(AB ―→+AB ―→+BC ―→)=-23AB ―→-13BC ―→,故选D. 7.已知向量a =(3,1),b 是不平行于x 轴的单位向量,且a ·b =3,则b =( ) A.⎝⎛⎭⎪⎫32,12 B.⎝ ⎛⎭⎪⎫12,32 C.⎝ ⎛⎭⎪⎫14,334 D .(1,0)解析:选B 设b =(cos α,sin α)(α∈(0,π)∪(π,2π)),则a ·b =(3,1)·(cos α,sin α)=3cos α+sin α=2sin π3+α=3,得α=π3,故b =⎝ ⎛⎭⎪⎫12,32.8.(2018届高三·广东五校联考)已知向量a =(λ,1),b =(λ+2,1),若|a +b |=|a -b |,则实数λ的值为( )A .-1B .2C .1D .-2解析:选A 由|a +b |=|a -b |可得a 2+b 2+2a ·b =a 2+b 2-2a ·b ,所以a ·b =0,即a ·b =(λ,1)·(λ+2,1)=λ2+2λ+1=0,解得λ=-1.9.(2017·惠州调研)若O 为△ABC 所在平面内任一点,且满足(OB ―→-OC ―→)·(OB ―→+OC ―→-2OA ―→)=0,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .正三角形D .等腰直角三角形解析:选A (OB ―→-OC ―→)·(OB ―→+OC ―→-2OA ―→)=0,即CB ―→·(AB ―→+AC ―→)=0,∵AB ―→-AC ―→=CB ―→,∴(AB ―→-AC ―→)·(AB ―→+AC ―→)=0,即|AB ―→|=|AC ―→|,∴△ABC 是等腰三角形,故选A.10.(2017·日照模拟)如图,在△ABC 中,AB =BC =4,∠ABC =30°,AD 是BC 边上的高,则AD ―→·AC ―→=( )A .0B .4C .8D .-4解析:选B 因为AB =BC =4,∠ABC =30°,AD 是BC 边上的高,所以AD =4sin 30°=2,所以AD ―→·AC ―→=AD ―→·(AB ―→+BC ―→)=AD ―→·AB ―→+AD ―→·BC ―→=AD ―→·AB ―→=2×4×cos 60°=4,故选B.11.(2017·全国卷Ⅲ)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP ―→=λAB ―→+μAD ―→,则λ+μ的最大值为( )A .3B .2 2 C. 5D .2解析:选A 以A 为坐标原点,AB ,AD 所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系,则A (0,0),B (1,0),C (1,2),D (0,2),可得直线BD 的方程为2x +y -2=0,点C 到直线BD 的距离为212+22=25,所以圆C :(x -1)2+(y -2)2=45. 因为P 在圆C 上,所以P ⎝⎛⎭⎪⎫1+255cos θ,2+255sin θ. 又AB ―→=(1,0),AD ―→=(0,2),AP ―→=λAB ―→+μAD ―→=(λ,2μ), 所以⎩⎪⎨⎪⎧1+255cos θ=λ,2+255sin θ=2μ,则λ+μ=2+255cos θ+55sin θ=2+sin(θ+φ)≤3(其中tan φ=2),当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3. 12.如图,△ABC 的外接圆的圆心为O ,AB =2,AC =7,BC =3,则AO ―→·BC ―→的值为( )A.32B.52 C .2D .3解析:选A 取BC 的中点为D ,连接AD ,OD ,则OD ⊥BC ,AD ―→=12(AB―→+AC ―→),BC ―→=AC ―→-AB ―→,所以AO ―→·BC ―→=(AD ―→+DO ―→)·BC ―→=AD ―→·BC ―→+DO ―→·BC ―→=AD ―→·BC ―→=12(AB ―→+AC ―→)·(AC ―→-AB ―→)=12(AC―→2-AB ―→2)=12×(7)2-22=32.故选A.二、填空题13.(2017·山东高考)已知e 1,e 2是互相垂直的单位向量.若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________.解析:因为3e 1-e 2与e 1+λe 2的夹角为60°,所以cos 60°=3e 1-e 2e 1+λe 2|3e 1-e 2|·|e 1+λe 2|=3-λ21+λ2=12, 解得λ=33. 答案:3314.已知非零向量m ,n 满足4|m |=3|n |,且m ,n 夹角的余弦值为13,若n ⊥(tm +n ),则实数t 的值为________.解析:∵n ⊥(tm +n ),∴n ·(tm +n )=0,即tm ·n +|n |2=0.又4|m |=3|n |,∴t ×34|n |2×13+|n |2=0,解得t =-4.答案:-415.(2017·石家庄质检)已知AB ―→与AC ―→的夹角为90°,|AB ―→|=2,|AC ―→|=1,AM ―→=λAB ―→+μAC ―→ (λ,μ∈R),且AM ―→·BC ―→=0,则λμ的值为________.解析:根据题意,建立如图所示的平面直角坐标系,则A (0,0),B (0,2),C (1,0),所以AB ―→=(0,2),AC ―→=(1,0),BC ―→=(1,-2).设M (x ,y ),则AM ―→=(x ,y ),所以AM ―→·BC ―→=(x ,y )·(1,-2)=x -2y =0,所以x =2y ,又AM ―→=λAB ―→+μAC ―→,即(x ,y )=λ(0,2)+μ(1,0)=(μ,2λ),所以x =μ,y =2λ,所以λμ=12y x =14.答案:1416.(2017·北京高考)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO ―→·AP ―→的最大值为________.解析:法一:由题意知,AO ―→=(2,0),令P (cos α,sin α),则AP ―→=(cos α+2,sin α),AO ―→·AP ―→=(2,0)·(cos α+2,sin α)=2cos α+4≤6,当且仅当cos α=1,即α=0,P (1,0)时等号成立,故AO ―→·AP ―→的最大值为6.法二:由题意知,AO ―→=(2,0),令P (x ,y ),-1≤x ≤1,则AO ―→·AP ―→=(2,0)·(x +2,y )=2x +4≤6,当且仅当x =1,P (1,0)时等号成立,故AO ―→·AP ―→的最大值为6.答案:6B 组——能力小题保分练1.已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF ―→·BC ―→的值为( )A .-58B.18C.14D.118解析:选B 如图所示,AF ―→=AD ―→+DF ―→.又D ,E 分别为AB ,BC 的中点,且DE =2EF ,所以AD ―→=12AB ―→,DF―→=12AC ―→+14AC ―→=34AC ―→,所以AF ―→=12AB ―→+34AC ―→.又BC ―→=AC ―→-AB ―→,则AF ―→·BC ―→=⎝ ⎛⎭⎪⎫12AB ―→+34AC ―→ · (AC ―→-AB ―→)=12AB ―→·AC ―→-12AB ―→2+34AC ―→2-34AC ―→·AB ―→=34AC ―→2-12AB ―→2-14AC ―→·AB ―→=34|AC ―→|2-12|AB ―→|2-14×|AC ―→|×|AB ―→|×cos∠BAC . 又|AB ―→|=|AC ―→|=1,∠BAC =60°, 故AF ―→·BC ―→=34-12-14×1×1×12=18.故选B.2.(2017·长春质检)已知a ,b 是单位向量,且a·b =-12.若平面向量p 满足p·a =p ·b=12,则|p |=( ) A.12B .1 C. 2D .2解析:选B 由题意,不妨设a =(1,0),b =⎝ ⎛⎭⎪⎫-12,32,p =(x ,y ),∵p ·a =p ·b =12,∴⎩⎪⎨⎪⎧ x =12,-12x +32y =12,解得⎩⎪⎨⎪⎧x =12,y =32.∴|p |=x 2+y 2=1,故选B.3.(2017·浙江高考)如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O .记I 1=OA ―→·OB ―→,I 2=OB ―→·OC ―→,I 3=OC ―→·OD ―→,则( )A .I 1<I 2<I 3B .I 1<I 3<I 2C .I 3<I 1<I 2D .I 2<I 1<I 3解析:选C 如图所示,四边形ABCE 是正方形,F 为正方形的对角线的交点,易得AO <AF ,而∠AFB =90°,∴∠AOB 与∠COD 为钝角,∠AOD与∠BOC 为锐角.根据题意,I 1-I 2=OA ―→·OB ―→-OB ―→·OC ―→=OB ―→·(OA ―→-OC ―→)=OB ―→·CA ―→=|OB ―→|·|CA ―→|cos ∠AOB <0,∴I 1<I 2,同理得,I 2>I 3,作AG ⊥BD 于点G ,又AB =AD , ∴OB <BG =GD <OD ,而OA <AF =FC <OC , ∴|OA ―→|·|OB ―→|<|OC ―→|·|OD ―→|, 而cos ∠AOB =cos ∠COD <0, ∴OA ―→·OB ―→>OC ―→·OD ―→,即I 1>I 3, ∴I 3<I 1<I 2.4.(2018届高三·湖北八校联考)如图,O 为△ABC 的外心,AB =4,AC=2,∠BAC 为钝角,M 为BC 边的中点,则AM ―→·AO ―→的值为( )A .2 3B .12C .6D .5解析:选D 如图,分别取AB ,AC 的中点D ,E ,连接OD ,OE ,可知OD ⊥AB ,OE ⊥AC ,∵M 是BC 边的中点,∴AM ―→=12(AB ―→+AC ―→),∴AM ―→·AO ―→=12(AB ―→+AC ―→)·AO ―→=12AB ―→·AO ―→+12AC ―→·AO ―→=AD ―→·AO ―→+AE ―→·AO ―→.由数量积的定义可得AD ―→·AO ―→=|AD ―→||AO ―→|·cos〈AD ―→,AO ―→〉,而|AO ―→|cos 〈AD ―→,AO ―→〉=|AD ―→|,故AD ―→·AO ―→=|AD ―→|2=4,同理可得AE ―→·AO ―→=|AE ―→|2=1,故AD ―→·AO ―→+AE ―→·AO ―→=5,即AM ―→·AO ―→=5,故选D.5.在△ABC 中,点D 在线段BC 的延长线上,且BC ―→=3CD ―→,点O 在线段CD 上(与点C ,D 不重合),若AO ―→=x AB ―→+(1-x )AC ―→,则x 的取值范围是________.解析:依题意,设BO ―→=λBC ―→,其中1<λ<43,则有AO ―→=AB ―→+BO ―→=AB ―→+λBC ―→=AB ―→+λ(AC ―→-AB ―→)=(1-λ)AB ―→+λAC ―→.又AO ―→=x AB ―→+(1-x )AC ―→,且AB ―→,AC ―→不共线,于是有x =1-λ,由λ∈⎝⎛⎭⎪⎫1,43知,x ∈⎝⎛⎭⎪⎫-13,0,即x 的取值范围是⎝⎛⎭⎪⎫-13,0.答案:⎝ ⎛⎭⎪⎫-13,06.(2017·江苏高考)如图,在同一个平面内,向量OA ―→,OB ―→,OC ―→的模分别为1,1,2,OA ―→与OC ―→的夹角为α,且tan α=7,OB ―→与OC ―→的夹角为45°.若OC ―→=m OA ―→+n OB ―→(m ,n ∈R),则m +n =________.解析:法一:如图,以O 为坐标原点,OA 所在直线为x 轴建立平面直角坐标系,则A (1,0),由tan α=7,α∈⎝⎛⎭⎪⎫0,π2,得sin α=752,cos α=152,设C (x C ,y C ),B (x B ,y B ),则x C =|OC ―→|cos α=2×152=15,y C =|OC ―→|sin α=2×752=75,即C ⎝ ⎛⎭⎪⎫15,75.又cos(α+45°)=152×12-752×12=-35,sin(α+45°)=752×12+152×12=45,则x B =|OB ―→|cos(α+45°)=-35,y B =|OB ―→|sin(α+45°)=45,即B ⎝ ⎛⎭⎪⎫-35,45. 由OC ―→=m OA ―→+n OB ―→,可得⎩⎪⎨⎪⎧15=m -35n ,75=45n ,解得⎩⎪⎨⎪⎧m =54,n =74,所以m +n =54+74=3.法二:由tan α=7,α∈⎝⎛⎭⎪⎫0,π2,得sin α=752,cos α=152,则cos(α+45°)=152×12-752×12=-35,所以OB ―→·OC ―→=1×2×22=1,OA ―→·OC ―→=1×2×152=15,OA ―→·OB ―→=1×1×⎝ ⎛⎭⎪⎫-35=-35, 由OC ―→=m OA ―→+n OB ―→,得OC ―→·OA ―→=m OA ―→2+n OB ―→·OA ―→,即15=m -35n .①同理可得OC ―→·OB ―→=m OA ―→·OB ―→+n OB ―→2, 即1=-35m +n .②①+②得25m +25n =65,即m +n =3. 答案:3第二讲 小题考法——三角函数的图象与性质考点(一) 主要考查三角函数的图象变换或根据图象求解析式或参数三角函数的图象及应用[典例感悟][典例] (1)(2017·合肥质检)要想得到函数y =sin 2x +1的图象,只需将函数y =cos 2x 的图象( )A .向左平移π4个单位长度,再向上平移1个单位长度B .向右平移π4个单位长度,再向上平移1个单位长度C .向左平移π2个单位长度,再向下平移1个单位长度D .向右平移π2个单位长度,再向下平移1个单位长度(2)(2017·贵阳检测)函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,若其图象向左平移π3个单位长度后关于y 轴对称,则( )A .ω=2,φ=π3B .ω=2,φ=π6C .ω=4,φ=π6D .ω=2,φ=-π6(3)(2017·贵阳检测)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π),其导数f ′(x )的图象如图所示,则f ⎝ ⎛⎭⎪⎫π2的值为( )A .2 2B . 2C .-22D .-24[解析] (1)先将函数y =cos 2x 的图象向右平移π4个单位长度,得到y =sin 2x 的图象,再向上平移1个单位长度,即得y =sin 2x +1的图象,故选B.(2)依题意得,T =2πω=π,ω=2,则f (x )=sin(2x +φ),其图象向左平移π3个单位长度得到函数fx +π3=sin2x +2π3+φ的图象关于y 轴对称,于是有2π3+φ=k π+π2,k ∈Z ,即φ=k π-π6,k ∈Z.又|φ|<π2,因此φ=-π6,故选D.(3)依题意得f ′(x )=A ωcos(ωx +φ),结合函数y =f ′(x )的图象可知,T =2πω=4⎝ ⎛⎭⎪⎫3π8-π8=π,ω=2.又A ω=1,因此A =12,则f ′⎝⎛⎭⎪⎫3π8=cos ⎝ ⎛⎭⎪⎫3π4+φ=-1.因为0<φ<π,所以3π4<3π4+φ<7π4,所以3π4+φ=π,φ=π4,故f (x )=12sin ⎝⎛⎭⎪⎫2x +π4,则f ⎝ ⎛⎭⎪⎫π2=12sin ⎝ ⎛⎭⎪⎫π+π4=-12×22=-24,故选D. [答案] (1)B (2)D (3)D[方法技巧]1.函数表达式y =A sin(ωx +φ)+B 的确定方法2.三角函数图象平移问题处理的“三看”策略[演练冲关]1.(2017·全国卷Ⅰ)已知曲线C 1:y =cos x ,C 2:y =sin ⎝ ⎛⎭⎪⎫2x +2π3,则下面结论正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2解析:选D 易知C 1:y =cos x =sin ⎝⎛⎭⎪⎫x +π2,把曲线C 1上的各点的横坐标缩短到原来的12倍,纵坐标不变,得到函数y =sin ⎝ ⎛⎭⎪⎫2x +π2的图象,再把所得函数的图象向左平移π12个单位长度,可得函数y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π12+π2=sin2x +2π3的图象,即曲线C 2.2.(2017·云南模拟)函数f (x )=sin ωx ()ω>0的图象向左平移π3个单位长度,所得图象经过点⎝⎛⎭⎪⎫2π3,0,则ω的最小值是( )A.32B .2C .1 D.12解析:选 C 依题意得,函数f ⎝ ⎛⎭⎪⎫x +π3=sin ωx +π3(ω>0)的图象过点⎝ ⎛⎭⎪⎫2π3,0,于是有f2π3+π3=sin ω2π3+ π3=sin ωπ=0(ω>0),则ωπ=k π,k ∈Z ,即ω=k ∈Z ,因此正数ω的最小值是1,故选C.3.(2017·陕西质检)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2≤φ≤π2的图象上的一个最高点和它相邻的一个最低点的距离为22,且过点⎝⎛⎭⎪⎫2,-12,则函数f (x )=________.解析:依题意得22+⎝ ⎛⎭⎪⎫πω2=22,则πω=2,即ω=π2,所以f (x )=sin ⎝ ⎛⎭⎪⎫π2x +φ,由于该函数图象过点2,-12,因此sin(π+φ)=-12,即sin φ=12,而-π2≤φ≤π2,故φ=π6,所以f (x )=sin ⎝⎛⎭⎪⎫π2x +π6. 答案:sin ⎝ ⎛⎭⎪⎫π2x +π64.(2017·兰州模拟)已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,△EFG (点G 是图象的最高点)是边长为2的等边三角形,则f (1)=________.解析:由题意得,A =3,T =4=2πω,ω=π2.又∵f (x )=A cos(ωx +φ)为奇函数,∴φ=π2+k π,k ∈Z ,∵0<φ<π,则φ=π2,∴f (x )=3cos ⎝ ⎛⎭⎪⎫π2x +π2,∴f (1)=- 3.答案:- 3[典例感悟][典例] (1)(2017·沈阳质检)已知f (x )=2sin 2x +2sin x cos x ,则f (x )的最小正周期和一个单调递减区间分别为( )A .2π,⎣⎢⎡⎦⎥⎤3π8,7π8B .π,⎣⎢⎡⎦⎥⎤3π8,7π8C .2π,⎣⎢⎡⎦⎥⎤-π8,3π8D .π,⎣⎢⎡⎦⎥⎤-π8,3π8(2)(2017·全国卷Ⅲ)设函数f (x )=cos ⎝⎛⎭⎪⎫x +π3,则下列结论错误的是( )A .f (x )的一个周期为-2πB .y =f (x )的图象关于直线x =8π3对称C .f (x +π)的一个零点为x =π6D .f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减 (3)(2016·全国卷Ⅰ)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,则ω的最大值为( )A .11B .9C .7D .5[解析] (1)f (x )=2sin 2x +2sin x cos x =1-cos 2x +sin 2x =2sin ⎝ ⎛⎭⎪⎫2x -π4+1,则T=2π2=π.由π2+2k π≤2x -π4≤3π2+2k π(k ∈Z),得3π8+k π≤x ≤7π8+k π(k ∈Z),令k =0得f (x )在⎣⎢⎡⎦⎥⎤3π8,7π8上单调递减,故选B.(2)根据函数解析式可知函数f (x )的最小正周期为2π,所以函数的一个周期为-2π,A 正确;当x =8π3时,x +π3=3π,所以cos x +π3=-1,所以B 正确;f (x +π)=cos ⎝ ⎛⎭⎪⎫x +π+π3=cos ⎝⎛⎭⎪⎫x +4π3,当x =π6时,x +4π3=3π2,所以f (x +π)=0,所以C 正确;函数f (x )=cos ⎝ ⎛⎭⎪⎫x +π3在⎝ ⎛⎭⎪⎫π2,2π3上单调递减,在⎝ ⎛⎭⎪⎫2π3,π上单调递增,故D 不正确.(3)由题意得⎩⎪⎨⎪⎧-π4ω+φ=k 1π,k 1∈Z ,π4ω+φ=k 2π+π2,k 2∈Z ,且|φ|≤π2,则ω=2k +1,k ∈Z ,φ=π4或φ=-π4.对比选项,将选项各值依次代入验证:若ω=11,则φ=-π4,此时f (x )=sin ⎝ ⎛⎭⎪⎫11x -π4,f (x )在区间⎝ ⎛⎭⎪⎫π18,3π44上单调递增,在区间⎝⎛⎭⎪⎫3π44,5π36上单调递减,不满足f (x )在区间⎝ ⎛⎭⎪⎫π18,5π36上单调;若ω=9,则φ=π4,此时f (x )=sin ⎝ ⎛⎭⎪⎫9x +π4,满足f (x )在区间⎝ ⎛⎭⎪⎫π18,5π36上单调递减,故选B.[答案] (1)B (2)D (3)B[方法技巧]1.求函数单调区间的方法(1)代换法:求形如y =A sin(ωx +φ)(或y =A cos(ωx +φ))(A ,ω,φ为常数,A ≠0,ω>0)的单调区间时,令ωx +φ=z ,得y =A sin z (或y =A cos z ),然后由复合函数的单调性求得.(2)图象法:画出三角函数的图象,结合图象求其单调区间. 2.判断对称中心与对称轴的方法利用函数y =A sin(ωx +φ)的对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点这一性质,通过检验f (x 0)的值进行判断.3.求三角函数周期的常用结论(1)y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan ()ωx +φ的最小正周期为π|ω|.(2)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是12个周期,相邻的对称中心与对称轴之间的距离是14个周期;正切曲线相邻两对称中心之间的距离是12个周期.[演练冲关]1.(2017·洛阳模拟)下列函数中,是周期函数且最小正周期为π的是( ) A .y =sin x +cos xB .y =sin 2x -3cos 2xC .y =cos|x |D .y =3sin x 2cos x2解析:选B 对于A ,函数y =sin x +cos x =2sin x +π4的最小正周期是2π,不符合题意;对于B ,函数y =sin 2x -3cos 2x =121-cos 2x -32(1+cos 2x )=1-32-1+32cos 2x 的最小正周期是π,符合题意;对于C ,y =cos|x |=cos x 的最小正周期是2π,不符合题意;对于D ,函数y =3sin x 2cos x 2=32sin x 的最小正周期是2π,不符合题意.故选B.2.(2017·长春质检)关于函数y =2sin3x +π4+1,下列叙述有误的是( )A .其图象关于直线x =-π4对称B .其图象可由y =2sin ⎝ ⎛⎭⎪⎫x +π4+1图象上所有点的横坐标变为原来的13得到C .其图象关于点⎝⎛⎭⎪⎫11π12,0对称 D .其值域是[-1,3]解析:选C 由3x +π4=π2+k π(k ∈Z)解得x =π12+k π3,k ∈Z ,取k =-1,得函数y =2sin3x+π4+1的一个对称轴为x =-π4,故A 正确;由图象变换知识可得横坐标变为原来的13,就是把x 的系数扩大3倍,故B 正确;由3x +π4=k π(k ∈Z)解得x =-π12+k π3,k ∈Z ,取k =3,得x=11π12,此时y =1,所以函数y =2sin ⎝ ⎛⎭⎪⎫3x +π4+1的对称中心为⎝ ⎛⎭⎪⎫11π12,1,故C 错误;由于-1≤sin3x +π4≤1,所以函数y =2sin ⎝⎛⎭⎪⎫3x +π4+1的值域为[-1,3],故D 正确.3.(2018届高三·湘中名校联考)已知函数f (x )=sin ωx -π6+12,ω>0,x ∈R ,且f (α)=-12,f (β)=12.若|α-β|的最小值为3π4,则函数的单调递增区间为________.解析:由f (α)=-12,f (β)=12,|α-β|的最小值为3π4,知T 4=3π4,即T =3π=2πω,所以ω=23,所以f (x )=sin ⎝ ⎛⎭⎪⎫23x -π6+12.由-π2+2k π≤23x -π6≤π2+2k π(k ∈Z),得-π2+3k π≤x ≤π+3k π()k ∈Z ,即函数f (x )的单调递增区间为-π2+3k π,π+3k π,k ∈Z.答案:-π2+3k π,π+3k π,k ∈Z[典例感悟][典例] (1)(2016·全国卷Ⅱ)函数f (x )=cos 2x +6cos π2-x 的最大值为( )A .4B .5C .6D .7(2)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3在⎣⎢⎡⎦⎥⎤0,π2上的值域为________. [解析] (1)∵f (x )=cos 2x +6cos π2-x =cos 2x +6sin x =1-2sin 2x +6sin x =-2⎝⎛⎭⎪⎫sin x -322+112,又sin x ∈[-1,1],∴当sin x =1时,f (x )取得最大值5. (2)∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x +π3∈⎣⎢⎡⎦⎥⎤π3,4π3,∴当2x +π3=π2,即x =π12时,f (x )max =1.当2x +π3=4π3,即x =π2时,f (x )min =-32,∴f (x )∈⎣⎢⎡⎦⎥⎤-32,1. [答案] (1)B (2)⎣⎢⎡⎦⎥⎤-32,1 [方法技巧]求三角函数的值域(最值)的常见类型及方法[演练冲关]1.当x ∈⎣⎢⎡⎦⎥⎤π6,7π6时,函数y =3-sin x -2cos 2x 的最小值是________,最大值是________.解析:y =3-sin x -2cos 2x =3-sin x -2(1-sin 2x )=2⎝⎛⎭⎪⎫sin x -142+78.∵x ∈⎣⎢⎡⎦⎥⎤π6,7π6,∴sin x ∈⎣⎢⎡⎦⎥⎤-12,1.∴当sin x =14时,y min =78,当sin x =-12或sin x =1时,y max =2.答案:7822.设x ∈⎝⎛⎭⎪⎫0,π2,则函数y =sin 2x 2sin 2x +1的最大值为________. 解析:因为x ∈⎝ ⎛⎭⎪⎫0,π2,所以tan x >0,所以函数y =sin 2x 2sin 2x +1=2sin x cos x 3sin 2x +cos 2x =2tan x 3tan 2x +1=23tan x +1tan x ≤223=33,当且仅当3tan x =1tan x 时等号成立,故函数的最大值为33. 答案:33 3.(2017·南宁模拟)已知函数f (x )=cos3x +π3,其中x ∈⎣⎢⎡⎦⎥⎤ π6,m ⎝ ⎛⎭⎪⎫m ∈R 且m >π6,若f (x )的值域是⎣⎢⎡⎦⎥⎤-1,-32,则m 的取值范围是________. 解析:由x ∈⎣⎢⎡⎦⎥⎤π6,m ,可知5π6≤3x +π3≤3m +π3,∵f ⎝ ⎛⎭⎪⎫π6=cos 5π6=-32,且f ⎝ ⎛⎭⎪⎫2π9=cos π=-1,∴要使f (x )的值域是⎣⎢⎡⎦⎥⎤-1,-32,需要π≤3m +π3≤7π6,即2π9≤m ≤5π18. 答案:⎣⎢⎡⎦⎥⎤2π9,5π18[必备知能·自主补缺] (一) 主干知识要记牢 1.三角函数的图象及常用性质2.三角函数的两种常见的图象变换 (1)y =sin x ――――――→向左φ或向右φ平移|φ|个单位y =sin(x +φ)――――――――――――→横坐标变为原来的1ω纵坐标不变y =sin(ωx +φ) ――→纵坐标变为原来的A 倍横坐标不变y =A sin(ωx +φ)(A >0,ω>0).(2)y =sin x 错误!y =sin ωx ――→向左φ或向右φ 平移⎪⎪⎪⎪⎪⎪φω个单位y =sin(ωx +φ)――――――→纵坐标变为原来的A 倍横坐标不变y =A sin(ωx +φ)(A >0,ω>0). (二) 二级结论要用好1.sin α-cos α>0⇔α的终边在直线y =x 上方(特殊地,当α在第二象限时有 sin α-cos α>1).2.sin α+cos α>0⇔α的终边在直线y =-x 上方(特殊地,当α在第一象限时有sin α+cos α>1).(三) 易错易混要明了求y =A sin(ωx +φ)的单调区间时,要注意ω,A 的符号.ω<0时,应先利用诱导公式将x 的系数转化为正数后再求解;在书写单调区间时,弧度和角度不能混用,需加2k π时,不要忘掉k ∈Z ,所求区间一般为闭区间.如求函数f (x )=2sin ⎝ ⎛⎭⎪⎫π3-x 的单调减区间,应将函数化为f (x )=-2sin ⎝⎛⎭⎪⎫x -π3,转化为求函数y =sin x -π3的单调增区间.[课时跟踪检测]A 组——12+4提速练一、选择题1.(2017·宝鸡质检)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤k π2-π12,k π2+5π12(k ∈Z)B.⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z) C.⎝⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z)D.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z) 解析:选B 由k π-π2<2x -π3<k π+π2(k ∈Z)得,k π2-π12<x <k π2+5π12(k ∈Z),所以函数f (x )=tan2x -π3的单调递增区间为k π2-π12,k π2+5π12(k ∈Z),故选B.2.函数f (x )=sin(ωx +φ)x ∈R ,ω>0,|φ|<π2的部分图象如图所示,则函数f (x )的解析式为( )A .f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4B .f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4C .f (x )=sin ⎝⎛⎭⎪⎫4x +π4 D .f (x )=sin ⎝⎛⎭⎪⎫4x -π4 解析:选A 由题图可知, 函数f (x )的最小正周期为T =2πω=⎝ ⎛⎭⎪⎫3π8-π8×4=π,所以ω=2,即f (x )=sin(2x +φ).又函数f (x )的图象经过点⎝ ⎛⎭⎪⎫π8,1,所以sin π4+φ=1,则π4+φ=2k π+π2(k ∈Z),解得φ=2k π+π4(k ∈Z),又|φ|<π2,所以φ=π4,即函数f (x )=sin2x+π4,故选A. 3.(2017·天津高考)设函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f ⎝⎛⎭⎪⎫5π8=2,f ⎝⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π,则( )A .ω=23,φ=π12B .ω=23,φ=-11π12C .ω=13,φ=-11π24D .ω=13,φ=7π24解析:选A 法一:由f ⎝ ⎛⎭⎪⎫5π8=2,得5π8ω+φ=π2+2k π(k ∈Z),①由f ⎝⎛⎭⎪⎫11π8=0,得11π8ω+φ=k ′π(k ′∈Z),②由①②得ω=-23+43(k ′-2k ).又最小正周期T =2πω>2π,所以0<ω<1,ω=23.又|φ|<π,将ω=23代入①得φ=π12.选项A 符合.法二:∵f ⎝⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π, ∴f (x )的最小正周期为4⎝⎛⎭⎪⎫11π8-5π8=3π,∴ω=2π3π=23,∴f (x )=2sin ⎝ ⎛⎭⎪⎫23x +φ.由2sin ⎝ ⎛⎭⎪⎫23×5π8+φ=2,得φ=2k π+π12,k ∈Z.又|φ|<π,∴取k =0,得φ=π12.故选A.4.(2017·湖北荆州质检)函数f (x )=2x -tan x 在⎝ ⎛⎭⎪⎫-π2,π2上的图象大致为( )解析:选C 因为函数f (x )=2x -tan x 为奇函数,所以函数图象关于原点对称,排除选项A ,B ,又当x →π2时,y <0,排除选项D ,故选C.5.(2017·安徽芜湖模拟)若将函数y =sin 2⎝⎛⎭⎪⎫x +π6的图象向右平移m (m >0)个单位长度后所得的图象关于直线x =π4对称,则m 的最小值为( )A.π12B.π6C.π4D.π3解析:选B 平移后所得的函数图象对应的解析式是y =sin 2⎝ ⎛⎭⎪⎫x -m +π6,因为该函数的图象关于直线x =π4对称,所以2⎝ ⎛⎭⎪⎫π4-m +π6=k π+π2(k ∈Z),所以m =π6-k π2(k ∈Z),又m >0,故当k =0时,m 最小,此时m =π6.6.(2017·云南检测)函数f (x )=sin(ωx +φ)ω>0,|φ|<π2的部分图象如图所示,则f (x )的单调递增区间为( )A .(-1+4k π,1+4k π),k ∈ZB .(-3+8k π,1+8k π),k ∈ZC .(-1+4k,1+4k ),k ∈ZD .(-3+8k,1+8k ),k ∈Z解析:选D 由题图,知函数f (x )的最小正周期为T =4×(3-1)=8,所以ω=2πT =π4,所以f (x )=sin π4x +φ.把(1,1)代入,得sin π4+φ=1,即π4+φ=π2+2k π(k ∈Z),又|φ|<π2,所以φ=π4,所以f (x )=sin π4x +π4.由2k π-π2≤π4x +π4≤2k π+π2(k ∈Z),得8k -3≤x ≤8k+1(k ∈Z),所以函数f (x )的单调递增区间为(8k -3,8k +1)(k ∈Z),故选D.7.(2017·全国卷Ⅲ)函数f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( )A.65 B .1 C.35D.15解析:选A 因为cos ⎝ ⎛⎭⎪⎫x -π6=cos ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫x +π3-π2=sin ⎝ ⎛⎭⎪⎫x +π3,所以f (x )=65sin ⎝ ⎛⎭⎪⎫x +π3,于是f (x )的最大值为65.8.(2017·武昌调研)若f (x )=cos 2x +a cos π2+x 在区间⎝ ⎛⎭⎪⎫π6,π2上是增函数,则实数a 的取值范围为( )A .[-2,+∞)B .(-2,+∞)C .(-∞,-4)D .(-∞,-4]解析:选D f (x )=1-2sin 2x -a sin x ,令sin x =t ,t ∈⎝ ⎛⎭⎪⎫12,1,则g (t )=-2t 2-at +1,t ∈⎝ ⎛⎭⎪⎫12,1,因为f (x )在⎝ ⎛⎭⎪⎫π6,π2上单调递增,所以-a 4≥1,即a ≤-4,故选D.9.已知函数f (x )=sin(2x +φ)(0<φ<π),若将函数f (x )的图象向左平移π6个单位长度后所得图象对应的函数为偶函数,则φ=( )A.5π6B.2π3C.π3 D.π6解析:选 D 函数f (x )的图象向左平移π6个单位长度后所得图象对应的函数解析式为y =sin2x +π6+φ=sin ⎝ ⎛⎭⎪⎫2x +π3+φ,由于该函数是偶函数,∴π3+φ=π2+k π(k ∈Z),即φ=π6+k π(k ∈Z),又0<φ<π,∴φ=π6,故选D.10.若函数f (x )=sin ωx +3cos ωx (ω>0)满足f (α)=-2,f (β)=0,且|α-β|的最小值为π2,则函数f (x )的解析式为( )A .f (x )=2sin ⎝ ⎛⎭⎪⎫x +π3B .f (x )=2sin ⎝ ⎛⎭⎪⎫x -π3C .f (x )=2sin ⎝ ⎛⎭⎪⎫x +π6D .f (x )=2sin ⎝⎛⎭⎪⎫x -π6 解析:选A f (x )=sin ωx +3cos ωx =2sin ωx +π3.因为f (α)=-2,f (β)=0,且|α-β|min =π2,所以T 4=π2,得T =2π(T 为函数f (x )的最小正周期),故ω=2πT=1,所以f (x )=2sin ⎝⎛⎭⎪⎫x +π3,故选A.11.(2018届高三·广西三市联考)已知x =π12是函数f (x )=3sin(2x +φ)+cos(2x +φ)(0<φ<π)图象的一条对称轴,将函数f (x )的图象向右平移3π4个单位长度后得到函数g (x )的图象,则函数g (x )在-π4,π6上的最小值为( )A .-2B .-1C .- 2D .- 3解析:选 B f (x )=3sin(2x +φ)+cos(2x +φ)=2sin ⎝ ⎛⎭⎪⎫2x +π6+φ.∵x =π12是f (x )=2sin ⎝⎛⎭⎪⎫2x +π6+φ图象的一条对称轴,∴2×π12+π6+φ=k π+π2(k ∈Z),即φ=π6+k π(k ∈Z),∵0<φ<π,∴φ=π6,则f (x )=2sin2x +π3,∴g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -3π4+π3=-2sin2x -π6,则g (x )在⎣⎢⎡⎦⎥⎤-π4,π6上的最小值为g ⎝ ⎛⎭⎪⎫π6=-1,故选B.12.(2017·广州模拟)已知函数f (x )=sin(ωx +φ)+cos(ωx +φ)(ω>0,0<φ<π)是奇函数,直线y =2与函数f (x )的图象的两个相邻交点的横坐标之差的绝对值为π2,则( )A .f (x )在⎝ ⎛⎭⎪⎫0,π4上单调递减B .f (x )在⎝ ⎛⎭⎪⎫π8,3π8上单调递减C .f (x )在⎝ ⎛⎭⎪⎫0,π4上单调递增D .f (x )在⎝ ⎛⎭⎪⎫π8,3π8上单调递增 解析:选D f (x )=sin(ωx +φ)+cos(ωx +φ)=2sin ωx +φ+π4,因为0<φ<π且f (x )为奇函数,所以φ=3π4,即f (x )=-2sin ωx ,又直线y =2与函数f (x )的图象的两个相邻交点的横坐标之差的绝对值为π2,所以函数f (x )的最小正周期为π2,由2πω=π2,可得ω=4,故f (x )=-2sin 4x ,由2k π+π2≤4x ≤2k π+3π2,k ∈Z ,得k π2+π8≤x ≤k π2+3π8,k ∈Z ,令k =0,得π8≤x ≤3π8,此时f (x )在⎝ ⎛⎭⎪⎫π8,3π8上单调递增,故选D.。

【配套K12】2018年高考数学二轮复习第二部分专题二三角函数与平面向量第2讲三角恒等变换与解三角形

【配套K12】2018年高考数学二轮复习第二部分专题二三角函数与平面向量第2讲三角恒等变换与解三角形

第2讲 三角恒等变换与解三角形一、选择题1.(2017·衡水中学月考)已知α为锐角,cos α=35,tan(α-β)=-13,则tan β的值为( )A.13 B .3 C.913 D.139 解析:由α为锐角,cos α=35,得sin α=45,所以tan α=43,因为tan(α-β)=-13,所以tan β=tan[α-(α-β)]=tan α-tan (α-β)1+tan α·tan (α-β)=3.答案:B2.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c.若c 2=(a -b)2+6,C =π3,则△ABC 的面积是( )A .3 B.932 C.332D .3 3解析:c 2=(a -b)2+6,即c 2=a 2+b 2-2ab +6.① 因为C =π3,由余弦定理得c 2=a 2+b 2-ab ,②由①和②得ab =6,所以S △ABC =12absin C =12×6×32=332.答案:C3.(2017·德州二模)已知cos α=35,cos(α-β)=7210,且0<β<α<π2,那么β=( )(导学号 54850106)A.π12 B.π6 C.π4 D.π3解析:由cos α=35,0<α<π2,得sin α=45,又cos(α-β)=7210,0<β<α<π2,得sin(α-β)=210, 则cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=35×7210+45×210=22, 由0<β<π2,得β=π4.答案:C4.(2017·韶关调研)已知cos ⎝ ⎛⎭⎪⎫x -π3=13,则cos ⎝ ⎛⎭⎪⎫2x -5π3+sin 2⎝ ⎛⎭⎪⎫π3-x 的值为( )A .-19 B.19 C.53 D .-53解析:cos ⎝ ⎛⎭⎪⎫2x -5π3+sin 2⎝ ⎛⎭⎪⎫π3-x =-cos ⎝ ⎛⎭⎪⎫2x -23π+sin 2(x -π3)=1-2cos 2⎝ ⎛⎭⎪⎫x -π3+1-cos 2⎝ ⎛⎭⎪⎫x -π3=2-3cos 2⎝⎛⎭⎪⎫x -π3=53.答案:C5.(2017·山东卷)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.若△ABC 为锐角三角形,且满足sin B(1+2cos C)=2sin Acos C +cos Asin C ,则下列等式成立的是( )A .a =2bB .b =2aC .A =2BD .B =2A解析:因为2sin Acos C +cos Asin C =s in A ·cos C +sin(A +C)=sin Acos C +sin B.所以等式左边去括号,得sin B +2sin Bcos C =sin Acos C +sin B , 则2sin Bcos C =sin Acos C ,因为角C 为锐角三角形的内角,所以cos C 不为0. 所以2sin B =sin A ,根据正弦定理变形,得a =2b. 答案:A 二、填空题6.(2017·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2bcos B =acosC +ccos A ,则B =________.解析:由正弦定理得2sin Bcos B =sin A ·cos C +sin C cos A =sin(A +C)=sin B .所以2sin Bcos B =sin B ,又sin B ≠0,所以cos B =12,故B =π3.答案:π37.(2017·池州模拟)已知sin ⎝ ⎛⎭⎪⎫π3-α=13⎝ ⎛⎭⎪⎫0<α<π2,则sin ⎝ ⎛⎭⎪⎫π6+α=________.(导学号 54850107)解析:因为sin ⎝⎛⎭⎪⎫π3-α=13,所以cos ⎝ ⎛⎭⎪⎫π6+α=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3-α=sin ⎝ ⎛⎭⎪⎫π3-α;又0<α<π2,所以π6<π6+α<2π3.所以sin ⎝ ⎛⎭⎪⎫π6+α= 1-cos 2⎝ ⎛⎭⎪⎫π6+α= 1-⎝ ⎛⎭⎪⎫132=223. 答案:2238.(2017·浙江卷)已知△ABC,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接CD ,则△BDC 的面积是________,cos ∠BDC =________.解析:由已知,cos ∠ABC =42+22-422×4×2=14.所以cos ∠CBD =-14,所以sin ∠CBD =1-cos 2∠CBD =154, 所以S △ABC =12×BD ×BC ×sin ∠CBD =12×2×2×154=152.又BC =BD =2,且∠ABC=2∠BDC,则cos ∠ABC =14=2cos 2∠BDC -1.解得cos ∠BDC =104或-104(舍去). 答案:152104三、解答题9.(2017·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A +3cos A =0,a =27,b =2.(1)求c ;(2)设D 为BC 边上一点,且AD⊥AC,求△ABD 的面积. 解:(1)由sin A +3cos A =0及cos A ≠0得tan A =-3, 又0<A <π,所以A =2π3.由余弦定理,得28=4+c 2-4c·cos 2π3.则c 2+2c -24=0,解得c =4或-6(舍去). (2)由题设AD⊥AC,知∠CAD=π2.所以∠BAD=∠BAC-∠CAD=23π-π2=π6.故△ABD 面积与△ACD 面积的比值为12AB ·ADsin π612AC ·AD =1.又△ABC 的面积为12×4×2sin ∠BAC =23,所以△ABD 的面积为 3.10.(2017·天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c.已知a>b ,a =5,c =6,sin B =35.(1)求b 和sin A 的值; (2)求sin ⎝ ⎛⎭⎪⎫2A +π4的值. 解:(1)在△ABC 中,因为a>b , 故由sin B =35,可得cos B =45.由已知及余弦定理,有b 2=a 2+c 2-2accos B =13,所以b =13. 由正弦定理a sin A =b sin B ,得sin A =asin B b =31313.所以b 的值为13,sin A 的值为31313.(2)由(1)及a<c ,得cos A =21313, 所以sin 2A =2sin Acos A =1213,cos 2A =1-2sin 2A =-513.故sin ⎝⎛⎭⎪⎫2A +π4=sin 2Acos π4+cos 2Asin π4=7226. 11.(2017·惠州模拟)已知函数f(x)=4cos x ·sin ⎝ ⎛⎭⎪⎫x +π6+m(m∈R),当x∈⎣⎢⎡⎦⎥⎤0,π2时,f(x)的最小值为-1.(导学号 54850108)(1)求实数m 的值;(2)在△ABC 中,已知f(C)=1,AC =4,延长AB 至D ,使BC =BD ,且AD =5,求△ACD 的面积.解:(1)因为f(x)=4cos xsin ⎝ ⎛⎭⎪⎫x +π6+m =4cos x ⎝ ⎛⎭⎪⎫sin xcos π6+cos xsin π6+m =3sin 2x +2cos 2x +m = 3sin 2x +cos 2x +1+m =2sin ⎝ ⎛⎭⎪⎫2x +π6+m +1.因为x∈⎣⎢⎡⎦⎥⎤0,π2,2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6得2sin ⎝⎛⎭⎪⎫2x +π6min =-1. 所以f(x)=-1=-1+m +1,解得m =-1. (2)由(1)知f(x)=2sin ⎝ ⎛⎭⎪⎫2x +π6,且f(C)=1,所以2sin ⎝⎛⎭⎪⎫2C +π6=1,因为C∈(0,π),得2C +π6∈⎝ ⎛⎭⎪⎫π6,13π6,所以2C +π6=5π6,解得C =π3.如图,设BD =BC =x ,则AB =5-x , 在△ACB 中,由余弦定理, 得cos C =12=42+x 2-(5-x )22×4×x ,解得x =32.所以cos A =42+⎝ ⎛⎭⎪⎫5-322-⎝ ⎛⎭⎪⎫3222×4×⎝ ⎛⎭⎪⎫5-32=1314,得sin A =1-cos 2A =77.所以S △ACD =12AC ·ADsin A =12×5×4×77=1077.。

2018届高三数学理高考二轮复习书讲解课件第一部分 专题二 第二讲 三角恒等变换与解三角形 精品

2018届高三数学理高考二轮复习书讲解课件第一部分 专题二 第二讲 三角恒等变换与解三角形 精品

由已知及余弦定理得 a2+b2-2abcos C=7,
故 a2+b2=13,从而(a+b)2=25.
所以△ABC 的周长为 5+ 7.
考点三 三角恒等变换与解三角形的综合问题
试题 解析
考点一 考点二 考点三
5.(2016·高考山东卷)在△ABC 中,角 A,B,C 的对边分别为 a, b,c.已知 2(tan A+tan B)=tcaons BA+tcaons AB. (1)证明:a+b=2c; (2)求 cos C 的最小值.
试题 解析
(1)证明:根据正弦定理,可设sina A=sinb B=sinc C=k(k>0). 则 a=ksin A,b=ksin B,c=ksin C, 代入coas A+cobs B=sinc C中,有kcsoisnAA+kcsoisnBB=kssiinnCC,变形可得 sin Asin B=sin Acos B+cos Asin B=sin(A+B). 在△ABC 中,由 A+B+C=π, 有 sin(A+B)=sin(π-C)=sin C, 所以 sin Asin B=sin C.
试题 解析
考点三
考点一 考点二 考点三
根据上面所做题目,请填写诊断评价
错因(在相应错因中画√)
考点 错题题号

知识性 方法性 运算性 审题性
断 考点一
评 价 考点二
考点三
※ 用自己的方式诊断记录 减少失误从此不再出错
考点一 三角恒等变换
考点一 考点二 考点三
[经典结论·全通关] 三角函数恒等变换“四大策略” (1)常值代换:特别是“1”的代换,1=sin2θ+cos2θ=tan 45° 等; (2)项的分拆与角的配凑:如 sin2α+2cos2α=(sin2α+cos2α)+cos2α, α=(α-β)+β 等; (3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次; (4)弦、切互化:一般是切化弦.

2018届高三数学二轮复习教案:模块二专题二第2讲 三角恒等变换与解三角形

2018届高三数学二轮复习教案:模块二专题二第2讲 三角恒等变换与解三角形

专题二 三角函数、平面向量第二讲 三角恒等变换与解三角形高考导航利用各种三角函数进行求值与化简,其中降幂公式、辅助角公式是考查的重点.2.利用正、余弦定理进行边和角、面积的计算,三角形形状的判定以及有关范围的计算,常与三角恒等变换综合考查.1.(2016·全国卷Ⅱ)若cos ⎝ ⎛⎭⎪⎫π4-α=35,则sin2α=( ) A.725 B.15 C .-15 D .-725[解析] 解法一:∵cos ⎝ ⎛⎭⎪⎫π4-α=35, ∴sin2α=cos ⎝ ⎛⎭⎪⎫π2-2α=cos2⎝ ⎛⎭⎪⎫π4-α =2cos 2⎝ ⎛⎭⎪⎫π4-α-1=2×⎝ ⎛⎭⎪⎫352-1=-725.故选D. 解法二:∵cos ⎝ ⎛⎭⎪⎫π4-α=22(cos α+sin α)=35,∴cos α+sin α=325,∴1+sin2α=1825,∴sin2α=-725.故选D.[答案] D2.(2017·山东卷)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若△ABC 为锐角三角形,且满足sin B (1+2cos C )=2sin A cos C +cos A sin C ,则下列等式成立的是( )A .a =2bB .b =2aC .A =2BD .B =2A[解析] 解法一:因为sin B (1+2cos C )=2sin A cos C +cos A sin C ,所以sin B +2sin B cos C =sin A cos C +sin(A +C ),所以sin B +2sin B cos C =sin A cos C +sin B ,即cos C (2sin B -sin A )=0,所以cos C =0或2sin B =sin A ,即C =90°或2b =a ,又△ABC 为锐角三角形,所以0°<C <90°,故2b =a .故选A. 解法二:由正弦定理和余弦定理得b ⎝ ⎛⎭⎪⎫1+a 2+b 2-c 2ab =2a ×a 2+b 2-c 22ab +c ×b 2+c 2-a 22bc , 所以2b 2⎝ ⎛⎭⎪⎫1+a 2+b 2-c 2ab =a 2+3b 2-c 2, 即2b a (a 2+b 2-c 2)=a 2+b 2-c 2,即(a 2+b 2-c 2)⎝ ⎛⎭⎪⎫2b a -1=0, 所以a 2+b 2=c 2或2b =a ,又△ABC 为锐角三角形,所以a 2+b 2>c 2,故2b =a ,故选A.[答案] A3.(2017·浙江卷)已知△ABC ,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接CD ,则△BDC 的面积是________,cos ∠BDC =________.[解析] 由余弦定理得cos ∠ABC =42+22-422×4×2=14, ∴cos ∠CBD =-14,sin ∠CBD =154,∴S △BDC =12BD ·BC ·sin ∠CBD =12×2×2×154=152.又cos ∠ABC =cos2∠BDC =2cos 2∠BDC -1=14,0<∠BDC <π2,∴cos ∠BDC =104.[答案] 152 1044.(2017·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知△ABC 的面积为a 23sin A .(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长.[解] (1)由题设得12ac sin B =a 23sin A ,即12c sin B =a 3sin A . 由正弦定理得12sin C sin B =sin A 3sin A .故sin B sin C =23.(2)由题设及(1)得cos B cos C -sin B sin C =-12,即cos(B +C )=-12.所以B +C =2π3,故A =π3. 由题设得12bc sin A =a 23sin A ,即bc =8.由余弦定理得b 2+c 2-bc =9,即(b +c )2-3bc =9,得b +c =33. 故△ABC 的周长为3+33.考点一 三角恒等变换1.两角和与差的正弦、余弦、正切公式(1)sin(α±β)=sin αcos β±cos αsin β.(2)cos(α±β)=cos αcos β∓sin αsin β.(3)tan(α±β)=tan α±tan β1∓tan αtan β. 2.二倍角的正弦、余弦、正切公式(1)sin2α=2sin αcos α.(2)cos2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.(3)tan2α=2tan α1-tan 2α. 3.辅助角公式a sin x +b cos x =a 2+b 2sin(x +φ)⎝ ⎛⎭⎪⎫其中tan φ=b a . [对点训练]1.(2017·贵阳监测)已知sin ⎝ ⎛⎭⎪⎫π6-α=13,则cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π3+α的值是( )A.79B.13 C .-13 D .-79[解析] ∵sin ⎝ ⎛⎭⎪⎫π6-α=13,∴cos ⎝ ⎛⎭⎪⎫π3-2α=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π6-α=1-2sin 2⎝ ⎛⎭⎪⎫π6-α=79,∴cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π3+α=cos ⎝ ⎛⎭⎪⎫2π3+2α=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π3-2α=-cos ⎝ ⎛⎭⎪⎫π3-2α=-79. [答案] D2.(2017·福建省福州市高三综合质量检测)已知m =tan (α+β+γ)tan (α-β+γ),若sin2(α+γ)=3sin2β,则m =( )A.12B.34C.32 D .2[解析] 设A =α+β+γ,B =α-β+γ,则2(α+γ)=A +B,2β=A -B ,因为sin2(α+γ)=3sin2β,所以sin(A +B )=3sin(A -B ),即sin A cos B +cos A sin B =3(sin A cos B -cos A sin B ),即2cos A ·sin B =sin A cos B ,所以tan A =2tan B ,所以m =tan A tan B =2,故选D.[答案] D3.若sin2α=55,sin(β-α)=1010,且α∈⎣⎢⎡⎦⎥⎤π4,π,β∈⎣⎢⎡⎦⎥⎤π,3π2,则α+β的值是________.[解析] 因为α∈⎣⎢⎡⎦⎥⎤π4,π,故2α∈⎣⎢⎡⎦⎥⎤π2,2π,又sin2α=55,故2α∈⎣⎢⎡⎦⎥⎤π2,π,α∈⎣⎢⎡⎦⎥⎤π4,π2,∴cos2α=-255,β∈⎣⎢⎡⎦⎥⎤π,3π2,故β-α∈⎣⎢⎡⎦⎥⎤π2,5π4,于是cos(β-α)=-31010,∴cos(α+β)=cos [2α+(β-α)]=cos2αcos(β-α)-sin2αsin(β-α)=-255×⎝⎛⎭⎪⎫-31010-55× 1010=22,且α+β∈⎣⎢⎡⎦⎥⎤5π4,2π,故α+β=7π4. [答案] 7π4(1)三角恒等变换的三原则①一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理拆分,从而正确使用公式,如1题.②二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”.③三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,常见的有“遇到分式要通分”等.(2)解决条件求值应关注的三点①分析已知角和未知角之间的关系,正确地用已知角来表示未知角.②正确地运用有关公式将所求角的三角函数值用已知角的三角函数值来表示.③求解三角函数中给值求角的问题时,要根据已知求这个角的某种三角函数值,然后结合角的取值范围,求出角的大小,如3题.考点二 解三角形1.正弦定理a sin A =b sin B =c sin C =2R (2R 为△ABC 外接圆的直径).变形:a =2R sin A ,b =2R sin B ,c =2R sin C .sin A =a 2R ,sin B =b 2R ,sin C =c 2R .a ∶b ∶c =sin A ∶sin B ∶sin C .2.余弦定理a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B ,c 2=a 2+b 2-2ab cos C .推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab .变形:b 2+c 2-a 2=2bc cos A ,a 2+c 2-b 2=2ac cos B ,a 2+b 2-c 2=2ab cos C .3.面积公式S △ABC =12bc sin A =12ac sin B =12ab sin C .角度1:利用正弦、余弦定理判断三角形的形状[解析] ∵2b cos C -2c cos B =a ,∴2sin B cos C -2sin C cos B =sin A =sin(B +C ),即sin B cos C =3cos B sin C ,∴tan B =3tan C ,又B =2C ,∴2tan C 1-tan 2C=3tan C ,得tan C =33,C =π6,B =2C =π3,A =π2,故△ABC 为直角三角形.[答案] B 角度2:在三角形中利用正、余弦定理进行边角计算[解析] 由b sin B -a sin A =12a sin C 及正弦定理得b 2-a 2=12ac ,又c =2a ,所以b =2a ,∵cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 24a 2=34,∴sin B = 1-⎝ ⎛⎭⎪⎫342=74.故选A. [答案] A 角度3:结合正、余弦定理进行面积的计算[思维流程] (1)代换A +C 为π-B →化简关系式→求出cos B(2)求sin B →结合面积公式求出ac →借助余弦定理求出b[解] (1)由题设及A +B +C =π得sin B =8sin 2B 2,故sin B =4(1-cos B ).上式两边平方,整理得17cos 2B -32cos B +15=0,解得cos B =1(舍去),cos B =1517.(2)由cos B =1517得sin B =817,故S △ABC =12ac sin B =417ac .又S △ABC =2,则ac =172.由余弦定理及a +c =6得b 2=a 2+c 2-2ac cos B =(a +c )2-2ac (1+cos B )=36-2×172×⎝ ⎛⎭⎪⎫1+1517=4. 所以b =2.正、余弦定理的适用条件(1)“已知两角和一边”或“已知两边和其中一边的对角”应采用正弦定理.(2)“已知两边和这两边的夹角”或“已知三角形的三边”应采用余弦定理.【特别提醒】 应用定理要注意“三统一”,即“统一角、统一函数、统一结构”.[对点训练]1.[角度1](2017·洛阳模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,cos 2A 2=b +c 2c ,则△ABC 的形状一定是( )A .正三角形B .直角三角形C .等腰三角形D .等腰直角三角形[解析] 在△ABC 中,∵cos 2A 2=b +c 2c ,∴1+cos A 2=sin B +sin C 2sin C =12·sin B sin C +12,∴1+cos A =sin Bsin C +1,∴cos A sin C =sin B =sin(A +C )=sin A cos C +cos A sin C ,∴sin A cos C =0,sin A ≠0,∴cos C =0,∴C 为直角.故选B.[答案] B2.[角度2](2017·辽宁师大附中模拟)在△ABC 中,内角A ,B ,C 所对的边长分别为a ,b ,c ,且满足a sin B cos C +c sin B cos A =12b ,则B =( )A.π6或5π6B.π3C.π6D.5π6[解析] ∵a sin B cos C +c sin B cos A =12b ,∴由正弦定理可得sin A sin B cos C +sin C sin B cos A =12sin B .又∵sin B ≠0,∴sin A cos C +sin C cos A =12,解得sin(A +C )=sin B =12.∵0<B <π,∴B =π6或5π6.故选A.[答案] A3.[角度3](2017·威海模拟)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为________.[解析] 由正弦定理得,(2+b )(a -b )=(c -b )·c ,又a =2,所以b 2+c 2-bc =4,所以cos A =b 2+c 2-42bc =bc 2bc =12,故A =π3.因为b 2+c 2≥2bc ,所以bc ≤4,所以S △ABC =12bc sin A ≤12×4×32=3,当且仅当b =c 时取等号.[答案] 3考点三 正、余弦定理的实际应用1.实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.2.实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.[对点训练]1.(2017·济南二模)张晓华同学骑电动自行车以24 km/h 的速度沿着正北方向的公路行驶,在点A 处望见电视塔S 在电动车的北偏东30°方向上,15 min 后到点B 处望见电视塔在电动车的北偏东75°方向上,则电动车在点B 时与电视塔S 的距离是( )A .2 2 kmB .3 2 kmC .3 3 kmD .2 3 km[解析] 画出示意图如图,由条件知AB =24×1560=6.在△ABS 中,∠BAS =30°,AB =6,∠ABS =180°-75°=105°,所以∠ASB =45°.BS sin30°=AB sin45°,所以BS =AB sin30°sin45°=3 2.[答案] B2.(2017·广东省五校协作体高三一诊)如图所示,在一个坡度一定的山坡AC 的顶上有一高度为25 m 的建筑物CD ,为了测量该山坡相对于水平地面的坡角θ,在山坡的A 处测得∠DAC =15°,沿山坡前进50 m 到达B 处,又测得∠DBC =45°,根据以上数据可得cosθ=________.[解析]由∠DAC=15°,∠DBC=45°可得∠BDA=30°,∠DBA =135°,∠BDC=90°-(15°+θ)-30°=45°-θ,由内角和定理可得∠DCB=180°-(45°-θ)-45°=90°+θ,根据正弦定理可得50sin30°=DBsin15°,即DB=100sin15°=100×sin(45°-30°)=252(3-1),又25sin45°=252(3-1)sin(90°+θ),即25sin45°=252(3-1)cosθ,得到cosθ=3-1.[答案]3-1解三角形实际问题的4步骤热点课题8解三角形中的范围问题[感悟体验](2017·河南豫北联考)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且3a cos C =(2b -3c )cos A .(1)求角A 的大小;(2)求cos ⎝ ⎛⎭⎪⎫5π2-B -2sin 2C 2的取值范围. [解] (1)由正弦定理将原等式化为3sin A cos C =2sin B cos A -3sin C cos A , 从而可得,3sin(A +C )=2sin B cos A , 即3sin B =2sin B cos A .又B 为三角形的内角,所以sin B ≠0,于是cos A =32.又A 为三角形的内角,因此A =π6.(2)cos ⎝ ⎛⎭⎪⎫5π2-B -2sin 2C 2 =sin B +cos C -1=sin B +cos ⎝ ⎛⎭⎪⎫5π6-B -1 =sin B +cos 5π6cos B +sin 5π6sin B -1 =32sin B -32cos B -1=3sin ⎝ ⎛⎭⎪⎫B -π6-1, 由A =π6可知,B ∈⎝ ⎛⎭⎪⎫0,5π6, 所以B -π6∈⎝ ⎛⎭⎪⎫-π6,2π3, 从而sin ⎝ ⎛⎭⎪⎫B -π6∈⎝ ⎛⎦⎥⎤-12,1, 因此,3sin ⎝ ⎛⎭⎪⎫B -π6-1∈⎝ ⎛⎦⎥⎤-3+22,3-1, 故cos ⎝ ⎛⎭⎪⎫5π2-B -2sin 2C 2的取值范围为 ⎝ ⎛⎦⎥⎤-3+22,3-1.。

2018高考新课标数学理二轮专题复习课件:专题二第2讲三角恒等变换与解三角形 精品

2018高考新课标数学理二轮专题复习课件:专题二第2讲三角恒等变换与解三角形 精品

=2
3sin12ωx·cos12
ωx+2cos212
ωx
(ω>0),且函数
f(x)的最小正周期为 π.(导学号 55460020)
(1)求 ω 的值; (2)求 f(x)在0,π2上的最大值和最小值.
解:(1)∵f(x)= 3sin ωx+cos ωx+1= 2sinωx+π6+1, 又 f(x)的最小正周期为 π, ∴π=2ωπ,即 ω=2.
故 2b-c=4sin B-2sin C=4sin B-2sin23π-B= 3sin B- 3cos B=2 3sinB-π6. ∵b≥a, ∴π3≤B<23π,π6≤B-π6<π2, ∴2b-c=2 3sinB-π6∈[ 3,2 3).
[规律方法] 解三角形与三角函数的综合题,要优先 考虑角的范围和角之间的关系;对最值或范围问题,可以 转化为三角函数的值域来求.
解析:(1)法一:∵f(x)=( 3sin x+cos x)·( 3cos x-
sin x)=
4
3 2 sin
x+12cos
x
3 2 cos
x-12sin
x=
4sinx+π6cosx+π6=2sin2x+π3,
∴T=22π=π.
法二:∵f(x)=( 3sin x+cos x)( 3cos x-sin x)=3sin xcos x+ 3cos2x- 3sin2x-sin xcos x=sin 2x+ 3cos 2x =2sin2x+π3,
∴T=22π=π. (2)(sin α+cos α)2=1+sin 2α=4295,又 0<α<π2, 则 sin α+cos α=75, 2cosπ4-α=sin α+cos α=75. 答案:(1)B (2)C

2018版高考数学浙江版二轮专题复习配套文档:专题一三角函数与平面向量第2讲含答案

2018版高考数学浙江版二轮专题复习配套文档:专题一三角函数与平面向量第2讲含答案

第2讲 三角恒等变换与解三角形高考定位 1.三角函数的化简与求值是高考的命题热点,其中同角三角函数的基本关系、诱导公式是解决计算问题的工具,三角恒等变换是利用三角恒等式(两角和与差、二倍角的正弦、余弦、正切公式)进行变换,“角”的变换是三角恒等变换的核心;2。

正弦定理与余弦定理以及解三角形问题是高考的必考内容,主要考查边、角、面积的计算及有关的范围问题.真 题 感 悟1.(2016·全国Ⅲ卷)若tan α=错误!,则cos 2α+2sin 2α=( ) A 。

错误!B 。

错误!C 。

1 D.错误!解析 tan α=错误!,则cos 2α+2sin 2α=错误!=错误!=错误!.答案 A2.(2016·山东卷)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =c ,a 2=2b 2(1-sin A ),则A =( )A.34π B.π3 C.错误! D 。

错误!解析因为b=c,a2=2b2(1-sin A),所以cos A=错误!=错误!,则cos A=sin A。

在△ABC中,A=错误!.答案C3。

(2017·全国Ⅰ卷)△ABC的内角A,B,C的对边分别为a,b,c.已知sin B+sin A(sin C-cos C)=0,a=2,c=2,则C=( )A。

π12B。

错误!C。

错误!D。

错误!解析由题意得sin(A+C)+sin A(sin C-cos C)=0,∴sin A cos C+cos A sin C+sin A sin C-sin A cos C=0,则sin C(sin A+cos A)=错误!sin C sin错误!=0,因为sin C≠0,所以sin错误!=0,又因为A∈(0,π),所以A+错误!=π,所以A=错误!。

由正弦定理错误!=错误!,得错误!=错误!,则sin C=错误!,得C=错误!。

答案B4.(2017·浙江卷)已知△ABC,AB=AC=4,BC=2.点D为AB延长线上一点,BD=2,连接CD,则△BDC的面积是________,cos ∠BDC=________.解析依题意作出图形,如图所示,则sin∠DBC=sin∠ABC.由题意知AB=AC=4,BC=BD=2,则sin∠ABC=错误!,cos∠ABC=错误!.所以S△BDC=错误!BC·BD·sin∠DBC=错误!×2×2×错误!=错误!.因为cos∠DBC=-cos∠ABC=-错误!=错误!=错误!,所以CD=错误!。

2018年高考数学(理)二轮复习 讲学案三角函数、解三角形与平面向量 第2讲三角变换与解三角形(含答案解析)

2018年高考数学(理)二轮复习 讲学案三角函数、解三角形与平面向量 第2讲三角变换与解三角形(含答案解析)

第2讲 三角变换与解三角形正弦定理、余弦定理以及解三角形问题是高考的必考内容,主要考查: 1.边和角的计算. 2.三角形形状的判断. 3.面积的计算.4.有关参数的范围问题.由于此内容应用性较强,与实际问题结合起来进行命题将是今后高考的一个关注点,不可轻视.热点一 三角恒等变换 1.三角求值“三大类型”“给角求值”“给值求值”“给值求角”. 2.三角函数恒等变换“四大策略”(1)常值代换:特别是“1”的代换,1=sin 2θ+cos 2θ=tan 45°等.(2)项的分拆与角的配凑:如sin 2α+2cos 2α=(sin 2α+cos 2α)+cos 2α,α=(α-β)+β等. (3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次. (4)弦、切互化:一般是切化弦.例1 (1)(2017·贵阳市第一中学适应性考试)已知sin α-2cos α=102,则tan 2α等于( ) A.43 B .-34C.34 D .-43答案 C解析 ∵sin α-2cos α=102, ∴sin 2α-4sin α·cos α+4cos 2α=52,即1-cos 2α2-2sin 2α+4×1+cos 2α2=52,化简得4sin 2α=3cos 2α, ∴tan 2α=sin 2αcos 2α=34,故选C.(2)已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于( )A.5π12B.π3C.π4D.π6答案 C解析 因为α,β均为锐角,所以-π2<α-β<π2.又sin(α-β)=-1010,所以cos(α-β)=31010. 又sin α=55,所以cos α=255, 所以sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β) =55×31010-255×⎝ ⎛⎭⎪⎫-1010=22. 所以β=π4.思维升华 (1)三角变换的关键在于对两角和与差的正弦、余弦、正切公式,二倍角公式,三角恒等变换公式的熟记和灵活应用,要善于观察各个角之间的联系,发现题目所给条件与恒等变换公式的联系,公式的使用过程要注意正确性,要特别注意公式中的符号和函数名的变换,防止出现“张冠李戴”的情况. (2)求角问题要注意角的范围,要根据已知条件将所求角的范围尽量缩小,避免产生增解. 跟踪演练1 (1)(2017·河北省衡水中学三调)若α∈⎝ ⎛⎭⎪⎫π2,π,且3cos 2α=sin ⎝ ⎛⎭⎪⎫π4-α,则sin2α的值为( ) A .-118 B.118 C .-1718 D.1718答案 C解析 由3cos 2α=sin(π4-α),可得3(cos 2α-sin 2α)=22(cos α-sin α), 于是3(cos α+sin α)=22, 所以1+2sin αcos α=118,所以sin 2α=-1718,故选C.(2)(2017届山东省师大附中模拟)已知sin ⎝ ⎛⎭⎪⎫π6-α-cos α=13,则cos ⎝ ⎛⎭⎪⎫2α+π3=_______. 答案 79解析 ∵sin ⎝ ⎛⎭⎪⎫π6-α-cos α=12cos α-32sin α-cos α=-sin ⎝ ⎛⎭⎪⎫α+π6=13, ∴sin ⎝⎛⎭⎪⎫α+π6=-13.则cos ⎝ ⎛⎭⎪⎫2α+π3=1-2sin 2⎝ ⎛⎭⎪⎫α+π6=79. 热点二 正弦定理、余弦定理1.正弦定理:在△ABC 中,a sin A =b sin B =csin C=2R (R 为△ABC 的外接圆半径).变形:a =2R sin A ,b =2R sinB ,c =2R sinC ,sin A =a 2R ,sin B =b 2R ,sin C =c2R,a ∶b ∶c =sin A ∶sin B ∶sin C 等. 2.余弦定理:在△ABC 中,a 2=b 2+c 2-2bc cos A .变形:b 2+c 2-a 2=2bc cos A ,cos A =b 2+c 2-a 22bc.例2 (2017·全国Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A +3cos A =0,a =27,b =2. (1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积. 解 (1)由已知可得tan A =-3,所以A =2π3.在△ABC 中,由余弦定理,得28=4+c 2-4c ·cos 2π3,即c 2+2c -24=0,解得c =-6(舍去)或c =4. 所以c =4.(2)由题设可得∠CAD =π2,所以∠BAD =∠BAC -∠CAD =π6.故△ABD 的面积与△ACD 的面积的比值为12AB ·AD ·sin π612AC ·AD =1.又△ABC 的面积为12×4×2sin∠BAC =23,所以△ABD 的面积为 3.思维升华 关于解三角形问题,一般要用到三角形的内角和定理,正弦、余弦定理及有关三角形的性质,常见的三角变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”,这是使问题获得解决的突破口.跟踪演练2 (2017·广西陆川县中学知识竞赛)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足a cosC =(2b -c )cos A .(1)求角A ;(2)若a =7,△ABC 的面积S △ABC =103,求b +c 的值. 解 (1)由a cos C =(2b -c )cos A , 得sin A cos C =(2sin B -sin C )cos A , 即sin A cos C +cos A sin C =2sin B cos A ,即sin(A +C )=2sin B cos A ,即sin B =2sin B cos A . ∵sin B ≠0,∴cos A =12,而0<A <π2,∴A =π3.(2)由S △ABC =103,得12bc sin π3 =103,∴bc =40.∵a =7,∴b 2+c 2-2bc cos π3=49,即b 2+c 2=89,于是(b +c )2=89+2×40=169,∴b +c =13(舍负). 热点三 解三角形与三角函数的综合问题解三角形与三角函数的综合是近几年高考的热点,主要考查三角形的基本量,三角形的面积或判断三角形的形状. 例3 (2017届湖北省稳派教育质量检测)已知函数f (x )=cos ωx ·sin ⎝ ⎛⎭⎪⎫ωx -π3+3cos 2ωx -34(ω>0,x ∈R ),且函数y =f (x )图象的一个对称中心到最近的对称轴的距离为π4.(1)求ω 的值及f (x )的对称轴方程;(2)在△ABC 中,角A ,B ,C 的对边分別为a ,b ,c .若f (A )=34,sin C =13,a =3,求b 的值. 解 (1)f (x )=cos ωx ⎝ ⎛⎭⎪⎫12sin ωx -32cos ωx +3cos 2ωx -34=12sin ωx cos ωx +32cos 2ωx -34 =14sin 2ωx +34(1+cos 2ωx )-34 =14sin 2ωx +34cos 2ωx =12sin ⎝⎛⎭⎪⎫2ωx +π3,由函数y =f (x )图象的一个对称中心到最近的对称轴的距离为π4,得14T =π4,2π2ω=π,求得ω=1.当ω=1时,f (x )=12sin ⎝⎛⎭⎪⎫2x +π3.由2x +π3=π2+k π(k ∈Z ),求得x =π12+k π2(k ∈Z ).即f (x )的对称轴方程为x =π12+k π2(k ∈Z ).(2)由(1)知f (A )=12sin ⎝ ⎛⎭⎪⎫2A +π3=34,即sin ⎝⎛⎭⎪⎫2A +π3=32.所以2A +π3=2k π+π3或2A +π3=2k π+2π3,k ∈Z ,解得A =k π或A =π6+k π,k ∈Z ,又A ∈(0,π),所以A =π6.由sin C =13,C ∈(0,π),sin A =12知,C <π6,求得cos C =223.所以sin B =sin(A +C )=sin A cos C +cos A sin C =3+226, 又a =3,由正弦定理得b =a sin Bsin A=3×3+22612=3+263.思维升华 解三角形与三角函数的综合题,要优先考虑角的范围和角之间的关系;对最值或范围问题,可以转化为三角函数的值域来求.跟踪演练 3 (2017届青岛市统一质量检测)已知函数f (x )=sin ⎝⎛⎭⎪⎫2x +π3+cos ⎝⎛⎭⎪⎫2x +π6+m sin 2x (m ∈R ),f ⎝ ⎛⎭⎪⎫π12=2.(1)求m 的值;(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b =2,f ⎝ ⎛⎭⎪⎫B 2=3,△ABC 的面积是3,求△ABC 的周长. 解 (1)∵f ⎝ ⎛⎭⎪⎫π12=2, ∴f ⎝ ⎛⎭⎪⎫π12=sin ⎝ ⎛⎭⎪⎫2×π12+π3+cos ⎝ ⎛⎭⎪⎫2×π12+π6+m sin ⎝ ⎛⎭⎪⎫2×π12=sin π2+cos π3+m 2=2, 解得m =1. (2)由(1)知f (x )=sin ⎝⎛⎭⎪⎫2x +π3+cos ⎝⎛⎭⎪⎫2x +π6+sin 2x=sin 2x cos π3+cos 2x sin π3+cos 2x cos π6-sin 2x sin π6+sin 2x=3cos 2x +sin 2x =2sin ⎝⎛⎭⎪⎫2x +π3,∴f ⎝ ⎛⎭⎪⎫B 2=2sin ⎝⎛⎭⎪⎫B +π3= 3.∵0<B <π,π3<B +π3<4π3,∴B +π3=2π3,则B =π3.又∵S △ABC =12ac sin B =34ac =3,∴ac =4.∵b 2=a 2+c 2-2ac cos B =(a +c )2-3ac =4, ∴(a +c )2=4+12=16,∴a +c =4, ∴△ABC 的周长为a +b+c =6.真题体验1.(2017·山东改编)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若△ABC 为锐角三角形,且满足sin B (1+2cosC )=2sin A cos C +cos A sin C ,则下列等式成立的是______.(填序号)①a =2b; ②b =2a; ③A =2B; ④B =2A . 答案 ①解析 ∵等式右边=sin A cos C +(sin A cos C +cos A sin C )=sin A cos C +sin(A +C )=sin A cos C +sin B , 等式左边=sin B +2sin B cos C ,∴sin B +2sin B cos C =sin A cos C +sin B . 由cos C >0,得sin A =2sin B . 根据正弦定理,得a =2b .2.(2017·北京)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,cos(α-β)=________. 答案 -79解析 由题意知α+β=π+2k π(k ∈Z ), ∴β=π+2k π-α(k ∈Z ),又sin α=13,∴cos(α-β)=cos αcos β+sin αsin β =-cos 2α+sin 2α=2sin 2α-1 =2×19-1=-79.3.(2017·江苏)若tan ⎝ ⎛⎭⎪⎫α-π4=16,则tan α=________.答案 75解析 方法一 ∵tan ⎝⎛⎭⎪⎫α-π4=tan α-tanπ41+tan αtanπ4=tan α-11+tan α=16.∴6tan α-6=1+tan α(tan α≠-1), ∴tan α=75.方法二 tan α=tan ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-π4+π4 =tan ⎝ ⎛⎭⎪⎫α-π4+tan π41-tan ⎝⎛⎭⎪⎫α-π4·tan π4=16+11-16=75.4.(2017·浙江)已知△ABC ,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接CD ,则△BDC 的面积是________,cos∠BDC =________. 答案152104解析 依题意作出图形,如图所示, 则sin∠DBC =sin∠ABC .由题意知AB =AC =4,BC =BD =2, 则sin∠ABC =154,cos∠ABC =14, 所以S △BDC =12BC ·BD ·sin∠DBC=12×2×2×154=152. 因为cos∠DBC =-cos∠ABC =-14=BD 2+BC 2-CD 22BD ·BC =8-CD 28,所以CD =10.由余弦定理,得cos∠BDC =4+10-42×2×10=104. 押题预测1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B =5cos C ,并且a =2,则△ABC 的面积为________.押题依据 三角形的面积求法较多,而在解三角形中主要利用正弦、余弦定理求解,此题很好地体现了综合性考查的目的,也是高考的重点. 答案52解析 因为0<A <π,cos A =23,所以sin A =1-cos 2A =53. 又5cos C =sin B =sin(A +C ) =sin A cos C +cos A sin C =53cos C +23sin C , 结合sin 2C +cos 2C =1,得sin C =56,cos C =16.于是sin B =5cos C =56.由a =2及正弦定理a sin A =csin C ,得c = 3.故△ABC 的面积S =12ac sin B =52.2.已知函数f (x )=3sin ωx ·cos ωx -cos 2ωx (ω>0)的最小正周期为2π3.(1)求ω的值;(2)在△ABC 中,sin B ,sin A ,sin C 成等比数列,求此时f (A )的值域.押题依据 三角函数和解三角形的交汇点命题是近几年高考命题的趋势,本题综合考查了三角变换、余弦定理和三角函数的值域,还用到数列、基本不等式等知识,对学生能力要求较高. 解 (1)f (x )=32sin 2ωx -12(cos 2ωx +1)=sin ⎝⎛⎭⎪⎫2ωx -π6-12, 因为函数f (x )的周期为T =2π2ω=2π3,所以ω=32.(2)由(1)知f (x )=sin ⎝ ⎛⎭⎪⎫3x -π6-12, 易得f (A )=sin ⎝⎛⎭⎪⎫3A -π6-12. 因为sin B ,sin A ,sin C 成等比数列, 所以sin 2A =sinB sinC , 所以a 2=bc ,所以cos A =b 2+c 2-a 22bc =b 2+c 2-bc 2bc ≥2bc -bc 2bc =12(当且仅当b =c 时取等号).因为0<A <π,所以0<A ≤π3,所以-π6<3A -π6≤5π6,所以-12<sin ⎝⎛⎭⎪⎫3A -π6≤1,所以-1<sin ⎝ ⎛⎭⎪⎫3A -π6-12≤12, 所以函数f (A )的值域为⎝⎛⎦⎥⎤-1,12.A 组 专题通关1.(2017·贵阳市第一中学适应性考试)已知在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,若a =10,c =3,cos A =14,则b 等于( ) A. 2 B. 3 C .2 D .3答案 C解析 由余弦定理知,a 2=b 2+c 2-2bc cos A ,可得10=b 2+9-2·b ·3·14 , b 2-32b -1=0,所以(b -2)(b +12)=0,解得b =2(舍负),故选C.2.tan 70°+tan 50°-3tan 70°tan 50°的值等于( ) A. 3B.33 C .-33D .- 3答案 D解析 因为tan 120°=tan 70°+tan 50°1-tan 70°tan 50°=-3,即tan 70°+tan 50°-3tan 70°tan 50°=- 3.3.(2017·荆、荆、襄、宜四地七校联考)已知α为第四象限角,sin α+cos α=15,则tan α2的值为( )A .-12 B.12 C .-13 D.13答案 C解析 由sin α+cos α=15平方,得1+2sin αcos α=125⇒2sin αcos α=-2425⇒(sin α-cos α)2=1-2sin αcos α=4925.因为α为第四象限角,所以sin α<0,cos α>0,sin α-cos α=-75,因此sin α=-35,cos α=45,tan α2=sinα2cos α2=sin α2cos α2cos 2α2=sin α1+cos α=-351+45=-13,故选C.4.(2017·合肥一模)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos C =223,b cos A +a cos B =2,则△ABC 的外接圆的面积为( ) A .4π B .8π C .9π D .36π答案 C解析 ∵b cos A +a cos B =2,∴b ·b 2+c 2-a 22bc +a ·a 2+c 2-b 22ac=2,∴c =2,由cos C =223,得sin C =13,∴2R =c sin C =213=6,R =3,S =π×32=9π,故选C.5.若sin 2α=55,sin(β-α)=1010,且α∈⎣⎢⎡⎦⎥⎤π4,π,β∈⎣⎢⎡⎦⎥⎤π,3π2,则α+β的值是( )A.7π4B.9π4 C.5π4或7π4D.5π4或9π4答案 A解析 ∵sin 2α=55,α∈⎣⎢⎡⎦⎥⎤π4,π,∴cos 2α=-255且α∈⎣⎢⎡⎦⎥⎤π4,π2, 又∵sin(β-α)=1010,β∈⎣⎢⎡⎦⎥⎤π,3π2,∴cos(β-α)=-31010,∴sin(α+β)=sin[(β-α)+2α] =sin(β-α)cos 2α+cos(β-α)sin 2α =1010×⎝ ⎛⎭⎪⎫-255+⎝ ⎛⎭⎪⎫-31010×55=-22,cos(α+β)=cos[(β-α)+2α]=cos(β-α)cos 2α-sin(β-α)sin 2α=⎝ ⎛⎭⎪⎫-31010×⎝ ⎛⎭⎪⎫-255-1010×55=22, 又α+β∈⎣⎢⎡⎦⎥⎤5π4,2π,∴α+β=7π4,故选A. 6.(2017·全国Ⅰ)已知α∈⎝ ⎛⎭⎪⎫0,π2,tan α=2,则cos ⎝ ⎛⎭⎪⎫α-π4=________. 答案 31010解析 cos ⎝ ⎛⎭⎪⎫α-π4=cos αcos π4+sin αsin π4=22(cos α+sin α). 又由α∈⎝ ⎛⎭⎪⎫0,π2,tan α=2知,sin α=255,cos α=55, ∴cos ⎝ ⎛⎭⎪⎫α-π4=22×⎝ ⎛⎭⎪⎫55+255=31010. 7.(2017届湖南省百所重点中学阶段性诊断)我国南宋著名数学家秦九韶在他的著作《数书九章》卷五“田域类”里有一个题目:“问有沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里.里法三百步.欲知为田几何.”这道题讲的是有一个三角形沙田,三边分别为13里,14里,15里,假设1里按500米计算,则该沙田的面积为____平方千米.答案 21解析 设△ABC 的对应边边长分别为a =13里,b =14里,c =15里,cos C =132+142-1522×13×14=513⇒sin C =1213⇒S =12×13×14×1213×250 000=21×106(平方米) =21(平方千米).8. (2017·河南省息县第一高级中学阶段测试)如图,在平面四边形ABCD 中,AD =1,CD =2,AC =7,cos∠BAD =-714,sin∠CBA =216,则BC 的长为________.答案 3解析 因为cos∠BAD =-714, 故sin∠BAD =1-⎝ ⎛⎭⎪⎫-7142=32114, 在△ADC 中运用余弦定理,可得cos∠CAD =1+7-427=277, 则sin∠CAD =1-⎝ ⎛⎭⎪⎫2772=217, 所以sin∠BAC =sin(∠BAD -∠CAD )=32114×277+714×217=63+314=32, 在△ABC 中运用正弦定理,可得BC sin∠BAC =7sin∠CBA ⇒BC =32×7×621=3. 9.(2017·全国Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin(A +C )=8sin 2B 2. (1)求cos B ;(2)若a +c =6,△ABC 面积为2,求b .解 (1)由题设及A +B +C =π,得sin B =8sin 2B2, 故sin B =4(1-cos B ).上式两边平方,整理得17cos 2B -32cos B +15=0,解得cos B =1(舍去)或cos B =1517. 故cos B =1517. (2)由cos B =1517,得sin B =817, 故S △ABC =12ac sin B =417ac . 又S △ABC =2,则ac =172. 由余弦定理及a +c =6,得b 2=a 2+c 2-2ac cos B =(a +c )2-2ac (1+cos B )=36-2×172×⎝ ⎛⎭⎪⎫1+1517=4, 所以b =2.10.(2017·浙江省“超级全能生”联考)已知f (x )=sin(ωx +φ) ⎝ ⎛⎭⎪⎫ω>0,|φ|<π2满足f ⎝⎛⎭⎪⎫x +π2=-f (x ),若其图象向左平移π6个单位长度后得到的函数为奇函数. (1)求f (x )的解析式;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2c -a )cos B =b cos A ,求f (A )的取值范围.解 (1)∵f ⎝ ⎛⎭⎪⎫x +π2=-f (x ), ∴f (x +π)=-f ⎝ ⎛⎭⎪⎫x +π2=f (x ), ∴T =π,∴ω=2,则f (x )的图象向左平移π6个单位长度后得到的函数为g (x )=sin ⎝ ⎛⎭⎪⎫2x +π3+φ,而g (x )为奇函数,则有π3+φ=k π,k ∈Z ,而|φ|<π2,则有φ=-π3,从而f (x )=sin ⎝⎛⎭⎪⎫2x -π3. (2)∵(2c -a )cos B =b cos A ,由正弦定理得2sin C cos B =sin(A +B )=sin C , 又C ∈⎝⎛⎭⎪⎫0,π2,∴sin C ≠0, ∴cos B =12,∴B =π3. ∵△ABC 是锐角三角形,C =2π3-A <π2, ∴π6<A <π2,∴0<2A -π3<2π3, ∴sin ⎝⎛⎭⎪⎫2A -π3∈(0,1], ∴f (A )=sin ⎝⎛⎭⎪⎫2A -π3∈(0,1]. B 组 能力提高11.(2017届合肥教学质量检测)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足(a -b )(sin A +sin B )=(c -b )sin C ,若a =3,则b 2+c 2的取值范围是( )A.(]3,6B.()3,5C.(]5,6D.[]5,6答案 C解析 ∵(a -b )(sin A +sin B )=(c -b )sin C ,由正弦定理得(a -b )(a +b )=(c -b )c ,即b 2+c 2-a 2=bc , ∴cos A =b 2+c 2-a 22bc =bc 2bc =12,∴A =π3,∴B +C =2π3.又△ABC 为锐角三角形, ∴⎩⎨⎧ 0<B <π2,A +B =π3+B >π2,∴π6<B <π2, 由正弦定理a sin A =b sin B =c sin C =332=2, 得b =2sin B ,c =2sin C ,∴b 2+c 2=4(sin 2B +sin 2C )=4⎣⎢⎡⎦⎥⎤sin 2B +sin 2⎝⎛⎭⎪⎫2π3-B =4-2cos ⎝⎛⎭⎪⎫2B +π3,又π6<B <π2, 可得b 2+c 2∈(5,6].故选C.12.(2017·湖北省黄冈市质量检测)已知2sin θ=1-cos θ,则tan θ等于( )A .-43或0 B.43或0 C .-43D.43 答案 A解析 因为2sin θ=1-cos θ,所以4sin θ2cos θ2=1-⎝⎛⎭⎪⎫1-2sin 2θ2=2sin 2θ2, 解得sin θ2=0或2cos θ2=sin θ2,tan θ2=0或2, 又tan θ=2tan θ21-tan 2θ2,当tan θ2=0时,tan θ=0;当tan θ2=2时,tan θ=-43, 故选A.13.(2017届河南省新乡市模拟)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,cos C =19,且a cos B +b cos A =2,则△ABC 面积的最大值为________.答案 52解析 由题设及余弦定理,可得a a 2+c 2-b 22ac +b b 2+c 2-a 22bc=2⇒c =2, 又由余弦定理可得22=a 2+b 2-2ab ×19,即a 2+b 2=29ab +4,又因为a 2+b 2≥2ab ,所以29ab +4≥2ab ⇒ab ≤94,当且仅当a =b 时取等号,由cos C =19,可得sin C =1-192=1980=495,所以三角形的面积S △ABC =12ab sin C=12×495ab =259ab ≤259×94=52.14.(2017届南京市、盐城市模拟)如图,在△ABC 中,D 为边BC 上一点,AD =6,BD=3,DC =2.(1)若AD ⊥BC ,求∠BAC 的大小; (2)若∠ABC =π4,求△ADC 的面积.解 (1)设∠BAD =α,∠DAC =β.因为AD ⊥BC ,AD =6,BD =3,DC =2, 所以tan α=12,tan β=13,所以tan∠BAC =tan(α+β)=tan α+tan β1-tan αtan β=12+131-12×13=1.又∠BAC ∈(0,π),所以∠BAC =π4.(2)设∠BAD =α.在△ABD 中,∠ABC =π4,AD =6,BD =3. 由正弦定理得AD sin π4=BD sin α,解得sin α=24.因为AD >BD ,所以α为锐角,从而cos α=1-sin 2α=144.因此sin∠ADC =sin ⎝ ⎛⎭⎪⎫α+π4=sin αcos π4+cos αsin π4 =22⎝ ⎛⎭⎪⎫24+144=1+74.△ADC 的面积S =12×AD ×DC ·sin∠ADC=12×6×2×1+74=32(1+7).。

高考数学二轮复习专题篇素养提升 专题1三角函数三角恒等变换与解三角形第2讲三角恒等变换与解三角形文理

高考数学二轮复习专题篇素养提升 专题1三角函数三角恒等变换与解三角形第2讲三角恒等变换与解三角形文理

②由 f(x)=12sin2x-π6= 63,
得 sin2x-π6= 33,
∵x∈0,π4,∴-π6≤2x-π6≤π3,
∴cos2x-π6=
6 3.
∴cos 2x=cos2x-π6+π6 =cos2x-π6× 23-sin2x-π6×21 = 36× 23- 33×12= 22- 63.
三角恒等变换的“四大策略” (1)常值代换:特别是“1”的代换, 1=sin2θ+cos2θ=tan 45°等. (2)项的拆分与角的配凑: 如sin2α+2cos2α=(sin2α+cos2α)+cos2α,α=(α-β)+β等. (3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次. (4)弦、切互化:一般是切化弦.
分值 10 12 10
年份 卷别 Ⅰ卷
2019 Ⅱ卷 Ⅲ卷 Ⅰ卷
2018 Ⅱ卷 Ⅲ卷
题号
考查角度
分值
17 正余弦定理
12
二倍角公式、基本关系式、余弦定理、
15
5
三角形面积公式
18
正余弦定理、三角形面积公式
12
17
正余弦定理、解三角形
12
二倍角、辅助角公式、基本关系式、
10、15 和的正弦公式、余弦定理
10°=
典例1
A.34
(1)(2020·全国Ⅱ卷模拟)cos2 40°+2sin 35°sin 55°sin
( A)
B.14
C.12+
3 2
D.3
3 4
(2)(2020·宜宾模拟)已知 α∈0,π2,且 3sin2α-5cos2α+sin 2α=0,则
sin 2α+cos 2α=
( A)
A.1
B.-2137

2018届高三数学二轮复习第一篇专题突破专题三三角函数及解三角形第2讲三角恒等变换与解三角形课件理

2018届高三数学二轮复习第一篇专题突破专题三三角函数及解三角形第2讲三角恒等变换与解三角形课件理

tan x 等于 ( 4
(
7 A.
)
9 B. 4
5 9 D. 或 4
4 5 7 C. 或 4 4
4
答案 (1)A (2)A
2 2 解析 (1)由cos 2 x =sin x得sin 2x=sin x, 2



tan x 1 1 x ∵x∈(0,π),∴tan x=2,∴tan = . =
a2 1 解析 (1)由题设得 acsin B= , 3sin A 2 a 1 即 csin B= . 3sin A 2 sin A 1 由正弦定理得 sin Csin B= . 3sin A 2 2 故sin Bsin C= . 3
2 2 2
3.三角形面积公式 S△ABC= absin C= bcsin A= acsin B.
1 2 1 2 1 2
典型例题
(2017课标全国Ⅰ,17,12分)△ABC的内角A,B,C的对边分别为a,b,c.已知
a2 △ABC的面积为 . 3sin A
(1)求sin Bsin C; (2)若6cos Bcos C=1,a=3,求△ABC的周长.
2 1 7 1 把sin 代入,原式=- 1 2 =- . α = 4 3 4 8
3
1 4
3

.
7 8

2来自2
cos10(1 3 tan10) 2.(2017新疆第二次适应性检测) 的值是 cos50
1.正弦定理及其变形
c a b sin A sin B sin C a Rsin A,sin A= ,a∶b∶c=sin A∶sin B∶sin C. 2R

[推荐学习]2018年高考数学二轮复习第二部分专题二三角函数与平面向量第2讲三角恒等变换与解三角形课

[推荐学习]2018年高考数学二轮复习第二部分专题二三角函数与平面向量第2讲三角恒等变换与解三角形课

第2讲 三角恒等变换与解三角形一、选择题1.(2017·衡水中学月考)已知α为锐角,cos α=35,tan(α-β)=-13,则tan β的值为( )A.13 B .3 C.913 D.139 解析:由α为锐角,cos α=35,得sin α=45,所以tan α=43,因为tan(α-β)=-13,所以tan β=tan[α-(α-β)]=tan α-tan (α-β)1+tan α·tan (α-β)=3.答案:B2.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c.若c 2=(a -b)2+6,C =π3,则△ABC 的面积是( )A .3 B.932 C.332D .3 3解析:c 2=(a -b)2+6,即c 2=a 2+b 2-2ab +6.① 因为C =π3,由余弦定理得c 2=a 2+b 2-ab ,②由①和②得ab =6,所以S △ABC =12absin C =12×6×32=332.答案:C3.(2017·德州二模)已知cos α=35,cos(α-β)=7210,且0<β<α<π2,那么β=( )(导学号 54850106)A.π12 B.π6 C.π4 D.π3解析:由cos α=35,0<α<π2,得sin α=45,又cos(α-β)=7210,0<β<α<π2,得sin(α-β)=210, 则cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=35×7210+45×210=22, 由0<β<π2,得β=π4.答案:C4.(2017·韶关调研)已知cos ⎝ ⎛⎭⎪⎫x -π3=13,则cos ⎝ ⎛⎭⎪⎫2x -5π3+sin 2⎝ ⎛⎭⎪⎫π3-x 的值为( )A .-19 B.19 C.53 D .-53解析:cos ⎝ ⎛⎭⎪⎫2x -5π3+sin 2⎝ ⎛⎭⎪⎫π3-x =-cos ⎝ ⎛⎭⎪⎫2x -23π+sin 2(x -π3)=1-2cos 2⎝ ⎛⎭⎪⎫x -π3+1-cos 2⎝ ⎛⎭⎪⎫x -π3=2-3cos 2⎝⎛⎭⎪⎫x -π3=53.答案:C5.(2017·山东卷)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.若△ABC 为锐角三角形,且满足sin B(1+2cos C)=2sin Acos C +cos Asin C ,则下列等式成立的是( )A .a =2bB .b =2aC .A =2BD .B =2A解析:因为2sin Acos C +cos Asin C =s in A ·cos C +sin(A +C)=sin Acos C +sin B.所以等式左边去括号,得sin B +2sin Bcos C =sin Acos C +sin B , 则2sin Bcos C =sin Acos C ,因为角C 为锐角三角形的内角,所以cos C 不为0. 所以2sin B =sin A ,根据正弦定理变形,得a =2b. 答案:A 二、填空题6.(2017·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2bcos B =acosC +ccos A ,则B =________.解析:由正弦定理得2sin Bcos B =sin A ·cos C +sin C cos A =sin(A +C)=sin B .所以2sin Bcos B =sin B ,又sin B ≠0,所以cos B =12,故B =π3.答案:π37.(2017·池州模拟)已知sin ⎝ ⎛⎭⎪⎫π3-α=13⎝ ⎛⎭⎪⎫0<α<π2,则sin ⎝ ⎛⎭⎪⎫π6+α=________.(导学号 54850107)解析:因为sin ⎝⎛⎭⎪⎫π3-α=13,所以cos ⎝ ⎛⎭⎪⎫π6+α=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3-α=sin ⎝ ⎛⎭⎪⎫π3-α;又0<α<π2,所以π6<π6+α<2π3.所以sin ⎝ ⎛⎭⎪⎫π6+α= 1-cos 2⎝ ⎛⎭⎪⎫π6+α= 1-⎝ ⎛⎭⎪⎫132=223. 答案:2238.(2017·浙江卷)已知△ABC,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接CD ,则△BDC 的面积是________,cos ∠BDC =________.解析:由已知,cos ∠ABC =42+22-422×4×2=14.所以cos ∠CBD =-14,所以sin ∠CBD =1-cos 2∠CBD =154, 所以S △ABC =12×BD ×BC ×sin ∠CBD =12×2×2×154=152.又BC =BD =2,且∠ABC=2∠BDC,则cos ∠ABC =14=2cos 2∠BDC -1.解得cos ∠BDC =104或-104(舍去). 答案:152104三、解答题9.(2017·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A +3cos A =0,a =27,b =2.(1)求c ;(2)设D 为BC 边上一点,且AD⊥AC,求△ABD 的面积. 解:(1)由sin A +3cos A =0及cos A ≠0得tan A =-3, 又0<A <π,所以A =2π3.由余弦定理,得28=4+c 2-4c·cos 2π3.则c 2+2c -24=0,解得c =4或-6(舍去). (2)由题设AD⊥AC,知∠CAD=π2.所以∠BAD=∠BAC-∠CAD=23π-π2=π6.故△ABD 面积与△ACD 面积的比值为12AB ·ADsin π612AC ·AD =1.又△ABC 的面积为12×4×2sin ∠BAC =23,所以△ABD 的面积为 3.10.(2017·天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c.已知a>b ,a =5,c =6,sin B =35.(1)求b 和sin A 的值; (2)求sin ⎝ ⎛⎭⎪⎫2A +π4的值. 解:(1)在△ABC 中,因为a>b , 故由sin B =35,可得cos B =45.由已知及余弦定理,有b 2=a 2+c 2-2accos B =13,所以b =13. 由正弦定理a sin A =b sin B ,得sin A =asin B b =31313.所以b 的值为13,sin A 的值为31313.(2)由(1)及a<c ,得cos A =21313, 所以sin 2A =2sin Acos A =1213,cos 2A =1-2sin 2A =-513.故sin ⎝⎛⎭⎪⎫2A +π4=sin 2Acos π4+cos 2Asin π4=7226. 11.(2017·惠州模拟)已知函数f(x)=4cos x ·sin ⎝ ⎛⎭⎪⎫x +π6+m(m∈R),当x∈⎣⎢⎡⎦⎥⎤0,π2时,f(x)的最小值为-1.(导学号 54850108)(1)求实数m 的值;(2)在△ABC 中,已知f(C)=1,AC =4,延长AB 至D ,使BC =BD ,且AD =5,求△ACD 的面积.解:(1)因为f(x)=4cos xsin ⎝ ⎛⎭⎪⎫x +π6+m =4cos x ⎝ ⎛⎭⎪⎫sin xcos π6+cos xsin π6+m =3sin 2x +2cos 2x +m = 3sin 2x +cos 2x +1+m =2sin ⎝ ⎛⎭⎪⎫2x +π6+m +1.因为x∈⎣⎢⎡⎦⎥⎤0,π2,2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6得2sin ⎝⎛⎭⎪⎫2x +π6min =-1. 所以f(x)=-1=-1+m +1,解得m =-1. (2)由(1)知f(x)=2sin ⎝ ⎛⎭⎪⎫2x +π6,且f(C)=1,所以2sin ⎝⎛⎭⎪⎫2C +π6=1,因为C∈(0,π),得2C +π6∈⎝ ⎛⎭⎪⎫π6,13π6,所以2C +π6=5π6,解得C =π3.如图,设BD =BC =x ,则AB =5-x , 在△ACB 中,由余弦定理, 得cos C =12=42+x 2-(5-x )22×4×x ,解得x =32.所以cos A =42+⎝ ⎛⎭⎪⎫5-322-⎝ ⎛⎭⎪⎫3222×4×⎝ ⎛⎭⎪⎫5-32=1314,得sin A =1-cos 2A =77.所以S △ACD =12AC ·ADsin A =12×5×4×77=1077.。

教育最新2018年高考数学二轮复习第一部分专题二三角函数平面向量第二讲三角恒等变换与解三角形教案

教育最新2018年高考数学二轮复习第一部分专题二三角函数平面向量第二讲三角恒等变换与解三角形教案

第二讲 三角恒等变换与解三角形[考情分析]三角变换及解三角形是高考考查的热点,然而单独考查三角变换的题目较少,题目往往以解三角形为背景,在应用正弦定理、余弦定理的同时,经常应用三角变换进行化简,综合性比较强,但难度不大.[真题自检]1.(2017·高考全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( ) A.π12 B.π6 C.π4D.π3解析:因为sin B +sin A (sin C -cos C )=0,所以sin(A +C )+sin A ·sin C -sin A ·cos C =0,所以sin A cos C +cos A sin C +sin A sin C -sin A cos C =0,整理得sin C (sin A +cos A )=0,因为sin C ≠0,所以sin A +cos A =0,所以tan A =-1,因为A ∈(0,π),所以A =3π4,由正弦定理得sin C =c ·sin Aa =2×222=12,又0<C <π4,所以C =π6.故选B. 答案:B2.(2016·高考全国卷Ⅲ)若tan θ=-13,则cos 2θ=( )A .-45B .-15C.15D.45解析:先利用二倍角公式展开,再进行“1”的代换, 转化为关于tan θ的关系式进行求解. ∵cos 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ,又∵tan θ=-13,∴cos 2θ=1-191+19=45. 答案:D3.(2017·高考全国卷Ⅰ)已知α∈(0,π2),tan α=2,则cos ⎝ ⎛⎭⎪⎫α-π4=________. 解析:∵α∈(0,π2),tan α=2,∴sin α=255,cos α=55,∴cos(α-π4)=cos αcosπ4+sin αsin π4=22×(255+55)=31010. 答案:31010三角恒等变换[方法结论]三角函数恒等变换“四大策略”(1)常值代换:特别是“1”的代换,1=sin 2θ+cos 2θ=tan 45° 等;(2)项的分拆与角的配凑:如sin 2α+2cos 2α=(sin 2α+cos 2α)+cos 2α,α=(α-β)+β等; (3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次; (4)弦、切互化:一般是切化弦.[题组突破]1.若tan α=-22,且α是第四象限角,则cos 2(α-π2)+sin(3π-α)cos(2π+α)+22cos 2(α+π)=( ) A .-23B.23C .-13D.13解析:通解:因为α是第四象限角,tan α=-22,故sin αcos α=-22,由sin 2 α+cos 2 α=1可得cos 2 α=23,cos α=63,sin α=-33.cos 2⎝ ⎛⎭⎪⎫α-π2+sin(3π-α)cos(2π+α)+22cos 2(α+π)=sin 2α+sin αcos α+22cos 2α=13+⎝ ⎛⎭⎪⎫-33×63+23=13,故选D. 优解:因为α是第四象限角,tan α=-22,故cos 2(α-π2)+sin(3π-α)cos(2π+α)+22cos 2(α+π)=sin 2α+sin αcos α+22cos 2α=sin 2α+sin αcos α+22cos 2αsin 2α+cos 2α=tan 2α+tan α+22tan 2α+1=1232=13,故选D. 答案:D2.(2017·蚌埠模拟)已知sin 2α-2=2cos 2α,则sin 2α+sin 2α=________.解析:由sin 2α-2=2cos 2α得sin 2α=2+2cos 2α,即2sin αcos α=4 cos 2α,即cos α=0或tan α=2.当cos α=0时,sin 2α+sin 2α=1;当tan α=2时,sin 2α+sin 2α=sin 2α+2sin αcos αsin 2α+cos 2α=tan 2α+2tan αtan 2α+1=85. 综上,sin 2α+sin 2α=1或85.答案:1或853.(2017·合肥检测)已知cos ⎝ ⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α=-14,α∈⎝ ⎛⎭⎪⎫π3,π2. (1)求sin 2α的值; (2)求tan α-1tan α的值.解析:(1)cos ⎝ ⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α=cos ⎝ ⎛⎭⎪⎫π6+α·sin ⎝ ⎛⎭⎪⎫π6+α=12sin ⎝ ⎛⎭⎪⎫2α+π3=-14,即sin ⎝ ⎛⎭⎪⎫2α+π3=-12,因为α∈⎝ ⎛⎭⎪⎫π3,π2,所以2α+π3∈⎝ ⎛⎭⎪⎫π,4π3,所以cos ⎝ ⎛⎭⎪⎫2α+π3=-32.所以sin 2α=sin ⎝ ⎛⎭⎪⎫2α+π3-π3=sin ⎝ ⎛⎭⎪⎫2α+π3cos π3-cos ⎝⎛⎭⎪⎫2α+π3sin π3=12.(2)由(1)知tan α-1tan α=sin αcos α-cos αsin α=sin 2 α-cos 2αsin αcos α=-2cos 2αsin 2α=-2×⎝ ⎛⎭⎪⎫-3212=2 3. [误区警示]三角函数求值问题易出错的是忽视角的范围,导致结果增解.解三角形[方法结论]正、余弦定理、三角形面积公式(1)a sin A =b sin B =c sin C =a +b +c sin A +sin B +sin C=2R (R 为△ABC 外接圆的半径). 变形:a =2R sin A ,b =2R sin B ,c =2R sin C ; sin A =a 2R ,sin B =b 2R ,sin C =c2R;a ∶b ∶c =sin A ∶sin B ∶sin C .(2)a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B ,c 2=a 2+b 2-2ab cos C .推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.变形:b 2+c 2-a 2=2bc cos A ,a 2+c 2-b 2=2ac cos B ,a 2+b 2-c 2=2ab cos C . (3)S △ABC =12ab sin C =12ac sin B =12bc sin A .[典例](2017·广州模拟)如图,在△ABC 中,点D 在边AB 上,CD ⊥BC ,AC =53,CD =5,BD =2AD .(1)求AD 的长; (2)求△ABC 的面积.解析:(1)在△ABC 中,因为BD =2AD ,设AD =x (x >0),则BD =2x .在△BCD 中,因为CD ⊥BC ,CD =5,BD =2x ,所以cos ∠CDB =CD BD =52x.在△ACD 中,因为AD =x ,CD =5,AC =53,则cos ∠ADC =AD 2+CD 2-AC 22×AD ×CD =x 2+52-322×x ×5.因为∠CDB +∠ADC =π,所以cos ∠ADC =-cos ∠CDB ,即x 2+52-322×x ×5=-52x.解得x =5.所以AD 的长为5.(2)由(1)求得AB =3x =15,BC =4x 2-25=5 3. 所以cos ∠CBD =BC BD =32,从而sin ∠CBD =12. 所以S △ABC =12×AB ×BC ×sin∠CBA =12×15×53×12=7534.[类题通法]等价转化思想在解三角形中的应用利用正、余弦定理解三角形关键利用定理进行边角互化.即利用正弦定理、余弦定理等工具合理地选择“边”往“角”化,还是“角”往“边”化.若想“边”往“角”化,常利用“a =2R sinA ,b =2R sinB ,c =2R sinC ”;若想“角”往“边”化,常利用sin A =a 2R ,sin B =b2R ,sin C=c 2R ,cos C =a 2+b 2-c 22ab等. [演练冲关]1.(2017·合肥模拟)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos C =223,b cos A+a cos B =2,则△ABC 的外接圆面积为( ) A .4π B .8π C .9πD .36π解析:c =b cos A +a cos B =2,由cos C =223得sin C =13,再由正弦定理可得2R =csin C =6,所以△ABC 的外接圆面积为πR 2=9π,故选C. 答案:C2.(2017·武汉调研)如图,据气象部门预报,在距离某码头南偏东45°方向600 km 处的热带风暴中心正以20 km/h 的速度向正北方向移动,距风暴中心450 km 以内的地区都将受到影响,则该码头将受到热带风暴影响的时间为( )A .14 hB .15 hC .16 hD .17 h解析:记现在热带风暴中心的位置为点A ,t 小时后热带风暴中心到达B 点位置,在△OAB 中,OA=600,AB =20t ,∠OAB =45°,根据余弦定理得6002+400t 2-2×20t ×600×22≤4502,即4t 2-1202t +1 575≤0,解得302-152≤t ≤302+152,所以Δt =302+152-302-152=15(h),故选B. 答案:B3.(2017·海口模拟)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知(a -3b )·cos C =c (3cosB -cos A ).(1)求sin Bsin A的值;(2)若c =7a ,求角C 的大小.解析:(1)由正弦定理得,(sin A -3sin B )cos C =sin C ·(3cos B -cos A ), ∴sin A cos C +cos A sin C =3sin C cos B +3cos C sin B , 即sin(A +C )=3sin(C +B ),即sin B =3sin A ,∴sin Bsin A =3.(2)由(1)知b =3a ,∵c =7a ,∴cos C =a 2+b 2-c 22ab =a 2+9a 2-7a 22×a ×3a =3a 26a 2=12,∵C ∈(0,π),∴C =π3.解三角形与其他知识的交汇问题解三角形问题一直是近几年高考的重点,主要考查以斜三角形为背景求三角形的基本量、面积或判断三角形的形状,解三角形与平面向量、不等式、三角函数性质、三角恒等变换交汇命题成为高考的热点.[典例](1)在△ABC 中,AC →·AB →=|AC →-AB →|=3,则△ABC 面积的最大值为( ) A.21B.3214C.212D .321解析:设角A ,B ,C 所对的边分别为a ,b ,c , ∵AC →·AB →=|AC →-AB →|=3,∴bc cos A =a =3.又cos A =b 2+c 2-a 22bc ≥1-92bc =1-3cos A2,∴cos A ≥25,∴0<sin A ≤215,∴△ABC 的面积S =12bc sin A =32tan A ≤32×212=3214,故△ABC 面积的最大值为3214.答案:B(2)(2017·南昌模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且cos2B -C2-sin B ·sinC =2-24. ①求角A ;②若a =4,求△ABC 面积的最大值. 解析:①由cos2B -C2-sin B ·sin C =2-24,得cos B -C 2-sin B ·sin C =-24, ∴cos(B +C )=-22, ∴cos A =22(0<A <π),∴A =π4. ②由余弦定理a 2=b 2+c 2-2bc cos A ,得16=b 2+c 2-2bc ≥(2-2)bc ,当且仅当b =c 时取等号,即bc ≤8(2+2).∴S △ABC =12bc sin A =24bc ≤4(2+1),即△ABC 面积的最大值为4(2+1).[类题通法]化归与转化能力思想是求解三角与其他知识交汇问题的核心,分析交汇知识点,利用其间的联系可找出突破口,从而解决问题.[演练冲关]1.(2017·沈阳模拟)已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,且满足4S =a 2-(b -c )2,b +c =8,求S 的最大值. 解析:由题意得:4×12bc sin A =a 2-b 2-c 2+2bc ,又a 2=b 2+c 2-2bc cos A ,代入上式得:2bc sin A =-2bc cos A +2bc ,即sin A +cos A =1,2sin(A +π4)=1,又0<A <π,∴π4<A +π4<5π4,∴A +π4=3π4,∴A =π2,S =12bc sin A =12bc ,又b +c =8≥2bc ,当且仅当b =c 时取“=”,∴bc ≤16,∴S 的最大值为8.2.(2017·贵阳模拟)在△ABC 中,内角A ,B ,C 的对边长分别为a ,b ,c ,若b 2+c 2-a 2=bc . (1)求角A 的大小;(2)若a =3,求BC 边上的中线AM 的最大值. 解析:(1)由b 2+c 2-a 2=bc ,得cos A =b 2+c 2-a 22bc =bc 2bc =12,又0<A <π,∴A =π3.(2)∵AM 是BC 边上的中线,∴在△ABM 中,AM 2+34-2AM ·32·cos∠AMB =c 2,①在△ACM 中,AM 2+34-2AM ·32·cos∠AMC =b 2,②又∠AMB =π-∠AMC ,∴cos ∠AMB =-cos ∠AMC ,即cos ∠AMB +cos ∠AMC =0, ①+②得AM 2=b 2+c 22-34.又a =3,∴b 2+c 2-3=bc ≤b 2+c 22,∴b 2+c 2≤6, ∴AM 2=b 2+c 22-34≤94,即AM ≤32, ∴BC 边上的中线AM 的最大值为32.。

高考数学二轮复习 第一部分 专题篇 专题二 三角函数、平面向量 第二讲 三角恒等变换与解三角形课件 文(1)

高考数学二轮复习 第一部分 专题篇 专题二 三角函数、平面向量 第二讲 三角恒等变换与解三角形课件 文(1)
考点一
的关系式进行求解. cos2 θ-sin2 θ 1-tan2 θ ∵cos 2θ= 2 = , cos θ+sin2 θ 1+tan2 θ 1 1- 9 4 1 又∵tan θ=- ,∴cos 2θ= = . 3 1 5 1+ 9
考点二
考点三
考点一
试题
解析
考点一
考点二
考点三
π 3 2.(2016· 高考全国Ⅰ卷)已知 θ 是第四象限角,且 sinθ+ = , 4 5 4 π - 则 tanθ-4 =________. 3
考点一
试题
解析
考点一
考点二
考点三
π π π π 1 3.(2016· 合肥检测)已知 cos +α· cos -α=- ,α∈ , . 4 6 3 3 2
(1)求 sin 2α 的值; 1 (2)求 tan α- 的值. tan α
考点一
试题
π π π π π 1 1 (1)cos + α · cos - α=cos + α · sin + α= sin2α+ =- , 3 2 4 6 3 6 6
考点一
三角恒等变换
[经典结论· 全通关]
考点一
三角函数恒等变换“四大策略” (1)常值代换:特别是“1”的代换,1=sin2θ+cos2θ=tan 45° 等;
考点二
考点三
(2)项的分拆与角的配凑: 如 sin2α+2cos2α=(sin2α+cos2α)+cos2α, α=(α-β)+β 等; (3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次; (4)弦、切互化:一般是切化弦.
考点二
考点三
考点三
试题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二讲 三角恒等变换与解三角形[限时规范训练]一、选择题1.(2017·高考山东卷)函数y =3sin 2x +cos 2x 的最小正周期为( ) A.π2 B.2π3C .πD .2π解析:y =3sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6,T =2π2=π.故选C. 答案:C2.(2017·高考全国卷Ⅲ)已知sin α-cos α=43,则sin 2α=( )A .-79B .-29C.29D.79解析:∵sin α-cos α=43,∴(sin α-cos α)2=1-2sin αcos α=1-sin 2α=169,∴sin 2α=-79.故选A.答案:A3.已知α∈⎝ ⎛⎭⎪⎫π2,3π2,tan ⎝ ⎛⎭⎪⎫α-π4=-7,则sin α的值等于( )A.35 B .-35C.45D .-45解析:因为tan ⎝⎛⎭⎪⎫α-π4=-7,所以tan α-11+tan α=-7,得tan α=-34,即sin αcos α=-34.又α∈⎝ ⎛⎭⎪⎫π2,3π2,所以α∈⎝ ⎛⎭⎪⎫π2,π.又sin 2 α+cos 2 α=1,得sin α=35,故选A.答案:A4.在△ABC 中,cos 2A 2=b +c 2c(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .正三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形解析:∵cos 2A 2=b +c 2c ,∴1+cos A 2=b +c 2c ,∴1+b 2+c 2-a 22bc =b +c c,化简得a 2+b 2=c 2.故△ABC 是直角三角形. 答案:B5.在△ABC 中,A =60°,若a ,b ,c 成等比数列,则b sin Bc=( ) A.12 B.32 C.22D.6+24解析:∵a ,b ,c 成等比数列,∴b 2=ac ,① 又A =60°,则由正弦定理得asin A =bsin B,即a =b sin A sin B ,代入①得,b 2=cb sin A sin B ,则b =c sin A sin B, 所以b sin Bc =sin A =sin 60°=32.故选B. 答案:B6.在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A =223,a =2,S △ABC =2,则b 的值为( ) A. 3 B.322C .2 2D .2 3解析:由S △ABC =12bc sin A =12bc ×223=2,解得bc =3.因为A 为锐角,sin A =223,所以cosA =13,由余弦定理得a 2=b 2+c 2-2bc cos A ,代入数据解得b 2+c 2=6,则(b +c )2=12,b +c =23,所以b =c =3,故选A. 答案:A7.(2017·高考全国卷Ⅲ)函数f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( )A.65 B .1 C.35D.15解析:法一:∵f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6=15⎝ ⎛⎭⎪⎫12sin x +32cos x +32cos x +12sin x =110sin x +310cos x +32cos x +12sin x =35sin x +335cos x =65sin ⎝⎛⎭⎪⎫x +π3,∴当x =π6+2k π(k ∈Z)时,f (x )取得最大值65.故选A.法二:∵⎝ ⎛⎭⎪⎫x +π3+⎝ ⎛⎭⎪⎫π6-x =π2,∴f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6=15sin(x +π3)+cos(π6-x ) =15sin ⎝ ⎛⎭⎪⎫x +π3+sin ⎝ ⎛⎭⎪⎫x +π3=65sin ⎝⎛⎭⎪⎫x +π3≤65.∴f (x )max =65. 故选A.答案:A8.(2017·高考全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( ) A.π12 B.π6 C.π4D.π3解析:因为a =2,c =2,所以由正弦定理可知,2sin A =2sin C ,故sin A =2sin C .又B =π-(A +C ), 故sin B +sin A (sin C -cos C ) =sin(A +C )+sin A sin C -sin A cos C=sin A cos C +cos A sin C +sin A sin C -sin A cos C =(sin A +cos A )sin C =0.又C 为△ABC 的内角,故sin C ≠0, 则sin A +cos A =0,即tan A =-1. 又A ∈(0,π),所以A =3π4.从而sin C =12sin A =22×22=12. 由A =3π4知C 为锐角,故C =π6.故选B.答案:B 二、填空题9.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足b sin A =a cos B ,则角B 的大小为________.解析:∵b sin A =a cos B ,由正弦定理,得sin B sin A =sin A cosB. ∵sin A ≠0,∴sin B =cos B ,∵B 为△ABC 内角,∴B =π4.答案:π410.(2017·高考江苏卷)若tan ⎝⎛⎭⎪⎫α-π4=16,则tan α=________. 解析:法一:∵tan ⎝⎛⎭⎪⎫α-π4=tan α-tanπ41+tan αtanπ4=tan α-11+tan α=16,∴6tan α-6=1+tan α(tanα≠-1),∴tan α=75.法二:tan α=tan ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-π4+π4=tan ⎝ ⎛⎭⎪⎫α-π4+tan π41-tan ⎝ ⎛⎭⎪⎫α-π4tanπ4=16+11-16×1=75.答案:7511.(2017·高考北京卷)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则cos(α-β)=________.解析:由题意知α+β=π+2k π(k ∈Z),∴β=π+2k π-α(k ∈Z), sin β=sin α,cos β=-cos α.又sin α=13,∴cos(α-β)=cos αcos β+sin αsin β=-cos 2α+sin 2α=2sin 2α-1=2×19-1=-79.答案:-7912.在△ABC 中,若C =60°,AB =2,则AC +BC 的取值范围为________.解析:设角A ,B ,C 的对边分别为a ,b ,c .由题意,得c =2.由余弦定理可得c 2=a 2+b 2-2ab cosC ,即4=a 2+b 2-ab =(a +b )2-3ab ≥14(a +b )2,得a +b ≤4.又由三角形的性质可得a +b >2,综上可得2<a +b ≤4. 答案:(2,4] 三、解答题13.(2016·高考山东卷)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知2(tan A +tan B )=tan A cos B +tan Bcos A. (1)证明:a +b =2c ; (2)求cos C 的最小值. 解析:(1)证明:由题意得2⎝⎛⎭⎪⎫sin A cos A +sin B cos B =sin A cos A cos B +sin B cos B cos A,∴2sin(A +B )=sin A +sinB. 又∵A +B =π-C ,∴sin(A +B )=sin ()π-C =sin C , ∴2sin C =sin A +sin B 由正弦定理得a +b =2c . (2)由(1)知c =a +b2,所以cos C =a 2+b 2-c22ab=a 2+b 2-⎝⎛⎭⎪⎫a +b 222ab =38⎝ ⎛⎭⎪⎫a b +b a -14≥12,当且仅当a =b 时,等号成立,故cos C 的最小值为12.14.(2016·高考四川卷)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos A a +cos B b =sin Cc.(1)证明:sin A sin B =sin C ; (2)若b 2+c 2-a 2=65bc ,求tanB.解析:(1)证明:根据正弦定理,可设a sin A =b sin B =csin C =k (k >0),则a =k sin A ,b =k sin B ,c =k sin C ,代入cos A a +cos B b =sin C c 中,有cos A k sin A +cos B k sin B =sin C k sin C ,变形可得sin A sin B =sin A cos B +cos A sin B =sin(A +B ). 在△ABC 中,由A +B +C =π, 有sin(A +B )=sin(π-C )=sin C , 所以sin A sin B =sin C .(2)由已知,b 2+c 2-a 2=65bc ,根据余弦定理,有cos A =b 2+c 2-a 22bc =35,所以sin A =1-cos 2A =45.由(1),知sin A sin B =sin A cos B +cos A sin B ,所以45sin B =45cos B +35sin B ,故tan B =sin Bcos B =4.15.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin C -sin B sin B =a 2+c 2-b2b 2+c 2-a 2.(1)求角A 的大小;(2)若a =3,sin C =2sin B ,求b ,c 的值. 解析:(1)由正、余弦定理得2sin C -sin B sin B =a cos B b cos A =sin A cos Bsin B cos A,所以2sin C cos A =sin(A +B )=sin C , 因为sin C ≠0,故cos A =12,所以A =π3.(2)由sin C =2sin B 得c =2b , 因为a =3,A =π3,所以由余弦定理得a 2=b 2+c 2-2bc cos A =b 2+c 2-bc =3b 2, 解得b =3,c =2 3.。

相关文档
最新文档