七年级数学上学期期中试题 苏科版4
苏科版七年级上册数学期中试卷带答案
苏科版七年级上册数学期中试题一、单选题1.下列各组数中,互为相反数的是()A .﹣1与(﹣1)2B .(﹣1)2与1C .2与12D .2与|﹣2|2.下列说法不正确的是()A .任何一个有理数的绝对值都是正数B .0既不是正数也不是负数C .有理数可以分为正有理数,负有理数和零D .0的绝对值等于它的相反数3.下列运用等式性质进行的变形,正确的是()A .如果a =b ,那么a +c =b ﹣cB .如果a 2=3a ,那么a =3C .如果a =b ,那么a b c c =D .如果a bc c=,那么a =b 4.有理数a 、b 在数轴上的对应的位置如图所示,则正确的是()A .a ﹣b >0B .a ﹣b <0C .a ﹣b=0D .a+b <05.代数式y 2-2y+7的值是-3,则3y 2-6y-5的值是()A .35B .-25C .-35D .76.有一个程序,当输入任意一个有理数时,显示屏上的结果总是1与输入的有理数的差的倒数,若第一次输入3,并将显示的结果第二次输入,则此时显示的结果是()A .3B .12-C .23D .-3二、填空题7.-2.5的倒数是______,(2)--的相反数是_______;53-的倒数的绝对值是_____.8.单项式23x y-的系数是______,次数______,多项式2xy 2-3x 2y 3-8是____次____项式.9.点A 在数轴上距离原点3个单位长度,将A 向左移动2个单位长度,再向右移动4个单位长度,此时A 点所表示的数是_____________.10.绝对值大于2而小于6的所有整数的和是__________.11.﹣38040000000用科学记数表示为_____.12.用火柴棍象如图这样搭图形,搭第n 个图形需要根火柴棍.三、解答题13.计算:(1)—7.5×(—42)—(—3)3÷(—1)2017;(2)()271112669126⎛⎫--+⨯- ⎪⎝⎭14.化简下列各式:(1)()()2232157a a a a --++-+(2)()()()()4567a b a b a b a b +----++15.解方程:4 1.50.59x x x -=--16.如果关于m 的方程21m b m +=-的解是4-,求b 的值?17.小刘、小张两位同学玩数学游戏,小刘说“任意选定一个数,然后按下列步骤进行计算:加上20,乘2,减去4,除以2,再减去你所选定的数”,小张说“不用算了,无论我选什么数,结果总是18”,小张说得对吗?说明理由.18.已知2(x 3)+与y 2-互为相反数,z 是绝对值最小的有理数,求y (x y)xyz ++的值.19.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是1,则()a ba b cd m m m++++-的值?20.化简计算:求当输入x =0.5,y =7时输出结果.21.某登山队以二号营地为基准,开始向距二号营地500米的顶峰冲击,他们记向上为正,行进过程记录如下:(单位:米):+150,-35,-40,+210,-32,+20,-18,-5,+20,+85,-25.(1)他们最终有没有登上顶峰?若没有,距顶峰还有多少米?(2)登山时,若5名队员在记录的行进路线上都使用了氧气,且每人每米要消耗氧气0.04升,则他们共耗氧多少升?22.如果两个关于x 、y 的单项式2mx a y 3与﹣4nx 3a ﹣6y 3是同类项(其中xy ≠0).(1)求a 的值;(2)如果他们的和为零,求(m ﹣2n ﹣1)2016的值.23.观察下列等式:111111111111,,,13233523557257⎛⎫⎛⎫⎛⎫=⨯-=⨯-=⨯- ⎪ ⎪ ⎪⨯⨯⨯⎝⎭⎝⎭⎝⎭请解答下列问题:(1)按以上规律列出第5个算式:(2)由此计算:11111 (1335572013201520152017)+++++⨯⨯⨯⨯⨯()()(3)用含n 的代式表示第n 个等式:a n =(n 为正整数);参考答案1.A【解析】【分析】根据相反数的定义,对每个选项进行判断即可.【详解】解:A、(﹣1)2=1,1与﹣1互为相反数,正确;B、(﹣1)2=1,故错误;C、2与12互为倒数,故错误;D、2=|﹣2|,故错误;故选:A.【点睛】本题考查了相反数的定义,解题的关键是掌握相反数的定义.2.A【解析】A、任何一个有理数的绝对值都是非负数.错误;B、C、D都正确.故选A.3.D【解析】【分析】根据等式的基本性质逐一判断即可.【详解】A.当a=b时,a+c=b+c,故A错误;B.当a=0时,此时a≠3,故B错误;C.当c=0时,此时ac与bc无意义,故C错误;D.当a bc c 时,等式两边同时乘c,那么a=b,故D正确.故选:D.【点睛】此题考查的是等式的基本性质,利用等式的基本性质将等式变形是解决此题的关键. 4.A【解析】【分析】根据题意和图形可知a,b取值范围,a>1,﹣1<b<0,由此即可得到结论.【详解】∵﹣1<b<0.又∵a>1,∴a﹣b>0,a+b>0.故选A.【点睛】注意原点左边的为负数,右边的为正数.且绝对值越大到原点的距离就越大.5.C【解析】【分析】先求出y2﹣2y=﹣10,变形后代入,即可求出答案.【详解】根据题意得:y2﹣2y+7=﹣3,y2﹣2y=﹣10,所以3y2﹣6y﹣5=3(y2﹣2y)﹣5=3×(﹣10)﹣5=﹣35.故选C.【点睛】本题考查了求代数式的值,能够整体代入是解答此题的关键.6.C【解析】【分析】直接利用已知得出第一次与第二次输出的结果即可.【详解】由题意可得:1﹣3=﹣2,则输出﹣12,故第二次输入﹣12,得到:1﹣(﹣12)=32,输出23.故选C.【点睛】本题主要考查了倒数以及有理数的减法运算,正确理解题意是解题的关键.7.25--235【解析】【分析】根据倒数的意义,相反数的意义,绝对值的性质,可得答案.【详解】﹣2.5的倒数是﹣25,﹣(﹣2)的相反数是﹣2;﹣53的倒数的绝对值是35.故答案为﹣25,﹣2,35.【点睛】本题考查了倒数、相反数、绝对值,理解倒数的意义、相反数的意义是解题的关键.8.13-,3,五,三.【解析】【分析】根据单项式系数、次数的定义,多项式次数、项数的定义,进行解答即可.【详解】单项式﹣23x y的系数是﹣13,次数是3次,多项式2xy2﹣3x2y3﹣8是五次三项式.故答案为﹣13、3、五、三.【点睛】本题考查了单项式及多项式的知识,掌握多项式次数的定义及单项式系数、次数的定义是解题的关键.9.-1或5.【解析】【分析】由于点A与原点0的距离为3,那么A应有两个点,分别位于原点两侧,且到原点的距离为3,这两个点对应的数分别是﹣3和3.A向左移动2个单位长度,再向右移动4个单位长度,通过数轴上“右加左减”的规律,即可求得平移后点A表示的数.【详解】∵点A在数轴上距原点3个单位长度,∴点A表示的数为3或﹣3;当点A表示的数是﹣3时,移动后的点A所表示的数为:﹣3﹣2+4=﹣1;当点A表示的数是3时,移动后的点A所表示的数为:3﹣2+4=5;综上所述:移动后点A所表示的数是:﹣1或5.故答案为:﹣1或5.【点睛】本题考查了数轴.根据正负数在数轴上的意义来解答:在数轴上,向右为正,向左为负.10.0.【解析】【分析】根据题意画出图形,由绝对值的几何意义可知:绝对值大于2小于6的所有整数即为到原点的距离大于2小于6,观察数轴即可得到满足题意的所有整数,求出这些整数之和即可.【详解】根据题意画出数轴,如图所示:根据图形得:绝对值大于2而小于6的所有整数有:﹣3,﹣4,﹣5,3,4,5,这几个整数的和为:(﹣3)+(﹣4)+(﹣5)+3+4+5=[(﹣3)+3]+[(﹣4)+4]+[(﹣5)+5]=0.故答案为0.【点睛】本题考查了绝对值的几何意义,即一个数的绝对值就是在数轴上表示这个数的点到原点的距离,离原点越近,绝对值越小;离原点越远,绝对值越大.另外在求和时利用加法的运算律可以简化运算,同时注意数形结合思想的灵活运用.11.-3.804×1010【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.【详解】-38040000000用科学记数表示为-3.804×1010.故答案为-3.804×1010.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.2n+1.【解析】试题分析:搭第一个图形需要3根火柴棒,结合图形,发现:后边每多一个三角形,则多用2根火柴.解:结合图形,发现:搭第n个三角形,需要3+2(n﹣1)=2n+1(根).故答案为2n+1.考点:规律型:图形的变化类.13.(1)93(2)25【解析】【分析】(1)根据有理数混合运算法则计算可得出结果;(2)利用乘法分配律给括号中每一项都乘以36,然后根据有理数加减法混合运算法则计算即可.【详解】(1)原式=7.5×16-27÷1=120-27=93;(2)原式=7111 26369126⎛⎫--+⨯⎪⎝⎭=26-(28-33+6)=26-1=25.【点睛】本题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先计算括号里边的,且先小括号,再中括号,最后算大括号,同级运算从左到右依次计算,有时可以利用运算律来简化运算,熟练掌握各种运算法则是解答本题的关键.14.(1)-2a2-3a+6(2)22b【解析】【分析】(1)首先利用去括号法则化简,进而合并同类项得出答案;(2)首先将(a+b),(a﹣b)看作整体合并同类项,进而利用去括号法则求出即可.【详解】(1)原式=﹣3a2+2a﹣1+a2﹣5a+7=﹣2a2﹣3a+6;(2)原式=11(a+b)﹣11(a﹣b)=11a+11b-11a+11b=22b.【点睛】本题主要考查了去括号法则以及合并同类项,正确掌握去括号法则是解题的关键.15.x=-3【解析】【分析】先移项得到4x﹣1.5x+0.5x=﹣9,然后合并同类项,再把x的系数化为1即可.【详解】移项得:4x﹣1.5x+0.5x=﹣9合并得:3x=﹣9系数化为1得:x=﹣3.【点睛】本题考查了解一元一次方程:先去分母,再去括号,接着移项,把含未知数的项移到方程左边,不含未知数的项移到方程右边,然后合并同类项,最后把未知数的系数化为1得到原方程的解.16.b=3【解析】【分析】将m =﹣4代入可得关于b 的方程,解出即可.【详解】把m =﹣4代入方程2m +b =m ﹣1中,得:2×(﹣4)+b =(﹣4)﹣1,解得:b =3.【点睛】本题含有一个未知的系数.根据已知条件求未知系数的方法叫待定系数法,在以后的学习中,常用此法求函数解析式.17.正确【解析】【分析】设此整数是a ,再根据题意列出式子进行计算即可.【详解】正确,理由如下:设此整数是a ,由题意得()a 20242+⨯--a=a+20-2=18,所以说小张说的对.【点睛】本题考查了整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.18.1.【解析】试题分析:由题意可得2(3)200x y z ++-==,,由此可求出x y 、的值,再代值计算即可.试题解析:由题意可得2(3)200x y z ++-==,,∴3020x y +=-=,,解得32x y =-=,.∴()y x y xyz ++=2(32)(3)201-++-⨯⨯=.点睛:(1)互为相反数的两个式子的和为0;(2)两个非负数的和为0,则这两个数都为0;(3)绝对值最小的数是0.19.0或-2.【解析】【分析】利用相反数,倒数,以及绝对值的定义求出a +b ,cd ,及m 的值,代入计算即可求出值.【详解】根据题意得:a +b =0,cd =1,m =±1.①当m =1时,原式=1﹣1=0;②当m =﹣1时,原式=﹣1﹣1=﹣2.【点睛】本题考查了有理数的混合运算,相反数,绝对值,以及倒数,熟练掌握各自的定义是解答本题的关键.20.618.【解析】【分析】根据流程图可得输出结果为2(21)2x y ++÷,代入求值即可.【详解】根据流程图可得输出结果为2(21)2x y ++÷.当输入x =0.5,y =7时,原式=2(0.5271)2+⨯+÷=618.【点睛】本题考查了有理数的混合运算.读懂流程图是解答本题的关键.21.(1)170米;(2)128升.【解析】【分析】(1)根据有理数的加法,可得到达的地点,再根据有理数的减法,可得他们距顶峰的距离;(2)根据路程乘以5个人的单位耗氧量,可得答案.【详解】(1)+150﹣35﹣40+210﹣32+20﹣18﹣5+20+85﹣25=330(米),500﹣330=170(米).答:他们最终没有登顶,距顶峰还有170米;(2)(+150+|﹣35|+|﹣40|+210+|﹣32|+20+|﹣18|+|﹣5|+20+85+|﹣25|)×(5×0.04)=640×0.2=128(升).答:他们共耗氧气128升.【点睛】本题考查了正数和负数,利用有理数的加法是解题的关键,注意路程乘以5个人的单位耗氧量是总耗氧量.22.(1)a=3;(2)1.【解析】【分析】(1)根据同类项是字母相同且相同字母的指数也相同,可得答案;(2)根据单项式的和为零,可得单项式的系数互为相反数,根据互为相反数的和为零,可得m,n的关系,根据负数的偶数次幂是正数,可得答案.【详解】解:(1)依题意,得a=3a﹣6,解得a=3;(2)∵2mx3y3+(﹣4nx3y3)=0,故m﹣2n=0,∴(m﹣2n﹣1)2016=(﹣1)2016=1.【点睛】本题考查了同类项的定义及合并同类项,利用同类项是字母相同且相同字母的指数也相同得出关于a的方程是解题关键.23.(1)1111;9112911⎛⎫=⨯-⎪⨯⎝⎭(2)10082017;(3)()()1111212122121n n n n⎛⎫=-⎪-+-+⎝⎭.【解析】【分析】(1)由题意可知:分子为1,分母是两个连续奇数的乘积,可以拆成分子是1,分母是以这两个奇数为分母差的12,由此得出答案即可;(2)利用发现的规律代入计算即可;(3)由题意可知:分子为1,分母是两个连续奇数的乘积,可以拆成分子是1,分母是以这两个奇数为分母差的12,由此得出答案即可.【详解】(1)第5个等式:a 5=1911⨯=12×(19﹣111);(2)原式=12×(1﹣13)+12×(13﹣15)+12×(15﹣17)+…+12×(12015﹣12017)=12×(1﹣13+13﹣15+15﹣17+…+12015﹣12017)=12×(1﹣12017)=12×20162017=10082017;(3)()()1111212122121n a n n n n ⎛⎫==- ⎪-+-+⎝⎭.【点睛】本题考查了数字的变化规律,找出数字之间的运算规律,利用运算规律解决问题.。
2024-2025学年苏科版七年级数学上册期中复习卷(含答案)
期中复习卷-2024-2025学年数学七年级上册苏科版(2024)一.选择题(共8小题)1.在下列数,+1,6.7,0,,﹣5,25%中整数有( )A.2个B.3个C.4个D.5个2.能源产业已成为云南省第一大支柱产业,目前正在推进的3000000千瓦光伏项目,将带动光伏、储能绿色能源装备的发展.3000000用科学记数法可以表示为( )A.0.3×108B.3×106C.30×105D.30×1063.我国部分地区的日温差较大,“早穿棉袄午穿纱”这句谚语描绘的就是某地这种奇妙的气温变化现象.若某市某日上午温度上升15℃记作+15℃,那么傍晚温度下降10℃记作( )A.﹣15℃B.+15℃C.﹣10℃D.+10℃4.﹣1.2﹣0.8=( )A.﹣2B.﹣0.4C.0.4D.25.如果x为有理数,式子2023﹣|x﹣2023|存在最大值,这个最大值是( )A.2023B.4046C.20D.06.如果单项式与x3y b是同类项,则a、b的值分别是( )A.2,2B.﹣3,2C.2,3D.3,27.当x=2时,代数式px3+qx+1的值等于2024,那么当x=﹣2时,代数式px3+qx+1的值为( )A.2024B.﹣2024C.2022D.﹣20228.小亮按如图所示的程序输入一个数x等于10,最后输出的结果为( )A.51B.251C.256D.255二.填空题(共8小题)9.计算:(1)﹣2﹣1= ;(2)(﹣2.1)+(+3.9)= ;(3)(﹣4)×6= ;10.数轴上表示﹣5与1这两个数对应的点之间的距离是 .11.已知|a|=3,,且a<0<b,则ab= .12.如图所示的数轴被墨迹盖住了一部分,则被遮住的所有整数个数为 .13.有理数a,b在数轴上的位置如图所示,若表示数b与﹣b的点相距36个单位长度,a与原点的距离是|b|的,则a= .14.已知单项式﹣2ab3与4a n b m+1是同类项,则m+n= .15.如果(k﹣2)x3+(|k|﹣2)x2﹣5是关于x的三次二项式,则k的值为 .16.某公园准备修建一块长方形草坪,长为35m,宽为25m.并在草坪上修建如图所示的十字路,已知十字路宽x m,则修建的十字路的面积是 m2.(用含x的代数式表示)三.解答题(共8小题)17.计算:(1)﹣6+3+2﹣1(2)(3)(4)18.已知,求ab﹣(a+b)c的值.19.先化简,再求值:2(ab2+3a2b)﹣3(ab2+a2b)﹣a2b,其中,b=2.20.已知数a,b表示的点在数轴上的位置如图所示.(1)在数轴上表示出a,b的相反数的位置;(2)若数b与其相反数相距20个单位长度,则b表示的数是多少?(3)在(2)的条件下,若数a表示的点与数b的相反数表示的点相距5个单位长度,求a表示的数是多少?21.在数学活动课上,李老师设计了一个游戏活动,四名同学分别代表一种运算,四名同学可以任意排列,每次排列代表一种运算顺序,剩余同学中,一名学生负责说一个数,其他同学负责运算,运算结果既对又快着获胜,可以得到一个奖品.F面我们用四个卡片代表四名同学(如图):列式,并计算:(1)﹣3经过A、B、C、D的顺序运算后,结果是多少?(2)5经过B、C、A、D的顺序运算后,结果是多少?22.某同学做一道数学题,已知两个多项式A、B,其中B=2x2y﹣3xy+2x+5,试求A+B.这位同学把A+B 误看成A﹣B,结果求出的答案为4x2y+xy﹣x﹣4.(1)请你替这位同学求出A+B的正确答案;(2)若A﹣3B的值与x的取值无关,求y的值.23.阅读下列材料,我们知道,5x+3x﹣4x=(5+3﹣4)x=4x,类似的,我们把(a+b)看成一个整体,则5(a+b)+3(a+b)﹣4(a+b)=(5+3﹣4)(a+b)=4(a+b),“整体思想“是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛,尝试应用;(1)把(a﹣b)2看成一个整体,合并2(a﹣b)2+6(a﹣b)2﹣3(a﹣b)2的结果 .(2)已知m+n=15,3a﹣2b=11,求2m+6a﹣(4b﹣2n)的值.(3)拓展探索:已知a﹣3b=4,3b﹣c=﹣3,c﹣d=11,求(a﹣c)+(3b﹣d)﹣(3b﹣c)的值.24.如图,通过观察,小丽同学发现可以用这样的方法确定每个图形中黑色和白色小正方形的总个数:图(1)中共有1个黑色小正方形,图(2)中共有1+3=22个黑白小正方形,图(3)中共有1+3+5=32个黑白小正方形,图(4)中共有1+3+5+7=42个黑白小正方形,回答下列问题.(1)根据前四个图中计算黑白小正方形的总个数的方法和规律,则第(5)个图中计算小正方形个数的等式是: ;(2)根据规律,第50个图比第49个图多 个小正方形;(3)根据每个图中计算黑白小正方形总个数的方法和规律,计算:①1+3+5+…+197+199;②201+203+205+…+297+299.期中复习卷-2024-2025学年数学七年级上册苏科版(2024)参考答案与试题解析一.选择题(共8小题)1.在下列数,+1,6.7,0,,﹣5,25%中整数有( )A.2个B.3个C.4个D.5个【解答】解:,+1,6.7,0,,﹣5,25%中整数有:+1,0,﹣5,共3个,故选:B.2.能源产业已成为云南省第一大支柱产业,目前正在推进的3000000千瓦光伏项目,将带动光伏、储能绿色能源装备的发展.3000000用科学记数法可以表示为( )A.0.3×108B.3×106C.30×105D.30×106【解答】解:3000000=3×106,故选:B.3.我国部分地区的日温差较大,“早穿棉袄午穿纱”这句谚语描绘的就是某地这种奇妙的气温变化现象.若某市某日上午温度上升15℃记作+15℃,那么傍晚温度下降10℃记作( )A.﹣15℃B.+15℃C.﹣10℃D.+10℃【解答】解:温度上升15℃记作+15℃,那么傍晚温度下降10℃记作﹣10℃,故选:C.4.﹣1.2﹣0.8=( )A.﹣2B.﹣0.4C.0.4D.2【解答】解:﹣1.2﹣0.8=﹣1.2+(﹣0.8)=﹣2,故选:A.5.如果x为有理数,式子2023﹣|x﹣2023|存在最大值,这个最大值是( )A.2023B.4046C.20D.0【解答】解:∵绝对值具有非负性,∴|x﹣2023|≥0,∵2023﹣|x﹣2023|有最大值,∴当|x﹣2023|=0时,式子有最大值,此时的值是2023,故A正确.故选:A.6.如果单项式与x3y b是同类项,则a、b的值分别是( )A.2,2B.﹣3,2C.2,3D.3,2【解答】解:由同类项定义可知a=3,b=2.故选:D.7.当x=2时,代数式px3+qx+1的值等于2024,那么当x=﹣2时,代数式px3+qx+1的值为( )A.2024B.﹣2024C.2022D.﹣2022【解答】解:当x=2时,px3+qx+1=8p+2q+1=2024,∴4p+q=,∴当x=﹣2时,px3+qx+1=﹣8p﹣2q+1=﹣2(4p+q)+1=﹣+1=﹣2022.故选:D.8.小亮按如图所示的程序输入一个数x等于10,最后输出的结果为( )A.51B.251C.256D.255【解答】解:当x=10时,5x+1=51<200,此时输入的数为51,5x+1=256>200,所以输出的结果为256.故选:C.二.填空题(共8小题)9.计算:(1)﹣2﹣1= ﹣3 ;(2)(﹣2.1)+(+3.9)= 1.8 ;(3)(﹣4)×6= ﹣24 ;【解答】解:(1)原式=﹣3,故答案为:﹣3;(2)原式=1.8,故答案为:1.8;(3)原式=﹣24,故答案为:﹣24.10.数轴上表示﹣5与1这两个数对应的点之间的距离是 6 .【解答】解:如图,点A所表示的数是﹣5,点B所表示的数是1,所以AB=|1﹣(﹣5)|=6,故答案为:6.11.已知|a|=3,,且a<0<b,则ab= ﹣1 .【解答】解:∵|a|=3,,a<0<b,∴,∴,∴.故答案为:﹣1.12.如图所示的数轴被墨迹盖住了一部分,则被遮住的所有整数个数为 13 .【解答】解:根据题意得:被盖住的整数为﹣10,﹣9,﹣8,﹣7,﹣6,﹣5,7,8,9,10,11,12,13,∴被盖住的整数的个数为13,故答案为:13.13.有理数a,b在数轴上的位置如图所示,若表示数b与﹣b的点相距36个单位长度,a与原点的距离是|b|的,则a= 6 .【解答】解:∵表示数b与﹣b的点相距36个单位长度,∴,∵a与原点的距离是|b|的,∴|a|=6,∴a=±6,由数轴得:a>0,∴a=6.故答案为:6.14.已知单项式﹣2ab3与4a n b m+1是同类项,则m+n= 3 .【解答】解:由同类项定义可知n=1,m+1=3,解得m=2,n=1,∴m+n=2+1=3.故答案为:3.15.如果(k﹣2)x3+(|k|﹣2)x2﹣5是关于x的三次二项式,则k的值为 ﹣2 .【解答】解:∵多项式(k﹣2)x3+(|k|﹣2)x2﹣5是三次二项式,∴|k|﹣2=0,k﹣2≠0,∴k=﹣2.故答案为:﹣2.16.某公园准备修建一块长方形草坪,长为35m,宽为25m.并在草坪上修建如图所示的十字路,已知十字路宽x m,则修建的十字路的面积是 (60x﹣x2) m2.(用含x的代数式表示)【解答】解:由图可得,修建的十字路的面积是:35x+25x﹣x2=(60x﹣x2)m2,故答案为:(60x﹣x2).三.解答题(共8小题)17.计算:(1)﹣6+3+2﹣1(2)(3)(4)【解答】解:(1)原式=﹣3+2﹣1=﹣1﹣1=﹣2;(2)原式===;(3)原式==﹣1﹣5﹣3=﹣9;(4)==﹣20+8﹣9=﹣21.18.已知,求ab﹣(a+b)c的值.【解答】解:∵,∴a+1=0,2b﹣5=0,=0,∴a=﹣1,b=,c=,∴ab﹣(a+b)c=.19.先化简,再求值:2(ab2+3a2b)﹣3(ab2+a2b)﹣a2b,其中,b=2.【解答】解:原式=2ab2+6a2b﹣3ab2﹣3a2b﹣a2b=﹣ab2+2a2b,当a=﹣,b=2时,原式=﹣(﹣)×22+2×(﹣)2×2=2+1=3.20.已知数a,b表示的点在数轴上的位置如图所示.(1)在数轴上表示出a,b的相反数的位置;(2)若数b与其相反数相距20个单位长度,则b表示的数是多少?(3)在(2)的条件下,若数a表示的点与数b的相反数表示的点相距5个单位长度,求a表示的数是多少?【解答】解:(1)如图,;(2)数b与其相反数相距20个单位长度,则b表示的点到原点的距离为10,所以b表示的数是﹣10;(3)因为﹣b表示的点到原点的距离为10,而数a表示的点与数b的相反数表示的点相距5个单位长度,所以a表示的点到原点的距离为5,所以a表示的数是5.21.在数学活动课上,李老师设计了一个游戏活动,四名同学分别代表一种运算,四名同学可以任意排列,每次排列代表一种运算顺序,剩余同学中,一名学生负责说一个数,其他同学负责运算,运算结果既对又快着获胜,可以得到一个奖品.F面我们用四个卡片代表四名同学(如图):列式,并计算:(1)﹣3经过A、B、C、D的顺序运算后,结果是多少?(2)5经过B、C、A、D的顺序运算后,结果是多少?【解答】解:(1)[(﹣3)×2﹣(﹣5)]÷3+6=(﹣6+5)÷3+6==;(2)[5﹣(﹣5)]÷3×2+6=(5+5)÷3×2+6==.22.某同学做一道数学题,已知两个多项式A、B,其中B=2x2y﹣3xy+2x+5,试求A+B.这位同学把A+B 误看成A﹣B,结果求出的答案为4x2y+xy﹣x﹣4.(1)请你替这位同学求出A+B的正确答案;(2)若A﹣3B的值与x的取值无关,求y的值.【解答】解:(1)由题意可得,A﹣B=4x2y+xy﹣x﹣4,∴A=4x2y+xy﹣x﹣4+(2x2y﹣3xy+2x+5)=4x2y+xy﹣x﹣4+2x2y﹣3xy+2x+5=6x2y﹣2xy+x+1,∴A+B=6x2y﹣2xy+x+1+(2x2y﹣3xy+2x+5)=6x2y﹣2xy+x+1+2x2y﹣3xy+2x+5=8x2y﹣5xy+3x+6;(2)A﹣3B=6x2y﹣2xy+x+1﹣3(2x2y﹣3xy+2x+5),=6x2y﹣2xy+x+1﹣6x2y+9xy﹣6x﹣15,=7xy﹣5x﹣14,=(7y﹣5)x﹣14,∵A﹣3B的值与x的取值无关,∴7y﹣5=0,∴.23.阅读下列材料,我们知道,5x+3x﹣4x=(5+3﹣4)x=4x,类似的,我们把(a+b)看成一个整体,则5(a+b)+3(a+b)﹣4(a+b)=(5+3﹣4)(a+b)=4(a+b),“整体思想“是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛,尝试应用;(1)把(a﹣b)2看成一个整体,合并2(a﹣b)2+6(a﹣b)2﹣3(a﹣b)2的结果 5(a﹣b)2 .(2)已知m+n=15,3a﹣2b=11,求2m+6a﹣(4b﹣2n)的值.(3)拓展探索:已知a﹣3b=4,3b﹣c=﹣3,c﹣d=11,求(a﹣c)+(3b﹣d)﹣(3b﹣c)的值.【解答】解:(1)2(a﹣b)2+6(a﹣b)2﹣3(a﹣b)2=(2+6﹣3)(a﹣b)2=5(a﹣b)2.故答案为:5(a﹣b)2.(2)2m+6a﹣(4b﹣2n)=2(m+n)+2(3a﹣2b),∵m+n=15,3a﹣2b=11,∴2(m+n)+2(3a﹣2b)=2×15+2×11,=52.(3)∵a﹣3b=4,3b﹣c=﹣3,c﹣d=11,∴(a﹣c)+(3b﹣d)﹣(3b﹣c),=a﹣c+3b﹣d﹣3b+c,=a﹣d,=4+3b﹣(c﹣11),=4+3b﹣c+11,=4+(3b﹣c)+11,=4﹣3+11,=12.24.如图,通过观察,小丽同学发现可以用这样的方法确定每个图形中黑色和白色小正方形的总个数:图(1)中共有1个黑色小正方形,图(2)中共有1+3=22个黑白小正方形,图(3)中共有1+3+5=32个黑白小正方形,图(4)中共有1+3+5+7=42个黑白小正方形,回答下列问题.(1)根据前四个图中计算黑白小正方形的总个数的方法和规律,则第(5)个图中计算小正方形个数的等式是: 1+3+5+7+9=52 ;(2)根据规律,第50个图比第49个图多 99 个小正方形;(3)根据每个图中计算黑白小正方形总个数的方法和规律,计算:①1+3+5+…+197+199;②201+203+205+…+297+299.【解答】解:(1)图(1)中共有12个黑色小正方形,图(2)中共有22个黑白小正方形,图(3)中共有32个黑白小正方形,图(4)中共有42个黑白小正方形,∴图(5)中共有52个黑白小正方形,故答案为:1+3+5+7+9=52;(2)∵图(1)中共有1个黑色小正方形,图(2)中共有1+3=22个黑白小正方形,图(3)中共有1+3+5=32个黑白小正方形,图(4)中共有1+3+5+7=42个黑白小正方形,⋯,则图(n)中共有1+3+5+7+9+(2n﹣1)=n2个黑白小正方形,∴第50个图比第49个图多502﹣492=99(个),故答案为:99;(3)由(2)得图(n)中共有1+3+5+7+9+(2n﹣1)=n2个黑白小正方形,∴①2n﹣1=199,解得:n=100,∴1+3+5+⋯+197+199=1002=10000;②2n﹣1=99,解得:n=50,∴201+203+205+⋯+297+299=200×100+(1+3+5+7⋯+97+99)=20000+502=22500.。
苏科版七年级上期中考试试卷(五套).docx
七年级数学上学期期中试卷(一)(总分:140分;时间:140分钟)第一卷(选择题 共80分)一、选择题(2’ XI0=207 )1、某市2013年元旦的最高气温为2°C,最低气温为-8°C,那么这天的最高气温比最低气温高()A. -10°CB. -6°CC. 6°CD. 10°C2、一6的相反数为( )A. 6B.-C. 一丄D. -6663、•若错误味找到引用源。
是方程2x + m-6 =()的解,则加的值是A. -4B. 4C. —8D. 84、下列计算正确的是( )A. + a = la 1B. 5y-3y = 25、 在数轴上,到表示一1的点的距离等于6的点表示的数是()A 、5B 、-7C 、-5 或 7D 、5 或一76、 已知代数式-5a m -'b 6和丄"加是同类项,则m-n 的值是2A ・ 1 B. — 1 C. —2 D. —3 7、小明要为自己和弟弟各买一套相同的运动服.已知甲、乙两家商店该种运动服每套的售价相同, 但甲店规定:若一次买两套,则其中一套可亨受七折优惠;乙店规定:若一次 买两套,则可按总价的80%收费.下列判断正确的是().A.甲店比乙店优惠 C.甲、乙两店收费相同 8、下列各式成立的是( )9、给出下列判断:①2鼻与扩是同类项;②多项式5a+Z 中,常数项是I ;③宁X(1-+ H 丄都是整式;④儿个数相乘,积的符号一定rh 负因数的个数决定•其屮判断正确的是 2 4 ( )开始的连续自然数组成。
下面所给的判断屮,不正确的是12 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 2930 31 32 33 34 35 36B 第刀行的第一个数是(n-1尸+1;C. 3x 2y - 2x 2y = x 2yD. 3d + 2b = 5abB.乙店比甲店优惠 D.以上都有可能A 、 a-b+c 二a 一(b-c)C^ 8a 一4 = 4a D^ 一2 (a-b)="2a+bA.①②③B.①③C.①③④D.①②③④10、如下数表是由从1A 表屮第8行的最后一个数是64;C第刀行的最后一个数是r?;D第刀行共有2n个数.二、填空题(2’X7+3' X3二23’ )211、-1-的倒数是____________ 0312、盈利100元记作+100元,那么—50元的意义是___________________________ ・13、若代数式一4fy与是同类项,则常数n的值为__________________ ・14、己知代数式x+2y-l的值是3,则代数式3-兀_2y的值是_______________________________ .15、一个三角形的第一条边为(x+2)cm,第二条边比第一条边长小3cm,第三条边长是第二边长的2倍,用含x的代数式表示这个三角形的周长______16、x表示一个两位数,如果在x左边放一个数字-8,则得到的一个三位数是________________ .17、商家对两种进价不同鞋子售价均为240元,其小一种赚20%,另一种亏20%,则商家卖出这两种鞋子是赚了还是亏了还是不赚不亏呢?答:________________ .18、“24点”是个古老而有趣的数学游戏。
2024-2025学年苏科版七年级数学上册期中培优测试卷
2024-2025学年苏科版七年级数学上册期中培优测试卷1.《九章算术》是我国古代数学专著,里面明确给出了负数的概念和加减法的运算法则,这在世界数学史上是最早的.若将卖出20元,记作+20元,则元应表示为()A.买入6.8元B.卖出6.8元C.买入13.2元D.卖出13.2元2.下列各对数中,数值相等的是()A.与B.与C.与D.与3.下列运算正确的是()A.B.C.D.4.若,则的值()A.1B.C.0D.或35.若有理数、在数轴上对应点的位置如图所示,则,,,,0的大小关系是()A.B.C.D.6.关于整式,下列说法正确的是()A.x2y的次数是2B.0不是单项式C.3πmn的系数是3D.x3﹣2x2﹣3是三次三项式7.如果,且.则下列说法中可能成立的是()A.a、b为正数,c为负数B.a、c为正数,b为负数C.b、c为正数,a为负数D.a、c为正数,b为08.在数轴上表示a、b两数的点如图所示,则下列判断正确的是()A.a<b B.∣a∣<∣b∣C.a+b>0D.>09.有一列数,将这列数中的每个数求其相反数得到,再分别求与1的和的倒数,得到,设为,称这为一次操作,第二次操作是将再进行上述操作,得到;第三次将重复上述操作,得到……以此类推,得出下列说法中,正确的有()个①,,,②③.A.0B.1C.2D.310.若,则下列说法中正确的有().①;②;③;④;⑤.A.5个B.4个C.3个D.1个11.单项式﹣的次数是___________.12.数轴上点表示的数为-5,点与点的距离为4,则点表示的数为__________.13.若关于x,y的多项式化简后不含二次项,则______.14.当x=3时,px3+qx+1=2020,则当x=﹣3时,px3+qx+1的值为_____.15.设一种运算程序是x y=a(a为常数),如果(x+1)y=a+1,x(y+1)=a-2,已知11=2,那么20102010=_____________.16.在任意n(且为整数)位正整数K的首位后添加6得到的新数叫做K的“顺数”.在K的末位前添加6得到的新数叫做K的“逆数”.若K的“顺数”与“逆数”之差能被17整除,称K是“最佳拍档数”.比如1324的“顺数”为16324,1324的“逆数”为13264,1324的“顺数”与“逆数”之差为,,所以1324是“最佳拍档数”.若一个首位是5的四位“最佳拍档数”,其个位数字与十位数字之和为8,且百位数字不小于十位数字,求符合条件的奇数N的值是_________.17.计算:(1)(2)18.(1)化简:(2)先化简,再求代数式的值,其中,.19.下表中有两种移动电话计费方式.月使用费/元主叫限定时间/主叫超时费/(元/)被叫方式一581500.25免费方式二883500.19免费考虑下列问题:(1)设一个月内用移动电话主叫为(t是正整数).根据上表,列表说明:当t在不同时间范围内取值时,按方式一和方式二如何计费.(2)观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法.20.数轴上A、B、C对应的数分别是a、b、c.(1)若.①请将a、b、c填入括号内.②化简.③若点X在数轴上表示的数为x,则有最小值__________.(2)若,且,求的值.21.某市居民使用自来水按如下标准缴费(水费按月缴纳):用户月用水量单价不超过的部分a元/超过但不超过的部分1.5a元/超过的部分2a元/(1)当时,某户一个月用了的水,求该户这个月应缴纳的水费.(2)设某户月用水量为,当时,该户应缴纳的水费为_______元(用含a,n的式子表示).(3)当时,甲、乙两户一个月共用水,已知甲户缴纳的水费超过了24元,设甲户这个月用水,试求甲,乙两户一个月共缴纳的水费(用含x的式子表示).22.现有5张卡片写着不同的数字,利用所学过的加、减、乘、除、乘方运算按要求解答下列问题(每张卡片上的数字只能用一次).(1)从中取出2张卡片,使这2张卡片上数字的和最小,则和的最小值为_________.(2)从中取出2张卡片,使这2张卡片上数字的差最大,则差的最大值为________.(3)从中取出2张卡片,使这2张卡片上数字相除的商最大,则商的最大值为_________.(4)从中取出3张卡片,使这3张卡片上数字的乘积最大,乘积的最大值为__________.(5)从中取出4张卡片,使这4张卡片上的数字运算结果为24.写出两个不同..,分..的等式别为,.23.已知:如图,在数轴上,点O为原点,点A、点B所表示的数分别为a、b,且满足|a+40|+(b﹣20)2=0;(1)直接写出a、b的值;a=;b=.(2)动点P从点A出发,以每秒m个单位长度的速度向点B匀速运动,同时动点Q从点B出发,以每秒2m个单位长度的速度在点B和原点之间做匀速往返运动,当运动时间为7秒时,点P在点A和原点之间,恰好满足点P到原点的距离是点Q到原点距离的一半,求m的值;(3)在(2)的条件下,当点P和点Q第一次相遇后,速度均变为原来的2倍,点P运动到点B后停止运动,点P停止运动后,点Q运动到原点也停止运动,t为何值时,P、Q两点间的距离为5个单位长度?。
期中复习训练4(动点、绝对值、应用题、找规律-苏科版七年级数学上册
七年级上册期中复习训练四模块九:有理数章节重难点题型一、绝对值的几何意义:1.我们知道|=xx.这个|||-|a的几何意义是:数轴是哪个表示a的点与原点的距离,即|0结论可以推广为:①|a-表示在数轴上表述数b|ba,两点间的距离;②|a+表示在数轴上表述数b|b,两点间的距离;a-根据以上结论探究:(1)|5-2|表示5与2两数在数轴上所对应的两点之间的距离。
所以|5-2|= ;|5+2|表示5与-2两数在数轴上所对应的两点之间的距离,所以|5+2|= .(2)数轴上表示x的点在1与3之间移动,|5-x+x的值是一个固定的值,为 .||-|1(3)|1x可理解为x与两数在数轴上所对应的两点之间的距离,要使|+++-xx,则x= .|=7|2||32.我们知道,|4-(-2)|表示4与-2的差的绝对值,实际上也可理解为4与-2两数在数轴上所对应的两点之间的距离;同理|3x也可理解为x与3两数在数轴上所对应的两|-点之间的距离.是探求:(1)|4-(-2)|= .(2)找出所有符合条件的整数x ,使|2||4|++-x x =8成立.(3)由以上探索猜想,对任何有理数x ,|6||3|-+-x x 是否有最小值?如果有,请写出最小值;如果没有,说明理由.二、数轴动点综合题3.如图,已知A ,B ,C 是数轴上的三点,点C 表示的数是6,点B ,C 之间的距离为4,点A ,B 之间的距离为12.(1)写出数轴上A ,B 两点表示的数;(2)动点P ,Q 分别从A ,C 同时出发,点P 以每秒2个单位长度的速度沿数轴向右匀速运动,点Q 以每秒1个单位长度的速度沿数轴向左匀速运动,设运动时间)0(>t t 秒,当t 为何值时,原点O 与P ,Q 三点中,有一点恰好位于另两点的中间位置?4.如图:在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,a 是多项式2241x x --+的一次项系数,b 是最小的正整数,单项式2412x y -的次数为c .(1) a = ,b = ,c = ;(2)若将数轴在点B处折叠,则点A与点C重合( 填“能”或“不能”);(3)点,,A B C开始在数轴上运动,若点C以每秒1个单位长度的速度向右运动,同时,点A和点B分别以每秒3个单位长度和2个单位长度的速度向左运功,t分钟过后,若点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,则AB= , BC= (用含t的代数式表示);(4)请问:3AB BC的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.三、有理数相关的应用题5.某工艺品厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况 (超产记为正,减产记为负):(1) 写出该厂星期一生产工艺品的数量.(2) 本周产量最多的一天比最少的一天多生产多少个工艺品?(3) 请求出该工艺品厂在本周实际生产工艺品的数量.(4) 已知该厂实行每周计件工资制,每生产一个工艺品可得60元,若超额完成任务,则超过部分每个可得50元,少生产一个扣80元.试求该工艺厂在这一周应付出的工资总额.6.小明的父亲上星期五买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况(单位:元)(1)星期三收盘时,每股是多少元?(2)本周内最高价是每股多少元?最低每股多少元?(3)已知小明父亲买进股票时付了1.5‰的手续费,卖出时需付成交额1.5‰的手续费和1‰的交易税,如果他在周六收盘前将全部股票卖出,他的收益情况如何?模块十:找规律题型7.一张纸片,第一次把它撕成两张小纸片,以后每次将其中的一张小纸片撕成更小的两张纸片,则第2019次后共有纸片()A.2019张B.2020张C.4032张D.20160张8.观察图中正方形四个顶点所标的数字规律,可知数2019应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角9.观察下列一组数:1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6...其中每个数n都连续出现n 次,那么这一组数的第119个数是()A.14B.15C.16D.1710.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现一组这样的数:1,1,2,3,5,8,13......其中从第三个数起,每个数都等于它前面两个数的和.现以这组数中的各个数作为正方形的边长构造正方形,再分别依次从左到右取2个、3个、4个、5个......这样的正方形拼成长方形,如图所示,若按此规律继续作长方形,序号为⑦的长方形周长是 .11.若约定a 是不为1的有理数,我们把a -11的差倒数.如2的差倒数是1211-=-,-1的差倒数是21)1(11=--,已知311-=a ,12a a 是的差倒数,23a a 是的差倒数,34a a 是的差倒数......依次类推,则=2019a .12.给出一列数:1,-2,3,-4,5,-6,7...如果将这列数排成如图所示的形式,那么第10行从左边数第5个数为 .第1行 1第2行 -2 3第3行 -4 5 -6第4行 7 -8 9 -10第5行 11 -12 13 -14 15......13.从2开始,连续的偶数相加,它们和的情况如下表:(1)当n=8时,S的值为 .(2)根据表中的规律猜想:用含n的代数式表示S的公式S=2+4+6+8+...+2n= . (3)根据(2)中的规律计算300+302+304+...+2016+2018的值.(要有计算过程)参考答案:模块九:1.(1)3 7 (2)4 (3)-1 -3或42.(1)6 (2)-3或5 (3)最小值为33.(1)A=-10 B=2 (2)t=4或5.2或5.54.(1)-4 1 6 (2)能(3)t+5 3t+5 (4)不变为定值105.(1)305个(2)26个(3)2110套(4)127100元6.(1)34.5元(2)最高35.5元最低26元(3)889.5元模块十:7.B8.C9.B10.11011.412.-5013.(1)72 (2))1n(3)996740(n。
2024-2025学年苏科版数学七年级上册(江苏省盐城市)期中模拟卷【含答案】
2024-2025学年苏科版数学七年级上册 (江苏省盐城市)期中模拟卷(满分100分,时间90分钟)一、选择题(本题共8小题,每题3分,共24分)1.在()6--,()20201-,3-,0,()35-中,负数的个数是( )A .1个B .2个C .3个D .4个2.下列单项式中,与ab 是同类项的是( )A .22a bB .13abC .22a bD .2ab 3.下列各组数中,互为相反数的是( )A .-32与(-3)2B .-(-4)与|-4|C .-(+5)与+(-5 )D .-23与(-2)34.下列说法中正确的是( )A .多项式1x p +是二次二项式B .单项式225m n -的系数为25,次数为3C .多项式3327462xy x y xy --+的次数是7D .单项式a 的系数、次数都是15.如图,下面的4个数中哪一个数所表示的点被数轴上的杭州亚运会吉祥物之一宸宸卡通贴纸所覆盖( )A .2B .1C .2-D .4-6.某粮店出售的三种品牌的面粉袋上,分别标有质量为()()250.1kg 250.2kg ±±、、()250.3kg ±的字样,从中任意拿出不同品牌的两袋,它们的质量最多相差( )A .0.2kgB .0.4kgC .0.5kgD .0.6kg7.有理数a ,b 在数轴上对应点的位置如图所示,下列各式正确的是( )A .0a b +<B .a b >C .0a b -<D .0ab >8.将黑色圆点按如图所示的规律进行排列:图中黑色圆点的个数依次为:1,3,6,10,…,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第34个数为( )A .595B .630C .1275D .1326二、填空题(本题共8小题,每题3分,共24分)9.比较大小:23-34-(填“>”或“<”)10.单项式323a b -的次数是.11.已知2a -3b =2,则8-6a+9b 的值是.12.已知多项式(3﹣b )x 5+xa +x ﹣6是关于x 的二次三项式,则a 2﹣b 2的值为 .13.在数轴上,如果点A 所表示的数是2-,那么到点A 距离等于6个单位长度的点所表示的数是 .14.已知数a b c 、、在数轴上的位置如图所示,化简:a b b c c a ---++= .15.定义如下运算程序,则输入4a =,2b =-时,输出的结果为 .16.观察下列图形:第1个图形中一共有4个小圆圈,第2个图形中一共有10个小圆圈,第3个图形中一共有18个小圆圈…,按此规律排列,则第n 个图形中小圆圈的个数是.三、解答题(本题共8小题,共52分)17.计算题:(1)()1235+-+--;(2)()()4211236éù--´--ëû;18.化简:(1)22221352x xy x xy --+;(2)223(21)(23)3m m m m ----+.19.先化简,再求值. ()()2222132412a b ab a b ab éù----+ëû,其中a ,b 满足()2210a b ++-=.20.老师在黑板上书写了一个正确的演算过程,随后用一张纸当住了一个二次三项式A ,形式如下:224153x x x x +-+=+-(1)求被挡住的二次三项式A ;(2)若2230x x -+=,求所挡的二次三项式的值.21.学校要利用专款建一长方形的自行车停车场,其他三面用护栏围起,其中长方形停车场的长为()23a b +米,宽比长少()a b -米.(1)求护栏的总长度;(2)若3010a b ==,,每米护栏造价80元,求建此停车场所需的费用.22.给出新定义如下:()22f x x =-,()3g y y =+;例如:()22222f =´-=,()6633g -=-+=;根据上述知识,解下列问题:(1)若2x =-,3y =,则()()f x g y +=______;(2)若()()0f x g y +=,求23x y -的值;(3)若3x <-,化简:()()f x g x +.(结果用含x 的代数式表示)23.某校七年级1至4班计划每班购买数量相同的图书布置班级读书角,但是由于种种原因,实际购书量与计划有出入,如表是实际购书情况:班级1班2班3班4班实际购买数量a 33c21实际购买量与计划购买量的差值12b8-9-(1)直接写出a = ,b = ,c = ;(2)根据记录的数据可知4个班计划每班购书 本;(3)若每本书售价为25元,请计算这4个班整体购书的总花费是多少元?24.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.小明在草稿纸上画了一条数轴进行操作探究:操作一:(1)如图1,在数轴上,三个有理数从左到右依次是1-,m ,1m +,利用刻度尺或圆规,在数轴上画出原点O ;操作二:(2)折叠这条数轴所在纸面,若使1-表示的点与数3与表示的点重合,数m 表示的点与数2023-表示的点重合,则m = ;操作三:(3)从数轴上剪下9个单位长度(从1-到8)的部分(不考虑宽度),并把这条数轴沿数m 所在点竖直折叠,然后在重叠部分某处剪开,得到三条线段. 若这三条线段的长度之比为112∶∶,求m 的值.1.B【分析】此题考查了有理数的乘方,绝对值,多重符号化简和正数与负数的定义,先化简各数,再根据负数就是小于0的数,依据定义即可求解.【详解】解:()()()2020366,11,33,5125--=-=-=--=-Q ,\在()6--,()20201-,3-,0,()35-中,负数的个数有2个,故选:B .2.B【分析】根据同类项的定义:“所含字母相同,相同字母的指数也相同的单项式”,进行判断即可.【详解】解:由题意,与ab 是同类项的是13ab ;故选B .3.A【分析】先进行有理数的运算,再根据相反数的定义判断即可求解.【详解】解:A . -32=-9,(-3)2=9,是互为相反数,故此选项符合题意;B . -(-4)=4,|-4|=4,不是互为相反数,故此选项不符合题意;C . -(+5)=-5,+(-5 )=-5,不是互为相反数,故此选项不符合题意;D . -23=-8与(-2)3=-8,不是互为相反数,故此选项不符合题意.故选A .【点睛】此题主要考查有理数的运算,绝对值,相反数多重符号化简,乘方,相反数,解题的关键是熟知相反数的定义.4.D【分析】利用多项式的意义,多项式的项,次数,注意分析判定得出答案即可.【详解】A 、多项式1x p +是一次二项式,该选项错误;B 、单项式225m n -的系数为-25,次数为3,该选项错误;C 、多项式3327462xy x y xy --+的次数是6,该选项错误;D 、单项式a 的系数、次数都是1,该选项正确;故选:D .【点睛】本题考查了多项式.单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.5.C【分析】本题考查了数轴的应用,由所覆盖部分在0和3-之间,逐个判断即可.【详解】解:由图得,覆盖的区域为负半轴,且在0和3-之间,故覆盖的数可能是2-,故选:C .6.C【分析】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.根据题意给出三种品牌的面粉的质量波动范围,并求出任意两袋质量相差的最大数.【详解】解:∵0.30.20.10.10.20.3-<-<-<<<,∴从中任意拿出不同品牌的两袋,它们的质量最多相差:()0.30.20.5kg --=,故选:C .7.C【分析】根据a ,b 两数在数轴的位置依次判断所给选项的正误即可.【详解】解:根据a ,b 两数在数轴的位置,可得10,1a b -<<>,a b <,选项B 错误;则0a b +>,选项A 错误;0a b -<,选项C 正确;0ab <,选项D 错误,故选:C .【点睛】本题考查数轴的相关知识,利用数轴比较大小以及绝对值的定义等,正确理解相关概念以及运算法则是解题的关键.8.D【分析】此题考查了规律型:图形的变化类,关键是通过归纳与总结,得到其中的规律.首先得到前n 个图形中每个图形中的黑色圆点的个数,得到第n 个图形中的黑色圆点的个数为()12n n +,再判断其中能被3整除的数,得到每3个数中,都有2个能被3整除,再计算出第34个能被3整除的数所在组,为原数列中第51个数,代入计算即可.【详解】解:第①个图形中的黑色圆点的个数为:1,第②个图形中的黑色圆点的个数为:()12232+´=,第③个图形中的黑色圆点的个数为:()13362+´=,第④个图形中的黑色圆点的个数为:()144102+´=,¼第n 个图形中的黑色圆点的个数为()12n n +,则这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,¼,其中每3个数中,都有2个能被3整除,34217¸=,17351´=,则第34个被3整除的数为原数列中第51个数,即515213262´=,故选:D 9.>【分析】本题考查有理数的大小比较,根据两个负数比较大小,绝对值大的反而小求解即可.【详解】解:∵2283312-==,3394412-==,891212<,∴2334->-,故答案为:>.10.4【分析】本题考查了单项式的次数的定义,解题的关键是根据单项式中的字母的指数的和,叫单项式的次数求解.【详解】解:单项式323a b -的次数是4,故答案为:4.11.2【分析】原式后两项提取3-变形后,将已知等式代入计算即可求出值.【详解】解:232a b -=Q ,\原式83(23)832862a b =--=-´=-=.故答案为:2.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.12.﹣5【分析】由题意,根据二次三项式的定义可知:3-b =0,a =2,代入原式即可求出答案.【详解】解:多项式是二次三项式所以最高次为2,而式子中含有x 5,所以它的系数为0,∴3﹣b =0,b =3,而剩余项中已知的没有2次,所以xa 为二次项,∴ a =2所以a 2﹣b 2=4-9=-5,故答案为:-5.【点睛】本题主要考查多项式的命名规则的运用.多项式的命名规则中的次数,一定是多项式中的各项中的最高次数.13.4或8-【分析】本题考查数轴,根据题意可知,到A 点距离等于6个单位长度的点在其左侧和右侧各有一个,据此可解决问题.【详解】解:由题知,到A 点距离等于6个单位长度的点在A 点左侧和右侧各有一个,Q 点A 表示的数是2-,\268--=-或264-+=.即到点A 的距离等于6个单位长度的点所表示的数是4或8-.故答案为:4或8-.14.2a-【分析】本题考查了绝对值的化简,先根据数轴上a 、b 、c 的位置确定a b -、b c -、c a +的符号,再根据绝对值的性质化简即可,解题的关键是要能根据数轴上点的位置确定各式子的符号.【详解】解:由数轴可得,0c a b <<<,∴0a b -<,0b c ->,0c a +<,∴原式()()b a b c c a éù=---+-+ëû,b a bc c a =--+--,2a =-,故答案为:2a -.15.2【分析】由程序框图将4a =,2b =-代入a b +计算可得答案.【详解】解:4a =Q ,2b =-,a b >,\输出结果为代入()422a b +=+-=.故答案为:2.【点睛】此题考查了代数式的求值与有理数的运算,熟练掌握运算法则是解本题的关键.16.n 2+3n【分析】分两部分:上面部分是由小圆圈围成的三角形,下面部分是小圆圈围成的正方形,由此分别计算出前4个图形的小圆圈的个数,得到规律,即可得第n 个图形中小圆圈的个数.【详解】观察图形得:第1个图形有12+3×1=4个圆圈,第2个图形有22+3×2=10个圆圈,第3个图形有32+3×3=18个圆圈,第4个图形有42+3×4=18个圆圈,…第n 个图形有n 2+3n 个圆圈,故答案为:n 2+3n .【点睛】本题规律性问题,主要考查用代数式表示图形类规律,学生分析问题、观察总结规律的能力,解题的关键是通过观察分析找出规律.17.(1)3-(2)136【分析】本题考查有理数的混合运算.(1)去绝对值,再进行加减运算即可;(2)先乘方,去括号,再进行乘法运算,最后算减法.熟练掌握有理数的运算法则,正确的计算,是解题的关键.【详解】(1)解:原式12353=-+-=-;(2)原式()17131291666=-´-=+=.18.(1)22122x xy+(2)23m m-【分析】本题考查了整式的加减运算.正确的合并同类项是解题的关键.(1)直接合并同类项即可;(2)先去括号,然后合并同类项即可.【详解】(1)解:22221352x xy x xy --+22122x xy =+;(2)解:223(21)(23)3m m m m ----+223632+33m m m m =---+23m m =-.19.25a b 12-,9【分析】原式去括号合并得到最简结果,利用非负数的性质求出a 与b 的值,代入原式计算即可得到结果.【详解】解:∵()2210a b ++-=,∴a+2=0,b-1=0,解得a=-2 b=1,()()2222132412a b ab a b ab éù----+ëû=222213+212a b ab a b ab ---+=25a b 12- 将a=-2 b=1代入原式得()25-2112´´-=9.【点睛】此题考查了整式的加减−化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.20.(1)2364A x x =-+-(2)5【分析】此题主要考查了整式的加减运算,根据加减法的关系逆推出所挡的二次三项式是解题的关键.(1)根据题意确定出所挡的二次三项式即可;(2)根据2230x x -+=得出223x x -=-,再整体代入计算即可求出值.【详解】(1)解:由题意得:22(53)(41)A x x x x =+---+=225341x x x x -+-+-=2364x x -+-;(2)解:∵2230x x -+=,∴223x x -=-,2364x x \-+-=23(2)4x x ---=3(3)4-´--5=.21.(1)()411a b +米(2)建此停车场所需的费用为18400元.【分析】(1)直接利用整式的加减运算法则得出宽,进而得出答案;(2)利用(1)中所求,把已知数据代入得出答案.【详解】(1)解:由题意可得宽为:()()23234a b a b a b a b a b +--=+-+=+米,则护栏的总长度为:()2324a b a b +++2328a b a b=+++()411a b =+米;(2)解:由(1)得:当3010a b ==,时,原式4301110230=´+´=(米),∵每米护栏造价80元,∴2308018400´=(元),答:建此停车场所需的费用为18400元.【点睛】此题主要考查了整式的加减的应用,正确合并同类项是解题关键.22.(1)12(2)11(3)31x --【分析】(1)把相应的值代入新定义的运算中,结合有理数的相应的运算法则进行求解即可;(2)由非负数的性质可求得x 与y 的值,代入所求的式子运算即可;(3)根据绝对值的定义进行求解即可.【详解】(1)解:当2x =-,3y =时,()()f xg y +()22233=´--++426=--+66=+12=.故答案为:12.(2)∵()()0f x g y +=,∴2230x y -++=,∴220x -=,30y +=,解得:1x =,=3y -,23x y-()2133=´-´-29=+11=.(3)()3当3x <-时,∴220x -<,30x +<,∴()()f xg x +223x x =-++()()223x x =---+223x x =-+--31x =--.【点睛】本题考查有理数的混合运算,绝对值的定义和非负性,求代数式的值,列代数式,整式的加减等知识点.解答的关键是对相应的运算法则,绝对值的定义和非负性的掌握.23.(1)42,3+,22(2)30(3)这4个班整体购书的总花费2950元【分析】(1)由于4班实际购入21本,且实际购买量与计划购买量的差值为9-,即可得计划购书量为30,进而可求出a 、b 、c ;(2)根据题意,计划每班购买数量相同,由(1)即可得出答案;(3)求出购书总数,再根据每本书售价为25元,列式计算可得答案.本题考查了正数和负数,利用正数和负数表示相反意义的量,利用了有理数的混合运算,熟练掌握相关知识点是解题的关键.【详解】(1)解:由于4班实际购入21本,且实际购买量与计划购买量的差值为9-,则每班计划购书量为30(本),则301242a =+=,33303b =-=,30822c =-=,故答案为:42,3+,22;(2)解:根据题意,计划每班购买数量相同,由(1)得:计划每班购书30(本);故答案为:30;(3)解:实际买书的总数42332221118+++=(本),若每本书售价为25元,这4个班整体购书的总花费:118252950´=(元),答:这4个班整体购书的总花费为2950元.24.(1)见解析(2)2025(3)198或72或378【分析】本题考查了有理数和数轴的关系,及数轴上的折叠变换问题,(1)根据,1m m +相距一个单位,故原点O 在1-右边一个单位处,利用刻度尺测量即可得出答案;(2)根据对称性可列出方程计算即可;(3)分三种情况进行讨论:设折痕处对应的点所表示的数是x ,由题意可得:9AD =,根据三条线段的长度之比为112∶∶,设每一份为a ,可列29a a a ++=,解得: 94a =,如图1,当112AB BC CD =::::时,设2AB a BC a CD a ===,,,得出AB BC CD 、、的值,计算得x 的值,同理可得出如图2、3对应的x 的值.【详解】解:(1),1m m +Q 相距一个单位,故原点O 在1-右边一个单位处,如图:原点O 即为所求;(2)由折叠可知:()202313m +-=-+,解得:2025m =;故答案为:2025;(3)设折痕处对应的点所表示的数是x ,如图1,由题意可得:9AD =,Q 三条线段的长度之比为112∶∶,设每一份为a ,29a a a \++=,解得: 94a =,当112AB BC CD =::::时,则2AB a BC a CD a ===,,,∴94AB =, 94BC =, 92CD =, 991912448x \=-++¸=,如图2,当121AB BC CD =::::时,则2AB a BC a CD a ===,,,∴94AB =, 92BC =, 94CD =,99712422x \=-++¸=,如图3,当211AB BC CD =::::时, 则2AB a BC a CD a ===,,,∴92AB =, 94BC CD ==,993712248x \=-++¸=,综上所述:则折痕处对应的点所表示的数可能是198或72或378.。
(苏科版)初中数学七年级上册 期中测试(含答案)
期中测试一、选择题(本大题共10小题,共30分)1.3-的倒数是( )A .3B .3-C .13 D .13- 2.一只长满羽毛的鸭子大约重( )A .50克B .2千克C .20千克D .5千克3.下列各组数中结果相同的是( )A .23与32B .3|3|-与()33-C .()23-与23-D .()33-与33- 4.用代数式表示“a 的3倍与b 的差的平方”,正确的是( )A .()23a b -B .()23a b -C .23a b -D .()23a b - 5.下列说法中,正确的是( )A .绝对值等于本身的数是正数B .倒数等于本身的数是1C .0除以任何一个数,其商为0D .0乘以任何一个数,其积为06.把数轴上表示4的点移动2个单位后表示的数为( )A .3B .2C .3或5D .2或67.按图中计算程序计算,若开始输入的值为−2,则最后输出的结果是( )A .8B .10C .12D .138.若a 、b 互为相反数,c 、d 互为倒数,且m 的绝对值为2,则()2123m cd a b -+-+的值是( ) A .9 B .5 C .9或5 D .7-9.若规定“!”是一种数学运算符号,且1!1=,2!212=⨯=,3!3216=⨯⨯=,4!432124=⨯⨯⨯=,…,则10098!!的值为( ) A .5049 B .99! C .9 900 D .2!二、填空题(本大题共9小题,共27分)10.单项式323xy -的系数是m ,次数是n ,则mn =________.11.比较大小:45-________56-(填“>”或“<”)12.计算:()23x y y -+=________.13.对有理数a 、b ,规定运算如下:a b a b ab =+-※,则 2.52-=※________. 14.若单项式22m x y 与313n x y -是同类项,则m n +的值是________.15.已知2x y +=,则533x y --的值为________. 16.若关于x 、y 的多项式22232x xy y mx ++-中不含2x 项,则m =________.17.观察下列各式:11111434⎛⎫=- ⎪⨯⎝⎭; 111147347⎛⎫=- ⎪⨯⎝⎭; 11117103710⎛⎫=- ⎪⨯⎝⎭; …()1111333n n n n ⎛⎫=- ⎪++⎝⎭根据以上观察,计算1111144771020202023+++⋯+⨯⨯⨯⨯的值为________. 三、解答题(本大题共7小题,共63分)18.计算:(1)()()1623177-++---(2)()157362612⎛⎫+-⨯- ⎪⎝⎭(3)()()2(2)7365-⨯--⨯---(4)()2411336⎡⎤--⨯--⎣⎦19.化简:(1)3257x y x y -+--(2)()()22326x xy x xy --+-20.某天早上,一辆交通巡逻车从A 地出发,在东西向的马路上巡视,中午到达B 地,如果规定向东行驶为正,向西行驶为负,行驶纪录如下.(单位:km )(1)巡逻车在巡逻过程中,第________次离A 地最远.(2)B 地在A 地哪个方向,与A 地相距多少千米?(3)若每千米耗油0.2升,每升汽油需7元,问这一天交通巡逻车所需汽油费多少元?21.化简求值:求代数式2222213824333535x x xy y x xy y ⎛⎫⎛⎫-+-+++ ⎪ ⎪⎝⎭⎝⎭的值,其中x ,y 满足()2310x y ++-=.22.已知在纸面上画有一根数轴,现折叠纸面.(1)若1-表示的点与1表示的点重合,则3表示的点与数________表示的点重合;(2)若1-表示的点与3表示的点重合,回答以下问题:①6表示的点与数________表示的点重合;②若数轴上A 、B 两点之间的距离为d (点A 在点B 的左侧,0d >),且A 、B 两点经折叠后重合,则用含d 的代数式表示点B 在数轴上表示的数是________.23.折叠纸面,若在数轴上1-表示的点与5表示的点重合,回答以下问题:(1)数轴上10表示的点与________表示的点重合.(2)若数轴上M 、N 两点之间的距离为2018(M 在N 的左侧),且M 、N 两点经折叠后重合,求M 、N 两点表示的数是多少?(3)如图,边长为2的正方形有一顶点A 落在数轴上表示1-的点处,将正方形在数轴上向右滚动(无滑动),正方形的一边与数轴重合记为滚动一次,求正方形滚动2 019次后,数轴上表示点A 的数与折叠后的哪个数重合?24.如图,将一条数轴在原点O 和点B 处各折一下,得到一条“折线数轴”.图中点A 表示10-,点B 表示10,点C 表示18,我们称点A 和点C 在数轴上相距28个长度单位.动点P 从点A 出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O 运动到点B 期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q 从点C 出发,以1单位/秒的速度沿着数轴的负方向运动,从点B 运动到点O 期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.期中测试答案解析一、1.【答案】D【解析】∵()1313⎛⎫-⨯-= ⎪⎝⎭, ∴3-的倒数是13-.故选:D .2.【答案】B【解析】成年鸭子大约重5千克,刚长满羽毛的还不到成年大约重2千克. 故选:B .3.【答案】D【解析】A .239=,328=,故不相等;B .()33327327-=-=-,故不相等;C .()239-=,239-=-,故不相等; D .()3327-=-,3327-=-,故相等, 故选:D .4.【答案】B【解析】∵a 的3倍与b 的差为3a b -,∴差的平方为()23a b -.5.【答案】D【解析】A .绝对值等于本身的数是非负数,故原题说法错误;B .倒数等于本身的数是1±,故原题说法错误;C .0除以任何一个不为零数,其商为0,故原题说法错误;D .0乘以任何一个数,其积为0,故原题说法正确;故选:D .6.【答案】D【解析】两种情况,即:426+=或422-=,故选:D .7.【答案】D【解析】()253-+=,39<,358+=,89<,8513+=,139>,∴若开始输入的值为2-,则最后输出的结果是13.故选:D .8.【答案】D【解析】∵a ,b 互为相反数,c ,d 互为倒数,且m 的绝对值为2, ∴0a b +=,1cd =,2m =±,()()2211222102410733m cd a b -+-+=-⨯±+-⨯=-⨯+-=-. 故选:D . 9.【答案】C 【解析】原式12349910012349798⨯⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯ 99100=⨯9900=.故选:C .二、10.【答案】83-【解析】∵单项式323xy -的系数是m ,次数是n , ∴23m =-,4n =, 则83mn =-. 故答案为:83-. 11.【答案】>【解析】44245530-==,55256630-==, ∵24253030< ∴4556-->. 故答案为:>.12.【答案】2x y +【解析】原式2232x y y x y =-+=+,故答案为:2x y +13.【答案】4.5【解析】∵aAb a b ab =+-,∴ 2.52A -()2.52 2.52=-+--⨯2.525=-++4.5=,故答案为:4.5.14.【答案】5【解析】由同类项的定义可知2n =,3m =,则5m n +=.故答案为:5.15.【答案】1-【解析】533x y --()53x y =-+532=-⨯1=-故答案为1-.16.【答案】3【解析】将多项式合并同类项得()223m xy y -++,∵不含2x 项,∴30m -=,∴3m =.故答案为:317.【答案】6742023【解析】根据题意得:原式11111111134347320202023⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 1111111344720202023⎛⎫=-+-++- ⎪⎝⎭11132023⎛⎫=- ⎪⎝⎭1202332023=⨯ 6742023=, 故答案为:6742023 三、18.【答案】解:(1)原式16231773=-+-+=-;(2)原式18302127=--+=-;(3)原式281855=--=;(4)原式()1161106=--⨯-=-+=.19.【答案】解:(1)3257x y x y -+-- 85x y =--;(2)()()22326x xy x xy --+- 22636x xy x xy =---+2546x xy =-+.20.【答案】(1)6(2)158612451016-++-+-=(千米),答:B 地在A 地东方,与A 地相距16千米;(3)158+612451060++-++++-+++-=(千米),600.212⨯=(升), 12784⨯=(元). 答:这一天交通巡逻车所需汽油费84元.【解析】解:(1)第一次距A 地:15千米,第二次距A 地:1587-=千米,第三次距A 地:7613+=千米,第四次距A 地:131225+=千米,第五次距A 地:25421-=千米,第六次距A 地:21526+=千米,第七次距A 地:261016-=千米,2625211615137>>>>>>,答:巡逻车在巡逻过程中,第6次离A 地最远;故答案为:6.21.【答案】解:原式222222213824333535x x xy y x xy y x y =--++++=-+, ∵()2310x y ++-=,∴30x +=,10y -=,解得:3x =-,1y =,则原式918=-+=-.22.【答案】(1)3-(2)①4- ②112d +【解析】解:(1)∵1102-+=,. ∴0233⨯-=-,故答案为:3-;(2)①∵1312-+=, ∴1264⨯-=-,故答案为:4-; ②∵1312-+=,A 、B 两点之间的距离为d (点A 在点B 的左侧,0d >),且A 、B 两点经折叠后重合, ∴表示点B 在数轴上表示的数是:112d +, 故答案为:112d +. 23.【答案】(1)6-(2)∵数轴上M 、N 两点之间的距离为2 018, ∴112018100922MN =⨯=, ∴2+1009=1011,210091007-=- ∴点M 表示的数为1007-,点N 表示的数为1 011.答:M 、N 两点表示的数是1007-、1 011;(3)∵边长为2的正方形有一顶点A 落在数轴上表示1-的点处, ∴正方形滚动一次后一个顶点落在表示3的点处,正方形滚动2次后一个顶点落在表示5的点处,正方形滚动3次后一个顶点落在表示7的点处,初中数学 七年级上册 11 / 11 ∴正方形滚动2 019次后一个顶点落在表示2201914039⨯+=的点处,∴正方形滚动2 019次后,数轴上表示点A 的数与折叠后的4 039重合.【解析】解:(1)∵在数轴上1-表示的点与5表示的点重合, ∴1522-+= ∴数轴上1-表示的点与5表示的点的中点是2表示的点.∴数轴上10表示的点与6-表示的点重合.故答案为6-;(2)详见答案;(3)详见答案.24.【答案】解:(1)点P 运动至点C 时,所需时间1021018219t =÷+÷+÷=(秒),(2)由题可知,P 、Q 两点相遇在线段OB 上于M 处,设OM x =.则()102181102x x ÷+÷=÷+-÷, 解得163x =. 故相遇点M 所对应的数是163. (3)P 、O 两点在数轴上相距的长度与Q 、B 两点在数轴上相距的长度相等有4种可能: ①动点Q 在CB 上,动点P 在AO 上,则:8102t t -=-,解得:2t =.②动点Q 在CB 上,动点P 在OB 上,则:()851t t -=-⨯,解得: 6.5t =. ③动点Q 在BO 上,动点P 在OB 上,则:()()2851t t -=-⨯,解得:11t =.④动点Q 在OA 上,动点P 在BC 上,则:()102151310t t +-=-+,解得:17t =. 综上所述:t 的值为2、6.5、11或17.。
2024-2025学年苏科版七年级数学上册期中复习试卷
2024-2025学年苏科版七年级数学上册期中复习试卷一、单选题1.2024-的绝对值是( ) A .12024B .12024-C .2024-D .20242.杭州奥体中心体育场又称“大莲花”,里面有80800个座位.数据80800用科学记数法表示为( )A .48.810⨯B .48.0810⨯C .58.810⨯D .58.0810⨯3.一个点在数轴上从表示 - 3的点A 开始,先向左移动5个单位,再移动3个单位到达点B ,这时点B 到点A 的距离为( ) A .2B .9C .2或8D .2或94.下列各说法中,错误的是( )A .x ,y 的平方和,用代数式表示为22x y +B .x 与y 和的5倍,用代数式表示为5()x y +C .x 的5倍与y 的和的一半,用代数式表示为52yx + D .比x 的2倍多3的数,用代数式表示为23x + 5.下列各对数中,相等的一对是( )A .223与223⎛⎫ ⎪⎝⎭B .3(2)-与32-C .22-与2(2)-D .()23--与2||3--6.若()2230a b -++=,则()2024a b +的值是( )A .1-B .2024-C .1D .20247.如图,a b c d e f ,,,,,均为有理数,图中各行,各列及两条对角线上三个数的和都相等,则a b c d e f -+-+-的值为( )A .1B .3-C .7D .88.有理数a 、b 在数轴上对应的点的位置如右图所示,则下面结论:①a <0; ②|a ∣>|b |; ③a +b >0;④b -a >0;其中正确的个数有( )个.A .1B .2C .3D .49.如图,将一张长方形的纸对折,可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕.想象一下,如果对折n 次,可以得到折痕的条数是( )A .nB .1n -C .21n -D .121n --10.如图所示,在这个运算程序当中,若开始输入的x 是48,则经过2023次输出的结果是( )A .3B .6C .12D .24二、填空题 11.比较大小:23-34-. 12.若代数式513m a b +与22n a b -是同类项,那么m+n= .13.若22(3)0a b ++-=,则b a =.14.根据如图所示的程序计算,若输入x 的值为0,则输出y 的值为.15.已知22210,216a ab b ab -=-=-,则()()22224a ab b a b -+--=.16.已知210x y --=,则52x y -+的值是17.定义一种新运算,规定:3a b a b ⊕=-,若1(6)24a b ⊕-=-请计算(2)(25)a b a b +⊕-值为.18.列各正方形中的四个数之间都有相同的规律,根据此规律,x 的值为三、解答题 19.计算:(1)()()6487--+-+; (2)()25118362⎛⎫--⨯- ⎪⎝⎭; (3)()211623--÷-⨯-.20.(1)把下面的直线补充成一条数轴,在数轴上表示下列各数;(2)--,4,112-,0,2.5, 3.5-.(2)用“>”将(1)中的每个数连接起来. 21.化简: (1)3245m m --+;(2)()()222332x y x y ++-;22.用火柴棒按图中的方式搭图形.按上述信息填空: (1)a =______,b =______;(2)按照这种方式搭下去,则搭第n 个图形需要火柴棒的根数为______;(用含n 的代数式来表示)(3)按照这种方式搭下去,用(2)中的代数式求第2023个图形需要的火柴棒根数. 23.水果超市最近新进了一批橙子,每斤进价10元,9月29日每斤售价15元,国庆黄金周9月30日起试行机动价格,价格超出前一天的部分记为正,不足前一天的部分记为负,超市记录了国庆黄金周橙子的售价变化情况和售出情况:(1)10月4日超市售出的橙子的单价是多少元?(2)10月4日超市售出的橙子的收益如何?(盈利成亏损的钱数) (3)国庆黄金周水果超市出售此种接子的收益如何? 24.【情景创设】12,16,112,120,130…是一组有规律的数,我们如何求这些连续数的和呢? 【探索活动】(1)根据规律第6个数是______,1132是第______个数; 【阅读理解】111111111111111511122334455622334455666++++=-+-+-+-+-=-=⨯⨯⨯⨯⨯ 【实践应用】根据上面获得的经验完成下面的计算: (2)11112612132+++⋅⋅⋅+;(3)1111 1232343458910 +++⋅⋅⋅+⨯⨯⨯⨯⨯⨯⨯⨯.25.某超市在双十一期间对顾客实行优惠政策,规定如下表:(1)若小惠一次购物原价300元,她实际付款___________元;若一次购物原价600元,她实际付款___________元.(2)若小惠在该超市一次购物x元.当x大于或等于500元时,她实际付款___________元(用含x的代数式表示并化简).(3)如果小惠两次购物合计850元(原价),第一次购物的原价为a元(200300a<<),用含a的代数式表示两次购物实际付款一共多少元?当250a=元时,小惠两次购物一共节省了多少元?26.如图,数轴上点A表示的有理数为4-,点B表示的有理数为6,点P从点A出发以每秒2个单位长度的速度在数轴上沿由A到B方向运动,当点P到达点B后立即返回,仍然以每秒2个单位长度的速度点运动至点A停止运动,设运动时间为t(单位:秒).(1)当2t=时,点P表示的有理数为.(2)当点P与点B重合时t的值为.(3)①在点P由A到点B的运动过程中,点P与点A的距离为.(用含t的代数式表示)②在点P由点A到点B的运动过程中,点P表示的有理数为.(用含t的代数式表示)(4)当点P表示的有理数与原点距离是2的单位长度时,t的值为.。
苏科版数学初一上学期期中试卷及解答参考(2024-2025学年)
2024-2025学年苏科版数学初一上学期期中模拟试卷(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、一个长方形的长是8厘米,宽是5厘米,那么这个长方形的周长是多少厘米?A、19厘米B、21厘米C、30厘米D、40厘米2、一个正方形的边长是10厘米,那么这个正方形的面积是多少平方厘米?A、100平方厘米B、50平方厘米C、25平方厘米D、20平方厘米3、下列哪一个等式表示的是线性方程?A.(2x2+3x−5=0)B.(4x+7=15)C.(x3−2x+1=0)+2=3)D.(1x4、如果一个长方形的长是宽的两倍,并且它的周长是30厘米,那么这个长方形的面积是多少平方厘米?A. 30B. 45C. 60D. 905、下列各组数中,都是质数的一组是:A. 7,11,13,17B. 6,10,14,18C. 4,8,12,16D. 3,9,15,216、若a、b是正整数,且a+b=10,则a和b的最大公约数是:A. 1B. 2C. 5D. 107、已知点A(3, -2),点B(-1, 4),则线段AB的中点M的坐标是多少?A. (1, 1)B. (2, 1)C. (1, 2)D. (1, 1.5)8、如果一个正方形的边长增加了原来的50%,那么面积增加了多少百分比?A. 50%B. 100%C. 125%D. 150%9、一个长方形的长是8厘米,宽是长的一半,那么这个长方形的周长是多少厘米?选项:A. 16厘米B. 20厘米C. 24厘米D. 32厘米 10、一个正方形的对角线长是10厘米,那么这个正方形的边长是多少厘米?选项:A. 5厘米B. 10厘米C. 15厘米D. 20厘米二、填空题(本大题有5小题,每小题3分,共15分)1、若(a+b=7),且(a−b=3),则(a)的值为____ 。
2、已知一个长方形的长是宽的2倍,如果它的周长是30厘米,则这个长方形的面积为 ____ 平方厘米。
七年级数学上学期期中试题 苏科版4
学校___________ 编号___________ 班级__________ 姓名_________________ 学号________ …………………………………………密……………………………………………封…………………………………………线……………………………………………2016~2017学年官林教学联盟第一学期期中考试七年级数学试卷(考试时间:100分钟 满分:100分)一、精心选一选(本大题共8小题,每空3分,共24分)1、-5的相反数是………………………………………………………………( ) A .15-B .15C .-5D .5 2、中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为…………………………………… ( ) A .6.75×104吨 B .6.75×103吨 C .0.675×105吨D .67.5×103吨3、下列代数式中a , -2ab ,x y +,x 4,22x y +,-1,2312ab c ,单项式共有…… ( ) A .6个 B .5 个 C .4 个 D .3个4、下列变形正确的是………………………………………………………( )A.若2x -3=7,那么2x =7-3B.若3x -2=x +1 ,则3x +x =1+2C.若-2x =5,那么x =5+2D.若131=-x ,那么x =-3 5、以下代数式书写规范的是-------------------------------------------------------------( ) A .(a +b )÷2 B .65y C .113x D .x +y 厘米 6、 大肠杆菌每过30分钟由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成的个数是……………………………………………………………… ( ) A 20个 B 32个 C 64 个 D 128 个7、下列说法中正确的个数有…………………………………………………………( ) ①0是绝对值最小的有理数; ②无限小数是无理数;③数轴上原点两侧的数互为相反数;④a ,0,1x 都是单项式; ⑤单项式 922xy -的系数为-2,次数是3;⑥ 1432-+-x y x 是关于x ,y 的三次三项式,常数项是-1. A 、2个 B 、3个 C 、4个 D 、5个8、某商品价格为a 元,根据销量的变化,该商品先降价10%,一段时间后又提价10%,提价后这种商品的价格与原价格a 相比………………………………………………( ) A .降低了0.01a B .降低了0.1a C .增加了0.01a D .不变二、细心填一填(本大题共有10小题,每.题.2分,共20分)9、 135-的绝对值是________,倒数是________. 10、比较大小:① 0_______-0.5 ,②-43_______ -54(用“>”或“<”填写)11、 平方得25的数为_______,______的立方等于-8.12、 单项式323ab c π-的系数是_______,次数是______.13、如果2x 3y m与﹣8x n +6y 2是同类项,则m= ,n= . 14、若m 、n 满足|m ﹣2|+(n +3)2=0,则n m=______.15、已知代数式﹣6x +16与7x ﹣18的值互为相反数,则x = .16、 如图所示是计算机程序计算,若开始输入x =﹣1,则最后输出的结果是______.17、 若关于a ,b 的多项式3(a 2﹣2ab ﹣b 2)﹣(a 2+mab +2b 2)中不含有ab 项,则m =______ 18、 一组数:2,1,3,x ,7,y ,23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a ﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y 表示的数为 .三、认真答一答(本大题共9小题,满分56分). 19、计算:(本题每小题3分,共9分)(1))9()11()4()3(--+--+- (2)33(2)()424-⨯÷-⨯ (3)2611522⎛⎫---+⨯- ⎪⎝⎭20、化简:(本题每小题4分,共8分) (1)35(1)3(4)22m m m --+- 其中3m =-(2)已知:1,42-==-ab b a .试求代数式)625(2)74(ab a b ab b a +--++- 的值21、解方程:(本题每小题4分,共8分) (1)8y = −2(y − 5); (2)51121+-=-x x22、(本题共4分) 把下列各数按要求填入相应的大括号里:—10,4.5,—720, 0,—(—3),2.10010001…,-|-4|,—2π, 整数集合:{ … },分数集合:{ … }, 非负有理数集合:{ … },无理数集合:{ … }. 23、(本题共4分)已知方程6x ﹣9=10x ﹣45与方程3a ﹣1=3(x +a )﹣2a 的解相同,求a 的值.24、(本题共5分)有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b -c 0,a +b 0,c -a 0. (2)化简:| b -c|+|a +b|-|c -a |25、(本题共5分)若新规定这样一种运算法则:a※b=a2+2ab.例如3※(﹣2)=32+2×3×(﹣2)=﹣3.(1)试求(﹣2)※3的值;(2)若(﹣5)※x=﹣2﹣x,求x的值.26、(本题共6分)如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)你认为图②中的阴影部分的正方形的边长等于__________;(2)请用两种不同的方法列代数式表示图②中阴影部分的面积:方法①__________________;方法②__________________.(3)观察图②,你能写出(m+n)2,(m﹣n)2,mn这三个代数式之间的等量关系吗?(4)根据(3)题中的等量关系,解决如下问题:若a+b=6,ab=4,则求(a﹣b)2的值.27、(本题共7分)我省从2010年7月开始实施阶梯电价制,居民生活用电价格方案如下:例:若某用户2010年8月份的用电量为300度,则需缴交电费为:200×0.5+(300﹣200)×0.55=155(元).(1)填空:如果小华家2010年9月份的用电量为100度,则需缴交电费元;(2)如果小华家2010年10月份的用电量为a度(其中200<a≤400),则需缴交电费多少元?(用含a的代数式表示,并化简)(3)如果小华家2010年11、12两个月共用电700度(其中12月份的用电量达到“第3档”),设11月份的用电量为b度,则小华家这两个月共需缴交电费多少元?(用含b的代数式表示,并化简)2016~2017学年官林教学联盟第一学期期中考试七年级数学试卷答案一、选择:1、D2、A3、C4、D5、B6、C7、A8、A 二、填空:9、165,513-10、〉,〉 11、±5,-2 12、 3π- ,6 13、2,-3 14、9 15、2 16、-11 17、-6 18、-9 三、解答题:19、(1)解:原式=-3-4-11+9…………2分 (2)解:原式=2×23×34×4………2分 =-9……………………3分 =16………………………3分 (3)解:原式=-1-5+2×41…………2分 =215-…………………3分 20、(1)解:原式=m m m 31212523-++-…………2分=134+-m …………………………3分 当m=-3时原式=25………………………………4分 (2) 解:原式=-a+4b+7ab-10b+4a-12ab ………………1分 =3a-6b-5ab …………………………2分 =3(a-2b)-5ab ……………………………3分当a-2b=4,ab=-1时原式=17………………………………4分21、(1) 解:8y=-2y+10…………2分 (2) 解:5(x-1)=10-2(x+1)…………1分 10y=1o ……………3分 5x-5=10-2x-2……………2分 y=1……………4分 7x=13……………3分713=x ……………4分 22、整数集合:{—10,0,—(—3),-|-4|… },分数集合:{4.5,— 720… },非负有理数集合:{4.5,0,—(—3)… },无理数集合:{2.10010001…,—2π … }.23、 解:x=9……………………………………………2分把x=9代入方程得3a-1=3(9+a)-2a …………3分a=14…………………4分24、解:(1)<,<,>………………………3分 (2)原式=-b+c+(-a-b)-(c-a) …………4分 =-2b …………………………5分 25、(1)原式=3)2(2)2(2⨯-⨯+-………1分 =-8…………………………2分 (2)x x --=-⨯+-2)5(2)5(2………4分 x=3………5分 26、(1)m-n …………………………………1分 (2)2)(n m -,mn n m 4)(2-+……3分(2)ab b a b a 4)()(22-+=-………4分 4462⨯-=20=………………………5分27、(1)50…………………………………1分 (2)200×0.5+0.55(a-200)……2分 =0.55a-10………………………3分 (3)①当b ≤200时0.5b+0.5×200+(400-200)×0.55+0.8(700-b-400) …………4分 =-0.3b+450…………………………………5分②当200<b ≤400时0.5×200+0.55(b-200)+0.5×200+(400-200)×0.55+0.8(700-b-400)…6分 =-0.25b+440…………………………………7分。
苏科版七年级数学上册期中检测卷 (4).doc
第一学期期中考试七年级数学试题题号 1-12 13-20 21 22 23 24 25 26 27 28 总分 得分一.填空题;(每题2分,共24分)1.–2的相反数是________,_______5=-.2.绝对值最小的数__________,最大的负整数是__________.3.北京市某天的气温由早晨的零下2℃上升了9℃,傍晚又下降了3℃,这天傍晚北京的气温是______℃.4.计算:(1)-8+4= ; (2) -8-4= . 5.在数轴上,表示与-3的点距离为3的数是_________. 6.去括号,a+(-b-c)= ; a-(-b-c)= 7.已知代数式x +2y =-2,则代数式2x +4y +5= .8.已知4x 2m y m+n 与-3x 6y 2是同类项,则m =_____ _,n =_____ _。
9.单代数式-32a 2b 3c 的系数是 ,次数是 。
10.某种商品原价每件a 元,第一次降价是打八折(按原价的80%出售),第二次降价每件又减10元,这时的售价是____________元11、若│a │=3,│b │=2,a<0,ab 是正数,则a+b= .12、甲每天制造4个零件,乙每天制造3个零件,甲、乙分别已经做了6个和10个,问再过几天后两人所做的零件的个数相等?若设再过x 天后两人所做的零件个数相等,则可列方程二、选择题:(每题3分,共24分)13.在下列各数-(+3)、-22、-432、-(-1)、2007、-|-4|中,负数的个数是( )A .2B .3C .4D .514. 神舟七号飞船自2008年9月25日21时10分成功发射以来,共飞行2天20小时27分钟,绕地球飞行45圈,飞行总长度约为204万千米,用科学记数法表示飞行总长度的千米数是( )A .610204⨯ B. 41004.2⨯ C. 61004.2⨯ D. 510204⨯得分 评卷人得分 评卷人…………………密……………封……………线……………内……………不……………准……………答……………题……………………学校 班 级____________ 姓 名____________ 学 号___ ___15.某种细菌在培养过程中,每半小时分裂1次,每次一分为二.若这种细菌由1个经过3小时的分裂,结果细菌共有( )A .8个;B .16个;C .32.个; D. 64个.16.如图是一个简单的数值运算程序,当输入的x 的值为-1时,则输出的值为( )x 输入→( )2 →×(-3)→+2→输出A.1B. -5C.-1D.517.下列各式计算正确的是 ( )A .266a a a =+B .2a+b=2abC .222253ab a b ab -=-D .mn mn n m 22422=-18.A 种糖果每千克售价为x 元,B 种糖果每千克售价为y 元,A 种糖果a 千克和B 种糖果b 千克,混合后的糖果每千克售价为( ) A.y x b a ++ B.ab by ax + C.b a by ax ++ D.2yx + 19. 下列四组数分别是四名同学在同一张日历的某一列上各圈到的四个数,其中错误的一组数是( )A. (7,14,21,28 )B. (a ,a+1,a+2,a+3)C. (a-7,a ,a+7,a+14)D. (a-14,a-7,a ,a+7)20.数轴上标出若干个整数点,每相邻两点相距一个单位,点M ,N ,P ,Q 分别表示整数m ,n ,p ,q ,且q -2m=10,则原点O 在点( )的位置。
2024-2025学年苏科版七年级数学上册期中测试卷
2024-2025学年苏科版七年级数学上册期中测试卷1.的相反数为()A.6B.C.D.2.在数轴上,与表示数﹣1的点的距离是2的点表示的数是()A.1B.3C.±2D.1或﹣33.在2017年的“双11”网上促销活动中,某网站的交易额突破了3200000000元,将数字3200000000用科学记数法表示为()A.B.C.D.4.下列关于单项式的说法正确的是()A.系数是,次数是4B.系数是,次数是3C.系数是,次数是4D.系数是,次数是35.火车票上的车次号有两个意义,一是数字越小表示车速越快,1~98次为特快列车,101~198次为直快列车,301~398次为普快列车,401~498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京.根据以上规定,杭州开往北京的某一直快列车的车次号可能是()A.200B.119C.120D.3196.下列各式中,计算正确的是()A.(-9.2)-(-9.2)=-18.4B.5×(-32)=-45C.-23×(-2)2=32D.16÷×=17.如图,A、B两点在数轴上表示的数分别为a、b,以下结论:①a﹣b>0;②a+b<0;③(b﹣1)(a+1)>0;④.其中结论正确的是()A.①②B.③④C.①③D.①②④8.下列图形都是有几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,按此规律,图⑩中黑色正方形的个数是()A.32B.29C.28D.269.水果市场上鸭梨包装箱上印有字样:“”,有一箱鸭梨的质量为,则这箱鸭梨_________标准.(填“符合”或“不符合”)10.一只蚂蚁从数轴上一点出发,爬了个单位长度到了点,则点所表示的数是______.11.数轴上,若A,B表示互为相反数的两个点,A在B的左边,并且这两点的距离为8,则A点所表示的数是______.12.绝对值小于2.5的所有整数的积为_______.13.某种商品原价每件b元,第一次降价是打8折(按原价的出售),第二次降价每件又减10元,这时的售价用含b的代数式表示是______元.14.根据如图所示的运算程序,若输入x,y的值分别为,,则输出的值为______.15.若,,则的值为______.16.某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):生产量最多的一天比生产量最少的一天多生产______辆.星期一二三四五六日增减/辆17.一种新运算,规定有以下两种变换:①f(m,n)=(m,﹣n).如f(3,2)=(3,﹣2);②g(m,n)=(﹣m,﹣n),如g(3,2)=(﹣3,﹣2).按照以上变换有f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(5,﹣6)]等于_____.18.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上字母A,B,C,D,先将圆周上的字母A对应的点与数轴的数字1所对应的点重合,若将圆沿着数轴向左滚动.那么数轴上的-2018所对应的点将与圆周上字母_____所对应的点重合.19.把下列各数填入表示它所在的数集的大括号里:,,(每两个2之间依次增加一个1),0,,,正数集合:{...};负有理数集合:{...};整数集合:{...};无理数集合:{...}.20.把下列各数:-2.5,-12,,-(-3),0在数轴上表示出来,并用“<”把它们连接起来.21.计算:(1);(2);(3);(4).22.化简:(1);(2).23.已知(x ﹣3)2+=0,求式子2x 2+(-x 2﹣2xy+2y 2)-2(x 2﹣xy+2y 2)的值。
七年级数学上学期期中试卷含解析苏科版4
2016-2017学年江苏省无锡市女子一中七年级(上)期中数学试卷一、精心选一选(本题共8小题,每小题3分,共24分)1.﹣的相反数是()A.B.﹣ C.﹣2 D.22.下列式子,符合代数式书写格式的是()A.a÷3 B.2x C.a×3 D.3.下列各数:(﹣3)2,0,﹣(﹣)2,,(﹣1)2009,﹣22,﹣(﹣8),﹣|﹣|中,负数有()A.2个B.3个C.4个D.5个4.代数式:2x2、﹣3、x﹣2y、t、、m3+2m2﹣m,其中单项式的个数是()A.4个B.3个C.2个D.1个5.下列说法正确的是()A.平方等于本身的数是0和±1B.﹣a一定是负数C.绝对值等于它本身的数是0、1D.倒数等它本身的数是±16.某商店出售剃须刀和刀片,在新年之际举行促销活动,每把剃须刀可盈利30元,但每个刀片亏本元,在这次促销活动中,该商店售出的刀片数是剃须刀数的2倍,两种商品共获利5800元,设售出的剃须刀为x把,则可列得的一元一次方程为()A.×2x+30x=5800 B.+2×30x=5800C.﹣×2x+30x=5800 D.×2x﹣30x=58007.某商品价格a元,降低10%后,又降低了10%,销售量猛增,商店决定再提价20%,提价后这种商品的价格为()A.a元B.1.08a元C.0.972a元D.0.96a元8.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n值为正整数,最后输出的结果为656,则开始输入的n值可能有()A.1种B.2种C.3种D.4种二、细心填一填(本大题共12小题,每空2分,共28分)9.有关资料表明:被称为“地球之肺”的森林正以每年约15 680 000公顷的速度从地球上消失,每年的消失量用科学记数法表示应是.10.数轴上离表示﹣2的点的距离等于3个单位长度的点表的示数是.11.比较大小:;﹣|﹣2| ﹣(﹣2)(填“>”、“<”或“=”).12.多项式﹣x2+x﹣23中,最高次项为,常数项为.13.一个两位数,十位上的数字是a,个位上的数字比十位上的数字的2倍大3,则这个两位数是.14.若|m|=3,|n|=2,且<0,则m+n的值是.15.已知代数式a3﹣a的值是﹣2,则代数式2a3﹣2a﹣5的值为.16.对有理数a、b,规定运算如下:a※b=+,则﹣※2=.17.实数a,b,c在数轴上的对应点的位置如图所示,化简|b﹣c|+|c﹣a|﹣|b|的结果是.18.有一个整式减去(xy﹣4yz+3zx)的题目,小林误看成加法,得到的答案是2yz﹣3zx+2xy,那么原题正确的答案是.19.若关于x的多项式(x2﹣3x+1)(kx+2)展开合并同类项后,不含二次项,则k的值为.20.定义一种新运算:a※b=,则当x=3时,2※x﹣4※x的结果为.三、静心解一解21.画出数轴,并在数轴上表示下列各数,再用“<”号把各数连接起来:+2,﹣(+4),+(﹣1),|﹣|,﹣.22.计算:(1)﹣4﹣28﹣(﹣19)+(﹣24)(2)(3)(4)﹣12008﹣(﹣2)3﹣2×(﹣3)+|2﹣5|23.计算:(1)(3x+5x3﹣2x2)﹣(5x3﹣3x);(2)7x+2(x2﹣2)﹣4(x2﹣x+3).24.已知A=x2y﹣7xy2+2,B=﹣2x2y+4xy2﹣1,(1)求2A+B;(2)当x与y满足|x+1|+(y﹣)2=0时,请你求出(1)中的代数式的值.25.国庆前夕,我国首个空间实验室“天宫一号”顺利升空,同学们倍受鼓舞,开展了火箭模型制作比赛,如图为火箭模型的截面图,下面是梯形,中间是长方形,上面是三角形.(1)用a、b的代数式表示该截面的面积S;(2)当a=2cm,b=3cm时,求这个截面的面积.26.某商场购进一批西服,进价为每套250元,原定每套以290元的价格销售,这样每天可销售200套.如果每套比原销售价降低10元销售,则每天可多销售100套.该商场为了确定销售价格,作了如下测算,请你参加测算,并由此归纳得出结论(每套西服的利润=每套西服的销售价﹣每套西服的进价).(1)按原销售价销售,每天可获利润元.(2)若每套降低10元销售,每天可获利润元.(3)如果每套销售价降低10元,每天就多销售100套,每套销售价降低20元,每天就多销售200套.按这种方式:①若每套降低10x元,则每套的销售价格为元;(用代数式表示)②若每套降低10x元,则每天可销售套西服.(用代数式表示)③若每套降低10x元,则每天共可以获利润元.(用代数式表示)27.寻找公式,求代数式的值:从2开始,连续的偶数相加,它们的和的情况如表:(1)当n个最小的连续正偶数相加时,它们的和S与n之间的关系,用公式表示为.(2)并按此规律计算:①2+4+6+…+300的值;②162+164+166+…+400的值.28.阅读理解:如图,A、B、C为数轴上三点,若点C到A的距离是点C到B的距离的2倍,我们就称点C是[A,B]的好点.例如,如图1,点A表示的数为﹣1,点B表示的数为2.表示数1的点C到点A的距离是2,到点B的距离是1,那么点C是[A,B]的好点;又如,表示数0的点D到点A 的距离是1,到点B的距离是2,那么点D就不是[A,B]的好点,但点D是[B,A]的好点.知识运用:如图2,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.(1)数所表示的点是[M,N]的好点;(2)现有一只电子蚂蚁P从点N出发,以每秒2个单位的速度沿数轴向左运动,运动时间为t.当t为何值时,P、M、N中恰有一个点为其余两点的好点?2016-2017学年江苏省无锡市女子一中七年级(上)期中数学试卷参考答案与试题解析一、精心选一选(本题共8小题,每小题3分,共24分)1.﹣的相反数是()A.B.﹣ C.﹣2 D.2【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣的相反数是,故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.下列式子,符合代数式书写格式的是()A.a÷3 B.2x C.a×3 D.【考点】代数式.【分析】利用代数式书写格式判定即可【解答】解:A、a÷3应写为,B、2a应写为a,C、a×3应写为3a,D、正确,故选:D.【点评】本题主要考查了代数式,解题的关键是熟记代数式书写格式.3.下列各数:(﹣3)2,0,﹣(﹣)2,,(﹣1)2009,﹣22,﹣(﹣8),﹣|﹣|中,负数有()A.2个B.3个C.4个D.5个【考点】正数和负数.【分析】负数是小于零的数,由此进行判断即可.【解答】解:(﹣3)2=9,﹣(﹣)2=﹣,(﹣1)2009=﹣1,﹣22=﹣4,﹣(﹣8)=8,﹣|﹣|=,则所给数据中负数有:﹣(﹣)2、(﹣1)2009、﹣22、﹣|﹣|,共4个.故选C.【点评】本题考查了正数和负数的知识,解答本题的关键是掌握负数的定义.4.代数式:2x2、﹣3、x﹣2y、t、、m3+2m2﹣m,其中单项式的个数是()A.4个B.3个C.2个D.1个【考点】单项式.【分析】单项式就是数与字母的乘积,单独的数或字母是单项式,根据定义即可判断.【解答】解:只有2x2、﹣3、t、是单项式,一共有4个.故选:A.【点评】本题考查了单项式的定义,正确理解定义是关键.5.下列说法正确的是()A.平方等于本身的数是0和±1B.﹣a一定是负数C.绝对值等于它本身的数是0、1D.倒数等它本身的数是±1【考点】有理数的乘方;相反数;绝对值;倒数.【分析】根据平方、倒数以及绝对值的性质即可判断.【解答】解:A、平方等于本身的数是0和1,(﹣1)2=1,不是本身,故选项错误;B、当a=0时,﹣a=0不是负数,故选项错误;C、绝对值等于它本身的数是非负数,故选项错误;D、正确.故选D.【点评】本题考查了平方、倒数以及绝对值的性质,都是需要熟记的内容.6.某商店出售剃须刀和刀片,在新年之际举行促销活动,每把剃须刀可盈利30元,但每个刀片亏本元,在这次促销活动中,该商店售出的刀片数是剃须刀数的2倍,两种商品共获利5800元,设售出的剃须刀为x把,则可列得的一元一次方程为()A.×2x+30x=5800 B.+2×30x=5800C.﹣×2x+30x=5800 D.×2x﹣30x=5800【考点】由实际问题抽象出一元一次方程.【分析】利用售出的剃须刀的总盈利+售出的刀片的总盈利=两种商品共获利5800元,得出方程即可.【解答】解:设售出的剃须刀为x把,由题意得﹣×2x+30x=5800.故选:C.【点评】此题考查由实际问题抽象出一元一次方程,找出题目蕴含的数量关系是解决问题的关键.7.某商品价格a元,降低10%后,又降低了10%,销售量猛增,商店决定再提价20%,提价后这种商品的价格为()A.a元B.1.08a元C.0.972a元D.0.96a元【考点】列代数式.【专题】增长率问题.【分析】提价后这种商品的价格=原价×(1﹣降低的百分比)(1﹣百分比)×(1+增长的百分比),把相关数值代入求值即可.【解答】解:第一次降价后的价格为a×(1﹣10%)=0.9a元,第二次降价后的价格为0.9a×(1﹣10%)=0.81a元,∴提价20%的价格为0.81a×(1+20%)=0.972a元,故选C.【点评】考查列代数式,得到第二次降价后的价格是解决本题的突破点;得到提价后这种商品的价格的等量关系是解决本题的关键.8.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n值为正整数,最后输出的结果为656,则开始输入的n值可能有()A.1种B.2种C.3种D.4种【考点】代数式求值.【专题】图表型;规律型.【分析】根据运算程序列出方程,然后求解即可.【解答】解:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5,5n+1=5,解得n=(不符合),所以,满足条件的n的不同值有3个【点评】本题考查了代数式求值,读懂图表信息并理解运算程序是解题的关键.二、细心填一填(本大题共12小题,每空2分,共28分)9.有关资料表明:被称为“地球之肺”的森林正以每年约15 680 000公顷的速度从地球上消失,每年的消失量用科学记数法表示应是×107.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将15 680 000用科学记数法表示为:×107.故答案为:×107.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.数轴上离表示﹣2的点的距离等于3个单位长度的点表的示数是﹣5或1 .【考点】有理数的减法;数轴.【分析】此题可借助数轴用数形结合的方法求解.【解答】解:数轴上离表示﹣2的点的距离等于3个单位长度的点表示的数是﹣2+3=1;或﹣2﹣3=﹣5.【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.11.比较大小:>;﹣|﹣2| <﹣(﹣2)(填“>”、“<”或“=”).【考点】有理数大小比较.【分析】根据两个负数比较大小,其绝对值大的反而小即可比较﹣和﹣,先化简符号,再根据正数都大于负数比较即可.【解答】解:∵|﹣|=,|﹣|=,∴﹣>﹣,∵﹣|﹣2|=﹣2,﹣(﹣2)=2,∴﹣|﹣2|<﹣(﹣2),故答案为:>,<.【点评】本题考查了有理数的大小比较的应用,注意:正数都大于0,负数都小于0,正数都大于负数,两个负数比较大小,其绝对值大的反而小.12.多项式﹣x2+x﹣23中,最高次项为﹣x2,常数项为﹣23.【考点】多项式.【分析】多项式的次数是多项式中最高次项的次数,每一个单项式都是它的项,每一项的数字因数是该项的系数.【解答】解:多项式﹣x2+x﹣23中,最高次项为﹣x2,常数项为﹣23.故答案为:﹣x2,﹣23.【点评】本题考查了多项式的项,次数和各项的系数,是基础知识要熟练掌握.13.一个两位数,十位上的数字是a,个位上的数字比十位上的数字的2倍大3,则这个两位数是12a+3 .【考点】列代数式.【分析】两位数=十位数字×10+个位数字.【解答】解:十位数字为a,个位上的数字比十位上的数字的2倍大3,∴十位数字为2a+3,∴两位数为:1a+2a+3=12a+3,故答案为:12a+3.【点评】考查了列代数式的知识,解决问题的关键是读懂题意,找到所求的量的等量关系.14.若|m|=3,|n|=2,且<0,则m+n的值是﹣1或1 .【考点】绝对值.【分析】根据绝对值的性质,再根据题意可知mn有一个小于0,分别求出m与n的值,再代入m+n,即可得出结果.【解答】解:∵|m|=3,|n|=2,∴m=±3,n=±2,又∵<0,∴当m=3时,n=﹣2,m+n=1,当m=﹣3时,n=2,m+n=﹣1,故答案为:﹣1或1.【点评】本题主要考查了绝对值的性质,绝对值具有非负性,绝对值是正数的数有两个,且互为相反数,比较简单.15.已知代数式a3﹣a的值是﹣2,则代数式2a3﹣2a﹣5的值为﹣9 .【考点】代数式求值.【专题】整体思想.【分析】把a3﹣a看作一个整体并代入代数式进行计算即可得解.【解答】解:由题意得,a3﹣a=﹣2,∴2a3﹣2a﹣5=2(a3﹣a)﹣5=2×(﹣2)﹣5=﹣4﹣5=﹣9.故答案为:﹣9.【点评】本题考查了代数式求值,是基础题,整体思想的利用是解题的关键.16.对有理数a、b,规定运算如下:a※b=+,则﹣※2=.【考点】代数式求值;有理数的混合运算.【专题】新定义.【分析】根据运算规律先把﹣※2化为﹣+的形式,然后再通分即可.【解答】解:∵a※b=+,∴﹣※2=﹣+=﹣+=.故答案为.【点评】本题考查了代数式求值以及有理数的混合运算,解题的关键是熟练运用新定义,此题比较简单,易于掌握.17.实数a,b,c在数轴上的对应点的位置如图所示,化简|b﹣c|+|c﹣a|﹣|b|的结果是2c﹣a .【考点】整式的加减;绝对值;实数与数轴.【专题】计算题.【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:根据题意得:a<b<0<c,∴b﹣c<0,c﹣a>0,则原式=c﹣b+c﹣a+b=2c﹣a.故答案为:2c﹣a.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.18.有一个整式减去(xy﹣4yz+3zx)的题目,小林误看成加法,得到的答案是2yz﹣3zx+2xy,那么原题正确的答案是10yz﹣9zx .【考点】整式的加减.【专题】计算题.【分析】根据题意列出正确的算式,计算即可得到结果.【解答】解:根据题意得:(2yz﹣3zx+2xy)﹣2(xy﹣4yz+3zx)=2yz﹣3zx+2xy﹣2xy+8yz﹣6zx=10yz ﹣9zx.故答案为:10yz﹣9zx【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.19.(2016秋•崇安区校级期中)若关于x的多项式(x2﹣3x+1)(kx+2)展开合并同类项后,不含二次项,则k的值为.【考点】多项式乘多项式;合并同类项.【分析】根据多项式乘以多项式法则展开后,根据x2项的系数相等0可得出k的值.【解答】解:(x2﹣3x+1)(kx+2)=kx3+(2﹣3k)x2+(k﹣6)x+2∵不含二次项,∴2﹣3k=0∴k=,故答案为:.【点评】本题考查了多项式乘以多项式的法则的应用,关键是理解不含二次项则二次项系数为0.20.定义一种新运算:a※b=,则当x=3时,2※x﹣4※x的结果为8 .【考点】整式的加减—化简求值.【专题】计算题;新定义.【分析】原式利用已知的新定义化简,计算即可得到结果.【解答】解:当x=3时,原式=2※3﹣4※3=9﹣(4﹣3)=9﹣1=8,故答案为:8【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.三、静心解一解21.画出数轴,并在数轴上表示下列各数,再用“<”号把各数连接起来:+2,﹣(+4),+(﹣1),|﹣|,﹣.【考点】有理数大小比较;数轴.【分析】分别在数轴上表示出各数所在位置,再根据当数轴方向朝右时,右边的数总比左边的数大用“<”号把这些数连接起来即可.【解答】解:如图所示:用“<”号把各数连接起来为:﹣(+4)<﹣<+(﹣1)<+2<|﹣|.【点评】此题主要考查了数轴,以及有理数的比较大小,关键是掌握当数轴方向朝右时,右边的数总比左边的数大.22.计算:(1)﹣4﹣28﹣(﹣19)+(﹣24)(2)(3)(4)﹣12008﹣(﹣2)3﹣2×(﹣3)+|2﹣5|【考点】有理数的混合运算.【专题】计算题.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式从左到右依次计算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣4﹣28+19﹣24=﹣56+19=﹣37;(2)原式=﹣2××(﹣)×4=16;(3)原式=﹣45﹣35+70=﹣10;(4)原式=﹣1﹣(﹣8)﹣(﹣6)+3=﹣1+8+6+3=16.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.计算:(1)(3x+5x3﹣2x2)﹣(5x3﹣3x);(2)7x+2(x2﹣2)﹣4(x2﹣x+3).【考点】整式的加减;合并同类项;去括号与添括号.【分析】(1)根据整式加减运算顺序和计算法则计算即可;(2)先去括号,再合并同类项即可.【解答】解:(1)原式=3x+5x3﹣2x2﹣5x3+3x,=﹣2x2+6x;(2)原式=7x+2x2﹣4﹣2x2+4x﹣12=11x﹣16.【点评】以上两个题目都是考查了整式的加减运算,在运算时注意:(1)几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接;然后去括号、合并同类项.(2)整式的加减实质上就是合并同类项.24.已知A=x2y﹣7xy2+2,B=﹣2x2y+4xy2﹣1,(1)求2A+B;(2)当x与y满足|x+1|+(y﹣)2=0时,请你求出(1)中的代数式的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【专题】计算题.【分析】(1)将A与B代入2A+B中计算即可得到结果;(2)利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:(1)原式=2(x2y﹣7xy2+2)+(﹣2x2y+4xy2﹣1)=2x2y﹣14xy2+4﹣2x2y+4xy2﹣1=﹣10xy2+3;(2)由题意得:x=﹣1,y=,当x=﹣1,y=时,原式=﹣10×(﹣1)×()2+3=5.【点评】此题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.25.国庆前夕,我国首个空间实验室“天宫一号”顺利升空,同学们倍受鼓舞,开展了火箭模型制作比赛,如图为火箭模型的截面图,下面是梯形,中间是长方形,上面是三角形.(1)用a、b的代数式表示该截面的面积S;(2)当a=2cm,b=3cm时,求这个截面的面积.【考点】列代数式;代数式求值.【分析】(1)利用三角形的面积公式、梯形的面积公式、矩形的面积公式分别表示出各部分的面积,然后求和;(2)把a、b的值代入代数式求值即可.【解答】解:(1)S=2ab+2a2(2)当a=2cm,b=3cm时,S=2×2×3+2×22=20cm2【点评】本题考查了列代数式以及代数式求值,正确理解三角形的面积公式、梯形的面积公式、矩形的面积公式是关键.26.某商场购进一批西服,进价为每套250元,原定每套以290元的价格销售,这样每天可销售200套.如果每套比原销售价降低10元销售,则每天可多销售100套.该商场为了确定销售价格,作了如下测算,请你参加测算,并由此归纳得出结论(每套西服的利润=每套西服的销售价﹣每套西服的进价).(1)按原销售价销售,每天可获利润8000 元.(2)若每套降低10元销售,每天可获利润9000 元.(3)如果每套销售价降低10元,每天就多销售100套,每套销售价降低20元,每天就多销售200套.按这种方式:①若每套降低10x元,则每套的销售价格为290﹣10x 元;(用代数式表示)②若每套降低10x元,则每天可销售200+100x 套西服.(用代数式表示)③若每套降低10x元,则每天共可以获利润(40﹣10x)(200+100x)元.(用代数式表示)【考点】列代数式.【专题】销售问题.【分析】(1)根据利润=每件的获利×件数,利用(290﹣250)×200算出即可;(2)根据利润=每件的获利×件数,利用(280﹣250)×(200+100)算出即可;(3)①根据每套降低10x元,每套的销售价格为:(290﹣10x)元,②每套降低10x元,每天可销售(200+)套西服求出即可.③依据利润=每件的获利×件数,即可解决问题.【解答】解:根据题意得:依据利润=每件的获利×件数,(1)(290﹣250)×200=8000(元),(2)(280﹣250)×(200+100)=9000(元),(3)①∵每套降低10x元,∴每套的销售价格为:(290﹣10x)元,②∵每套降低10x元,∴每天可销售(200+100x)套西服.③∵每套降低10x元,∴每套的利润为:(290﹣10x﹣250)=(40﹣10x)元,每天可销售(200+100x)套西服.(40﹣10x)(200+100x),每天共可以获利润为:(40﹣10x)(200+100x),故答案为:(1)8000,(2)9000;(3)①290﹣10x,②200+100x,③(40﹣10x)(200+100x).【点评】此题主要考查了列代数式,正确表示出每件商品的利润和销量是解题关键.27.寻找公式,求代数式的值:从2开始,连续的偶数相加,它们的和的情况如表:(1)当n个最小的连续正偶数相加时,它们的和S与n之间的关系,用公式表示为S=n(n+1).(2)并按此规律计算:①2+4+6+…+300的值;②162+164+166+…+400的值.【考点】规律型:数字的变化类.【分析】(1)设第n个最小的连续正偶数相加的和为S n,根据给定的部分S n与n之间的关系可找出变化规律“S n=n(n+1)”,此题得解;(2)①代入n=150,求出S的值即可;②分别代入n=80和200求出S的值,二者做差即可得出结论.【解答】解:(1)设第n个最小的连续正偶数相加的和为S n,观察,发现:S1=2=1×2,S2=2+4=2×3,S3=2+4+6=3×4,S4=2+4+6+8=4×5,S5=2+4+6+8+10=5×6,…,∴S n=2+4+…+2n=n(n+1).故答案为:S=n(n+1).(2)①当n=150时,2+4+6+…+300=150×(150+1)=22650.②当n=80时,2+4+6+…+160=80×(80+1)=6480;当n=200时,2+4+6+…+400=200×(200+1)=40200.∴162+164+166+…+400=40200﹣6480=33720.【点评】本题考查了规律型中数字的变化类,根据给定的等式找出变化规律“S n=n(n+1)”是解题的关键.28.阅读理解:如图,A、B、C为数轴上三点,若点C到A的距离是点C到B的距离的2倍,我们就称点C是[A,B]的好点.例如,如图1,点A表示的数为﹣1,点B表示的数为2.表示数1的点C到点A的距离是2,到点B的距离是1,那么点C是[A,B]的好点;又如,表示数0的点D到点A 的距离是1,到点B的距离是2,那么点D就不是[A,B]的好点,但点D是[B,A]的好点.知识运用:如图2,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.(1)数2或10 所表示的点是[M,N]的好点;(2)现有一只电子蚂蚁P从点N出发,以每秒2个单位的速度沿数轴向左运动,运动时间为t.当t为何值时,P、M、N中恰有一个点为其余两点的好点?【考点】一元一次方程的应用;数轴.【专题】几何动点问题.【分析】(1)设所求数为x,根据好点的定义列出方程x﹣(﹣2)=2(4﹣x)或x﹣(﹣2)=2(x ﹣4),解方程即可;(2)根据好点的定义可知分两种情况:①P为【A,B】的好点;②P为【N,P】的好点.设点P表示的数为y,根据好点的定义列出方程,进而得出t的值.【解答】解:(1)设所求数为x,当好点在A、B的中间时,则:x﹣(﹣2)=2(4﹣x),解得x=2,当好点在B的右侧时,则:x﹣(﹣2)=2(x﹣4),解得x=10综上所述,数2或10所表示的点是[M,N]的好点.故答案为:2或10;(2)设点P表示的数为4﹣2t,①当P为【M,N】的好点时.PM=2PN,即6﹣2t=2×2t,t=1,②当P为【N,M】的好点时.PN=2PM,若P在M、N中间,则有2t=2(6﹣2t),t=2;若P在M点左侧,则2t=2(2t﹣6),t=6.③当M为【N,P】的好点时.MN=2PM.若P在M、N中点时,有6=2×2t,t=,若P在M点左侧时,有:6=2(2t﹣6),t=.④当M为【P,N】的好点时.MP=2MN,即2t﹣6=12,t=9,综上可知,当t=1,2,6,,,9时,P、M、N中恰有一个点为其余两点的好点.【点评】本题考查了一元一次方程的应用及数轴,解题关键是要读懂题目的意思,理解好点的定义,找出合适的等量关系列出方程,再求解.。
最新苏教版七年级数学上册期中试卷4(含答案)
最新苏教版七年级数学上册期中试卷4(含答案)最新苏教版七年级数学上册期中试卷(Ⅳ)考试时间90min;卷面满分120分一、选择题(每小题3分,共27分)1、在下列各数中,负数的个数是()A.2.B.3.C.4.D.52、下列各式最符合代数式书写规范的是()A.1b。
B.a×3.C.3x-1.D.2n3、下列各组的两个单项式为同类项的是()A.xyz与XXX与n。
C.5x3y2与7x2y3.D.5m2n与-4nm4、下列说法中正确的个数是()①a和都是单项式。
②多项式-3a2b+7a2b2-2ab+1的次数是3.③单项式-3πa2b的系数为-3.④x2+2xy-y2可读作x2、2xy、-y2的和。
A.1个。
B.2个。
C。
3个。
D.4个5、上等米每千克售价为x元,次等米每千克售价为y元,取上等米a千克和次等米b千克,混合后的大米每千克售价为()A。
a+bx+y。
B。
C。
D。
6、如果a b=,那么-34等于()A.。
B.-。
C.。
D.-7、近期,我国很多地区的猪肉价格不断上涨,我市某超市猪肉按原价上涨20%后,又提高m元,现售价为n元,那么该超市猪肉的原价为()A.(n-m)元。
B.(n+m)元。
C.(n-m)元。
D.(n+m)元8、数轴上标出若干个点,每相邻两点相距一个单位,点A,B,C,D分别表示整数a,b,c,d,且d-2a=10,则原点在()的位置。
A.点A。
B.点B。
C.点C。
D.点D9、如图,表示阴影部分面积的代数式是()A.ab+bc。
B.ad+c(b-d)。
C.c(b-d)+d(a-c)。
D.ab-cd二、填空题(每小题3分,共33分)10、被称为“地球之肺”的森林正以每年xxxxxxxx公顷的速度从地球上消失.这个数据用科学记数法表示为______________。
11、-1的相反数的倒数是__________。
12、计算:$(-2)^{-2}$ = __________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学校___________ 编号___________ 班级__________ 姓名_________________ 学号________ …………………………………………密……………………………………………封…………………………………………线……………………………………………2016~2017学年官林教学联盟第一学期期中考试七年级数学试卷(考试时间:100分钟 满分:100分)一、精心选一选(本大题共8小题,每空3分,共24分)1、-5的相反数是………………………………………………………………( ) A .15-B .15C .-5D .5 2、中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为…………………………………… ( ) A .6.75×104吨 B .6.75×103吨 C .0.675×105吨D .67.5×103吨3、下列代数式中a , -2ab ,x y +,x 4,22x y +,-1,2312ab c ,单项式共有…… ( ) A .6个 B .5 个 C .4 个 D .3个4、下列变形正确的是………………………………………………………( )A.若2x -3=7,那么2x =7-3B.若3x -2=x +1 ,则3x +x =1+2C.若-2x =5,那么x =5+2D.若131=-x ,那么x =-3 5、以下代数式书写规范的是-------------------------------------------------------------( ) A .(a +b )÷2 B .65y C .113x D .x +y 厘米 6、 大肠杆菌每过30分钟由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成的个数是……………………………………………………………… ( ) A 20个 B 32个 C 64 个 D 128 个7、下列说法中正确的个数有…………………………………………………………( ) ①0是绝对值最小的有理数; ②无限小数是无理数;③数轴上原点两侧的数互为相反数;④a ,0,1x 都是单项式; ⑤单项式 922xy -的系数为-2,次数是3;⑥ 1432-+-x y x 是关于x ,y 的三次三项式,常数项是-1. A 、2个 B 、3个 C 、4个 D 、5个8、某商品价格为a 元,根据销量的变化,该商品先降价10%,一段时间后又提价10%,提价后这种商品的价格与原价格a 相比………………………………………………( ) A .降低了0.01a B .降低了0.1a C .增加了0.01a D .不变二、细心填一填(本大题共有10小题,每.题.2分,共20分)9、 135-的绝对值是________,倒数是________. 10、比较大小:① 0_______-0.5 ,②-43_______ -54(用“>”或“<”填写)11、 平方得25的数为_______,______的立方等于-8. 12、 单项式323ab c π-的系数是_______,次数是______.13、如果2x 3y m与﹣8x n +6y 2是同类项,则m= ,n= . 14、若m 、n 满足|m ﹣2|+(n +3)2=0,则n m=______.15、已知代数式﹣6x +16与7x ﹣18的值互为相反数,则x = .16、 如图所示是计算机程序计算,若开始输入x =﹣1,则最后输出的结果是______.17、 若关于a ,b 的多项式3(a 2﹣2ab ﹣b 2)﹣(a 2+mab +2b 2)中不含有ab 项,则m =______ 18、 一组数:2,1,3,x ,7,y ,23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a ﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y 表示的数为 .三、认真答一答(本大题共9小题,满分56分). 19、计算:(本题每小题3分,共9分)(1))9()11()4()3(--+--+- (2)33(2)()424-⨯÷-⨯ (3)2611522⎛⎫---+⨯- ⎪⎝⎭20、化简:(本题每小题4分,共8分) (1)35(1)3(4)22m m m --+- 其中3m =-(2)已知:1,42-==-ab b a .试求代数式)625(2)74(ab a b ab b a +--++- 的值21、解方程:(本题每小题4分,共8分) (1)8y = −2(y − 5); (2)51121+-=-x x22、(本题共4分) 把下列各数按要求填入相应的大括号里:—10,4.5,—720, 0,—(—3),2.10010001…,-|-4|,—2π, 整数集合:{ … },分数集合:{ … }, 非负有理数集合:{ … },无理数集合:{ … }. 23、(本题共4分)已知方程6x ﹣9=10x ﹣45与方程3a ﹣1=3(x +a )﹣2a 的解相同,求a 的值.24、(本题共5分)有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b -c 0,a +b 0,c -a 0. (2)化简:| b -c|+|a +b|-|c -a |25、(本题共5分)若新规定这样一种运算法则:a※b=a2+2ab.例如3※(﹣2)=32+2×3×(﹣2)=﹣3.(1)试求(﹣2)※3的值;(2)若(﹣5)※x=﹣2﹣x,求x的值.26、(本题共6分)如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)你认为图②中的阴影部分的正方形的边长等于__________;(2)请用两种不同的方法列代数式表示图②中阴影部分的面积:方法①__________________;方法②__________________.(3)观察图②,你能写出(m+n)2,(m﹣n)2,mn这三个代数式之间的等量关系吗?(4)根据(3)题中的等量关系,解决如下问题:若a+b=6,ab=4,则求(a﹣b)2的值.27、(本题共7分)我省从2010年7月开始实施阶梯电价制,居民生活用电价格方案如下:例:若某用户2010年8月份的用电量为300度,则需缴交电费为:200×0.5+(300﹣200)×0.55=155(元).(1)填空:如果小华家2010年9月份的用电量为100度,则需缴交电费元;(2)如果小华家2010年10月份的用电量为a度(其中200<a≤400),则需缴交电费多少元?(用含a的代数式表示,并化简)(3)如果小华家2010年11、12两个月共用电700度(其中12月份的用电量达到“第3档”),设11月份的用电量为b度,则小华家这两个月共需缴交电费多少元?(用含b的代数式表示,并化简)2016~2017学年官林教学联盟第一学期期中考试七年级数学试卷答案一、选择:1、D2、A3、C4、D5、B6、C7、A8、A 二、填空:9、165,513-10、〉,〉 11、±5,-2 12、 3π- ,6 13、2,-3 14、9 15、2 16、-11 17、-6 18、-9 三、解答题:19、(1)解:原式=-3-4-11+9…………2分 (2)解:原式=2×23×34×4………2分 =-9……………………3分 =16………………………3分 (3)解:原式=-1-5+2×41…………2分 =215-…………………3分 20、(1)解:原式=m m m 31212523-++-…………2分=134+-m …………………………3分 当m=-3时原式=25………………………………4分 (2) 解:原式=-a+4b+7ab-10b+4a-12ab ………………1分 =3a-6b-5ab …………………………2分 =3(a-2b)-5ab ……………………………3分当a-2b=4,ab=-1时原式=17………………………………4分21、(1) 解:8y=-2y+10…………2分 (2) 解:5(x-1)=10-2(x+1)…………1分 10y=1o ……………3分 5x-5=10-2x-2……………2分 y=1……………4分 7x=13……………3分713=x ……………4分 22、整数集合:{—10,0,—(—3),-|-4|… },分数集合:{4.5,— 720… },非负有理数集合:{4.5,0,—(—3)… },无理数集合:{2.10010001…,—2π … }.23、 解:x=9……………………………………………2分把x=9代入方程得3a-1=3(9+a)-2a …………3分a=14…………………4分24、解:(1)<,<,>………………………3分 (2)原式=-b+c+(-a-b)-(c-a) …………4分 =-2b …………………………5分 25、(1)原式=3)2(2)2(2⨯-⨯+-………1分 =-8…………………………2分 (2)x x --=-⨯+-2)5(2)5(2………4分 x=3………5分 26、(1)m-n …………………………………1分 (2)2)(n m -,mn n m 4)(2-+……3分(2)ab b a b a 4)()(22-+=-………4分4462⨯-=20=………………………5分27、(1)50…………………………………1分 (2)200×0.5+0.55(a-200)……2分 =0.55a-10………………………3分 (3)①当b ≤200时0.5b+0.5×200+(400-200)×0.55+0.8(700-b-400) …………4分 =-0.3b+450…………………………………5分②当200<b ≤400时0.5×200+0.55(b-200)+0.5×200+(400-200)×0.55+0.8(700-b-400)…6分 =-0.25b+440…………………………………7分。