【初中数学】四川省成都市金牛区2013-2014学年下学期期末考试八年级数学试卷(解析版) 人教版
四川省成都市金牛区八年级下期末数学试题
(下)期末教学质量测评八年级数学A卷(100分)一、选择题(每小题3分,共30分)1. 下列式子是分式的个数是()2 .(1)(2)—(3)- b(4)竺」x-y x a-b 3A.4B.3C.2D.12. 下列由左到右的变形,属于因式分解的是()A. x 3 x-3 =x2-9B.C. x2-4+3x =(x+2 jx -2 )+3xD. x2+16=(x+4j3. 下列图形中,既是中心对称图形又是轴对称图形的是()B e Q QB C D4. 若代数式2017在实数范围内有意义,则实数x的取值范围是()x-3A.x v 3B.x > 3C.x=3D.x 丰 3A.4B.5C.6D.76. 在四边形ABCD中,对角线AC BD相交于点O,给出下列四组条件:①AB// CD AD// BC;②AB=CD AD=BC③AO=CO BO=DO④AB// CD AD=BC其中一定能判断这个四边形是平行四边形的共有()组A.3B.2C.1D.45. 一个多边形的内角和为540° ,则这个多边形的边数是()7. 如图,一次函数y=kx+b(k丰0)的图象经过A、B两点,则不等式kx+b > 0的解集是()A.x V 0B.0 v x v 1C.xD.x8. 菱形ABCD勺边长为4,有一个内角为60° ,则较长的对角线的长为(A. 4.3B.4C. 2 .、3D.29. 如图,在Rt△ ABC中,/ C=90° ,AC=3,将△ ABC沿CB向右平移得到△ DEF,若平移距离为2,则四边形ABED的面积等于()A.2B.6C.7D.1010. 如图,在厶ABC中,D、E分别是ABAC的中点,BC=12,F是DE上一点,连接AF、CF,DE=3DF, 若/ AFC=90 ,则AC的长度为()A.4B.5C.8D.10二、填空题(本大题共4个小题,每小题4 分,共16分)X2-411. 若分式 ----- 的值为0,贝U x的值为 _____________ .x-212. 代数式x2 +(m -1 xy +y2为完全平方公式,则m= ________ .13. 如图,平行四边形ABCD中,对角线AC与BD相交于点0.且AC丄AB,垂足为点A.若AB=12,AC=10,则BD的长为_________ .第13题第14题14. 如图,在厶ABC中,AB=AC,AC的垂直平分线分别交AB AC于点D E, / A=30° ,则/ DCB 的度数为________ .三、解答题(本大属共6个小题,共54分)15. 计算:(本小题满分12分,每题6分)(1)因式分解:ma3 12ma2 36max - 4v 2 x -1(2)解不等式组[• 2x,并把它的解集在数轴上表示出来x316. (本小题满分8分)先化简,再求值:齐1,其中x=、217. (本小题满分8分)已知:如图,菱形ABCD勺对角线AC BD相交于点0, BE// AC,DBC=Z BCE.18.(本小题满分8分)如图,△ ABC 的顶点的坐标分别是 A(-2,-4),B(0,-4),C(1,-1).(1)在图中画出将△ ABC 先向右平移4个单位,再向上平移5个单位后得到的 △ A 1B 1C 1,并写 出A 坐标。
2013-2014学年四川省成都市锦江区八年级(下)期末数学试卷
2013-2014学年四川省成都市锦江区八年级(下)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.>2.(3分)下列从左到右的变形是因式分解的是()A.(a+3)(a﹣3)=a2﹣9 B.x2+4x+10=(x+2)2+6C.x2﹣6x+9=(x﹣3)2D.x2﹣2x﹣1=x(x﹣2﹣)3.(3分)下列图中,中心对称图形的个数是()A.1个 B.2个 C.3个 D.4个4.(3分)把不等式组的解集表示在数轴上,正确的是()A. B.C.D.5.(3分)一个正多边形的每个外角都等于36°,那么它是()A.正六边形B.正八边形C.正十边形D.正十二边形6.(3分)当x=2时,下列各式的值为0的是()A.B. C.D.7.(3分)如图所示,DE是△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为()A.B.4 C.D.18.(3分)阅读下列材料:如果(x+1)2﹣9=0,那么(x+1)2﹣32=(x+1+3)(x+1﹣3)=(x+4)(x﹣2),则(x+4)(x﹣2)=0,由此可知:x1=﹣4,x2=2.根据以上材料计算x2﹣2x﹣1=0的根为()A.x1=1+,x2=1﹣B.x1=﹣1+,x2=11﹣C.x1=﹣1+,x2=1﹣D.x1=1+,x2=﹣1﹣9.(3分)如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC :S△ABC=1:3.A.1 B.2 C.3 D.410.(3分)如图,将一个有45°角的三角板的直角顶点放在一张宽为4cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()A.12cm B.8cm C.6cm D.8cm二、填空题(本大题共有4小题,每小题4分,共16分)11.(4分)m3﹣4m=.12.(4分)如图,在△ABC中,已知AC=27,AB的垂直平分线交AB于点D,交AC于点E,△BCE的周长等于40,则BC=.13.(4分)解关于x的方程若产生增根,则常数m的值等于.14.(4分)菱形OABC在平面直角坐标系中的位置如图所示.∠AOC=45°,OC=,则点B的坐标为.三、解答题(本大题共有2小题,共18分)15.(12分)(1)分解因式:4﹣m2+2mn﹣n2(2)解不等式组,并写出它的最大整数解.16.(6分)如图,在平行四边形ABCD中,如果AE∥CF,那么BE与DF有怎样的数量关系?请说明理由.四、解答题(共16分)17.(8分)先化简,再求值:÷(x+1﹣),其中x=﹣2.18.(8分)如图,在规格为8×8的正方形网格中建立平面直角坐标系,请在所给网格中按下列要求操作:(1)直接写出A、B两点的坐标;(2)在第二象限内的格点(网格线的交点)上画一点C,使点C与线段AB组成一个以AB为底的等腰三角形,且腰长是无理数,求C点坐标;(3)以(2)中△ABC的顶点C为旋转中心,画出△ABC旋转180°后所得到的△DEC,连接AE和BD,试判定四边形ABDE是什么特殊四边形,并说明理由.五、解答题(共20分)19.(10分)如图,直线l是一次函数y=kx+b的图象,点A、B在直线l上,根据图象回答下列问题:(1)求一次函数的解析式;(2)写出方程kx+b=0的解;(3)写出不等式kx+b>1的解集;(4)若直线l上的点P(a,b)在线段AB上移动,则a、b应如何取值?20.(10分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)当点O在AC上运动到何处时,四边形AECF为矩形?请说明理由;(3)当点O在AC上运动时,四边形BCFE能为菱形吗?请说明理由.六、填空题(每小题4分,共20分)21.(4分)已知ab=5,a﹣b=2,则代数式﹣a2b2+的值为.22.(4分)有五张正面分别标有数字﹣3,0,1,3,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,那么使得关于x的分式方程的解为正数的概率为.23.(4分)对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.1]=1,[3]=3,[﹣2.2]=﹣3,若[]=5,则x的取值范围是.24.(4分)顺次连接一矩形场地ABCD的边AB、BC、CD、DA的中点E、F、G、H,得到四边形EFGH,M为边EH的中点,点P为小明在对角线EG上走动的位置,若AB=10米,BC=米,当PM+PH的和为最小值时,EP的长为.25.(4分)如图,长方形ABCD中,AB=6,第1次平移将长方形ABCD沿AB的方向向右平移5个单位,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位,得到长方形A2B2C2D2…,第n次平移将长方形A n﹣1B n﹣1C n﹣1D n﹣1沿A n﹣1B n﹣1的方向平移5个单位,得到长方形A n B n C n D n(n>2),则AB n长为.七、解答题(8分)26.(8分)由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,返还顾客现金a元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a应取何值?九、解答题(8分)27.(10分)如图①,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A、C分别在DG和DE上,连接AE,BG,易得BG=AE 且BG⊥AE.(1)如图②,将正方形DEFG绕点D逆时针方向旋转α(0°<α≤360°),试猜想线段BG和AE的数量关系和位置关系,并说明理由.(2)将正方形DEFG绕点D逆时针方向旋转α(0°<α≤360°),①判断(1)中的结论是否仍然成立?请利用图③证明你的结论;②若BC=DE=6,当AE取最大值时,求AF的值.十、解答题(8分)28.(12分)四边形OABC在图1中的直角坐标系中,且OC在y轴上,OA∥BC,A、B两点的坐标分别为A(18,0),B(12,8),动点P、Q分别从O、B两点出发,点P以每秒2个单位的速度沿OA向终点A运动,点Q以每秒1个单位的速度沿BC向C运动,当点P停止运动时,点Q同时停止运动.动点P、Q运动时间为t(单位:秒).(1)当t为何值时,四边形PABQ是平行四边形,请写出推理过程;(2)如图2,线段OB、PQ相交于点D,过点D作DE∥OA,交AB于点E,射线QE交x轴于点F,PF=AO.当t为何值时,△PQF是等腰三角形?请写出推理过程;(3)如图3,过B作BG⊥OA于点G,过点A作AT⊥x轴于点A,延长CB交AT 于点T.将点G折叠,折痕交边AG、BG于点M、N,使得点G折叠后落在AT 边上的点为G′,求AG′的最大值和最小值.2013-2014学年四川省成都市锦江区八年级(下)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.>【解答】解:A、不等式两边都减3,不等号的方向不变,正确;B、乘以一个负数,不等号的方向改变,错误;C、不等式两边都加3,不等号的方向不变,正确;D、不等式两边都除以一个正数,不等号的方向不变,正确.故选:B.2.(3分)下列从左到右的变形是因式分解的是()A.(a+3)(a﹣3)=a2﹣9 B.x2+4x+10=(x+2)2+6C.x2﹣6x+9=(x﹣3)2D.x2﹣2x﹣1=x(x﹣2﹣)【解答】解:A、是整式的乘法,故A错误;B、没把一个多项式转化成几个整式积的形式,故B错误;C、把一个多项式转化成几个整式积的形式,故C正确;D、没把一个多项式转化成几个整式积的形式,故D错误;故选:C.3.(3分)下列图中,中心对称图形的个数是()A.1个 B.2个 C.3个 D.4个【解答】解:第1,2,3个图形是中心对称图形,共3个.故选:C.4.(3分)把不等式组的解集表示在数轴上,正确的是()A. B.C.D.【解答】解:,由①解得:x≤﹣1,由②解得:x<0,∴不等式组的解集为x≤﹣1,表示在数轴上,如图所示:.故选:A.5.(3分)一个正多边形的每个外角都等于36°,那么它是()A.正六边形B.正八边形C.正十边形D.正十二边形【解答】解:360÷36=10.故选:C.6.(3分)当x=2时,下列各式的值为0的是()A.B. C.D.【解答】解:A、当x=2时,x2﹣3x+2=0,由于分式的分母不能为0,故A错误;B、当x=2时,x﹣2=0,分式的分母为0,故B错误;C、当x=2时,2x﹣4=0,且x﹣9≠0;故C正确;D、当x=2时,原式=4≠0,故D错误;故选:C.7.(3分)如图所示,DE是△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为()A.B.4 C.D.1【解答】解:∵DE是△ABC的中位线,∴DE=BC=4,DE∥BC,∵∠AFB=90°,D为AB的中点,∴DF=AB=,∴EF=DE﹣DF=,故选:A.8.(3分)阅读下列材料:如果(x+1)2﹣9=0,那么(x+1)2﹣32=(x+1+3)(x+1﹣3)=(x+4)(x﹣2),则(x+4)(x﹣2)=0,由此可知:x1=﹣4,x2=2.根据以上材料计算x2﹣2x﹣1=0的根为()A.x1=1+,x2=1﹣B.x1=﹣1+,x2=11﹣C.x1=﹣1+,x2=1﹣D.x1=1+,x2=﹣1﹣【解答】解:x2﹣2x﹣1=0,(x﹣1)2﹣()2=1,(x﹣1+)(x﹣1﹣)=0,解得:x1=1+,x2=1﹣.故选:A.9.(3分)如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC :S△A.1 B.2 C.3 D.4【解答】解:①根据作图的过程可知,AD是∠BAC的平分线.故①正确;②如图,∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=30°,∴∠3=90°﹣∠2=60°,即∠ADC=60°.故②正确;③∵∠1=∠B=30°,∴AD=BD,∴点D在AB的中垂线上.故③正确;④∵如图,在直角△ACD中,∠2=30°,∴CD=AD,∴BC=CD+BD=AD+AD=AD,S△DAC=AC•CD=AC•AD.∴S△ABC=AC•BC=AC•AD=AC•AD,∴S△DAC :S△ABC=AC•AD:AC•AD=1:3.故④正确.综上所述,正确的结论是:①②③④,共有4个.10.(3分)如图,将一个有45°角的三角板的直角顶点放在一张宽为4cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()A.12cm B.8cm C.6cm D.8cm【解答】解:过点C作CD⊥AD,∴CD=3,在直角三角形ADC中,∵∠CAD=30°,∴AC=2CD=2×4=8,又∵三角板是有45°角的三角板,∴AB=AC=8,∴BC2=AB2+AC2=82+82=128,∴BC=8,故选:D.二、填空题(本大题共有4小题,每小题4分,共16分)11.(4分)m3﹣4m=m(m+2)(m﹣2).【解答】解:原式=m(m2﹣4)=m(m+2)(m﹣2).故答案为:m(m+2)(m﹣2).12.(4分)如图,在△ABC中,已知AC=27,AB的垂直平分线交AB于点D,交AC于点E,△BCE的周长等于40,则BC=13.【解答】解:∵DE是AB的垂直平分线,∴EA=EB,∵△BCE的周长等于40,即BC+BE+CE=40,∴BC+AE+CE=40,∴BC+AC=40,又AC=27,∴BC=13,故答案为:13.13.(4分)解关于x的方程若产生增根,则常数m的值等于﹣5.【解答】解:去分母得:x﹣6=m,由分式方程有增根,得到x﹣1=0,即x=1,把x=1代入整式方程得:m=﹣5,故答案为:﹣514.(4分)菱形OABC在平面直角坐标系中的位置如图所示.∠AOC=45°,OC=,则点B的坐标为(+1,1).【解答】解:由题意可得OA=OC=,∠AOC=45°,∴CD=0Csin45°=1,OD=OCcos45°=1,点C的坐标为(1,1),则点B的坐标为(+1,1).故答案为:(+1,1).三、解答题(本大题共有2小题,共18分)15.(12分)(1)分解因式:4﹣m2+2mn﹣n2(2)解不等式组,并写出它的最大整数解.【解答】解:(1)原式=4﹣(m﹣n)2,=(2﹣m+n)(2+m﹣n);(2)由不等式组,得,解①得:x>﹣6;解②得:x≤6,则原不等式组的解集是:﹣6<x≤6.所以这个不等式组的最大整数解为6.16.(6分)如图,在平行四边形ABCD中,如果AE∥CF,那么BE与DF有怎样的数量关系?请说明理由.【解答】解:BE=DF;理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴AF∥CE,∵AE∥CF,∴四边形AECF是平行四边形,∴CE=AF,∴BE=DF.四、解答题(共16分)17.(8分)先化简,再求值:÷(x+1﹣),其中x=﹣2.【解答】解:÷(x+1﹣)=÷[﹣]=÷=×=当x=﹣2时,原式==.18.(8分)如图,在规格为8×8的正方形网格中建立平面直角坐标系,请在所给网格中按下列要求操作:(1)直接写出A、B两点的坐标;(2)在第二象限内的格点(网格线的交点)上画一点C,使点C与线段AB组成一个以AB为底的等腰三角形,且腰长是无理数,求C点坐标;(3)以(2)中△ABC的顶点C为旋转中心,画出△ABC旋转180°后所得到的△DEC,连接AE和BD,试判定四边形ABDE是什么特殊四边形,并说明理由.【解答】解:(1)根据图示,点A和B的坐标分别是A(﹣2,4),B(﹣4,2).(2)点C的坐标是(﹣1,1),根据图示可得,腰长CB=CA=.是无理数,符合要求.(3)画出旋转后的图形如图所示,由于旋转180°,所以A、C、D共线,同理,B、C、E共线,根据题意知,AC=BC=CD=CE=,∴AD=BE,∴四边形ABDE是矩形.五、解答题(共20分)19.(10分)如图,直线l是一次函数y=kx+b的图象,点A、B在直线l上,根据图象回答下列问题:(1)求一次函数的解析式;(2)写出方程kx+b=0的解;(3)写出不等式kx+b>1的解集;(4)若直线l上的点P(a,b)在线段AB上移动,则a、b应如何取值?【解答】解:根据图示知,直线与x轴的交点A坐标为(﹣2,0),与y轴的交点的坐标为(0,1),且y随x的增大而增大.(1)由题意,得,解得,所以,该函数解析式为:y=x+1;(2)函数经过点(﹣2,0),则方程kx+b=0的根是x=﹣2;(3)函数经过点(0,1),则当x>0时,有kx+b>1,即不等式kx+b>1的解集是x>0;(4)线段AB的自变量的取值范围是:﹣2≤x≤2,当﹣2≤a≤2时,函数值y的范围是0≤y≤2,则0≤b≤2.20.(10分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)当点O在AC上运动到何处时,四边形AECF为矩形?请说明理由;(3)当点O在AC上运动时,四边形BCFE能为菱形吗?请说明理由.【解答】(1)证明:∵CE是∠ACB的平分线,∴∠1=∠2,∵MN∥BC,∴∠1=∠3,∴∠2=∠3,∴OE=OC,同理可证OC=OF,∴OE=OF;(2)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由是:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵CE平分∠ACB,CF平分∠ACG,∴∠ECF=∠ACB+∠ACG=(∠ACB+∠ACG)=90°,∴平行四边形AECF是矩形.(3)解:不可能.理由如下:如图,连接BF,∵CE平分∠ACB,CF平分∠ACG,∴∠ECF=∠ACB+∠ACG=(∠ACB+∠ACG)=90°,若四边形BCFE是菱形,则BF⊥EC,但在△DFC中,不可能存在两个角为90°,所以不存在其为菱形.六、填空题(每小题4分,共20分)21.(4分)已知ab=5,a﹣b=2,则代数式﹣a2b2+的值为10.【解答】解:∵ab=5,a﹣b=2,∴原式=ab(a2﹣2ab+b2)=ab(a﹣b)2=10,故答案为:1022.(4分)有五张正面分别标有数字﹣3,0,1,3,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,那么使得关于x的分式方程的解为正数的概率为.【解答】解:方程两边同乘以x﹣2,得:1﹣ax+2(x﹣2)=﹣1,解得:x=,∵使得关于x的分式方程的解为正数,∴2﹣a>0且≠2,解得:a<2且a≠1,∴使得关于x的分式方程的解为正数的a的值有:﹣3,0,∴使得关于x的分式方程的解为正数的概率为:.故答案为:.23.(4分)对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.1]=1,[3]=3,[﹣2.2]=﹣3,若[]=5,则x的取值范围是11≤x≤14.【解答】解:由[]=5,得,解得11≤x<14,故答案为11≤x<14.24.(4分)顺次连接一矩形场地ABCD的边AB、BC、CD、DA的中点E、F、G、H,得到四边形EFGH,M为边EH的中点,点P为小明在对角线EG上走动的位置,若AB=10米,BC=米,当PM+PH的和为最小值时,EP的长为m.【解答】解:∵点E、F、G、H分别为矩形ABCD的边AB、BC、CD、DA的中点,∴FH与EG互相垂直平分,∴四边形EFGH为菱形,H点与F点关于EG对称,连HF交EG于O点,连FM交EG于P′、连HP′,如图,则P′H=P′F,即P′H+P′M=FM,∴当动点P运动到点P′的位置时,PM+PH的和为最小值.∵AB=10,BC=10,∴AE=5,AH=5,∴EH==10,∴∠AHE=30°,∴∠EHF=60°,∴△EHF为等边三角形,而M为EH的中点,∴FM⊥EH,EM=5,在Rt△EMP′中,∠MEP′=30°,∴MP′=EM=,∴EP′=2MP′=,∴当PM+PH的和为最小值时,EP的长为m.故答案为m.25.(4分)如图,长方形ABCD中,AB=6,第1次平移将长方形ABCD沿AB的方向向右平移5个单位,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位,得到长方形A2B2C2D2…,第n次平移将长方形A n﹣1B n﹣1C n﹣1D n﹣1沿A n﹣1B n﹣1的方向平移5个单位,得到长方形A n B n C n D n(n>2),则AB n长为5n+6.【解答】解:每次平移5个单位,n次平移5n个单位,即BN的长为5n,加上AB的长即为AB n的长.AB n=5n+AB=5n+6,故答案为:5n+6.七、解答题(8分)26.(8分)由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,返还顾客现金a元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a应取何值?【解答】解:(1)设今年甲型号手机每台售价为x元,由题意得,=.解得x=1500.经检验x=1500是方程的解,且符合题意.故今年甲型号手机每台售价为1500元.(2)设购进甲型号手机m台,由题意得,17600≤1000m+800(20﹣m)≤18400,8≤m≤12.因为m只能取整数,所以m取8、9、10、11、12,共有5种进货方案.(3)设总获利W元,购进甲型号手机m台,则W=(1500﹣1000)m+(1400﹣800﹣a)(20﹣m),W=(a﹣100)m+12000﹣20a.所以当a=100时,(2)中所有的方案获利相同.九、解答题(8分)27.(10分)如图①,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A、C分别在DG和DE上,连接AE,BG,易得BG=AE 且BG⊥AE.(1)如图②,将正方形DEFG绕点D逆时针方向旋转α(0°<α≤360°),试猜想线段BG和AE的数量关系和位置关系,并说明理由.(2)将正方形DEFG绕点D逆时针方向旋转α(0°<α≤360°),①判断(1)中的结论是否仍然成立?请利用图③证明你的结论;②若BC=DE=6,当AE取最大值时,求AF的值.【解答】解:(1)连接AD.如图1,∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.∴∠ADB=90°,且BD=AD.∵∠BDG=∠ADB﹣∠ADG=90°﹣∠ADG=∠ADE,DG=DE.∴△BDG≌△ADE,∴BG=AE;∴∠DEA=∠DGB,∵∠DEA+∠DNE=90°,∠DNE=∠MNG,∴∠MNG+DGB=90°,AE⊥BG;(2)成立;连接AD,∵Rt△BAC中,D为斜边BC的中点,∴AD=BD,AD⊥BC,∴∠ADG+∠GDB=90°,∵EFGD为正方形,∴DE=DG,且∠GDE=90°,∴∠ADG+∠ADE=90°,∴∠BDG=∠ADE,△BDG和△AED中,BD=AD∠BDG=∠ADEGD=ED∴△BDG≌△ADE(SAS),∴BG=AE;∠AED=∠BGD,∴∠BGD+DMG=90°,∠DMG=∠EMN∴∠EMN+∠AED=90°,∴BG⊥AE;②∵BG=AE,∴当BG取得最大值时,AE取得最大值.如图2,当旋转角为270°时,BG=AE.∵BC=DE=EF=6,∴BG=3+6=9.∴AE=9.在Rt△AEF中,由勾股定理,得,AF===3十、解答题(8分)28.(12分)四边形OABC在图1中的直角坐标系中,且OC在y轴上,OA∥BC,A、B两点的坐标分别为A(18,0),B(12,8),动点P、Q分别从O、B两点出发,点P以每秒2个单位的速度沿OA向终点A运动,点Q以每秒1个单位的速度沿BC向C运动,当点P停止运动时,点Q同时停止运动.动点P、Q运动时间为t(单位:秒).(1)当t为何值时,四边形PABQ是平行四边形,请写出推理过程;(2)如图2,线段OB、PQ相交于点D,过点D作DE∥OA,交AB于点E,射线QE交x轴于点F,PF=AO.当t为何值时,△PQF是等腰三角形?请写出推理过程;(3)如图3,过B作BG⊥OA于点G,过点A作AT⊥x轴于点A,延长CB交AT 于点T.将点G折叠,折痕交边AG、BG于点M、N,使得点G折叠后落在AT 边上的点为G′,求AG′的最大值和最小值.【解答】解:(1)∵OA∥BC,∴PA∥BQ,当PA=BQ时,四边形PABQ是平行四边形,BQ=t,OP=2t,∵A(18,0),∴PA=18﹣2t,∴t=18﹣2t,解得:t=6,∴当t为6时,四边形PABQ是平行四边形;(2)过Q作QH⊥OF于H,如图1所示:分三种情况:①当FP=FQ时,∵PF=AO=18,∴FQ=18,BQ=t,∴CQ=OH=12﹣t,∴PH=12﹣3t,∴FH=3t+6,在Rt△QHF中,由勾股定理得:QH2+FH2=FQ2,∴82+(3t+6)2=182,解得:t1=,t2=(不合题意舍去);②当PF=PQ时,PQ=PF=18,在Rt△PQH中,由勾股定理得:PQ2=PH2+QH2,∴(12﹣3t)2+82=182,解得:t1=(不合题意舍去),t2=(不合题意舍去);③当PQ=FQ时,PH=FH,∴12﹣3t=6+3t,解得:t=1;综上所述,当t=1或t=时,△PQF是等腰三角形;(3)当折痕经过点A时,如图2所示:AG=AG′=6,此时AG′为最大值;当折痕经过点B,另一点在AG上时AG′最小,如图3所示:此时,BG=BG′=8,∵BT=6,∴在Rt△BG′T中,TG′==2,∴AG′=8﹣2;综上所述:AG′的最大值与最小值分别是6,8﹣2.。
2013-2014学年八年级下学期期末考试数学试题
绝密★启用前 试卷类型:A2013-2014学年八年级下学期期末考试数学试题 (满分120分,考试时间120分钟) 第Ⅰ卷(选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来。
每小题选对得3分,选错、不选或选出的答案超过一个均记零分。
1. 下列图形中,是中心对称图形,但不是轴对称图形的是( )A .B .C .D .2. 下列计算正确的是(A )228=- (B )31227-=49-=1(C )1)52)(52(=+- (D )23226=-32x -x 的取值范围是( ) A .x >0 B .x≥-2 C .x≥2 D .x≤24.下列方程中是关于x 的一元二次方程的是( )A .x2+21x =0 B .ax2+bx+c=0C .(x-1)(x+2)=1D .3x2-2xy-5y2=05.东营市5月下旬11天中日最高气温统计如下表: 日期21 22 23 24 25 26 27 28 29 30 31 最高气温(℃)2222202322252730262427则这11天永州市日最高气温的众数和中位数分别是( ) A .22,25 B .22,24 C .23,24 D .23,25 6.不能判定一个四边形是平行四边形的条件是( )A .两组对边分别平行B .一组对边平行另一组对边相等C .一组对边平行且相等D .两组对边分别相等7.在下图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是 (A )点A(B )点B (C )点C (D )点D 8.方程x (x-2)+x-2=0的解是( )A BCDMP P 1 11(第7题图)(第12题)A B CD N M NM D CB A A .2 B .-2,1C .-1D .2,-19.如图,在平行四边形ABCD 中,过点C 的直线CE ⊥AB ,垂足为E ,若∠EAD=53°,则∠BCE 的度数为( ) A .53° B .37° C .47° D .123°10. 若方程01032=+-m x x 有两个同号不等的实数根,则m 的取值范围是(A )M≥0 (B )0>m (C )0<M<325 (D )m <0≤32511.如图,E 、F 分别是正方形ABCD 的边BC 、CD 上的点,BE=CF ,连接AE 、BF . 将△ABE 绕正方形的对角线交点O 按顺时针方向旋转到△BCF ,则旋转角是( ) A .45° B .60° C .90° D .120°12.在△MBN 中, BM =6,点A ,C ,D 分别在MB ,NB ,MN 上, 四边形ABCD 为平行四边形,∠NDC =∠MDA ,□ABCD 的周长是 (A )24 (B )18 (C )16 (D )12第Ⅱ卷(非选择题 共84分)二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分. 13.四边形ABCD 是平行四边形,请补充条件 (写一个即可),使四边形ABCD 是矩形。
2013-2014学度年第二学期期末质量检测八年级数学试卷
2013-2014学度年第二学期期末质量检测八年级数学试卷注意事项:1.本试卷考试时间为100分钟,试卷满分120分,考试形式闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1. 要使分式51x+有意义,则x的取值范围是x≠1B.x>1 C.x<1 D.x≠-12. 给甲乙丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率为A.12B.13C.16D.233. 如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于A.5:8 B.3:8 C.3:5 D.2:54. 下列4个点,不在反比例函数y=6x-图象上的是A.(2,-3)B.(-3,2)C.(3,-2)D.(3,2)5. 一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为A.5 B.5或6 C.5或7 D.5或6或76. 若y是x的反比例函数,那么x是y的A.正比例函数B.一次函数C.反比例函数D.二次函数7. 美是一种感觉,当人体的下半身长与身高的比值越接近0.618时越给人一种美感.已知某女士身高160cm,下半身长与身高的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度约为A.6cm B.10cm C.4cm D.8cm8. 如图,矩形ABCD的边分别与两坐标轴平行,对角线AC经过坐标原点,点D在反比例函数y=2510k kx-+(x>0)的图象上.若点B的坐标为(-4,-4),则k的值为A.2 B.6 C.2或3 D.-1或6二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上)不等式2x<4x-6的解集为▲ .10. 在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是▲ .命题“等腰三角形两底角的平分线相等”的逆命题是▲ .12. 将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为▲ .13. 当x= ▲ _.某同学借了一本书,共280页,要在两周借期内读完,当他读了一半时,发现平时每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x页,则x满足的方程是▲ .15. 将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为▲ .16. a,b,c为△ABC的三边,且分式无意义,则△ABC为▲ 三角形.如图所示,正方形OEFG和正方形ABCD是位似图形,点F的坐标为(-1,1),点C 的坐标为(-4,2),则这两个正方形位似中心的坐标是▲ .如图,O为矩形ABCD的中心,M 为BC边上一点,N为DC边上一点,ON⊥OM,若AB=6,AD=4,设OM=x,ON=y,则y与x的函数关系式为▲ .分.请在答题卡指定区域内作答,解答时应写出19. (本题满分5分)解方程:111224xx x++=--20. (本题满5分)计算:)0,0a b⎛>>⎝222abca b c ab bc ac++---(第8题图) (第17题图)B(第18题图)OMNCDA21. (本题满6分)如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC 就是格点三角形.在建立平面直角坐标系后,点B 的坐标为(-1,-1).(1)把△ABC 向左平移8格后得到△A1B1C1,画出△A1B1C1的图形并写出点B1的坐标;(2)在如图的方格纸中把△ABC 以点B 为位似中心缩小,使缩小前后的位似比为2:1,画出△AB2C2.22. (本题满8分)2012年1月15日,广西龙江河发生严重的重金属镉污染事件.据专家介绍,重金属镉具有毒性,长期过量接触镉会引起慢性中毒,影响人体肾功能.为了解这次镉污染的程度,国务院派出的龙江河调查组抽取上层江水制成标本a1、a2,抽取中层江水制成标本b1、b2,抽取下层江水制成标本c1、c2.(1)若调查组从抽取的六个样本中送选两个样本到国家环境监测实验室进行检验,求刚好选送一个上层江水标本和一个下层江水标本的概率;(2)若每个样本的质量为500g ,检测出镉的含量(单位:mg )分别为:0.3、0.2、0.7、0.5、 0.3、0.4,请算出每500g 河水样本中金属镉的平均含量;(3)据估计,受污染的龙江河河水共计2500万吨,请根据(2)的计算结果,估算出2500万吨河水中含镉量约为多少吨?(本题满8分)试用举反例的方法说明下列命题是假命题.举例:如果ab <0,那么a+b <0反例:设a=4,b=-3,ab=4×(-3)=-12<0,而a+b=4+(-3)=1>0所以,这个命题是假命题.A B C O y x如果a+b >0,那么ab >0;反例: ▲ .(2)如果a 是无理数,b 是无理数,那么a+b 是无理数.反例: ▲ .(3)两个三角形中,两边及其中一边的对角对应相等,则这两个三角形全等.反例: (画出图形,并加以说明)24. (本题满8分)如图,在平面直角坐标系内,已知OA =OB =2,∠AOB =30°.(1)点A 的坐标为( ▲ , ▲ );(2)将△AOB 绕点O 顺时针旋转a 度(0<a<90).①当a =30时,点B 恰好落在反比例函数y =kx (x>0)的图象上,求k 的值;②在旋转过程中,点A 、B 能否同时落在上述反比例函数的图象上,若能,求出a 的值;若不能,请说明理由.25. (本题满6分) 如图,某一时刻垂直于地面的大楼AC 的影子一部分在地上知坡角,∠DBE =45°,BC =20米,BD=1米的标杆的影长恰好也为1米,求大楼的高度AC .(本题满10分)如图1,已知直线y =-2x +4与两坐标轴分别交于点A 、B ,点C 为线段OA 上一动点,连结BC ,作BC 的中垂线分别交OB 、AB 交于点(l)当点C 与点O 重合时,DE = ▲ ; B E(2)当CE∥OB时,证明此时四边形BDCE为菱形;(3)在点C的运动过程中,直接写出OD的取值范围.(本题满10分)如图①,将直角梯形OABC放在平面直角坐标系中,已知OA=5,OC=4,BC∥OA,BC =3,点E在OA上,且OE=1,连结OB、BE.(1)求证:∠OBC=∠ABE;(2)如图②,过点B作BD⊥x轴于D,点P在直线BD上运动,连结PC、P、PA和CE.①当△PCE的周长最短时,求点P的坐标;②如果点P在x轴上方,且满足S△CEP:S△ABP=2:1,求DP的长.(本题满10分)探究与应用:在学习几何时,我们可以通过分离和构造基本图形,将几何“模块”化.例如在相似三角形中,K字形是非常重要的基本图形,可以建立如下的“模块”(如图①):(1)请就图①证明上述“模块”的合理性;(2)请直接利用上述“模块”的结论解决下面两个问题:①如图②,已知点A(-2,1),点B在直线y=-2x+3上运动,若∠AOB=90°,求此时点B的坐标;②如图③,过点A(-2,1)作x轴与y轴的平行线,交直线y=-2x+3于点C、D,求点A 关于直线CD的对称点E的坐标.。
3(学生)成都市2013-2014年八下期末考试题 3北师大版
2013—2014学年度八年级数学下期期末综合素质测评3A 卷(共100分) 第Ⅰ卷(选择题,共30分)一、选择题(每小题3分,共30分)1.解分式方程可能产生增根,下列步骤中,可能产生增根的是( )A.去分母 ,两边同时乘以一个含未知数的整式B.去括号C.移项,合并同类项D.检验,将所求的根代入原方程 2、要使分式11+x 有意义,x 应满足的条件是( ) ( ) (A )1-≠x (B )0≠x (C ) 1≠x (D )1>x3、计算:ba ab 22)(-的结果是( ) ( B ) (A )a (B )b (C ) b - (D ) 1 4、如图,在△ABC 中,D 、E 分别是BC 、AC 边的中点. 若DE =3,则AB 的长度是( )A .9B .5C .6D .4 5、下列命题是真命题的是 ( )(A)相等的角是对顶角 (B)两直线被第三条直线所截,内错角相等(C)若n m n m ==则,22(D)一条直角边和斜边对应成比例的两个直角三角形相似. 6、如图,在Rt ⊿ACB 中,∠ACB = 90º,CD ⊥AB 于D ,则图中相似的三角形有 ( ) (A )4对 (B )3对 (C )2对 (D )1对7.已知下列四个选项中分式的分母都不等于0,对下列各分式的变形,一定正确的是( )A.22ba b a = B.xb x a b --=a C.bm a m b a ++= D.bmam b a = 8、下列一元二次方程中,无实根的是( )A. 2440x x -+= B. 2(2)1x -=C. 2x x =- D. 2220x x -+=9、如图,点C 是线段AB 的黄金分割点)(BC AC >,下列结论错误的是( ) A.ACBC AB AC = B.2BC AB AC =⋅C.215-=AB ACD.618.0≈ACBC10、若2y -7x =0,则x ∶y 等于( )A.2∶7B. 4∶7C. 7∶2D. 7∶4 11、下列多项式能因式分解的是( ) A.x 2-y B.x 2+1 C.x 2+xy +y 2 D.x 2-4x +412、化简y x y x --22的结果( )A.x+yB.x- yC.y- xD.- x- y第Ⅱ卷(非选择题,共70分)二、 填空(每小题4分,共16分) 13.分解因式:3x y xy -= .把代数式xy 2-9x 分解因式,结果是_____________14、三角尺在灯泡O 的照射下在墙上形成影子(如图所示),现测得cm OA 20=,cm AA 30'=,这个三角尺的周长与它在 墙上形成的影子的周长的比是___ _ __15某中学校园内设计修建一个正六边形花坛,设计图的比例尺是1∶100,图上的正六 边形和实际的正六边形是相似的,它们的相似比是________,面积比是________.16、若1x =-是关于x 的方程2210x ax +-=的一个根,则a =_______.;三、(第15题每小题6分,第16题6分,共18分) 17.(1)解分式方程: 1131=+--x x x(2)解不等式组46,1(3)22x x +≤⎧⎪⎨->-⎪⎩ ,并写出该不等式组的整数解.(3)解不等式组⎪⎩⎪⎨⎧.3)4(21,012<+>-x x 并把解集在数轴上表示出来.PM 2.5浓度升高时对于户外活动公众的态度的条形统计图四、(每小题8分,共16分)18、“2012年度中国十大科普事件”今年4月份揭晓,“PM 2.5被写入‘国标’,大气环境质量广受瞩目”名列榜首.由此可见,公众对于大气环境质量越来越关注,某市对该市市民进行一项调查,以了解PM 2.5浓度升高时对人们户外活动是否有影响,并制作了统计图表的一部分如下:(1)结合上述统计图表可得:p = ,m = ; (2)参加此次调查的总人数 人; (3)根据以上信息,请直接补全条形统计图;PM 2.5浓度升高时对于户外活动公众的态度的扇形统计图PM 2.5浓度升高时对于户外活动 公众的态度的统计表(4)若该市约400万人,根据上述信息,请你估计一下持有“影响很大,尽可能不去户外活动”这种态度的约有多少万人.(说明:“PM2.5”是指大气中危害健康的直径小于2.5微米的颗粒物,也称可入肺颗粒物)19、小明想测量在太阳光下一栋楼高,他设计了一种测量方案如下:如图,小明站到点E处时,刚好使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同。
2013-2014学年八年级下期末考试数学试题及答案
八年级数学第1 页共6 页2013-2014学年度(下)八年级期末质量检测数学(满分:150分;考试时间:120分钟) 注意:本试卷分为“试题”和“答题卡”两部分,答题时请按答题卡中的“注意事项”要求认真作答,答案写在答题卡上的相应位置.一、精心选一选:本大题共8小题,每小题4分,共32分.1、下列计算正确的是()A .234265+=B .842=C .2733¸=D .2(3)3-=-2、顺次连接对角线相等的四边形的各边中点,所得图形一定是()A .矩形B .直角梯形C .菱形D .正方形3、甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为0.56s =2甲,0.60s =2乙,20.50s =丙,20.45s =丁,则成绩最稳定的是()A .甲B .乙C .丙D .丁4、一组数据4,5,6,7,7,8的中位数和众数分别是()A .7,7 B .7,6.5 C .5.5,7 D .6.5,7 5、若直线y=kx+b 经过第一、二、四象限,则k,b 的取值范围是()(A) k>0, b>0 (B) k>0,b<0 (C) k<0,b>0 (D) k<0,b<0 6、如图,把直线L 沿x 轴正方向向右平移2个单位得到直线L ′,则直线L /的解析式为()A.12+=x yB. 42-=x yC. 22y x =- D. 22+-=x y 7、如图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为()(A )4 cm (B )5 cm (C )6 cm (D )10 cm A第7题BCDEEDCBA(第8题A B C D E F 8、如图,ABC D 和DCE D 都是边长为4的等边三角形,的等边三角形,点点B 、C 、E 在同一条直线上,连接BD ,则BD 的长为(的长为( )(A )3(B )23(C )33(D )43二、细心填一填:本大题共8小题,每小题4分,共32分.分. 9、计算123-的结果是的结果是 . 10、实数p 在数轴上的位置如图所示,化简22(1)(2)_______p p -+-=。
(学生)成都市2013-2014年八下学期期末考试试题4 北师大版
成都市2013-2014年八年级下期期末测试卷数学4(说明:本试卷满分100分.考试时间90分钟.)一、填空题:(每空2分,共30分)1. 看图填空:(1)x =_____;(2)y = _______;(3)z = ______;(4) m =_______.32m2233302049xy613859106Z ABCD2. 如图所示:∠A=50°,∠B=30°,∠BDC=110°, 则∠C=______°;3.若分式23xx-的值为正数,则x 应满足的条件是___________________________. 4.当x=1时,分式nx mx -+2无意义,当x=4分式的值为零, 则n m +=__________.5.两个相似三角形面积比为2,周长比为K ,则k2=__________.6.若用一个2倍放大镜去看△ABC ,则∠A 的大小______;面积大小为______.7.如图,点C 是线段AB 的黄金分割点,AC=2, 则AB·BC=____.AB C8.某超市从厂家以每件21元的价格购进一批商品,该超市可以自行定价,但物价局限定每件商品加价不能超过售价的20%,则这批商品的售价不能超过____________元. 9、若有关x 的分式方程3011x a x x --=--无解,则实数a 的值是___ 10. 若4x - 3y = 0, 则yyx +=___________. 11.已知三个数1,2,2,请你再添上一个数,使它们构成一个比例式,这个数是_______. 12.若错误!未找到引用源。
, 则错误!未找到引用源。
;若错误!未找到引用源。
, 则错误!未找到引用源。
.13.当x 时,分式错误!未找到引用源。
无意义;当x 时,分式错误!未找到引用源。
有意义。
1(1)图. 1(2)图. 1(3)图. 1(4)图. 2题图 °° °°°14、如图,在△ABC 中,内角平分线BP 和外角平分线CP 相交于点P ,若∠BAC =50°,则∠P =_°16、如图,在Rt △ABC 中,AB =BC ,∠ABC =90°,点D 是A B 的中点,连接CD ,过点B 作BG ⊥CD ,分别交CD 、CA 于点E ,F ,与过点A 且垂直于AB 的直线相交于点G ,连接DF ,给出以下四个结论:则其中正确的结论序号是_____二、选择题:(每小题2分,共20分)题号 12345678910答案1.在相同时刻物高与影长成比例,如果高为1米的测竿的影长为80厘米,那么影长为9.6米的旗杆的高为( )(A).15米; (B).13米; (C).12米; (D).10米.2.商品的原售价为m 元,若按该价的8折出售,仍获利n%,则该商品的进价为( )元. (A).0.8m ×n%; (B).0.8m (1 + n%); (C).%18.0n m +; (D).%8.0n m.3、若多项24x mx ++能用完全平方公式分解因式,则m 的值可以是( ) A 、4 B 、-4 C 、±2 D 、±44.下列命题是真命题的是( ) (A) .相等的角是对顶角; (B). 两直线被第三条直线所截,内错角相等; (C).若n m n m ==则,22; (D). 有一角对应相等的两个菱形相似.5. 若16)3(22+-+x m x 是完全平方式,则m 的值是( ) (A).-1; (B).7; (C).7或-1; (D).5或1.6. 下列长度的各组线段中,能构成比例的是( )(A)2,5,6,8; (B)3,6,9,18; (C)1,2,3,4; (D)3,6,7,9.7.如图,1l 反映的是某公司产品的销售收入与销售量的关系,2l 反映的该公司产品的销售成本与销售量的关系,根据图象判断该公司盈利时销售量为( )(A).小于4件; (B). 等于4件;(C). 大于4件; (D) 大于或等于4件. 8.解关于x 的方程113-=--x mx x 产生增根,则常数m 的值等于( ) (A).-1; (B).-2; (C).1; (D).2.9.有旅客m 人,如果每n 个人住一间客房,还有一个人无房间住,则客房的间数为( ) (A)n m 1-; (B)n m 1+; (C).n m - 1; (D). nm+ 1. 10、下列分式运算正确的是( )三、(4')根据题意填充理由:已知:如左下图所示,∠1 = ∠2 . 求证:∠3 + ∠4 = 180°.证明:∵ ∠5 = ∠2 .( ). 又 ∠1 = ∠2. (已知).∴ ∠5 = ∠1 ( ). ∴ AB ∥ CD.( ).∴ ∠3 + ∠4 = 180°.( ).Y (元)x (件)o44002001l 2l7题图ef ABCD21534四、解答题:(30')(一)、分解因式:(3'+3'=6')1、a a -3; 2、1222-+-y xy x ;(二)、解下列不等式和不等式组:(4'+5'=9')1、.1421-≤--xx2、 并把解集在数轴上表示出来.(三)、(5')先化简,再求值: 3116871419422-÷⎪⎭⎫ ⎝⎛+--+⋅--m m m m m m . 其中m = 5.(四)、(5')解分式方程:.41622222-+-+=+-x x x x x3 (1- x ) < 5 – x .321xx <-(五)、应用题(5'):1.我市出租车在3km 以内,起步价为12.5元,行程达到或超过3km 后,每增加1km 加付2.4元(不足1km 亦按1km 计价),昨天汪老师乘坐这种出租车从长城大厦到莲花北,恰巧沿途未遇红灯,下车时支付车费19.7元,问汪老师乘出租车走了多远的路?2、(本小题8分)某商店第一次用600元购进2B 铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的54倍,购进数量比第一次少了30支. (1)求第一次每支铅笔的进价是多少元?(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支售价至少是多少元?3、(本小题9分)如下图是一个数学探究活动,请补充完整。
第1讲(学生) 成都市2013-2014年下期八年级期末试卷
成都市2013-2014年度下期八年级数学期末考题学校 班级 姓名 考号 得分(共150分,120分钟完卷)A 卷100分一、选择题(3×10=30分)1、若a b >,且c 为有理数,则下列各式正确的是( ) A .ac bc >B .ac bc <C .22ac bc <D .22ac bc ≥2、已知等腰三角形一腰上的高与另一腰的夹角为60°,则这个等腰三角形的顶角是 ( ) A .30° B.60° C.150° D.30°或150°3、下列从左到右的变形是分解因式的是( )(A )(x -4)(x +4)=x 2-16 (B )x 2-y 2+2=(x +y )(x -y )+2(C )2ab +2ac =2a (b +c ) (D)(x -1)(x -2)=(x -2)(x -1). 4、若4x²+mxy+9y²是一个完全平方式,则m= ( ) A 、6 B 、12 C 、±6 D 、±12 5、要使分式242--x x 为零,那么x 的值是 ( ) A 、-2 B 、2 C 、±2 D 、06、若229y mxy x ++是一个完全平方式,则=m ( )A、6 B、12 C、6± D、12±7. 在梯形ABCD 中,AD ∥BC ,AC 与BD 相交于O ,如果AD ∶BC=1∶3,那么下列结论正确的是( )A.S △COD =9S △AODB.S △ABC =9S △ACDC.S △BOC =9S △AODD.S △DBC =9S △AOD 8、下列多项式中不能用公式分解的是( )A. a 2+a +41 B 、-a 2+b 2-2ab C 、2225b a +- D 、24b -- 9、若分式方程5156-=+--x k x x (其中k 为常数)产生增根,则增根是 ( ) A.x=6 B.x=5 C.x=k D.无法确定10. 如果关于x 的不等式(a +1)x >a +1的解集为x <1,则a 的取值范围是( )A.a <0B.a <-1C.a >1D.a >-1 二、填空题(3分×7=21分)11、“a 的3倍与12的差是一个非负数”用不等式表示为12、分解因式m (x -2y )-n (2y -x )=(x -2y )(______________) 13、当x=1时,分式nx mx -+2无意义,当x=4分式的值为零, 则n m +=______14、(-x )²÷y·y1=____________15、如图,在□ABCD 中,E 为CD 中点,AE 与BD 相交于点O ,S △DOE =12cm 2,则S △AOB 等于 cm 2.16、已知如图,在△ABC 中,CH 是外角∠ACD 的平分线,BH 是∠ABC 的平分线。
初中数学:2023-2024学年四川省成都市金牛区八年级(下)期末数学试卷
2023-2024学年四川省成都市金牛区八年级(下)期末数学试卷一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(4分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.(4分)已知a>b,下列不等式中,一定正确的是()A.a﹣8>b﹣8B.a﹣3>b+3C.﹣6a>﹣6b D.a2>b23.(4分)等腰三角形一边长12cm,另一边长5cm,它第三边长可以是()A.17cm B.12cm C.7cm D.5cm4.(4分)要使分式无意义,则x的取值范围是()A.x=4B.x=﹣3C.x>4D.x<45.(4分)如图,在四边形ABCD中,下列条件不能判定四边形ABCD是平行四边形的是()A.AD∥BC,AB∥DC B.AB=DC,AD=BCC.AD∥BC,AB=DC D.OA=OC,OB=OD6.(4分)一个多边形的内角和是外角和的2倍,则这个多边形是()边形.A.三B.四C.五D.六7.(4分)如图,在△ABC中,∠BAC=50°,将△ABC绕点C逆时针旋转30°得到△DEC,连接AD,则∠BAD的度数为()A.20°B.25°C.30°D.45°8.(4分)《九章算术》中有一道关于古代驿站送信的题目,其白话译文为:一份文件,若用慢马送到900里远的城市,所需时间比规定时间多1天;若改为快马派送,则所需时间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间,设规定时间为x天,则可列出正确的方程为()A.=2×B.=2×C.=2×D.=2×二、填空题(每小题4分,共20分)9.(4分)分解因式:3m2﹣27=.10.(4分)已知一次函数y=3x﹣7,则y<0的最大整数解是x=.11.(4分)在平面直角坐标系中,已知点A(﹣2,0)和B(0,3),将线段AB平移到线段CD(点A对应点C,点B对应点D),已知点C坐标为(4,﹣3),则点D坐标为.12.(4分)如图,在▱ABCD中,E为边CD的中点,连结AE、BE.若△ADE的面积为3,则▱ABCD的面积为.13.(4分)如图,在△ABC中,以点B为圆心、适当长度为半径画弧,分别交AB,BC于点P,Q,再分别以点P,Q为圆心、大于PQ的长度为半径画弧,两弧交于点M,作射线BM交AC于点E,过点E 作DE∥BC交AB于点D.若△ABE周长为28,BE=10,则△ADE的周长为.三、解答题(共48分)14.(12分)(1)解不等式组:;(2)解分式方程:.15.(8分)先化简,再求值:(1﹣)÷,其中x=+1.16.(8分)如图,在平面直角坐标系中,已知A(﹣5,1),B(﹣3,4),C(﹣1,2).(1)将△ABC先向右平移5个单位再向下平移2个单位得到△A1B1C1,画出△A1B1C1,写出点A1的坐标为;(2)画出△ABC绕点O逆时针旋转90°后的图形△A2B2C2;写出点A2的坐标为.(提示:作图时,先用2B铅笔作图,确定不再修改后用中性笔描黑)17.(10分)在Rt△ABC中,如图,∠ACB=90°,在边BC的中垂线上有两点D和E,满足∠ADC=∠DBE,连接CE.(1)求证:四边形ADEC是平行四边形;(2)若∠ABC=30°,AB=6,求四边形ADEC的面积.18.(10分)如图,在△ABC中,∠ABC=45°,CD⊥AB,AE⊥BC,AC=,AD=1.(1)求线段BE的长;(2)如图2,连接DE,把线段DE绕点E逆时针旋转90°到FE,连接DF,取线段DF的中点G,连接BG,请判断线段AC与BG的数量关系,并说明理由;(3)如图3,点P是线段CD上一点,把线段PB绕点B逆时针旋转45°得到MB,连接DM,请直接写出线段DM的最小值.一、填空题(每小题4分,共20分)19.(4分)已知a﹣b=2,ab=1,则2a3b﹣4a2b2+2ab3=.20.(4分)若关于x的分式方程有增根,则a的值是.21.(4分)关于x的不等式ax﹣b>2b的解集是x<1,则不等式bx﹣a>2a的解集是.22.(4分)如图,△ABC是等腰直角三角形,∠ACB=90°,△BDE是等腰三角形,BD=DE,点E在BC的延长线上,连接CD,点E关于CD的对称点E′在AC边上,连接DE′交BC于点G,点F是AB的中点,连接FG,若CE=1,BC=3,则FG=.23.(4分)如图,在平面直角坐标系中,△AOB是等边三角形,点A(2,0),直线l:y=x+1绕x轴上一点M顺时针旋转120°,得到的直线l′恰好经过点B,则点M的坐标是.二、解答题(共30分)24.(8分)2024年成都世界园艺博览会的主题是“公园城市美好人居”,成都市的市花芙蓉是本次博览会的会花.现有A、B两种以芙蓉为主题的文创商品,已知360元购买的A种商品件数比540元购买的B 种商品件数少2件,B种商品单价是A种商品单价的1.25倍.(1)求A、B两种商品的单价;(2)现在购买一件B种商品赠送一件A种商品,若顾客需要两种商品共180件,费用不超过4590元,且B种商品数量少于A种商品数量的,问采购方案有多少种?25.(10分)如图1,在平面直角坐标系xOy中,直线与x轴、y轴交于点A、B,直线l关于y 轴对称的直线与x轴交于点C.(1)求直线BC的解析式:(2)如果一条对角线将凸四边形分成两个等腰三角形,那么这个四边形称为“等腰四边形”,这条对角线称为“界线”.在平面内是否存在一点D,使得四边形ABCD是以AC为“界线”的“等腰四边形”,且AD=AB?若存在,求点D的坐标;若不存在,请说明理由;(3)如图2,点M在直线l上,横坐标为﹣,直线ME与x轴正半轴交于点E,与y轴交于点F,当常数m等于多少时,为定值?26.(12分)平行四边形ABCD中,BD是对角线,过点B作AD、CD的垂线,垂足点E在AD边上,垂足点F在CD延长线上,∠A=45°,AB=6,DF=2.(1)如图1,求△BDF的面积;(2)如图2,连接EF,点G是EF的中点,求BG的长;(3)如图3,BF与AD交点为P,∠MBN=45°,∠MBN的两边BM,BN分别与AD,CD所在直线交于点M,N,∠MBN绕点B逆时针旋转,当点M从点A运动到点P时,求线段BN中点H的运动路径长.。
成都市金牛区北师大八年级下期末数学试卷有答案【精】
八年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有项符合题目要求,答案涂在答题卡上)1.(3分)已知a<b,下列不等式中正确的是()A.B.a﹣1<b﹣1 C.﹣a<﹣b D.a+3>b+32.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)分式有意义的条件是()A.x>2 B.x<2 C.x≠2 D.x≠04.(3分)若等腰三角形一个内角为100°,则此等腰三角形的顶角为() A.100°B.40°C.100°或40°D.80°5.(3分)若分式□的运算结果为x(x≠0),则在“口”中添加的运算符号为()A.+ B.﹣C.+或÷D.﹣或×6.(3分)已知关于x的不等式组的解集是x≥1,则a的取值范围是() A.a>1 B.a≥1 C.a<1 D.a≤17.(3分)甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等.求甲、乙每小时各做零件多少个.如果设乙每小时做x个,那么所列方程是()A. =B. =C. =D. =8.(3分)已知四边形ABCD,对角线AC与BD交于点O,从下列条件中:①AB ∥CD;②AD=BC;③∠ABC=∠ADC;④OA=OC,任取其中两个,以下组合能够判定四边形ABCD是平行四边形的是()A.①②B.②③C.②④D.①④9.(3分)已知关于x的分式方程无解,则k的值为()A.0 B.0或﹣1 C.0 D.0或10.(3分)如图,菱形ABCD的对角线AC与BD交于点O,过点C作AB垂线交AB延长线于点E,连结OE,若AB=2,BD=4,则OE的长为()A.6 B.5 C.2D.4二、填空题(本题共4个小题,每小题4分,共16分)11.(4分)分式的值为0,那么x的值为.12.(4分)多项式x2﹣kx+6因式分解后有一个因式为x﹣2,则k的值为.13.(4分)如图,一次函数y1=﹣2x+m与y2=ax+6的图象相交于点P(﹣2,3),则关于x的不等式m﹣2x<ax+6的解集是14.(4分)如图,在△ABC中,BF平分∠ABC,AG⊥BF,垂足为点D,交BC于点G,E为AC的中点,连结DE,DE=2.5cm,AB=4cm,则BC的长为cm.三、解答题(本题共6个大题,共54分)15.(12分)(1)分解因式:2mx2﹣4mxy+2my2.(2)解方程:.16.(8分)先化简,再求值:,其中x=﹣3.17.(8分)在平面直角坐标系中,△ABC的位置如图所示:(每个小方格都是边长为1个单位长度的正方形)(1)将△ABC沿y轴方向向下平移4个单位长度得到△A1B1C1,则点C1坐标为;(2)将△ABC绕着点O逆时针旋转90°,画出旋转后得到的△△A2B2C2;(3)直接写出点B2,C2的坐标.18.(8分)如图,在▱ABCD中,BE平分∠ABC交CD延长线于点E,作CF⊥BE 于F.(1)求证:BF=EF;(2)若AB=6,DE=3,求▱ABCD的周长.19.(8分)在某学校的八年级课外活动中,体育组想把篮球分给班级活动用,如果每个班分4个篮球,则剩余20个篮球;如果每个班分8个篮球,则最后一个班分到的篮球个数不到8个(也不为0个),问:(1)这个学校八年级共有几个班?(2)如果每个班分8个篮球,最后一个班分到的篮球个数到底是多少个?20.(10分)在直角三角形ABC中,∠BAC=90°,(AC>AB),在边AC上取点D,使得BD=CD,点E、F分别是线段BC、BD的中点,连接AF和EF,作∠FEM=∠FDC,交AC于点M,如图1所示,(1)请判断四边形EFDM是什么特殊的四边形,并证明你的结论;(2)将∠FEM绕点E顺时针旋转到∠GEN,交线段AF于点G,交AC于点N,如图2所示,请证明:EG=EN;(3)在第(2)条件下,若点G是AF中点,且∠C=30°,AB=2,如图3,求GE的长度.一、填空题(每小题4分,共20分)21.(4分)已知ab≠0,a2+2ab﹣3b2=0,那么分式的值等于.22.(4分)已知关于x的分式方程=a有解,则a的取值范围是.23.(4分)已知关于x、y方程组的解满足x>1,y≥2,则k的取值范围是.24.(4分)如图,在矩形ABCD中,BC=AB,∠ADC的平分线交边BC于点E,AH⊥DE于点H,连接CH并延长交边AB于点F,连接AE交CF于点O,则的值是.25.(4分)如图,在平行四边形ABCD中,∠A=45°,AB=4,AD=2,M是AD边的中点,N是AB边上一动点,将线段M绕点M逆时针旋转90至MN′,连接N′B,N′C,则N′B+N′C的最小值是.二、解答题(共三个答题,共30分)26.(8分)某新能汽车销售公司销售A品牌电动汽车,今年5月份电动汽车的售价比去年同期降价了1万元,如果销售的数量相同,去年5月份的销售额为110万元,今年5月份的销售额就只有105万元.(1)求今年5月份A品牌电动汽车的售价;(2)该公司同时销售B品牌混合动力汽车,已知A、B品牌汽车的进价分别为20万元/辆、12万元/辆,若公司预计用不超过236万元且不少于204万元的资金购进两款汽车共15辆,求公司的进货方案有多少种?(3)在(2)的条件下,今年5月份B品牌汽车的售价为13.8万元/辆,且每售出一辆A品牌电动汽车,政府将给予公司a万元奖励(0<α<2),已知该公司销售两款汽车的最大利润为28.4万元,求a的值.27.(10分)(1)如图1,正方形ABCD中,∠PCG=45°,且PD=BG,求证:FP=FC;(2)如图2,正方形ABCD中,∠PCG=45°,延长FG交CB的延长线于点F,(1)中的结论还成立吗?请说明理由;(3)在(2)的条件下,作FE⊥PC,垂足为点E,交CG于点N,连结DN,求∠NDC的度数.28.(12分)如图,在平面直角坐标系中,直线AB分别交x、y轴于点A、B,直线BC分别交x、y轴于点C、B,点A的坐标为(2,0),∠ABO=30,且AB ⊥BC.(1)求直线BC和AB的解析式;(2)将点B沿某条直线折叠到点0,折痕分别交BC、BA于点E、D,在x轴上是否存在点F,使得点D、E、F为顶点的三角形是以DE为斜边的直角三角形?若存在,请求出F点坐标;若不存在,请说明理由;(3)在平面直角坐标系内是否存在两个点,使得这两个点与B、C两点构成的四边形是正方形?若存在,请直接写出这两点的坐标;若不存在,请说明理由.参考答案一、选择题1.B.2.D.3.C.4.A.5.C.6.C.7.B.8.D.9.D.10.D.二、填空题11.3.12.513.x>﹣2.14.6.5三、解答题15.解:(1)原式=2m(x2﹣2xy+y2)=2m(x﹣y)2;(2)两边都乘以x﹣2,得:1﹣x=x﹣2+3,解得:x=0,检验:x=0时,x﹣2=﹣2≠0,所以原分式方程的解为x=0.16.解:==,当x=﹣3时,原式=====.17.解:(1)如图,△A1B1C1为所作,点C1坐标为(3,0);故答案为(3,0);(2)如图,△A2B2C2为所作;(3)点B2,C2的坐标分别为(﹣2,5),(﹣4,3);18.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CE,∴∠E=∠ABE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠E=∠CBE,∴CB=CE,∵CF⊥BE,∴BF=EF.(2)∵四边形ABCD是平行四边形,∴AB=CD=6,∵DE=3,∴BC=CE=9,∴平行四边形ABCD的周长为30.19.解:(1)设学校八年级共有x个班,则有(4x+20)个篮球,依题意得:0<(4x+20)﹣8(x﹣1)<8,解得5<x<7,∵x是整数,∴x=6,答:学校八年级共有6个班.(2)由(1)可知,篮球的个数是:4×6+20=44(个)所以44﹣5×8=4(个)答:如果每个班分8个篮球,最后一个班分到的篮球个数是4个.20.解:(1)∵E,F是BC,BD的中点,∴EF∥CD,∴∠BFE=∠BDC,∵∠FEM=∠FDC,∴∠BFE=∠FEM,∴DF∥EM,∵EF∥CD,∴四边形EFDM是平行四边形,∵EM∥BD,点E是BC的中点,∴点M是CD的中点,∴DM=CD,∵点F是BD中点,∴DF=BD,∵BD=CD,∴DF=DM,∵四边形DFEM是平行四边形,∴▱DFEM是菱形;(2)由旋转知,∠FEM=∠GEN,∴∠FEG=∠MEN,在Rt△ABD中,点F是BD中点,∴AF=DF,∴∠DAF=∠ADF,∵EF∥CD,∴∠ADF=∠DFE,∴∠DAF=∠DFE,∴∠AFE=∠AFD+∠EFD=∠AFD+∠ADF=∠CDF,∵EM∥BD,∴∠CDF=∠EMN,∴∠AFE=∠CME,由(1)知,四边形DFEM是菱形,∴EF=EM,∴△EFG≌△EMN(AAS),∴EG=EN;(3)在Rt△ABC中,∠C=30°,AB=2,∴BC=4,∠ABC=60°,∵点E是BC的中点,∴CE=2,∵BD=CD,∴∠CBD=∠C=30°,∴∠ABD=30°,∴BD=,∴CD=,AF=BD=,∵G是AF的中点,∴FG=AF=,∵△EFG≌△EMN(AAS),∴EG=EN,MN=FG=,∵E,F是BC,BD的中点,∴EF=CD=,∴DM=EF=,∴CN=CD﹣DM﹣MN=﹣﹣=过点N作NH⊥BC于H∴EH=CN=,CH=EH=,∴EH=CE﹣CH=,在Rt△ENH中,EN==,∴EG=.一、填空题(每小题4分,共20分)21.解:∵a2+2ab﹣3b2=0,∴(a2﹣b2)+(2ab﹣2b2)=0,∴(a+b)(a﹣b)+2b(a﹣b)=0,∴(a﹣b)(a+3b)=0,∴a﹣b=0或a+3b=0,∴a=b或a=﹣3b.当a=b时,原式=(ab≠0)=3;当a=﹣3b时,原式=(ab≠0)=.故答案为:3或.22.解:分式方程去分母得:2a+1=ax+a,整理得:(a﹣2)x=1﹣a,当a﹣2≠0,即a≠2时,x=,由分式方程有解,得到≠﹣1,解得:a≠2,则a的范围是a≠2.23.解:,解得:,∵x>1,y≥2,∴解得:﹣1≤k<1,故答案为:﹣1≤k<1.24.解:在矩形ABCD中,AD=BC=AB=CD,∵DE平分∠ADC,∴∠ADE=∠CDE=45°,∵AH⊥DE,∴△ADH是等腰直角三角形,∴AD=AB,∴AH=AB=CD,∵△DEC是等腰直角三角形,∴DE=CD,∴AD=DE,∴∠AEH=67.5°,∴∠EAH=22.5°,∵DH=CD,∠EDC=45°,∴∠DHC=67.5°,∴∠OHA=22.5°,∴∠OAH=∠OHA,∴OA=OH,∴∠AEH=∠OHE=67.5°,∴OH=OE,∴OH=AE,即=.故答案为:.25.解:如图,作ME⊥AD交AB于E,连接EN′、AC、作CF⊥AB于F.∵∠MAE=45°,∴△MAE是等腰直角三角形,∴MA=ME,∵∠AME=∠NMN′=90°,∴∠AMN=∠EMN′,∵MN=MN′,∴△AMN≌△EMN′,∴∠MAN=∠MEN′=45°,∴∠AEN′=90°,∴EN′⊥AB,∵AM=DM=,AB=4,∴AE=2,EB=2,∴AE=EB,∴N′B=N′A,∴N′B+N′C=N′A+N′C,∴当A、N′、C共线时,N′B+N′C的值最小,最小值=AC,在Rt△BCF中,∵BC=AD=2,∠CBF=∠DAB=45°,∴CF=BF=2,在Rt△ACF中,AC==2,故答案为2.二、解答题(共三个答题,共30分)26.解:(1)设今年5月份A款汽车每辆售价m万元.则:,解得:m=21.经检验,m=21是原方程的根且符合题意.答:今年5月份A款汽车每辆售价21万元;(2)设购进A款汽车x辆.则:204≤20x+12(15﹣x)≤236.解得:3≤x≤7.∵x的正整数解为3,4,5,6,7,∴共有5种进货方案;(3)设总获利为W万元,购进A款汽车x辆,则:W=(21﹣20)x+(13.8﹣12﹣a)(15﹣x)=28.4.解得:a=1时,该公司销售两款汽车的最大利润为28.4万元.27.解:(1)∵四边形ABCD是正方形,∴BC=CD,∠BCD=∠CBG=∠D=90°,∵BG=DP,∴△BCG≌△DCP(SAS),∴CP=CG,∠BCG=∠DCP,∵∠PCG=45°,∴∠BCG+∠DCP=45°,∴∠DCP=∠BCG=22.5°,∴∠PCF=∠PCG+∠BCG=67.5°,在△PCG中,CP=CG,∠PCG=45°,∴∠CPG=(180°﹣45°)=67.5°=∠PCF,∴PF=CF;(2)如图2,∵四边形ABCD是正方形,∴∠CBG=∠BCD=90°,过点C作CH⊥CG交AD的延长线于H,∴∠CDH=90°=∠HCG.∴∠BCG=∠DCH,∴△BCG≌△DCH(ASA),∴CG=CH,∵∠HCG=90°,∠PCG=45°,∴∠PCH=45°=∠PCG,∵CP=CP,∴△PCH≌△PCG(SAS),∴∠CPG=∠CPH,∵∠CPD+∠DCP=90°,∴∠CPF+∠DCP=90°,∵∠PCF+∠DCP=90°,∴∠CPF=∠PCF,∴PF=CF;(3)如图3,连接PN,由(2)知,PF=CF,∵EF⊥CP,∴PE=CE,∴EF是线段CP的垂直平分线,∴PN=CN,∴∠CPN=∠PCN,∵∠PCN=45°,∴∠CPN=45°,∴∠CNP=90°,∵PE=CE,∴EN=CP,在Rt△CDP中,CE=PE,∴DE=CE=CP,∴EN=DE,∴∠DNE=∠NDE,设∠DCP=α,∴∠CED=∠DCP=α,∴∠DEP=2α,∵∠PEF=90°,∴∠DEN=90°+2α,∴∠NDE=(180°﹣∠DEN)=45°﹣α,∴∠NDC=∠NDE+∠CDE=45°﹣α+α=45°.28.解:(1)在Rt△AOB中,∵OA=2,∠ABO=30°,∴OB=2,在Rt△OBC中,∵∠BCO=30°,OB=2,∴OC=6,∴B(0,2),C(6,0),设直线AB的解析式为y=kx+b,则有,解得,∴直线AB的解析式为y=﹣x+2,设直线BC的解析式为y=k′x+b′则有,解得,∴直线BC的解析式为y=x+2.(2)如图1中,根据对称性可知,当点F与O重合时,∠EF′D=∠EBD=90°,此时F′(0,0),设DE交OB于,作FH⊥DE于H.当△EFD≌△DF′E时,∠EFD=∠DF′E=90°,易证D=EH=1,DE=AC=4,∴H=OF=4﹣2=2,∴F(﹣2,0),综上所述,满足条件的点F坐标为(﹣2,0)或(0,0).(3)如图2中,∵B(0,2),C((﹣6,0),∴BC=4,当BC为正方形BCMN的边时,M(﹣6﹣2,6),N(﹣2,2+6)或M′(2﹣6,﹣6),N′(2,2﹣6).当BC为正方形的对角线时,M″(﹣3﹣,3+),N″(﹣3,﹣3).21。
成都市金牛区北师大八年级下期末数学试卷有答案
八年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有项符合题目要求,答案涂在答题卡上)1.(3分)已知a<b,下列不等式中正确的是()A.B.a﹣1<b﹣1 C.﹣a<﹣b D.a+3>b+3 2.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)分式有意义的条件是()A.x>2 B.x<2 C.x≠2 D.x≠04.(3分)若等腰三角形一个内角为100°,则此等腰三角形的顶角为()A.100°B.40°C.100°或40°D.80°5.(3分)若分式□的运算结果为x(x≠0),则在“口”中添加的运算符号为()A.+ B.﹣C.+或÷D.﹣或×6.(3分)已知关于x的不等式组的解集是x≥1,则a的取值范围是()A.a>1 B.a≥1 C.a<1 D.a≤17.(3分)甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等.求甲、乙每小时各做零件多少个.如果设乙每小时做x个,那么所列方程是()A. =B. =C. =D. =8.(3分)已知四边形ABCD,对角线AC与BD交于点O,从下列条件中:①AB∥CD;②AD=BC;③∠ABC=∠ADC;④OA=OC,任取其中两个,以下组合能够判定四边形ABCD是平行四边形的是()A.①②B.②③C.②④D.①④9.(3分)已知关于x的分式方程无解,则k的值为()A.0 B.0或﹣1 C.0 D.0或10.(3分)如图,菱形ABCD的对角线AC与BD交于点O,过点C作AB 垂线交AB延长线于点E,连结OE,若AB=2,BD=4,则OE的长为()A.6 B.5 C.2D.4二、填空题(本题共4个小题,每小题4分,共16分)11.(4分)分式的值为0,那么x的值为.12.(4分)多项式x2﹣kx+6因式分解后有一个因式为x﹣2,则k的值为.13.(4分)如图,一次函数y1=﹣2x+m与y2=ax+6的图象相交于点P(﹣2,3),则关于x的不等式m﹣2x<ax+6的解集是14.(4分)如图,在△ABC中,BF平分∠ABC,AG⊥BF,垂足为点D,交BC于点G,E为AC的中点,连结DE,DE=2.5cm,AB=4cm,则BC的长为cm.三、解答题(本题共6个大题,共54分)15.(12分)(1)分解因式:2mx2﹣4mxy+2my2.(2)解方程:.16.(8分)先化简,再求值:,其中x=﹣3.17.(8分)在平面直角坐标系中,△ABC的位置如图所示:(每个小方格都是边长为1个单位长度的正方形)(1)将△ABC沿y轴方向向下平移4个单位长度得到△A1B1C1,则点C1坐标为;(2)将△ABC绕着点O逆时针旋转90°,画出旋转后得到的△△A2B2C2;(3)直接写出点B2,C2的坐标.18.(8分)如图,在▱ABCD中,BE平分∠ABC交CD延长线于点E,作CF ⊥BE于F.(1)求证:BF=EF;(2)若AB=6,DE=3,求▱ABCD的周长.19.(8分)在某学校的八年级课外活动中,体育组想把篮球分给班级活动用,如果每个班分4个篮球,则剩余20个篮球;如果每个班分8个篮球,则最后一个班分到的篮球个数不到8个(也不为0个),问:(1)这个学校八年级共有几个班?(2)如果每个班分8个篮球,最后一个班分到的篮球个数到底是多少个?20.(10分)在直角三角形ABC中,∠BAC=90°,(AC>AB),在边AC上取点D,使得BD=CD,点E、F分别是线段BC、BD的中点,连接A F和EF,作∠FEM=∠FDC,交AC于点M,如图1所示,(1)请判断四边形EFDM是什么特殊的四边形,并证明你的结论;(2)将∠FEM绕点E顺时针旋转到∠GEN,交线段AF于点G,交AC于点N,如图2所示,请证明:EG=EN;(3)在第(2)条件下,若点G是AF中点,且∠C=30°,AB=2,如图3,求GE的长度.一、填空题(每小题4分,共20分)21.(4分)已知ab≠0,a2+2ab﹣3b2=0,那么分式的值等于.(4分)已知关于x的分式方程=a有解,则a的取值范围是.22.23.(4分)已知关于x、y方程组的解满足x>1,y≥2,则k的取值范围是.24.(4分)如图,在矩形ABCD中,BC=AB,∠ADC的平分线交边BC于点E,AH⊥DE于点H,连接CH并延长交边AB于点F,连接AE交CF于点O,则的值是.25.(4分)如图,在平行四边形ABCD中,∠A=45°,AB=4,AD=2,M是AD边的中点,N是AB边上一动点,将线段M绕点M逆时针旋转90至MN′,连接N′B,N′C,则N′B+N′C的最小值是.二、解答题(共三个答题,共30分)26.(8分)某新能源汽车销售公司销售A品牌电动汽车,今年5月份电动汽车的售价比去年同期降价了1万元,如果销售的数量相同,去年5月份的销售额为110万元,今年5月份的销售额就只有105万元.(1)求今年5月份A品牌电动汽车的售价;(2)该公司同时销售B品牌混合动力汽车,已知A、B品牌汽车的进价分别为20万元/辆、12万元/辆,若公司预计用不超过236万元且不少于204万元的资金购进两款汽车共15辆,求公司的进货方案有多少种?(3)在(2)的条件下,今年5月份B品牌汽车的售价为13.8万元/辆,且每售出一辆A品牌电动汽车,政府将给予公司a万元奖励(0<α<2),已知该公司销售两款汽车的最大利润为28.4万元,求a的值.27.(10分)(1)如图1,正方形ABCD中,∠PCG=45°,且PD=BG,求证:FP=FC;(2)如图2,正方形ABCD中,∠PCG=45°,延长FG交CB的延长线于点F,(1)中的结论还成立吗?请说明理由;(3)在(2)的条件下,作FE⊥PC,垂足为点E,交CG于点N,连结DN,求∠NDC的度数.28.(12分)如图,在平面直角坐标系中,直线AB分别交x、y轴于点A、B,直线BC分别交x、y轴于点C、B,点A的坐标为(2,0),∠ABO=30,且AB⊥BC.(1)求直线BC和AB的解析式;(2)将点B沿某条直线折叠到点0,折痕分别交BC、BA于点E、D,在x 轴上是否存在点F,使得点D、E、F为顶点的三角形是以DE为斜边的直角三角形?若存在,请求出F点坐标;若不存在,请说明理由;(3)在平面直角坐标系内是否存在两个点,使得这两个点与B、C两点构成的四边形是正方形?若存在,请直接写出这两点的坐标;若不存在,请说明理由.参考答案一、选择题1.B.2.D.3.C.4.A.5.C.6.C.7.B.8.D.9.D.10.D.二、填空题11.3.12.513.x>﹣2.14.6.5三、解答题15.解:(1)原式=2m(x2﹣2xy+y2)=2m(x﹣y)2;(2)两边都乘以x﹣2,得:1﹣x=x﹣2+3,解得:x=0,检验:x=0时,x﹣2=﹣2≠0,所以原分式方程的解为x=0.16.解:==,当x=﹣3时,原式=====.17.解:(1)如图,△A1B1C1为所作,点C1坐标为(3,0);故答案为(3,0);(2)如图,△A2B2C2为所作;(3)点B2,C2的坐标分别为(﹣2,5),(﹣4,3);18.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CE,∴∠E=∠ABE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠E=∠CBE,∴CB=CE,∵CF⊥BE,∴BF=EF.(2)∵四边形ABCD是平行四边形,∴AB=CD=6,∵DE=3,∴BC=CE=9,∴平行四边形ABCD的周长为30.19.解:(1)设学校八年级共有x个班,则有(4x+20)个篮球,依题意得:0<(4x+20)﹣8(x﹣1)<8,解得5<x<7,∵x是整数,∴x=6,答:学校八年级共有6个班.(2)由(1)可知,篮球的个数是:4×6+20=44(个)所以44﹣5×8=4(个)答:如果每个班分8个篮球,最后一个班分到的篮球个数是4个.20.解:(1)∵E,F是BC,BD的中点,∴EF∥CD,∴∠BFE=∠BDC,∵∠FEM=∠FDC,∴∠BFE=∠FEM,∴DF∥EM,∵EF∥CD,∴四边形EFDM是平行四边形,∵EM∥BD,点E是BC的中点,∴点M是CD的中点,∴DM=CD,∵点F是BD中点,∴DF=BD,∵BD=CD,∴DF=DM,∵四边形DFEM是平行四边形,∴▱DFEM是菱形;(2)由旋转知,∠FEM=∠GEN,∴∠FEG=∠MEN,在Rt△ABD中,点F是BD中点,∴AF=DF,∴∠DAF=∠ADF,∵EF∥CD,∴∠ADF=∠DFE,∴∠DAF=∠DFE,∴∠AFE=∠AFD+∠EFD=∠AFD+∠ADF=∠CDF,∵EM∥BD,∴∠CDF=∠EMN,∴∠AFE=∠CME,由(1)知,四边形DFEM是菱形,∴EF=EM,∴△EFG≌△EMN(AAS),∴EG=EN;(3)在Rt△ABC中,∠C=30°,AB=2,∴BC=4,∠ABC=60°,∵点E是BC的中点,∴CE=2,∵BD=CD,∴∠CBD=∠C=30°,∴∠ABD=30°,∴BD=,∴CD=,AF=BD=,∵G是AF的中点,∴FG=AF=,∵△EFG≌△EMN(AAS),∴EG=EN,MN=FG=,∵E,F是BC,BD的中点,∴EF=CD=,∴DM=EF=,∴CN=CD﹣DM﹣MN=﹣﹣=过点N作NH⊥BC于H∴EH=CN=,CH=EH=,∴EH=CE﹣CH=,在Rt△ENH中,EN==,∴EG=.一、填空题(每小题4分,共20分)21.解:∵a2+2ab﹣3b2=0,∴(a2﹣b2)+(2ab﹣2b2)=0,∴(a+b)(a﹣b)+2b(a﹣b)=0,∴(a﹣b)(a+3b)=0,∴a﹣b=0或a+3b=0,∴a=b或a=﹣3b.当a=b时,原式=(ab≠0)=3;当a=﹣3b时,原式=(ab≠0)=.故答案为:3或.22.解:分式方程去分母得:2a+1=ax+a,整理得:(a﹣2)x=1﹣a,当a﹣2≠0,即a≠2时,x=,由分式方程有解,得到≠﹣1,解得:a≠2,则a的范围是a≠2.23.解:,解得:,∵x>1,y≥2,∴解得:﹣1≤k<1,故答案为:﹣1≤k<1.24.解:在矩形ABCD中,AD=BC=AB=CD,∵DE平分∠ADC,∴∠ADE=∠CDE=45°,∵AH⊥DE,∴△ADH是等腰直角三角形,∴AD=AB,∴AH=AB=CD,∵△DEC是等腰直角三角形,∴DE=CD,∴AD=DE,∴∠AEH=67.5°,∴∠EAH=22.5°,∵DH=CD,∠EDC=45°,∴∠DHC=67.5°,∴∠OHA=22.5°,∴∠OAH=∠OHA,∴OA=OH,∴∠AEH=∠OHE=67.5°,∴OH=OE,∴OH=AE,即=.故答案为:.25.解:如图,作ME⊥AD交AB于E,连接EN′、AC、作CF⊥AB于F.∵∠MAE=45°,∴△MAE是等腰直角三角形,∴MA=ME,∵∠AME=∠NMN′=90°,∴∠AMN=∠EMN′,∵MN=MN′,∴△AMN≌△EMN′,∴∠MAN=∠MEN′=45°,∴∠AEN′=90°,∴EN′⊥AB,∵AM=DM=,AB=4,∴AE=2,EB=2,∴AE=EB,∴N′B=N′A,∴N′B+N′C=N′A+N′C,∴当A、N′、C共线时,N′B+N′C的值最小,最小值=AC,在Rt△BCF中,∵BC=AD=2,∠CBF=∠DAB=45°,∴CF=BF=2,在Rt△ACF中,AC==2,故答案为2.二、解答题(共三个答题,共30分)26.解:(1)设今年5月份A款汽车每辆售价m万元.则:,解得:m=21.经检验,m=21是原方程的根且符合题意.答:今年5月份A款汽车每辆售价21万元;(2)设购进A款汽车x辆.则:204≤20x+12(15﹣x)≤236.解得:3≤x≤7.∵x的正整数解为3,4,5,6,7,∴共有5种进货方案;(3)设总获利为W万元,购进A款汽车x辆,则:W=(21﹣20)x+(13.8﹣12﹣a)(15﹣x)=28.4.解得:a=1时,该公司销售两款汽车的最大利润为28.4万元.27.解:(1)∵四边形ABCD是正方形,∴BC=CD,∠BCD=∠CBG=∠D=90°,∵BG=DP,∴△BCG≌△DCP(SAS),∴CP=CG,∠BCG=∠DCP,∵∠PCG=45°,∴∠BCG+∠DCP=45°,∴∠DCP=∠BCG=22.5°,∴∠PCF=∠PCG+∠BCG=67.5°,在△PCG中,CP=CG,∠PCG=45°,∴∠CPG=(180°﹣45°)=67.5°=∠PCF,∴PF=CF;(2)如图2,∵四边形ABCD是正方形,∴∠CBG=∠BCD=90°,过点C作CH⊥CG交AD的延长线于H,∴∠CDH=90°=∠HCG.∴∠BCG=∠DCH,∴△BCG≌△DCH(ASA),∴CG=CH,∵∠HCG=90°,∠PCG=45°,∴∠PCH=45°=∠PCG,∵CP=CP,∴△PCH≌△PCG(SAS),∴∠CPG=∠CPH,∵∠CPD+∠DCP=90°,∴∠CPF+∠DCP=90°,∵∠PCF+∠DCP=90°,∴∠CPF=∠PCF,∴PF=CF;(3)如图3,连接PN,由(2)知,PF=CF,∵EF⊥CP,∴PE=CE,∴EF是线段CP的垂直平分线,∴PN=CN,∴∠CPN=∠PCN,∵∠PCN=45°,∴∠CPN=45°,∴∠CNP=90°,∴EN=CP,在Rt△CDP中,CE=PE,∴DE=CE=CP,∴EN=DE,∴∠DNE=∠NDE,设∠DCP=α,∴∠CED=∠DCP=α,∴∠DEP=2α,∵∠PEF=90°,∴∠DEN=90°+2α,∴∠NDE=(180°﹣∠DEN)=45°﹣α,∴∠NDC=∠NDE+∠CDE=45°﹣α+α=45°.28.解:(1)在Rt△AOB中,∵OA=2,∠ABO=30°,∴OB=2,在Rt△OBC中,∵∠BCO=30°,OB=2,∴B(0,2),C(6,0),设直线AB的解析式为y=kx+b,则有,解得,∴直线AB的解析式为y=﹣x+2,设直线BC的解析式为y=k′x+b′则有,解得,∴直线BC的解析式为y=x+2.(2)如图1中,根据对称性可知,当点F与O重合时,∠EF′D=∠EBD=90°,此时F′(0,0),设DE交OB于K,作FH⊥DE于H.当△EFD≌△DF′E时,∠EFD=∠DF′E=90°,易证DK=EH=1,DE=AC=4,∴KH=OF=4﹣2=2,∴F(﹣2,0),综上所述,满足条件的点F坐标为(﹣2,0)或(0,0).21 (3)如图2中,∵B (0,2),C ((﹣6,0), ∴BC=4,当BC 为正方形BCMN 的边时,M (﹣6﹣2,6),N (﹣2,2+6)或M ′(2﹣6,﹣6),N ′(2,2﹣6).当BC 为正方形的对角线时,M ″(﹣3﹣,3+),N″(﹣3,﹣3).。
2013-2014学年四川省成都市金牛区八年级(下)期末数学试卷
2013-2014学年金牛区八年级(下)期末数学试卷一、选择题(每小题3分,共30分)B3.(3分)(2014春•金牛区期末)如果不等式组有解,那么m的取值范围是()5.(3分)(2014春•金牛区期末)如果把分式中的x和y都扩大5倍,那么分式的值()正比例函数y=ax(a为常数,且a≠0)相交于点P,则不等式kx+b>ax的解集是()且它们较小的交角为60°,则它们重叠部分的面积为()二、填空题(每小题4分,共16分)11.(4分)(2014秋•南长区期末)如果的值为0,则x=.12.(4分)(2013•遂宁)若一个多边形内角和等于1260°,则该多边形边数是.13.(4分)(2011•河北模拟)若方程有增根x=5,则m=.14.(4分)(2014春•金牛区期末)如图,在△ABC中,DE是BC的垂直平分线,垂足为点E,交AB于点D,若CE=5,△ABC的周长为25,则△ADC的周长为.三、解答题(共54分)15.(12分)(2014春•金牛区期末)(1)分解因式:4x2(y﹣2)﹣9(y﹣2);(2)解不等式组:,并把解集在数轴上表示出来.16.(6分)(2011•成都)先化简,再求值:,其中.17.(10分)(2014春•金牛区期末)如图,△ABC的顶点坐标分别为A(﹣2,5)、B(﹣4,1)和C(﹣1,3).(1)将△ABC先向右平移5个单位长度,再向下平移2个单位长度,得到△A1B1C1,作出△A1B1C1,并写出点A1、B1、C1的坐标;(2)将△A1B1C1绕点O顺时针旋转90°得到△A2B2C2,作出△A2B2C2,并写出点A2、B2、C2的坐标.18.(8分)(2014春•金牛区期末)如图,四边形ABCD是菱形,DE⊥AB于E,EF⊥BC 于F.求证:DE=DF.19.(8分)(2014春•金牛区期末)为改善生态环境,防止水土流失,某村计划在荒坡上种800棵树,由于青年志愿者的支援,每天比原计划多种25%,结果提前4天完成任务,原计划每天种多少棵树?20.(10分)(2014春•金牛区期末)如图,在四边形ABCD中,E、F分别为边AB、CD的中点,△ADE≌△CBF,过A点作AG∥BD交CB的延长线于点G.(1)求证:四边形ABCD是平行四边形;(2)求证:DE∥BF;(3)当四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.一、填空题(每小题4分,共20分)21.(4分)(2014春•金牛区期末)若xy=4,x﹣2y=,则x3y﹣2x2y2+2xy3=.22.(4分)(2014春•金牛区期末)如图,▱ABCD中,对角线AC和BD相交于点O,∠BAD 和∠ABC的平分线相交于点E.若▱ABCD的周长为18,△AOB的周长比△AOD的周长少3,则OE=.23.(4分)(2014春•金牛区期末)若分式﹣÷的值为正整数,则整数x=.24.(4分)(2014春•金牛区期末)如图,正方形ABCD中,E是AD的中点,AB=8,M 是线段CE上的动点,则BM的最小值是.25.(4分)(2012•江西模拟)如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2…,如此进行下去,得到四边形A n B n C n D n.下列结论正确的有.①四边形A2B2C2D2是矩形;②四边形A4B4C4D4是菱形;③四边形A5B5C5D5的周长是;④四边形A n B n C n D n的面积是.二、解答题:(共30分)26.(8分)(2012•湛江模拟)某工厂现有甲种原料263千克,乙种原料314千克,计划利用这两种原料生产A、B两种产品共100件.生产一件产品所需要的原料及生产成本如下表(1)该工厂现有的原料能否保证生产需要?若能,有几种生产方案?请你设计出来.(2)设生产A、B两种产品的总成本为y元,其中生产A产品x件,试写出y与x之间的函数关系,并利用函数的性质说明(1)中哪种生产方案总成本最低?最低生产总成本是多少?27.(10分)(2014春•金牛区期末)如图1,△ABC为等腰直角三角形,∠ACB=90°,F是AC边上的一个动点(点F与A、C不重合),以CF为一边在等腰直角三角形外作正方形CDEF,连接BF、AD.(1)猜想图1中线段BF、AD的数量关系及所在直线的位置关系,直接写出结论,.(2)将图1中的正方式CDEF,绕着点C按顺时针方向旋转任意角度α,得到如图2的情形,BF交AC于点H,交AD于点O,请你判断(1)中得到的结论是否仍然成立,证明你的判断.(3)将图1中的正方形CDEF,绕着点C按逆时针方向旋转任意角度α,得到如图3的情形,若∠α=105°,AC=BC=2+2,点E恰好落在斜边AB上,求正方形CDEF的边长.28.(12分)(2014春•金牛区期末)如图,已知一次函数y=x+6的图象分别交x轴、y轴于A、B两点,点P从点A出发沿AO方向以每秒单位长度的速度向点O匀速运动,同时点Q从点B出发沿BA方向以每秒2个单位长度向点A匀速运动,当其中一点到达终点时,另一点也停止运动,设运动时间为t秒,过点Q作QC⊥y轴,连接PQ、PC.(1)点A的从标为,点B的坐标为,AB=;(2)四边形APCQ能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(3)若点D(0,2),点N在x轴上,直线AB上是否存在点M,使以M、N、B、D为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.。
(学生)成都市2013-2014学年八下学期期末检测试题 5北师大版
2013-2014学年第二学期八年级期末检测数学试卷5一、选择题(每小题3分,共30分.注意每小题的四个选项中只有一个是对的,将正确答案相对应的字母填在括号里.)1.不等式260x ->的解集在数轴上表示正确的是( )2.下列各式从左到右的变形,是因式分解的是: ( ) A .x x x x x 6)3)(3(692+-+=+- B .()()103252-+=-+x x x x C .()224168-=+-x x x D .211(1)x x x x x++=++3、若分式242x x -+的值为0,则x 的值是( )A 、2B 、±2C 、-2D 、04、若多项24x mx ++能用完全平方公式分解因式,则m 的值可以是( ) A 、4 B 、-4 C 、±2 D 、±45.多项式4x 2+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式不可以是( ) A .4x B .-4x C .4x 4D .-4x 46.下列各式从左到右变形正确的是( )A .13(1)223x y x y ++=++ B .a b b ab c c b --=-- C .0.20.03230.40.0545a b a b c c c d --=++ D .22a b a bc d c d--=++7、不等式ax <b 的解集是x >ab,那么a 的取值范围是( ) A 、a>0 B 、a<0 C 、a ≤0 D 、a ≥0 8、多项式m x 4x 2+-可以分解为)7x )(3x (-+,则m 的值为A 、-21B 、-3C 、3D 、21 9、下列各式中,因式分解正确的是( )A 、)b a )(b a (b a 22++=+B 、)b a )(b a (b a 22--+-=--C 、)b a )(b a (b a 22+---=+-D 、)b a )(b a (a b 22-+-=-3- 0 3A . 3- 0 3B . 3- 0 3C . 3- 0 3D .10、若分式yx y3-的值为5,则x 、y 扩大2倍后,这个分式的值为( ) A 、25B 、5C 、10D 、25 二、填空题(每小题3分,共18分)11.当x 时,2x -的值为正数.0x <12.分解因式24x y y -= _______________________.(1)(1)y x x +- 13.在比例尺为1︰2000的地图上测得AB 两地间的图上距离为5cm ,则AB 两地间的实际距离为 m .14.如图,已知△ADE ∽△ABC ,AD =6cm ,AB=9cm ,DE=4cm ,则BC = . 15.解关于x 的方程113-=--x mx x 产生增根,则常数m 的值等于 . 16. 如图D 为AB 边上任意一点,下列结论:①∠A >∠ACF ; ②∠B +∠ACB <180°;③∠F +∠ACF =∠A +∠ADF ; ④∠DEC >∠B ;其中正确的是 __ __(填上你认为 正确的所有序号). 三、解答题(共52分) 17.(5分)解分式方程:1233xx x=+--.18.(6分)解不等式组,并把它的解集表示在数轴上:3(1)7251.3x x xx --⎧⎪⎨--<⎪⎩≤,① ②(第16题)-1 -2 -3 1 2 3A EBCD(第14题)19、(本题6分)解不等式组⎩⎨⎧+>-+<-10x 9x 319x 4)1x (6,并写出不等式组的整数解.20、(本题6分)先化简,再求值:1a 9a )1a (9a 6a 1a 222--⨯+÷++-,其中a =2-.21、(本题7分)解方程:x3)1x (x 5x 1x 6--+=-22、(本题7分)先请阅读下列题目和解答过程:“已知a 、b 、c 为△ABC 的三边,且满足442222b a c b c a -=-,试判断△ABC 的形状. 解:∵442222b a c b c a -=- ……………①∴)b a )(b a ()b a (c 2222222-+=- ……………② ∴222b a c += ……………③ ∴△ABC 是直角三角形. ” ……………④ 请解答下列问题:(1)上列解答过程,从第几步到第几步出现错误?(2)简要分析出现错误的原因; (3)写出正确的解答过程.23.(8分)已知在△ABC 中,CF ⊥AB 于F ,ED ⊥AB 于D ,∠1=∠2. (1)求证:FG ∥BC(2)请你在图中找出一对相似三角形,并说明相似的理由.24.(8分)甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l 起跑,绕过P点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为50秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.2倍”.根据图文信息,请问哪位同学获胜?(转身拐弯处路程可忽略不计)25、(本题8分)某超市规定:凡一次购买大米180千克以上(含180千克)可以享受折扣价格,否则只能按原价付款. 王师傅到该超市买大米,发现自己准备购买的数量只能按原价付款,且需要500元,于是他多买了40千克,就可全部享受折扣价,也只需付款500元. (1)求王师傅原来准备购买大米的数量x (千克)的范围;(2)若按原价购买4千克与按折扣价购买5千克大米的付款数相同,那么王师傅原来准备购买多少千克大米?ABCDEFG12(第23题)26、(本题10分)如图,在△ABC 中,∠ACB=90º,AC=BC=6,点D 、E 分别在边AB 、AC 上,且DE//BC ,DE ∶BC=1∶3. 若点F 从点B 开始以每秒1个单位长的速度在射线BC 上运动. 当点F 运动时间t>0时,直线FD 与过点A 且平行于BC 的直线相交于点G ,射线GE 与射线BC 相交与点H. AB 与GH 相交于点O. 请解答下列问题:(1)设△AEG 的面积为S ,写出S 与t 的函数关系式;(2)当t 为多少秒时,AB ⊥GH ; (3)求△GFH 的面积.27、如图,点E 是四边形ABCD 的对角线BD 上一点,且∠BAC=∠BDC=∠DAE 。
13-14第二学期期末八年级数学答案
2013-2014学年第二学期期末八年级数学答案 第1页(共2页)2013—2014学年第二学期期末考试八年级数学试题参考答案及评分标准16.< 17.m <2 18.2 19.乙 20.三、解答题(本大题共6个小题;共60分)21.(本题满分10分)解: ∵AE=3,BE=4,AB=5∴△ABE 是直角三角形 ------------------------------------------------3分 ∴△ABE 的面积是6 ----------------------------------------------------6分∵正方形ABCD 面积是25 ----------------------------------------------------9分 ∴阴影部分的面积是25-6=19 ---------------------------------------------10分 22.(本题满分10分) 解:(1)设正比例函数解析式为y=mx ,一次函数解析式为y=nx+4, 将(﹣2,2)代入可得2=﹣2m ,2=﹣2n+4, 解得:m=﹣1,n=1,∴函数解析式为:y=﹣x ;y=x+4.-----------------------------------------------------------------6分(2)根据过点(﹣2.2)及(0,4)可画出一次函数图象,根据(0,0)及(﹣2,2)可画出正比例函数图象.------------------------------------------------------------10分23. (本题满分10分) 证明:(1)∵AF ∥BC ,∴∠AFE=∠DCE , ∵E 是AD 的中点,∴AE=DE , 在△AEF 和△DEC 中,,∴△AEF ≌△DEC (AAS ), ∴AF=CD ,∵AF=BD ,∴BD=CD ; ----------------------------------------------------------------------6分 (2)当△ABC 满足:AB=AC 时,四边形AFBD 是矩形. -------------------------7分 理由如下:∵AF ∥BD ,AF=BD ,∴四边形AFBD 是平行四边形, ∵AB=AC ,BD=CD ,∴∠ADB=90°,∴平行四边形AFBD 是矩形.--------------------------------------------------------------10分24、(本小题满分10分)解(1)y=50000+200x ------------------------------------------------------------------5分(2)设软件公司要售出x套软件才能保证不亏本,则有700x≥50000+200x。
成都市金牛区北师大八年级下期末数学试卷有答案
四川省成都市金牛区八年级(下)期末考试数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有项符合题目要求,答案涂在答题卡上)1.(3分)已知a<b,下列不等式中正确的是()A.B.a﹣1<b﹣1 C.﹣a<﹣b D.a+3>b+32.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)分式有意义的条件是()A.x>2 B.x<2 C.x≠2 D.x≠04.(3分)若等腰三角形一个内角为100°,则此等腰三角形的顶角为()A.100°B.40°C.100°或40°D.80°5.(3分)若分式□的运算结果为x(x≠0),则在“口”中添加的运算符号为() A.+ B.﹣C.+或÷D.﹣或×6.(3分)已知关于x的不等式组的解集是x≥1,则a的取值范围是()A.a>1 B.a≥1 C.a<1 D.a≤17.(3分)甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等.求甲、乙每小时各做零件多少个.如果设乙每小时做x个,那么所列方程是()A. =B. =C. =D. =8.(3分)已知四边形ABCD,对角线AC与BD交于点O,从下列条件中:①AB∥CD;②AD=BC;③∠ABC=∠ADC;④OA=OC,任取其中两个,以下组合能够判定四边形ABCD是平行四边形的是()A.①②B.②③C.②④D.①④9.(3分)已知关于x的分式方程无解,则k的值为()A.0 B.0或﹣1 C.0 D.0或10.(3分)如图,菱形ABCD的对角线AC与BD交于点O,过点C作AB垂线交AB延长线于点E,连结OE,若AB=2,BD=4,则OE的长为()A.6 B.5 C.2D.4二、填空题(本题共4个小题,每小题4分,共16分)11.(4分)分式的值为0,那么x的值为.12.(4分)多项式x2﹣kx+6因式分解后有一个因式为x﹣2,则k的值为.13.(4分)如图,一次函数y1=﹣2x+m与y2=ax+6的图象相交于点P(﹣2,3),则关于x的不等式m﹣2x<ax+6的解集是14.(4分)如图,在△ABC中,BF平分∠ABC,AG⊥BF,垂足为点D,交BC于点G,E为AC的中点,连结DE,DE=2.5cm,AB=4cm,则BC的长为cm.三、解答题(本题共6个大题,共54分)15.(12分)(1)分解因式:2mx2﹣4mxy+2my2.(2)解方程:.16.(8分)先化简,再求值:,其中x=﹣3.17.(8分)在平面直角坐标系中,△ABC的位置如图所示:(每个小方格都是边长为1个单位长度的正方形)(1)将△ABC沿y轴方向向下平移4个单位长度得到△A1B1C1,则点C1坐标为;(2)将△ABC绕着点O逆时针旋转90°,画出旋转后得到的△△A2B2C2;(3)直接写出点B2,C2的坐标.18.(8分)如图,在▱ABCD中,BE平分∠ABC交CD延长线于点E,作CF⊥BE于F.(1)求证:BF=EF;(2)若AB=6,DE=3,求▱ABCD的周长.19.(8分)在某学校的八年级课外活动中,体育组想把篮球分给班级活动用,如果每个班分4个篮球,则剩余20个篮球;如果每个班分8个篮球,则最后一个班分到的篮球个数不到8个(也不为0个),问:(1)这个学校八年级共有几个班?(2)如果每个班分8个篮球,最后一个班分到的篮球个数到底是多少个?20.(10分)在直角三角形ABC中,∠BAC=90°,(AC>AB),在边AC上取点D,使得BD=CD,点E、F分别是线段BC、BD的中点,连接A F和EF,作∠FEM=∠FDC,交AC于点M,如图1所示,(1)请判断四边形EFDM是什么特殊的四边形,并证明你的结论;(2)将∠FEM绕点E顺时针旋转到∠GEN,交线段AF于点G,交AC于点N,如图2所示,请证明:EG=EN;(3)在第(2)条件下,若点G是AF中点,且∠C=30°,AB=2,如图3,求GE的长度.一、填空题(每小题4分,共20分)21.(4分)已知ab≠0,a2+2ab﹣3b2=0,那么分式的值等于.22.(4分)已知关于x的分式方程=a有解,则a的取值范围是.23.(4分)已知关于x、y方程组的解满足x>1,y≥2,则k的取值范围是.24.(4分)如图,在矩形ABCD中,BC=AB,∠ADC的平分线交边BC于点E,AH⊥DE于点H,连接CH并延长交边AB于点F,连接AE交CF于点O,则的值是.25.(4分)如图,在平行四边形ABCD中,∠A=45°,AB=4,AD=2,M是AD边的中点,N是AB边上一动点,将线段M绕点M逆时针旋转90至MN′,连接N′B,N′C,则N′B+N′C 的最小值是.二、解答题(共三个答题,共30分)26.(8分)某新能源汽车销售公司销售A品牌电动汽车,今年5月份电动汽车的售价比去年同期降价了1万元,如果销售的数量相同,去年5月份的销售额为110万元,今年5月份的销售额就只有105万元.(1)求今年5月份A品牌电动汽车的售价;(2)该公司同时销售B品牌混合动力汽车,已知A、B品牌汽车的进价分别为20万元/辆、12万元/辆,若公司预计用不超过236万元且不少于204万元的资金购进两款汽车共15辆,求公司的进货方案有多少种?(3)在(2)的条件下,今年5月份B品牌汽车的售价为13.8万元/辆,且每售出一辆A品牌电动汽车,政府将给予公司a万元奖励(0<α<2),已知该公司销售两款汽车的最大利润为28.4万元,求a的值.27.(10分)(1)如图1,正方形ABCD中,∠PCG=45°,且PD=BG,求证:FP=FC;(2)如图2,正方形ABCD中,∠PCG=45°,延长FG交CB的延长线于点F,(1)中的结论还成立吗?请说明理由;(3)在(2)的条件下,作FE⊥PC,垂足为点E,交CG于点N,连结DN,求∠NDC的度数.28.(12分)如图,在平面直角坐标系中,直线AB分别交x、y轴于点A、B,直线BC分别交x、y轴于点C、B,点A的坐标为(2,0),∠ABO=30,且AB⊥BC.(1)求直线BC和AB的解析式;(2)将点B沿某条直线折叠到点0,折痕分别交BC、BA于点E、D,在x轴上是否存在点F,使得点D、E、F为顶点的三角形是以DE为斜边的直角三角形?若存在,请求出F点坐标;若不存在,请说明理由;(3)在平面直角坐标系内是否存在两个点,使得这两个点与B、C两点构成的四边形是正方形?若存在,请直接写出这两点的坐标;若不存在,请说明理由.参考答案一、选择题1.B.2.D.3.C.4.A.5.C.6.C.7.B.8.D.9.D.10.D.二、填空题11.3.12.513.x>﹣2.14.6.5三、解答题15.解:(1)原式=2m(x2﹣2xy+y2)=2m(x﹣y)2;(2)两边都乘以x﹣2,得:1﹣x=x﹣2+3,解得:x=0,检验:x=0时,x﹣2=﹣2≠0,所以原分式方程的解为x=0.16.解:==,当x=﹣3时,原式=====.17.解:(1)如图,△A1B1C1为所作,点C1坐标为(3,0);故答案为(3,0);(2)如图,△A2B2C2为所作;(3)点B2,C2的坐标分别为(﹣2,5),(﹣4,3);18.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CE,∴∠E=∠ABE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠E=∠CBE,∴CB=CE,∵CF⊥BE,∴BF=EF.(2)∵四边形ABCD是平行四边形,∴AB=CD=6,∵DE=3,∴BC=CE=9,∴平行四边形ABCD的周长为30.19.解:(1)设学校八年级共有x个班,则有(4x+20)个篮球,依题意得:0<(4x+20)﹣8(x﹣1)<8,解得5<x<7,∵x是整数,∴x=6,答:学校八年级共有6个班.(2)由(1)可知,篮球的个数是:4×6+20=44(个)所以44﹣5×8=4(个)答:如果每个班分8个篮球,最后一个班分到的篮球个数是4个.20.解:(1)∵E,F是BC,BD的中点,∴∠BFE=∠BDC,∵∠FEM=∠FDC,∴∠BFE=∠FEM,∴DF∥EM,∵EF∥CD,∴四边形EFDM是平行四边形,∵EM∥BD,点E是BC的中点,∴点M是CD的中点,∴DM=CD,∵点F是BD中点,∴DF=BD,∵BD=CD,∴DF=DM,∵四边形DFEM是平行四边形,∴▱DFEM是菱形;(2)由旋转知,∠FEM=∠GEN,∴∠FEG=∠MEN,在Rt△ABD中,点F是BD中点,∴AF=DF,∴∠DAF=∠ADF,∵EF∥CD,∴∠ADF=∠DFE,∴∠DAF=∠DFE,∴∠AFE=∠AFD+∠EFD=∠AFD+∠ADF=∠CDF,∵EM∥BD,∴∠CDF=∠EMN,∴∠AFE=∠CME,由(1)知,四边形DFEM是菱形,∴△EFG≌△EMN(AAS),∴EG=EN;(3)在Rt△ABC中,∠C=30°,AB=2,∴BC=4,∠ABC=60°,∵点E是BC的中点,∴CE=2,∵BD=CD,∴∠CBD=∠C=30°,∴∠ABD=30°,∴BD=,∴CD=,AF=BD=,∵G是AF的中点,∴FG=AF=,∵△EFG≌△EMN(AAS),∴EG=EN,MN=FG=,∵E,F是BC,BD的中点,∴EF=CD=,∴DM=EF=,∴CN=CD﹣DM﹣MN=﹣﹣=过点N作NH⊥BC于H∴EH=CN=,CH=EH=,∴EH=CE﹣CH=,在Rt△ENH中,EN==,∴EG=..一、填空题(每小题4分,共20分)21.解:∵a2+2ab﹣3b2=0,∴(a2﹣b2)+(2ab﹣2b2)=0,∴(a+b)(a﹣b)+2b(a﹣b)=0,∴(a﹣b)(a+3b)=0,∴a﹣b=0或a+3b=0,∴a=b或a=﹣3b.当a=b时,原式=(ab≠0)=3;当a=﹣3b时,原式=(ab≠0)=.故答案为:3或.22.解:分式方程去分母得:2a+1=ax+a,整理得:(a﹣2)x=1﹣a,当a﹣2≠0,即a≠2时,x=,由分式方程有解,得到≠﹣1,解得:a≠2,则a的范围是a≠2.23.解:,解得:,∵x>1,y≥2,∴解得:﹣1≤k<1,故答案为:﹣1≤k<1.24.解:在矩形ABCD中,AD=BC=AB=CD,∵DE平分∠ADC,∴∠ADE=∠CDE=45°,∵AH⊥DE,∴△ADH是等腰直角三角形,∴AD=AB,∴AH=AB=CD,∵△DEC是等腰直角三角形,∴DE=CD,∴AD=DE,∴∠AEH=67.5°,∴∠EAH=22.5°,∵DH=CD,∠EDC=45°,∴∠DHC=67.5°,∴∠OHA=22.5°,∴∠OAH=∠OHA,∴OA=OH,∴∠AEH=∠OHE=67.5°,∴OH=OE,∴OH=AE,即=.故答案为:.25.解:如图,作ME⊥AD交AB于E,连接EN′、AC、作CF⊥AB于F.∵∠MAE=45°,∴△MAE是等腰直角三角形,∴MA=ME,∵∠AME=∠NMN′=90°,∴∠AMN=∠EMN′,∵MN=MN′,∴△AMN≌△EMN′,∴∠MAN=∠MEN′=45°,∴∠AEN′=90°,∴EN′⊥AB,∵AM=DM=,AB=4,∴AE=2,EB=2,∴AE=EB,∴N′B=N′A,∴N′B+N′C=N′A+N′C,∴当A、N′、C共线时,N′B+N′C的值最小,最小值=AC,在Rt△BCF中,∵BC=AD=2,∠CBF=∠DAB=45°,∴CF=BF=2,在Rt△ACF中,AC==2,故答案为2.二、解答题(共三个答题,共30分)26.解:(1)设今年5月份A款汽车每辆售价m万元.则:,解得:m=21.经检验,m=21是原方程的根且符合题意.答:今年5月份A款汽车每辆售价21万元;(2)设购进A款汽车x辆.则:204≤20x+12(15﹣x)≤236.解得:3≤x≤7.∵x的正整数解为3,4,5,6,7,∴共有5种进货方案;(3)设总获利为W万元,购进A款汽车x辆,则:W=(21﹣20)x+(13.8﹣12﹣a)(15﹣x)=28.4.解得:a=1时,该公司销售两款汽车的最大利润为28.4万元.27.解:(1)∵四边形ABCD是正方形,∴BC=CD,∠BCD=∠CBG=∠D=90°,∵BG=DP,∴△BCG≌△DCP(SAS),∴CP=CG,∠BCG=∠DCP,∵∠PCG=45°,∴∠BCG+∠DCP=45°,∴∠DCP=∠BCG=22.5°,∴∠PCF=∠PCG+∠BCG=67.5°,在△PCG中,CP=CG,∠PCG=45°,∴∠CPG=(180°﹣45°)=67.5°=∠PCF,∴PF=CF;(2)如图2,∵四边形ABCD是正方形,∴∠CBG=∠BCD=90°,过点C作CH⊥CG交AD的延长线于H,∴∠CD H=90°=∠HCG.∴∠BCG=∠DCH,∴△BCG≌△DCH(ASA),∴CG=CH,∵∠HCG=90°,∠PCG=45°,∴∠PCH=45°=∠PCG,. ∵CP=CP,∴△PCH≌△PCG(SAS),∴∠CPG=∠CPH,∵∠CPD+∠DCP=90°,∴∠CPF+∠DCP=90°,∵∠PCF+∠DCP=90°,∴∠CPF=∠PCF,∴PF=CF;(3)如图3,连接PN,由(2)知,PF=CF,∵EF⊥CP,∴PE=CE,∴EF是线段CP的垂直平分线,∴PN=CN,∴∠CPN=∠PCN,∵∠PCN=45°,∴∠CPN=45°,∴∠CNP=90°,∵PE=CE,∴EN=CP,在Rt△CDP中,CE=PE,∴DE=CE=CP,∴EN=DE,∴∠DNE=∠NDE,设∠DCP=α,∴∠CED=∠DCP=α,∴∠DEP=2α,∵∠PEF=90°,∴∠DEN=90°+2α,∴∠NDE=(180°﹣∠DEN)=45°﹣α,∴∠NDC=∠NDE+∠CDE=45°﹣α+α=45°.28.解:(1)在Rt△AOB中,∵OA=2,∠AB O=30°,∴OB=2,在Rt△OBC中,∵∠BCO=30°,OB=2,∴OC=6,∴B(0,2),C(6,0),设直线AB的解析式为y=kx+b,则有,解得,∴直线AB的解析式为y=﹣x+2,设直线BC的解析式为y=k′x+b′则有,解得,∴直线BC的解析式为y=x+2.(2)如图1中,根据对称性可知,当点F与O重合时,∠EF′D=∠EBD=90°,此时F′(0,0),设DE交OB于K,作FH⊥DE于H.当△EFD≌△DF′E时,∠EFD=∠DF′E=90°,易证DK=EH=1,DE=AC=4,∴KH=OF=4﹣2=2,∴F(﹣2,0),综上所述,满足条件的点F坐标为(﹣2,0)或(0,0).(3)如图2中,∵B(0,2),C((﹣6,0),∴BC=4,当BC为正方形BCMN的边时,M(﹣6﹣2,6),N(﹣2,2+6)或M′(2﹣6,﹣6),N′(2,2﹣6).当BC为正方形的对角线时,M″(﹣3﹣,3+),N″(﹣3,﹣3).。
成都市金牛区北师大八年级下期末数学试卷有答案
八年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有项符合题目要求,答案涂在答题卡上)1.(3分)已知a<b,下列不等式中正确的是()A.B.a﹣1<b﹣1 C.﹣a<﹣b D.a+3>b+32.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)分式有意义的条件是()A.>2 B.<2 C.≠2 D.≠04.(3分)若等腰三角形一个内角为100°,则此等腰三角形的顶角为() A.100°B.40°C.100°或40°D.80°5.(3分)若分式□的运算结果为(≠0),则在“口”中添加的运算符号为()A.+ B.﹣C.+或÷D.﹣或×6.(3分)已知关于的不等式组的解集是≥1,则a的取值范围是() A.a>1 B.a≥1 C.a<1 D.a≤17.(3分)甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等.求甲、乙每小时各做零件多少个.如果设乙每小时做个,那么所列方程是()A. =B. =C. =D. =8.(3分)已知四边形ABCD,对角线AC与BD交于点O,从下列条件中:①AB∥CD;②AD=BC;③∠ABC=∠ADC;④OA=OC,任取其中两个,以下组合能够判定四边形ABCD是平行四边形的是()A.①②B.②③C.②④D.①④9.(3分)已知关于的分式方程无解,则的值为()A.0 B.0或﹣1 C.0 D.0或10.(3分)如图,菱形ABCD的对角线AC与BD交于点O,过点C作AB垂线交AB延长线于点E,连结OE,若AB=2,BD=4,则OE的长为()A.6 B.5 C.2D.4二、填空题(本题共4个小题,每小题4分,共16分)11.(4分)分式的值为0,那么的值为.12.(4分)多项式2﹣+6因式分解后有一个因式为﹣2,则的值为.13.(4分)如图,一次函数y1=﹣2+m与y2=a+6的图象相交于点P(﹣2,3),则关于的不等式m﹣2<a+6的解集是14.(4分)如图,在△ABC中,BF平分∠ABC,AG⊥BF,垂足为点D,交BC于点G,E为AC的中点,连结DE,DE=2.5cm,AB=4cm,则BC的长为cm.三、解答题(本题共6个大题,共54分)15.(12分)(1)分解因式:2m2﹣4my+2my2.(2)解方程:.16.(8分)先化简,再求值:,其中=﹣3.17.(8分)在平面直角坐标系中,△ABC的位置如图所示:(每个小方格都是边长为1个单位长度的正方形)(1)将△ABC沿y轴方向向下平移4个单位长度得到△A1B1C1,则点C1坐标为;(2)将△ABC绕着点O逆时针旋转90°,画出旋转后得到的△△A2B2C2;(3)直接写出点B2,C2的坐标.18.(8分)如图,在?ABCD中,BE平分∠ABC交CD延长线于点E,作CF⊥BE 于F.(1)求证:BF=EF;(2)若AB=6,DE=3,求?ABCD的周长.19.(8分)在某学校的八年级课外活动中,体育组想把篮球分给班级活动用,如果每个班分4个篮球,则剩余20个篮球;如果每个班分8个篮球,则最后一个班分到的篮球个数不到8个(也不为0个),问:(1)这个学校八年级共有几个班?(2)如果每个班分8个篮球,最后一个班分到的篮球个数到底是多少个?20.(10分)在直角三角形ABC中,∠BAC=90°,(AC>AB),在边AC上取点D,使得BD=CD,点E、F分别是线段BC、BD的中点,连接A F和EF,作∠FEM=∠FDC,交AC于点M,如图1所示,(1)请判断四边形EFDM是什么特殊的四边形,并证明你的结论;(2)将∠FEM绕点E顺时针旋转到∠GEN,交线段AF于点G,交AC于点N,如图2所示,请证明:EG=EN;(3)在第(2)条件下,若点G是AF中点,且∠C=30°,AB=2,如图3,求GE 的长度.一、填空题(每小题4分,共20分)21.(4分)已知ab≠0,a2+2ab﹣3b2=0,那么分式的值等于.22.(4分)已知关于的分式方程=a有解,则a的取值范围是.23.(4分)已知关于、y方程组的解满足>1,y≥2,则的取值范围是.24.(4分)如图,在矩形ABCD中,BC=AB,∠ADC的平分线交边BC于点E,AH⊥DE于点H,连接CH并延长交边AB于点F,连接AE交CF于点O,则的值是.25.(4分)如图,在平行四边形ABCD中,∠A=45°,AB=4,AD=2,M是AD 边的中点,N是AB边上一动点,将线段M绕点M逆时针旋转90至MN′,连接N′B,N′C,则N′B+N′C的最小值是.二、解答题(共三个答题,共30分)26.(8分)某新能汽车销售公司销售A品牌电动汽车,今年5月份电动汽车的售价比去年同期降价了1万元,如果销售的数量相同,去年5月份的销售额为110万元,今年5月份的销售额就只有105万元.(1)求今年5月份A品牌电动汽车的售价;(2)该公司同时销售B品牌混合动力汽车,已知A、B品牌汽车的进价分别为20万元/辆、12万元/辆,若公司预计用不超过236万元且不少于204万元的资金购进两款汽车共15辆,求公司的进货方案有多少种?(3)在(2)的条件下,今年5月份B品牌汽车的售价为13.8万元/辆,且每售出一辆A品牌电动汽车,政府将给予公司a万元奖励(0<α<2),已知该公司销售两款汽车的最大利润为28.4万元,求a的值.27.(10分)(1)如图1,正方形ABCD中,∠PCG=45°,且PD=BG,求证:FP=FC;(2)如图2,正方形ABCD中,∠PCG=45°,延长FG交CB的延长线于点F,(1)中的结论还成立吗?请说明理由;(3)在(2)的条件下,作FE⊥PC,垂足为点E,交CG于点N,连结DN,求∠NDC的度数.28.(12分)如图,在平面直角坐标系中,直线AB分别交、y轴于点A、B,直线BC分别交、y轴于点C、B,点A的坐标为(2,0),∠ABO=30,且AB⊥BC.(1)求直线BC和AB的解析式;(2)将点B沿某条直线折叠到点0,折痕分别交BC、BA于点E、D,在轴上是否存在点F,使得点D、E、F为顶点的三角形是以DE为斜边的直角三角形?若存在,请求出F点坐标;若不存在,请说明理由;(3)在平面直角坐标系内是否存在两个点,使得这两个点与B、C两点构成的四边形是正方形?若存在,请直接写出这两点的坐标;若不存在,请说明理由.参考答案一、选择题1.B.2.D.3.C.4.A.5.C.6.C.7.B.8.D.9.D.10.D.二、填空题11.3.12.513.>﹣2.14.6.5三、解答题15.解:(1)原式=2m(2﹣2y+y2)=2m(﹣y)2;(2)两边都乘以﹣2,得:1﹣=﹣2+3,解得:=0,检验:=0时,﹣2=﹣2≠0,所以原分式方程的解为=0.16.解:==,当=﹣3时,原式=====.17.解:(1)如图,△A1B1C1为所作,点C1坐标为(3,0);故答案为(3,0);(2)如图,△A2B2C2为所作;(3)点B2,C2的坐标分别为(﹣2,5),(﹣4,3);18.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CE,∴∠E=∠ABE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠E=∠CBE,∴CB=CE,∵CF⊥BE,∴BF=EF.(2)∵四边形ABCD是平行四边形,∴AB=CD=6,∴BC=CE=9,∴平行四边形ABCD的周长为30.19.解:(1)设学校八年级共有个班,则有(4+20)个篮球,依题意得:0<(4+20)﹣8(﹣1)<8,解得5<<7,∵是整数,∴=6,答:学校八年级共有6个班.(2)由(1)可知,篮球的个数是:4×6+20=44(个)所以44﹣5×8=4(个)答:如果每个班分8个篮球,最后一个班分到的篮球个数是4个.20.解:(1)∵E,F是BC,BD的中点,∴EF∥CD,∴∠BFE=∠BDC,∵∠FEM=∠FDC,∴∠BFE=∠FEM,∵EF∥CD,∴四边形EFDM是平行四边形,∵EM∥BD,点E是BC的中点,∴点M是CD的中点,∴DM=CD,∵点F是BD中点,∴DF=BD,∵BD=CD,∴DF=DM,∵四边形DFEM是平行四边形,∴?DFEM是菱形;(2)由旋转知,∠FEM=∠GEN,∴∠FEG=∠MEN,在Rt△ABD中,点F是BD中点,∴AF=DF,∴∠DAF=∠ADF,∵EF∥CD,∴∠ADF=∠DFE,∴∠DAF=∠DFE,∴∠AFE=∠AFD+∠EFD=∠AFD+∠ADF=∠CDF,∵EM∥BD,∴∠CDF=∠EMN,∴∠AFE=∠CME,由(1)知,四边形DFEM是菱形,∴EF=EM,∴△EFG≌△EMN(AAS),∴EG=EN;(3)在Rt△ABC中,∠C=30°,AB=2,∴BC=4,∠ABC=60°,∵点E是BC的中点,∴CE=2,∵BD=CD,∴∠CBD=∠C=30°,∴∠ABD=30°,∴BD=,∴CD=,AF=BD=,∵G是AF的中点,∴FG=AF=,∵△EFG≌△EMN(AAS),∴EG=EN,MN=FG=,∵E,F是BC,BD的中点,∴EF=CD=,∴DM=EF=,∴CN=CD﹣DM﹣MN=﹣﹣=过点N作NH⊥BC于H∴EH=CN=,CH=EH=,∴EH=CE﹣CH=,在Rt△ENH中,EN==,∴EG=.一、填空题(每小题4分,共20分)21.解:∵a2+2ab﹣3b2=0,∴(a2﹣b2)+(2ab﹣2b2)=0,∴(a+b)(a﹣b)+2b(a﹣b)=0,∴(a﹣b)(a+3b)=0,∴a﹣b=0或a+3b=0,∴a=b或a=﹣3b.当a=b时,原式=(ab≠0)=3;当a=﹣3b时,原式=(ab≠0)=.故答案为:3或.22.解:分式方程去分母得:2a+1=a+a,整理得:(a﹣2)=1﹣a,当a﹣2≠0,即a≠2时,=,由分式方程有解,得到≠﹣1,解得:a≠2,则a的范围是a≠2.23.解:,解得:,∵>1,y≥2,∴解得:﹣1≤<1,故答案为:﹣1≤<1.24.解:在矩形ABCD中,AD=BC=AB=CD,∵DE平分∠ADC,∴∠ADE=∠CDE=45°,∵AH⊥DE,∴△ADH是等腰直角三角形,∴AD=AB,∴AH=AB=CD,∵△DEC是等腰直角三角形,∴DE=CD,∴AD=DE,∴∠AEH=67.5°,∴∠EAH=22.5°,∵DH=CD,∠EDC=45°,∴∠DHC=67.5°,∴∠OHA=22.5°,∴∠OAH=∠OHA,∴OA=OH,∴∠AEH=∠OHE=67.5°,∴OH=OE,∴OH=AE,即=.故答案为:.25.解:如图,作ME⊥AD交AB于E,连接EN′、AC、作CF⊥AB于F.∵∠MAE=45°,∴△MAE是等腰直角三角形,∴MA=ME,∵∠AME=∠NMN′=90°,∴∠AMN=∠EMN′,∵MN=MN′,∴△AMN≌△EMN′,∴∠MAN=∠MEN′=45°,∴∠AEN′=90°,∴EN′⊥AB,∵AM=DM=,AB=4,∴AE=2,EB=2,∴AE=EB,∴N′B=N′A,∴N′B+N′C=N′A+N′C,∴当A、N′、C共线时,N′B+N′C的值最小,最小值=AC,在Rt△BCF中,∵BC=AD=2,∠CBF=∠DAB=45°,∴CF=BF=2,在Rt△ACF中,AC==2,故答案为2.二、解答题(共三个答题,共30分)26.解:(1)设今年5月份A款汽车每辆售价m万元.则:,解得:m=21.经检验,m=21是原方程的根且符合题意.答:今年5月份A款汽车每辆售价21万元;(2)设购进A款汽车辆.则:204≤20+12(15﹣)≤236.解得:3≤≤7.∵的正整数解为3,4,5,6,7,∴共有5种进货方案;(3)设总获利为W万元,购进A款汽车辆,则:W=(21﹣20)+(13.8﹣12﹣a)(15﹣)=28.4.解得:a=1时,该公司销售两款汽车的最大利润为28.4万元.27.解:(1)∵四边形ABCD是正方形,∴BC=CD,∠BCD=∠CBG=∠D=90°,∵BG=DP,∴△BCG≌△DCP(SAS),∴CP=CG,∠BCG=∠DCP,∵∠PCG=45°,∴∠BCG+∠DCP=45°,∴∠DCP=∠BCG=22.5°,∴∠PCF=∠PCG+∠BCG=67.5°,在△PCG中,CP=CG,∠PCG=45°,∴∠CPG=(180°﹣45°)=67.5°=∠PCF,∴PF=CF;(2)如图2,∵四边形ABCD是正方形,∴∠CBG=∠BCD=90°,过点C作CH⊥CG交AD的延长线于H,∴∠CDH=90°=∠HCG.∴∠BCG=∠DCH,∴△BCG≌△DCH(ASA),∴CG=CH,∵∠HCG=90°,∠PCG=45°,∴∠PCH=45°=∠PCG,∵CP=CP,∴△PCH≌△PCG(SAS),∴∠CPG=∠CPH,∵∠CPD+∠DCP=90°,∴∠CPF+∠DCP=90°,∵∠PCF+∠DCP=90°,∴∠CPF=∠PCF,∴PF=CF;(3)如图3,连接PN,由(2)知,PF=CF,∵EF⊥CP,∴PE=CE,∴EF是线段CP的垂直平分线,∴PN=CN,∴∠CPN=∠PCN,∵∠PCN=45°,∴∠CPN=45°,∴∠CNP=90°,∵PE=CE,∴EN=CP,在Rt△CDP中,CE=PE,∴DE=CE=CP,∴EN=DE,∴∠DNE=∠NDE,设∠DCP=α,∴∠CED=∠DCP=α,∴∠DEP=2α,∵∠PEF=90°,∴∠DEN=90°+2α,∴∠NDE=(180°﹣∠DEN)=45°﹣α,∴∠NDC=∠NDE+∠CDE=45°﹣α+α=45°.28.解:(1)在Rt△AOB中,∵OA=2,∠ABO=30°,∴OB=2,在Rt△OBC中,∵∠BCO=30°,OB=2,∴OC=6,∴B(0,2),C(6,0),设直线AB的解析式为y=+b,则有,解得,∴直线AB的解析式为y=﹣+2,设直线BC的解析式为y=′+b′则有,解得,∴直线BC的解析式为y=+2.(2)如图1中,根据对称性可知,当点F与O重合时,∠EF′D=∠EBD=90°,此时F′(0,0),设DE交OB于,作FH⊥DE于H.当△EFD≌△DF′E时,∠EFD=∠DF′E=90°,易证D=EH=1,DE=AC=4,∴H=OF=4﹣2=2,∴F(﹣2,0),综上所述,满足条件的点F坐标为(﹣2,0)或(0,0).(3)如图2中,∵B(0,2),C((﹣6,0),∴BC=4,当BC为正方形BCMN的边时,M(﹣6﹣2,6),N(﹣2,2+6)或M′(2﹣6,﹣6),N′(2,2﹣6).当BC为正方形的对角线时,M″(﹣3﹣,3+),N″(﹣3,﹣3).。
成都市金牛区北师大八年级下期末数学试卷有答案
八年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有项符合题目要求,答案涂在答题卡上)1.(3分)已知a<b,下列不等式中正确的是()A.B.a﹣1<b﹣1 C.﹣a<﹣b D.a+3>b+32.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)分式有意义的条件是()A.>2 B.<2 C.≠2 D.≠04.(3分)若等腰三角形一个内角为100°,则此等腰三角形的顶角为()A.100°B.40°C.100°或40°D.80°5.(3分)若分式□的运算结果为(≠0),则在“口”中添加的运算符号为()A.+ B.﹣C.+或÷D.﹣或×6.(3分)已知关于的不等式组的解集是≥1,则a的取值范围是()A.a>1 B.a≥1 C.a<1 D.a≤17.(3分)甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等.求甲、乙每小时各做零件多少个.如果设乙每小时做个,那么所列方程是()A.=B.=C.=D.=8.(3分)已知四边形ABCD,对角线AC与BD交于点O,从下列条件中:①AB∥CD;②AD=BC;③∠ABC=∠ADC;④OA=OC,任取其中两个,以下组合能够判定四边形ABCD是平行四边形的是()A.①②B.②③C.②④D.①④9.(3分)已知关于的分式方程无解,则的值为()A.0 B.0或﹣1 C.0 D.0或10.(3分)如图,菱形ABCD的对角线AC与BD交于点O,过点C作AB垂线交AB延长线于点E,连结OE,若AB=2,BD=4,则OE的长为()A.6 B.5 C.2D.4二、填空题(本题共4个小题,每小题4分,共16分)11.(4分)分式的值为0,那么的值为.12.(4分)多项式2﹣+6因式分解后有一个因式为﹣2,则的值为.13.(4分)如图,一次函数y1=﹣2+m与y2=a+6的图象相交于点P(﹣2,3),则关于的不等式m﹣2<a+6的解集是14.(4分)如图,在△ABC中,BF平分∠ABC,AG⊥BF,垂足为点D,交BC 于点G,E为AC的中点,连结DE,DE=2.5cm,AB=4cm,则BC的长为cm.三、解答题(本题共6个大题,共54分)15.(12分)(1)分解因式:2m2﹣4my+2my2.(2)解方程:.16.(8分)先化简,再求值:,其中=﹣3.17.(8分)在平面直角坐标系中,△ABC的位置如图所示:(每个小方格都是边长为1个单位长度的正方形)(1)将△ABC沿y轴方向向下平移4个单位长度得到△A1B1C1,则点C1坐标为;(2)将△ABC绕着点O逆时针旋转90°,画出旋转后得到的△△A2B2C2;(3)直接写出点B2,C2的坐标.18.(8分)如图,在▱ABCD中,BE平分∠ABC交CD延长线于点E,作CF ⊥BE于F.(1)求证:BF=EF;(2)若AB=6,DE=3,求▱ABCD的周长.19.(8分)在某学校的八年级课外活动中,体育组想把篮球分给班级活动用,如果每个班分4个篮球,则剩余20个篮球;如果每个班分8个篮球,则最后一个班分到的篮球个数不到8个(也不为0个),问:(1)这个学校八年级共有几个班?(2)如果每个班分8个篮球,最后一个班分到的篮球个数到底是多少个?20.(10分)在直角三角形ABC中,∠BAC=90°,(AC>AB),在边AC上取点D,使得BD=CD,点E、F分别是线段BC、BD的中点,连接A F和EF,作∠FEM=∠FDC,交AC于点M,如图1所示,(1)请判断四边形EFDM是什么特殊的四边形,并证明你的结论;(2)将∠FEM绕点E顺时针旋转到∠GEN,交线段AF于点G,交AC于点N,如图2所示,请证明:EG=EN;(3)在第(2)条件下,若点G是AF中点,且∠C=30°,AB=2,如图3,求GE的长度.一、填空题(每小题4分,共20分)21.(4分)已知ab≠0,a2+2ab﹣3b2=0,那么分式的值等于.22.(4分)已知关于的分式方程=a有解,则a的取值范围是.23.(4分)已知关于、y方程组的解满足>1,y≥2,则的取值范围是.24.(4分)如图,在矩形ABCD中,BC=AB,∠ADC的平分线交边BC于点E,AH⊥DE于点H,连接CH并延长交边AB于点F,连接AE交CF于点O,则的值是.25.(4分)如图,在平行四边形ABCD中,∠A=45°,AB=4,AD=2,M是AD边的中点,N是AB边上一动点,将线段M绕点M逆时针旋转90至MN′,连接N′B,N′C,则N′B+N′C的最小值是.二、解答题(共三个答题,共30分)26.(8分)某新能汽车销售公司销售A品牌电动汽车,今年5月份电动汽车的售价比去年同期降价了1万元,如果销售的数量相同,去年5月份的销售额为110万元,今年5月份的销售额就只有105万元.(1)求今年5月份A品牌电动汽车的售价;(2)该公司同时销售B品牌混合动力汽车,已知A、B品牌汽车的进价分别为20万元/辆、12万元/辆,若公司预计用不超过236万元且不少于204万元的资金购进两款汽车共15辆,求公司的进货方案有多少种?(3)在(2)的条件下,今年5月份B品牌汽车的售价为13.8万元/辆,且每售出一辆A品牌电动汽车,政府将给予公司a万元奖励(0<α<2),已知该公司销售两款汽车的最大利润为28.4万元,求a的值.27.(10分)(1)如图1,正方形ABCD中,∠PCG=45°,且PD=BG,求证:FP=FC;(2)如图2,正方形ABCD中,∠PCG=45°,延长FG交CB的延长线于点F,(1)中的结论还成立吗?请说明理由;(3)在(2)的条件下,作FE⊥PC,垂足为点E,交CG于点N,连结DN,求∠NDC的度数.28.(12分)如图,在平面直角坐标系中,直线AB分别交、y轴于点A、B,直线BC分别交、y轴于点C、B,点A的坐标为(2,0),∠ABO=30,且AB ⊥BC.(1)求直线BC和AB的解析式;(2)将点B沿某条直线折叠到点0,折痕分别交BC、BA于点E、D,在轴上是否存在点F,使得点D、E、F为顶点的三角形是以DE为斜边的直角三角形?若存在,请求出F点坐标;若不存在,请说明理由;(3)在平面直角坐标系内是否存在两个点,使得这两个点与B、C两点构成的四边形是正方形?若存在,请直接写出这两点的坐标;若不存在,请说明理由.参考答案一、选择题1.B.2.D.3.C.4.A.5.C.6.C.7.B.8.D.9.D.10.D.二、填空题11.3.12.5 13.>﹣2.14.6.5三、解答题15.解:(1)原式=2m(2﹣2y+y2)=2m(﹣y)2;(2)两边都乘以﹣2,得:1﹣=﹣2+3,解得:=0,检验:=0时,﹣2=﹣2≠0,所以原分式方程的解为=0.16.解:==,当=﹣3时,原式=====.17.解:(1)如图,△A1B1C1为所作,点C1坐标为(3,0);故答案为(3,0);(2)如图,△A2B2C2为所作;(3)点B2,C2的坐标分别为(﹣2,5),(﹣4,3);18.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CE,∴∠E=∠ABE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠E=∠CBE,∴CB=CE,∵CF⊥BE,∴BF=EF.(2)∵四边形ABCD是平行四边形,∴AB=CD=6,∵DE=3,∴BC=CE=9,∴平行四边形ABCD的周长为30.19.解:(1)设学校八年级共有个班,则有(4+20)个篮球,依题意得:0<(4+20)﹣8(﹣1)<8,解得5<<7,∵是整数,∴=6,答:学校八年级共有6个班.(2)由(1)可知,篮球的个数是:4×6+20=44(个)所以44﹣5×8=4(个)答:如果每个班分8个篮球,最后一个班分到的篮球个数是4个.20.解:(1)∵E,F是BC,BD的中点,∴EF∥CD,∴∠BFE=∠BDC,∵∠FEM=∠FDC,∴∠BFE=∠FEM,∴DF∥EM,∵EF∥CD,∴四边形EFDM是平行四边形,∵EM∥BD,点E是BC的中点,∴点M是CD的中点,∴DM=CD,∵点F是BD中点,∴DF=BD,∵BD=CD,∴DF=DM,∵四边形DFEM是平行四边形,∴▱DFEM是菱形;(2)由旋转知,∠FEM=∠GEN,∴∠FEG=∠MEN,在Rt△ABD中,点F是BD中点,∴AF=DF,∴∠DAF=∠ADF,∵EF∥CD,∴∠ADF=∠DFE,∴∠DAF=∠DFE,∴∠AFE=∠AFD+∠EFD=∠AFD+∠ADF=∠CDF,∵EM∥BD,∴∠CDF=∠EMN,∴∠AFE=∠CME,由(1)知,四边形DFEM是菱形,∴EF=EM,∴△EFG≌△EMN(AAS),∴EG=EN;(3)在Rt△ABC中,∠C=30°,AB=2,∴BC=4,∠ABC=60°,∵点E是BC的中点,∴CE=2,∵BD=CD,∴∠CBD=∠C=30°,∴∠ABD=30°,∴BD=,∴CD=,AF=BD=,∵G是AF的中点,∴FG=AF=,∵△EFG≌△EMN(AAS),∴EG=EN,MN=FG=,∵E,F是BC,BD的中点,∴EF=CD=,∴DM=EF=,∴CN=CD﹣DM﹣MN=﹣﹣=过点N作NH⊥BC于H∴EH=CN=,CH=EH=,∴EH=CE﹣CH=,在Rt△ENH中,EN==,∴EG=.一、填空题(每小题4分,共20分)21.解:∵a2+2ab﹣3b2=0,∴(a2﹣b2)+(2ab﹣2b2)=0,∴(a+b)(a﹣b)+2b(a﹣b)=0,∴(a﹣b)(a+3b)=0,∴a﹣b=0或a+3b=0,∴a=b或a=﹣3b.当a=b时,原式=(ab≠0)=3;当a=﹣3b时,原式=(ab≠0)=.故答案为:3或.22.解:分式方程去分母得:2a+1=a+a,整理得:(a﹣2)=1﹣a,当a﹣2≠0,即a≠2时,=,由分式方程有解,得到≠﹣1,解得:a≠2,则a的范围是a≠2.23.解:,解得:,∵>1,y≥2,∴解得:﹣1≤<1,故答案为:﹣1≤<1.24.解:在矩形ABCD中,AD=BC=AB=CD,∵DE平分∠ADC,∴∠ADE=∠CDE=45°,∵AH⊥DE,∴△ADH是等腰直角三角形,∴AD=AB,∴AH=AB=CD,∵△DEC是等腰直角三角形,∴DE=CD,∴AD=DE,∴∠AEH=67.5°,∴∠EAH=22.5°,∵DH=CD,∠EDC=45°,∴∠DHC=67.5°,∴∠OHA=22.5°,∴∠OAH=∠OHA,∴OA=OH,∴∠AEH=∠OHE=67.5°,∴OH=OE,∴OH=AE,即=.故答案为:.25.解:如图,作ME⊥AD交AB于E,连接EN′、AC、作CF⊥AB于F.∵∠MAE=45°,∴△MAE是等腰直角三角形,∴MA=ME,∵∠AME=∠NMN′=90°,∴∠AMN=∠EMN′,∵MN=MN′,∴△AMN≌△EMN′,∴∠MAN=∠MEN′=45°,∴∠AEN′=90°,∴EN′⊥AB,∵AM=DM=,AB=4,∴AE=2,EB=2,∴AE=EB,∴N′B=N′A,∴N′B+N′C=N′A+N′C,∴当A、N′、C共线时,N′B+N′C的值最小,最小值=AC,在Rt△BCF中,∵BC=AD=2,∠CBF=∠DAB=45°,∴CF=BF=2,在Rt△ACF中,AC==2,故答案为2.二、解答题(共三个答题,共30分)26.解:(1)设今年5月份A款汽车每辆售价m万元.则:,解得:m=21.经检验,m=21是原方程的根且符合题意.答:今年5月份A款汽车每辆售价21万元;(2)设购进A款汽车辆.则:204≤20+12(15﹣)≤236.解得:3≤≤7.∵的正整数解为3,4,5,6,7,∴共有5种进货方案;(3)设总获利为W万元,购进A款汽车辆,则:W=(21﹣20)+(13.8﹣12﹣a)(15﹣)=28.4.解得:a=1时,该公司销售两款汽车的最大利润为28.4万元.27.解:(1)∵四边形ABCD是正方形,∴BC=CD,∠BCD=∠CBG=∠D=90°,∵BG=DP,∴△BCG≌△DCP(SAS),∴CP=CG,∠BCG=∠DCP,∵∠PCG=45°,∴∠BCG+∠DCP=45°,∴∠DCP=∠BCG=22.5°,∴∠PCF=∠PCG+∠BCG=67.5°,在△PCG中,CP=CG,∠PCG=45°,∴∠CPG=(180°﹣45°)=67.5°=∠PCF,∴PF=CF;(2)如图2,∵四边形ABCD是正方形,∴∠CBG=∠BCD=90°,过点C作CH⊥CG交AD的延长线于H,∴∠CDH=90°=∠HCG.∴∠BCG=∠DCH,∴△BCG≌△DCH(ASA),∴CG=CH,∵∠HCG=90°,∠PCG=45°,∴∠PCH=45°=∠PCG,∵CP=CP,∴△PCH≌△PCG(SAS),∴∠CPG=∠CPH,∵∠CPD+∠DCP=90°,∴∠CPF+∠DCP=90°,∵∠PCF+∠DCP=90°,∴∠CPF=∠PCF,∴PF=CF;(3)如图3,连接PN,由(2)知,PF=CF,∵EF⊥CP,∴PE=CE,∴EF是线段CP的垂直平分线,∴PN=CN,∴∠CPN=∠PCN,∵∠PCN=45°,∴∠CPN=45°,∴∠CNP=90°,∵PE=CE,∴EN=CP,在Rt△CDP中,CE=PE,∴DE=CE=CP,∴EN=DE,∴∠DNE=∠NDE,设∠DCP=α,∴∠CED=∠DCP=α,∴∠DEP=2α,∵∠PEF=90°,∴∠DEN=90°+2α,∴∠NDE=(180°﹣∠DEN)=45°﹣α,∴∠NDC=∠NDE+∠CDE=45°﹣α+α=45°.28.解:(1)在Rt△AOB中,∵OA=2,∠ABO=30°,∴OB=2,在Rt△OBC中,∵∠BCO=30°,OB=2,∴OC=6,∴B(0,2),C(6,0),设直线AB的解析式为y=+b,则有,解得,∴直线AB的解析式为y=﹣+2,设直线BC的解析式为y=′+b′则有,解得,∴直线BC的解析式为y=+2.(2)如图1中,根据对称性可知,当点F与O重合时,∠EF′D=∠EBD=90°,此时F′(0,0),设DE交OB于,作FH⊥DE于H.当△EFD≌△DF′E时,∠EFD=∠DF′E=90°,易证D=EH=1,DE=AC=4,∴H=OF=4﹣2=2,∴F(﹣2,0),综上所述,满足条件的点F坐标为(﹣2,0)或(0,0).(3)如图2中,∵B(0,2),C((﹣6,0),∴BC=4,当BC为正方形BCMN的边时,M(﹣6﹣2,6),N(﹣2,2+6)或M′(2﹣6,﹣6),N′(2,2﹣6).当BC为正方形的对角线时,M″(﹣3﹣,3+),N″(﹣3,﹣3).。
成都市金牛区北师大八年级下期末数学试卷有答案-精品
八年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有项符合题目要求,答案涂在答题卡上)1.(3分)已知a<b,下列不等式中正确的是()A.B.a﹣1<b﹣1 C.﹣a<﹣b D.a+3>b+32.(3分)下列图形中,既是轴对称图形又是中心对称图形的是() A.B.C.D.3.(3分)分式有意义的条件是()A.x>2 B.x<2 C.x≠2 D.x≠04.(3分)若等腰三角形一个内角为100°,则此等腰三角形的顶角为() A.100°B.40°C.100°或40°D.80°5.(3分)若分式□的运算结果为x(x≠0),则在“口”中添加的运算符号为()A.+ B.﹣C.+或÷D.﹣或×6.(3分)已知关于x的不等式组的解集是x≥1,则a的取值范围是()A.a>1 B.a≥1 C.a<1 D.a≤17.(3分)甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等.求甲、乙每小时各做零件多少个.如果设乙每小时做x个,那么所列方程是()A. =B. =C. =D. =8.(3分)已知四边形ABCD,对角线AC与BD交于点O,从下列条件中:①AB∥CD;②AD=BC;③∠ABC=∠ADC;④OA=OC,任取其中两个,以下组合能够判定四边形ABCD是平行四边形的是()A.①②B.②③C.②④D.①④9.(3分)已知关于x的分式方程无解,则k的值为()A.0 B.0或﹣1 C.0 D.0或10.(3分)如图,菱形ABCD的对角线AC与BD交于点O,过点C作AB垂线交AB延长线于点E,连结OE,若AB=2,BD=4,则OE的长为()A.6 B.5 C.2D.4二、填空题(本题共4个小题,每小题4分,共16分)11.(4分)分式的值为0,那么x的值为.12.(4分)多项式x2﹣kx+6因式分解后有一个因式为x﹣2,则k的值为.13.(4分)如图,一次函数y1=﹣2x+m与y2=ax+6的图象相交于点P(﹣2,3),则关于x的不等式m﹣2x<ax+6的解集是14.(4分)如图,在△ABC中,BF平分∠ABC,AG⊥BF,垂足为点D,交BC于点G,E为AC的中点,连结DE,DE=2.5cm,AB=4cm,则BC的长为cm.三、解答题(本题共6个大题,共54分)15.(12分)(1)分解因式:2mx2﹣4mxy+2my2.(2)解方程:.16.(8分)先化简,再求值:,其中x=﹣3.17.(8分)在平面直角坐标系中,△ABC的位置如图所示:(每个小方格都是边长为1个单位长度的正方形)(1)将△ABC沿y轴方向向下平移4个单位长度得到△A1B1C1,则点C1坐标为;(2)将△ABC绕着点O逆时针旋转90°,画出旋转后得到的△△A2B2C2;(3)直接写出点B2,C2的坐标.18.(8分)如图,在▱ABCD中,BE平分∠ABC交CD延长线于点E,作CF ⊥BE于F.(1)求证:BF=EF;(2)若AB=6,DE=3,求▱ABCD的周长.19.(8分)在某学校的八年级课外活动中,体育组想把篮球分给班级活动用,如果每个班分4个篮球,则剩余20个篮球;如果每个班分8个篮球,则最后一个班分到的篮球个数不到8个(也不为0个),问:(1)这个学校八年级共有几个班?(2)如果每个班分8个篮球,最后一个班分到的篮球个数到底是多少个?20.(10分)在直角三角形ABC中,∠BAC=90°,(AC>AB),在边AC上取点D,使得BD=CD,点E、F分别是线段BC、BD的中点,连接A F和EF,作∠FEM=∠FDC,交AC于点M,如图1所示,(1)请判断四边形EFDM是什么特殊的四边形,并证明你的结论;(2)将∠FEM绕点E顺时针旋转到∠GEN,交线段AF于点G,交AC于点N,如图2所示,请证明:EG=EN;(3)在第(2)条件下,若点G是AF中点,且∠C=30°,AB=2,如图3,求GE的长度.一、填空题(每小题4分,共20分)21.(4分)已知ab≠0,a2+2ab﹣3b2=0,那么分式的值等于.22.(4分)已知关于x的分式方程=a有解,则a的取值范围是.23.(4分)已知关于x、y方程组的解满足x>1,y≥2,则k的取值范围是.24.(4分)如图,在矩形ABCD中,BC=AB,∠ADC的平分线交边BC于点E,AH⊥DE于点H,连接CH并延长交边AB于点F,连接AE交CF于点O,则的值是.25.(4分)如图,在平行四边形ABCD中,∠A=45°,AB=4,AD=2,M 是AD边的中点,N是AB边上一动点,将线段M绕点M逆时针旋转90至MN′,连接N′B,N′C,则N′B+N′C的最小值是.二、解答题(共三个答题,共30分)26.(8分)某新能汽车销售公司销售A品牌电动汽车,今年5月份电动汽车的售价比去年同期降价了1万元,如果销售的数量相同,去年5月份的销售额为110万元,今年5月份的销售额就只有105万元.(1)求今年5月份A品牌电动汽车的售价;(2)该公司同时销售B品牌混合动力汽车,已知A、B品牌汽车的进价分别为20万元/辆、12万元/辆,若公司预计用不超过236万元且不少于204万元的资金购进两款汽车共15辆,求公司的进货方案有多少种?(3)在(2)的条件下,今年5月份B品牌汽车的售价为13.8万元/辆,且每售出一辆A品牌电动汽车,政府将给予公司a万元奖励(0<α<2),已知该公司销售两款汽车的最大利润为28.4万元,求a的值.27.(10分)(1)如图1,正方形ABCD中,∠PCG=45°,且PD=BG,求证:FP=FC;(2)如图2,正方形ABCD中,∠PCG=45°,延长FG交CB的延长线于点F,(1)中的结论还成立吗?请说明理由;(3)在(2)的条件下,作FE⊥PC,垂足为点E,交CG于点N,连结DN,求∠NDC的度数.28.(12分)如图,在平面直角坐标系中,直线AB分别交x、y轴于点A、B,直线BC分别交x、y轴于点C、B,点A的坐标为(2,0),∠ABO=30,且AB⊥BC.(1)求直线BC和AB的解析式;(2)将点B沿某条直线折叠到点0,折痕分别交BC、BA于点E、D,在x 轴上是否存在点F,使得点D、E、F为顶点的三角形是以DE为斜边的直角三角形?若存在,请求出F点坐标;若不存在,请说明理由;(3)在平面直角坐标系内是否存在两个点,使得这两个点与B、C两点构成的四边形是正方形?若存在,请直接写出这两点的坐标;若不存在,请说明理由.参考答案一、选择题1.B.2.D.3.C.4.A.5.C.6.C.7.B.8.D.9.D.10.D.二、填空题11.3.12.513.x>﹣2.14.6.5三、解答题15.解:(1)原式=2m(x2﹣2xy+y2)=2m(x﹣y)2;(2)两边都乘以x﹣2,得:1﹣x=x﹣2+3,解得:x=0,检验:x=0时,x﹣2=﹣2≠0,所以原分式方程的解为x=0.16.解:==,当x=﹣3时,原式=====.17.解:(1)如图,△A1B1C1为所作,点C1坐标为(3,0);故答案为(3,0);(2)如图,△A2B2C2为所作;(3)点B2,C2的坐标分别为(﹣2,5),(﹣4,3);18.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CE,∴∠E=∠ABE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠E=∠CBE,∴CB=CE,∵CF⊥BE,∴BF=EF.(2)∵四边形ABCD是平行四边形,∴AB=CD=6,∵DE=3,∴BC=CE=9,∴平行四边形ABCD的周长为30.19.解:(1)设学校八年级共有x个班,则有(4x+20)个篮球,依题意得:0<(4x+20)﹣8(x﹣1)<8,解得5<x<7,∵x是整数,∴x=6,答:学校八年级共有6个班.(2)由(1)可知,篮球的个数是:4×6+20=44(个)所以44﹣5×8=4(个)答:如果每个班分8个篮球,最后一个班分到的篮球个数是4个.20.解:(1)∵E,F是BC,BD的中点,∴EF∥CD,∴∠BFE=∠BDC,∵∠FEM=∠FDC,∴∠BFE=∠FEM,∴DF∥EM,∵EF∥CD,∴四边形EFDM是平行四边形,∵EM∥BD,点E是BC的中点,∴点M是CD的中点,∴DM=CD,∵点F是BD中点,∴DF=BD,∵BD=CD,∴DF=DM,∵四边形DFEM是平行四边形,∴▱DFEM是菱形;(2)由旋转知,∠FEM=∠GEN,∴∠FEG=∠MEN,在Rt△ABD中,点F是BD中点,∴AF=DF,∴∠DAF=∠ADF,∵EF∥CD,∴∠ADF=∠DFE,∴∠DAF=∠DFE,∴∠AFE=∠AFD+∠EFD=∠AFD+∠ADF=∠CDF,∵EM∥BD,∴∠CDF=∠EMN,∴∠AFE=∠CME,由(1)知,四边形DFEM是菱形,∴EF=EM,∴△EFG≌△EMN(AAS),∴EG=EN;(3)在Rt△ABC中,∠C=30°,AB=2,∴BC=4,∠ABC=60°,∵点E是BC的中点,∴CE=2,∵BD=CD,∴∠CBD=∠C=30°,∴∠ABD=30°,∴BD=,∴CD=,AF=BD=,∵G是AF的中点,∴FG=AF=,∵△EFG≌△EMN(AAS),∴EG=EN,MN=FG=,∵E,F是BC,BD的中点,∴EF=CD=,∴DM=EF=,∴CN=CD﹣DM﹣MN=﹣﹣=过点N作NH⊥BC于H∴EH=CN=,CH=EH=,∴EH=CE﹣CH=,在Rt△ENH中,EN==,∴EG=.一、填空题(每小题4分,共20分)21.解:∵a2+2ab﹣3b2=0,∴(a2﹣b2)+(2ab﹣2b2)=0,∴(a+b)(a﹣b)+2b(a﹣b)=0,∴(a﹣b)(a+3b)=0,∴a﹣b=0或a+3b=0,∴a=b或a=﹣3b.当a=b时,原式=(ab≠0)=3;当a=﹣3b时,原式=(ab≠0)=.故答案为:3或.22.解:分式方程去分母得:2a+1=ax+a,整理得:(a﹣2)x=1﹣a,当a﹣2≠0,即a≠2时,x=,由分式方程有解,得到≠﹣1,解得:a≠2,则a的范围是a≠2.23.解:,解得:,∵x>1,y≥2,∴解得:﹣1≤k<1,故答案为:﹣1≤k<1.24.解:在矩形ABCD中,AD=BC=AB=CD,∵DE平分∠ADC,∴∠ADE=∠CDE=45°,∵AH⊥DE,∴△ADH是等腰直角三角形,∴AD=AB,∴AH=AB=CD,∵△DEC是等腰直角三角形,∴DE=CD,∴AD=DE,∴∠AEH=67.5°,∴∠EAH=22.5°,∵DH=CD,∠EDC=45°,∴∠DHC=67.5°,∴∠OHA=22.5°,∴∠OAH=∠OHA,∴OA=OH,∴∠AEH=∠OHE=67.5°,∴OH=OE,∴OH=AE,即=.故答案为:.25.解:如图,作ME⊥AD交AB于E,连接EN′、AC、作CF⊥AB于F.∵∠MAE=45°,∴△MAE是等腰直角三角形,∴MA=ME,∵∠AME=∠NMN′=90°,∴∠AMN=∠EMN′,∵MN=MN′,∴△AMN≌△EMN′,∴∠MAN=∠MEN′=45°,∴∠AEN′=90°,∴EN′⊥AB,∵AM=DM=,AB=4,∴AE=2,EB=2,∴AE=EB,∴N′B=N′A,∴N′B+N′C=N′A+N′C,∴当A、N′、C共线时,N′B+N′C的值最小,最小值=AC,在Rt△BCF中,∵BC=AD=2,∠CBF=∠DAB=45°,∴CF=BF=2,在Rt△ACF中,AC==2,故答案为2.二、解答题(共三个答题,共30分)26.解:(1)设今年5月份A款汽车每辆售价m万元.则:,解得:m=21.经检验,m=21是原方程的根且符合题意.答:今年5月份A款汽车每辆售价21万元;(2)设购进A款汽车x辆.则:204≤20x+12(15﹣x)≤236.解得:3≤x≤7.∵x的正整数解为3,4,5,6,7,∴共有5种进货方案;(3)设总获利为W万元,购进A款汽车x辆,则:W=(21﹣20)x+(13.8﹣12﹣a)(15﹣x)=28.4.解得:a=1时,该公司销售两款汽车的最大利润为28.4万元.27.解:(1)∵四边形ABCD是正方形,∴BC=CD,∠BCD=∠CBG=∠D=90°,∵BG=DP,∴△BCG≌△DCP(SAS),∴CP=CG,∠BCG=∠DCP,∵∠PCG=45°,∴∠BCG+∠DCP=45°,∴∠DCP=∠BCG=22.5°,∴∠PCF=∠PCG+∠BCG=67.5°,在△PCG中,CP=CG,∠PCG=45°,∴∠CPG=(180°﹣45°)=67.5°=∠PCF,∴PF=CF;(2)如图2,∵四边形ABCD是正方形,∴∠CBG=∠BCD=90°,过点C作CH⊥CG交AD的延长线于H,∴∠CDH=90°=∠HCG.∴∠BCG=∠DCH,∴△BCG≌△DCH(ASA),∴CG=CH,∵∠HCG=90°,∠PCG=45°,∴∠PCH=45°=∠PCG,∵CP=CP,∴△PCH≌△PCG(SAS),∴∠CPG=∠CPH,∵∠CPD+∠DCP=90°,∴∠CPF+∠DCP=90°,∵∠PCF+∠DCP=90°,∴∠CPF=∠PCF,∴PF=CF;(3)如图3,连接PN,由(2)知,PF=CF,∵EF⊥CP,∴PE=CE,∴EF是线段CP的垂直平分线,∴PN=CN,∴∠CPN=∠PCN,∵∠PCN=45°,∴∠CPN=45°,∴∠CNP=90°,∵PE=CE,∴EN=CP,在Rt△CDP中,CE=PE,∴DE=CE=CP,∴EN=DE,∴∠DNE=∠NDE,设∠DCP=α,∴∠CED=∠DCP=α,∴∠DEP=2α,∵∠PEF=90°,∴∠DEN=90°+2α,∴∠NDE=(180°﹣∠DEN)=45°﹣α,∴∠NDC=∠NDE+∠CDE=45°﹣α+α=45°.28.解:(1)在Rt△AOB中,∵OA=2,∠ABO=30°,∴OB=2,在Rt△OBC中,∵∠BCO=30°,OB=2,∴OC=6,∴B(0,2),C(6,0),设直线AB的解析式为y=kx+b,则有,解得,∴直线AB的解析式为y=﹣x+2,设直线BC的解析式为y=k′x+b′则有,解得,∴直线BC的解析式为y=x+2.(2)如图1中,根据对称性可知,当点F与O重合时,∠EF′D=∠EBD=90°,此时F′(0,0),设DE交OB于,作FH⊥DE于H.当△EFD≌△DF′E时,∠EFD=∠DF′E=90°,易证D=EH=1,DE=AC=4,∴H=OF=4﹣2=2,∴F(﹣2,0),综上所述,满足条件的点F坐标为(﹣2,0)或(0,0).(3)如图2中,∵B(0,2),C((﹣6,0),∴BC=4,当BC为正方形BCMN的边时,M(﹣6﹣2,6),N(﹣2,2+6)或M′(2﹣6,﹣6),N′(2,2﹣6).当BC为正方形的对角线时,M″(﹣3﹣,3+),N″(﹣3,﹣3).。
成都市金牛区北师大八年级下期末数学试卷有答案
八年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有项符合题目要求,答案涂在答题卡上)1.(3分)已知a<b,下列不等式中正确的是()A.B.a﹣1<b﹣1 C.﹣a<﹣b D.a+3>b+32.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)分式有意义的条件是()A.>2 B.<2 C.≠2 D.≠04.(3分)若等腰三角形一个内角为100°,则此等腰三角形的顶角为() A.100°B.40°C.100°或40°D.80°5.(3分)若分式□的运算结果为(≠0),则在“口”中添加的运算符号为()A.+ B.﹣C.+或÷D.﹣或×6.(3分)已知关于的不等式组的解集是≥1,则a的取值范围是() A.a>1 B.a≥1 C.a<1 D.a≤17.(3分)甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等.求甲、乙每小时各做零件多少个.如果设乙每小时做个,那么所列方程是()A. =B. =C. =D. =8.(3分)已知四边形ABCD,对角线AC与BD交于点O,从下列条件中:①AB∥CD;②AD=BC;③∠ABC=∠ADC;④OA=OC,任取其中两个,以下组合能够判定四边形ABCD是平行四边形的是()A.①②B.②③C.②④D.①④9.(3分)已知关于的分式方程无解,则的值为()A.0 B.0或﹣1 C.0 D.0或10.(3分)如图,菱形ABCD的对角线AC与BD交于点O,过点C作AB垂线交AB延长线于点E,连结OE,若AB=2,BD=4,则OE的长为()A.6 B.5 C.2D.4二、填空题(本题共4个小题,每小题4分,共16分)11.(4分)分式的值为0,那么的值为.12.(4分)多项式2﹣+6因式分解后有一个因式为﹣2,则的值为.13.(4分)如图,一次函数y1=﹣2+m与y2=a+6的图象相交于点P(﹣2,3),则关于的不等式m﹣2<a+6的解集是14.(4分)如图,在△ABC中,BF平分∠ABC,AG⊥BF,垂足为点D,交BC于点G,E为AC的中点,连结DE,DE=2.5cm,AB=4cm,则BC的长为cm.三、解答题(本题共6个大题,共54分)15.(12分)(1)分解因式:2m2﹣4my+2my2.(2)解方程:.16.(8分)先化简,再求值:,其中=﹣3.17.(8分)在平面直角坐标系中,△ABC的位置如图所示:(每个小方格都是边长为1个单位长度的正方形)(1)将△ABC沿y轴方向向下平移4个单位长度得到△A1B1C1,则点C1坐标为;(2)将△ABC绕着点O逆时针旋转90°,画出旋转后得到的△△A2B2C2;(3)直接写出点B2,C2的坐标.18.(8分)如图,在▱ABCD中,BE平分∠ABC交CD延长线于点E,作CF⊥BE于F.(1)求证:BF=EF;(2)若AB=6,DE=3,求▱ABCD的周长.19.(8分)在某学校的八年级课外活动中,体育组想把篮球分给班级活动用,如果每个班分4个篮球,则剩余20个篮球;如果每个班分8个篮球,则最后一个班分到的篮球个数不到8个(也不为0个),问:(1)这个学校八年级共有几个班?(2)如果每个班分8个篮球,最后一个班分到的篮球个数到底是多少个?20.(10分)在直角三角形ABC中,∠BAC=90°,(AC>AB),在边AC上取点D,使得BD=CD,点E、F分别是线段BC、BD的中点,连接A F和EF,作∠FEM=∠FDC,交AC于点M,如图1所示,(1)请判断四边形EFDM是什么特殊的四边形,并证明你的结论;(2)将∠FEM绕点E顺时针旋转到∠GEN,交线段AF于点G,交AC于点N,如图2所示,请证明:EG=EN;(3)在第(2)条件下,若点G是AF中点,且∠C=30°,AB=2,如图3,求GE 的长度.一、填空题(每小题4分,共20分)21.(4分)已知ab≠0,a2+2ab﹣3b2=0,那么分式的值等于.22.(4分)已知关于的分式方程=a有解,则a的取值范围是.23.(4分)已知关于、y方程组的解满足>1,y≥2,则的取值范围是.24.(4分)如图,在矩形ABCD中,BC=AB,∠ADC的平分线交边BC于点E,AH⊥DE于点H,连接CH并延长交边AB于点F,连接AE交CF于点O,则的值是.25.(4分)如图,在平行四边形ABCD中,∠A=45°,AB=4,AD=2,M是AD边的中点,N是AB边上一动点,将线段M绕点M逆时针旋转90至MN′,连接N′B,N′C,则N′B+N′C的最小值是.二、解答题(共三个答题,共30分)26.(8分)某新能汽车销售公司销售A品牌电动汽车,今年5月份电动汽车的售价比去年同期降价了1万元,如果销售的数量相同,去年5月份的销售额为110万元,今年5月份的销售额就只有105万元.(1)求今年5月份A品牌电动汽车的售价;(2)该公司同时销售B品牌混合动力汽车,已知A、B品牌汽车的进价分别为20万元/辆、12万元/辆,若公司预计用不超过236万元且不少于204万元的资金购进两款汽车共15辆,求公司的进货方案有多少种?(3)在(2)的条件下,今年5月份B品牌汽车的售价为13.8万元/辆,且每售出一辆A品牌电动汽车,政府将给予公司a万元奖励(0<α<2),已知该公司销售两款汽车的最大利润为28.4万元,求a的值.27.(10分)(1)如图1,正方形ABCD中,∠PCG=45°,且PD=BG,求证:FP=FC;(2)如图2,正方形ABCD中,∠PCG=45°,延长FG交CB的延长线于点F,(1)中的结论还成立吗?请说明理由;(3)在(2)的条件下,作FE⊥PC,垂足为点E,交CG于点N,连结DN,求∠NDC的度数.28.(12分)如图,在平面直角坐标系中,直线AB分别交、y轴于点A、B,直线BC分别交、y轴于点C、B,点A的坐标为(2,0),∠ABO=30,且AB⊥BC.(1)求直线BC和AB的解析式;(2)将点B沿某条直线折叠到点0,折痕分别交BC、BA于点E、D,在轴上是否存在点F,使得点D、E、F为顶点的三角形是以DE为斜边的直角三角形?若存在,请求出F点坐标;若不存在,请说明理由;(3)在平面直角坐标系内是否存在两个点,使得这两个点与B、C两点构成的四边形是正方形?若存在,请直接写出这两点的坐标;若不存在,请说明理由.参考答案一、选择题1.B.2.D.3.C.4.A.5.C.6.C.7.B.8.D.9.D.10.D.二、填空题11.3.12.513.>﹣2.14.6.5三、解答题15.解:(1)原式=2m(2﹣2y+y2)=2m(﹣y)2;(2)两边都乘以﹣2,得:1﹣=﹣2+3,解得:=0,检验:=0时,﹣2=﹣2≠0,所以原分式方程的解为=0.16.解:==,当=﹣3时,原式=====.17.解:(1)如图,△A1B1C1为所作,点C1坐标为(3,0);故答案为(3,0);(2)如图,△A2B2C2为所作;(3)点B2,C2的坐标分别为(﹣2,5),(﹣4,3);18.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CE,∴∠E=∠ABE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠E=∠CBE,∴CB=CE,∵CF⊥BE,∴BF=EF.(2)∵四边形ABCD是平行四边形,∴AB=CD=6,∵DE=3,∴BC=CE=9,∴平行四边形ABCD的周长为30.19.解:(1)设学校八年级共有个班,则有(4+20)个篮球,依题意得:0<(4+20)﹣8(﹣1)<8,解得5<<7,∵是整数,∴=6,答:学校八年级共有6个班.(2)由(1)可知,篮球的个数是:4×6+20=44(个)所以44﹣5×8=4(个)答:如果每个班分8个篮球,最后一个班分到的篮球个数是4个.20.解:(1)∵E,F是BC,BD的中点,∴EF∥CD,∴∠BFE=∠BDC,∵∠FEM=∠FDC,∴∠BFE=∠FEM,∴DF∥EM,∵EF∥CD,∴四边形EFDM是平行四边形,∵EM∥BD,点E是BC的中点,∴点M是CD的中点,∴DM=CD,∵点F是BD中点,∴DF=BD,∵BD=CD,∴DF=DM,∵四边形DFEM是平行四边形,∴▱DFEM是菱形;(2)由旋转知,∠FEM=∠GEN,∴∠FEG=∠MEN,在Rt△ABD中,点F是BD中点,∴AF=DF,∴∠DAF=∠ADF,∵EF∥CD,∴∠ADF=∠DFE,∴∠DAF=∠DFE,∴∠AFE=∠AFD+∠EFD=∠AFD+∠ADF=∠CDF,∵EM∥BD,∴∠CDF=∠EMN,∴∠AFE=∠CME,由(1)知,四边形DFEM是菱形,∴EF=EM,∴△EFG≌△EMN(AAS),∴EG=EN;(3)在Rt△ABC中,∠C=30°,AB=2,∴BC=4,∠ABC=60°,∵点E是BC的中点,∴CE=2,∵BD=CD,∴∠CBD=∠C=30°,∴∠ABD=30°,∴BD=,∴CD=,AF=BD=,∵G是AF的中点,∴FG=AF=,∵△EFG≌△EMN(AAS),∴EG=EN,MN=FG=,∵E,F是BC,BD的中点,∴EF=CD=,∴DM=EF=,∴CN=CD﹣DM﹣MN=﹣﹣=过点N作NH⊥BC于H∴EH=CN=,CH=EH=,∴EH=CE﹣CH=,在Rt△ENH中,EN==,∴EG=.一、填空题(每小题4分,共20分)21.解:∵a2+2ab﹣3b2=0,∴(a2﹣b2)+(2ab﹣2b2)=0,∴(a+b)(a﹣b)+2b(a﹣b)=0,∴(a﹣b)(a+3b)=0,∴a﹣b=0或a+3b=0,∴a=b或a=﹣3b.当a=b时,原式=(ab≠0)=3;当a=﹣3b时,原式=(ab≠0)=.故答案为:3或.22.解:分式方程去分母得:2a+1=a+a,整理得:(a﹣2)=1﹣a,当a﹣2≠0,即a≠2时,=,由分式方程有解,得到≠﹣1,解得:a≠2,则a的范围是a≠2.23.解:,解得:,∵>1,y≥2,∴解得:﹣1≤<1,故答案为:﹣1≤<1.24.解:在矩形ABCD中,AD=BC=AB=CD,∵DE平分∠ADC,∴∠ADE=∠CDE=45°,∵AH⊥DE,∴△ADH是等腰直角三角形,∴AD=AB,∴AH=AB=CD,∵△DEC是等腰直角三角形,∴DE=CD,∴AD=DE,∴∠EAH=22.5°,∵DH=CD,∠EDC=45°,∴∠DHC=67.5°,∴∠OHA=22.5°,∴∠OAH=∠OHA,∴OA=OH,∴∠AEH=∠OHE=67.5°,∴OH=OE,∴OH=AE,即=.故答案为:.25.解:如图,作ME⊥AD交AB于E,连接EN′、AC、作CF⊥AB于F.∵∠MAE=45°,∴△MAE是等腰直角三角形,∴MA=ME,∵∠AME=∠NMN′=90°,∵MN=MN′,∴△AMN≌△EMN′,∴∠MAN=∠MEN′=45°,∴∠AEN′=90°,∴EN′⊥AB,∵AM=DM=,AB=4,∴AE=2,EB=2,∴AE=EB,∴N′B=N′A,∴N′B+N′C=N′A+N′C,∴当A、N′、C共线时,N′B+N′C的值最小,最小值=AC,在Rt△BCF中,∵BC=AD=2,∠CBF=∠DAB=45°,∴CF=BF=2,在Rt△ACF中,AC==2,故答案为2.二、解答题(共三个答题,共30分)26.解:(1)设今年5月份A款汽车每辆售价m万元.则:,解得:m=21.经检验,m=21是原方程的根且符合题意.答:今年5月份A款汽车每辆售价21万元;(2)设购进A款汽车辆.则:204≤20+12(15﹣)≤236.解得:3≤≤7.∵的正整数解为3,4,5,6,7,∴共有5种进货方案;(3)设总获利为W万元,购进A款汽车辆,则:W=(21﹣20)+(13.8﹣12﹣a)(15﹣)=28.4.解得:a=1时,该公司销售两款汽车的最大利润为28.4万元.27.解:(1)∵四边形ABCD是正方形,∴BC=CD,∠BCD=∠CBG=∠D=90°,∵BG=DP,∴△BCG≌△DCP(SAS),∴CP=CG,∠BCG=∠DCP,∵∠PCG=45°,∴∠BCG+∠DCP=45°,∴∠DCP=∠BCG=22.5°,∴∠PCF=∠PCG+∠BCG=67.5°,在△PCG中,CP=CG,∠PCG=45°,∴∠CPG=(180°﹣45°)=67.5°=∠PCF,∴PF=CF;(2)如图2,∵四边形ABCD是正方形,∴∠CBG=∠BCD=90°,过点C作CH⊥CG交AD的延长线于H,∴∠CDH=90°=∠HCG.∴∠BCG=∠DCH,∴△BCG≌△DCH(ASA),∴CG=CH,∵∠HCG=90°,∠PCG=45°,∴∠PCH=45°=∠PCG,∵CP=CP,∴△PCH≌△PCG(SAS),∴∠CPG=∠CPH,∵∠CPD+∠DCP=90°,∴∠CPF+∠DCP=90°,∵∠PCF+∠DCP=90°,∴∠CPF=∠PCF,∴PF=CF;(3)如图3,连接PN,由(2)知,PF=CF,∵EF⊥CP,∴PE=CE,∴EF是线段CP的垂直平分线,∴PN=CN,∴∠CPN=∠PCN,∵∠PCN=45°,∴∠CPN=45°,∴∠CNP=90°,∵PE=CE,∴EN=CP,在Rt△CDP中,CE=PE,∴DE=CE=CP,∴EN=DE,∴∠DNE=∠NDE,设∠DCP=α,∴∠CED=∠DCP=α,∴∠DEP=2α,∵∠PEF=90°,∴∠DEN=90°+2α,∴∠NDE=(180°﹣∠DEN)=45°﹣α,∴∠NDC=∠NDE+∠CDE=45°﹣α+α=45°.28.解:(1)在Rt△AOB中,∵OA=2,∠ABO=30°,∴OB=2,在Rt△OBC中,∵∠BCO=30°,OB=2,∴OC=6,∴B(0,2),C(6,0),设直线AB的解析式为y=+b,则有,解得,∴直线AB的解析式为y=﹣+2,设直线BC的解析式为y=′+b′则有,解得,∴直线BC的解析式为y=+2.(2)如图1中,根据对称性可知,当点F与O重合时,∠EF′D=∠EBD=90°,此时F′(0,0),设DE交OB于,作FH⊥DE于H.当△EFD≌△DF′E时,∠EFD=∠DF′E=90°,易证D=EH=1,DE=AC=4,∴H=OF=4﹣2=2,∴F(﹣2,0),综上所述,满足条件的点F坐标为(﹣2,0)或(0,0).(3)如图2中,∵B(0,2),C((﹣6,0),∴BC=4,当BC为正方形BCMN的边时,M(﹣6﹣2,6),N(﹣2,2+6)或M′(2﹣6,﹣6),N′(2,2﹣6).当BC为正方形的对角线时,M″(﹣3﹣,3+),N″(﹣3,﹣3).。
成都市金牛区北师大八年级下期末数学试卷有答案-精编
八年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有项符合题目要求,答案涂在答题卡上)1.(3分)已知a<b,下列不等式中正确的是()A.B.a﹣1<b﹣1 C.﹣a<﹣b D.a+3>b+3 2.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)分式有意义的条件是()A.x>2 B.x<2 C.x≠2 D.x≠04.(3分)若等腰三角形一个内角为100°,则此等腰三角形的顶角为()A.100°B.40°C.100°或40°D.80°5.(3分)若分式□的运算结果为x(x≠0),则在“口”中添加的运算符号为()A.+ B.﹣C.+或÷D.﹣或×6.(3分)已知关于x的不等式组的解集是x≥1,则a的取值范围是()A.a>1 B.a≥1 C.a<1 D.a≤17.(3分)甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等.求甲、乙每小时各做零件多少个.如果设乙每小时做x个,那么所列方程是()A.=B.=C.=D.=8.(3分)已知四边形ABCD,对角线AC与BD交于点O,从下列条件中:①AB∥CD;②AD=BC;③∠ABC=∠ADC;④OA=OC,任取其中两个,以下组合能够判定四边形ABCD是平行四边形的是()A.①②B.②③C.②④D.①④9.(3分)已知关于x的分式方程无解,则k的值为()A.0 B.0或﹣1 C.0 D.0或10.(3分)如图,菱形ABCD的对角线AC与BD交于点O,过点C作AB垂线交AB延长线于点E,连结OE,若AB=2,BD=4,则OE的长为()A.6 B.5 C.2D.4二、填空题(本题共4个小题,每小题4分,共16分)11.(4分)分式的值为0,那么x的值为.12.(4分)多项式x2﹣kx+6因式分解后有一个因式为x﹣2,则k的值为.13.(4分)如图,一次函数y1=﹣2x+m与y2=ax+6的图象相交于点P(﹣2,3),则关于x的不等式m﹣2x<ax+6的解集是14.(4分)如图,在△ABC 中,BF 平分∠ABC ,AG ⊥BF ,垂足为点D ,交BC 于点G ,E 为AC 的中点,连结DE ,DE=2.5cm ,AB=4cm ,则BC 的长为 cm .三、解答题(本题共6个大题,共54分)15.(12分)(1)分解因式:2mx 2﹣4mxy+2my 2.(2)解方程:.16.(8分)先化简,再求值:,其中x=﹣3.17.(8分)在平面直角坐标系中,△ABC 的位置如图所示:(每个小方格都是边长为1个单位长度的正方形)(1)将△ABC 沿y 轴方向向下平移4个单位长度得到△A 1B 1C 1,则点C 1坐标为 ;(2)将△ABC 绕着点O 逆时针旋转90°,画出旋转后得到的△△A 2B 2C 2;(3)直接写出点B 2,C 2的坐标.18.(8分)如图,在▱ABCD中,BE平分∠ABC交CD延长线于点E,作CF⊥BE于F.(1)求证:BF=EF;(2)若AB=6,DE=3,求▱ABCD的周长.19.(8分)在某学校的八年级课外活动中,体育组想把篮球分给班级活动用,如果每个班分4个篮球,则剩余20个篮球;如果每个班分8个篮球,则最后一个班分到的篮球个数不到8个(也不为0个),问:(1)这个学校八年级共有几个班?(2)如果每个班分8个篮球,最后一个班分到的篮球个数到底是多少个?20.(10分)在直角三角形ABC中,∠BAC=90°,(AC>AB),在边AC 上取点D,使得BD=CD,点E、F分别是线段BC、BD的中点,连接A F和EF,作∠FEM=∠FDC,交AC于点M,如图1所示,(1)请判断四边形EFDM是什么特殊的四边形,并证明你的结论;(2)将∠FEM绕点E顺时针旋转到∠GEN,交线段AF于点G,交AC于点N,如图2所示,请证明:EG=EN;(3)在第(2)条件下,若点G是AF中点,且∠C=30°,AB=2,如图3,求GE的长度.一、填空题(每小题4分,共20分)21.(4分)已知ab≠0,a2+2ab﹣3b2=0,那么分式的值等于.22.(4分)已知关于x的分式方程=a有解,则a的取值范围是.23.(4分)已知关于x、y方程组的解满足x>1,y≥2,则k的取值范围是.24.(4分)如图,在矩形ABCD中,BC=AB,∠ADC的平分线交边BC于点E,AH⊥DE于点H,连接CH并延长交边AB于点F,连接AE交CF于点O,则的值是.25.(4分)如图,在平行四边形ABCD中,∠A=45°,AB=4,AD=2,M是AD边的中点,N是AB边上一动点,将线段M绕点M逆时针旋转90至MN′,连接N′B,N′C,则N′B+N′C的最小值是.二、解答题(共三个答题,共30分)26.(8分)某新能源汽车销售公司销售A品牌电动汽车,今年5月份电动汽车的售价比去年同期降价了1万元,如果销售的数量相同,去年5月份的销售额为110万元,今年5月份的销售额就只有105万元.(1)求今年5月份A品牌电动汽车的售价;(2)该公司同时销售B品牌混合动力汽车,已知A、B品牌汽车的进价分别为20万元/辆、12万元/辆,若公司预计用不超过236万元且不少于204万元的资金购进两款汽车共15辆,求公司的进货方案有多少种?(3)在(2)的条件下,今年5月份B品牌汽车的售价为13.8万元/辆,且每售出一辆A品牌电动汽车,政府将给予公司a万元奖励(0<α<2),已知该公司销售两款汽车的最大利润为28.4万元,求a的值.27.(10分)(1)如图1,正方形ABCD中,∠PCG=45°,且PD=BG,求证:FP=FC;(2)如图2,正方形ABCD中,∠PCG=45°,延长FG交CB的延长线于点F,(1)中的结论还成立吗?请说明理由;(3)在(2)的条件下,作FE⊥PC,垂足为点E,交CG于点N,连结DN,求∠NDC的度数.28.(12分)如图,在平面直角坐标系中,直线AB分别交x、y轴于点A、B,直线BC分别交x、y轴于点C、B,点A的坐标为(2,0),∠ABO=30,且AB⊥BC.(1)求直线BC和AB的解析式;(2)将点B沿某条直线折叠到点0,折痕分别交BC、BA于点E、D,在x轴上是否存在点F,使得点D、E、F为顶点的三角形是以DE为斜边的直角三角形?若存在,请求出F点坐标;若不存在,请说明理由;(3)在平面直角坐标系内是否存在两个点,使得这两个点与B、C两点构成的四边形是正方形?若存在,请直接写出这两点的坐标;若不存在,请说明理由.参考答案一、选择题1.B.2.D.3.C.4.A.5.C.6.C.7.B.8.D.9.D.10.D.二、填空题11.3.12.513.x>﹣2.14.6.5三、解答题15.解:(1)原式=2m(x2﹣2xy+y2)=2m(x﹣y)2;(2)两边都乘以x﹣2,得:1﹣x=x﹣2+3,解得:x=0,检验:x=0时,x﹣2=﹣2≠0,所以原分式方程的解为x=0.16.解:==,当x=﹣3时,原式=====.17.解:(1)如图,△A1B1C1为所作,点C1坐标为(3,0);故答案为(3,0);(2)如图,△A2B2C2为所作;(3)点B2,C2的坐标分别为(﹣2,5),(﹣4,3);18.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CE,∴∠E=∠ABE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠E=∠CBE,∴CB=CE,∵CF⊥BE,∴BF=EF.(2)∵四边形ABCD是平行四边形,∴AB=CD=6,∵DE=3,∴BC=CE=9,∴平行四边形ABCD的周长为30.19.解:(1)设学校八年级共有x个班,则有(4x+20)个篮球,依题意得:0<(4x+20)﹣8(x﹣1)<8,解得5<x<7,∵x是整数,∴x=6,答:学校八年级共有6个班.(2)由(1)可知,篮球的个数是:4×6+20=44(个)所以44﹣5×8=4(个)答:如果每个班分8个篮球,最后一个班分到的篮球个数是4个.20.解:(1)∵E,F是BC,BD的中点,∴EF∥CD,∴∠BFE=∠BDC,∵∠FEM=∠FDC,∴∠BFE=∠FEM,∴DF∥EM,∵EF∥CD,∴四边形EFDM是平行四边形,∵EM∥BD,点E是BC的中点,∴点M是CD的中点,∴DM=CD,∵点F是BD中点,∴DF=BD,∵BD=CD,∴DF=DM,∵四边形DFEM是平行四边形,∴▱DFEM是菱形;(2)由旋转知,∠FEM=∠GEN,∴∠FEG=∠MEN,在Rt△ABD中,点F是BD中点,∴AF=DF,∴∠DAF=∠ADF,∵EF∥CD,∴∠ADF=∠DFE,∴∠DAF=∠DFE,∴∠AFE=∠AFD+∠EFD=∠AFD+∠ADF=∠CDF,∵EM∥BD,∴∠CDF=∠EMN,∴∠AFE=∠CME,由(1)知,四边形DFEM是菱形,∴EF=EM,∴△EFG≌△EMN(AAS),∴EG=EN;(3)在Rt△ABC中,∠C=30°,AB=2,∴BC=4,∠ABC=60°,∵点E是BC的中点,∴CE=2,∵BD=CD,∴∠CBD=∠C=30°,∴∠ABD=30°,∴BD=,∴CD=,AF=BD=,∵G是AF的中点,∴FG=AF=,∵△EFG≌△EMN(AAS),∴EG=EN,MN=FG=,∵E,F是BC,BD的中点,∴EF=CD=,∴DM=EF=,∴CN=CD﹣DM﹣MN=﹣﹣=过点N作NH⊥BC于H∴EH=CN=,CH=EH=,∴EH=CE﹣CH=,在Rt△ENH中,EN==,∴EG=.一、填空题(每小题4分,共20分)21.解:∵a2+2ab﹣3b2=0,∴(a2﹣b2)+(2ab﹣2b2)=0,∴(a+b)(a﹣b)+2b(a﹣b)=0,∴(a﹣b)(a+3b)=0,∴a﹣b=0或a+3b=0,∴a=b或a=﹣3b.当a=b时,原式=(ab≠0)=3;当a=﹣3b时,原式=(ab≠0)=.故答案为:3或.22.解:分式方程去分母得:2a+1=ax+a,整理得:(a﹣2)x=1﹣a,当a﹣2≠0,即a≠2时,x=,由分式方程有解,得到≠﹣1,解得:a≠2,则a的范围是a≠2.23.解:,解得:,∵x>1,y≥2,∴解得:﹣1≤k<1,故答案为:﹣1≤k<1.24.解:在矩形ABCD中,AD=BC=AB=CD,∵DE平分∠ADC,∴∠ADE=∠CDE=45°,∵AH⊥DE,∴△ADH是等腰直角三角形,∴AD=AB,∴AH=AB=CD,∵△DEC是等腰直角三角形,∴DE=CD,∴AD=DE,∴∠AEH=67.5°,∴∠EAH=22.5°,∵DH=CD,∠EDC=45°,∴∠DHC=67.5°,∴∠OHA=22.5°,∴∠OAH=∠OHA,∴OA=OH,∴∠AEH=∠OHE=67.5°,∴OH=OE,∴OH=AE,即=.故答案为:.25.解:如图,作ME⊥AD交AB于E,连接EN′、AC、作CF⊥AB于F.∵∠MAE=45°,∴△MAE是等腰直角三角形,∴MA=ME,∵∠AME=∠NMN′=90°,∴∠AMN=∠EMN′,∵MN=MN′,∴△AMN≌△EMN′,∴∠MAN=∠MEN′=45°,∴∠AEN′=90°,∴EN′⊥AB,∵AM=DM=,AB=4,∴AE=2,EB=2,∴AE=EB,∴N′B=N′A,∴N′B+N′C=N′A+N′C,∴当A、N′、C共线时,N′B+N′C的值最小,最小值=AC,在Rt△BCF中,∵BC=AD=2,∠CBF=∠DAB=45°,∴CF=BF=2,在Rt△ACF中,AC==2,故答案为2.二、解答题(共三个答题,共30分)26.解:(1)设今年5月份A款汽车每辆售价m万元.则:,解得:m=21.经检验,m=21是原方程的根且符合题意.答:今年5月份A款汽车每辆售价21万元;(2)设购进A款汽车x辆.则:204≤20x+12(15﹣x)≤236.解得:3≤x≤7.∵x的正整数解为3,4,5,6,7,∴共有5种进货方案;(3)设总获利为W万元,购进A款汽车x辆,则:W=(21﹣20)x+(13.8﹣12﹣a)(15﹣x)=28.4.解得:a=1时,该公司销售两款汽车的最大利润为28.4万元.27.解:(1)∵四边形ABCD是正方形,∴BC=CD,∠BCD=∠CBG=∠D=90°,∵BG=DP,∴△BCG≌△DCP(SAS),∴CP=CG,∠BCG=∠DCP,∵∠PCG=45°,∴∠BCG+∠DCP=45°,∴∠DCP=∠BCG=22.5°,∴∠PCF=∠PCG+∠BCG=67.5°,在△PCG中,CP=CG,∠PCG=45°,∴∠CPG=(180°﹣45°)=67.5°=∠PCF,∴PF=CF;(2)如图2,∵四边形ABCD是正方形,∴∠CBG=∠BCD=90°,过点C作CH⊥CG交AD的延长线于H,∴∠CDH=90°=∠HCG.∴∠BCG=∠DCH,∴△BCG≌△DCH(ASA),∴CG=CH,∵∠HCG=90°,∠PCG=45°,∴∠PCH=45°=∠PCG,∵CP=CP,∴△PCH≌△PCG(SAS),∴∠CPG=∠CPH,∵∠CPD+∠DCP=90°,∴∠CPF+∠DCP=90°,∵∠PCF+∠DCP=90°,∴∠CPF=∠PCF,∴PF=CF;(3)如图3,连接PN,由(2)知,PF=CF,∵EF⊥CP,∴PE=CE,∴EF是线段CP的垂直平分线,∴PN=CN,∴∠CPN=∠PCN,∵∠PCN=45°,∴∠CPN=45°,∴∠CNP=90°,∵PE=CE,∴EN=CP,在Rt△CDP中,CE=PE,∴DE=CE=CP,∴EN=DE,∴∠DNE=∠NDE,设∠DCP=α,∴∠CED=∠DCP=α,∴∠DEP=2α,∵∠PEF=90°,∴∠DEN=90°+2α,∴∠NDE=(180°﹣∠DEN)=45°﹣α,∴∠NDC=∠NDE+∠CDE=45°﹣α+α=45°.28.解:(1)在Rt△AOB中,∵OA=2,∠ABO=30°,∴OB=2,在Rt△OBC中,∵∠BCO=30°,OB=2,∴OC=6,∴B(0,2),C(6,0),设直线AB的解析式为y=kx+b,则有,解得,∴直线AB的解析式为y=﹣x+2,设直线BC的解析式为y=k′x+b′则有,解得,∴直线BC的解析式为y=x+2.(2)如图1中,根据对称性可知,当点F与O重合时,∠EF′D=∠EBD=90°,此时F′(0,0),设DE交OB于K,作FH⊥DE于H.当△EFD≌△DF′E时,∠EFD=∠DF′E=90°,易证DK=EH=1,DE=AC=4,∴KH=OF=4﹣2=2,∴F(﹣2,0),综上所述,满足条件的点F坐标为(﹣2,0)或(0,0).(3)如图2中,∵B(0,2),C((﹣6,0),∴BC=4,当BC为正方形BCMN的边时,M(﹣6﹣2,6),N(﹣2,2+6)或M′(2﹣6,﹣6),N′(2,2﹣6).当BC为正方形的对角线时,M″(﹣3﹣,3+),N″(﹣3,﹣3).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川省成都市金牛区2013-2014学年下学期期末考试八年级数学试卷一、选择题(每小题3分,共30分)1.(3分)(2012•台州)下面四个汽车标志图案中是中心对称图形的是()A.B.C.D.考点:中心对称图形.分析:根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,由此结合各图形的特点求解.解答:解:根据中心对称的定义可得:A、C、D都不符合中心对称的定义.故选B.点评:本题考查中心对称的定义,属于基础题,注意掌握基本概念.2.(3分)(2012•西宁)下列分解因式正确的是()A.3x2﹣6x=x(3x﹣6)B.﹣a2+b2=(b+a)(b﹣a)C.4x2﹣y2=(4x+y)(4x﹣y)D.4x2﹣2xy+y2=(2x﹣y)2考点:因式分解-运用公式法;因式分解-提公因式法专题:计算题.分析:根据因式分解的定义,把一个多项式写成几个整式积的形式叫做因式分解,并根据提取公因式法,利用平方差公式分解因式法对各选项分析判断后利用排除法求解.解答:解:A、3x2﹣6x=3x(x﹣2),故本选项错误;B、﹣a2+b2=(b+a)(b﹣a),故本选项正确;C、4x2﹣y2=(2x+y)(2x﹣y),故本选项错误;D、4x2﹣2xy+y2不能分解因式,故本选项错误.故选B.点评:本题主要考查了因式分解的定义,熟记常用的提公因式法,运用公式法分解因式的方法是解题的关键.3.(3分)如果不等式组有解,那么m的取值范围是()A.m>5 B.m≥5 C.m<5 D.m≤5考点:解一元一次不等式组.分析:求出不等式组的解集m<x<5,根据已知即可得出得出m<5.解答:解:解不等式组可得:x<5,x>m,∵该不等式组有解,∴m<5.故选C.点评:本题主要考查对解一元一次不等式组,一元一次不等式组的整数解等知识点的理解和掌握,能根据不等式组的解集和已知得出m<5是解此题的关键.4.(3分)(2013•新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()A.12 B.15 C.12或15 D.18考点:等腰三角形的性质;三角形三边关系.分析:因为已知长度为3和6两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.解答:解:①当3为底时,其它两边都为6,3、6、6可以构成三角形,周长为15;②当3为腰时,其它两边为3和6,∵3+3=6=6,∴不能构成三角形,故舍去,∴答案只有15.故选B.点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.5.(3分)如果把分式中的x和y都扩大5倍,那么分式的值()A.扩大5倍B.缩小5倍C.扩大25倍D.不变考点:分式的基本性质分析:把分式中的分子,分母中的x,y都同时变成原来的5倍,就是用5x,5y分别代替式子中的x,y,看得到的式子与原式子的关系.解答:解:把分式中的x和y都扩大5倍,即===5×,故选:A.点评:此题考查的是对分式的性质的理解,分式中元素扩大或缩小N倍,只要将原数乘以或除以N,再代入原式求解,是此类题目的常见解法.6.(3分)若x2+mxy+y2是一个完全平方式,则m=()A.2B.1C.±1 D.±2考点:完全平方式.专题:常规题型.分析:先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.解答:解:∵x2+mxy+y2是一个完全平方式,∴mx=±2•x•y,解得m=±2.故选D.点评:本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.7.(3分)如图所示,一次函数y=kx+b(k、b为常数,且k≠0)与正比例函数y=ax(a为常数,且a≠0)相交于点P,则不等式kx+b>ax的解集是()A.x>1 B.x<1 C.x>2 D.x<2考点:一次函数与一元一次不等式.分析:根据图象求出P的坐标,根据图象可以看出当x<2时,一次函数y=kx+b的图象在y=ax 的上方,即可得出答案.解答:解:由图象可知:P的坐标是(2,1),当x<2时,一次函数y=kx+b的图象在y=ax的上方,即kx+b>ax,故选D.点评:本题主要考查对一次函数与一元一次不等式的理解和掌握,能根据图象得出当x<2时kx+b>ax是解此题的关键.8.(3分)矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等D.对角线互相平分考点:矩形的性质;平行四边形的性质专题:证明题.分析:矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.解答:解:矩形的对角线相等,而平行四边形的对角线不一定相等.故选:C.点评:本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.如,矩形的对角线相等.9.(3分)下列命题错误的是()A.一组对边平行,一组对角相等的四边形是平行四边形B.对角线互相垂直且相等的四边形是正方形C.对角线相等的平行四边形是矩形D.对角线互相垂直的平行四边形是菱形考点:命题与定理分析:分别利用平行四边形的判定方法以及正方形和矩形、菱形的判定方法判断得出即可.解答:解:A、首先由两直线平行,同旁内角互补及等角的补角相等得出另一组对角相等,然后根据两组对角分别相等的四边形是平行四边形可知是个真命题,正确,不合题意;B、对角线互相垂直且相等的平行四边形是正方形,故此选项错误,符合题意;C、对角线相等的平行四边形是矩形,正确,不合题意;D、对角线互相垂直的平行四边形是菱形,正确,不合题意;故选:B.点评:此题主要考查了命题与定理,正确掌握矩形、菱形、正方形的判定方法是解题关键.10.(3分)如图,小华剪了两条宽为1的纸条,交叉叠放在一起,且它们较小的交角为60°,则它们重叠部分的面积为()A.1B.2C.D.考点:菱形的判定与性质.分析:首先过点B作BE⊥AD于点E,BF⊥CD于点F,由题意可得四边形ABCD是平行四边形,继而求得AB=BC的长,判定四边形ABCD是菱形,则可求得答案.解答:解:过点B作BE⊥AD于点E,BF⊥CD于点F,根据题意得:AD∥BC,AB∥CD,BE=BF=1cm,∴四边形ABCD是平行四边形,∵∠BAD=∠BCD=60°,∴∠ABE=∠CBF=30°,∴AB=2AE,BC=2CF,∵AB2=AE2+BE2,∴AB=,同理:BF=,∴AB=BC,∴四边形ABCD是菱形,∴AD=,∴S菱形ABCD=AD•BE=.故选:D.点评:此题考查了菱形的判定与性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握方程思想与数形结合思想的应用.二、填空题(每小题4分,共16分)11.(4分)如果的值为0,则x=﹣1.考点:分式的值为零的条件.分析:根据分式的值为零的条件:分子等于0,分母不等于0列式计算即可得解.解答:解:根据题意得,x2﹣1=0且x﹣1≠0,解得x=±1且x≠1,所以:x=﹣1.故答案为:﹣1.点评:本题考查了分式为零的条件,分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.12.(4分)(2013•遂宁)若一个多边形内角和等于1260°,则该多边形边数是9.考点:多边形内角与外角专题:计算题.分析:根据多边形内角和定理及其公式,即可解答;解答:解:∵一个多边形内角和等于1260°,∴(n﹣2)×180°=1260°,解得,n=9.故答案为9.点评:本题考查了多边形的内角定理及其公式,关键是记住多边形内角和的计算公式.13.(4分)若方程有增根x=5,则m=﹣5.考点:分式方程的增根.专题:计算题.分析:由于增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,所以将方程两边都乘(x﹣5)化为整式方程,再把增根5代入求解即可.解答:解:方程两边都乘x﹣5,得x=2(x﹣5)﹣m,∵原方程有增根,∴最简公分母x﹣5=0,解得x=5,把x=5代入,得5=0﹣m,解得m=﹣5.故答案为:﹣5.点评:本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.14.(4分)如图,在△ABC中,DE是BC的垂直平分线,垂足为点E,交AB于点D,若CE=5,△ABC的周长为25,则△ADC的周长为15.考点:线段垂直平分线的性质.分析:由DE是BC的垂直平分线,即可求得BD=CD与BC的值,又由△ABC的周长为25,即可求得AB+AC的值,继而求得△ADC的周长.解答:解:∵DE是BC的垂直平分线,∴BD=CD,BE=CE=5,∴BC=BE+CE=10,∵△ABC的周长为25,∴AB+AC=25﹣10=15,∴△ADC的周长为:AD+CD+AC=AD+BD+AC=AB+AC=15.故答案为:15.点评:此题考查了线段垂直平分线的性质.解题的关键是注意掌握数形结合思想与转化思想的应用.三、解答题(共54分)15.(12分)(1)分解因式:4x2(y﹣2)﹣9(y﹣2);(2)解不等式组:,并把解集在数轴上表示出来.考点:提公因式法与公式法的综合运用;在数轴上表示不等式的解集;解一元一次不等式组分析:(1)首先提取公因式(y﹣2),进而利用平方差公式分解因式即可;(2)分别解出不等式,进而在数轴上表示出解集.解答:解:(1)4x2(y﹣2)﹣9(y﹣2)=(y﹣2)(4x2﹣9)=(y ﹣2)(2x+3)(2x ﹣3); (2),解①得:x <1, 解②得:x ≥﹣2,故不等式的解集为:﹣2≤x <1, 在数轴上表示如图:点评: 此题主要考查了提取公因式法以及公式法分解因式以及不等式组的解法,熟练掌握公式法分解因式是解题关键.16.(6分)(2011•成都)先化简,再求值:,其中.考点:分式的化简求值. 专题:计算题. 分析:先通分,计算括号里的,再把除法转化成乘法进行约分计算,最后把x 的值代入计算即可. 解答:解:原式=×=×=2x ,当x=时,原式=2×=.点评: 本题考查了分式的化简求值.解题的关键是注意对分式的分子、分母因式分解,除法转化成下乘法. 17.(10分)如图,△ABC 的顶点坐标分别为A (﹣2,5)、B (﹣4,1)和C (﹣1,3). (1)将△ABC 先向右平移5个单位长度,再向下平移2个单位长度,得到△A 1B 1C 1,作出△A 1B 1C 1,并写出点A 1、B 1、C 1的坐标;(2)将△A 1B 1C 1绕点O 顺时针旋转90°得到△A 2B 2C 2,作出△A 2B 2C 2,并写出点A 2、B 2、C 2的坐标考点:作图-旋转变换;作图-平移变换分析:(1)根据平移的规律找到A、B、C的对应点A1、B1、C1,顺次连接即可,然后写出A1、B1、C1的坐标;(2)根据旋转的规律找到A1、B1、C1的对应点A2、B2、C2,顺次连接即可,然后写出A2、B2、C2的坐标.解答:解:(1)所作图形如图所示:A1(3,3);B1(1,﹣1);C1(4,1);(2)所作图形如图所示:A2(3,﹣3);B2(﹣1,﹣1);C2(1,﹣4).点评:本题考查了根据平移变换和旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.18.(8分)如图,四边形ABCD是菱形,DE⊥AB于E,EF⊥BC于F.求证:DE=DF.考点:菱形的性质.专题:证明题.分析:利用菱形的性质得出∠EBD=∠FBD,进而求出△DEB≌△DFB(AAS),进而得出答案.解答:证明:连接BD,∵四边形ABCD是菱形,∴∠EBD=∠FBD,在△DEB和△DFB中,∴△DEB≌△DFB(AAS),∴DE=DF.点评:此题主要考查了全等三角形的判定与性质以及菱形的性质等知识,得出△DEB≌△DFB (AAS)是解题关键.19.(8分)为改善生态环境,防止水土流失,某村计划在荒坡上种800棵树,由于青年志愿者的支援,每天比原计划多种25%,结果提前4天完成任务,原计划每天种多少棵树?考点:分式方程的应用.分析:设原计划每天种树x棵,实际每天植树(1+25%)x棵,根据实际完成的天数比计划少4天为等量关系建立方程求出其解即可.解答:解:设原计划每天种树x棵,实际每天植树(1+25%)x棵,由题意,得﹣=4,解得:x=40,经检验,x=40是原方程的解.答:原计划每天种树40棵.点评:本题考查了列分式方程解实际问题的运用,分式方程的解法的运用,工作总量÷工作效率=工作时间在实际问题中的运用,解答时根据实际完成的天数比计划少4天为等量关系建立方程是关键.20.(10分)如图,在四边形ABCD中,E、F分别为边AB、CD的中点,△ADE≌△CBF,过A点作AG∥BD交CB的延长线于点G.(1)求证:四边形ABCD是平行四边形;(2)求证:DE∥BF;(3)当四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.考点:平行四边形的判定;全等三角形的判定与性质;菱形的性质;矩形的判定.分析:(1)由△ADE≌△CBF与E、F分别为边AB、CD的中点,易证得AD=BC,AB=CD,根据两组对边分别相等的四边形是平行四边形,即可证得四边形ABCD是平行四边形;(2)易证得四边形DEBF是平行四边形,即可证得DE∥BF;(3)首先连接EF,由四边形BEDF是菱形,可得EF⊥BD,易证得AD⊥BD,又由AG∥BD,AD∥BC,即可得四边形AGBD是平行四边形,即可证得四边形AGBD是矩形.解答:(1)证明:∵△ADE≌△CBF,∴AD=BC,AE=CF,∵E、F分别为边AB、CD的中点,即AB=2AE,CD=2CF,∴AB=CD,∴四边形ABCD是平行四边形;(2)∵△ADE≌△CBF,∴DE=BF,AE=CF,∵E、F分别为边AB、CD的中点,∴DF=CF,AE=BE,∵AB=CD,∴DF=BE,∴四边形DEBF是平行四边形,∴DE∥BF;(3)四边形AGBD是矩形.证明:连接EF,∵AD∥BC,AG∥BD,∴四边形AGBD是平行四边形,∵四边形ABCD是平行四边形,∴AB∥CD,∵AE=BE=CF=DF,∴四边形AEFD是平行四边形,∴AD∥EF,∵四边形BEDF是菱形,∴BD⊥EF,∴AD⊥BD,∴∠ADB=90°,∴四边形AGBD是矩形.点评:此题考查了平行四边形的判定与性质、矩形的判定、菱形的性质以及全等三角形的性质.此题难度适中,注意掌握数形结合思想的应用,注意掌握辅助线的作法.一、填空题(每小题4分,共20分)21.(4分)若xy=4,x﹣2y=,则x3y﹣2x2y2+2xy3=10.考点:提公因式法与公式法的综合运用.分析:首先提取公因式xy,进而利用完全平方公式分解因式,进而将已知条件代入求出即可.解答:解:∵ x3y﹣2x2y2+2xy3=xy(x2﹣4xy+4xy)=xy(x﹣2y)2,将xy=4,x﹣2y=,代入上式得:原式=×4×()2=10.故答案为:10.点评:此题主要考查了提取公因式法以及公式法分解因式,熟练掌握公式法分解因式是解题关键.22.(4分)如图,▱ABCD中,对角线AC和BD相交于点O,∠BAD和∠ABC的平分线相交于点E.若▱ABCD的周长为18,△AOB的周长比△AOD的周长少3,则OE=.考点:平行四边形的性质;三角形中位线定理.分析:延长AE交BC于F,利用平行四边形的性质和已知条件可证明△ABF是等腰三角形,又可证明BE⊥AF,所以AE=EF,即E是AF中点,又因为O为AC中点,所以OE为△AFC的中位线,求出CF的长,即可求出OE的长.解答:解:延长AE交BC于F,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,AO=CO,∠DAB+∠ABC=180°,∵∠BAD和∠ABC的平分线相交于点E,∴∠AEB=90°,∴AE⊥BE,∴∠DAF=∠AFB,∵AE平分∠BAD,∴∠DAF=∠BAF,∴∠BAF=∠AFB,∴AB=BF,∵AE⊥BE,∴AE=EF,∴OE是△AFC的中位线,∵▱ABCD的周长为18,△AOB的周长比△AOD的周长少3,∴AB=3,AD=6,∴CF=BC﹣BF=AD﹣AB=3,∴OE=CF=,故答案为:.点评:本题考查了平行四边形的性质、角平分线的定义、等腰三角形的判定和性质、三角形中位线的判定和性质,题目牵扯到的知识点较多,综合性较强,解题的关键是正确添加辅助线和灵活的运用平行四边形的各种性质.23.(4分)若分式﹣÷的值为正整数,则整数x=4,0.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再根据分式的值为正整数求出x的值即可.解答:解:原式=﹣•=﹣=,∵分式的值为正整数,∴当=1时,x=4;当=2时,x=1;当=3时,x=0;当=4时,x=﹣(舍去);当=5时,x=﹣(舍去);当=6时,x=﹣1.∵x2﹣1≠0,∴x≠±1,故答案为:4,0.点评:本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键.24.(4分)如图,正方形ABCD中,E是AD的中点,AB=8,M是线段CE上的动点,则BM的最小值是.考点:正方形的性质;垂线段最短;勾股定理分析:当BM⊥CE时,BM取得最小值.根据正方形的性质,可证△BCM∽△CED,可得=,即可求BM的长.解答:解:当BM⊥CE时,BM取得最小值.∵在正方形ABCD中,CD=AB=8,E是AD的中点,∴ED=4,∠D=90°,∴在直角△DCE中,由勾股定理得到:CE===4,∵BM⊥CE,∴△BCM∽△CED,根据相似三角形的性质,可得=,即=解得:BM=.故答案是:.点评:主要考查了正方形的性质和相似三角形的判定和性质.充分利用正方形的特殊性质来找到相似的条件从而判定相似后利用相似三角形的性质解题.一般情况下求线段的长度常用相似中的比例线段求解.25.(4分)如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2…,如此进行下去,得到四边形A n B n C n D n.下列结论正确的有②③④.①四边形A2B2C2D2是矩形;②四边形A4B4C4D4是菱形;③四边形A5B5C5D5的周长是;④四边形A n B n C n D n的面积是.考点:三角形中位线定理;菱形的判定;矩形的判定.专题:压轴题.分析:首先根据题意,找出变化后的四边形的边长与四边形ABCD中各边长的长度关系规律,然后对以下选项作出分析与判断:①根据矩形的判定与性质作出判断;②根据菱形的判定与性质作出判断;③由四边形的周长公式:周长=边长之和,来计算四边形A5B5C5D5的周长;④根据四边形A n B n C n D n的面积与四边形ABCD的面积间的数量关系来求其面积.解答:解:①连接A1C1,B1D1.∵在四边形ABCD中,顺次连接四边形ABCD 各边中点,得到四边形A1B1C1D1,∴A1D1∥BD,B1C1∥BD,C1D1∥AC,A1B1∥AC;∴A1D1∥B1C1,A1B1∥C1D1,∴四边形A1B1C1D1是平行四边形;∵AC丄BD,∴四边形A1B1C1D1是矩形,∴B1D1=A1C1(矩形的两条对角线相等);∴A2D2=C2D2=C2B2=B2A2(中位线定理),∴四边形A2B2C2D2是菱形;故本选项错误;②由①知,四边形A2B2C2D2是菱形;∴根据中位线定理知,四边形A4B4C4D4是菱形;故本选项正确;③根据中位线的性质易知,A5B5=A3B3=A1B1=AC,B5C5=B3C3=B1C1=BD,∴四边形A5B5C5D5的周长是2×(a+b)=,故本选项正确;④∵四边形ABCD中,AC=a,BD=b,且AC丄BD,∴S四边形ABCD=ab÷2;由三角形的中位线的性质可以推知,每得到一次四边形,它的面积变为原来的一半,四边形A n B n C n D n的面积是,故本选项正确;综上所述,②③④正确.故答案为:②③④点评:本题主要考查了菱形的判定与性质、矩形的判定与性质及三角形的中位线定理(三角形的中位线平行于第三边且等于第三边的一半).解答此题时,需理清菱形、矩形与平行四边形的关系.二、解答题:(共30分)26.(8分)(2012•湛江模拟)某工厂现有甲种原料263千克,乙种原料314千克,计划利用这两种原料生产A、B两种产品共100件.生产一件产品所需要的原料及生产成本如下表所示:甲种原料(单位:千克)乙种原料(单位:千克)生产成本(单位:元)A产品3 2 120B产品2.5 3.5 200(1)该工厂现有的原料能否保证生产需要?若能,有几种生产方案?请你设计出来.(2)设生产A、B两种产品的总成本为y元,其中生产A产品x件,试写出y与x之间的函数关系,并利用函数的性质说明(1)中哪种生产方案总成本最低?最低生产总成本是多少?考点:一次函数的应用;一元一次不等式组的应用.专题:应用题.分析:(1)设生产A产品x件,则生产B产品(100﹣x)件.依题意列出方程组求解,由此判断能否保证生产.(2)设生产A产品x件,总造价是y元,当x取最大值时,总造价最低.解答:解:(1)假设该厂现有原料能保证生产,且能生产A产品x件,则能生产B产品(100﹣x)件.根据题意,有,解得:24≤x≤26,由题意知,x应为整数,故x=24或x=25或x=26.此时对应的100﹣x分别为76、75、74.即该厂现有原料能保证生产,可有三种生产方案:生产A、B产品分别为24件,76件;25件,75件;26件,74件.(2)生产A产品x件,则生产B产品(100﹣x)件.根据题意可得y=120x+200(100﹣x)=﹣80x+20000,∵﹣80<0,∴y随x的增大而减小,从而当x=26,即生产A产品26件,B产品74件时,生产总成本最底,最低生产总成本为y=﹣80×26+20000=17920元.点评:本题是方案设计的题目,考查了一次函数的应用及一元一次不等式组的应用的知识,基本的思路是根据不等关系列出不等式(组),求出未知数的取值,根据取值的个数确定方案的个数,这类题目是中考中经常出现的问题,需要认真领会.27.(10分)如图1,△ABC为等腰直角三角形,∠ACB=90°,F是AC边上的一个动点(点F与A、C不重合),以CF为一边在等腰直角三角形外作正方形CDEF,连接BF、AD.(1)猜想图1中线段BF、AD的数量关系及所在直线的位置关系,直接写出结论,BF=AD,BF⊥AD.(2)将图1中的正方式CDEF,绕着点C按顺时针方向旋转任意角度α,得到如图2的情形,BF交AC于点H,交AD于点O,请你判断(1)中得到的结论是否仍然成立,证明你的判断.(3)将图1中的正方形CDEF,绕着点C按逆时针方向旋转任意角度α,得到如图3的情形,若∠α=105°,AC=BC=2+2,点E恰好落在斜边AB上,求正方形CDEF的边长.考点:旋转的性质;全等三角形的判定与性质;正方形的性质.专题:计算题.分析:(1)根据等腰直角三角形的性质得CA=CB,再根据正方形的性质得CF=CD,∠ACD=90°,根据旋转的定义得到把△CBF绕点C顺时针旋转90°可得到△CAD,然后根据旋转的性质得BF=AD,BF⊥AD.(2)由(1)得CB=CA,CF=CD,∠BCA=∠FCD=90°,易得∠BCF=∠ACD,所以把△CBF绕点C顺时针旋转90°可得到△CAD,根据旋转的性质得BF=AD,BF⊥AD;(3)如图4,作EH⊥AC于H,连结CE,由于将图1中的正方形CDEF,绕着点C按逆时针方向旋转任意角度105°,根据旋转的性质得∠ACD=105°﹣90°=15°;再根据正方形的性质得∠CDE=45°,则∠ACE=60°,而△ABC为等腰直角三角形,则∠A=45°;在Rt△CEH中,设CH=x,根据含30度的直角三角形三边的关系得CE=2x,EH=x,在Rt△AEH中,根据等腰直角三角形的性质得AH=EH=x,则AH+CH=x+x,所以x+x=2+2,解得x=2,则CE=2x=4,然后根据等腰直角三角形的性质计算出CD=CE=2.解答:解:(1)∵△ABC为等腰直角三角形,∠ACB=90°,∴CA=CB,∵四边形CDEF为正方形,∴CF=CD,∠ACD=90°,∴把△CBF绕点C顺时针旋转90°可得到△CAD,∴BF=AD,BF⊥AD.故答案为BF=AD,BF⊥AD;(2)(1)中得到的结论仍然成立.理由如下:由(1)得CB=CA,CF=CD,∠BCA=∠FCD=90°,∴∠BCA+∠ACF=∠ACF+∠FCD,即∠BCF=∠ACD,∴把△CBF绕点C顺时针旋转90°可得到△CAD,∴BF=AD,BF⊥AD;(3)如图4,作EH⊥AC于H,连结CE,∵将图1中的正方形CDEF,绕着点C按逆时针方向旋转任意角度105°,∴∠ACD=105°﹣90°=15°,∵四边形CDEF为正方形,∴∠CDE=45°,∴∠ACE=45°+15°=60°,∵△ABC为等腰直角三角形,∴∠A=45°,在Rt△CEH中,设CH=x,∴CE=2x,EH=x,在Rt△AEH中,AH=EH=x,∴AH+CH=x+x,而AC=2+2,∴x+x=2+2,解得x=2,∴CE=2x=4,∴CD=CE=2,即正方形CDEF的边长为2.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等腰直角三角形的性质和正方形的性质.28.(12分)如图,已知一次函数y=x+6的图象分别交x轴、y轴于A、B两点,点P从点A出发沿AO方向以每秒单位长度的速度向点O匀速运动,同时点Q从点B出发沿BA方向以每秒2个单位长度向点A匀速运动,当其中一点到达终点时,另一点也停止运动,设运动时间为t秒,过点Q作QC⊥y轴,连接PQ、PC.(1)点A的从标为(﹣6,0),点B的坐标为(0,6),AB=12;(2)四边形APCQ能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(3)若点D(0,2),点N在x轴上,直线AB上是否存在点M,使以M、N、B、D为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.考点:一次函数综合题.分析:(1)分别令y=0,x=0,即可求得A、B的坐标,然后根据勾股定理即可求得AB的长;(2)先求得∠BQC=∠BAO=30°,从而得出QC=QB,进而求得QC=t,因为AP=t,所以四边形APCQ是平行四边形,如果AQ=QC,则四边形APCQ为菱形,根据AQ=QC即可求得;(3)根据四边形APCQ是平行四边形,可知M点的纵坐标为4,把y=4代入y=x+6即可求得;解答:解:(1)如图1,∵一次函数y=x+6的图象分别交x轴、y轴于A、B两点,令y=0,则0=x+6,解得:x=﹣6,∴A(﹣6,0),令x=0,则y=6,∴B(0,6),∴AB==12;(2)如图1,∵直线AB的斜率为,∴∠BAO=30°,∵QC⊥y轴,∴QC∥x轴,∴∠BQC=∠BAO=30°,∴QC=QB,∵QB=2t,∴QC=t,∵AP=t,∴四边形APCQ是平行四边形,∴如果AQ=QC,则四边形APCQ为菱形,∵AB=12,∴AQ=12﹣2t,即12﹣2t=t,解得:t=24﹣12,∴当t=24﹣12时,四边形APCQ为菱形;(3)如图2,∵B(0,6),D(0,2),∴BD=4,∵四边形MNDB是平行四边形,∴MN=BD=4,MN⊥x轴,把y=4代入y=x+6得:4=x+6,解得:x=﹣2,∴M(﹣2,4).把y=﹣4代入y=x+6得:﹣4=x+6,解得:x=﹣10,M(﹣10,﹣4),M点的坐标为(﹣2,4),(﹣10,﹣4).点评:本题考查了直线与坐标轴的交点的求法,三角函数的应用,平行四边形的判定,菱形的判定以及直线上点的坐标的求法等.。