立体几何基础理论复习

合集下载

立体几何复习知识点汇总(全)

立体几何复习知识点汇总(全)

立体几何知识点汇总(全)1.平面平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。

(1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内,推出点在面内),这样可根据公理2证明这些点都在这两个平面的公共直线上。

(2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。

(3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合2. 空间直线.(1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(也可能两条直线平行,也可能是点和直线等)②直线在平面外,指的位置关系是平行或相交③若直线a、b异面,a平行于平面α,b与α的关系是相交、平行、在平面α内.④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点.⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形)⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一.点.向这个平面所引的垂线段和斜线段)⑦ba,是夹在两平行平面间的线段,若a,的位置关系为相交或平行或异面.a=,则bb⑧异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)(2). 平行公理:平行于同一条直线的两条直线互相平行.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。

(直线与直线所成角]90,0[︒︒∈θ)(向量与向量所成角])180,0[ ∈θ推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.(3). 两异面直线的距离:公垂线段的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.[注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)3. 直线与平面平行、直线与平面垂直.(1). 空间直线与平面位置分三种:相交、平行、在平面内.(2). 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行⇒线面平行”)[注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线)②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线)③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性证之)④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内)⑤平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面) ⑥直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交)(3). 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行⇒线线平行”)(4). 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直. ● 若PA ⊥α,a ⊥AO ,得a ⊥PO (三垂线定理),● 三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直⇒线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.性质:如果两条直线同垂直于一个平面,那么这两条直线平行.(5)a.垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.[注]垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)]b.射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上。

高中立体几何知识点及经典题型

高中立体几何知识点及经典题型

高中立体几何知识点及经典题型立体几何是高中数学中的重要部分,它研究了在三维空间内的几何形体。

本文将介绍高中立体几何的主要知识点和经典题型。

知识点以下是高中立体几何的主要知识点:1. 空间几何基础:点、线、面的概念及性质。

2. 参数方程和一般式方程:用参数或方程表示几何体的方法。

3. 立体图形的投影:点、直线、平面在投影中的表现形式。

4. 空间几何中的平行与垂直:直线、平面之间的平行关系及垂直关系。

5. 直线与面的位置关系:直线与平面之间的交点、垂线、倾斜角等概念。

6. 空间角的性质:二面角、棱锥、棱台等形体的角度关系。

7. 空间几何中的直线及曲线:空间中直线与曲线的方程及性质。

8. 空间立体角:球、球台、球扇等形体的角度关系。

9. 空间的切线:曲线在空间中的切线方程及其性质。

10. 空间的幂:圆、球及其他形体的幂的概念和性质。

经典题型以下是高中立体几何的经典题型:1. 求直线与平面的位置关系问题:例如,给定一直线和一个平面,求它们之间的交点、垂直线、倾斜角等。

2. 求空间角的问题:例如,给定两个平面的交线,求二面角的度数。

3. 求直线与曲线的位置关系问题:例如,给定一条直线和一个曲面,求它们之间的位置关系。

4. 求切线和法平面的问题:例如,给定一个曲线和一个点,求曲线在该点处的切线方程及法平面方程。

5. 求空间形体的幂问题:例如,给定一个球和一个平面,求平面关于球的幂及其性质。

以上只是一些经典的立体几何题型,通过解答这些题目,可以加深对立体几何知识的理解和运用。

希望本文对高中立体几何知识点和题型的介绍能够帮助到你。

祝你在学习立体几何时取得好成绩!。

立体几何复习知识点

立体几何复习知识点

立体几何复习知识点在数学的学习中,立体几何是一个重要且富有挑战性的部分。

它要求我们具备空间想象能力、逻辑推理能力以及对各种几何概念和定理的熟练掌握。

接下来,让我们一起系统地复习一下立体几何的相关知识点。

一、空间几何体(一)棱柱棱柱是由两个互相平行且全等的多边形底面,以及侧面都是平行四边形的多面体。

棱柱根据侧棱与底面的关系可分为直棱柱和斜棱柱。

直棱柱的侧棱垂直于底面,斜棱柱的侧棱不垂直于底面。

(二)棱锥棱锥是由一个多边形底面和若干个有公共顶点的三角形侧面所组成的多面体。

如果棱锥的底面是正多边形,且顶点在底面的射影是底面的中心,那么这样的棱锥叫做正棱锥。

(三)棱台棱台是用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。

(四)圆柱以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫做圆柱。

旋转轴叫做圆柱的轴,垂直于轴的边旋转而成的圆面叫做圆柱的底面,平行于轴的边旋转而成的曲面叫做圆柱的侧面,无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。

(五)圆锥以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体叫做圆锥。

旋转轴为圆锥的轴,垂直于轴的边旋转而成的圆面叫做圆锥的底面,斜边旋转而成的曲面叫做圆锥的侧面,无论旋转到什么位置,斜边都叫做圆锥侧面的母线。

(六)圆台用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分叫做圆台。

(七)球以半圆的直径所在直线为轴,半圆面旋转一周形成的旋转体叫做球体,简称球。

半圆的圆心叫做球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径。

二、空间几何体的表面积和体积(一)棱柱、棱锥、棱台的表面积棱柱、棱锥、棱台的表面积就是各个面的面积之和。

(二)圆柱、圆锥、圆台的侧面积和表面积圆柱的侧面积公式为\(S_{侧}=2\pi rh\),表面积公式为\(S = 2\pi r(r + h)\);圆锥的侧面积公式为\(S_{侧}=\pi rl\),表面积公式为\(S =\pi r(r + l)\);圆台的侧面积公式为\(S_{侧}=\pi (r + R)l\),表面积公式为\(S =\pi (r^2 +R^2 + rl + Rl)\)。

立体几何复习知识点

立体几何复习知识点

.
答案
(2)共面向量定理 共面向量定理的向量表达式:p=xa+yb,其中 x,y∈R,a,b 为不共线向量,
→ → → → → → → OM +xMA+yMB 推论的表达式为MP=xMA+yMB或对空间任意一点 O,有OP=
→ → → → 或OP=xOM+yOA+zOB,其中 x+y+z= 1 .
(4)设平面α和β的法向量分别为u1,u2,则α∥β⇔ u1 ∥u2 . 3.用向量证明空间中的垂直关系
v2=0 . (1)设直线l1和l2的方向向量分别为v1和v2,则l1⊥l2⇔ v1⊥v2 ⇔ v1·
(2)设直线l的方向向量为v,平面α的法向量为u,则l⊥α⇔ v∥u .
u 2= 0 . (3)设平面α和β的法向量分别为u1和u2,则α⊥β⇔ u1⊥u2 ⇔ u1·
设n2=(x,y,z)为平面DAA1D1的一个法向量,
— → n2· AA1=0, 则 → AD=0, n2· y+ 3z=0, 即 - 3x+y=0,
取 n2=(1, 3,-1),则〈n1,n2〉即为二面角 D-A1A-C 的平面角, n1· n2 5 ∴cos〈n1,n2〉= = , |n1||n2| 5
答案
1.两条异面直线所成角的求法 设a,b分别是两异面直线l1,l2的方向向量,则 l1与l2所成的角θ 范围 求法 cos θ=
|a· b| |a||b|
a与b的夹角β [0,π]
b cos β= a· |a||b|
答案
2.直线与平面所成角的求法 设直线l的方向向量为a,平面α的法向量为n,直线l与平面α所成的角为θ, |a· n| a与n的夹角为β,则sin θ=|cos β|= . |a||n|
答案
②两向量的数量积 已知空间两个非零向量a,b,则 |a||b|cos〈a,b〉 叫做向量a,b的数量积, b ,即a· 记作 a· b= |a||b|cos〈a,b〉 . (2)空间向量数量积的运算律

立体几何知识点总结(全)

立体几何知识点总结(全)

立体几何知识点总结(全)重合直线:完全重合,有无数个公共点。

三.点与平面的位置关系点与平面的位置关系有以下三种情况:点在平面上;点在平面外;点在平面内。

四.直线与平面的位置关系直线与平面的位置关系有以下三种情况:直线与平面相交,相交点为一点;直线在平面内;直线与平面平行,没有交点。

五.平面与平面的位置关系平面与平面的位置关系有以下三种情况:平面相交,相交线为一条直线;平面平行,没有交点;平面重合,完全重合。

1)定义:两个平面相交于一条直线,且这条直线与两个平面的法线垂直,则这两个平面垂直;2)判定定理:如果一个平面内的一条直线与另一个平面的法线垂直,则这两个平面垂直。

符号:a,b简记为:线面垂直,则面面垂直.符号:aba b4.平面与平面垂直的性质定理:如果两个平面垂直,则它们的交线垂直于这两个平面。

符号:a b。

a简记为:面面垂直,则线线垂直.符号:abb定义:当两个平面所成的二面角为直角时,这两个平面互相垂直。

判定定理:如果一个平面通过另一个平面的垂线,则这两个平面垂直。

可以简记为:线面面垂直,则面面垂直。

符号表示为l,推论是如果一个平面与另一个平面的垂线平行,则这两个平面垂直。

平面与平面垂直的性质定理:如果两个平面互相垂直,则一个平面内垂直于交线的直线垂直于另一个平面。

可以简记为面面垂直,则线面垂直。

证明线线平行的方法包括三角形中位线、平行四边形、线面平行的性质、平行线的传递性和面面平行的性质。

证明线线垂直的方法包括定义中的两条直线所成的角为90°,线面垂直的性质,利用勾股定理证明两相交直线垂直,以及利用等腰三角形三线合一证明两相交直线垂直。

中考复习立体几何的基本知识复习

中考复习立体几何的基本知识复习

中考复习立体几何的基本知识复习立体几何是数学中的一个重要分支,它研究的是空间中的立体图形以及它们之间的关系。

立体几何在中考中占有重要的比重,掌握其基本知识对于顺利应对考试至关重要。

本文将围绕中考复习立体几何的基本知识进行论述,帮助同学们系统地复习相关内容,以保证复习成果的提高。

1. 空间几何图形的分类在立体几何中,我们常见的空间几何图形主要有球体、立方体、长方体、棱柱、棱锥、圆柱和圆锥等。

这些几何图形在中考中经常出现,特别是在计算体积和面积的相关题目中。

因此,我们需要熟练掌握各类几何图形的特点和计算公式,以便在解题时能够迅速准确地运用。

2. 体积和表面积的计算体积和表面积是立体几何中的两个重要概念,也是中考常考的知识点。

在计算体积和表面积时,我们需要根据几何图形的特点选择相应的计算公式,并将图形的尺寸代入进行计算。

例如,计算长方体的体积可以使用公式 V = lwh,其中 l、w 和 h 分别代表长方体的长、宽和高。

而计算球体的表面积则可以使用公式S = 4πr² ,其中 r 表示球体的半径。

熟练掌握这些计算公式,并能够灵活运用,对于解答中考题目至关重要。

3. 空间几何的投影问题在解答立体几何问题时,我们还需要掌握空间几何的投影问题。

投影是指将一个物体在某一方向形成的影子或图像,空间几何中常见的投影包括平行投影和中心投影。

平行投影是指光线与被投影物体相互平行的投影方式,常见的例子是平行光照射下的阴影。

中心投影是指光线经过同一点照射到被投影物体上形成的投影方式,常见的例子是阳光下的人影。

理解投影的概念和原理,能够帮助我们解答关于立体几何的投影问题,提高解题的准确性。

4. 空间几何的平面切割问题在复习立体几何的基本知识时,我们还需要重点关注空间几何的平面切割问题。

平面切割是指用平面将空间几何图形切分成两部分或多部分的过程。

平面切割在中考中常常出现在计算体积和表面积的题目中,我们需要根据问题的要求,选择合适的切割方式,然后应用相关的计算公式进行求解。

高中立体几何基础知识点全集精选全文完整版

高中立体几何基础知识点全集精选全文完整版

可编辑修改精选全文完整版立体几何知识点整理姓名:一.直线和平面的三种位置关系:1. 线面平行l符号表示:2. 线面相交符号表示:3. 线在面内符号表示:二.平行关系:1.线线平行:方法一:用线面平行实现。

mlmll////⇒⎪⎭⎪⎬⎫=⋂⊂βαβα方法二:用面面平行实现。

mlml////⇒⎪⎭⎪⎬⎫=⋂=⋂βγαγβα方法三:用线面垂直实现。

若αα⊥⊥ml,,则ml//。

方法四:用向量方法:若向量l和向量m共线且l、m不重合,则ml//。

2.线面平行:方法一:用线线平行实现。

ααα////llmml⇒⎪⎭⎪⎬⎫⊄⊂方法二:用面面平行实现。

αββα////ll⇒⎭⎬⎫⊂方法三:用平面法向量实现。

若n为平面α的一个法向量,ln⊥且α⊄l,则α//l。

3.面面平行:方法一:用线线平行实现。

βααβ//',','//'//⇒⎪⎪⎭⎪⎪⎬⎫⊂⊂且相交且相交mlmlmmll方法二:用线面平行实现。

βαβαα//,////⇒⎪⎭⎪⎬⎫⊂且相交mlml三.垂直关系:mlα1. 线面垂直:方法一:用线线垂直实现。

αα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊂=⋂⊥⊥l AB AC A AB AC AB l ACl ,方法二:用面面垂直实现。

αββαβα⊥⇒⎪⎭⎪⎬⎫⊂⊥=⋂⊥l l m l m ,2. 面面垂直:方法一:用线面垂直实现。

βαβα⊥⇒⎭⎬⎫⊂⊥l l方法二:计算所成二面角为直角。

3. 线线垂直:方法一:用线面垂直实现。

m l m l ⊥⇒⎭⎬⎫⊂⊥αα方法二:三垂线定理及其逆定理。

PO l OA l PA l αα⊥⎫⎪⊥⇒⊥⎬⎪⊂⎭方法三:用向量方法:若向量l 和向量m 的数量积为0,则m l ⊥。

三.夹角问题。

(一) 异面直线所成的角: (1) 范围:]90,0(︒︒ (2)求法: 方法一:定义法。

步骤1:平移,使它们相交,找到夹角。

步骤2:解三角形求出角。

(常用到余弦定理) 余弦定理:abcb a 2cos 222-+=θ(计算结果可能是其补角)方法二:向量法。

立体几何初步知识点全总结

立体几何初步知识点全总结

立体几何初步知识点全总结一、空间几何体的结构。

1. 棱柱。

- 定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。

- 分类:- 按底面多边形的边数分为三棱柱、四棱柱、五棱柱等。

- 直棱柱:侧棱垂直于底面的棱柱。

正棱柱:底面是正多边形的直棱柱。

- 性质:- 侧棱都相等,侧面是平行四边形。

- 两个底面与平行于底面的截面是全等的多边形。

- 过不相邻的两条侧棱的截面(对角面)是平行四边形。

2. 棱锥。

- 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。

- 分类:- 按底面多边形的边数分为三棱锥、四棱锥、五棱锥等。

- 正棱锥:底面是正多边形,且顶点在底面的射影是底面正多边形的中心的棱锥。

- 性质:- 正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高)。

- 棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面上的射影也组成一个直角三角形。

3. 棱台。

- 定义:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台。

- 分类:由三棱锥、四棱锥、五棱锥等截得的棱台分别叫做三棱台、四棱台、五棱台等。

- 性质:- 棱台的各侧棱延长后交于一点。

- 棱台的上下底面是相似多边形,侧面是梯形。

4. 圆柱。

- 定义:以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫做圆柱。

- 性质:- 圆柱的轴截面是矩形。

- 平行于底面的截面是与底面全等的圆。

5. 圆锥。

- 定义:以直角三角形的一条直角边所在直线为轴旋转,其余两边旋转所成的曲面所围成的几何体叫做圆锥。

- 性质:- 圆锥的轴截面是等腰三角形。

- 平行于底面的截面是圆,截面半径与底面半径之比等于顶点到截面距离与圆锥高之比。

6. 圆台。

- 定义:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台。

(完整版)立体几何复习专题

(完整版)立体几何复习专题

(完整版)立体几何复习专题立体几何复专题
立体几何是数学中的一个重要分支,研究的是物体的形状、大小、位置及其相关性质。

本文档将为您提供立体几何的复专题,帮助您系统地回顾和巩固相关的知识。

1. 点、线、面与空间几何
首先我们从最基本的几何概念开始复,包括点、线、面以及空间几何的基本性质。

例如,点的定义、线的分类、平行线与垂直线的判定等。

2. 立体图形的表示方法
接下来,我们将研究立体图形的几种常用表示方法。

这些表示方法包括视图图、投影图、轴测图等,通过它们我们可以更直观地理解和描述立体图形的形状。

3. 立体图形的重要性质与公式
在本部分,我们将回顾立体图形的重要性质和相关公式。

例如,体积的计算公式、表面积的计算方法等。

同时,我们还将深入研究
不同立体图形的特点和相互之间的关系。

4. 空间几何的应用
最后,我们将介绍空间几何在实际生活中的应用。

例如,如何
测量不规则物体的体积、如何计算房屋的准确面积等。

这些应用案
例将帮助您更好地理解和应用空间几何的知识。

总结
本文档为您提供了立体几何的复专题,通过回顾和巩固相关知识,帮助您更好地掌握立体几何的基本概念、表示方法、重要性质
和应用。

希望这份文档能对您的研究有所帮助!。

立体几何知识点大题总结

立体几何知识点大题总结

立体几何知识点大题总结一、空间几何基本概念1. 点、线、面、立体的概念在空间几何中,点是不占据空间但确定位置的;线是由无数的点连成的,具有长度、无宽度;面是由无数的线连成的,具有长度和宽度但无高度;立体是由无数的面组成的,具有长度、宽度和高度。

这些基本概念是进行空间几何研究的基础。

2. 空间直角坐标系空间直角坐标系是在三维空间中建立的坐标系。

它由三个互相垂直的坐标轴构成,分别记作x轴、y轴和z轴。

在空间直角坐标系中,每个点都可以用一个有序数对(x, y, z)表示,其中x、y、z分别表示点在x轴、y轴和z轴上的坐标。

二、立体图形的基本元素1. 立体图形的概念立体图形是由面围成的有一定空间形状的图形。

在立体几何中,常见的立体图形包括立方体、长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等。

这些立体图形在现实生活中都有着广泛的应用,因此对于这些立体图形的性质和运算规律进行研究具有重要的意义。

2. 立体图形的基本元素立体图形的基本元素包括面、棱和顶点。

面是立体图形的表面,由线段围成的部分就是面;棱是面的交线,是两个面的交线段;顶点是多个面的交汇点,是立体图形的角的顶点。

其中,面、棱和顶点是立体图形的基本组成要素,了解它们的性质和相互关系对于进行立体几何的研究是至关重要的。

三、立体图形的表面积和体积1. 立体图形的表面积立体图形的表面积是指立体图形外表面的总面积。

不同形状的立体图形其表面积的计算方法也不同。

比如,对于立方体,它的表面积等于六个面的面积之和;对于球体,它的表面积等于球面积的计算公式S=4πr^2。

因此,对于不同的立体图形,了解其表面积的计算方法是十分重要的。

2. 立体图形的体积立体图形的体积是指立体图形所包含的空间大小。

与表面积不同的是,立体图形的体积计算方法各不相同。

比如,对于立方体,它的体积等于底面积乘以高;对于球体,它的体积等于球的体积计算公式V=4/3πr^3。

因此,对于不同形状的立体图形,了解其体积的计算方法是非常重要的。

立体几何知识点归纳

立体几何知识点归纳

一、立体几何知识点归纳 第一章 空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。

旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。

其中,这条定直线称为旋转体的轴。

(2)柱,锥,球的结构特征 1.棱柱1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

1.2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系:①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱 底面为矩形侧棱与底面边长相等1.3①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形。

1.4长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】222211AC AB AD AA =++②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角分别是αβγ,,,那么222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=;③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则222coscos cos 2αβγ++=,222sin sin sin 1αβγ++=.1.5侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形.1.6面积、体积公式:2S c hS c h S S h=⋅=⋅+=⋅直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h为棱柱的高) 2.圆柱2.1圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱. 2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形. 2.3侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形. 2.4面积、体积公式:S 圆柱侧=2rh π;S 圆柱全=222rh r ππ+,V 圆柱=S 底h=2r h π(其中r 为底面半径,h 为圆柱高) 3.棱锥3.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

立体几何知识点复习

立体几何知识点复习

【知识络构建】【重点知识整合】 1.空间几何体的三视图(1)正视图:光线从几何体的前面向后面正投影得到的投影图; (2)侧视图:光线从几何体的左面向右面正投影得到的投影图; (3)俯视图:光线从几何体的上面向下面正投影得到的投影图. 几何体的正视图、侧视图和俯视图统称为几何体的三视图. 2.斜二测画水平放置的平面图形的基本步骤(1)建立直角坐标系,在已知水平放置的平面图形中取互相垂直的Ox ,Oy ,建立直角坐标系;(2)画出斜坐标系,在画直观图的纸上(平面上)画出对应的Ox ′,Oy ′,使∠x ′Oy ′=45°(或135°),它们确定的平面表示水平平面;(3)画对应图形,在已知图形中平行于x 轴的线段,在直观图中画成平行于x ′轴,且长度保持不变;在已知图形中平行于y 轴的线段,在直观图中画成平行于y ′轴,且长度变为原来的一半;(4)擦去辅助线,图画好后,要擦去x 轴、y 轴及为画图添加的辅助线(虚线). 3.体积与表面积公式:(1)柱体的体积公式:V =柱Sh ;锥体的体积公式: V =锥13Sh ; 台体的体积公式: V =棱台1()3h S SS S ''+;球的体积公式: V =球343r π.(2)球的表面积公式:24S R π=球.【高频考点突破】考点一空间几何体与三视图1.一个物体的三视图的排列规则是:俯视图放在正视图的下面,长度与正视图的长度一样,侧视图放在正视图的右面,高度与正视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”.2.画直观图时,与坐标轴平行的线段仍平行,与x轴、z轴平行的线段长度不变,与y 轴平行的线段长度减半.例1、将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为()解析:如图所示,点D1的投影为点C1,点D的投影为点C,点A的投影为点B.答案:D【方法技巧】该类问题主要有两种类型:一是由几何体确定三视图;二是由三视图还原成几何体.解决该类问题的关键是找准投影面及三个视图之间的关系.抓住“正侧一样高,正俯一样长,俯侧一样宽”的特点作出判断.考点二空间几何体的表面积和体积常见的一些简单几何体的表面积和体积公式:圆柱的表面积公式:S=2πr2+2πrl=2πr(r+l)(其中r为底面半径,l为圆柱的高);圆锥的表面积公式:S=πr2+πrl=πr(r+l)(其中r为底面半径,l为母线长);圆台的表面积公式:S=π(r′2+r2+r′l+rl)(其中r和r′分别为圆台的上、下底面半径,l 为母线长);柱体的体积公式:V =Sh (S 为底面面积,h 为高); 锥体的体积公式:V =13Sh (S 为底面面积,h 为高);台体的体积公式:V =13(S ′+S ′S +S )h (S ′、S 分别为上、下底面面积,h 为高);球的表面积和体积公式:S =4πR 2,V =43πR 3(R 为球的半径).例 2、如图所示,某几何体的正视图是平行四边形,侧视图和俯视图都是矩形,则该几何体的体积为 ()A .6 3B .9 3C .12 3D .18 3解析:由三视图可还原几何体的直观图如图所示.此几何体可通过分割和补形的方法拼凑成一个长和宽均为3,高为3的长方体,所求体积V =3×3×3=9 3.答案:B 【方法技巧】1.求三棱锥体积时,可多角度地选择方法.如体积分割、体积差、等积转化法是常用的方法.2.与三视图相结合考查面积或体积的计算时,解决时先还原几何体,计算时要结合平面图形,不要弄错相关数量.3.求不规则几何体的体积常用分割或补形的思想将不规则几何体转化为规则几何体以易于求解.4.对于组合体的表面积要注意其衔接部分的处理.考点三球与空间几何体的“切”“接”问题1.长方体、正方体的外接球其体对角线长为该球的直径.2.正方体的内切球其棱长为球的直径.3.正三棱锥的外接球中要注意正三棱锥的顶点、球心及底面正三角形中心共线.4.正四面体的外接球与内切球的半径之比为3∶1.例3、一个棱锥的三视图如图,则该棱锥的外接球的表面积为________.【方法技巧】1.涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点或线作截面,把空间问题化归为平面问题.2.若球面上四点P、A、B、C构成的线段P A、PB、PC两两垂直,且P A=a,PB=b,PC=c,则4R2=a2+b2+c2(R为球半径).可采用“补形”法,构造长方体或正方体的外接球去处理.考点四空间线线、线面位置关系(1)线面平行的判定定理:a⊄α,b⊂α,a∥b⇒a∥α.(2)线面平行的性质定理:a∥α,a⊂β,α∩β=b⇒a∥b.(3)线面垂直的判定定理:m⊂α,n⊂α,m∩n=P,l⊥m,l⊥n⇒l⊥α.(4)线面垂直的性质定理:a⊥α,b⊥α⇒a∥b.例4、如图,在四面体P ABC中,PC⊥AB,P A⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.(1)求证:DE∥平面BCP;(2)求证:四边形DEFG为矩形;(3)是否存在点Q,到四面体P ABC六条棱的中点的距离相等?说明理由.解:(1)证明:因为D,E分别为AP,AC的中点,所以DE∥PC.又因为DE⊄平面BCP,所以DE∥平面BCP.(2)证明:因为D,E,F,G分别为AP,AC,BC,PB的中点,所以DE∥PC∥FG,DG∥AB∥EF.所以四边形DEFG为平行四边形.又因为PC⊥AB,所以DE⊥DG.所以四边形DEFG为矩形.(3)存在点Q满足条件,理由如下:连接DF,EG,设Q为EG的中点.由(2)知,DF ∩EG =Q ,且QD =QE =QF =QG =12EG .分别取PC ,AB 的中点M ,N ,连接ME ,EN ,NG ,MG ,MN .与(2)同理,可证四边形MENG 为矩形,其对角线交点为EG 的中点Q ,且QM =QN =12EG ,所以Q 为满足条件的点. 【方法技巧】1.证明线线平行常用的两种方法: (1)构造平行四边形; (2)构造三角形的中位线. 2.证明线面平行常用的两种方法: (1)转化为线线平行; (2)转化为面面平行.3.证明直线与平面垂直往往转化为证明直线与直线垂直.而证明直线与直线垂直又需要转化为证明直线与平面垂直.考点五空间面面位置关系1.面面垂直的判定定理:a ⊂β,a ⊥α⇒α⊥β. 2.面面垂直的性质定理: α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β. 3.面面平行的判定定理:a ⊂β,b ⊂β,a ∩b =A ,a ∥α,b ∥α⇒α∥β. 4.面面平行的性质定理: α∥β,α∩γ=a ,β∩γ=b ⇒a ∥b . 5.面面平行的证明还有其它方法:⎭⎪⎬⎪⎫1a 、b ⊂α且a ∩b =Ac 、d ⊂β且c ∩d =B a ∥c ,b ∥d⇒α∥β, (2)a ⊥α、a ⊥β⇒α∥β.例5、如图,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,AB =AD ,∠BAD =60°,E ,F 分别是AP ,AD 的中点.求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面P AD.【证明】(1)如图,在△P AD中,因为E,F分别为AP,AD的中点,【方法技巧】1.垂直问题的转化方向面面垂直⇒线面垂直⇒线线垂直.主要依据有关定义及判定定理和性质定理证明.具体如下:(1)证明线线垂直:①线线垂直的定义;②线面垂直的定义;③勾股定理等平面几何中的有关定理.(2)证明线面垂直:①线面垂直的判定定理;②线面垂直的性质定理;③面面垂直的性质定理.(3)证明面面垂直:①面面垂直的定义;②面面垂直的判定定理.2.证明面面平行的常用的方法是利用判定定理,其关键是结合图形与条件在平面内寻找两相交直线分别平行于另一平面.例6、如图,平面P AC⊥平面ABC,△ABC是以AC为斜边的等腰直角三角形,E,F,O分别为P A,PB,AC的中点,AC=16,P A=PC=10.(1)设G是OC的中点,证明:FG∥平面BOE;(2)证明:在△ABO内存在一点M,使FM⊥平面BOE.【证明】(1)如图,连接OP,以点O为坐标原点,OB,OC,OP所在直线为x轴,y轴,z轴,建立空间直角坐标系O-xyz,则O(0,0,0),A(0,-8,0),B(8,0,0),C(0,8,0),P(0,0,6),E(0,-4,3),F(4,0,3).【方法技巧】1.用向量法来证明平行与垂直,避免了繁杂的推理论证而直接计算就行了.把几何问题代数化.尤其是正方体、长方体、直四棱柱中相关问题证明用向量法更简捷.但是向量法要求计算必须准确无误.2.利用向量法的关键是正确求平面的法向量.赋值时注意其灵活性.注意(0,0,0)不能作为法向量.考点七利用空间向量求角1.向量法求异面直线所成的角:若异面直线a,b的方向向量分别为a,b,异面直线所成的角为θ,则cosθ=|cos〈a,b〉|=|a·b||a||b|.2.向量法求线面所成的角:求出平面的法向量n,直线的方向向量a,设线面所成的角为θ,则sinθ=|cos〈n,a〉|=|n·a||n||a|.3.向量法求二面角:求出二面角α-l-β的两个半平面α与β的法向量n1,n2,若二面角α-l-β所成的角θ为锐角,则cosθ=|cos〈n1,n2〉|=|n1·n2| |n1||n2|;若二面角α-l-β所成的角θ为钝角,则cosθ=-|cos〈n1,n2〉|=-|n1·n2||n1||n2|.例7、如图,在四棱锥P-ABCD中,P A⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(1)求证:BD⊥平面P AC;(2)若P A=AB,求PB与AC所成角的余弦值;(3)当平面PBC与平面PDC垂直时,求P A的长.(3)由(2)知=(-1,3,0)设P(0,-3,t)(t>0),则=(-1,-3,t),设平面PBC的一个法向量m=(x,y,z),考点八利用空间向量解决探索性问题利用空间向量解决探索性问题,它无需进行复杂繁难的作图、论证、推理,只须通过坐标运算进行判断,在解题过程中,往往把“是否存在”问题,转化为“点的坐标是否有解,是否有规定范围的解”等,可以使问题的解决更简单、有效,应善于运用这一方法.例8、如图,在三棱锥P-ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上.已知BC=8,PO=4,AO=3,OD=2.(1)证明:AP⊥BC;(2)在线段AP上是否存在点M,使得二面角A-MC-B为直二面角?若存在,求出AM 的长;若不存在,请说明理由.解:(1)证明:如图,以O为原点,以射线OP为z轴的正半轴,建立空间直角坐标系O -xyz.即⎩⎪⎨⎪⎧x 1=0,z 1=2+3λ4-4λy 1,可取n 1=(0,1,2+3λ4-4λ). 由⎩⎪⎨⎪⎧·n 2=0,·n 2=0,即⎩⎪⎨⎪⎧3y 2+4z 2=0,-4x 2+5y 2=0, 得⎩⎨⎧x 2=54y 2,z 2=-34y 2,可取n 2=(5,4,-3).由n 1·n 2=0,得4-3·2+3λ4-4λ=0,解得λ=25,故AM =3.综上所述,存在点M 符合题意,AM =3. 【难点探究】难点一 空间几何体的表面积和体积例1、(1)一个空间几何体的三视图如图所示,则该几何体的表面积为()A .48B .32+817C .48+817D .80(2)某几何体的三视图如图所示,则该几何体的体积为()A .92π+12B .92π+18C .9π+42D .36π+18 【答案】(1)C(2)B【解析】 (1)由三视图可知本题所给的是一个底面为等腰梯形的放倒的直四棱柱(如图所示),所以该直四棱柱的表面积为S =2×12×(2+4)×4+4×4+2×4+2×1+16×4=48+817.(2)由三视图可得这个几何体是由上面是一个直径为3的球,下面是一个长、宽都为3、高为2的长方体所构成的几何体,则其体积为:V =V 1+V 2=43×π×⎝⎛⎭⎫323+3×3×2=92π+18,故选B.难点二球与多面体例 2、已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,∠ASC =∠BSC =30°,则棱锥S -ABC 的体积为()A .3 3B .2 3 C. 3 D .1【解题规律与技巧】1.真实图形中和两坐标轴平行的线段在直观图中仍然和两坐标轴平行,在真实图形中与x 轴平行的线段在直观图中长度不变,在真实图形中和y 轴平行的线段在直观图中变为原来的一半.这种画法蕴含着一个一般的规律,在斜二测画法中,真实图形的面积和直观图的面积之比是2 2.2.空间几何体的面积有侧面积和表面积之分,表面积就是全面积,是一个空间几何体中“暴露”在外的所有面的面积,在计算时要注意区分“是侧面积还是表面积”.多面体的表面积就是其所有面的面积之和,旋转体的表面积除了球之外,都是其侧面积和底面面积之和.3.实际问题中的几何体往往不是单纯的柱、锥、台、球,往往是由柱、锥、台、球或其一部分组成的组合体,解决这类组合体体积的基本方法就是“分解”,将组合体“分解成若干部分,每部分是柱、锥、台、球或其一个部分,分别计算其体积”,然后根据组合体的结构,将整个的体积转化为这些“部分体积”的和或差.【历届高考真题】【2012年高考试题】一、选择题1.【2012高考真题新课标理7】如图,格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()()A6()B9()C12()D182.【2012高考真题浙江理10】已知矩形ABCD,AB=1,BC=2。

《立体几何》基础知识点

《立体几何》基础知识点

《空间几何体结构及三视图、直观图》1、柱、锥、台、球的结构特征(1)棱柱定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体.分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱'''''E D C B A ABCDE -或用对角线的端点字母,如五棱柱'AD几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体.分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥'''''E D C B A P -几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱台、四棱台、五棱台等表示:用各顶点字母,如五棱台'''''E D C B A P -几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点(4)圆柱定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

高中数学立体几何知识点总结(超详细)

高中数学立体几何知识点总结(超详细)

立体几何知识梳理一 、空间几何体 (一) 空间几何体的类型1 多面体:由若干个平面多边形围成的几何体.围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体.其中,这条直线称为旋转体的轴.(二) 几种空间几何体的结构特征 1 、棱柱的结构特征1.1 棱柱的定义:由一个平面多边形沿某一方向平移形成的空间几何体叫做棱柱. 1.2 棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体 性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等;1.3 棱柱的面积和体积公式ch S 直棱柱侧(c 是底周长,h 是高)S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h2 、棱锥的结构特征2.1 棱锥的定义(1) 棱锥:当棱柱的一个底面收缩为一个点时,得到的几何体叫做棱锥.(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥.棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形图1-1 棱柱2.2 正棱锥的结构特征Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形;Ⅲ、两个特征三角形:(1)POH ∆(包含棱锥的高、斜高和底面内切圆半径);(2)POB ∆(包含棱锥的高、侧棱和底面外接圆半径) 正棱锥侧面积:1'2S ch =正棱椎(c 为底周长,'h 为斜高) 体积:13V Sh =棱椎(S 为底面积,h 为高)正四面体:各条棱长都相等的三棱锥叫正四面体对于棱长为a 正四面体的问题可将它补成一个边长为a 22的正方体问题. 对棱间的距离为a 2(正方体的边长) 正四面体的高a 6(正方体体对角线l 32=) 正四面体的体积为32a (正方体小三棱锥正方体V V V 314=-) 正四面体的中心到底面与顶点的距离之比为3:1(正方体体对角线正方体体对角线:l l 2161=) 3 、棱台的结构特征3.1 棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台. 3.2 正棱台的结构特征(1)各侧棱相等,各侧面都是全等的等腰梯形;(2)正棱台的两个底面和平行于底面的截面都是正多边形; (3)正棱台的对角面也是等腰梯形; (4)各侧棱的延长线交于一点. 4 、圆柱的结构特征4.1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲ABC D POH面所围成的几何体叫圆柱.4.2 圆柱的性质(1)上、下底及平行于底面的截面都是等圆;(2)过轴的截面(轴截面)是全等的矩形.4.3 圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形.4.4 圆柱的面积和体积公式S圆柱侧面= 2π·r·h (r为底面半径,h为圆柱的高)V圆柱= S底h = πr2h5、圆锥的结构特征5.1 圆锥的定义:以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆锥.5.2 圆锥的结构特征(1)平行于底面的截面都是圆,截面直径与底面直径之比等于顶点到截面的距离与顶点到底面的距离之比;(2)轴截面是等腰三角形;图1-5 圆锥(3)母线的平方等于底面半径与高的平方和:l2 = r2 + h25.3 圆锥的侧面展开图:圆锥的侧面展开图是以顶点为圆心,以母线长为半径的扇形.6、圆台的结构特征6.1 圆台的定义:用一个平行于底面的平面去截圆锥,我们把截面和底面之间的部分称为圆台.6.2 圆台的结构特征⑴圆台的上下底面和平行于底面的截面都是圆;⑵圆台的截面是等腰梯形;⑶圆台经常补成圆锥,然后利用相似三角形进行研究.6.3 圆台的面积和体积公式S圆台侧= π·(R + r)·l (r、R为上下底面半径)V圆台= 1/3 (π r2+ π R2+ π r R) h (h为圆台的高)7 球的结构特征7.1 球的定义:以半圆的直径所在的直线为旋转轴,半圆旋转一周形成的旋转体叫做球体.空间中,与定点距离等于定长的点的集合叫做球面,球面所围成的几何体称为球体.7-2 球的结构特征⑴ 球心与截面圆心的连线垂直于截面;⑵ 截面半径等于球半径与截面和球心的距离的平方差:r 2 = R 2 – d 2 ⑶注意圆与正方体的两个关系:球内接正方体,球直径等于正方体对角线; 球外切正方体,球直径等于正方体的边长. 7-3 球的面积和体积公式S 球面 = 4 π R 2 (R 为球半径); V 球 = 4/3 π R 3 (三)空间几何体的表面积与体积 空间几何体的表面积棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 :222S rl r ππ=+圆锥的表面积:2S rl r ππ=+圆台的表面积:22S rl r Rl R ππππ=+++球的表面积:24S R π= 空间几何体的体积柱体的体积 :V S h =⨯底;锥体的体积 :13V S h =⨯底台体的体积:1)3V S S h =++⨯下上(;球体的体积:343V R π=斜二测画法:(1)平行于坐标轴的线依然平行于坐标轴;(2)平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变;二 、点、直线、平面之间的关系(一)、立体几何网络图:1、线线平行的判断:(1)平行于同一直线的两直线平行.(3)如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(6)如果两个平行平面同时和第三个平面相交,那么它们的交线平行.(12)垂直于同一平面的两直线平行.2、线线垂直的判断:(7)三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.(8)三垂线逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直.如图,已知PO⊥α,斜线PA在平面α内的射影为OA,a是平面α内一条直线.①三垂线定理:若a⊥OA,则a⊥PA.即垂直射影则垂直斜线.②三垂线定理逆定理:若a⊥PA,则a⊥OA.即垂直斜线则垂直射影.(10)若一直线垂直于一个平面,则这条直线垂直于平面内所有直线.补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条.3、线面平行的判断:(2)如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.(5)两个平面平行,其中一个平面内的直线必平行于另一个平面.判定定理:性质定理:★判断或证明线面平行的方法⑴利用定义(反证法):lα=∅,则l∥α (用于判断);⑵利用判定定理:线线平行线面平行(用于证明);⑶利用平面的平行:面面平行线面平行(用于证明);⑷利用垂直于同一条直线的直线和平面平行(用于判断).2线面斜交和线面角:l∩α = A2.1 直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角θ.2.2 线面角的范围:θ∈[0°,90°]注意:当直线在平面内或者直线平行于平面时,θ=0°;当直线垂直于平面时,θ=90°4、线面垂直的判断:(9)如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面.(11)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面.(14)一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.(16)如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面.判定定理:性质定理:(1)若直线垂直于平面,则它垂直于平面内任意一条直线.即:(2)垂直于同一平面的两直线平行.即:★判断或证明线面垂直的方法⑴利用定义,用反证法证明.⑵利用判定定理证明.⑶一条直线垂直于平面而平行于另一条直线,则另一条直线也垂直与平面.⑷一条直线垂直于两平行平面中的一个,则也垂直于另一个.⑸如果两平面垂直,在一平面内有一直线垂直于两平面交线,则该直线垂直于另一平面.5、面面平行的判断:(4)一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行.(13)垂直于同一条直线的两个平面平行.6、面面垂直的判断:(15)一个平面经过另一个平面的垂线,这两个平面互相垂直.判定定理:性质定理:(1)若两面垂直,则这两个平面的二面角的平面角为90°;(2)(二)、其他定理结论:(1)确定平面的条件:①不共线的三点;②直线和直线外一点;③两条相交直线;④两条平行直线;(2)直线与直线的位置关系:相交;平行;异面;直线与平面的位置关系:在平面内;平行;相交(垂直是它的特殊情况);平面与平面的位置关系:相交;;平行;(3)等角定理:如果两个角的两边分别平行且方向相同,那么这两个角相等;如果两条相交直线和另外两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;(4)射影定理(斜线长、射影长定理):从平面外一点向这个平面所引的垂线段和斜线段中,射影相等的两条斜线段相等;射影较长的斜线段也较长;反之,斜线段相等的射影相等;斜线段较长的射影也较长;垂线段比任何一条斜线段都短.(5)最小角定理:斜线与平面内所有直线所成的角中最小的是与它在平面内射影所成的角.(6)异面直线的判定:①反证法;②过平面外一点与平面内一点的直线,和平面内不过该点的直线是异面直线.(7)过已知点与一条直线垂直的直线都在过这点与这条直线垂直平面内.(8)如果—直线平行于两个相交平面,那么这条直线平行于两个平面的交线.(三)、唯一性定理结论:(1)过已知点,有且只能作一直线和已知平面垂直.(2)过已知平面外一点,有且只能作一平面和已知平面平行.(3)过两条异面直线中的一条能且只能作一平面与另一条平行.四、空间角的求法:(所有角的问题最后都要转化为解三角形的问题,尤其是直角三角形)(1)异面直线所成的角:平移转化,把异面直线所成的角转化为平面内相交直线o o(2)线面所成的角:①线面平行或直线在平面内:线面所成的角为o 0; ②线面垂直:线面所成的角为o 90;③斜线与平面所成的角:射影转化,即转化为斜线与它在平面内的射影所成的角.o o 线面所成的角范围090o o α≤≤ (3)二面角:关键是找出二面角的平面角,o o α≤<; 五、距离的求法:(1)点点、点线、点面距离:点与点之间的距离就是两点之间线段的长、点与线、面间的距离是点到线、面垂足间线段的长.求它们首先要找到表示距离的线段,然后再计算.注意:求点到面的距离的方法:①直接法:直接确定点到平面的垂线段长(垂线段一般在二面角所在的平面上); ②转移法:转化为另一点到该平面的距离(利用线面平行的性质); ③体积法:利用三棱锥体积公式.。

高三《立体几何》专题复习

高三《立体几何》专题复习

高三《立体几何》专题复习一、常用知识点回顾1、三视图。

正侧一样高,正俯一样长,侧府一样宽,看不到的线画虚线。

2、常用公式与结论。

(1)圆柱、圆锥、圆台的侧面展开图及侧面积公式;(2)空间几何体的表面积与体积公式;(3)全品高考复习方案(听课手册)105页的常用结论3、两条异面直线所成的角;直线与平面所成的角。

4、证明两条直线平行的常用方法;直线与平面平行的判定与性质;面面平行的判定与性质。

5、证明两条直线垂直的常用方法;直线与平面垂直的判定与性质;两个平面垂直的判定与性质。

二、题型训练题型一:三视图的运用,求几何体的体积、表面积例1、如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()(A)18+(B)54+(C)90(D)81【练习1】某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()C.3D.2【练习2】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A.90πB.63πC.42πD.36π【练习3】如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )(A )20π(B )24π(C )28π(D )32π例2、在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )(A )4π (B )9π2 (C )6π (D )32π3变式1:在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=5,则V的最大值是变式2:在封闭的长方体ABCD-A1B1C1D1内有一个体积为V的球.若AB=BC=6,AA1=3,则V的最大值是变式3:(1)长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为(2)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为变式4:【练习1】已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A. B.12π C. D.10π【练习3】已知圆锥的顶点为S,母线SA,SB互相垂直,SA与圆锥底面所成角为30°,若SAB的面积为8,则该圆锥的体积为_______题型二:平行问题例1、如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(I)证明MN∥平面PAB; (II)求四面体N-BCM的体积.【练习1】如图,四棱锥P-ABCD中,侧面PADAD,为等边三角形且垂直于底面ABCD,AB=BC=12∠BAD=∠ABC=90°。

2024年高考数学立体几何知识点总结

2024年高考数学立体几何知识点总结

2024年高考数学立体几何知识点总结____年高考数学立体几何知识点总结(____字)一、立体几何的基本概念1. 立体几何的研究对象:立体物体。

2. 立体物体的特征:具有长度、宽度和高度三个方向的物体。

3. 立体几何的基本概念:点、线、面。

- 点:没有任何维度,没有长度、宽度和高度。

在立体几何中用大写字母表示,如A、B、C。

- 线:由一串无限多个点组成,具有长度但没有宽度和高度。

用小写字母表示,如a、b、c。

- 面:由无限多条线组成,具有长度和宽度但没有高度。

用大写字母表示,如A、B、C。

- 空间:由无限多个面组成,具有长度、宽度和高度。

用字母S表示。

二、立体几何的基本性质1. 垂直关系:- 垂直平面:两个平面的法线互相垂直。

- 垂直线:两个线互相垂直。

2. 平行关系:- 平行线:在同一个平面上没有交点的两条线。

- 平行平面:在空间中没有交线的两个平面。

3. 点、线、面的关系:- 点在线上:一个点在一条线上。

- 线在平面上:一条线在一个平面上。

- 点在平面上:一个点在一个平面上。

- 线垂直于平面:一条线与一个平面垂直。

4. 空间几何图形的投影:- 平面的投影:一个空间几何图形在一个平面上的投影。

- 线的投影:一条线在一个平面上的投影是线段。

- 点的投影:一个点在一个平面上的投影是一个点。

- 面的投影:一个面在一个平面上的投影是一个面。

三、平行于坐标轴的立体图形1. 长方体的概念和性质:- 长方体的定义:由6个矩形面围成的立体几何图形。

- 长方体的性质:相对的面是平行的,相对的边是相等的。

2. 正方体的概念和性质:- 正方体的定义:所有边长相等的长方体。

- 正方体的性质:正方体的六个面是相等的正方形。

3. 正方柱、正交柱的概念和性质:- 正方柱:底面是正方形的柱体。

- 正交柱:底面和轴垂直的柱体。

- 正方柱和正交柱的性质:底面的对边平行且相等。

四、平行四边形的性质1. 平行四边形的定义:两对对边平行的四边形。

立体几何基础知识复习

立体几何基础知识复习

立体几何基础知识复习人大附中张胜利一,平行,垂直的判定1.线线平行的判定①定义:,没有公共点的两条直线叫做平行直线。

②公理4:的两直线平行。

它的符号语言是③线面平行性质定理:如果一条直线和一个平面平行,这条直线的平面和这个平面相交,那么这条直线就和平行。

此定理的符号语言是④线面垂直的性质定理:如果两条直线同于一个平面,那么这两条直线平行。

此定理的符号语言是⑤面面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的平行。

它的符号语言是2.线面平行的判定①定义:如果一条直线和一个平面,那么叫这条直线和这个平面平行。

②判定定理:如果平面的一条直线和这个平面的一条直线平行,那么这条直线和这个平面平行。

此定理的符号语言是③面面平行的性质:两个平面平行,其中一个平面的直线必平行于另一个平面。

它的符号语言是3.面面平行的判定:①定义:如果两个平面,叫这两个平面互相平行。

②判定定理:如果一个平面有两条直线都平行于另一个平面,那么这两个平面平行。

此定理的符号语言是③线面垂直的性质:一条直线的两个平面平行。

它的符号语言是④面面平行的性质:一个平面的两个平面平行。

它的符号语言是4.线线垂直的判定①定义:两条直线所成的角是角,叫这两条直线垂直。

(包括两条异面直线互相垂直)②线线垂直的性质:如果一条直线和两条中的一条垂直,那么也和另一条垂直。

它的符号语言是③线面垂直的定义:如果一条直线和一个平面垂直,那么这条直线和这个平面一条直线都垂直。

它的符号语言是④三垂线定理:在平面内的一条直线,如果和的一条斜线的射影垂直,那么它也和这条斜线垂直。

此定理的符号语言是⑤三垂线定理的逆定理:⑥三个两两垂直的平面的三条两两垂直5.线面垂直的判定①定义:如果一条直线和一个平面内的一条直线垂直叫做这条直线和平面互相垂直。

②判定定理:如果一条直线和一个平面内的直线都垂直,那么这条直线垂直于这个平面。

此定理的符号语言是③线线平行的性质:如果两条直线中的一条垂直于一个平面,那么另一条也垂直于这个平面。

2024年高考数学立体几何知识点总结

2024年高考数学立体几何知识点总结

2024年高考数学立体几何知识点总结(____字)一、空间几何体的基本概念和性质1. 点、线、面的定义和性质2. 各类多面体的定义和性质,如正多面体、柱面、棱锥等3. 空间角的定义和性质,包括平面角、空间角的比较大小等4. 体积和表面积的计算,包括球体、圆柱体、圆锥体、棱柱体、棱锥体等的计算公式二、立体几何的投影问题1. 平行投影和中心投影的性质和应用2. 空间几何体在平行投影和中心投影下的变换关系和性质三、立体几何的位置关系和判定方法1. 点与平面的位置关系判定,如点在平面上、点在平面外等2. 点与直线的位置关系判定,如点在线上、点在线段上等3. 直线与平面的位置关系判定,如直线在平面上、直线与平面相交等4. 空间几何体的位置关系判定,如两个平面的相交、两个直线的关系等四、等腰三角形与正弦定理、余弦定理的应用1. 等腰三角形的性质和判定方法2. 正弦定理和余弦定理的概念和应用,如求解三角形的边长、角度等五、平面与空间直线的交点、平面与空间直线的位置关系1. 平面与空间直线的交点的判定和求解方法2. 平面与空间直线的位置关系的判定方法,如平面与直线相交、平面与直线平行、平面与直线垂直等六、球与平面的交线和球与直线的位置关系1. 球与平面的交线的判定和性质,如球与平面相切、相离等2. 球与直线的位置关系的判定和性质,如球与直线相切、相离、相交等七、向量的应用1. 向量的定义和基本性质2. 向量的共线与共面的判定方法3. 向量的投影和数量积的应用,如求解多边形的面积、平行四边形的面积等八、平面直角坐标系和空间直角坐标系的应用1. 平面直角坐标系的建立和使用方法2. 空间直角坐标系的建立和使用方法3. 平面直角坐标系和空间直角坐标系的转化九、解析几何与立体几何的综合应用1. 点、线、面方程的求解和应用2. 几何图形的平移、旋转和对称变换的解析几何表示方法3. 空间几何体的投影和旋转的解析几何表示方法以上就是2024年高考数学立体几何的知识点总结。

数学立体几何复习

数学立体几何复习

数学立体几何复习数学立体几何是高中数学中的一门重要内容,它研究的是空间中的几何体及其性质。

熟练掌握立体几何知识对于理解和解决实际问题具有重要意义。

下面将通过复习立体几何的各个重点知识点来帮助大家系统地巩固所学的知识。

一、点、线、面和体的概念在立体几何中,我们首先应该了解一些基本的概念,如点、线、面和体。

点是没有大小和形状的,它是空间中最基本的概念。

线是由无数个点组成的,它只有长度没有宽度,可以用来连接两个点。

面是由无数个线组成的,它有长度和宽度,可以用来分割空间。

而体是由无数个面组成的,它有长度、宽度和高度,可以用来填充空间。

二、立体几何图形的性质1. 圆柱体:圆柱体是由一个圆和与圆共面的平行于圆的两个相等的并直立的直线围成的几何体。

圆柱体的侧面是一个矩形,底面是两个相等的圆。

2. 圆锥体:圆锥体是有一个素固定顶点和若干个以这个顶点为公共顶点的棱为侧棱的几何体。

圆锥体的侧面是一个扇形,底面是一个圆。

3. 球面:球面是指以一个固定点为球心,到这个点距离等于一定数值的点的轨迹。

球面上没有边界,可以看作是一个封闭的立体。

三、立体几何的计算公式在解决立体几何问题时,我们常常需要运用各种计算公式来求解。

以下是一些常用的计算公式:1. 体积公式:- 圆柱体的体积公式:V = πr^2h,其中r为底面半径,h为高度。

- 圆锥体的体积公式:V = 1/3πr^2h,其中r为底面半径,h为高度。

- 球体的体积公式:V = 4/3πr^3,其中r为半径。

2. 表面积公式:- 圆柱体的表面积公式:S = 2πrh + 2πr^2,其中r为底面半径,h为高度。

- 圆锥体的表面积公式:S = πrl + πr^2,其中r为底面半径,l为斜高。

- 球体的表面积公式:S = 4πr^2,其中r为半径。

四、立体几何的空间关系在立体几何中,我们还需要了解各种几何体之间的空间关系,比如包含关系、相交关系等。

1. 包含关系:一个几何体完全在另一个几何体之内时,我们称其中一个几何体包含另一个几何体。

立体几何基础知识

立体几何基础知识

立体几何基础知识1.平面的概念:平面是没有厚薄的,可以无限延伸,这是平面最基本的属性2.平面的画法及其表示方法:①常用平行四边形表示平面通常把平行四边形的锐角画成45 ,横边画成邻边的两倍画两个平面相交时,当一个平面的一部分被另一个平面遮住时,应把被遮住的部分画成虚线或不画②一般用一个希腊字母、、来表示,还可用平行四边形的对角顶点的字母来表示如平面AC .3.空间图形是由点、线、面组成的点、线、面的基本位置关系如下表所示:图形符号语言文字语言(读法)Aa A a点 A 在直线a上A aA a点 A 不在直线a上A A点 A在平面内A A点 A 不在平面内A baa b A直线 a 、b交于A点a a直线 a 在平面内aa //直线 a 与平面平行aA a A直线a与平面交于点Al平面、相交于直线l注意:直线与平面平行( a //)和直线与平面相交(a A )两种情形,统称为直线在平面外,记为 a.4.平面的基本性质(1)公理 1: 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内B符号表示:A, B a.如图示: A应用:是判定直线是否在平面内的依据,也可用于验证一个面是否是平面.公理 1 说明了平面与曲面的本质区别.通过直线的“直”来刻划平面的“平”,通过直线的“无限延伸”来描述平面的“无限延展性” ,它既是判断直线在平面内,又是检验平面的方法.(2) 公理2: 如果两个平面有一个公共点, 那么它们还有其他公共点, 且所有这些公共点的集合是一条过这个公共点的直线A符号表示:l 且A l 且 l 唯一如图示:A应用:①确定两相交平面的交线位置;②判定点在直线上公理 2 揭示了两个平面相交的主要特征,是判定两平面相交的依据,提供了确定两个平面交线的方法.(3)公理 3: 经过不在同一条直线上的三点,有且只有一个平面推理模式: A, B, C 不共线存在唯一的平面,使得 A, B, C应用:①确定平面;②证明两个平面重合注意 : “有且只有一个”的含义分两部分理解,“有”说明图形存在,但不唯一,“只有一个”说明图形如果有顶多只有一个,但不保证符合条件的图形存在,“有且只有一个”既保证了图形的存在性,又保证了图形的唯一性.在数学语言的叙述中,“确定一个” ,“可以作且只能作一个”与“有且只有一个”是同义词,因此,在证明有关这类语句的命题时,要从“存在性”和“唯一性”两方面来论证.(4)推论 1 : 经过一条直线和直线外的一点有且只有一个平面推理模式: A a存在唯一的平面,使得A,l(5)推论 2: 经过两条相交直线有且只有一个平面推理模式: a b P存在唯一的平面,使得a,b(6)推论 3 : 经过两条平行直线有且只有一个平面推理模式: a // b存在唯一的平面,使得a,b5.平面图形与空间图形的概念 : 如果一个图形的所有点都在同一个平面内,则称这个图形为平面图形,否则称为空间图形特别注意空间四边形是平面图形而不是平面图形.6.空间两直线的位置关系(1)相交——有且只有一个公共点;(2)平行——在同一平面内,没有公共点;(3)异面——不在任何一个平面内,没有公共点;..7.公理 4 :平行于同一条直线的两条直线互相平行推理模式: a // b, b // c a // c .8.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等9.等角定理的推论: 如果两条相交直线和另两条相交直线分别平行, 那么这两条直线所成的锐角( 或直角 ) 相等10.空间两条异面直线的画法a b babaD1C1A1B1DCA B11.异面直线判定定理:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线推理模式:A, B, l, B l AB 与 l 是异面直线12. 异面直线所成的角:已知两条异面直线a, b ,经过空间任一点O 作直线 a // a, b // b,a , b所成的角的大小与点 O 的选择无关,把 a , b 所成的锐角(或直角)叫异面直线a, b 所成的角(或夹角).为了简便,点 O 通常取在异面直线的一条上注 : 异面直线所成的角的范围:(0,]213.异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直.两条异面直线a,b垂直,记作 a b.14.求异面直线所成的角的方法:通过平移,把两条异面直线所成的角转化成两条相交直线所成的角.15.两条异面直线的公垂线、距离和两条异面直线都垂直相交的直线,我们称之为异面直线的公垂线....理解:因为两条异面直线互相垂直时,它们不一定相交,所以公垂线的定义要注意“相交”的含义.两条异面直线的公垂线在这两条异面直线间的线段(公垂线段)的长度,叫做两条异面直线间的距离.注意 : 两条异面直线的公垂线有且只有一条16.直线和平面的位置关系( 1)直线在平面内(无数个公共点);符号表示为:a;( 2)直线和平面相交(有且只有一个公共点);符号表示为:a A ,( 3)直线和平面平行(没有公共点); 符号表示为 : a //.17.线面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.推理模式:a,b, a // b a //.18.线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.推理模式: a // , a,b a // b .19.平行平面:如果两个平面没有公共点,那么这两个平面互相平行.20.图形表示:画两个平面平行时,通常把表示这两个平面的平行四边形的相邻两边分别画成平行的.21.平行平面的判定定理:如果一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面互相平行.推理模式:: a,b,a b P , a //,b ////.22.平行平面的判定定理推论:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面互相平行.推理模式:a //a' ,b//b' ,,,b,a'b''a',b'//.a b o a o23.平行平面的性质定理:如果两个平行平面同时与第三个平面相交,那么它们的交线平行.推理模式:// ,a,b a // b .24.面面平行的另一性质:如果两个平面平行,那么其中一个平面内的直线平行于另一个平面.推理模式:// , a a //.25.线面垂直定义:如果一条直线和一个平面相交,并且和这个平面内的任意一条直线都垂直,我们就说这条直线和这个平面互相垂直其中直线叫做平面的垂线,平面叫做直线的垂面交点叫做垂足直线与平面垂直简称线面垂直,记作:a⊥ α26.直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面27.直线和平面垂直的性质定理 :如果两条直线同垂直于一个平面, 那么这两条直线平行28.两个平面垂直的定义:两个相交成直二面角的两个平面互相垂直;相交成直二面角的两个平面叫做互相垂直的平面29.两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直推理模式: a ?,a.30.两平面垂直的性质定理:若两个平面互相垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面推理模式:,l , a, a l a31.异面直线所成的角:已知两条异面直线a, b ,经过空间任一点O 作直线 a // a, b // b,a , b所成的角的大小与点 O 的选择无关,把 a , b 所成的锐角(或直角)叫异面直线a, b 所成的角(或夹角).为了简便,点 O 通常取在异面直线的一条上注 : 异面直线所成的角的范围:(0,]232.求异面直线所成的角的方法:ab′b O33.直线和平面所成角(1)定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角一直线垂直于平面,所成的角是直角注: ①一直线平行于平面或在平面内,所成角为0 角②直线和平面所成角范围:0,2(2)定理:斜线和平面所成角是这条斜线和平面内经过斜足的直线所成的一切角中最小的角34.二面角:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面若棱为 l ,两个面分别为,的二面角记为l;35.二面角的平面角:( 1)过二面角的棱上的一点O 分别在两个半平面内作棱的两条垂线OA, OB ,则AOB 叫做二面角l的平面角2l的棱l,且与两半平面交线分别为OA, OB, O 为垂足,则AOB也()一个平面垂直于二面角是l的平面角说明:①二面角的平面角范围是[0 ,180 ] ;②二面角的平面角为直角时,则称为直二面角,组成直二面角的两个平面互相垂直36.求二面角的射影公式: cos S,S其中各个符号的含义是:S 是二面角的一个面内图形 F 的面积,S是图形 F 在二面角的另一个面内的射影,是二面角的大小37.点到平面的距离:已知点 P 是平面外的任意一点,过点 P 作 PA,垂足为 A ,则 PA 唯一,则 PA是点 P 到平面的距离即一点到它在一个平面内的正射影的距离叫做这一点到这个平面的距离结论:连结平面外一点 P与内一点所得的线段中,垂线段PA 最短38.异面直线的公垂线:和两条异面直线都垂直相交的直线叫做异面直线的公垂线.39.公垂线唯一:任意两条异面直线有且只有一条公垂线40.两条异面直线的公垂线段:两条异面直线的公垂线夹在异面直线间的部分,叫做两条异面直线的公垂线段;41.公垂线段最短:两条异面直线的公垂线段是分别连结两条异面直线上两点的线段中最短的一条;42.两条异面直线的距离:两条异面直线的公垂线段的长度说明:两条异面直线的距离AB 即为直线a到平面过另一条直线且与这条直线平行的平面的距离的距离即两条异面直线的距离等于其中一条直线到43.直线到与它平行平面的距离:( 转化为点面距离)一条直线上的任一点到与它平行的平面的距离, 叫做这条直线到平面的距离44.两个平行平面的公垂线、公垂线段:(1)两个平面的公垂线:和两个平行平面同时垂直的直线,叫做两个平面的公垂线(2)两个平面的公垂线段:公垂线夹在平行平面间的的部分,叫做两个平面的公垂线段(3)两个平行平面的公垂线段都相等(4)公垂线段小于或等于任一条夹在这两个平行平面间的线段长45.两个平行平面的距离:两个平行平面的公垂线段的长度叫做两个平行平面的距离46.七种距离:点与点、点到直线、两条平行直线、两条异面直线、点到平面、平行于平面的直线与该平面、两个平行平面之间的距离,其中点与点、点与直线、点到平面的距离是基础,求其它几种距离一般化归为求这三种距离,点到平面的距离有时用“体积法”来求47.多面体的概念:由若干个多边形围成的空间图形叫多面体;每个多边形叫多面体的面,两个面的公共边叫多面体的棱,棱和棱的公共点叫多面体的顶点,连结不在同一面上的两个顶点的线段叫多面体的对角线48.棱柱的概念:有两个面互相平行,其余每相邻两个面的交线互相平行,这样的多面体叫棱柱两个互相平行的面叫棱柱的底面(简称底);其余各面叫棱柱的侧面;两侧面的公共边叫棱柱的侧棱;两底面所在平面的公垂线段叫棱柱的高(公垂线段长也简称高)49.棱柱的分类:侧棱不垂直于底面的棱柱叫斜棱柱侧棱垂直于底面的棱柱叫直棱柱底面的是正多边形的直棱柱叫正棱柱棱柱的底面可以是三角形、四边形、五边形这样的棱柱分别叫三棱柱、四棱柱、五棱柱50.棱柱的性质(1)棱柱的侧棱相等,侧面都是平行四边形;直棱柱侧面都是矩形;正棱柱侧面都是全等的矩形;(2)棱柱的两个底面与平行于底面的截面是对应边互相平行的全等的多边形;(3)过棱柱不相邻的两条侧棱的截面都是平行四边形51.直棱柱:52.正棱柱:53.长方体的性质 : 长方体的一条对角线长的平方等于一个顶点上的三条棱长的平方和54.棱锥的概念:有一个面是多边形,其余各面是有一个公共顶点的三角形,这样的多面体叫棱锥其中有公共顶点的三角形叫棱锥的侧面;多边形叫棱锥的底面或底;各侧面的公共顶点( S) ,叫棱锥的顶点,顶点到底面所在平面的垂线段(SO) ,叫棱锥的高(垂线段的长也简称高).55.棱锥的表示:棱锥用顶点和底面各顶点的字母,或用顶点和底面一条对角线端点的字母来表示例如五棱锥可表示为S ABCDE ,或 S AC .56.棱锥的分类:(按底面多边形的边数)分别称底面是三角形,四边形,五边形的棱锥为三棱锥,四棱锥,五棱锥57.棱锥的性质:定理:如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积比等于顶点到截面的距离与棱锥高的平方比.中截面:经过棱锥高的中点且平行于底面的截面,叫棱锥的中截面58.正棱锥:底面是正多边形,顶点在底面上的射影是底面的中心的棱锥叫正棱锥.(1)正棱锥的各侧棱相等,各侧面是全等的等腰三角形,各等腰三角形底边上的高相等(叫正棱锥的斜高).(2)正棱锥的高、斜高、斜高在底面上的射影组成一个直角三角形;正棱锥的高、侧棱、侧棱在底面上的射影也组成一个直角三角形59.球的概念:与定点距离等于或小于定长的点的集合,叫做球体,简称球定点叫球心,定长叫球的半径与定点距离等于定长的点的集合叫做球面一个球或球面用表示它的球心的字母表示,例如球 O 60.球的截面:用一平面去截一个球 O ,设 OO是平面的垂线段, O 为垂足,且 OO d ,所得的截面是以球心在截面内的射影为圆心,以r R2 d 2为半径的一个圆,截面是一个圆面注 : 球面被经过球心的平面截得的圆叫做大圆,被不经过球心的平面截得的圆叫做小圆61. 表面积、体积公式( 1)直棱柱的侧面积: S ch ;( 2)圆柱的侧面积: S cl2 r l ( 其中 c 为底面圆的周长 ) ; ( 3)正棱锥的侧面积 : S1ch ( 其中 h 为斜高 );1 24Sclrl (其中 c 为底面圆的周长 );( )圆锥的侧面积:2( 5)圆台的侧面积 :S1(c c )l( r r )l ;2 ( 6)球的表面积: S 4 R 2;( 7)柱体的体积 : V Sh ;( 8)锥体的体积: V1Sh ;3( 9)台体的体积: V1(SS S S)h ;3( 10)球的体积公式: V4 R 33R ,而在实际问题中常给出球的外径(直径)注意 : ①在应用球体积公式时要注意公式中给出的是球半径②球与其它几何体的切接问题,要仔细观察、分析、弄清相关元素的位置关系和数量关系,选择最佳角度作出截面,以使空间问题平面化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

面面垂直
• 平面与平面的垂直: • 如果两个平面所成的角是直二面角,我们 称这两个平面垂直
线线角
• 线线角: • 过空间任意一点作两 异面直线的平行线, 所得两条直线所成的 不超过直角的角与该 点的位置无关,叫做 两异面直线所成的角
线面角
• 线面角: • 一条直线和它在平面 内的射影所成的角叫 做直线和平面所成的 角
补充的定理(2)
• 如果有两个相交平面都与第三个平面垂直, 那么它们的交线也与这个平面垂直 • 若一条直线与一个平面不垂直,那么过该 直线由且只有一个平面与已知平面垂直
补充定理三 • 一条直线垂直于一个三角形的 两条边必然垂直于第三条边 • 一个四面体有两组对棱垂直, 则第三组对棱也垂直
射影定理1 • 如果一条直线与两条相交直线 所成的角相等,那么它在这两 条直线所确定的平面内的射影 也是如此
基本公理
• • • • • • 公理四: 平行于同一直线的两条直线平行 公理五: 长方体的体积等于长乘宽乘高 公理六: 夹在两个平行平面间的两个几何体,如果 用平行于一直平面的平面去截,所得截面 面积总是相等,那么这两个几何体的体积 相等
三推论
• • • • 确定平面三推论: 两条相交直线确定一个平面 两条平行直线确定一个平面 一条直线和直线外一点确定一个平面
P A

B
平行结论总结
• • • • • • • 同种平行皆同性: 平行的直线与同一直线所成角度都相等 平行的直线与同一平面所成角度都相等 平行的平面与同一直线所成角度都相等 平行的平面与同一平面所成角度都相等 一平行(或在内)都平行(或在内) 一垂直都垂直
补充的定理(1)
• 如果一条直线平行于两个相交平面,那么 它平行于交线 • 过两条异面直线中的一条由且只有一个平 面与另一个平面平行
射影定理1
• 平行直线在同一平面内的射影直线是 平行直线或者两个点 • 相交直线在同一平面内的射影直线是 相交直线或一条直线 • 异面直线在同一平面内的射影可能是 两条相交直线,平行直线,或者一条 直线和直线外的一点
射影定理2
• 两条垂直的直线当且仅当有一条平 行或者在平面内时它们在平面内的 射影垂直
辨析8/10
• • • • • 直线a⊥平面α 直线b⊥平面β a⊥b —— α⊥β • • • • • 直线a//平面α 直线b//平面β a⊥b —— α⊥β
辨析9/10
• 如果两个平面 垂直,那么在 其中一个平面 内的直线都垂 直与另一个平 面
辨析10/10
• 如果一个二面角的两个面与另一个二面角 的两个面分别平行,那么它们的大小相等 或者互补 • 如果一个二面角的两个面与另一个二面角 的两个面分别垂直,那么它们的大小相等 或者互补
A
P
O
二面角
• 二面角: • 从二面角的棱上任意 一点出发在两个半平 面内分别作棱的垂线, 所成的角是一个定值, 叫做二面角的平面角

C
A B
基本公理(了解)
• 公理一: • 直线上有两点在平面内,那么直线上所有点就都 在平面内 • 公理二: • 两个平面有一个公共点,那么它们的所有公共点 的集合是一条过该点的直线 • 公里三: • 过不共线的三点有且只有一个平面
面面平行
• 判定定理: • 如果一个平面内两条相交直线都与另一个 平面平行,那么这两个平面平行
面面平行
• 推论: • 如果一个平面内两条相交直线都与另一个 平面内两条直线平行,那么这两个平面平 行
面面平行
• 性质定理: • 如果两个平面平行,那么其中一个平面内 的直线与另一个平面平行 • 如果两个平面平行,那么第三个平面与它 们的两条交线互相平行
立体几何基础理论复习
立体几何2
基础理论复习
辨析1/10
• 分别在两个平面内的两条直线是异面直线 • 不在同一个平面内的两条直线是异面直线 • 不同在任何一个平面内的两条直线式异面 直线
辨析2/10
• 如果一条直线 与平面内一条 直线平行,那 么它和该平面 平行
a ∥ b, b 面 , a∥ 面
存在性定理
• 过一点有且只有一条直线与已知平面 平行 • 过一点有且只有一个平面与已知直线 垂直
面面垂直
• 判定定理: • 如果一个平面经过另 一个平面的一条垂线, 那么这两个平面垂直
P A

B
面面垂直
• 性质定理: • 如果两个平面垂直, 那么在其中一个平面 内垂直于交线的直线 垂直于另一个平面 • 如果两个平面垂直, 那么过其中一个平面 内的一点与另一个平 面垂直的直线在第一 个平面内
辨析5/10
• 如果两个平面平行,那么其中一个平面内 的直线与另一个平面内的直线都平行 • 如果两个平面平行,那么其中一个平面内 的直线与另一个平面内的直线都平行或异 面
辨析6/10
• 如果一条直线与 一个平面内的两 条直线都垂直, 那么他和这个平 面垂直
a
O α b c
辨析7/10
• 垂直于同一平面的两个 平面平行 • 垂直于同一直线的两条 直线平行
线面平行
面面平行
• 直线与平面平行: • 如果一条直线和一个平面没有公共点,就 说它们平行 • 平面平行: • 如果两个平面没有公共点,就说这两个平 面平行
线线垂直 线面垂直
• 直线与直线垂直: • 如果两条直线所成的角是直角,我们说这 两条直线垂直(包括相交垂直和异面垂直) • 直线与平面垂直: • 如果一条直线和一个平面内的所有直线都 垂直,我们说直线与平面垂直
射影定理三
• 一个平面图形在一个平面内的射影的面积 与原图形的面积的比值等于这两个平面所 成的二面角的余弦值 • 如果一个屋顶的各个斜面与水平面所成的 角都是45度,那么它的面积是房屋面积的 根2倍
射影定理4
• 从同一点向一个平面引出的斜线段和垂线 段中 • 相等的斜线段的射影相等,较长的斜线段 的射影也较长 • 相等的射影的斜线段相等,较长的射影的 斜线段也较长
三余弦定理2
A
α β C D O θ B
• B是A在平面内 的射影 • 二面角A-OD-B 的正切等于AO、 DO与OB所成 的角的正切的 比值
应用实例
• 长方体的对角线与底面两条 相邻的边所成的角都是60度, 那么它与底面所成的角是多 少度? • 45度
内心2
P
Hale Waihona Puke CFDO A E
B
射影定理2
• 如果一个点到一个三角形 的三个顶点的距离相等, 那么它在这个平面内的射 影也是如此
四面体中的射影(1)外心
P
C O A
B
射影定理3
• 如果一个点到一个三角形 的三边的距离相等,那么 它在这个平面内的射影也 是如此
内心2
P
C
F
D
O A E
B
射影定理4
O B b
线面平行
• 判定定理: • 如果平面外一条直线 与平面内一条直线平 行,那么它和该直线 平行
a ∥ b, b 面 , a a∥ 面
a
b

线面平行
• 性质定理: • 如果一条直线和一个 平面平行,那么过这 条直线的平面与已知 平面的交线与该直线 平行
a 面 , b // a b a // ,
基本定理(理解)
• 异面直线判定定理: • 如果一条直线经过平面内一点和平面外一 点,那么它和平面内不过该点的直线是异 面直线 • 既不平行又不相交的两条直线是异面直线
等角定理
• 如果一个角的两边和 另一个角的两边分别 平行,并且方向相同, 那么它们所成的角相 等
a' A' O' B' b'
a A
• 如果一个点到一个三角形 的三顶点的连线分别与三 角形的对边垂直,那么它 在这个平面内的射影也是 如此
(3)垂心
P
C O A
B
三余弦定理1
• 一条直线与空间直角坐标系的三条 坐标轴所成的角的余弦的平方和等 于1 • 一条直线与空间直角坐标系的三个 坐标平面所成的角的余弦的平方和 等于2
三余弦定理2
辨析3/10
• 如果一条直线和一 个平面平行,那么 这条直线与已知平 面内的所有直线都 平行
a // a // b b
辨析4/10
• 如果一个平面内两条直线都与另一个平面 平行,那么这两个平面平行 • 如果一个平面内任意一条直线与另一个平 面平行,那么这两个平面平行 • 如果一个平面内任意一条直线都与另一个 平面平行,那么这两个平面平行
线面垂直
• 判定定理: • 如果一条直线与 一个平面内的两 条相交直线都垂 直,那么他就和 这个平面内的所 有直线都垂直, 我们说他和这个 平面垂直
a
O α b c
线面垂直
• 性质定理: • 垂直于同一个 平面的两条直 线平行
a
b

线面垂直
• 附加: • 垂直于同一直线的两个平面平行 • 垂直于同一平面的两条直线平行
• 一条直线与任意长方体同一顶点的 三条棱所成的角的余弦的平方和等 于1 • 一条直线与任意长方体同一顶点的 三个面所成的角的余弦的平方和等 于2
三余弦定理2
A
α β C D O θ B
• 如图平面AOB 与平面COB垂 直 • cosγ=? • =cosαcosβ
相关文档
最新文档