3.2二次根式的乘除(1)学啊

合集下载

《二次根式的乘除》二次根式PPT(第1课时)

《二次根式的乘除》二次根式PPT(第1课时)

6
6 7

___÷___=____;
7
6
.
10
4.9 .
课堂小结
本节课学习了哪些主要内容?

二次根
式乘法

拓展法则
⋅ = ( ≥ 0, ≥ 0൯
⋅ ⋅ ⋯⋅ = ⋅ ⋅⋯⋅
( ≥ 0, ≥ 0, ≥ 0)
⋅ = ( ≥ 0, ≥ 0൯


= ⋅ ( ≥ 0, ≥ 0൯
(2) 3 + 6 2 + 9 2 ≥ 0, ≥ 0
解:(1) 532 − 282 =
53 − 28)(53 + 28
= 53 − 28 × 53 + 28 = 25 × 81 = 45.
(2) 3 + 6 2 + 9 2 =
+ 3
2
= ( + 3) .
注意:a,b都必须是非负数.
被开方数
根指数
二次根式相乘,________不变,________相乘.
新课导入
问题引入
站在水平高度为 h m的地方看到可见的水平距离为d 米,
它们近似地符合公式为 = 8

5
.

5
问题1 某一登山者爬到海拔100m处,即 =
20 时,他看到的水平线的距离d1是多少?
当二次根号外有因数(式)时,可以类比单项式乘单
项式的法则计算,即根号外的因数(式)的积作为根
号外的因数(式),被开方数的积作为被开方数,即
m a n b mn ab a 0, b 0
知识讲解
例3
比较大小(一题多解):

3.2二次根式的乘除(1)教学案+课堂作业(南沙初中九年级上)

3.2二次根式的乘除(1)教学案+课堂作业(南沙初中九年级上)

南沙初中初三数学教学案教学内容:3.2(1)二次根式的乘除(1)课 型:新授课 主 备 人:王 猛 学生姓名:______ 学习目标:1.使学生能掌握积的算术平方根的性质:b a ab ∙=(0,0)a b ≥≥;2.使学生能运用积的算术平方根的性质熟练解题;3.使学生能掌握并能运用二次根式的乘法法则ab b a =∙(0,0)a b ≥≥并进行相关计算。

教学重点:积的算术平方根的性质及二次根式的乘法法则教学过程:一、复习旧知:什么是二次根式? 已学过二次根式的哪些性质?二、计算归纳:概括:通过以上计算,得到结论为:_______________________文字语言概括为:二次根式相乘,实际上就是把被开方数相乘,而根号不变.由以上公式逆向运用可得______________________________.文字语言叙述:积的算术平方根,等于积中各因式的算术平方根的积.三、例题教学例1、计算: (1)322⋅ (2)821⋅ (3))0(82≥⋅a a a例2、化简:(1)2257⨯ (2)8116⨯ (3(4)3a )0(82≥⋅a a a (5)324b a (a ≥0,b ≥0)小结:如何化简二次根式?(关键:将被开方数因式分解或因数分解,使出现____________”或____________)四、练习:P62---1、2五、知识拓展1.ab 思考:a ×b ×c =________ 2.计算:(1 (2六、补充资料:因式内移__________________;将______________。

七、运算技巧:1、计算2、计算(5四、小结收获五、课堂作业:见作业纸南沙初中初三数学课堂作业(11)(命题,校对:王 猛)班级__________姓名___________学号_________得分_________________1.化简: (1)54 (2)160 (3))0,0(935≥≥y x y x(4))0,0(2223≥≥++y x xy y x x (5)221026-2.计算:(1)73⋅ (2)183⋅ (3) 8223⨯(4))0,0(3≥≥⋅b a ab a (5)2362a a ⋅()0≥a3.(探究题)如图1-2-4所示,在△ABC 中,∠B=90○ ,点P 从点B 开始沿BA 边向点A 以1厘米/秒的速度移动;同时,点Q 也从点B 开始沿 BC 边向点C 以 2厘米/秒的速度移动,问几秒后,△PBQ 的面积为36平方厘米?(注意化简)。

《二次根式的乘除混合运算》 说课稿

《二次根式的乘除混合运算》 说课稿

《二次根式的乘除混合运算》说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是《二次根式的乘除混合运算》。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。

一、教材分析本节课是人教版八年级下册第十六章《二次根式》中的重要内容。

二次根式的乘除混合运算既是对二次根式乘法和除法法则的综合运用,也是后续学习二次根式的加减运算以及解二次根式方程的基础。

通过本节课的学习,学生将进一步提高对二次根式运算的理解和掌握,为解决更复杂的数学问题打下坚实的基础。

在教材的编排上,先介绍了二次根式的乘法和除法法则,然后通过实例引入二次根式的乘除混合运算,让学生在实际运算中体会法则的应用,逐步掌握运算方法和技巧。

二、学情分析八年级的学生已经掌握了实数的基本运算和整式的乘除运算,具备了一定的运算能力和逻辑思维能力。

但对于二次根式的运算,尤其是乘除混合运算,可能会在运算顺序、化简过程中出现错误。

部分学生可能对法则的理解不够深入,在应用时容易出现混淆。

因此,在教学过程中,要注重引导学生理解法则的本质,加强练习,及时纠正错误。

三、教学目标1、知识与技能目标(1)学生能够熟练掌握二次根式的乘除混合运算的法则和方法。

(2)能够正确进行二次根式的乘除混合运算,并化简结果。

2、过程与方法目标(1)通过观察、类比、归纳等活动,培养学生的运算能力和逻辑思维能力。

(2)在运算过程中,提高学生的分析问题和解决问题的能力。

3、情感态度与价值观目标(1)让学生在自主探究和合作交流中,体验数学学习的乐趣,增强学习数学的自信心。

(2)培养学生严谨的学习态度和良好的运算习惯。

四、教学重难点1、教学重点(1)二次根式的乘除混合运算的法则和顺序。

(2)正确化简二次根式的乘除混合运算结果。

2、教学难点(1)运算过程中符号的确定和根式的化简。

(2)灵活运用二次根式的乘除法则进行混合运算。

五、教法与学法1、教法(1)讲授法:讲解二次根式的乘除混合运算的法则和方法,使学生形成系统的知识体系。

初中数学_二次根式的乘除法教学设计学情分析教材分析课后反思

初中数学_二次根式的乘除法教学设计学情分析教材分析课后反思

数学八年级下册第九章《二次根式》第三节《二次根式乘除法》第1课时教学设计数学八年级下册第九章《二次根式》第三节《二次根式乘除法》第1课时学情分析一、思想状况分析八年级10班大部分学生的学习目的性明确、学习积极性高,能主动地学习,部分同学有上进心,但主动性不够,需要老师的引导。

八年级10班的学生学习目的不明确,不能积极主动地完成学业,甚至不能完成老师布置的作业。

大部分学生正处在生长发育的高峰期,一方面他们对因青春期生理、心理急剧变化而产生的丰富而深刻的感受和体验,有诸多成长的烦恼;另一方面面对沉重的学习、开放的社会环境带来的各种刺激和诱惑,难免不知所措。

二、学习状况分析八年级是一个产生剧烈变化的时期,更是一个危险的时期,也是一个爬坡的时期,是一个分水岭。

第一类:学习有一定的基础和很浓厚的兴趣.学生成绩稳定.第二类:基础差,但热情高,方法不当第三类:学习有一定的基础,但因各种原因成绩(如懒、上课纪律差易开小差注意力不集中、不想上学的思想作怪等)就是提不上来。

第四类:基础差,没有太大的兴趣,但尽量跟住老师.这些孩子的家长当然也在督促。

第五类:跟不上正常的进度.另外,大部分学生有学习目标,学习态度端正,学习积极性高,有一定的理解能力和分析判断推理能力,但学习自主性不太强,基础较薄弱,通过小学的精心培养,学生们已经养成了良好的学习习惯和行为习惯。

语言文明,思想健康,积极、认真、扎实。

但有的学生对自己的学习没信心,在自动放弃学习。

三、今后措施1、在教学中必须立足基础知识,加强基础知识的教学,要让学生通过历史知识的学习,养成良好的思维习惯,培养学生良好的学习习惯和严谨认真的学习态度,加强规范语言训练,提高答题得分率。

2、运用科学探究的方法,获取相应的知识,培养学生的情感和态度,扎扎实实打好基础,引领学生进入阅读世界、注重文献史料的积累借鉴,引导学生系统、牢固地掌握各课的知识考点,并培养他们运用所学知识分析问题、解决问题的能力。

3.2二次根式的乘除(1)

3.2二次根式的乘除(1)

课题:二次根式的乘除(1)教者: 一、教学目标:(1)使学生能掌握积的算术平方根的性质:b a ab ∙=(0,0)a b ≥≥;.(2)使学生能运用积的算术平方根的性质熟练解题。

(3)使学生能掌握并能运用二次根式的乘法法则b a ab ∙==b a ab ∙=(0,0)a b ≥≥并进行相关计算。

教学重点: 积的算术平方根的性质及二次根式的乘法法则教学难点:积的算术平方根的性质及二次根式的乘法法则的理解与运用 教学过程:一、探索活动: 1.计算:(1)425⨯=_______________ 425⨯=_______________ (2)169⨯=_______________ 169⨯=_______________(3)2)32(×2)53(=_______________22)53()32(⨯=_________ 2.请同学们观察以上式子及其运算结果,看看其中有什么规律?学生分小组讨论。

你还能举一些类似的式子吗?(至少举出三例)____________________ _________________ __________________由上述各式,我们可以推测出:b a ab ∙=________b a ab ∙=(0,0)a b ≥≥ 4.概括:一般地,两个二次根式相乘,实际上就是把被开方数相乘,而根号不变. 5.由以上公式逆向运用可得: b a ab ∙=(0,0)a b ≥≥文字语言叙述:积的算术平方根,等于积中各因式的算术平方根的积.三、例题教学例1、计算: (1)322⋅ (2)4831⋅ (3)814⨯练习(注意书写步骤)(1)9416⨯(2) 29223⋅ 例2、化简:(1)24, (2)3a )0(82≥⋅a a a (3)324y x (x ≥0,y ≥0)小结:如何化简二次根式?(关键:将被开方数因式分解或因数分解,使出现“完全平方数”或“偶次方因式”)四、当堂练习:1.化简72的结果是 ( ) A. 36 B. 26 C. 62 D. 562.下列等式中,正确的是 ( )A 、x x =931B 、x x 552=C 、15)35(2=D 、m m 55= 3.计算:(注意书写各式) (1)515⨯ (2)6622⨯(3) )18(243x x ⨯ (x ≥0) (4)3858327⨯⨯4.化简:(注意书写各式)(1)2000 (2)5438c b a (a ≥0 0b ≥ 0c ≥) (3) 224y x x + (0x ≥)五、课堂小结从本节课的学习中,你有什么收获六、布置作业习题3.2 第一、二题。

二次根式的乘除教案

二次根式的乘除教案

二次根式的乘除教案《二次根式的乘除教案》这是优秀的教案文章,希望可以对您的学习工作中带来帮助!学习目标:1、会进行简单的二次根式的乘法运算;2、会对二次根式进行适当化简;学习重点:理解二次根式的乘法法则;学习难点:灵活运用二次根式的乘法法则和性质进行计算和化简.学习过程一、引入新课:在前面的数学课里我们认识了什么是二次根式和二次根式的一些性质,那么该怎样进行二次根式的计算呢?本节课我们一起学习二次根式的乘法运算。

二、展示目标,自主学习:自学指导认真阅读课本第6页——7页内容,完成下列任务:1、先自主完成6页“探究”,再和同伴交流,你们得到的结论是:。

尝试用文字语言表述这个法则。

2、认真看例1、例2和例3的每一步计算和化简,有疑问随即和同伴交流或向老师请教;3、仿照例题格式完成7页练习并和同伴互相找毛病。

(10分钟)三、检测反馈1、师生共同解决“自学指导”中的问题。

2、找同学演板7页练习1、2、3四、课堂小结:本节课你有哪些收获?(1)二次根式的乘法法则是什么?请写在下面。

(2)在进行二次根式的乘法计算和化简时你有觉得应该注意些什么?请告诉大家。

五、布置作业:1、正式作业:课本第10页习题16.2第1题;第3题的(1)、(2)小题2、课外延伸计算和化简(1)(2)3(3)(4)(5)(6)(7)(8)(9)(四川省凉山州)阅读材料,解答下列问题.例:当时,如则,故此时的绝对值是它本身当时,,故此时的绝对值是零当时,如则,故此时的绝对值是它的相反数∴综合起来一个数的绝对值要分三种情况,即:这种分析方法渗透了数学的分类讨论思想.问:(1)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况.(2)猜想与的大小关系.二次根式的乘除教案这篇文章共2104字。

课件3.2二次根式的乘除(1)

课件3.2二次根式的乘除(1)
(16) (25) 16 25
由题(1)(2)你能归纳 出什么结论?
自主展示
结论:
ab a b (a 0, b 0)
自主展示
4.求下列式子有意义的x的 取值范围
1
2
x
( x 1)(2 x) x 1 2 x
3
x 1 x 1 x2 1
2 2
10 12
2 5
16 9
2 3 3 5
2 2
2.归纳猜想:
文字语言叙述:
乘法法则: b ab(a 0, b 0) a
二次根式相乘,实际上就是把被开方 数相乘,而根号不变.
自主合作
例1:计算
1
2
2 32
1 8 2
3
200
2
3
x y x 0, y 0
3
x x y x 0, x y 计算
1
2
6 15
1 24 2
3
a ab(a 0, b 0)
3
自主展示
1.计算
1
14 35
1 (2)2 3 3
(3)2 5a 10a (a 0)
数学九年级上册 苏科版
3.2二次根式的乘除(1)
学习目标
1.运用二次根式的乘法法则: a b ab 进行相关计算; 2. 掌握积的算术平方根的性质: ab a b 熟练解题.
自主探究
1.计算:
4 25
10 12
2 5
4 25
169
2 3 3 5
自主展示
答案:
1x 0
2 1 x 2 3 1 x 1

初中数学《二次根式的乘除(第1课时)》教学设计案例

初中数学《二次根式的乘除(第1课时)》教学设计案例

《16.2 二次根式的乘除(第1课时)》教学设计案例一、内容和内容解析1.内容二次根式的乘法法则和积的算术平方根的性质,化简二次根式.2.内容解析二次根式是初中阶段“数与式”内容的最后一章,因此承担着整理“数与式”的内容、方法和基本思想的任务.本节研究二次根式的乘法运算.运算法则是运算的依据,因此教材通过“探究”栏目,引导学生利用二次根式的性质,从具体数字运算中发现规律,进而归纳得出二次根式的乘法法则.基于以上分析,确定本节课的教学重点:探究二次根式的乘法法则和积的算术平方根的性质.二、目标和目标解析1.教学目标(1)经历二次根式的乘法法则和积的算术平方根的性质的形成过程;会进行简单的二次根式的乘法运算;(2)会用公式化简二次根式.2.目标解析(1)学生能通过计算发现规律并对其进行一般化的推广,得出乘法法则的内容;(2)学生能利用二次根式的乘法法则和积的算术平方根的性质,化简二次根式.三、教学问题诊断分析本节课的学习中,学生在得出乘法法则和积的算术平方根的性质后,对于何时该选用何公式简化运算感到困难.运算习惯的养成与符号意识的养成、运算能力的形成紧密相关,由于该内容与以前学过的实数内容有较多的联系,例如,整式中的乘法公式在二次根式的运算中也成立,在教学中,要多从联系性上下力气.,培养学生良好的运算习惯.在教学时,通过实例运算,对于将一个二次根式化为最简二次根式,一般有两种情况:(1)如果被开方数是分数或分式(包括小数),可以采用直接利用分式的性质,结合二次根式的性质进行化简(例见教科书例6解法1),也可以先写成算术平方根的商的形式,再利用分式的性质处理分母的根号(例见教科书例6解法2);(2)如果被开方数不含分母,可以先将它分解因数或分解因式,然后吧开得尽方的因数或因式开出来,从而将式子化简.本节课的教学难点为:二次根式的性质及乘法法则的正确应用和二次根式的化简.四、教学过程设计1.复习引入,探究新知我们前面已经学习了二次根式的概念和性质,本节课开始我们要学习二次根式的乘除.本节课先学习二次根式的乘法.问题1什么叫二次根式?二次根式有哪些性质?师生活动学生回答。

3.2二次根式的乘除(1)

3.2二次根式的乘除(1)

3.2 二次根式的乘除(1)备课时间: 主备人:【学习目标】:1、掌握二次根式的乘法法则和积的算术平方根的性质。

2、熟练进行二次根式的乘法运算及化简。

【重点难点】:重点: 掌握和应用二次根式的乘法法则和积的算术平方根的性质。

难点: 正确依据二次根式的乘法法则和积的算术平方根的性质进行二次根式的化简。

【预习指导】1、计算:(1)4×9=______ 94⨯=_______(2)16 ×25 =_______ 2516⨯=_______(3)100 ×36 =_______ 36100⨯=_______2、根据上题计算结果,用“>”、“<”或“=”填空:(1)4×9_____94⨯(2)16×25____2516⨯(3) 100×36__36100⨯【新知概括】二次根式的乘法法则:【典型例题】例1、计算:(1)2×32;(2)21×8; (3)a 2a 8(a 》0)例2、计算(1)12;(2)3a (a 》0); (3)32b a 4(a 》0,b 》0)注意:一般地,二次根式运算的结果中,被开方数应不含有 。

例3:思维拓展(1)236; (2)21a 23a 8二次根式乘法运算的拓展:【课堂练习】1、计算:(1)20×5; (2)32×28; (3)8×18; (4)3a 6×2a 32、化简:(1)2516⨯;(2)150; (3)a 45(a ≥0);(4)32b a 9(a ≥0,b ≥0)(5)221026-【知识梳理】a·b=ab(a≥0,b≥0)ab=a·b(a≥0,b≥0)【课后作业】1、化简:(1(2)(3(4(5(6(7(8)(9(10(0b≥)a≥02、计算:⑴xy·yxy⑵18·24·27(3 x3·23=x的取值范围。

3.2二次根式的乘除(1)学啊

3.2二次根式的乘除(1)学啊

3.2 二次根式的乘除(1)学习案1姓名 班级 学习目标:1、经历二次根式乘法法则的探究过程,进一步理解乘法法则2、能运用二次根式的乘法法则:a ·b =ab (a ≥0,b ≥0)进行乘法运算3、理解积的算术平方根的意义,会用公式ab =a ·b (a ≥0,b ≥0)化简二次根式学习重、难点重点:二次根式的乘法法则与积的算术平方根的性质难点:二次根式的乘法法则与积的算术平方根的理解与运用学习过程:一、课前准备:1、什么是二次根式? 已学过二次根式的哪些性质?2、计算:(1(2(3)2)32(×2)53(与22)53()32(⨯二、探索活动1、学生计算。

2、请同学们观察以上式子及其运算结果,看看其中有什么规律?学生分小组交流。

3、概括:二次根式相乘,实际上就是把被开方数相乘,而根号不变。

a ·b =ab (a ≥0,b ≥0)4、由以上公式逆向运用可得: ab =a ·b (a ≥0,b ≥0)文字语言叙述:积的算术平方根,等于积中各因式的算术平方根的积。

三、例题教学例1、计算: ⑴2·32 ⑵21·8 ⑶a 2·a 8(a ≥0)例2、化简: ⑴2257 ⑵8116 ⑶12⑷3a (a ≥0) ⑸a (a ≥0,b ≥0)四、课堂练习P 62 练习1、2五、小结1、二次根式的乘法法则是什么?用语言叙述。

2、如何进行二次根式的化简?六、作业P 67 习题3.2 1、2七、家作:1、化简:(1(2(3(4(5) (6(7(8)(9(10(0a≥0b≥)2、计算:⑴xy·yx3·2xy⑵18·24·27(33=,求x的取值范围。

4、已知等腰三角形的腰为,底边为,求这个等腰三角形的面积b=ab(a≥0,b≥0)思考:a×b×c= ?。

2024版《二次根式的乘除》二次根式PPT(第1课时)

2024版《二次根式的乘除》二次根式PPT(第1课时)
2024/1/24
运算步骤
确认两个二次根式是否为同类根式,即被 开方数是否相同。
8
不同类二次根式乘法运算
运算步骤
确认两个二次根式是否为不同类 根式,即被开方数是否不同。
若为不同类根式,则先化简为最 简二次根式,再应用乘法公式进 行计算。
乘法公式:$sqrt{a} times sqrt{b} = sqrt{a times b}$
注意结果化简
对于同类二次根式,直 接应用乘法公式进行计
算。
对于不同类二次根式, 先化简为同类根式,再 应用乘法公式进行计算。
在得到乘法运算结果后, 注意将结果化简为最简
形式。
10
03
二次根式除法运算规则
2024/1/24
11
同类二次根式除法运算
2024/1/24
同类二次根式定义
01
化简后,被开方数相同的二次根式,称为同类二次根式。
18
05
实际应用问题中二次根式求 解策略
2024/1/24
19
面积、体积等几何问题求解策略
利用勾股定理求解直角三角形中的边长
在直角三角形中,已知两边长,可利用勾股定理求解第三边长,进而求得面积。
利用相似三角形性质求解复杂图形面积
对于复杂图形,可通过构造相似三角形,利用相似比求解面积。
2024/1/24
二次根式的除法
理解二次根式除法的运算法则,掌握如何将除法转化为乘法进行计 算。
24
易错点、难点剖析及解决方法分享
易错点
在二次根式的乘除运算中,容易出现符号错误、运算顺序错误等问题。解决方 法是加强符号意识,严格按照运算法则进行计算。
难点
对于非同类二次根式的乘除运算,学生往往难以找到化简的方法。解决方法是 通过对二次根式进行因式分解、配方等方法,将其化为同类二次根式进行计算。

3.2 二次根式的乘除(除法一)

3.2 二次根式的乘除(除法一)

3.2二次根式的乘除(除法一)班级_____姓名__________教学目标:1=2、能够对二次根式的除法及其逆运算灵活应用.教学重点:能进行二次根式的除法运算,掌握二次根式的乘法公式 ; 教学难点:能对有关运算结果进行化简,并能对公式进行灵活的应用. 教学过程:一、问题情境:你能写出下面式子的计算结果吗?开动脑筋,你一定能填正确!(1=,= ;(2=,= ; (3=,= ;(4=,= . 比较上述各式,你猜想到什么结论?一般地,有)0,0(>≥=b a baba ,这就是二次根式的除法运算法则. 商的算术平方根的性质,即)0,0(>≥=b a ba b a . 二、典例精析:例1.计算:(1(2(3(4解:(1) ; (2) ;(3) ;(4) .练习:(1)1560= ;(2)872= ;(3)618÷= ;(4)311322÷= . 例2.化简:(1(2(3(4)2)7()4)(9(---(5(0a ≥ 0b >) (6))0(92524>y y x ;练习:(1)94= ;(2)953= ;(3)493= ;(4))0,0,0(169222c >b a c b a ≥≥解:原式= .例3.等式22-=-x x x x成立的条件是 .练习:等式xx xx -+=-+2121成立的条件是 .例4.计算: (1) 9.0311.05÷; (2) 51423124÷ (3)16949.014404.0⨯⨯ (4))1581(52213223-⨯÷ (5) )23(3235b a a b ab b -⨯÷ (6)已知一个长方形的面积为,求长方形的对角线的长.三、你能总结一下,我们这节课学习的公式吗?四、作业:《黄冈》P31----P33 第3课时 二次根式的除法。

人教版初中数学八年级下册《二次根式的乘法》教学设计

人教版初中数学八年级下册《二次根式的乘法》教学设计

人教版初中数学八年级下册《二次根式的乘法》教学设计一. 教材分析人教版初中数学八年级下册《二次根式的乘法》是本册教材中的一个重要内容,它涉及了二次根式的乘除运算,为学习二次根式的进一步运算奠定了基础。

此章节通过引入实际问题,引导学生探究二次根式的乘法运算规律,从而让学生掌握二次根式的乘法运算方法。

教材通过丰富的例题和练习题,使学生在实践中巩固所学知识,提高解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了实数、有理数和无理数的基本概念,具备了一定的数学运算能力。

同时,学生对二次根式的概念、性质和加减法运算已经有了一定的了解。

因此,在教学过程中,可以充分利用学生已有的知识基础,通过启发式教学,引导学生探究二次根式的乘法运算规律。

三. 教学目标1.知识与技能:使学生掌握二次根式的乘法运算方法,能正确进行二次根式的乘法运算。

2.过程与方法:通过小组合作、讨论交流等方法,培养学生的合作意识和团队精神。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的自主学习能力。

四. 教学重难点1.重点:二次根式的乘法运算方法。

2.难点:理解并掌握二次根式乘法运算的规律,能灵活运用所学知识解决实际问题。

五. 教学方法1.启发式教学:通过设置疑问,引导学生主动探究二次根式的乘法运算规律。

2.小组合作:学生进行小组讨论,培养学生的团队协作能力。

3.实践性教学:让学生在实际操作中感受二次根式乘法运算的方法,提高运算能力。

六. 教学准备1.教学PPT:制作涵盖本节课主要内容的教学PPT。

2.例题及练习题:准备适量的例题和练习题,以便进行课堂练习和巩固。

3.教学素材:准备一些与生活实际相关的问题,引导学生运用所学知识解决实际问题。

七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,引导学生思考如何进行二次根式的乘法运算。

例如,计算下列式子:√2×√3√4×√9通过这些问题,激发学生的学习兴趣,引出本节课的主题。

二次根式的乘除法(1)

二次根式的乘除法(1)

例题1:计算
解:3 2 3 2
(1). 7 6 (1)7163 627 422
(2).
பைடு நூலகம்
1
3 2 2
32
2
3 2
((23). )1. 232 31 322 16 6 4
2
2
(4). 2 3 6
4 原式 2 3 6
36 6
(1). 8; (2). 18; (3). a3
小结
(1)乘法法则:
a b ab;(a 0,b0)
(2)乘法法则的逆用:
ab a b;(a 0,b0)
= 169
100 0.01 = 100 0.01
问:从上面的计算你发现了什么规律?如何 用a,b表示?成立的条件是什么?
a b a b(a 0,b 0)
二次根式乘法法则: 两个二次根式相乘,将它们的
被开方数相乘.
;单创:/News/Detail/2019-9-20/442424.htm
1.计 算:(1)( 7 )2 ;(2)( 5)2 ;
(3) 121 ;(4) (3)2 . 2.当x 3时,化简: ( x 3)2 ; 3.当x 时, 1 x有意义; 4.当x 时, 2 有意义.
3 x
计算
4 9
= 49
4 25 = 4 25
16 9
(1). 3 6 (2).3 2 5 8 (3).5 x 3 x3 (4). 2 4 8
3x 15x
a 3ab
b3 a3
a
b
2 xy 1 x
a b ab;(a 0,b0) ab a b;(a 0,b0)

3.2二次根式的乘除(1)教学案+课堂作业

3.2二次根式的乘除(1)教学案+课堂作业

南沙初中初三数学教学案教学内容:3.2(1)二次根式的乘除(1)课 型:新授课 主 备 人: 学生姓名:______ 学习目标:1.使学生能掌握积的算术平方根的性质:b a ab ∙=(0,0)a b ≥≥;2.使学生能运用积的算术平方根的性质熟练解题;3.使学生能掌握并能运用二次根式的乘法法则ab b a =∙(0,0)a b ≥≥并进行相关计算。

教学重点:积的算术平方根的性质及二次根式的乘法法则教学过程:一、复习旧知:什么是二次根式? 已学过二次根式的哪些性质?二、计算归纳:概括:通过以上计算,得到结论为:_______________________文字语言概括为:二次根式相乘,实际上就是把被开方数相乘,而根号不变.由以上公式逆向运用可得______________________________.文字语言叙述:积的算术平方根,等于积中各因式的算术平方根的积.三、例题教学例1、计算: (1)322⋅ (2)821⋅ (3))0(82≥⋅a a a例2、化简:(1)2257⨯ (2)8116⨯ (3(4)3a )0(82≥⋅a a a (5)324b a (a ≥0,b ≥0)小结:如何化简二次根式?(关键:将被开方数因式分解或因数分解,使出现____________”或____________)四、练习:P62---1、2五、知识拓展1.ab 思考:a ×b ×c =________ 2.计算:(1 (2六、补充资料:因式内移__________________;将因式内移的结果为______________。

七、运算技巧:1、计算2、计算(5四、小结收获五、课堂作业:见作业纸南沙初中初三数学课堂作业(11)(命题,校对:王 猛)班级__________姓名___________学号_________得分_________________1.化简: (1)54 (2)160 (3))0,0(935≥≥y x y x(4))0,0(2223≥≥++y x xy y x x (5)221026-2.计算:(1)73⋅ (2)183⋅ (3) 8223⨯(4))0,0(3≥≥⋅b a ab a (5)2362a a ⋅()0≥a3.(探究题)如图1-2-4所示,在△ABC 中,∠B=90○ ,点P 从点B 开始沿BA 边向点A 以1厘米/秒的速度移动;同时,点Q 也从点B 开始沿 BC 边向点C 以 2厘米/秒的速度移动,问几秒后,△PBQ 的面积为36平方厘米?(注意化简)。

二次根式的乘除(基础)知识讲解

二次根式的乘除(基础)知识讲解

二次根式的乘除(基础)知识讲解【学习目标】1.掌握二次根式的乘除法法则和化简二次根式的常用方法,熟练进行二次根式的乘除运算.2.了解最简二次根式的概念,能运用二次根式的有关性质进行化简.【要点梳理】要点一、二次根式的乘法及积的算术平方根1.乘法法则:(a≥0,b≥0),即两个二次根式相乘,根指数不变,只把被开方数相乘.要点诠释:(1)在运用二次根式的乘法法则进行运算时,一定要注意:公式中a、b都必须是非负数;(在本章中,如果没有特别说明,所有字母都表示非负数).(2)该法则可以推广到多个二次根式相乘的运算:≥0,≥0,…..≥0).(3)若二次根式相乘的结果能写成的形式,则应化简,如.2.积的算术平方根:(a≥0,b≥0),即积的算术平方根等于积中各因式的算术平方根的积.要点诠释:(1)在这个性质中,a、b可以是数,也可以是代数式,无论是数,还是代数式,都必须满足a≥0,b≥0,才能用此式进行计算或化简,如果不满足这个条件,等式右边就没有意义,等式也就不能成立了;ab的算术平方根;(3)二次根式的化简关键是将被开方数分解因数,把含有形式的a移到根号外面.要点二、二次根式的除法及商的算术平方根1.除法法则:(a≥0,b>0),即两个二次根式相除,根指数不变,把被开方数相除.要点诠释:(1)在进行二次根式的除法运算时,对于公式中被开方数a、b的取值范围应特别注意,a≥0,b>0,因为b在分母上,故b不能为0;(2)运用二次根式的除法法则,可将分母中的根号去掉,二次根式的运算结果要尽量化简,最后结果中分母不能带根号.2.商的算术平方根:(a≥0,b>0),即商的算术平方根等于被除式的算术平方根除以除式的算术平方根.都是ab的算术平方根.要点三、最简二次根式(1)被开方数中不含能开得尽方的因数或因式;(2)被开方数中不含有分母;(3)分母中不含有根号.满足这三个条件的二次根式叫做最简二次根式.要点诠释:二次根式化成最简二次根式主要有以下两种情况:(1) 被开方数是分数或分式;(2)含有能开方的因数或因式.【典型例题】类型一、二次根式的乘除法1.(1)×;(2)×; (3); (4).【答案与解析】解:(1)×=;(2)×==;(3)===2;(4)==×2=2.【总结升华】直接利用,计算即可.举一反三:【变式】各式是否正确,不正确的请予以改正:(1);(2)×=4××=4×=4=8.【答案】解:(1)不正确.改正:==×=2×3=6;(2)不正确.改正:×=×====4.2.(优质试题春•德州校级月考)计算:.【思路点拨】直接利用二次根式乘除运算法则直接求出即可.【答案与解析】解:=3×(﹣)×2=﹣×5=﹣.【总结升华】此题主要考查了二次根式的乘除运算,熟练应用运算法则是解题关键.类型二、最简二次根式3. 下列各式中,哪些是最简二次根式?哪些不是?请说明理由.(1);(2);(3);(4);(5);(6);(7).【思路点拨】最简二次根式要满足三个条件:(1)被开方数中不含能开得尽方的因数或因式;(2)被开方数中不含有分母;(3)分母中不含有根号.【答案与解析】解:和都是最简二次根式,其余的都不是,理由如下:的被开方数是小数,能写成分数,含有分母;和的被开方数中都含有分母;和的被开方数中分别含有能开得尽方的因数和因式.【总结升华】判断一个二次根式是不是最简二次根式,就看它是否满足最简二次根式的三个条件,不满足其中任何一条的二次根式都不是最简二次根式.举一反三:【变式1】化简:(10,0)>>;a b【高清课堂:二次根式及其乘除法(下)例6(12)】(2【答案】(1)原式2abc(2)原式=4【变式2】(优质试题春•河北月考)在下列各式中,哪些是最简二次根式?哪些不是?对不是最简二次根式的进行化简.(1);(2);(3);(4);(5).【答案】。

二次根式的运算

二次根式的运算

二次根式的运算二次根式是高中数学中重要的内容之一,它是一种涉及到开平方的运算。

二次根式的运算包括简化、加减、乘除等。

在本文中,我将详细介绍二次根式的运算方法,并给出一些例题进行演示。

一、二次根式的简化简化二次根式是将其化简为最简形式,即使根号内不含有平方数,并尽量提取出整数。

下面举例说明:1. 简化√48:首先,观察48的因数,发现其可以分解为2^4 × 3,其中2^4为平方数,而3为素数。

因此,可简化为√(2^4 × 3) = √(2^4) × √3 = 4√3。

2. 简化√(32/18):首先,分别对32和18进行因式分解,得到32 = 2^5,18 = 2 × 3^2。

然后,根据根式的性质,可得到√(32/18) = √(2^5 / (2 × 3^2)) = √(2^4 /3^2) = 2√(2 / 3)。

二、二次根式的加减二次根式的加减需要保证根号内的数相同,即具有相同的根次和底数。

下面以两个例子进行说明:1. 计算√5 + √5:首先,根据根式的性质,可得到√5 + √5 = 2√5。

2. 计算(3 + √2) - (√2 - 1):首先,根据根式的性质,可得到(3 + √2) - (√2 - 1) = 3 + √2 - √2 + 1 = 4。

三、二次根式的乘除二次根式的乘法和除法同样需要保证根号内的数相同。

下面以两个例子进行说明:1. 计算√6 × √8:首先,根据根式的性质,可得到√6 × √8 = √(6 × 8) = √48 = 4√3。

2. 计算(√2 + 1) ÷ (√2 - 1):首先,根据根式的性质,可得到(√2 + 1) ÷ (√2 - 1) = (√2 + 1) × (√2 + 1) / (√2 - 1) = (2 + 2√2 + 1) /(√2 - 1) = (3 + 2√2) / (√2 - 1)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学九年级上册苏科版学习案
3.2 姓名 二次根式的乘除(1)学习案 班级
1
学习目标: 1、经历二次根式乘法法则的探究过程,进一步理解乘法法则 2、能运用二次根式的乘法法则: a · b = ab ( a ≥0,b≥0)进行乘法 运算 3、理解积的算术平方根的意义,会用公式 ab = a · b ( a ≥0,b≥0) 化简二次根式 学习重、难点 重点:二次根式的乘法法则与积的算术平方根的性质 难点:二次根式的乘法法则与积的算术平方根的理解与运用 学习过程: 一、课前准备: 1、什么是二次根式? 已学过二次根式的哪些性质?
1 · 8 2
⑶ 2a · 8a (a≥0)
例 2、化简: ⑴ 7 2��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
2、计算: (1) 4 25 与 4 25 ;
(2) 16 9 与 16 9 ;
2 2 (3) ( ) × ( ) 与 ( ) ( )
2 3
3 5
2 3
23 52 Nhomakorabea家长签名
二、探索活动
1、学生计算。 2、请同学们观察以上式子及其运算结果,看看其中有什么规律?学生分小 组交流。 3、概括:二次根式相乘,实际上就是把被开方数相乘,而根号不变。 a · b = ab ( a ≥0,b≥0) 4、由以上公式逆向运用可得: ab = a · b ( a ≥0,b≥0) 文字语言叙述:积的算术平方根,等于积中各因式的算术平方根的积。 三、例题教学 例 1、计算: ⑴ 2 · 32 ⑵
相关文档
最新文档