【配套K12】高中数学第一章解三角形1.2应用举例1.2.4解决有关三角形计算的问题教案新人教A版必
(部编版)2020年高中数学第一章解三角形1.2应用举例新人教A版必修
1.2 应用举例第一课时 解三角形的实际应用举例[新知初探]实际测量中的有关名称、术语[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)已知三角形的三个角,能够求其三条边( ) (2)两个不可到达的点之间的距离无法求得( ) (3)方位角和方向角是一样的( )解析:(1)错误,要解三角形,至少知道这个三角形的一条边长.(2)错误,两个不可到达的点之间的距离我们可以借助第三个点和第四个点量出角度、距离求得.(3)错误.方位角是指从正北方向顺时针转到目标方向线的水平角,而方向角是以观测者的位置为中心,将正北或正南方向作起始方向旋转到目标的方向线所成的角(一般指锐角).答案:(1)× (2)× (3)×2.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( ) A .北偏东15° B .北偏西15° C .北偏东10°D .北偏西10°解析:选B 如图所示,∠ACB =90°,又AC =BC ,∴∠CBA =45°, 而β=30°,∴α=90°-45°-30°=15°. ∴点A 在点B 的北偏西15°.故选B.3.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为( )A .α>βB .α=βC .α+β=90°D .α+β=180°解析:选B 根据题意和仰角、俯角的概念画出草图,如图.知α=β,故应选B.4.已知船A 在灯塔C 北偏东85°且到C 的距离为1 km ,船B 在灯塔C 西偏北25°且到C 的距离为 3 km ,则A ,B 两船的距离为________km.解析:由题意得∠ACB =(90°-25°)+85°=150°, 又AC =1,BC =3,由余弦定理得AB 2=AC 2+BC 2-2AC ·BC cos 150°=7,∴AB =7.答案:7[典例] 如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两点C 与D .现测得∠BCD =α,∠BDC =β,CD =s ,并在点C 测得塔顶A 的仰角为θ,求塔高AB .[解] 在△BCD 中, ∠CBD =π-(α+β).由正弦定理得BC sin ∠BDC =CDsin ∠CBD .∴BC =CD sin ∠BDC sin ∠CBD =s ·sin βα+β.在Rt △ABC 中,AB =BC tan ∠ACB =s ·sin βtan θα+β.[活学活用]1.一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的A 处测得水柱顶端的仰角为45°,沿A 向北偏东30°方向前进100 m 到达B 处,在B 处测得水柱顶端的仰角为30°,则水柱的高度是( )A .50 mB .100 mC .120 mD .150 m解析:选A 如图,设水柱高度是h m ,水柱底端为C ,则在△ABC中,A =60°,AC =h ,AB =100,BC =3h ,根据余弦定理得,(3h )2=h 2+1002-2×h ×100×cos 60°,即h 2+50h -5 000=0,解得h =50或h =-100(舍去),故水柱的高度是50 m.2.如图所示,在山底A 处测得山顶B 的仰角∠CAB =45°,沿倾斜角为30°的山坡向山顶走1 000 m 到达S 点,又测得山顶仰角∠DSB =75°,则山高BC 为________m.解析:因为∠SAB =45°-30°=15°,∠SBA =∠ABC -∠SBC =45°-(90°-75°)=30°, 所以∠ASB =180°-∠SAB -∠SBA =135°.在△ABS 中,AB =AS ·sin 135°sin 30°=1 000×2212=1 0002,所以BC =AB ·sin 45°=1 0002×22=1 000(m). 答案:1 000[典例] 如图所示,A ,B 是海面上位于东西方向相距5(3+3) n mile 的两个观测点.现位于A 点北偏东45°方向、B 点北偏西60°方向的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距20 3 n mile 的C 点的救援船立即前往营救,其航行速度为30 n mile/h ,则该救援船到达D 点需要多长时间?[解] 由题意,知AB =5(3+3) n mile ,∠DBA =90°-60°=30°,∠DAB =90°-45°=45°, ∴∠ADB =180°-(45°+30°)=105°. 在△DAB 中,由正弦定理得BD sin ∠DAB =ABsin ∠ADB ,即BD =AB sin ∠DABsin ∠ADB =+3sin 105°=+3sin 45°cos 60°+cos 45°sin 60°=10 3 n mile.又∠DBC =∠DBA +∠ABC =60°,BC =20 3 n mile , ∴在△DBC 中,由余弦定理,得CD =BD 2+BC 2-2BD ·BC cos ∠DBC=300+1 200-2×103×203×12=30 n mile ,则救援船到达D 点需要的时间为3030=1 h.[活学活用]在海岸A 处,发现北偏东45°方向,距离A 处(3-1)n mile 的B 处有一艘走私船,在A 处北偏西75°的方向,距离A 2 n mile 的C 处的缉私船奉命以10 3 n mile 的速度追截走私船.此时,走私船正以10 n mile/h 的速度从B 处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?解:设缉私船用t h 在D 处追上走私船,画出示意图,则有CD =103t ,BD =10t ,在△ABC 中,∵AB =3-1,AC =2,∠BAC =120°,∴由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos∠BAC =(3-1)2+22-2·(3-1)·2·cos 120°=6,∴BC =6,且sin ∠ABC =AC BC·sin∠BAC =26·32=22, ∴∠ABC =45°,BC 与正北方向成90°角.∵∠CBD =90°+30°=120°,在△BCD 中,由正弦定理,得sin ∠BCD =BD ·sin∠CBD CD =10t sin 120°103t=12,∴∠BCD =30°.即缉私船沿北偏东60°方向能最快追上走私船.题点一:两点间不可通又不可视1.如图所示,要测量一水塘两侧A ,B 两点间的距离,其方法先选定适当的位置C ,用经纬仪测出角α,再分别测出AC ,BC 的长b ,a ,则可求出A ,B 两点间的距离.即AB =a 2+b 2-2ab cos α.若测得CA =400 m ,CB =600 m ,∠ACB =60°,试计算AB 的长. 解:在△ABC 中,由余弦定理得AB 2=AC 2+BC 2-2AC ·BC cos ∠ACB ,∴AB 2=4002+6002-2×400×600cos 60°=280 000. ∴AB =2007 (m).即A ,B 两点间的距离为2007 m. 题点二:两点间可视但有一点不可到达2.如图所示,A ,B 两点在一条河的两岸,测量者在A 的同侧,且B 点不可到达,要测出A ,B 的距离,其方法在A 所在的岸边选定一点C ,可以测出A ,C 的距离m ,再借助仪器,测出∠ACB =α,∠CAB =β,在△ABC 中,运用正弦定理就可以求出AB .若测出AC =60 m ,∠BAC =75°,∠BCA =45°,则A ,B 两点间的距离为________ m. 解析:∠ABC =180°-75°-45°=60°, 所以由正弦定理得,AB sin C =ACsin B,∴AB =AC ·sin C sin B =60×sin 45°sin 60°=206(m).即A ,B 两点间的距离为20 6 m. 答案:20 6题点三:两点都不可到达3.如图,A ,B 两点在河的同侧,且A ,B 两点均不可到达,测出A ,B 的距离,测量者可以在河岸边选定两点C ,D ,测得CD =a ,同时在C ,D 两点分别测得∠BCA =α,∠ACD =β,∠CDB=γ,∠BDA =δ.在△ADC 和△BDC 中,由正弦定理分别计算出AC 和BC ,再在△ABC 中,应用余弦定理计算出AB .若测得CD =32km ,∠ADB =∠CDB =30°,∠ACD =60°,∠ACB =45°,求A ,B 两点间的距离. 解:∵∠ADC =∠ADB +∠CDB =60°,∠ACD =60°, ∴∠DAC =60°, ∴AC =DC =32. 在△BCD 中,∠DBC =45°,由正弦定理,得BC =DC sin ∠DBC ·sin∠BDC =32sin 45°·sin 30°=64.在△ABC 中,由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC cos 45°=34+38-2×32×64×22=38. ∴AB =64(km). ∴A ,B 两点间的距离为64km.层级一 学业水平达标1.学校体育馆的人字屋架为等腰三角形,如图,测得AC 的长度为4 m ,∠A =30°,则其跨度AB 的长为( )A .12 mB .8 mC .3 3 mD .4 3 m解析:选D 由题意知,∠A =∠B =30°, 所以∠C =180°-30°-30°=120°, 由正弦定理得,AB sin C =ACsin B, 即AB =AC ·sin C sin B =4·sin 120°sin 30°=4 3.2.一艘船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68 n mile 的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为( )A.1762n mile/h B .34 6 n mile/h C.1722n mile/h D .34 2 n mile/h 解析:选A 如图所示,在△PMN 中,PM sin 45°=MNsin 120°,∴MN =68×32=346,∴v =MN 4=1762 n mile/h.3.如图,D ,C ,B 三点在地面同一直线上,DC =a ,从C ,D 两点测得A 点仰角分别是β,α(α<β),则A 点离地面的高度AB 等于( )A.a sin α·sin ββ-αB.a sin α·sin βα-βC.asin α·cos ββ-αD.a cos α·sin βα-β解析:选A 设AB =x ,则在Rt △ABC 中,CB =x tan β,所以BD =a +x tan β,又因为在Rt △ABD 中,BD =xtan α,所以BD =a +x tan β=x tan α,从中求得x =a1tan α-1tan β=a tan αtan βtan β-tan α=a sin αsin βsin βcos α-sin αcos β=a sin αsin ββ-α,故选A.4.设甲、乙两幢楼相距20 m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两幢楼的高分别是( )A .20 3 m ,4033 mB .10 3 m,20 3 mC .10(3-2)m,20 3 mD.1532 m ,2033m解析:选A 由题意,知h 甲=20tan 60°=203(m),h 乙=20tan 60°-20tan 30°=4033(m). 5.甲船在岛B 的正南A 处,AB =10 km ,甲船以4 km/h 的速度向正北航行,同时乙船自岛B 出发以6 km/h 的速度向北偏东60°的方向驶去,当甲、乙两船相距最近时,它们的航行时间是( )A.1507min B.157 hC .21.5 minD .2.15 h解析:选A 由题意可作出如图所示的示意图,设两船航行t 小时后,甲船位于C 点,乙船位于D 点,如图.则BC =10-4t ,BD =6t ,∠CBD =120°,此时两船间的距离最近,根据余弦定理得CD 2=BC 2+BD 2-2BC ·BD cos ∠CBD =(10-4t )2+36t 2+6t (10-4t )=28t 2-20t +100,所以当t =514时,CD 2取得最小值,即两船间的距离最近,所以它们的航行时间是1507min ,故选A. 6.某人从A 处出发,沿北偏东60°行走3 3 km 到B 处,再沿正东方向行走2 km 到C 处,则A ,C 两地的距离为________km.解析:如图所示,由题意可知AB =33,BC =2,∠ABC =150°. 由余弦定理,得AC 2=27+4-2×33×2×cos 150°=49,AC =7.则A ,C 两地的距离为7 km. 答案:77.坡度为45°的斜坡长为100 m ,现在要把坡度改为30°,则坡底要伸长________m. 解析:如图,BD =100,∠BDA =45°,∠BCA =30°, 设CD =x ,所以(x +DA )·tan 30°=DA ·tan 45°, 又DA =BD ·cos 45°=100×22=502, 所以x =DA ·tan 45°tan 30°-DA =502×133-50 2=50(6-2)m. 答案:50(6-2)8.一蜘蛛沿东北方向爬行x cm 捕捉到一只小虫,然后向右转105°,爬行10 cm 捕捉到另一只小虫,这时它向右转135°爬行回它的出发点,那么x =________cm.解析:如图所示,设蜘蛛原来在O 点,先爬行到A 点,再爬行到B点,易知在△AOB 中,AB =10 cm ,∠OAB =75°,∠ABO =45°,则∠AOB =60°,由正弦定理知:x =AB ·sin∠ABO sin ∠AOB =10×sin 45°sin 60°=1063(cm).答案:10639.如图,甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行,当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里,当甲船此时两船相距102海航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,里,求乙船航行的速度.A 1A 2=302×13=解:如图,连接A 1B 2,在△A 1A 2B 2中,易知∠A 1A 2B 2=60°,又易求得102=A 2B 2,∴△A 1A 2B 2为正三角形, ∴A 1B 2=10 2.在△A 1B 1B 2中,易知∠B 1A 1B 2=45°, ∴(B 1B 2)2=400+200-2×20×102×22=200, ∴B 1B 2=102,∴乙船每小时航行302海里.10.如图所示,某旅游景点有一座风景秀丽的山峰,山上有一条笔直的山路BC 和一条索道AC ,小王和小李打算不坐索道,而是花2个小时的时间进行徒步攀登.已知∠ABC =120°,∠ADC =150°,BD =1 千米,AC =3 千米.假设小王和小李徒步攀登的速度为每小时1.2 千米,请问:两位登山爱好者能否在2个小时内徒步登上山峰(即从B 点出发到达C 点).解:由∠ADC =150°知∠ADB =30°,由正弦定理得1sin 30°=ADsin 120°,所以AD = 3. 在△ADC 中,由余弦定理得:AC 2=AD 2+DC 2-2AD ·DC ·cos 150°,即32=(3)2+DC 2-2·3·DC cos 150°,即DC 2+3·DC -6=0,解得DC =-3+332≈1.372 (千米),∴BC ≈2.372 (千米),由于2.372<2.4,所以两位登山爱好者能够在2个小时内徒步登上山峰.层级二 应试能力达标1.如图,从气球A 上测得其正前下方的河流两岸B ,C 的俯角分别为75°,30°,此时气球的高度AD 是60 m ,则河流的宽度BC 是( )A .240(3-1)mB .180(2-1)mC .120(3-1)mD .30(3+1)m解析:选C 由题意知,在Rt △ADC 中,∠C =30°,AD =60 m ,∴AC =120 m .在△ABC 中,∠BAC =75°-30°=45°,∠ABC =180°-45°-30°=105°,由正弦定理,得BC =AC sin ∠BACsin ∠ABC =120×226+24=120(3-1)(m).索AB =519 m ,起吊2.如图所示为起重机装置示意图.支杆BC =10 m ,吊杆AC =15 m ,吊的货物与岸的距离AD 为( )A .30 m B.1532 mC .15 3 mD .45 m解析:选B 在△ABC 中,AC =15 m ,AB =519 m ,BC =10 m ,由余弦定理得cos ∠ACB =AC 2+BC 2-AB 22×AC ×BC=152+102-1922×15×10=-12,∴sin ∠ACB =32.又∠ACB +∠ACD =180°, ∴sin ∠ACD =sin ∠ACB =32. 在Rt △ADC 中,AD =AC ·sin∠ACD =15×32=1532m. 3.如图所示,要测量底部不能到达的某电视塔AB 的高度,在塔的同一侧选择C ,D 两个观测点,且在C ,D 两点测得塔顶的仰角分别为45°,30°,在水平面上测得∠BCD =120°,C ,D 两地相距500 m ,则电视塔AB 的高度是( )A .100 2 mB .400 mC .200 3 mD .500 m解析:选D 设AB =x ,在Rt △ABC 中,∠ACB =45°,∴BC =AB =x .在Rt △ABD 中,∠ADB =30°,∴BD =3x .在△BCD 中,∠BCD =120°,CD =500 m ,由余弦定理得(3x )2=x 2+5002-2×500x cos 120°,解得x =500 m.与观测站A 距离202海4.如图所示,位于东海某岛的雷达观测站A ,发现其北偏东45°,里的B 处有一货船正匀速直线行驶,半小时后,又测得该货船位于观测站A 东偏北θ(0°<θ<45°)的C 处,且cos θ=45.已知A ,C 两处的距离为10海里,则该货船的船速为( )A .485 海里/小时B .385 海里/小时C .27 海里/小时D .4 6 海里/小时解析:选A 因为cos θ=45,0°<θ<45°,所以sin θ=35,cos(45°-θ)=22×45+22×35=7210,在△ABC 中,BC 2=(202)2+102-2×202×10×7210=340,所以BC =285,该货船的船速为28512=485海里/小时. 5.如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小.若AB =15 m ,AC =25 m ,∠BCM =30°,则tan θ的最大值是________.(仰角θ为直线AP 与平面ABC 所成角)解析:如图,过点P 作PO ⊥BC 于点O ,连接AO ,则∠PAO =θ.设CO =x ,则OP =33x . 在Rt △ABC 中,AB =15,AC =25,所以BC =20. 所以cos ∠BCA =45.所以AO =625+x 2-2×25x ×45=x 2-40x +625.故tan θ=33x x 2-40x +625=331-40x +625x2=33⎝ ⎛⎭⎪⎫25x -452+925 .当25x =45,即x =1254时,tan θ取得最大值为3335=539.答案:5396.甲船在A 处观察乙船,乙船在它的北偏东60°方向的B 处,两船相距a n mile ,乙船正向北行驶,若甲船的速度是乙船的3倍,则甲船应沿________方向行驶才能追上乙船;追上时甲船行驶了________n mile.解析:如图所示,设在C 处甲船追上乙船,乙船到C 处用的时间为t ,乙船的速度为v ,则BC =tv ,AC =3tv ,又B =120°,则由正弦定理BC sin ∠CAB =ACsin B ,得1sin ∠CAB=3sin 120°,∴sin ∠CAB =12,∴∠CAB =30°,∴甲船应沿北偏东30°方向行驶.又∠ACB =180°-120°-30°=30°,∴BC =AB =a n mile ,∴AC =AB 2+BC 2-2AB ·BC cos 120°=a 2+a 2-2a 2·⎝ ⎛⎭⎪⎫-12=3a (n mile)答案:北偏东30°3a7.如图所示,在社会实践中,小明观察一棵桃树.他在点A 处发现桃树顶端点C 的仰角大小为45°,往正前方走4 m 后,在点B 处发现桃树顶端点C 的仰角大小为75°.(1)求BC 的长;确到0.01 m ,其中3(2)若小明身高为1.70 m ,求这棵桃树顶端点C 离地面的高度(精≈1.732).解:(1)在△ABC 中,∠CAB =45°,∠DBC =75°, 则∠ACB =75°-45°=30°,AB =4,由正弦定理得BC sin 45°=4sin 30°,解得BC =42(m).即BC 的长为4 2 m. (2)在△CBD 中,∠CDB =90°,BC =42, 所以DC =42sin 75°.因为sin 75°=sin(45°+30°) =sin 45°cos 30°+cos 45°sin 30°=6+24, 则DC =2+2 3.所以CE =ED +DC =1.70+2+23≈3.70+3.464 ≈7.16(m).即这棵桃树顶端点C 离地面的高度为7.16 m.8.如图,在一条海防警戒线上的点A ,B ,C 处各有一个水声监测点,B ,C 两点到A 的距离分别为20千米和50千米,某时刻,B 收到发自静止目标P 的一个声波信号,8秒后A ,C同时接收到该声波信号,已知声波在水中的传播速度是1.5千米/秒.(1)设A 到P 的距离为x 千米,用x 表示B ,C 到P 的距离,并求x 的值; (2)求P 到海防警戒线AC 的距离.解:(1)依题意,有PA =PC =x ,PB =x -1.5×8=x -12.在△PAB 中,AB =20,cos ∠PAB =PA 2+AB 2-PB 22PA ·AB =x 2+202-x -22x ·20=3x +325x,同理在△PAC 中,AC =50,cos ∠PAC =PA 2+AC 2-PC 22PA ·AC =x 2+502-x 22x ·50=25x.∵cos ∠PAB =cos ∠PAC ,∴3x +325x =25x, 解得x =31.(2)作PD ⊥AC 于D ,在△ADP 中,由cos ∠PAD =2531,得sin ∠PAD =1-cos 2∠PAD =42131,∴PD =PA sin ∠PAD =31×42131=421千米.故静止目标P 到海防警戒线AC 的距离为421千米.第二课时 三角形中的几何计算[新知初探] 三角形的面积公式(1)S =12a ·h a (h a 表示a 边上的高).(2)S =12ab sin C =12bc sin A =12ac sin B.[点睛] 三角形的面积公式S =12ab sin C 与原来的面积公式S =12a ·h (h 为a 边上的高)的关系为:h =b sin C ,实质上b sin C 就是△ABC 中a 边上的高.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)公式S =12ab sin C 适合求任意三角形的面积( )(2)三角形中已知三边无法求其面积( )(3)在三角形中已知两边和一角就能求三角形的面积( )解析:(1)正确,S =12ab sin C 适合求任意三角形的面积.(2)错误.已知三边可利用余弦定理求角的余弦值,再求得正弦值,进而求面积.(3)正确.已知两边和两边的夹角可直接求得面积,已知两边和一边的对角,可求得其他边和角,再求面积. 答案:(1)√ (2)× (3)√2.在△ABC 中,已知a =2,b =3,C =120°,则S △ABC =( ) A.32B.332C. 3D .3解析:选B S △ABC =12ab sin C =12×2×3×32=332.3.已知△ABC 的面积为32,且b =2,c =3,则A 的大小为( )A .60°或120°B .60°C .120°D .30°或150°解析:选A 由S △ABC =12bc sin A 得32=12×2×3×sin A , 所以sin A =32, 故A =60°或120°,故选A.4.若△ABC 的三边a ,b ,c 及面积S 满足S =a 2-(b -c )2,则sin A =________.解析:由余弦定理得S =a 2-(b -c )2=2bc -2bc cos A =12bc sin A ,所以sin A +4cos A =4,由sin 2A +cos 2A=1,解得sin 2A +⎝⎛⎭⎪⎫1-sin A 42=1,sin A =817. 答案:817[典例] 已知△ABC 中,B =30°,AB =23,AC =2,求△ABC 的面积. [解] 由正弦定理,得sin C =AB sin B AC =23sin 30°2=32. ∵AB >AC ,∴C =60°或C =120°.当C =60°时,A =90°,S △ABC =12AB ·AC =23;当C =120°时,A =30°,S △ABC =12AB ·AC sin A = 3.故△ABC 的面积为23或 3.[活学活用]△ABC 中,若a ,b ,c 的对角分别为A ,B ,C ,且2A =B +C ,a =3,△ABC 的面积S △ABC =32,求边b 的长和B 的大小.解:∵A +B +C =180°,又2A =B +C ,∴A =60°. ∵S △ABC =12bc sin A =32,sin A =32,∴bc =2.①又由余弦定理得3=b 2+c 2-2bc cos A =b 2+c 2-2×2×12,即b 2+c 2=5.② 解①②可得b =1或2.由正弦定理知a sin A =bsin B ,∴sin B =b sin A a =b2. 当b =1时,sin B =12,B =30°;当b =2时,sin B =1,B =90°.[典例] 在△ABC 中,求证:b -c cos A =sin A.证明:[法一 化角为边]左边=a -c a 2+c 2-b 22ac b -c b 2+c 2-a 22bc =a 2-c 2+b 22a ·2bb 2-c 2+a 2 =b a =2R sin B 2R sin A =sin B sin A=右边, 其中R 为△ABC 外接圆的半径. ∴a -c cos Bb -c cos A =sin Bsin A.[法二 化边为角] 左边=sin A -sin C cos B sin B -sin C cos A =B +C -sin C cos BA +C -sin C cos A=sin B cos C sin A cos C =sin Bsin A=右边(cos C ≠0),∴a -c cos B b -c cos A =sin Bsin A.[活学活用]在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .求证:cos B cos C =c -b cos Ab -c cos A .证明:法一:由正弦定理,得c -b cos Ab -c cos A=2R sin C -2R sin B cos A2R sin B -2R sin C cos A=A +B -sin B cos A A +C -sin C cos A =sin A cos B sin A cos C =cos Bcos C.法二:由余弦定理,得c -b cos Ab -c cos A =c -b 2+c 2-a 22c b -b 2+c 2-a 22b=a 2+c 2-b 22c b 2+a 2-c 22b =a 2+c 2-b22ac b 2+a 2-c 22ab=cos B cos C.题点一:与三角形面积有关的综合问题1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知a cos B -c =b2.(1)求角A 的大小;(2)若b -c =6,a =3+3,求BC 边上的高. 解:(1)由a cos B -c =b2及正弦定理可得,sin A cos B -sin C =sin B2,因为sin C =sin(A +B )=sin A cos B +cos A sin B , 所以sin B 2+cos A sin B =0.因为sin B ≠0,所以cos A =-12,因为0<A <π,所以A =2π3.(2)由余弦定理可知,a 2=b 2+c 2-2bc cos2π3=b 2+c 2+bc , 所以(3+3)2=b 2+c 2+bc =(b -c )2+3bc =6+3bc , 解得bc =2+2 3.设BC 边上的高为h ,由S △ABC =12bc sin A =12ah ,得12(2+23)sin 2π3=12(3+3)h, 解得h =1. 题点二:三角形中的范围问题2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2c -a )cos B -b cos A =0. (1)求角B 的大小;(2)求3sin A +sin ⎝⎛⎭⎪⎫C -π6的取值范围.解:(1)由正弦定理得:(2sin C -sin A )cos B -sin B cos A =0,即sin C (2cos B -1)=0,∵sin C ≠0,∴cos B =12,∵B ∈(0,π),∴B =π3.(2)由(1)知B =π3,∴C =2π3-A ,∴3sin A +sin ⎝ ⎛⎭⎪⎫C -π6=3sin A +cos A=2sin ⎝⎛⎭⎪⎫A +π6.∵A ∈⎝⎛⎭⎪⎫0,2π3,∴A +π6∈⎝ ⎛⎭⎪⎫π6,5π6, ∴2sin ⎝⎛⎭⎪⎫A +π6∈(1,2], ∴3sin A +sin ⎝⎛⎭⎪⎫C -π6的取值范围是(1,2].题点三:三角形中的最值问题3.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c . 已知A -B A +B =b +cc. (1)求角A 的大小;(2)当a =6时,求△ABC 面积的最大值,并指出面积最大时△ABC 的形状. 解:(1)由A -B A +B =b +cc, 得A -B A +B =sin B +sinC sin C. 又sin(A +B )=sin(π-C )=sin C , ∴sin(A -B )=sin B +sin C , ∴sin(A -B )=sin B +sin(A +B ).∴sin A cos B -cos A sin B =sin B +sin A cos B +cos A sin B , ∴sin B +2 cos A sin B =0, 又sin B ≠0,∴cos A =-12.∵A ∈(0,π),∴A =2π3.(2)S =12bc sin A =34bc =34×2R sin B ·2R sin C=3R 2sin B ·sin C=3R 2sin B ·sin ⎝ ⎛⎭⎪⎫π3-B=32R 2sin ⎝ ⎛⎭⎪⎫2B +π6-34R 2,B ∈⎝⎛⎭⎪⎫0,π3. 由正弦定理2R =a sin A=6sin2π3=43,∴R =2 3.当2B +π6=π2,即B =C =π6时,S max =33,∴△ABC 面积的最大值为33,此时△ABC 为等腰钝角三角形. 题点四:多边形面积问题4.已知圆内接四边形ABCD 的边长AB =2,BC =6,CD =DA =4,求四边形ABCD 的面积S . 解:如图,连接BD ,则S =S △ABD +S △CBD =12AB ·AD sin A +12BC ·CD sin C .∵A +C =180°,∴sin A =sin C , ∴S =12sin A (AB ·AD +BC ·CD )=16sin A .在△ABD 中,由余弦定理得BD 2=AB 2+AD 2-2AB ·AD cos A =20-16cos A ,在△CDB 中,由余弦定理得BD 2=CD 2+BC 2-2CD ·BC cos C =52-48cos C ,∴20-16cos A =52-48cos C .又cos C =-cos A ,∴cos A =-12,∴A =120°,∴S =16sin A =8 3.层级一 学业水平达标1.在△ABC 中,A =60°,AB =1,AC =2,则S △ABC 的值为( )A.12B.32 C.3 D .2 3 解析:选B S △ABC =12AB ·AC ·sin A =32.2.如果等腰三角形的周长是底边长的5倍,则它的顶角的余弦值为( ) A .-78 B.78 C .-87 D.87解析:选B 设等腰三角形的底边长为a ,顶角为θ,则腰长为2a ,由余弦定理得,cos θ=4a 2+4a 2-a 28a 2=78. 3.在△ABC 中,已知面积S =14(a 2+b 2-c 2),则角C 的大小为( )A .135°B .45°C .60°D .120°解析:选B ∵S =14(a 2+b 2-c 2)=12ab sin C ,由余弦定理得:sin C =cos C ,∴tan C =1.又0°<C <180°,∴C =45°.4.在△ABC 中,若cos B =14,sin C sin A =2,且S △ABC =154,则b =( )A .4B .3C .2D .1解析:选C 依题意得,c =2a ,b 2=a 2+c 2-2ac cos B =a 2+(2a )2-2×a ×2a ×14=4a 2,所以b =c =2a .因为B∈(0,π),所以sin B =1-cos 2B =154,又S △ABC =12ac sin B =12×b 2×b ×154=154,所以b =2,选C. 5.三角形的一边长为14,这条边所对的角为60°,另两边之比为8∶5,则这个三角形的面积为( ) A .40 3 B .20 3 C .40 2 D .20 2 解析:选A 设另两边长为8x,5x ,则cos 60°=64x 2+25x 2-14280x 2,解得x =2或x =-2(舍去). 故两边长分别为16与10,所以三角形的面积是12×16×10×sin 60°=40 3.6.在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为________.解析:∵cos C =13,0<C <π,∴sin C =223,∴S △ABC =12ab sin C =12×32×23×223=4 3.答案:4 37.如图,在△ABC 中,已知B =45°,D 是BC 边上一点,AD =5,AC =7,DC =3,则AB =________.解析:在△ADC 中,cos C =AC 2+DC 2-AD 22·AC ·DC =72+32-522×7×3=1114.又0°<C <180°,∴sin C =5314. 在△ABC 中,AC sin B =ABsin C,∴AB =sin C sin B ·AC =5314×2×7=562.答案:5628.△ABC 的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的半径为________.解析:不妨设b =2,c =3,cos A =13,则a 2=b 2+c 2-2bc ·cos A =9,∴a =3. 又∵sin A = 1-cos 2A =223, ∴外接圆半径为R =a2sin A =32·223=928.答案:9289.在△ABC 中,求证:b 2cos 2A -a 2cos 2B =b 2-a 2.证明:左边=b 2(1-2sin 2A )-a 2(1-2sin 2B )=b 2-a 2-2(b 2sin 2A -a 2sin 2B ), 由正弦定理a sin A =bsin B,得b sin A =a sin B , ∴b 2sin 2A -a 2sin 2B =0,∴左边=b 2-a 2=右边, ∴b 2cos 2A -a 2cos 2B =b 2-a 2.10.如图所示,在梯形ABCD 中,AD ∥BC ,AB =5,AC =9,∠BCA =30°,∠ADB =45°,求BD 的长.AB sin ∠BCA =ACsin ∠ABC,解:在△ABC 中,AB =5,AC =9,∠BCA =30°,由正弦定理,得∴sin ∠ABC =AC ·sin∠BCA AB =9×sin 30°5=910.∵AD ∥BC ,∴∠BAD =180°-∠ABC , 于是sin ∠BAD =sin ∠ABC =910.在△ABD 中,AB =5,sin ∠BAD =910,∠ADB =45°,由正弦定理,得AB sin ∠ADB =BDsin ∠BAD,解得BD =922,故BD 的长为922.层级二 应试能力达标1.△ABC 的周长为20,面积为103,A =60°,则BC 的边长等于( ) A .5 B .6 C .7 D .8 解析:选C 如图,由题意得⎩⎪⎨⎪⎧a +b +c =20,12bc sin 60°=103,a 2=b 2+c 2-2bc cos 60°,则bc =40,a 2=b 2+c 2-bc =(b +c )2-3bc =(20-a )2-3×40,∴a =7.2.在△ABC 中,已知b 2-bc -2c 2=0,且a =6,cos A =78,则△ABC 的面积等于( )A.152B.15 C .2 D .3 解析:选A 因为b 2-bc -2c 2=0, 所以(b -2c )(b +c )=0,所以b =2c . 由a 2=b 2+c 2-2bc cos A ,解得c =2,b =4, 因为cos A =78,所以sin A =158,所以S △ABC =12bc sin A =12×4×2×158=152.3.在△ABC 中,若b =2,A =120°,其面积S =3,则△ABC 外接圆的半径为( ) A. 3 B . C .2 3 D .4 解析:选B ∵S =12bc sin A ,∴3=12×2c sin 120°,∴c =2,∴a =b 2+c 2-2bc cos A =4+4-2×2×2×⎝ ⎛⎭⎪⎫-12=23,设△ABC 外接圆的半径为R ,∴2R =a sin A =2332=4,∴R =2.4.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( )A.⎝⎛⎭⎪⎫152,+∞B .(10,+∞)C .(0,10) D.⎝⎛⎦⎥⎤0,403解析:选D ∵csin C =a sin A =403, ∴c =403sin C .∴0<c ≤403.5.已知△ABC 的面积S =3,A =π3,则AB ·AC =________.解析:S △ABC =12·|AB |·|AC |·si n A ,即3=12·|AB |·|AC |·32,所以|AB |·|AC |=4,于是AB ·AC =|AB |·|AC |·cos A =4×12=2.答案:26.在锐角三角形ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若b a +a b =6cos C ,则tan C tan A +tan Ctan B=________. 解析:∵b a +a b=6cos C ,∴a 2+b 2ab =6×a 2+b 2-c 22ab,∴2a 2+2b 2-2c 2=c 2, 又tan C tan A +tan C tan B =sin C cos A sin A cos C +sin C cos Bsin B cos C =sin CB cos A +cos B sin Asin A sin B cos C=sin C B +A sin A sin B cos C =sin 2C sin A sin B cos C=c 2ab cos C =c 2aba 2+b 2-c 22ab=2c2a 2+b 2-c 2=4. 答案:47.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知sin A sin B =sin C tan C .(1)求a 2+b2c 2的值; (2)若a =22c ,且△ABC 的面积为4,求c 的值. 解:(1)由已知sin A sin B =sin C tan C 得cos C =c 2ab .又cos C =a 2+b 2-c 22ab,故a 2+b 2=3c 2,故a 2+b 2c2的值为3.(2)由a =22c, a 2+b 2=3c 2得b =102c . 由余弦定理得cos C =255,故sin C =55.所以12×22c ×102c ×55=4,解得c =4.8.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且a =2,2cos 2B +C2+sin A =45. (1)若满足条件的△ABC 有且只有一个,求b 的取值范围; (2)当△ABC 的周长取最大值时,求b 的值. 解:2cos2B +C 2+sin A =45⇒1+cos(B +C )+sin A =45⇒sin A -cos A =-15. 又0<A <π,且sin 2A +cos 2A =1,有⎩⎪⎨⎪⎧sin A =35,cos A =45.(1)若满足条件的△ABC 有且只有一个,则有a =b sin A 或a ≥b ,则b 的取值范围为(0,2]∪⎩⎨⎧⎭⎬⎫103.(2)设△ABC 的周长为l ,由正弦定理得l =a +b +c =a +asin A(sin B +sin C ) =2+103[sin B +sin(A +B )]=2+103[sin B +sin A cos B +cos A sin B ]=2+2(3sin B +cos B ) =2+210sin(B +θ),其中θ为锐角,且⎩⎪⎨⎪⎧sin θ=1010,cos θ=31010,l max =2+210,当cos B =1010,sin B =31010时取到.此时b =asin A sin B =10.(时间120分钟 满分150分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在△ABC 中,a =k ,b =3k (k >0),A =45°,则满足条件的三角形有( ) A .0个 B .1个 C .2个D .无数个解析:选A 由正弦定理得a sin A =bsin B ,∴sin B =b sin A a =62>1,即sin B >1,这是不成立的.所以没有满足此条件的三角形. 2.在△ABC 中,A =π3,BC =3,AB =6,则C =( )A.π4或3π4B.3π4C.π4D.π6解析:选C 由BCsin A =AB sin C ,得sin C =22. ∵BC =3,AB =6,∴A >C ,则C 为锐角,故C =π4.3.在△ABC 中,a =15,b =20,A =30°,则cos B =( ) A .±53 B.23 C .-53D.53解析:选A 因为a sin A =b sin B ,所以15sin 30°=20sin B ,解得sin B =23.因为b >a ,所以B >A ,故B 有两解,所以cos B =±53. 4.在△ABC 中,已知(b +c )∶(c +a )∶(a +b )=4∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .6∶5∶4B .7∶5∶3C .3∶5∶7D .4∶5∶6解析:选B ∵(b +c )∶(c +a )∶(a +b )=4∶5∶6, ∴b +c 4=c +a 5=a +b6.令b +c 4=c +a 5=a +b6=k (k >0),则⎩⎪⎨⎪⎧b +c =4k ,c +a =5k ,a +b =6k ,解得⎩⎪⎨⎪⎧a =72k ,b =52k ,c =32k .∴sin A ∶sin B ∶sin C =a ∶b ∶c =7∶5∶3.5.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且sin 2A 2=c -b 2c,则△ABC 的形状为( )A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形解析:选B 由已知可得1-cos A 2=12-b2c ,即cos A =bc,b =c cos A .法一:由余弦定理得cos A =b 2+c 2-a 22bc ,则b =c ·b 2+c 2-a 22bc,所以c 2=a 2+b 2,由此知△ABC 为直角三角形. 法二:由正弦定理,得sin B =sin C cos A .在△ABC 中,sin B =sin(A +C ), 从而有sin A cos C +cos A sin C =sin C cos A , 即sin A cos C =0.在△ABC 中,sin A ≠0,所以cos C =0.由此得C =π2,故△ABC 为直角三角形.6.已知圆的半径为4,a ,b ,c 为该圆的内接三角形的三边,若abc =162,则三角形的面积为( ) A .2 2 B .8 2 C. 2 D.22解析:选C ∵a sin A =b sin B =csin C=2R =8,∴sin C =c 8,∴S △ABC =12ab sin C =abc 16=16216= 2.7.在△ABC 中,三边长分别为a -2,a ,a +2,最大角的正弦值为32,则这个三角形的面积为( ) A.154 B.1534C.2134D.3534解析:选B ∵三边不等,∴最大角大于60°.设最大角为α,故α所对的边长为a +2,∵sin α=32,∴α=120°.由余弦定理得(a +2)2=(a -2)2+a 2+a (a -2),即a 2=5a ,故a =5,故三边长为3,5,7,S △ABC =12×3×5×sin 120°=1534.8.如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为( )A.33B.36 C.63D.66 解析:选D 设BD =a ,则BC =2a ,AB =AD =32a . 在△ABD 中,由余弦定理,得cos A =AB 2+AD 2-BD22AB ·AD=⎝ ⎛⎭⎪⎫32a 2+⎝ ⎛⎭⎪⎫32a 2-a22×32a ·32a=13.又∵A 为△ABC 的内角,∴sin A =223.在△ABC 中,由正弦定理得,BCsin A =ABsin C.∴sin C =AB BC ·sin A =32a 2a ·223=66.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.把答案填在题中横线上) 9.在△ABC 中,已知a cos A =b cos B =ccos C ,则这个三角形的形状是________.解析:由正弦定理asin A=bsin B=csin C 得sin A cos A =sin B cos B =sin Ccos C,∴tan A =tan B =tan C ,∴A =B =C ,三角形ABC 为等边三角形.答案:等边三角形10.在△ABC 中,B =30°,C =120°,则A =________,a ∶b ∶c =________. 解析:A =180°-B -C =30°,由正弦定理得a ∶b ∶c =sin A ∶sin B ∶sin C , 即a ∶b ∶c =sin 30°∶sin 30°∶sin 120°=1∶1∶ 3. 答案:30° 1∶1∶ 311.已知△ABC 中,内角A ,B ,C 所对边长分别为a ,b ,c ,若A =π3,b =2a cos B ,c =1,则B =________,△ABC 的面积等于________.解析:由正弦定理得sin B =2sin A cos B ,故tan B =2sin A =2sin π3=3,又B ∈(0,π),所以B =π3,又A =B =π3,则△ABC 是正三角形,所以S △ABC =12bc sin A =12×1×1×32=34.答案:π3 3412.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b =2a ,B =A +60°,则A =________,三角形的形状为________.解析:∵b =2a ,由正弦定理,得sin B =2sin A ,又B =A +60°,∴sin(A +60°)=2sin A ,即12sin A +32cos A =2sin A ,∴tan A =33.又0°<A <180°,∴A =30°,B =90°. 答案:30° 直角三角形13.已知三角形ABC 中,BC 边上的高与BC 边长相等,则AC AB +AB AC +BC 2AB ·AC的最大值是________.解析:由题意得, 12bc sin A =12a 2⇒bc sin A =a 2,因此AC AB +AB AC +BC 2AB ·AC =b c +c b +a 2bc =b 2+c 2+a 2bc=a 2+2bc cos A +a 2bc =2cos A +2sin A =22sin ⎝⎛⎭⎪⎫A +π4≤22,从而所求最大值是2 2.答案:2 214.在△ABC 中,已知cos A =35,cos B =513,b =3,则sin C =________,c =________.解析:在△ABC 中,∵cos A =35>0,∴sin A =45.∵cos B =513>0,∴sin B =1213.∴sin C =sin [π-(A +B )]=sin(A +B ) =sin A cos B +cos A sin B =45×513+35×1213=5665.由正弦定理知b sin B =csin C ,∴c =b sin Csin B =3×56651213=145.答案:5665 14515.太湖中有一小岛,沿太湖有一条正南方向的公路,一辆汽车测得小岛在公路的南偏西15°的方向上,汽车行驶1 km 后,又测得小岛在南偏西75°的方向上,则小岛到公路的距离是________km.解析:如图,∠CAB =15°, ∠CBA =180°-75°=105°, ∠ACB =180°-105°-15°=60°,AB =1(km).由正弦定理得BC sin ∠CAB =ABsin ∠ACB ,∴BC =1sin 60°·sin 15°=6-223(km).设C 到直线AB 的距离为d , 则d =BC ·sin 75°=6-223×6+24=36(km). 答案:36三、解答题(本大题共5小题,共74分.解答应写出文字说明,证明过程或演算步骤) 16.(14分)在△ABC 中,a =3,b =26,B =2A . (1)求cos A 的值; (2)求c 的值.解:(1)因为a =3,b =26,B =2A ,所以在△ABC 中,由正弦定理得3sin A =26sin 2A .所以2sin A cos A sin A =263.故cos A =63.(2)由(1)知cos A =63,。
高中数学第一章解三角形1.2应用举例新人教A版必修.doc
1.2 应用举例第一课时 解三角形的实际应用举例[新知初探]实际测量中的有关名称、术语[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)已知三角形的三个角,能够求其三条边( )(2)两个不可到达的点之间的距离无法求得( )(3)方位角和方向角是一样的( )解析:(1)错误,要解三角形,至少知道这个三角形的一条边长.(2)错误,两个不可到达的点之间的距离我们可以借助第三个点和第四个点量出角度、距离求得.(3)错误.方位角是指从正北方向顺时针转到目标方向线的水平角,而方向角是以观测者的位置为中心,将正北或正南方向作起始方向旋转到目标的方向线所成的角(一般指锐角).答案:(1)×(2)×(3)×2.若点A在点C的北偏东30°,点B在点C的南偏东60°,且AC=BC,则点A在点B 的( )A.北偏东15°B.北偏西15°C.北偏东10° D.北偏西10°解析:选B 如图所示,∠ACB=90°,又AC=BC,∴∠CBA=45°,而β=30°,∴α=90°-45°-30°=15°.∴点A在点B的北偏西15°.故选B.3.从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为( )A.α>βB.α=βC.α+β=90° D.α+β=180°解析:选B 根据题意和仰角、俯角的概念画出草图,如图.知α=β,故应选B.4.已知船A在灯塔C北偏东85°且到C的距离为1 km,船B在灯塔C西偏北25°且到C的距离为 3 km,则A,B两船的距离为________km.解析:由题意得∠ACB=(90°-25°)+85°=150°,又AC=1,BC=3,由余弦定理得AB2=AC2+BC2-2AC·BC cos 150°=7,∴AB=7.答案:7[典例] 如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两点C 与D .现测得∠BCD =α,∠BDC =β,CD =s ,并在点C 测得塔顶A 的仰角为θ,求塔高AB .[解] 在△BCD 中, ∠CBD =π-(α+β).由正弦定理得BC sin ∠BDC =CDsin ∠CBD .∴BC =CD sin ∠BDC sin ∠CBD =s ·sin βα+β.在Rt △ABC 中,AB =BC tan ∠ACB =s ·sin βtan θα+β.[活学活用]1.一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的A 处测得水柱顶端的仰角为45°,沿A 向北偏东30°方向前进100 m 到达B 处,在B 处测得水柱顶端的仰角为30°,则水柱的高度是( )A .50 mB .100 mC .120 mD .150 m解析:选A 如图,设水柱高度是h m ,水柱底端为C ,则在△ABC 中,A =60°,AC =h ,AB =100,BC =3h ,根据余弦定理得,(3h )2=h 2+1002-2×h ×100×cos 60°,即h 2+50h -5 000=0,解得h =50或h =-100(舍去),故水柱的高度是50 m.2.如图所示,在山底A 处测得山顶B 的仰角∠CAB =45°,沿倾斜角为30°的山坡向山顶走1 000 m 到达S 点,又测得山顶仰角∠DSB =75°,则山高BC 为________m.解析:因为∠SAB =45°-30°=15°,∠SBA =∠ABC -∠SBC =45°-(90°-75°)=30°, 所以∠ASB =180°-∠SAB -∠SBA =135°.在△ABS 中,AB =AS ·sin 135°sin 30°=1 000×2212=1 0002,所以BC =AB ·sin 45°=1 0002×22=1 000(m). 答案:1 000[典例] 如图所示,A ,B 是海面上位于东西方向相距5(3+3) n mile 的两个观测点.现位于A 点北偏东45°方向、B 点北偏西60°方向的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距20 3 n mile 的C 点的救援船立即前往营救,其航行速度为30 n mile/h ,则该救援船到达D 点需要多长时间?[解] 由题意,知AB =5(3+3) n mile ,∠DBA =90°-60°=30°,∠DAB =90°-45°=45°, ∴∠ADB =180°-(45°+30°)=105°. 在△DAB 中,由正弦定理得BD sin ∠DAB =ABsin ∠ADB ,即BD =AB sin ∠DABsin ∠ADB =+3sin 105°=+3sin 45°cos 60°+cos 45°sin 60°=10 3 n mile.又∠DBC =∠DBA +∠ABC =60°,BC =20 3 n mile , ∴在△DBC 中,由余弦定理,得CD =BD 2+BC 2-2BD ·BC cos ∠DBC=300+1 200-2×103×203×12=30 n mile ,则救援船到达D 点需要的时间为3030=1 h.[活学活用]在海岸A 处,发现北偏东45°方向,距离A 处(3-1)n mile 的B 处有一艘走私船,在A 处北偏西75°的方向,距离A 2 n mile 的C 处的缉私船奉命以10 3 n mile 的速度追截走私船.此时,走私船正以10 n mile/h 的速度从B 处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?解:设缉私船用t h 在D 处追上走私船,画出示意图,则有CD =103t ,BD =10t ,在△ABC 中,∵AB =3-1,AC =2,∠BAC =120°,∴由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos∠BAC =(3-1)2+22-2·(3-1)·2·cos 120°=6,∴BC =6,且sin ∠ABC =ACBC·sin∠BAC =26·32=22, ∴∠ABC =45°,BC 与正北方向成90°角.∵∠CBD =90°+30°=120°,在△BCD 中,由正弦定理,得sin ∠BCD =BD ·sin∠CBDCD=10t sin 120°103t=12,∴∠BCD =30°.即缉私船沿北偏东60°方向能最快追上走私船.题点一:两点间不可通又不可视1.如图所示,要测量一水塘两侧A ,B 两点间的距离,其方法先选定适当的位置C ,用经纬仪测出角α,再分别测出AC ,BC 的长b ,a ,则可求出A ,B 两点间的距离.即AB =a 2+b 2-2ab cos α.若测得CA =400 m ,CB =600 m ,∠ACB =60°,试计算AB 的长. 解:在△ABC 中,由余弦定理得AB 2=AC 2+BC 2-2AC ·BC cos ∠ACB ,∴AB 2=4002+6002-2×400×600cos 60°=280 000. ∴AB =2007 (m).即A ,B 两点间的距离为2007 m. 题点二:两点间可视但有一点不可到达2.如图所示,A ,B 两点在一条河的两岸,测量者在A 的同侧,且B 点不可到达,要测出A ,B 的距离,其方法在A 所在的岸边选定一点C ,可以测出A ,C 的距离m ,再借助仪器,测出∠ACB =α,∠CAB =β,在△ABC 中,运用正弦定理就可以求出AB .若测出AC =60 m ,∠BAC =75°,∠BCA =45°,则A ,B 两点间的距离为________ m. 解析:∠ABC =180°-75°-45°=60°, 所以由正弦定理得,AB sin C =ACsin B, ∴AB =AC ·sin C sin B =60×sin 45°sin 60°=206(m).即A ,B 两点间的距离为20 6 m. 答案:20 6题点三:两点都不可到达3.如图,A ,B 两点在河的同侧,且A ,B 两点均不可到达,测出A ,B 的距离,测量者可以在河岸边选定两点C ,D ,测得CD =a ,同时在C ,D 两点分别测得∠BCA =α,∠ACD =β,∠CDB =γ,∠BDA =δ.在△ADC 和△BDC 中,由正弦定理分别计算出AC 和BC ,再在△ABC 中,应用余弦定理计算出AB .若测得CD =32km ,∠ADB =∠CDB =30°,∠ACD =60°,∠ACB =45°,求A ,B 两点间的距离.解:∵∠ADC =∠ADB +∠CDB =60°,∠ACD =60°, ∴∠DAC =60°,∴AC=DC=3 2.在△BCD中,∠DBC=45°,由正弦定理,得BC=DCsin∠DBC·sin∠BDC=32sin 45°·sin 30°=64.在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BC cos 45°=34+38-2×32×64×22=38.∴AB=64(km).∴A,B两点间的距离为64km.当A,B两点之间的距离不能直接测量时,求AB的距离分为以下三类:(1)两点间不可通又不可视(如图①):可取某点C,使得A,B与C之间的距离可直接测量,测出AC=b,BC=a以及∠ACB=γ,利用余弦定理得:AB=a2+b2-2ab cos γ.(2)两点间可视但不可到达(如图②):可选取与B同侧的点C,测出BC=a以及∠ABC 和∠ACB,先使用内角和定理求出∠BAC,再利用正弦定理求出AB.(3)两点都不可到达(如图③):在河边测量对岸两个建筑物之间的距离,可先在一侧选取两点C,D,测出CD=m,∠ACB,∠BCD,∠ADC,∠ADB,再在△BCD中求出BC,在△ADC 中求出AC,最后在△ABC中,由余弦定理求出AB.层级一学业水平达标1.学校体育馆的人字屋架为等腰三角形,如图,测得AC的长度为4 m,∠A=30°,则其跨度AB 的长为( )A .12 mB .8 mC .3 3 mD .4 3 m解析:选D 由题意知,∠A =∠B =30°, 所以∠C =180°-30°-30°=120°, 由正弦定理得,AB sin C =ACsin B ,即AB =AC ·sin C sin B =4·sin 120°sin 30°=4 3.2.一艘船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68 n mile 的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为( )A.1762n mile/h B .34 6 n mile/hC.1722n mile/h D .34 2 n mile/h 解析:选A 如图所示,在△PMN 中,PMsin 45°=MNsin 120°,∴MN =68×32=346,∴v =MN 4=1762 n mile/h.3.如图,D ,C ,B 三点在地面同一直线上,DC =a ,从C ,D 两点测得A 点仰角分别是β,α(α<β),则A 点离地面的高度AB 等于( )A.a sin α·sin ββ-αB.asin α·sin βα-βC.a sin α·cos ββ-αD.a cos α·sin βα-β解析:选A 设AB =x ,则在Rt △ABC 中,CB =x tan β,所以BD =a +xtan β,又因为在Rt △ABD 中,BD =x tan α,所以BD =a +x tan β=x tan α,从中求得x =a1tan α-1tan β=a tan αtan βtan β-tan α=a sin αsin βsin βcos α-sin αcos β=a sin αsin ββ-α,故选A.4.设甲、乙两幢楼相距20 m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两幢楼的高分别是( )A .20 3 m ,4033 mB .10 3 m,20 3 mC .10(3-2)m,20 3 mD.1532 m ,2033m解析:选A 由题意,知h 甲=20ta n 60°=203(m),h 乙=20tan 60°-20tan 30°=4033(m). 5.甲船在岛B 的正南A 处,AB =10 km ,甲船以4 km/h 的速度向正北航行,同时乙船自岛B 出发以6 km/h 的速度向北偏东60°的方向驶去,当甲、乙两船相距最近时,它们的航行时间是( )A.1507min B.157 hC .21.5 minD .2.15 h解析:选A 由题意可作出如图所示的示意图,设两船航行t 小时后,甲船位于C 点,乙船位于D 点,如图.则BC =10-4t ,BD =6t ,∠CBD =120°,此时两船间的距离最近,根据余弦定理得CD 2=BC 2+BD 2-2BC ·BD cos ∠CBD =(10-4t )2+36t 2+6t (10-4t )=28t 2-20t +100,所以当t =514时,CD 2取得最小值,即两船间的距离最近,所以它们的航行时间是1507min ,故选A.6.某人从A 处出发,沿北偏东60°行走3 3 km 到B 处,再沿正东方向行走2 km 到C 处,则A ,C 两地的距离为________km.解析:如图所示,由题意可知AB =33,BC =2,∠ABC =150°.由余弦定理,得AC 2=27+4-2×33×2×cos 150°=49,AC =7.则A ,C 两地的距离为7 km. 答案:77.坡度为45°的斜坡长为100 m ,现在要把坡度改为30°,则坡底要伸长________m. 解析:如图,BD =100,∠BDA =45°,∠BCA =30°,设CD =x ,所以(x +DA )·tan 30°=DA ·tan 45°,又DA =BD ·cos 45°=100×22=502, 所以x =DA ·tan 45°tan 30°-DA =502×133-50 2=50(6-2)m. 答案:50(6-2)8.一蜘蛛沿东北方向爬行x cm 捕捉到一只小虫,然后向右转105°,爬行10 cm 捕捉到另一只小虫,这时它向右转135°爬行回它的出发点,那么x =________cm.解析:如图所示,设蜘蛛原来在O 点,先爬行到A 点,再爬行到B 点,易知在△AOB 中,AB =10 cm ,∠OAB =75°,∠ABO =45°,则∠AOB =60°,由正弦定理知:x =AB ·sin∠ABO sin ∠AOB =10×sin 45°sin 60°=1063(cm).答案:10639.如图,甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行,当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里,当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里,求乙船航行的速度.解:如图,连接A 1B 2,在△A 1A 2B 2中,易知∠A 1A 2B 2=60°,又易求得A 1A 2=302×13=102=A 2B 2,∴△A 1A 2B 2为正三角形, ∴A 1B 2=10 2.在△A 1B 1B 2中,易知∠B 1A 1B 2=45°, ∴(B 1B 2)2=400+200-2×20×102×22=200, ∴B 1B 2=102,∴乙船每小时航行302海里.10.如图所示,某旅游景点有一座风景秀丽的山峰,山上有一条笔直的山路BC 和一条索道AC ,小王和小李打算不坐索道,而是花2个小时的时间进行徒步攀登.已知∠ABC =120°,∠ADC =150°,BD =1 千米,AC =3 千米.假设小王和小李徒步攀登的速度为每小时1.2 千米,请问:两位登山爱好者能否在2个小时内徒步登上山峰(即从B 点出发到达C点).解:由∠ADC =150°知∠ADB =30°,由正弦定理得1sin 30°=ADsin 120°,所以AD = 3.在△ADC 中,由余弦定理得:AC 2=AD 2+DC 2-2AD ·DC ·cos 150°,即32=(3)2+DC 2-2·3·DC cos 150°,即DC 2+3·DC -6=0,解得DC =-3+332≈1.372 (千米),∴BC ≈2.372 (千米),由于2.372<2.4,所以两位登山爱好者能够在2个小时内徒步登上山峰.层级二 应试能力达标1.如图,从气球A 上测得其正前下方的河流两岸B ,C 的俯角分别为75°,30°,此时气球的高度AD 是60 m ,则河流的宽度BC 是( )A .240(3-1)mB .180(2-1)mC .120(3-1)mD .30(3+1)m解析:选C 由题意知,在Rt △ADC 中,∠C =30°,AD =60 m ,∴AC =120 m .在△ABC 中,∠BAC =75°-30°=45°,∠ABC =180°-45°-30°=105°,由正弦定理,得BC =AC sin ∠BACsin ∠ABC =120×226+24=120(3-1)(m).2.如图所示为起重机装置示意图.支杆BC =10 m ,吊杆AC =15 m ,吊索AB =519 m ,起吊的货物与岸的距离AD 为( )A .30 m B.1532 mC .15 3 mD .45 m解析:选B 在△ABC 中,AC =15 m ,AB =519 m ,BC =10 m ,由余弦定理得cos ∠ACB =AC 2+BC 2-AB 22×AC ×BC=152+102-1922×15×10=-12,∴sin ∠ACB =32.又∠ACB +∠ACD =180°,∴sin ∠ACD =sin ∠ACB =32. 在Rt △ADC 中,AD =AC ·sin∠ACD =15×32=1532m. 3.如图所示,要测量底部不能到达的某电视塔AB 的高度,在塔的同一侧选择C ,D 两个观测点,且在C ,D 两点测得塔顶的仰角分别为45°,30°,在水平面上测得∠BCD =120°,C ,D 两地相距500 m ,则电视塔AB 的高度是( )A .100 2 mB .400 mC .200 3 mD .500 m解析:选D 设AB =x ,在Rt △ABC 中,∠ACB =45°,∴BC =AB =x .在Rt △ABD 中,∠ADB =30°,∴BD =3x .在△BCD 中,∠BCD =120°,CD =500 m ,由余弦定理得(3x )2=x 2+5002-2×500x cos 120°,解得x =500 m.4.如图所示,位于东海某岛的雷达观测站A ,发现其北偏东45°,与观测站A 距离202海里的B 处有一货船正匀速直线行驶,半小时后,又测得该货船位于观测站A 东偏北θ(0°<θ<45°)的C 处,且cos θ=45.已知A ,C 两处的距离为10海里,则该货船的船速为( ) A .485 海里/小时 B .385 海里/小时 C .27 海里/小时D .4 6 海里/小时解析:选A 因为cos θ=45,0°<θ<45°,所以sin θ=35,cos(45°-θ)=22×45+22×35=7210,在△ABC 中,BC 2=(202)2+102-2×202×10×7210=340,所以BC =285,该货船的船速为28512=485海里/小时.5.如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小.若AB =15 m ,AC =25 m ,∠BCM =30°,则tan θ的最大值是________.(仰角θ为直线AP 与平面ABC 所成角)解析:如图,过点P 作PO ⊥BC 于点O ,连接AO ,则∠PAO =θ.设CO =x ,则OP =33x . 在Rt △ABC 中,AB =15,AC =25,所以BC =20. 所以cos ∠BCA =45.所以AO =625+x 2-2×25x ×45=x 2-40x +625.故tan θ=33x x 2-40x +625=331-40x +625x2=33⎝ ⎛⎭⎪⎫25x -452+925 .当25x =45,即x =1254时,tan θ取得最大值为3335=539.答案:5396.甲船在A 处观察乙船,乙船在它的北偏东60°方向的B 处,两船相距a n mile ,乙船正向北行驶,若甲船的速度是乙船的3倍,则甲船应沿________方向行驶才能追上乙船;追上时甲船行驶了________n mile.解析:如图所示,设在C 处甲船追上乙船,乙船到C 处用的时间为t ,乙船的速度为v ,则BC =tv ,AC =3tv ,又B =120°,则由正弦定理BC sin ∠CAB =AC sin B ,得1sin ∠CAB =3sin 120°,∴sin ∠CAB =12,∴∠CAB =30°,∴甲船应沿北偏东30°方向行驶.又∠ACB =180°-120°-30°=30°,∴BC =AB =a n mile ,∴AC =AB 2+BC 2-2AB ·BC cos 120°=a 2+a 2-2a 2·⎝ ⎛⎭⎪⎫-12=3a (n mile)答案:北偏东30°3a7.如图所示,在社会实践中,小明观察一棵桃树.他在点A 处发现桃树顶端点C 的仰角大小为45°,往正前方走4 m 后,在点B 处发现桃树顶端点C 的仰角大小为75°.(1)求BC 的长;(2)若小明身高为1.70 m ,求这棵桃树顶端点C 离地面的高度(精确到0.01 m ,其中3≈1.732).解:(1)在△ABC 中,∠CAB =45°,∠DBC =75°, 则∠ACB =75°-45°=30°,AB =4,由正弦定理得BC sin 45°=4si n 30°,解得BC =42(m).即BC 的长为4 2 m. (2)在△CBD 中,∠CDB =90°,BC =42, 所以DC =42sin 75°.因为sin 75°=sin(45°+30°) =sin 45°cos 30°+cos 45°sin 30°=6+24, 则DC =2+2 3.所以CE =ED +DC =1.70+2+23≈3.70+3.464 ≈7.16(m).即这棵桃树顶端点C 离地面的高度为7.16 m.8.如图,在一条海防警戒线上的点A ,B ,C 处各有一个水声监测点,B ,C 两点到A 的距离分别为20千米和50千米,某时刻,B 收到发自静止目标P 的一个声波信号,8秒后A ,C 同时接收到该声波信号,已知声波在水中的传播速度是1.5千米/秒.(1)设A 到P 的距离为x 千米,用x 表示B ,C 到P 的距离,并求x 的值; (2)求P 到海防警戒线AC 的距离.解:(1)依题意,有PA =PC =x ,PB =x -1.5×8=x -12.在△PAB 中,AB =20,cos ∠PAB =PA 2+AB 2-PB 22PA ·AB =x 2+202-x -22x ·20=3x +325x,同理在△PAC 中,AC =50,cos ∠PAC =PA 2+AC 2-PC 22PA ·AC =x 2+502-x 22x ·50=25x.∵cos ∠PAB =cos ∠PAC ,∴3x +325x =25x, 解得x =31.(2)作PD ⊥AC 于D ,在△ADP 中,由cos ∠PAD =2531,得sin ∠PAD =1-cos 2∠PAD =42131,∴PD =PA sin ∠PAD =31×42131=421千米.故静止目标P 到海防警戒线AC 的距离为421千米.第二课时 三角形中的几何计算[新知初探] 三角形的面积公式(1)S =12a ·h a (h a 表示a 边上的高).(2)S =12ab sin C =12bc sin A =12ac sin B.[点睛] 三角形的面积公式S =12ab sin C 与原来的面积公式S =12a ·h (h 为a 边上的高)的关系为:h =b sin C ,实质上b sin C 就是△ABC 中a 边上的高.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)公式S =12ab sin C 适合求任意三角形的面积( )(2)三角形中已知三边无法求其面积( )(3)在三角形中已知两边和一角就能求三角形的面积( ) 解析:(1)正确,S =12ab sin C 适合求任意三角形的面积.(2)错误.已知三边可利用余弦定理求角的余弦值,再求得正弦值,进而求面积. (3)正确.已知两边和两边的夹角可直接求得面积,已知两边和一边的对角,可求得其他边和角,再求面积.答案:(1)√ (2)× (3)√2.在△ABC 中,已知a =2,b =3,C =120°,则S △ABC =( ) A.32B.332C. 3 D .3解析:选B S △ABC =12ab sin C =12×2×3×32=332.3.已知△ABC 的面积为32,且b =2,c =3,则A 的大小为( )A .60°或120°B .60°C .120°D .30°或150°解析:选A 由S △ABC =12bc sin A 得32=12×2×3×sin A , 所以sin A =32, 故A =60°或120°,故选A.4.若△ABC 的三边a ,b ,c 及面积S 满足S =a 2-(b -c )2,则sin A =________. 解析:由余弦定理得S =a 2-(b -c )2=2bc -2bc cos A =12bc sin A ,所以sin A +4cos A=4,由sin 2A +cos 2A =1,解得sin 2A +⎝ ⎛⎭⎪⎫1-sin A 42=1,sin A =817. 答案:817[典例] 已知△ABC 中,B =30°,AB =23,AC =2,求△ABC 的面积. [解] 由正弦定理,得sin C =AB sin B AC =23sin 30°2=32. ∵AB >AC ,∴C =60°或C =120°.当C =60°时,A =90°,S △ABC =12AB ·AC =23;当C =120°时,A =30°,S △ABC =12AB ·AC sin A = 3.故△ABC 的面积为23或 3.[活学活用]△ABC 中,若a ,b ,c 的对角分别为A ,B ,C ,且2A =B +C ,a =3,△ABC 的面积S △ABC=32,求边b 的长和B 的大小. 解:∵A +B +C =180°,又2A =B +C ,∴A =60°. ∵S △ABC =12bc sin A =32,sin A =32,∴bc =2.①又由余弦定理得3=b 2+c 2-2bc cos A =b 2+c 2-2×2×12,即b 2+c 2=5.② 解①②可得b =1或2.由正弦定理知a sin A =bsin B ,∴sin B =b sin A a =b2. 当b =1时,sin B =12,B =30°;当b =2时,sin B =1,B =90°.[典例] 在△ABC 中,求证:b -c cos A =sin A.证明:[法一 化角为边]左边=a -c a 2+c 2-b 22ac b -c b 2+c 2-a 22bc =a 2-c 2+b 22a ·2bb 2-c 2+a 2 =b a =2R sin B 2R sin A =sin B sin A=右边, 其中R 为△ABC 外接圆的半径. ∴a -c cos Bb -c cos A =sin Bsin A.[法二 化边为角] 左边=sin A -sin C cos B sin B -sin C cos A =B +C -sin C cos BA +C -sin C cos A=sin B cos C sin A cos C =sin Bsin A=右边(cos C ≠0),∴a -c cos B b -c cos A =sin Bsin A.[活学活用]在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .求证:cos B cos C =c -b cos Ab -c cos A .证明:法一:由正弦定理,得c -b cos Ab -c cos A=2R sin C -2R sin B cos A2R sin B -2R sin C cos A=A +B -sin B cos A A +C -sin C cos A =sin A cos B sin A cos C =cos Bcos C.法二:由余弦定理,得c -b cos Ab -c cos A =c -b 2+c 2-a 22c b -b 2+c 2-a 22b =a 2+c 2-b 22c b 2+a 2-c 22b =a 2+c 2-b 22ac b 2+a 2-c 22ab=cos B cos C.题点一:与三角形面积有关的综合问题1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知a cos B -c =b2.(1)求角A 的大小;(2)若b -c =6,a =3+3,求BC 边上的高. 解:(1)由a cos B -c =b2及正弦定理可得,sin A cos B -sin C =sin B2,因为sin C =sin(A +B )=sin A cos B +cos A sin B , 所以sin B 2+cos A sin B =0.因为sin B ≠0,所以cos A =-12,因为0<A <π,所以A =2π3.(2)由余弦定理可知,a 2=b 2+c 2-2bc cos2π3=b 2+c 2+bc , 所以(3+3)2=b 2+c 2+bc =(b -c )2+3bc =6+3bc , 解得bc =2+2 3.设BC 边上的高为h ,由S △ABC =12bc sin A =12ah ,得12(2+23)sin 2π3=12(3+3)h, 解得h =1. 题点二:三角形中的范围问题2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2c -a )cos B -b cos A =0.(1)求角B 的大小;(2)求3sin A +sin ⎝⎛⎭⎪⎫C -π6的取值范围.解:(1)由正弦定理得:(2sin C -sin A )cos B -sin B cos A =0, 即sin C (2cos B -1)=0,∵sin C ≠0,∴cos B =12,∵B ∈(0,π),∴B =π3.(2)由(1)知B =π3,∴C =2π3-A ,∴3sin A +sin ⎝ ⎛⎭⎪⎫C -π6=3sin A +cos A=2sin ⎝⎛⎭⎪⎫A +π6.∵A ∈⎝⎛⎭⎪⎫0,2π3,∴A +π6∈⎝ ⎛⎭⎪⎫π6,5π6, ∴2sin ⎝⎛⎭⎪⎫A +π6∈(1,2], ∴3sin A +sin ⎝⎛⎭⎪⎫C -π6的取值范围是(1,2].题点三:三角形中的最值问题3.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c . 已知A -B A +B =b +cc. (1)求角A 的大小;(2)当a =6时,求△ABC 面积的最大值,并指出面积最大时△ABC 的形状. 解:(1)由A -B A +B =b +cc, 得A -B A +B =sin B +sinC sin C. 又sin(A +B )=sin(π-C )=sin C , ∴sin(A -B )=sin B +sin C , ∴sin(A -B )=sin B +sin(A +B ).∴sin A cos B -cos A sin B =sin B +sin A cos B +cos A sin B , ∴sin B +2 cos A sin B =0, 又sin B ≠0,∴cos A =-12.∵A ∈(0,π),∴A =2π3.(2)S =12bc sin A =34bc =34×2R sin B ·2R sin C=3R 2sin B ·sin C=3R 2sin B ·sin ⎝ ⎛⎭⎪⎫π3-B=32R 2sin ⎝ ⎛⎭⎪⎫2B +π6-34R 2,B ∈⎝ ⎛⎭⎪⎫0,π3. 由正弦定理2R =a sin A=6sin2π3=43,∴R =2 3.当2B +π6=π2,即B =C =π6时,S max =33,∴△ABC 面积的最大值为33,此时△ABC 为等腰钝角三角形. 题点四:多边形面积问题4.已知圆内接四边形ABCD 的边长AB =2,BC =6,CD =DA =4,求四边形ABCD 的面积S .解:如图,连接BD ,则S =S △ABD +S △CBD =12AB ·AD sin A +12BC ·CD sin C .∵A +C =180°,∴sin A =sin C , ∴S =12sin A (AB ·AD +BC ·CD )=16sin A .在△ABD 中,由余弦定理得BD 2=AB 2+AD 2-2AB ·AD cos A =20-16cos A ,在△CDB 中,由余弦定理得BD 2=CD 2+BC 2-2CD ·BC cos C =52-48cos C ,∴20-16cos A =52-48cos C .又cos C =-cos A ,∴cos A =-12,∴A =120°,∴S =16sin A =8 3.层级一 学业水平达标1.在△ABC 中,A =60°,AB =1,AC =2,则S △ABC 的值为( ) A.12 B.32 C.3 D .2 3 解析:选B S △ABC =12AB ·AC ·sin A =32.2.如果等腰三角形的周长是底边长的5倍,则它的顶角的余弦值为( ) A .-78 B.78 C .-87 D.87解析:选B 设等腰三角形的底边长为a ,顶角为θ,则腰长为2a ,由余弦定理得,cos θ=4a 2+4a 2-a 28a 2=78. 3.在△ABC 中,已知面积S =14(a 2+b 2-c 2),则角C 的大小为( )A .135°B .45°C .60°D .120°解析:选B ∵S =14(a 2+b 2-c 2)=12ab sin C ,由余弦定理得:sin C =cos C ,∴tan C=1.又0°<C <180°,∴C =45°.4.在△ABC 中,若cos B =14,sin C sin A =2,且S △ABC =154,则b =( )A .4B .3C .2D .1解析:选C 依题意得,c =2a ,b 2=a 2+c 2-2ac cos B =a 2+(2a )2-2×a ×2a ×14=4a 2,所以b =c =2a .因为B ∈(0,π),所以sin B =1-cos 2B =154,又S △ABC =12ac sin B =12×b2×b ×154=154,所以b =2,选C.5.三角形的一边长为14,这条边所对的角为60°,另两边之比为8∶5,则这个三角形的面积为( )A .40 3B .20 3C .40 2D .20 2 解析:选A 设另两边长为8x,5x ,则cos 60°=64x 2+25x 2-14280x 2,解得x =2或x =-2(舍去). 故两边长分别为16与10,所以三角形的面积是12×16×10×sin 60°=40 3.6.在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为________.解析:∵cos C =13,0<C <π,∴sin C =223,∴S △ABC =12ab sin C =12×32×23×223=4 3.答案:4 37.如图,在△ABC 中,已知B =45°,D 是BC 边上一点,AD =5,AC =7,DC =3,则AB=________.解析:在△ADC 中,cos C =AC 2+DC 2-AD 22·AC ·DC =72+32-522×7×3=1114.又0°<C <180°,∴sin C =5314. 在△ABC 中,AC sin B =ABsin C,∴AB =sin C sin B ·AC =5314×2×7=562.答案:5628.△ABC 的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的半径为________.解析:不妨设b =2,c =3,cos A =13,则a 2=b 2+c 2-2bc ·cos A =9,∴a =3. 又∵sin A = 1-cos 2A =223,∴外接圆半径为R =a 2sin A =32·223=928.答案:9289.在△ABC 中,求证:b 2cos 2A -a 2cos 2B =b 2-a 2.证明:左边=b 2(1-2sin 2A )-a 2(1-2sin 2B )=b 2-a 2-2(b 2sin 2A -a 2sin 2B ), 由正弦定理a sin A =bsin B ,得b sin A =a sin B ,∴b 2sin 2A -a 2sin 2B =0,∴左边=b 2-a 2=右边, ∴b 2cos 2A -a 2cos 2B =b 2-a 2.10.如图所示,在梯形ABCD 中,AD ∥BC ,AB =5,AC =9,∠BCA =30°,∠ADB =45°,求BD 的长.解:在△ABC 中,AB =5,AC =9,∠BCA =30°,由正弦定理,得AB sin ∠BCA =ACsin ∠ABC,∴sin ∠ABC =AC ·sin∠BCA AB =9×sin 30°5=910.∵AD ∥BC ,∴∠BAD =180°-∠ABC , 于是sin ∠BAD =sin ∠ABC =910. 在△ABD 中,AB =5,sin ∠BAD =910,∠ADB =45°,由正弦定理,得AB sin ∠ADB =BDsin ∠BAD ,解得BD =922,故BD 的长为922.层级二 应试能力达标1.△ABC 的周长为20,面积为103,A =60°,则BC 的边长等于( ) A .5 B .6 C .7 D .8 解析:选C 如图,由题意得⎩⎪⎨⎪⎧a +b +c =20,12bc sin 60°=103,a 2=b 2+c 2-2bc cos 60°,则bc =40,a 2=b 2+c 2-bc =(b +c )2-3bc =(20-a )2-3×40,∴a =7.2.在△ABC 中,已知b 2-bc -2c 2=0,且a =6,cos A =78,则△ABC 的面积等于( )A.152B.15 C .2 D .3 解析:选A 因为b 2-bc -2c 2=0, 所以(b -2c )(b +c )=0,所以b =2c . 由a 2=b 2+c 2-2bc cos A ,解得c =2,b =4, 因为cos A =78,所以sin A =158,所以S △ABC =12bc sin A =12×4×2×158=152.3.在△ABC 中,若b =2,A =120°,其面积S =3,则△ABC 外接圆的半径为( ) A. 3 B . C .2 3 D .4 解析:选B ∵S =12bc sin A ,∴3=12×2c sin 120°,∴c =2,∴a =b 2+c 2-2bc cos A =4+4-2×2×2×⎝ ⎛⎭⎪⎫-12=23,设△ABC 外接圆的半径为R ,∴2R =asin A=2332=4,∴R =2.4.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( )A.⎝⎛⎭⎪⎫152,+∞B .(10,+∞)C .(0,10) D.⎝ ⎛⎦⎥⎤0,403解析:选D ∵csin C =a sin A =403, ∴c =403sin C .∴0<c ≤403.5.已知△ABC 的面积S =3,A =π3,则AB ·AC =________.解析:S △ABC =12·|AB |·|AC |·sin A ,即3=12·|AB |·|AC |·32,所以|AB |·|AC |=4,于是AB ·AC =|AB |·|AC |·cos A =4×12=2.答案:26.在锐角三角形ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若b a +a b =6cos C ,则tan Ctan A+tan Ctan B=________. 解析:∵b a +a b=6cos C ,∴a 2+b 2ab =6×a 2+b 2-c 22ab,∴2a 2+2b 2-2c 2=c 2, 又tan C tan A +tan C tan B =sin C cos A sin A cos C +sin C cos Bsin B cos C =sin CB cos A +cos B sin Asin A sin B cos C=sin C B +A sin A sin B cos C =sin 2C sin A sin B cos C=c 2ab cos C =c 2aba 2+b 2-c 22ab=2c2a 2+b 2-c 2=4. 答案:47.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知sin A sin B =sin C tan C .(1)求a 2+b 2c2的值;(2)若a =22c ,且△ABC 的面积为4,求c 的值. 解:(1)由已知sin A sin B =sin C tan C 得cos C =c 2ab .又cos C =a 2+b 2-c 22ab,故a 2+b 2=3c 2,故a 2+b2c 2的值为3. (2)由a =22c, a 2+b 2=3c 2得b =102c . 由余弦定理得cos C =255,故sin C =55.所以12×22c ×102c ×55=4,解得c =4.8.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且a =2,2cos 2B +C2+sin A =45. (1)若满足条件的△ABC 有且只有一个,求b 的取值范围; (2)当△ABC 的周长取最大值时,求b 的值. 解:2cos2B +C 2+sin A =45⇒1+cos(B +C )+sin A =45⇒sin A -cos A =-15. 又0<A <π,且sin 2A +cos 2A =1,有⎩⎪⎨⎪⎧sin A =35,cos A =45.(1)若满足条件的△ABC 有且只有一个,则有a =b sin A 或a ≥b ,则b 的取值范围为(0,2]∪⎩⎨⎧⎭⎬⎫103. (2)设△ABC 的周长为l ,由正弦定理得l =a +b +c =a +asin A(sin B +sin C ) =2+103[sin B +sin(A +B )]=2+103[sin B +sin A cos B +cos A sin B ]=2+2(3sin B +cos B ) =2+210sin(B +θ),其中θ为锐角,且⎩⎪⎨⎪⎧sin θ=1010,cos θ=31010,l max =2+210,当cos B =1010,sin B=31010时取到.此时b =a sin Asin B =10.(时间120分钟 满分150分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在△ABC 中,a =k ,b =3k (k >0),A =45°,则满足条件的三角形有( ) A .0个 B .1个 C .2个D .无数个解析:选A 由正弦定理得a sin A =bsin B, ∴sin B =b sin A a =62>1,即sin B >1,这是不成立的.所以没有满足此条件的三角形.2.在△ABC 中,A =π3,BC =3,AB =6,则C =( )A.π4或3π4B.3π4C.π4D.π6解析:选C 由BCsin A =AB sin C ,得sin C =22. ∵BC =3,AB =6,∴A >C ,则C 为锐角,故C =π4.3.在△ABC 中,a =15,b =20,A =30°,则cos B =( ) A .±53 B.23 C .-53D.53解析:选A 因为a sin A =b sin B ,所以15sin 30°=20sin B ,解得sin B =23.因为b >a ,所以B >A ,故B 有两解,所以cos B =±53. 4.在△ABC 中,已知(b +c )∶(c +a )∶(a +b )=4∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .6∶5∶4B .7∶5∶3C .3∶5∶7D .4∶5∶6解析:选B ∵(b +c )∶(c +a )∶(a +b )=4∶5∶6, ∴b +c 4=c +a 5=a +b6.令b +c 4=c +a 5=a +b6=k (k >0),则⎩⎪⎨⎪⎧b +c =4k ,c +a =5k ,a +b =6k ,解得⎩⎪⎨⎪⎧a =72k ,b =52k ,c =32k .∴sin A ∶sin B ∶sin C =a ∶b ∶c =7∶5∶3.5.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且sin 2A 2=c -b 2c,则△ABC 的形状为( )A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形解析:选B 由已知可得1-cos A 2=12-b2c ,即cos A =bc,b =c cos A .法一:由余弦定理得cos A =b 2+c 2-a 22bc ,则b =c ·b 2+c 2-a 22bc,所以c 2=a 2+b 2,由此知△ABC 为直角三角形. 法二:由正弦定理,得sin B =sin C cos A .在△ABC 中,sin B =sin(A +C ), 从而有sin A cos C +cos A sin C =sin C cos A , 即sin A cos C =0.在△ABC 中,sin A ≠0,所以cos C =0.由此得C =π2,故△ABC 为直角三角形.6.已知圆的半径为4,a ,b ,c 为该圆的内接三角形的三边,若abc =162,则三角形的面积为( )A .2 2B .8 2C. 2D.22解析:选C ∵a sin A =b sin B =csin C=2R =8, ∴sin C =c 8,∴S △ABC =12ab sin C =abc 16=16216= 2.7.在△ABC 中,三边长分别为a -2,a ,a +2,最大角的正弦值为32,则这个三角形的面积为( )A.154B.1534C.2134D.3534解析:选B ∵三边不等,∴最大角大于60°.设最大角为α,故α所对的边长为a +2,∵sin α=32,∴α=120°.由余弦定理得(a +2)2=(a -2)2+a 2+a (a -2),即a 2=5a ,故a =5,故三边长为3,5,7,S △ABC =12×3×5×sin 120°=1534.8.如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为( )A.33 B.36 C.63D.66 解析:选D 设BD =a ,则BC =2a ,AB =AD =32a . 在△ABD 中,由余弦定理,得cos A =AB 2+AD 2-BD22AB ·AD=⎝ ⎛⎭⎪⎫32a 2+⎝ ⎛⎭⎪⎫32a 2-a22×32a ·32a=13.又∵A 为△ABC 的内角,∴sin A =223.在△ABC 中,由正弦定理得,BCsin A =ABsin C.∴sin C =AB BC ·sin A =32a 2a ·223=66. 二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.把答案填在题中横线上)9.在△ABC 中,已知a cos A =b cos B =ccos C ,则这个三角形的形状是________. 解析:由正弦定理a sin A =b sin B =c sin C 得sin A cos A =sin B cos B =sin C cos C,∴tan A =tan B =tan C ,∴A =B =C ,三角形ABC 为等边三角形.答案:等边三角形10.在△ABC 中,B =30°,C =120°,则A =________,a ∶b ∶c =________.解析:A =180°-B -C =30°,由正弦定理得a ∶b ∶c =sin A ∶sin B ∶sin C , 即a ∶b ∶c =sin 30°∶sin 30°∶sin 120°=1∶1∶ 3.答案:30° 1∶1∶ 311.已知△ABC 中,内角A ,B ,C 所对边长分别为a ,b ,c ,若A =π3,b =2a cos B ,c =1,则B =________,△ABC 的面积等于________.解析:由正弦定理得sin B =2sin A cos B ,故tan B =2sin A =2sin π3=3,又B ∈(0,π),所以B =π3, 又A =B =π3,则△ABC 是正三角形, 所以S △ABC =12bc sin A =12×1×1×32=34. 答案:π3 3412.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b =2a ,B =A +60°,则A =________,三角形的形状为________.解析:∵b =2a ,由正弦定理,得sin B =2sin A ,又B =A +60°,∴sin(A +60°)=2sin A ,即12sin A +32cos A =2sin A ,∴tan A =33.又0°<A <180°,∴A =30°,B =90°.答案:30° 直角三角形13.已知三角形ABC 中,BC 边上的高与BC 边长相等,则AC AB +AB AC +BC 2AB ·AC的最大值是________.解析:由题意得, 12bc sin A =12a 2⇒bc sin A =a 2,因此AC AB +AB AC +BC 2AB ·AC =b c +c b +a 2bc =b 2+c 2+a 2bc =a 2+2bc cos A +a 2bc =2cos A +2sin A =22sin ⎝⎛⎭⎪⎫A +π4≤22,从而所求最大值是2 2.答案:2 214.在△ABC 中,已知cos A =35,cos B =513,b =3,则sin C =________,c =________. 解析:在△ABC 中,∵cos A =35>0, ∴sin A =45. ∵cos B =513>0,∴sin B =1213. ∴sin C =sin [π-(A +B )]=sin(A +B )=sin A cos B +cos A sin B =45×513+35×1213=5665. 由正弦定理知b sin B =csin C, ∴c =b sin C sin B =3×56651213=145. 答案:5665 14515.太湖中有一小岛,沿太湖有一条正南方向的公路,一辆汽车测得小岛在公路的南偏西15°的方向上,汽车行驶1 km 后,又测得小岛在南偏西75°的方向上,则小岛到公路的距离是________km.解析:如图,∠CAB =15°,∠CBA =180°-75°=105°,∠ACB =180°-105°-15°=60°, AB =1(km).由正弦定理得BC sin ∠CAB =ABsin ∠ACB, ∴BC =1sin 60°·sin 15°=6-223(km).。
高中数学 第一章 解三角形 1.2 应用举例(一)课件 新人教B版必修5.pptx
sinα+β
要点三 测量两个不能到达点之间的距离问题
例3 如图,为测量河对岸A、B两点的距离,在河
的这边测出CD的长为23 km,∠ADB=∠CDB=30°, ∠ACD=60°,∠ACB=45°,求A、B两点间的距离.
由sinA1B5°=sinAD45°,得
AD=ABsi·nsi1n54°5°=8060-×
2 2 =800( 2
3+1) (m).
4 即山的高度为800( 3+1) m.
规律方法 在运用正弦定理、余弦定理解决实际问题时,通
常都根据题意,从实际问题中抽象出一个或几个三角形,然
后通过解这些三角形,得出实际问题的解.和高度有关的问题
2.方位角和方向角 从 正北 方向 顺时针 转到目标方向线的水平角叫 方位角 ,方位 角的范围是[0,2π]. 从 指定 方向线到目标方向线所成的小于90°的水平角叫方向角 , 如北偏东30°,南偏东45°. 3.坡角与坡度 坡面与水平面所成的二面角叫 坡角 ,坡面的铅直高度与水平宽 度之比叫坡度 .
第一章——
解三角形
1.2 应用举例(一)
[学习目标]
1.利用正、余弦定理解决生产实践中的有关距离的测量问题. 2.利用正、余弦定理解决生产实践中的有关高度的测量问题. 3.培养学生提出问题、正确分析问题、独立解决问题的能力,并 激发学生的探索精神.
1 预习导学 2 课堂讲义 3 当堂检测
挑战自我,点点落实 重点难点,个个击破 当堂训练,体验成功
[知识链接] “遥不可及的月亮离我们地球究竟有多远呢?”在古代, 天文学家没有先进的仪器就已经估算出了两者的距离, 是什么神奇的方法探索到这个奥秘的呢?通过本节的学 习,我们将揭开这个奥秘.
高中数学 第一章 解三角形 1.2 解三角形的实际应用举例—高度、角度问题教学设计 新人教A版必修5
高中数学第一章解三角形1.2 解三角形的实际应用举例—高度、角度问题教学设计新人教A版必修5编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章解三角形1.2 解三角形的实际应用举例—高度、角度问题教学设计新人教A版必修5)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章解三角形1.2 解三角形的实际应用举例—高度、角度问题教学设计新人教A版必修5的全部内容。
《解三角形的实际应用举例—高度、角度问题》一、教学目标知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关测量高度、角度问题等实际问题,了解常用的测量相关术语过程与方法:首先通过巧妙的设疑,顺利地引导新课,为以后的几节课做良好铺垫。
其次结合学生的实际情况,采用“提出问题——引发思考——探索猜想—-总结规律-—反馈训练”的教学过程,根据大纲要求以及教学内容之间的内在关系,铺开例题,设计变式,帮助学生掌握解法,能够类比解决实际问题。
情感态度与价值观:激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力二、教学重点:实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解教学难点:根据题意建立数学模型,画出示意图三、教学过程一、课题导入提问:现实生活中,人们是怎样测量底部不可到达的建筑物高度呢?又怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度呢?今天我们就来共同探讨这方面的问题二、讲授新课[范例讲解]例1、AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB 的方法。
【配套K12】[学习]2017-2018学年高中数学 第一章 解三角形 1.2 应用举例 第3课时
第3课时 几何计算问题[课时作业] [A 组 基础巩固]1.在△ABC 中,A =60°,b =1,其面积为3,则asin A 等于( )A.2393B.2293C.2633D .3 3解析:由S △ABC =12bc sin A =3可知c =4.由余弦定理得a 2=b 2+c 2-2bc cos A =1+16-8cos60°=13,所以a =13.所以a sin A =13sin 60°=2393.答案:A2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若c =2,b =6,B =120°,则△ABC 的面积等于( ) A.62 B .1 C.32D.22解析:由正弦定理得6sin 120°=2sin C ,∴sin C =12,∴C =30°或150°(舍去). ∵B =120°,∴A =30°,∴S △ABC =12bc sin A =12×6×2×sin 30°=32.答案:C3.△ABC 的三个内角A ,B ,C 所对边的长分别为a ,b ,c ,若S △ABC =14(b 2+c 2-a 2),则角A的大小为( ) A.π6 B.π4 C.3π4D.5π6解析:∵S =12bc sin A =14(b 2+c 2-a 2),∴sin A =b 2+c 2-a 22bc =cos A ,又∵A ∈(0,π),∴A =π4.答案:B4.在锐角△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,3a =2c sin A ,c =7,且a +b =5,则△ABC 的面积为( ) A.332B.92C.532D.72解析:由3a =2c sin A 及正弦定理得a c =2sin A 3=sin Asin C ,∵sin A ≠0,∴sin C =32,故在锐角△ABC 中,C =π3. 再由a +b =5及余弦定理可得7=a 2+b 2-2ab cos π3=a 2+b 2-ab =(a +b )2-3ab =25-3ab ,解得ab =6,故△ABC 的面积为12ab ·sin C =332.答案:A5.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且3a cos C =4c sin A ,若△ABC 的面积S =10,b =4,则a 的值为( ) A.233 B.253 C.263D.283解析:由3a cos C =4c sin A ,得asin A =4c 3cos C .又由正弦定理a sin A =c sin C ,得csin C=4c 3cos C ,∴tan C =34,∴sin C =35.又S =12bc sin A =10,b =4,∴c sin A =5.根据正弦定理,得a =c sin A sin C =535=253,故选B. 答案:B6.设△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,且b =3,c =2,△ABC 的面积为2,则sin A =________.解析:∵S △ABC =12bc sin A ,∴sin A =2S △ABC bc =223×2=23.答案:237.若△ABC 的面积为3,BC =2,C =60°,则边AB 的长度等于________.解析:在△ABC 中,由面积公式,得S =12BC ·AC ·sin C =32AC =3,∴AC =2,∴△ABC为等边三角形,∴AB =2. 答案:28.锐角△ABC 的面积为33,BC =4,CA =3,则AB =________. 解析:由三角形面积公式得12×3×4·sin C =33,sin C =32.又∵△ABC 为锐角三角形,∴C =60°.根据余弦定理AB 2=16+9-2×4×3×12=13.AB =13.答案:139.已知△ABC 中,B =30°,AB =23,AC =2,求△ABC 的面积. 解析:由正弦定理,得sin C =AB sin B AC =23sin 30°2=32. ∵AB >AC ,∴C =60°或C =120°.当C =60°时,A =90°,S △ABC =12AB ·AC =23;当C =120°时,A =30°,S △ABC =12AB ·AC sin A = 3.故△ABC 的面积为23或 3.10.已知△ABC 的三个内角A 、B 、C 满足2B =A +C ,且AB =1,BC =4,求边BC 上的中线AD 的长.解析:∵2B =A +C ,∴A +B +C =3B =180°,∴B =60°,∵BC =4,D 为BC 中点,∴BD =2, 在△ABD 中,由余弦定理知:AD 2=AB 2+BD 2-2AB ·BD ·cos B=12+22-2×1×2·cos 60° =3,[B 组 能力提升]1.如图,四边形ABCD 中,B =C =120°,AB =4,BC =CD =2,则该四边形的面积等于( )A. 3 B .5 3 C .6 3D .7 3解析:连接BD (图略),在△BCD 中,由已知条件,知∠DBC =180°-120°2=30°,∴∠ABD=90°.在△BCD 中,由余弦定理BD 2=BC 2+CD 2-2BC ·CD cos C ,知BD 2=22+22-2×2×2cos 120°=12,∴BD =23,∴S 四边形ABCD =S △ABD +S △BCD =12×4×23+12×2×2×sin 120°=5 3.答案:B2.已知△ABC 中,a 比b 大2,b 比c 大2,且最大角的正弦值为32,则△ABC 的面积为( ) A.1534B.154C.2134D.932解析:由题目条件,知a =c +4,b =c +2,故角A 为△ABC 中的最大角,即sin A =32,解得A =60°(舍去)或A =120°.由余弦定理,得cos A =cos 120°=c 2+c +2-c +22c c +=-12,解得c =3,所以b =5,所以S △ABC =12bc sin A =1534.答案:A3.(2015·高考天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为315,b -c =2,cos A =-14,则a 的值为________.解析:因为0<A <π,所以sin A =1-cos 2A =154, 又S △ABC =12bc sin A =158bc =315,∴bc =24,解方程组{ b -c =bc =24得b =6,c =4,由余弦定理得a 2=b 2+c 2-2bc cos A =62+42-2×6×4×⎝ ⎛⎭⎪⎫-14=64,所以a =8.4.在△ABC 中,若a =2,B =60°,b =7,则BC 边上的高等于________. 解析:由余弦定理b 2=a 2+c 2-2ac cos 60°, 即7=4+c 2-2×2c ×12,整理得c 2-2c -3=0,解得c =3.所以BC 边上的高为c sin B =3×sin 60°=332.答案:3325.(2016·高考全国Ⅰ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cosB +b cos A )=c .(1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长. 解析:(1)由已知及正弦定理得,2cos C (sin A cos B +sin B cos A )=sin C ,即2cos C sin(A +B )=sin C .故2sin C cos C =sin C , 可得cos C =12,所以C =π3.(2)由已知得,12ab sin C =332.又C =π3,所以ab =6.由已知及余弦定理得,a 2+b 2-2ab cos C =7, 故a 2+b 2=13,从而(a +b )2=25,所以a +b =5. 所以△ABC 的周长为5+7.6.已知圆内接四边形ABCD 的边长分别为AB =2,BC =6,CD =DA =4,求四边形ABCD 的面积.解析:如图,连接BD ,则四边形ABCD 的面积S =S △ABD +S △BCD=12AB ·AD sin A +12BC ·CD sin C .∵A +C =180°, ∴sin A =sin C .∴S =12(AB ·AD +BC ·CD )·sin A=12(2×4+6×4)sin A =16sin A . 在△ABD 中,由余弦定理,BD 2=AB 2+AD 2-2AB ·AD cos A=22+42-2×2×4cos A =20-16cos A . 在△BCD 中,由余弦定理,BD 2=BC 2+CD 2-2BC ·CD cos C=62+42-2×6×4cos C =52-48cos C . ∴20-16cos A =52-48cos C . ∵A +C =180°, ∴cos A =-cos C , ∴64cos A =-32, ∴cos A =-12,∴A =120°.∴S =16sin 120°=8 3.。
配套K12高中数学第一章解三角形1.2应用举例1.2.3解决有关测量角度的问题教案新人教A版必修5
1.2.3 解决有关测量角度的问题一、知识与技能能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题二、过程与方法本节课是在学习了相关内容后的第三节课,学生已经对解法有了基本的了解,这节课应通过综合训练强化学生的相应能力.除了安排课本上的例6,还针对性地选择了既具典型性又具有启发性的1~2道例题,强调知识的传授更重能力的渗透.课堂中要充分体现学生的主体地位,重过程,重讨论,教师通过导疑、导思让学生有效、积极、主动地参与到探究问题的过程中来,逐步让学生自主发现规律,举一反三.三、情感态度与价值观培养学生提出问题、正确分析问题、独立解决问题的能力,并在教学过程中激发学生的探索精神.教学重点能根据正弦定理、余弦定理的特点找到已知条件和所求角的关系.教学难点灵活运用正弦定理和余弦定理解关于角度的问题导入新课设置情境设问师前面我们学习了如何测量距离和高度,这些实际上都可转化为已知三角形的一些边和角求其余边的问题.然而在实际的生活中,人们又会遇到新的问题,仍然需要用我们学过的解三角形的知识来解决,大家身边有什么例子吗?生像航海,在浩瀚无垠的海面上如何确保轮船不迷失方向,保持一定的航速和航向生 飞机在天上飞行时,如何确定地面上的目标师 实际生活当中像这样的例子很多,今天我们接着来探讨这方面的测量问题.推进新课【例1】(幻灯片放映)如图,一艘海轮从A 出发,沿北偏东的方向航行67.5 n mile 后到达海岛B ,然后从B 出发,沿北偏东32°的方向航行54.0 n mile 后到达海岛C .如果下次航行直接从A 出发到达C ,此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到0.1°,距离精确到0.01 n mile) [合作探究学生看图思考.师 要想解决这个问题,首先应该搞懂“北偏东75°的方向”. 生 这是方位角.生 这实际上就是解斜三角形,由方位角的概念可知,首先根据三角形的内角和定理求出AC 边所对的角∠ABC ,即可用余弦定理算出AC 边,再根据正弦定理算出AC 边和AB 边的夹角∠CAB ,就可以知道AC 的方向和路程.师 根据大家的回答,我们已经很清楚解题思路.下面请同学写一下解题过程生解:在△ABC 中,∠ABC =180°- 75°+ 32°=137°,根据余弦定理,22222cos 67.554.0267.554.0cos137,AC AB BC AB BC ABC =+-⨯⨯∠=+-⨯⨯⨯︒根据正弦定理,,sin sin ABC ACCAB BC ∠=∠15.113137sin 0.54sin sin ︒=∠=∠AC ABC BC CAB所以∠CAB ≈19.0°,75°-∠CAB答:此船应该沿北偏东56.0°的方向航行,需要航行师这道题综合运用了正、余弦定理,体现了正、余弦定理在解斜三角形中的重要地位.【例2】某巡逻艇在A 处发现北偏东45°相距9海里的C 处有一艘走私船,正沿南偏东75°的方向以10海里/时的速度向我海岸行驶,巡逻艇立即以14海里/时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船? [合作探究师 你能否根据题意画出方位图?(在解斜三角形这一节里有好多都要把实际问题画出平面示意图,图画的好坏有时也会影响到解题,这是建立数学模型的一个重要方面) 生甲 如右图.师 从图上看这道题的关键是计算出三角形的各边,还需要什么呢生 引入时间这个参变量,可以设x 小时后追上走私船生 如图,设该巡逻艇沿AB 方向经过x 小时后在B 处追上走私船,则CB =10x, AB =14x,AC =9,∠ACB =75°+45°=120°,则由余弦定理,可得(14x)2=92+(10x)2-2×9×10x co s120°,∴化简得32x 2-30x-27=0,即x=23或x=-169(舍去). 所以BC = 10x =15,AB又因为sin∠BAC =1435232115120sin =⨯=︒AB BC ,∴∠BAC =38°13′,或∠BAC =141°47′(钝角不合题意,舍去)答:巡逻艇应该沿北偏东83°13′方向去追,经过1.4小时才追赶上该走私船师 这位同学是用正、余弦定理来解决的,我们能不能都用余弦定理来解决呢?生 同上解得BC =15,AB在△ABC 中,由余弦定理,得14112192225441812cos 222=⨯⨯-+=∙-+=∠AB AC BC AB AC CAB∴∠CAB∴巡逻艇应沿北偏东83°13′的方向追赶,经过1.4小时追赶上该走私船.课堂练习 课本第18页练习答案:运用余弦定理求得倾斜角α约为[方法引导解三角形的应用题时,通常会遇到两种情况:(1)已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之.(2)已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解. [知识拓展1.如图,海中小岛A 周围38海里内有暗礁,船正向南航行,在B 处测得小岛A 在船的南偏东30°,航行30海里到C 处,在C 处测得小岛A 在船的南偏东45°,如果此船不改变航向,继续向南航行,有无触礁的危险?解:在△ABC 中,BC =30,B =30°, ∠ACB =180°-45°=135°, ∴A由正弦定理知B AC A BC sin sin =,∴︒=︒30sin 15sin 30AC .∴21561515cos 6015sin 30sin 30+=︒=︒︒=AC .∴A 到BC 所在直线的距离为AC ·sin45°=(156+152)·22=15(3+1)≈40.98>38(海里), ∴不改变航向,继续向南航行,无触礁的危险. 答:不改变航向,继续向南航行,无触礁的危险.2.如图,有两条相交成60°角的直线XX′、YY′,交点是O ,甲、乙分别在O X 、O Y 上,起初甲在离O 点3千米的A 点,乙在离O 点1千米的B 点,后来两人同时以每小时4千米的速度,甲沿XX′方向,乙沿Y′Y 方向步行,(1)起初,两人的距离是多少?(2)用包含t 的式子表示t 小时后两人的距离; (3)什么时候两人的距离最短? 解:(1)因甲、乙两人起初的位置是A 、B , 则AB 2=OA 2+OB 2-2OA ·OBco s60°=32+12-2×3×1×21∴起初,两人的距离是7千米.(2)设甲、乙两人t 小时后的位置分别是P 、Q , 则A P=4t,B 当0≤t≤43时,PQ 2=(3-4t)2+(1+4t)2-2(3-4t)(1+4t)co s60°=48t 2-当t >43时,PQ 2=(4t-3)2+(1+4t)2-2(4t-3)(1+4t)co s120°=48t 2-24t+7, 所以,PQ =48t 2-24t+7. (3)PQ 2=48t 2-24t+7=48(t-41)2∴当t =41时,即在第15分钟末,PQ 最短. 答:在第15分钟末,两人的距离最短. 课堂小结在实际问题(航海、测量等)的解决过程中,解题的一般步骤和方法,及正弦、余弦定理相关知识点的熟练运用.应用解三角形知识解决实际问题时,要分析和研究问题中涉及的三角形,及其中哪些是已知量,哪些是未知量,应该选用正弦定理还是余弦定理进行求解.应用解三角形知识解决实际问题的解题步骤:①根据题意作出示意图;②所涉及的三角形,搞清已知和未知;③选用合适的定理进行求解;④给出答案. 布置作业课本第22页习题1.2第9、10、11题解决有关测量角度的问题例1 例2 课堂练习布置作业本课时是一个有关测量角度的问题,即课本上的例6.在这里,能否灵活求解问题的关键是正弦定理和余弦定理的选用,有些题目只选用其一,或两者混用,这当中有很大的灵活性,需要对原来所学知识进行深入的整理、加工,鼓励一题多解,训练发散思维.借助计算机等媒体工具来进行演示,利用动态效果,能使学生更好地明辨是非、掌握方法.。
2021-2022版高中数学 第一章 解三角形 1.2.2 解三角形的实际应用举例—高度、角度问题素
2021-2022版高中数学第一章解三角形1.2.2 解三角形的实际应用举例—高度、角度问题素养评价检测新人教A版必修5年级:姓名:解三角形的实际应用举例——高度、角度问题(20分钟35分)1.如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60 m,则河流的宽度BC等于( )A.240(+1) mB.180(-1) mC.120(-1) mD.30(+1) m【解析】选C.如图,在△ACD中,∠CAD=90°-30°=60°,AD=60 m,所以CD=AD·tan 60°=60(m).在△ABD中,∠BAD=90°-75°=15°,所以BD=AD·tan 15°=60(2-)(m).所以BC=CD-BD=60-60(2-)=120(-1)(m).2.一艘客船上午9:30在A处测得灯塔S在它的北偏东30°方向上,之后它以每小时32海里的速度继续沿正北方向匀速航行,上午10:00到达B处,此时测得船与灯塔S相距8海里,则灯塔S在B处的( )A.北偏东75°B.南偏东15°C.北偏东75°或南偏东15°D.以上方位都不对【解析】选C.根据题意画出示意图,如图,由题意可知AB=32×=16,BS=8,∠A=30°.在△ABS中,由正弦定理得=,sin S===,所以S=45°或135°,所以B=105°或15°,即灯塔S在B处的北偏东75°或南偏东15°.3.如图,在O点测量到远处有一物体做匀速直线运动,开始时物体位于P点,1分钟后,其位置在Q点,且∠POQ=90°,再过1分钟,该物体位于R点,且∠QOR=30°,则tan∠OPQ的值为( )A. B. C. D.3【解析】选 C.由题意知,PQ=QR,设其长为1,则PR=2.在△OPR中由正弦定理得=.在△OQR中,由正弦定理得=,则tan∠OPQ===.4.如图所示,要测量底部不能到达的某电视塔AB的高度,在塔的同一侧选择C,D两个观测点,且在C,D两点测得塔顶的仰角分别为45°,30°,在水平面上测得∠BCD=120°,C,D两地相距500 m,则电视塔AB的高度是( )A.100 mB.400 mC.200 mD.500 m【解析】选D.设AB=x,在Rt△ABC中,∠ACB=45°,所以BC=AB=x;在Rt△ABD中,∠ADB=30°,所以BD=x.在△BCD中,∠BCD=120°,CD=500 m,由余弦定理得(x)2=x2+5002-2×500xcos 120°,解得x=500 m.5.如图所示,为测量一水塔AB的高度,在C处测得塔顶的仰角为75°,后退20米到达D处测得塔顶的仰角为30°,则水塔的高度为米.【解析】在△ADC中,∠DAC=75°-30°=45°.由正弦定理得AC==10,所以AB=ACsin 75°=10×=5(+1)(米).答案:5(+1)6.如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求sin α的值.【解析】(1)依题意,∠BAC=120°,AB=12,AC=10×2=20,∠BCA=α,在△ABC中,由余弦定理,得BC2=AB2+AC2-2AB×AC×cos ∠BAC=122+202-2×12×20×cos 120°=784,解得BC=28,所以渔船甲的速度为=14海里/小时.(2)在△ABC中,因为∠BAC=120°,AB=12,BC=28,∠BCA=α,由正弦定理得=,即sin α===,所以sin α的值为.(30分钟60分)一、选择题(每小题5分,共25分)1.在某个位置测得某山峰仰角为θ,对着山峰在地面上前进600 m后测得仰角为2θ,继续在地面上前进200 m以后测得山峰的仰角为4θ,则该山峰的高度为( )A.200 mB.300 mC.400 mD.100 m【解析】选B.如图所示,△BED,△BDC为等腰三角形,BD=ED=600,BC=DC=200.在△BCD中,由余弦定理可得cos 2θ==,所以2θ=30°,4θ=60°.在Rt△ABC中,AB=BC·sin 4θ=200×=300(m).2.当太阳光与水平面的倾斜角为60°时,一根长为 2 m的竹竿如图所示放置(0°<α<90°),要使它的影子最长,则竹竿与地面所成的角是( )A.15°B.30°C.45°D.60°【解析】选 B.设影子长为x m,竹竿与地面所成的角为α.由正弦定理得=,得x=sin(120°-α).因为30°<120°-α<120°,所以当120°-α=90°,即α=30°时,x有最大值.即竹竿与地面所成的角是30°时,影子最长.3.一艘游轮航行到A处时看灯塔B在A的北偏东75°,距离为12海里,灯塔C在A的北偏西30°,距离为12海里,该游轮由A沿正北方向继续航行到D处时再看灯塔B在其南偏东60°方向,则此时灯塔C位于游轮的( )。
[推荐学习]高中数学第一章解三角形1.2应用举例1.2.4解决有关三角形计算的问题教案新人教A版必修
[ 介绍学习 ] 高中数学第一章解三角形 1.2 应用举例 1.2.4 解决有关三角形计算的问题教课设计新人教 A 版必修1.2.4 解决有关三角形计算的问题项内容目课改正与题解决有关三角形计算的问题创新一、知识与技术1. 能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题 ;2. 掌握三角形的面积公式的简单推导和应用.教二、过程与方法1. 本节课增补了三角形新的面积学公式,奇妙设疑,指引学生证明,同目时总结出该公式的特色,顺序渐进地标详细运用于有关的题型 ;2. 本节课的证明题表现了前面所学知识的生动运用,教师要松手让学生探索,使学生在详细的论证中灵巧掌握正弦定理和余弦定理的特色,能不名一格,一题多解.只需学生自行掌握了两定理的特色,就能很快宽阔思想,有益地进一步打破难点.三、感情态度与价值观1.让学生进一步稳固所学的知识,加深对所学定理的理解,提升创新能力;2.进一步培育学生研究和发现能力,让学生在研究中体验成功的欢乐.教教课要点推导三角形的面积公式并学解决简单的有关题目 .重、教课难点利用正弦定理、余弦定理来难求证简单的证明题 .点教学多媒体课件准备教导入新课学 [ 设置情境]过师从前我们就已经接触过了三角形程的面积公式,今日我们来学习它的另一个表达公式.在△ ABC中,边 BC、CA、AB上的高分别记为h A、h B、h C,那K12的学习需要努力专业专心坚持么它们怎样用已知边和角表示?生 h A=b sin C=c sin B,h B=c sin A=a sin C,h C=a sin B=B sin A.师依据从前学过的三角形面积公式S 1ah2,应用以上求出的高的公式如h A=b sin C代入,能够推导出下边的三角形面积公式: S 1 absin C ,大家能推出2其余的几个公式吗?生同理,可得 S1 bcsin A , S1 ac sin B .22师除了知道某条边和该边上的高可求出三角形的面积外,知道哪些条件也可求出三角形的面积呢?生如能知道三角形的随意两边以及它们夹角的正弦即可求解 . 推动新课【例 1】在△ABC中,依据以下条件,2求三角形的面积(S精准到0.1c m).( 1 )已知A=14.8 c m,C =23.5c m,B=148.5°;(2 )已知B=62.7 °,C =65.8 °,B =3.16 c m;( 3 )已知三边的长分别为A=41.4 c m,B=27.3 c m,C =38.7 c m.师这是一道在不一样已知条件下求三角形的面积的问题,与解三角形问题有亲密的关系,我们能够应用解三角形面积的知识,察看已知什么,尚缺什么,求出需要的元素,就能够求出三角形的面积.〔生口答,师书写过程〕解:(1)应用S1 ac sin B,得2S= 1×14.8 ×23.5 ×sin148.5 °≈ 90.229( c m).b c bsin C(2) 依据正弦定理,sin B sin C, c,sin BS 1bc sin A 1 b2 sin C sin A. 22sin BA= 180 °-( B+ C)= 180 °- (62.7 °+ 65.8 °)=51.5 °,S1 3.162sin 65.8 sin 51.52 ).2sin 62.7≈ 4.0( c m(3)依据余弦定理的推论,得c2a2b238.7 241.4227.32≈ 0.769 cosB2ca238.741.47,≈0.638 4,sinB 1 cos2 B10.76972应用S1 ac sin B得2S=1×41.4 ×38.7 ×0.638224≈511.4( c m).生正弦定理和余弦定理的运用除了记着正确的公式以外,贵在活用,领会公式变形的技巧以及公式的惯例变形方向,并进一步推出新的三角形面积公式.【例 2】在某市进行城市环境建设中 , 要把一个三角形的地区改造成室内公园 , 经过丈量获得这个三角形地区的三条边长分别为 68 m,88 m,127 m, 这个地区的面积是多少?(精准到0.12c m)?师你能把这一实质问题化归为一道数学题目吗?生此题可转变为已知三角形的三边,求角的问题,再利用三角形的面积公式求解.〔由学生解答,老师巡视并对学生解答进行讲评小结〕解:设 A=68 m,B=88 m,C=127m,依据余弦定理的推论,c2a2b21272682882cosB2ca212768≈ 0.753 2,sin B 10.75322≈ 0.657 8,应用S=12 ac sin B,S=1×68×127×0.6578≈22840.38(m 2).2答:这个地区的面积是 2 840.38 m.【例 3】在△ABC中,求证:(1) a2c 2b2sin 2 A 2sin2 B ;sin C(2)a2+b2+c2=2(bcco s A+caco s B+abco s C).[ 合作研究 ]师这是一道对于三角形边角关系恒等式的证明问题,察看式子左右两边有什么样的特色 ?生等式左侧是三边的平方关系,而等式的右侧是三个角的正弦的平方关系,能够联想到用正弦定理来证明 .师等式两边分别是边和角,因此我们能够选正弦定理来证明,这样我们能够把一边的边或角都转变成两边同样的边或角,即“化边为角”或“化角为边”,这也是我们在证明三角恒等式时常常用的方法.证明:(1)依据正弦定理,可设a b ck ,sin A sin B sin C明显 k≠0,因此左边 =a 2b2k 2 sin 2 A k 2 sin 2 B sin 2 A sin2 B= 右c 2k 2 sin 2 C sin 2 C边.师那对于第二小题又该怎么化呢?生等式左侧仍旧是三边的平方关系,而等式的右侧既有角又有边,并且是两边和两边夹角的余弦的积的关系,因此联想到用余弦定理来证明.师很好,哪位来板演一下?生证明:(2)依据余弦定理的推论,右侧 =2(bc b2c2a2ca c 2 a 2b2ab a 2b2 c 2)2bc2ca2ab=( b2+c2-a2)+( c2+a2- b2)+( a2+b2- c2)= a2+b2+c2=左边.1.已知在△ABC中,∠B=30°,B=6, C=63,求 A 及△ ABC的面积 S.提示:解有关已知两边和此中一边对角的问题,着重分状况议论解的个数.同时解有关三角形的题目还要注意议论最后解能否切合规律,防备丢解或增解,养成查验的习惯 , 但应用余弦定理睬免除议论 .答案: A=6,S=93; A=12,S=183.2.判断知足以下条件的三角形形状,(1) aco s A =bco s B;(2)sin C = sin A sin B .cos A cos B提示:利用正弦定理或余弦定理,“化边为角”或“化角为边”,正弦定理和余弦定理的运用除了记着正确的公式以外,贵在活用,领会公式变形的技巧以及公式的惯例变形方向 .(1)师大家试试分别用两个定理进行证明.生(余弦定理)得a b2c2a2b c2 a 2b2,2bc2ca∴c2( a2- b2)= a4- b4=( a2+b2)( a2- b2).∴a2=b2或 c2=a2+b2.∴依据边的关系易得是等腰三角形或直角三角形 .生(正弦定理)得sin Aco s A=sin Bco s B. ∴sin2 A=sin2 B.∴2A=2B.∴A=B.∴依据角的关系易得是等腰三角形.师依据该同学的做法,获得的只有一种状况,而第一位同学的做法有两种,请大家思虑,谁的正确呢?生第一位同学的正确.第二位同学遗漏了另一种状况,由于 sin2 A=sin2 B, 有可能推出 2A与 2B两个角互补,即2A+2B=180°,A+B=90°.(2)(解略)直角三角形 .[ 知识拓展 ]如图,在四边形ABCD中,∠ADB=∠BCD=75°,∠ACB=∠BDC=45°, DC =3,求:(1)AB的长;(2)四边形 ABCD的面积.略解:( 1 )因为∠BCD=75°,∠ACB=45°,因此∠ ACD=30°.又由于∠BDC=45°,所以∠DAC=180°-( 75°+45°+ 30°) =30°. 因此AD=DC = 3 .在△BCD 中,∠CBD=180°-(75°+ K12的学习需要努力专业专心坚持45°) =60°,因此BD DC, BD 3 sin 7562 .sin 75sin 60sin 602ABD22在△中,AB AD=+2BD- 2×AD×BD×co s75°= 5,因此,得AB=5.(2)S △ABD= 1×AD×BD×sin75 °=3 2 3 .24同理,S =33.△ BCD4因此四边形 ABCD的面积633.S4讲堂练习课本第 21 页练习第 1、2 题.讲堂小结利用正弦定理或余弦定理将已知条件转变为只含边的式子或只含角的三角函数式,而后化简并观察边或角的关系,进而确立三角形的形状.特别是有些条件既可用正弦定理也可用余弦定理甚至能够二者混用.正弦定理和余弦定理的运用除了记着正确的公式以外,贵在活用,领会公式变形的技巧以及公式的惯例变形方向,并K12的学习需要努力专业专心坚持进一步推出新的三角形面积公式.解有关已知两边和此中一边对角的问题,着重分状况议论解的个数.同时解有关三角形的题目还要注意议论最终解能否切合规律,防备丢解或增解,养成查验的习惯.部署作业课本第 22 页习题 1.2 第 12、14、15题.解决有关三角形计算的问题板例 1例 2例 3书变题 1设补充练习:计变题 2本节的例7 和例 8 说了然在不一样已知条件下三角形面积问题的常看法法,即在不一样已知教条件下求三角形面积的问题,与解三角形有密学切的关系 . 我们能够应用解三角形的知识, 求出反需要的元素 , 进而求出三角形的面积 . 已知三角思形的三边求三角形面积在历史上是一个重要的问题 . 在西方有海伦公式 , 在我国数学史上有秦九韶的“三斜求积公式” , 教科书在阅读与思K12的学习需要努力专业专心坚持考取对此作了介绍 , 在习题中要修业生加以证明.例 9 是对于三角形边角关系恒等式的证明问题 , 课程标准要求不在这种问题上作过于烦杂的训练 , 教科书例题限于直接用正弦定理和余弦定理能够证明的问题 .K12的学习需要努力专业专心坚持。
高中数学 第一章 解三角形 1.2 应用举例素材 新人教A
1.2应用举例
【重要知识】
1、仰角和俯角
在视线和水平线所成的角中,视线在水平线上方的叫做仰角;
视线在水平线下方的叫做俯角。
2、方向角:
方向角是正北方向或正南方向到目标方向线所成的锐角。
方向角的取值范围是:;
如:北偏东60°
3、方位角:
以指向正北方向的线作为0°,顺时针转到目标方向线的水平角叫做方位角。
方位角的取值范围是:
如:目标S的方向角是南偏西70°,则目标的方位角为250 °
4、坡角和坡度
坡面与地平面所成的角度,叫做坡角;
坡面的铅直高度和水平宽度的比叫做坡度或者坡比,常用字母i表示。
坡比是坡角的正切值。
近年高中数学第1章解三角形1.2应用举例第1课时解三角形的实际应用举例探究案讲练互动新人教A版必修
2019版高中数学第1章解三角形1.2 应用举例第1课时解三角形的实际应用举例探究案讲练互动新人教A版必修5编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019版高中数学第1章解三角形1.2 应用举例第1课时解三角形的实际应用举例探究案讲练互动新人教A版必修5)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019版高中数学第1章解三角形1.2 应用举例第1课时解三角形的实际应用举例探究案讲练互动新人教A版必修5的全部内容。
1。
2 应用举例第1课时解三角形的实际应用举例[A 基础达标]1. 如图,设A、B两点在河的两岸,一测量者在A所在的同侧河岸边选定一点C,测出AC的距离为50 m,∠ACB=45°,∠CAB=105°后,就可以计算出A、B两点间的距离为( )A.50错误! m B.50错误! mC.25 2 m D。
错误! m解析:选 A.由正弦定理得ABsin ∠ACB=错误!。
又∠CBA=180°-45°-105°=30°,故AB=错误!=错误!=50错误! (m).2.如图,要测出山上一座天文台BC的高,从山脚A测得AC=60 m,天文台最高处B的仰角为45°,天文台底部C的仰角为15°,则天文台BC的高为()A.20错误! m B.30错误! mC.20错误! m D.30错误! m解析:选B.由题图,可得∠B=45°,∠BAC=30°,故BC=错误!=错误!=30错误! m,故选B。
3.如图,一艘海轮从A处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处.C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是()A.10 2 海里B.10错误!海里C.20错误!海里D.20错误!海里解析:选A.由题目条件,知AB=20海里,∠CAB=30°,∠ABC=105°,所以∠ACB=45°。
高一数学《1.2 解三角形应用举例 (4)》
第一章解三角形1.2解三角形应用举例第四课时一、教学内容分析:《普通高中课程标准数学教科书·数学(必修5)》(人教A版)第一章《解三角形》:21⋅解三角形应用举例的第4课,是在学生已掌握用正弦定理, 余弦定理(重要的解三角形工具)解决解决一些有关测量距离与高度的实际问题后,研究三角形新的面积公式. 另外本节课的证明题体现了前面所学知识的生动运用.教学过程中,教师要放手让学生摸索,使学生在具体的论证中灵活把握正弦定理和余弦定理的特点,能不拘一格,一题多解。
只要学生自行掌握了两定理的特点,就能很快开阔思维,有利地进一步突破难点。
二、学生学习情况分析:本节课是在学习了相关内容后的第四节课,需要学生进一步巩固所学的知识,加深对所学定理的理解,学生的解题思维不开阔,创新能力与推理论证能力有待加强,三、教学目标:让学生能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题, 掌握三角形的面积公式的简单推导和应用,能证明三角形中的简单的恒等式.四、教学重点与难点:本节课的重点是三角形面积公式的利用及三角形中简单恒等式的证明;难点是利用正弦定理、余弦定理来求证简单的证明题.五、教学过程设计:(一)复习准备:问题1:接触过哪些三角形的面积公式?问题2:已知两边及夹角如何求三角形面积?(二)讲授新课:1.面积公式:问题3:∆ABC中,边BC、CA、AB上的高分别记为ha 、hb、h c,那么它们如何用已知边和角表示?问题4:如何计算三角形面积?结论:三角形面积公式,S=12absin C,S=12bcsin A,S=12acsinB2. 课堂练习:在∆ABC中,根据下列条件,求三角形的面积S(精确到0.1cm2)(讨论思路)(1)已知a=14 cm, c=24 cm, B=150︒;(2)已知B=60︒, C=45︒, b=4 cm;(3)已知三边的长分别为a=3 cm,b=4 cm, c=6 cm分析:这是一道在不同已知条件下求三角形的面积的问题,与解三角形问题有密切的关系,我们可以应用解三角形面积的知识,观察已知什么,尚缺什么?求出需要的元素,就可以求出三角形的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.4 解决有关三角形计算的问题一、知识与技能1.能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题2.掌握三角形的面积公式的简单推导和应用.二、过程与方法1.本节课补充了三角形新的面积公式,巧妙设疑,引导学生证明,同时总结出该公式的特点,循序渐进地具体运用于相关的题型2.本节课的证明题体现了前面所学知识的生动运用,教师要放手让学生摸索,使学生在具体的论证中灵活把握正弦定理和余弦定理的特点,能不拘一格,一题多解.只要学生自行掌握了两定理的特点,就能很快开阔思维,有利地进一步突破难点.三、情感态度与价值观1.让学生进一步巩固所学的知识,加深对所学定理的理解,提高创新能力;2.进一步培养学生研究和发现能力,让学生在探究中体验成功的愉悦.教学重点推导三角形的面积公式并解决简单的相关题目教学难点利用正弦定理、余弦定理来求证简单的证明题导入新课[设置情境师以前我们就已经接触过了三角形的面积公式,今天我们来学习它的另一个表达公式.在△ABC中,边BC、CA、AB上的高分别记为h A、h B、h C,那么它们如何用已知边和角表示?生h A =b sin C =c sin Bh B =c sin A =a sin C h C =a sin B =B sin A师 根据以前学过的三角形面积公式ah S 21=,应用以上求出的高的公式如h A =b sin C 代入,可以推导出下面的三角形面积公式:C ab S sin 21=,大家能推出其他的几个公式吗? 生 同理,可得A bc S sin 21=,B ac S sin 21=师 除了知道某条边和该边上的高可求出三角形的面积外,知道哪些条件也可求出三角形的面积呢?生 如能知道三角形的任意两边以及它们夹角的正弦即可求解推进新课【例1】 在△ABC 中,根据下列条件,求三角形的面积S (精确到0.1c m 2)(1)已知A =14.8 c m,C =23.5 c m,B (2)已知B =62.7°,C =65.8°,B =3.16 c(3)已知三边的长分别为A =41.4 c m,B =27.3 c m,C =38.7 c师 这是一道在不同已知条件下求三角形的面积的问题,与解三角形问题有密切的关系,我们可以应用解三角形面积的知识,观察已知什么,尚缺什么,求出需要的元素,就可以求出三角形的面积. 〔生口答,师书写过程〕 解:(1)应用B ac S sin 21=,得S=21×14.8×23.5×sin148.5°≈90.9(c m 2(2)根据正弦定理,BCb c C c B b sin sin ,sin sin == BA C b A bc S sin sin sin 21sin 212==A = 180°-(B +C )= 180°-(62.7°+ 65.8°)=51.5°,︒︒︒⨯⨯=7.62sin 5.51sin 8.65sin 16.3212S ≈4.0(c m 2).(3)根据余弦定理的推论,得4.417.3823.274.417.382cos 222222⨯⨯-+=-+=ca b a c B227697.01B cos 1sinB -≈-=应用B ac S sin 21=得S=21×41.4×38.7×0.638 4≈511.4(c m 2生 正弦定理和余弦定理的运用除了记住正确的公式之外,贵在活用,体会公式变形的技巧以及公式的常规变形方向,并进一步推出新的三角形面积公式.【例2】在某市进行城市环境建设中,要把一个三角形的区域改造成室内公园,经过测量得到这个三角形区域的三条边长分别为68 m,88 m,127 m,这个区域的面积是多少?(精确到0.1 c m 2)? 师 你能把这一实际问题化归为一道数学题目吗?生 本题可转化为已知三角形的三边,求角的问题,再利用三角形的面积公式求解.〔由学生解答,老师巡视并对学生解答进行讲评小结〕 解:设A =68 m,B =88 m,C =127m,根据余弦定理的推论,68127288681272cos 222222⨯⨯-+=-+=ca b a c B27532.01sin -=B应用S=21 ac sin B ,S=21×68×127×0.657 8≈2 840.38(m 2答:这个区域的面积是2 840.38 m 2. 【例3】在△ABC 中,求证:(1)CBA c b a 222222sin sin sin +=+(2)a 2+b 2+c 2=2(bcco s A +caco s B +abco s C )[合作探究师 这是一道关于三角形边角关系恒等式的证明问题,观察式子左右两边有什么样的特点生等式左边是三边的平方关系,而等式的右边是三个角的正弦的平方关系,可以联想到用正弦定理来证明师 等式两边分别是边和角,所以我们可以选正弦定理来证明,这样我们可以把一边的边或角都转化成两边一样的边或角,即“化边为角”或“化角为边”,这也是我们在证明三角恒等式时经常用的方法. 证明:(1)根据正弦定理,可设k CcB b A a ===sin sin sin显然 k≠0,所以左边=CBA C kB k A k c b a 222222222222sin sin sin sin sin sin +=+=+=右边师 那对于第二小题又该怎么化呢?生 等式左边仍然是三边的平方关系,而等式的右边既有角又有边,而且是两边和两边夹角的余弦的积的关系,所以联想到用余弦定理来证明师 很好,哪位来板演一下? 生 证明:(2)根据余弦定理的推论,右边=)222(2222222222abc b a ab ca b a c ca bc a c b bc-++-++-+=(b 2+c 2- a 2)+(c 2+a 2-b 2)+(a 2+b 2-c 2)=a 2+b 2+c 2=左边1.已知在△ABC 中,∠B =30°,B =6,C =63,求A 及△ABC 的面积提示:解有关已知两边和其中一边对角的问题,注重分情况讨论解的个数.同时解有关三角形的题目还要注意讨论最终解是否符合规律,防止丢解或增解,养成检验的习惯,但应用余弦定理会免去讨论答案:A =6,S=93;A =12,S=1832.判断满足下列条件的三角形形状, (1)aco s A = bco s B(2)sin C =BA B A cos cos sin sin ++提示:利用正弦定理或余弦定理,“化边为角”或“化角为边”,正弦定理和余弦定理的运用除了记住正确的公式之外,贵在活用,体会公式变形的技巧以及公式的常规变形方向(1)师 大家尝试分别用两个定理进行证明.生(余弦定理)得cab ac b bc a c b a 22222222-+⨯=-+⨯,∴c 2(a 2-b 2)=a 4-b 4=(a 2+b 2)(a 2-b 2). ∴a 2=b 2或c 2=a 2+b 2.∴根据边的关系易得是等腰三角形或直角三角形. 生(正弦定理)得sin Aco s A =sin Bco s B .∴sin2A =sin2B .∴2A =2B .∴A =B . ∴根据角的关系易得是等腰三角形师 根据该同学的做法,得到的只有一种情况,而第一位同学的做法有两种,请大家思考,谁的正确呢?生 第一位同学的正确.第二位同学遗漏了另一种情况,因为sin2A =sin2B ,有可能推出2A 与2B 两个角互补,即2A +2B =180°,A +B(2)(解略)直角三角形[知识拓展如图,在四边形ABCD 中,∠ADB =∠BCD =75°,∠ACB =∠BDC =45°,DC =3,求:(1)AB 的长(2)四边形ABCD 的面积略解:(1)因为∠BCD =75°,∠ACB =45°, 所以∠ACD又因为∠BDC =45°,所以∠DAC =180°-(75°+ 45°+ 30°)=30°.所以AD =DC =3在△BCD 中,∠CBD =180°-(75°+ 45°)=60°,所以22660sin 75sin 3,60sin 75sin +=︒︒=︒=︒BD DC BD在△ABD 中,AB 2=AD 2+ BD 2-2×AD ×BD ×co s75°= 5,所以,得AB =5(2)S △ABD =21×AD ×BD ×sin75°=4323+.同理,S △BCD =433+所以四边形ABCD 的面积4336+=S课堂练习课本第21页练习第1、2题. 课堂小结利用正弦定理或余弦定理将已知条件转化为只含边的式子或只含角的三角函数式,然后化简并考察边或角的关系,从而确定三角形的形状.特别是有些条件既可用正弦定理也可用余弦定理甚至可以两者混用.正弦定理和余弦定理的运用除了记住正确的公式之外,贵在活用,体会公式变形的技巧以及公式的常规变形方向,并进一步推出新的三角形面积公式.解有关已知两边和其中一边对角的问题,注重分情况讨论解的个数.同时解有关三角形的题目还要注意讨论最终解是否符合规律,防止丢解或增解,养成检验的习惯. 布置作业课本第22页习题1.2第12、14、15题解决有关三角形计算的问题例1 例2 例3 变题补充练习: 变题2接用正弦定理和余弦定理可以证明的问题。