22.1.2二次函数y=ax2的图象和性质1
22.1.2二次函数y=ax2的图象和性质
知识点三
画二次函数的图象,列表时取的点越多,图象往往越准确,但是 一般采用“五点法”或“七点法”画图,画图时应注意: (1)描点法所画的图象只是整个函数图象的一部分,是近似的, 由于x可取一切实数,所以图象是向两方无限延伸的; (2)点取得越多,图象画得越精确,在限定条件下(即限定自变量 的取值范围)或在实际问题中,函数的图象必须要根据自变量 的取值范围取其中的一部分; (3)所画图象必须平滑(符合点的发展变化的趋势),尤其是顶点 不能画成“尖”形的.
22.1.2
二次函数y=ax2的图象和性质
知识点一
知识点二
知识点三
知识点一二次函数y=x2的图象和性质 二次函数y=ax2+bx+c的图象是抛物线,对称轴与抛物线的交点叫 做顶点,顶点是抛物线的最低点或最高点. 对于特殊的二次函数y=x2,对称轴是y轴,顶点是(0,0),顶点是它的 最低点,在对称轴的左侧,抛物线从左到右下降;在对称轴的右侧,抛 物线从左到右上升.也就是说,当x<0时,y随x的增大而减小;当x>0 时,y随x的增大而增大. 名师解读:理解和记忆二次函数的性质时,可以从y=x2得到启发, 其他二次函数的图象及性质可类比y=x2的图象和性质,主要从开口 方向、对称轴、顶点、增减性等几个方面去进行.
知识点一
知识点二
知识点三
知识点二y=ax2的图象 一般地,抛物线y=ax2的对称轴是y轴,顶点是原点.当a>0时,抛物线 的开口向上,顶点是抛物线的最低点;当a<0时,抛物线的开口向下, 顶点是抛物线的最高点.对于y=ax2,|a|越大,抛物线的开口越小. 名师解读:二次函数y=ax2的图象是抛物线,结合图象可知,二次项 系数a的符号决定了开口方向,|a|决定了开口的大小.
人教版九年级上册数学 22.1.2 二次函数 y=ax2的图象和性质课件
a<0
1 -5-4-3-2-1 -1o1 2 3 4 5 x -2 -3 -4 -5 -6 -7 -8 -9 1 -10 y x2
y
2
y 2 x 2
y x2
总结性质
1.形如二次函数 y=ax2 的图象都是顶点为
( 0 , 0) ______ 的抛物线,反之,顶点在(0,0)
2 y = ax 的抛物线的形式是_________.
体验画图
抛物线的定义:
实际上,二次函数的图象是抛物线,
它们开口向上或向下,一般地,二次
函数 y ax bx c 的图象叫做抛
2 2
物线 y ax bx c .
体验画图
3. 拓展与延伸: 3 个点, (1)画二次函数的图象一般需要___
哪些点比较关键? 抛物线
yx
2
轴 对称图形,对称 是__
y 10 9 8 7 6 5 4 3 2 1 -5-4-3-2-1 O1 2 3 4 5 x
a>0
体验画图
(3)以上都是当a >0时,二次函数 y ax 的图象,
2
那么当 a<0时,试在同一直角坐标系画出二次函数:
1 2 y x ,y x ,y 2 x 2 的图象. 2
2
关于 y 轴对称 原点(0,0)
对称性
顶点
总结提高
2. 二次项系数 a 对形如 y=ax2 的函数值 y 又有
何影响?对图象又有何影响?
y=ax2
开口
a>0 开口向上
a<0 开口向下
增减性 在对称轴左侧递减 在对称轴左侧递增 在对称轴右侧递增 在对称轴右侧递减
LOGO
人教版九年级数学上册22.1.2《二次函数y=ax2的图象和性质》教案
人教版九年级数学上册22.1.2《二次函数y=ax2的图象和性质》教案一. 教材分析人教版九年级数学上册第22.1.2节《二次函数y=ax^2的图象和性质》是九年级数学的重要内容,主要让学生了解二次函数的图象特征和性质。
通过本节课的学习,学生能理解二次函数的一般形式,掌握二次函数的图象特征,了解二次函数的增减性和对称性,从而为后续的函数学习打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了函数的基本概念,具备了一定的函数知识。
但对于二次函数的图象和性质,可能还存在一定的困惑。
因此,在教学过程中,教师需要关注学生的学习情况,针对学生的实际问题进行讲解,引导学生理解和掌握二次函数的图象和性质。
三. 教学目标1.让学生理解二次函数的一般形式,掌握二次函数的图象特征。
2.让学生了解二次函数的增减性和对称性,能运用二次函数的性质解决实际问题。
3.培养学生的观察能力、分析能力和解决问题的能力。
四. 教学重难点1.二次函数的一般形式和图象特征。
2.二次函数的增减性和对称性。
五. 教学方法1.采用问题驱动法,引导学生主动探究二次函数的图象和性质。
2.利用多媒体辅助教学,直观展示二次函数的图象,帮助学生理解。
3.采用小组合作学习,培养学生的团队协作能力。
六. 教学准备1.多媒体教学设备。
2.二次函数图象和性质的相关教学素材。
3.学生分组合作学习的材料。
七. 教学过程导入(5分钟)教师通过提问方式引导学生回顾一次函数和正比例函数的图象和性质,为新课的学习做好铺垫。
同时,教师可以利用多媒体展示二次函数的图象,让学生初步感受二次函数的特点。
呈现(10分钟)教师给出二次函数的一般形式y=ax^2,让学生观察并分析二次函数的图象特征。
学生通过观察多媒体展示的二次函数图象,总结出二次函数的开口方向、顶点坐标等特征。
操练(10分钟)教师给出几个二次函数的实例,让学生分析其图象特征。
学生通过小组合作学习,探讨并分析二次函数的增减性和对称性。
22.1.2二次函数y=ax2的图象和性质 参考解析
22.1.2二次函数y=ax2的图象和性质课前预习1.二次函数y=ax2的图象是一条抛物线,对称轴是y 轴,顶点坐标是(0,0).当a>0时,抛物线开口向上,在对称轴的左侧,y随x的增大而减小,在对称轴的右侧,y随x的增大而增大,此时抛物线有最低点,即当x=0时,y取得最小值0 ;当a<0时,抛物线开口向下,在对称轴的左侧y随x的增大而增大,在对称轴的右侧,y随x的增大而减小,此时抛物线有最高点,即当x=0时,y取得最大值0 .|a|越大,抛物线的开口越小,|a|相等说明抛物线的开口大小相同.课堂练习知识点1 二次函数y=ax2的图象1.填写下列抛物线的开口方向、对称轴、顶点坐标以及最值.2.某同学画二次函数y=ax2的图象时,列下列表格:(1)将表格中的空格补全;(2)这个二次函数的解析式为y=-1x2;2(3)在平面直角坐标系中画出二次函数的图象.解:(3)函数图象如图所示.知识点2 二次函数y=ax2的性质3.已知二次函数y=(m-2)x2的图象开口向上,则m的取值范围是m>2 .4.下列各点在二次函数y=-2x2图象上的是( B )A.(-1,2)B.(-1,-2)C.(-2,-4)D.(-2,4)5.关于函数y=x2的图象,下列说法错误的是( C )A.它的图象是一条抛物线B.它的开口向上,且关于y轴对称C.它的顶点是抛物线的最高点D.它的顶点在原点处,坐标为(0,0)课时作业1.与二次函数y=x2开口大小相同,方向相反的二次函数是y=-x2.2.二次函数y=-0.2x2的图象是一条开口向下的抛物线,对称轴是y轴,顶点坐标为(0,0).当x= 0 时,函数有最大值0 ;当x >0时,y随x的增大而减小.3.关于函数y=3x2的性质,下列说法正确的是( C )A.无论x为任何实数,y的值总为正B.当x值增大时,y的值也增大C.它的图象关于y轴对称D.它的图象在第一、第三象限内4.已知A (-1,y ₁),B (-2,y ₂)都在二次函数y=x 2上,则y ₁,y ₂之间的大小关系是( C )A.y ₁>y ₂B.y ₁=y ₂C.y ₁<y ₂D.不能确定 5.二次函数y=ax 2(a >0)的图象经过点(3,4),则其图象一定经过点( C ) A.(3,-4) B.(-3,-4) C.(-3,4) D.(4,3)6.如图,当ab >0时,函数y=ax 2与函数y=bx+a 的大致图象是( C )7.二次函数y=2x 2,y=-2x 2,y=12x 2的共同性质是( B ) A.开口向上 B.对称轴是y 轴 C.都有最高点 D.y 随x 的增大而增大 8.已知函数y=(m+2)226m m x +-是关于x 的二次函数. (1)求m 的值;(2)当m 为何值时,函数图象的顶点为最低点? (3)当m 为何值时,函数图象的顶点为最高点? 解:(1)根据二次函数的定义得22026 2.m m m +≠+-=⎧⎨⎩,解得⎩⎨⎧-==.4,221m m ∴m 的值为2或-4;(2)当m=2时,抛物线的开口向上,函数有最小值,函数图象的顶点为最低点; (3)当m=-4时,抛物线的开口向下,函数有最大值,函数图象的顶点为最高点.9.在同一个平面直角坐标系中,画出下列函数的图象:①y=x 2;②y=12x 2;③y=-x 2;④y=-12x 2.从图象上对比,说出解析式中二次项系数a对抛物线的形状有什么影响?解:列表如下描点、连线,函数图象如图所示a的绝对值相同,抛物线的形状相同;a的绝对值越大,开口越小.10.如图,A,B为抛物线y=x2上的两点,且AB∥x轴,与y轴交于点C,以点O为圆心,OC为半径画圆,若2.解:∵AB=22∴BC=122∴点B的横坐标为2代入抛物线的解析式得y=2.∵AB∥x轴,∴点B与点C的纵坐标相同.∴OC=2,即圆的半径为2.由二次函数的对称性得,图中阴影部分的面积等于圆面积的14, 即S 阴影=14π×22=π.11.函数y=ax 2(a ≠0)的图象与直线y=2x-3交于点(1,b ). (1)求a 和b 的值;(2)x 在什么范围时,二次函数y=ax 2中的y 随x 的增大而增大? (3)求抛物线y=ax 2与直线y=-2的两个交点及顶点所围成的三角形的面积. 解:(1)把点(1,b )代入y=2x-3,得b=-1. ∴交点坐标为(1,-1). 把(1,-1)代入y=ax 2,得a=-1. ∴a=-1,b=-1;(2)由(1)得y=-x 2,当x ≤0时,y 随x 的增大而增大; (3)根据题意,得2,2.y x y ⎧=-⎨=-⎩解得2x y ⎧=⎪⎨=-⎪⎩或 2.x y ⎧=⎪⎨=-⎪⎩ ∴两交点坐标分别为(-2),(-2).故S △=12×。
二次函数y=ax2的图象和性质ppt课件
例4 如图, 四个二次函数的图象分别对应 ① y=ax2 ;② y=bx2;
③ y=cx2;④ y=dx2,且①与③,②与④分别关于x 轴对称.
(1)比较a,b,c,d 的大小; (2)说明a 与c,b 与d 的数量关系.
解:(1)由抛物线的开口方向,知 a > 0,b > 0,c < 0,d < 0,
由抛物线的开口大小,知 |a| > |b|,|c| > |d|, 因此a > b,c < d. ∴ a > b > d > c. (2)∵①与③,②与④分别关于x 轴对称,
∴①与③,②与④的开口大小相同,方向相反. ∴ a+c=0,b+d=0.
课堂练习
1、下列函数中,y总随x增大而减小的是( B )
归纳总结
位置开 开口向上,在x轴上方 开口向下,在x轴下方
口方向
a的绝对值越大,开口越小
对称性 顶点最值
关于y轴对称,对称轴方程是直线x=0 顶点坐标是原点(0,0)
当x=0时,y最小值=0 当x=0时,y最大值=0
增减性
在对称轴左侧递减 在对称轴左侧递增 在对称轴右侧递增 在对称轴右侧递减
1、如右图,观察函数y=( k-1)x2的图象, 则k的取值范围是 k>1 .
复习引入
1.二次函数的一般形式是怎样的? y=ax²+bx+c(a,b,c是常数,a≠ 0)
2.下列函数中,哪些是二次函数?
①
②
③
④
⑤
3.一次函数的图象是一条 直线.
4.通常怎样画一个函数的图象? 列表、描点、连线
那么,二次函数的图象会是什么样的图形呢?这节课我们 来学习最简单的二次函数y=ax2的图像
不同点: a的值越大,开口越小.
22.1.2二次函数y=ax2图像与性质
y=ax2+c (a≠0) 开口方向 顶点坐标 对称轴 增 减 性 极值
a>0 向上 (0 ,c) y轴
当x<0时, y随着x的增大而减小。 当x>0时, y随着x的增大而增大。
a<0 向下 (0 ,c) y轴
当x<0时, y随着x的增大而增大。 当x>0时, y随着x的增大而减小。
x=0时,y最小=c
x y = x2 · · · · · · -3 -2 -1 0 1 2 3 · · · · · ·
9
4
1
0
1
9
4
9
2. 根据表中x,y的数值在 坐标平面中描点(x,y) 3.连线 如图,再用平 滑曲线顺次连接各点, -3 2 就得到y = x 的图象.
y = x2
6
3 3
二次函数 y = x2的图象是一条曲线,它的形状类似 于投篮球时球在空中所经过的路线,只是这条曲线 开口向上,这条曲线叫做抛物线 y = x2 , 二次函数的图象都是抛物线, 它们的开口或者向 上或者向下. 一般地,二次函数 y = ax2 + bx + c (a≠0)的图象叫做抛物线y = ax2 + bx + c y = x2
m2+m
解②得:m1=-2, m2=1 由①得:m>-1 ∴ m=1 此时,二次函数为: y=2x2,
x ….. y=x2 …… y=x2+1 ……
-2 4
-1 1
0 0
y
8
1 1
2 4
…… ……
5
2
0
2
5
y=x2+1
函数y=x2+1的图象与y=x2的 图象的位置有什么关系? 函数y=x2+1的图 象与y=x2的图象 的形状相同吗?
22.1.2 二次函数y=ax2的图象和性质
x
… -2 -1
0
1
y=2x2 …
y=2x2
…
(2)描点并连线:
2
…
…
…
【思路点拨】 首先列表求出函数图象上点的坐标,进而描点连线画出图象即可.注 意连线时一定要用平滑的实线连接.
解:(1)8 2 0 2 8 -8 -2 0 -2 -8 (2)
类型二:二次函数y=ax2图象的性质的应用
例2 已知函数y=ax2的图象过点(1, 1 ).
2
增大而减小.
(2)在其图象上有两点(x1,y1),(x2,y2),且x1>x2>0,比较y1,y2的大小.
【思路点拨】 (2)二次函数y=ax2的对称轴为y轴,由(1)知a<0,所以在其对称轴 的右侧y随x的增大而减小,又x1>x2>0,故y1<y2. 解:(2)因为x1>x2>0, 所以y1<y2.
(1)简述函数y=ax2的性质;
2
【思路点拨】 (1)把点(1, 1 )代入函数y=ax2的解析式求得a的值,即可判定函
数的性质.
2
解:由题意得 a=- 1 ,所以 y=- 1 x2.
2
2
(1)函数 y=- 1 x2,开口向下,在 y 轴左侧 y 随 x 的增大而增大,在 y 轴右侧 y 随 x 的
22.1.2 二次函数y=ax2的图象和性质
1.二次函数y=ax2的图象
二次函数y=ax2的图象是 抛物线 ,对称轴与抛物线的交点叫做 顶点 ,顶点是
(0,0) ,当a>0时,抛物线的开口 向上 ,顶点是抛物线的最 低 点;当a<0时, 抛物线的开口 向下 ,顶点是抛物线的最 高 点.对于y=ax2,|a|越 大 ,抛物 线的开口越小.
数学人教版九年级上册22.1.2二次函数y=ax2的图象与性质
y=-x2
1. 二次函数的图像都是抛物线.
2. 抛物线y=ax2的图像性质: (1) 抛物线y=ax2的对称轴是y轴,顶点是原点. (2)当a>0时,抛物线的开口向上,顶点是 抛物线的最低点; 当a<0时,抛物线的开口向下,顶点是 抛物线的最高点; |a|越大,抛物线的开口越小 ;
y
a>0
o
x
a<0
跑的越快,遇到风的阻力越大。阻 力与成就相伴随。
没有斗狼的胆量,就不要牧羊。
望远镜---可以望见远的目标,却不 能代替你走半步。
只有脚踏实地的人,才能够说:路 ,就在我的脚下。
站在巨人的肩上是为了超过巨人。
成绩和劳动是成正比例的,有一分 劳动就有一分成绩。
你既然认准一条道路,何必去打听 要走多久。
抛物线 y= -x2在x轴下方(除顶点外),顶点 是它的最高点,开口向下,并且向下无限伸展, 当x=0时,函数y的值最大,最大值是0.
y
y x
2
在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小.
例1.画出函数y=x2、y=2x2、y= 2 x2的图象:
1
探究
顶点坐标
请同学们把所学的二次函数图象的知识归纳小结。
(0,0) 最低点 y轴 向上
增 减 增增 大 小 大大
(0,0) 最高点
y轴
向下
增 增 增减 大 大 大小
老师寄语:
• 老师能给你们的唯有这无形的知识,但老 师希望你们用这些无形的知识创造出有形 的世界,实现你们的中国梦,老师就是你 们的筑梦人!
一帆风顺,并不等于行驶的是一条 平坦的航线。
y=2x2
பைடு நூலகம்
人教版数学九年级上册《22.1.2二次函数y=ax2的图象和性质》说课稿1
人教版数学九年级上册《22.1.2二次函数y=ax2 的图象和性质》说课稿1一. 教材分析人教版数学九年级上册《22.1.2二次函数y=ax^2 的图象和性质》这一节,是在学生已经掌握了函数的概念、一次函数的图象和性质的基础上,进一步引导学生学习二次函数的图象和性质。
通过这一节的学习,使学生能够掌握二次函数的一般形式,了解二次函数的图象特征,以及掌握二次函数的性质。
教材通过丰富的例题和练习题,帮助学生巩固所学知识,提高解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的函数知识,对一次函数的图象和性质有了初步的了解。
但是,二次函数相对于一次函数来说,图象和性质更加复杂,需要学生有一定的抽象思维能力。
此外,学生可能对二次函数的图象和性质在实际问题中的应用还不够清晰,需要教师在教学中进行引导和启发。
三. 说教学目标1.知识与技能目标:让学生掌握二次函数的一般形式,了解二次函数的图象特征,掌握二次函数的性质。
2.过程与方法目标:通过观察、分析、归纳等方法,引导学生自主探究二次函数的图象和性质。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的探究精神和合作意识。
四. 说教学重难点1.教学重点:二次函数的一般形式,二次函数的图象特征,二次函数的性质。
2.教学难点:二次函数的图象和性质在实际问题中的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组讨论法等,引导学生主动探究,提高学生的参与度和积极性。
2.教学手段:利用多媒体课件,展示二次函数的图象和性质,使抽象的知识更加直观形象。
同时,利用练习题和案例,帮助学生巩固所学知识。
六. 说教学过程1.导入:通过复习一次函数的图象和性质,引出二次函数的一般形式,激发学生的学习兴趣。
2.探究二次函数的图象特征:让学生观察二次函数的图象,引导学生发现二次函数的顶点、开口方向等特征。
3.探究二次函数的性质:通过小组讨论,让学生归纳出二次函数的增减性、对称性等性质。
22.1.2二次函数y=ax的平方的图像及性质 (1)
函数解析式的二次项系数、一次项系数和常数项.
画出二次函数 y = x2 的图象.这个函数的图象有 什么特征? 解: 1. 列表:
x · · · -3 -2 -1 0 1 2 3 · · ·
宇宙之大,粒子之微,火箭之速, 化工之巧,地球之变,日用之繁, 无处不用数学. ——华罗庚
2 y=ax
用一根长为30cm的绳子围成一个矩形.
如果改变矩形的一边 AB的长x(cm),那么矩形 的哪些量随x的值的变化而变化?
A D
x (cm)
B
S (cm2) y (cm)
C
y 15 x = x+15
a<0
y o x
y=ax2(a<0)
开口方向 对称轴
开口向上 y轴 原点(0,0) 当 x<0 时,y 随 x 的 增大而减小; 当 x>0 时, y 随 x 的 增大而增大
开口向下
顶点 增减性
当 x<0 时,y 随 x 的 增大而增大; 当 x>0时,y 随 x 的 增大而减小
|a|越大,抛物线开口越小;|a|越小,抛物线开口越大.
归纳:当 a>0 时,二次函 数y = ax2 的图象有什么特征? y=x2
y = 1 x2 观察:你画的抛物线与抛物线 2 y = x2有什么共同点和不同点.
-4
-2 O
2
4x
类比 a>0 时的研究过程,研究当 a<0 时,二
次函数 y = ax2 的图象特征和性质.
1 画出函数y=-x2、y=-2x2、y=- x2的图象. 2
22.1.2二次函Y=ax2的图像和性质
6
3
倍 速 课 时 学 练
-3
3
y轴是抛物线y = x 2 的对称轴,抛物线y = x 2 与它的对称轴的交点(0, 0)叫做抛物线y = x2 的顶点,它是抛物线y = x 2 的最低点. 实际上,每条抛物线都有对称轴,抛物线与对称轴的交点叫做抛物线 的顶点.顶点是抛物线的最低点或最高点.
函数
-1
0
0.5
0 0.5
2
1
4.5
1.5
8
2
· · ·
· · · -2
-0.5
· · ·
y 2 x2
4.5
y x2
2
8 6 4 2
0.5
0
0.5 2 4.5 8
· · ·
y 2 x2
倍 速 课 时 学 练
-4 -2
y
2
1 2 x 2
a>0
4
y 5 4 3 2 1 –5 –4 –3 –2 –1 O –1 –2 –3 –4 –5
1 2 【例 2】 在同一直角坐标中,画出函数 y=2x 和 y=-2x2 的图象,并根据图象回答下列问题:
(1)说出这两个函数图象的开口方向、对称轴和顶点坐标; 1 2 (2)抛物线 y=2x ,当 x________时,抛物线上的点都在 x 轴上方;当 x>0 时,曲线自左向右逐渐________;它的顶点是 倍 图象的最________点; 速 (3)函数 y=-2x2,对于一切 x 的值,总有函数值 y_____0; 课 时 当 x<0 时,y 随 x 的增大而___ ____;当 x________时,y 有最 学 ________值为________. 练
图 22-1-1 倍 速 课 时 学 练 ①y=ax2;②y=bx2;③y=cx2;④y=dx2. 比较 a,b,c,d 的大小,用“>”连接.
九年级数学上册22二次函数22.1二次函数的图象和性质22.1.2二次函数y=ax2的图象和性质
4.函数y=ax2与y=-ax+b图象可能是(
)
B
第8页
5.下列函数中,当 x>0 时,y 随着 x 的增大而增大的是( D )
A.y=-x+1
B.y=-x-1
C.y=-x2
D.y=x2
*6.已知 m 为实数,下列各点中:A(m,-am2),B(m,-m),C(m2,
-m),D(-m,am2),抛物线 y=-ax2 一定不经过的点是____D_______.
22.1 二次函数图象和性质
22.1.2 二次函数y=ax2图象和性质
第1页
1.二次函数y=ax2图象 二次函数y=ax2图象是一条抛物线,它含有以下特点: (1)顶点在__原__点___、对称轴为__y_轴____; (2)当a>0时,抛物线开口____向__上_,a越大,抛物线开口越______小; 当a<0时,抛物线开口____向__下_,a越小,抛物线开口越_______小_. 2.二次函数y=ax2性质 (1)假如a>0,则: 当x<0时,y随x增大而_____减__小_; 当x>0时,y随x增大而_____增__大_; 当x=0时,y取最___小___值0,即y最小=__0____. (2)假如a<0,则: 当x<0时,y随x增大而_____增__大_; 当x>0时,y随x增大而_____减__小_; 当x=0时,y取最___大___值0,即y最大=__0__.
*7.如图,正方形的边长为 4,以正方形中心为原点建立平面直角 坐标系,作出函数 y=13x2 与 y=-13x2 的图象,则阴影部分的面积是
__8____.
*8.已知 a<-1,点(a-1,y1),(a,y2),(a+1,y3)都在函数 y
=x2 的图象上,则 y1,y2,y3 的大小关系是_y_1_1>__y_2_>__y__3__.
人教版九年级数学上册22.1.2《二次函数y=ax2的图象和性质》教学设计
人教版九年级数学上册22.1.2《二次函数y=ax2的图象和性质》教学设计一. 教材分析人教版九年级数学上册22.1.2《二次函数y=ax2的图象和性质》这一节主要介绍了二次函数y=ax2的图象和性质。
内容包括:二次函数的图象是抛物线,讨论了抛物线的开口方向、对称轴、顶点坐标等,并学习了如何通过a的值来判断抛物线的性质。
这部分内容是整个初中数学的重要知识点,对于学生来说,理解和掌握二次函数的图象和性质对于后续学习其他数学知识有着重要的基础作用。
二. 学情分析九年级的学生已经学习了函数的基本概念和一次函数、二次函数的定义,对于函数有一定的认识和理解。
但在学习这一节内容时,学生可能对于抛物线的性质和开口方向的判断还存在一定的困难。
因此,在教学过程中,需要引导学生通过观察、操作、思考、探究等活动,加深对二次函数图象和性质的理解。
三. 教学目标1.理解二次函数y=ax^2的图象和性质,能够判断抛物线的开口方向、对称轴和顶点坐标。
2.培养学生观察、操作、思考、探究的能力,提高学生解决问题的能力。
3.培养学生的合作意识和团队精神,提高学生的沟通表达能力。
四. 教学重难点1.二次函数y=ax^2的图象和性质的理解和掌握。
2.抛物线开口方向、对称轴和顶点坐标的判断。
五. 教学方法1.采用问题驱动法,引导学生通过观察、操作、思考、探究等活动,自主发现和总结二次函数的图象和性质。
2.采用小组合作学习法,让学生在小组内进行讨论、交流、分享,提高学生的合作意识和团队精神。
3.采用案例分析法,通过具体的例子,让学生理解和掌握二次函数的图象和性质。
六. 教学准备1.PPT课件2.教学工具(黑板、粉笔等)七. 教学过程1.导入(5分钟)通过一个实际问题,引出二次函数y=ax^2的概念,激发学生的学习兴趣。
2.呈现(10分钟)利用PPT课件,展示二次函数y=ax^2的图象和性质,让学生直观地感受和理解。
3.操练(10分钟)让学生通过观察、操作、思考、探究等活动,自主发现和总结二次函数的图象和性质。
22.1.2二次函数y=ax2的图像和性质教案
2.增加课堂互动,鼓励学生提问和发表观点,提高他们的课堂参与度。
3.丰富教学手段,运用多媒体、实物演示等手段,让学生更直观地理解二次函数的性质。
4.加强课后辅导,关注学生对知识点的掌握情况,及时解答他们的疑问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次函数y=ax2的基本概念。二次函数是形如y=ax2的函数,其中a为常数,且a≠0。它是描述物体抛物线运动、图形变换等方面的重要数学工具。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了二次函数y=ax2在抛物线运动中的应用,以及它如何帮助我们解决问题。
3.掌握二次函数y=ax2的增减性,会判断给定区间内函数的增减情况;
4.掌握二次函数y=ax2的最大(小)值及其取值情况。
二、核心素养目标
(1)通过探究二次函数y=ax2的图像和性质,培养学生的直观想象和逻辑推理能力;
(2)使学生能够运用数学语言表达二次函数的性质,提高学生的数学表达能力;
(3)培养学生运用二次函数解决实际问题的能力,增强数学应用意识;
4.学生小组讨论环节,大家围绕二次函数在实际生活中的应用展开了热烈的讨论。但在分享成果时,我发现有些小组的成果过于表面,没有深入挖掘二次函数的性质。为此,我将在接下来的教学中,加强引导,让学生更好地运用所学知识解决实际问题。
结回顾环节,学生对本节课的知识点有了更深入的理解,但仍有个别学生对二次函数的增减性和最值掌握不够牢固。在今后的教学中,我会加强这些知识点的巩固。
(4)通过小组合作学习,培养学生的团队协作能力和交流沟通能力;
(5)引导学生发现二次函数图像与性质之间的关系,提高学生的数据分析能力。
22.1.2 二次函数y=ax2的图象和性质
(1) 列表 (2) 描点 (3) 连线
x … -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 …
y=2x2 … 8 4.5 2 0.5 0 0.5 2 4.5 8 …
y = 2x2 y
10
9 8 7 6 5 4
3 2 1
y = x2 y = ▁21 x2
-5 -4 -3 -2 -1 0 1 2 3 4 5 x
二次函数 y = x2的图 象是轴对称图形, 对称轴是 y 轴
10 y
9 8
7 6 5 4 3 2 1
y = x2
-5 -4 -3 -2 -1 0 1 2 3 4 5 x
从左到右:上升 y随x:增大而增大
抛物线 y = x2与它的对称轴的 交点(0,0)叫做抛物线 y = x2的 顶点 它是抛物线 y = x2的最低点.
1
-3 -2 -1 0 1 2 3 x
(3) 连线
-1
y 1 x2
-2
2
-3
y x2
-4
-5 y 2 x2
22.1.2 二次函数 y=ax²的图象和性质
函数 y=- 1 x2(橘黄线), y=-2x2(绿线)的图象与
2
函数 y=-x2(蓝线)的图象相比,有什么共同点和不同点?
y
相同点:开口:向下, 顶点:原点(0,0)——最高点
实际上, 二次函数的图象都是抛物线,
一般地,二次函数 y = ax2 + bx + c(a≠0) 的图象叫做抛物线 y = ax2 + bx + c
y 10
9
8 7
y = x2
6
5
4
3
2
1
人教版数学九年级上册22.1.2二次函数y=ax2的图象和性质(第1课时)教学设计
三、课堂练习
1.让学生独立绘制二次函数y=ax^2的图象,并描述其性质。
2.通过小组合作,讨论并总结二次函数图象和性质的特点。
四、巩固拓展
1.让学生思考:如何通过观察二次函数图象,判断其开口方向和对称轴?
2.引导学生运用二次函数的图象和性质,解决实际问题。
4.注重分层教学,关注个体差异:
(1)针对不同层次的学生,设计不同难度的练习题,使每个学生都能在原有基础上得到提高。
(2)鼓励学生主动提问,及时解答他们的疑惑,帮助他们建立信心。
5.强化课堂小结,巩固所学知识:
(1)让学生用自己的话总结二次函数y=ax^2的图象和性质,加深对知识的理解和记忆。
(2)通过课堂小结,检查学生的学习效果,及时发现问题并进行针对性的辅导。
3.组织学生进行小组合作交流,培养学生团队协作能力和表达能力,激发他们学习数学的兴趣。
(三)情感态度与价值观
1.培养学生勇于探索、积极思考的学习态度,使他们体会数学学习的乐趣,增强学习数学的自信心。
2.通过对二次函数y=ax^2图象和性质的探究,使学生感受数学的对称美、秩序美,提高他们的审美情趣。
3.使学生认识到数学知识在实际生活中的广泛应用,激发他们学习数学的积极性,培养他们运用数学知识解决实际问题的意识。
3.培养学生运用数形结合思想,通过观察、分析、归纳二次函数图象和性质,提高解决问题的能力。
(二)过程与方法
1.通过引导学生在探索二次函数y=ax^2图象和性质的过程中,培养他们提出问题、分析问题、解决问题的能力。
2.引导学生运用数形结合思想,将二次函数的图象与性质相互验证,提高他们的逻辑思维能力和推理能力。
22.1 二次函数的图象和性质 公开课课件.ppt 22.1.2 二次函数y=ax2的图象和性质 公开课课件
22.1.2 二次函数y=ax2的图象和性质
1 . 由 解 析 式 画 函 数 图 象 的 步 骤 是 __列__表___ 、 __描__点____ 、 ___连__线_____.
2.一次函数y=kx+b(k≠0)的图象是__一__条__直__线___. 3.二次函数y=ax2(a≠0)的图象是一条__抛__物__线____,其对称轴为 ____y____轴,顶点坐标为___(_0_,__0_) ___. 4.抛物线y=ax2与y=-ax2关于_____x__轴对称.抛物线y=ax2, 当a>0时,开口向________上,顶点是它的最________低点;当a<0时, 开口向________,下顶点是它的最________点高,随着|a|的增大,开口 越来越________. 小
增大而减小;当x=0时,函数y有___最__大____(填“最大”或“最小”)
值是___0_____.
8.如图是一个二次函数的图象,则它的解析式为__y_=__12_x_2____,当x =___0_____时,函数图象的最低点为__(_0_,__0_)__.
9.已知二次函数y=mxm2-2. (1)求m的值; (2)当m为何值时,二次函数有最小值?求出这个最小值,并指出x 取何值时,y随x的增大而减小; (3)当m为何值时,二次函数的图象有最高点?求出这个最高点,并 指出x取何值时,y随x的增大而增大. 解:(1)m=±2 (2)m=2,y最小=0;x<0 (3)m=-2,最高点(0,0),x<0
10.二次函数y=
1 5
x2和y=5x2,以下说法:①它们的图象都是开口向
上;②它们的对称轴都是y轴,顶点坐标都是原点(0,0);③当x>0
时,它们的函数值y都是随着x的增大而增大;④它们开口的大小是一
22.1.2 二次函数y=ax2的图象和性质
3•. 单连击线此:处如编图辑,母再版用文平本滑样曲式线顺次连接各点,就得
到y =• x第2 二的级图象.
• 第三级
y
• 第四级 • 第五级
9
6
3
-4 -2 o 2 4 x
2019/9/21
5
单当击取更此多个处点编时,母函版数y标=x2的题图样象如式下:
y
• 单击此处编辑母版文本9样式
• 第二级
• 第三级
11
二单二击次函此数y处=a编x2的母性质版标题样式
问•题单1击:此观处察编图辑形母,版y随文x本的样变式化如何变化?
• 第二级
• 第三级
(-2,4)
• 第四级 (2,4)
• 第五级
(-1,1)
(1,1)
y x2
y ax2
2019/9/21
12
单击此处编母版标题样式知源自要点• 单击此处编辑母版文本样式 • 第对•二于第级三抛级物线 y = ax 2 (a>0)
的特点.(难点• )第五级 3.掌握形如y=ax²的二次函数图象的性质,并会应用.
(难点)
2019/9/21
2
导入新课
单击此处编母版标题样式
情境引入
• 单击此处编辑母版文本样式
• 第二级
• 第三级
• 第四级 • 第五级
2019/9/21
3
讲授新课
一单二击次函此数处y=a编x2的母图象版标题样式
典例精析
边空白部分面积,
∴S阴影部分面积之和=2×8=16.
2019/9/21
28
单击此处编母版标题样式
方法总结
• 单击二此次处函编数辑y=母a版x2的文图本象样关式于y轴对称,因此左 右两• 部第二分级折叠可以重合,在二次函数比较大小中,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
-3
-6 -9
往右上升;在对称轴的右侧,抛
物线从左往右位置开 口方向 对称性 顶点最值
a>0 y
O x
a<0 y O
x
开口向上,在x轴上方
开口向下,在x轴下方
关于y轴对称,对称轴方程是直线x=0
顶点坐标是原点(0,0)
当x=0时,y最小值=0 当x=0时,y最大值=0 在对称轴左侧递增 在对称轴右侧递减
向下
5.若抛物线y=ax2 (a ≠ 0),过点(-1,2). (1)则a的值是 2 ;
(2)对称轴是
y轴
,开口
向上
.
(3)顶点坐标是 (0,0) 抛物线在x轴的 上
,顶点是抛物线上的最 小 值 . 方(除顶点外).
(4) 若A(x1,y1),B(x2,y2)在这条抛物线上,且x1<x2<0, 则y1 > y2.
y = x2
· · ·
9
4
1
0
1
4
9
· · ·
2. 根据表中x,y的数值在坐标平面中描点(x,y) 3.连线 如图,再用平滑曲线顺次 连接各点,就得到y = x2 的图 象. 9
y=x2
6
3 -3 3
这条抛物线关于 y轴对称,y轴就 y 是它的对称轴.
y=x2
10 8 6 4 2
对称轴与抛物 线的交点叫做 抛物线的顶点.
3、如右图,观察函数y=( k-1)x2的图象,
则k的取值范围是
k>1
. O
4、说出下列抛物线的开口方向、对称轴和顶点: 开口方向 对称轴 顶点
x
y 3x 2
y 3x 2 1 2 y x 3
1 y x2 3
向上 向下 向上
y轴 y轴
(0,0)
(0,0)
y轴
y轴
(0,0) (0,0)
课堂小结
画
法
描点法
以对称轴为中 心对称取点
二次函数y=ax2 图象及性质
图
象
抛物线
轴对称图形 开口方向及大小
性
质
重点关注 4个方面
对 称 轴 顶点坐标 增 减 性
抛物线从左往右上升. 顶点坐标是(0,0);是抛物线 上的最低点.
6
3
-4 -2 O
2
4
x
练一练:画出函数y=-x2的图象,并根据图象说出它有哪些性质?
列表: x y=-x2 … … -3 -9 -2 -4 -1 -1 0 0 1 -1 2 -4
y -4 -2 0 2
3 -9
… …
x
顶点坐标是(0,0);是抛物线 上的最高点.对称轴是y轴。 在对称轴左侧,抛物线从左
增减性
在对称轴左侧递减 在对称轴右侧递增
三 抛物线y=ax2与y=-ax2的关系
问题1 观察下列图象,抛物线y=ax2与y=-ax2(a>0)的关系是什么?
y
二次项系数互为相反数, 开口相反,大小相同,
y=ax2
它们关于x轴对称.
O x
y=-ax2
当堂练习
1.函数y=2x2的图象的开口
向上 ,
y
二次函数 y = x2的图 象形如物体抛射时所经
过的路线,这条曲线叫
做抛物线 y = x2 ,
-4
-3
-2
-1
O -2
1
2
3
4
x
观察思考
x y=x2
… …
-3 9
-2 4
-1 1
0 0
1 1
2 4
3 9
y 9
… …
问题1 从二次函数y=x2的图象你发现了什么性质? 在对称轴左侧,抛物线从左
往右下降;在对称称轴的右侧,
对称轴
y轴 ,顶点是
(0,0)
;
, . O y O x x
在对称轴的左侧,y随x的增大而 减小 在对称轴的右侧, y随x的增大而 增大
2.函数y=-3x2的图象的开口 向下,
对称轴
y轴 ,顶点是 (0,0) ;
在对称轴的左侧, y随x的增大而 增大 , 在对称轴的右侧, y随x的增大而 减小 .
y
第二十二章 二次函数
22.1.2 二次函数y=ax2的图象和性质
导入新课
复习引入
(1)一次函数的图象是一条 直线 . (2) 通常怎样画一个函数的图象? 列表、描点、连线
画最简单的二次函数 y = x2 的图象
1. 列表:在y = x2 中自变量x可以是任意实数,列表表示几组对应值: x · · · -3 -2 -1 0 1 2 3 · · ·