初三解分式方程专题练习(附答案)

合集下载

初三数学分式方程试题答案及解析

初三数学分式方程试题答案及解析

初三数学分式方程试题答案及解析1.某商店经销一种庐山旅游纪念品,4月份的营业额为2000元,为扩大销售量,5月份该商店对这种纪念品打9折销售,结果销售量增加20件,营业额增加700元.(1)求该种纪念品4月份的销售价格;(2)若4月份销售这种纪念品获利800元,5月份销售这种纪念品获利多少元?【答案】(1)该种纪念品4月份的销售价格是50元;(2)5月份销售这种纪念品获利900元【解析】(1)等量关系为:4月份营业数量=5月份营业数量-20;(2)算出4月份的数量,进而求得成本及每件的盈利,进而算出5月份的售价及每件的盈利,乘以5月份的数量即为5月份的获利.试题解析:(1)设该种纪念品4月份的销售价格为x元.根据题意得,解得x=50,经检验x=50是原分式方程的解,且符合实际意义,∴该种纪念品4月份的销售价格是50元;(2)由(1)知4月份销售件数为=40(件),∴四月份每件盈利=20(元),5月份销售件数为40+20=60件,且每件售价为50×0.9=45(元),每件比4月份少盈利5元,为20-5=15(元),所以5月份销售这种纪念品获利60×15=900(元).【考点】分式方程的应用.2.解方程:【答案】x=1,x=-.【解析】设,得到关于y的方程,求出方程的解得到y的值,确定出x的值,经检验即可得到分式方程的解.试题解析:设,原方程化为y2-=2,即y2-2y-3=0,解得y1=3,y2=-1,当时,解得:x=1;当时,解得:x=-,经检验x=1,x=-都是原方程的根,则原方程的根为x=1,x=-.【考点】解分式方程.3.某车间接到加工200个零件的任务,在加工完40个后,由于改进了技术,每天加工的零件数量是原来的2.5倍,整个加工过程共用了13天完成.求原来每天加工零件的数量.【答案】8【解析】设原来每天加工零件的数量是x个,根据整个加工过程共用了13天完成,列出方程,再进行检验即可.试题解析:设原来每天加工零件的数量是x个,根据题意得:+=13,解得:x=8将检验x=8是原方程的解,答:原来每天加工零件的数量是8个.【考点】分式方程的应用4.已知方程﹣a=,且关于x的不等式组只有4个整数解,那么b的取值范围是()A.﹣1<b≤3B.2<b≤3C.8≤b<9D.3≤b<4【答案】D.【解析】去分母得:3﹣a﹣a2+4a=﹣1,即(a﹣4)(a+1)=0,解得:a=4或a=﹣1,经检验a=4是增根,分式方程的解为a=﹣1,已知不等式组解得:﹣1<x≤b,∵不等式组只有4个3整数解,∴3≤b<4.故选D.【考点】1.分式方程的解2.一元一次不等式组的整数解.5.在“神七”研制过程中,某厂某车间接到加工1500个精细螺丝的任务。

分式方程计算30题(附答案、讲解)

分式方程计算30题(附答案、讲解)

分式方程计算30题(附答案、讲解)郭氏数学公益教学博客中考分式方程计算30题(附答案、讲解)一.解答题(共30小题)1.(2011•自贡)解方程:3.(2011•咸宁)解方程5.(2011•海)解方程:7.(2011•台州)解方程:9.(2011•陕西)解分式方程:.10.(2011•綦江县)解方程:..8.(2011•随州)解方程:..6.(2011•潼南县)解分式方程:..4.(2011•乌鲁木齐)解方程:=+1..2.(2011•孝感)解关于的方程:.[键入文字]11.(2011•攀枝花)解方程:13.(2011•茂名)解分式方程:15.(2011•菏泽)解方程:17.(2011•常州)解分式方程;18.(2011•巴中)解方程:.20.(2010•遵义)解方程:[键入笔墨].12.(2011•宁夏)解方程:..14.(2011•昆明)解方程:.16.(2011•大连)解方程:.(2)解分式方程:=+1.21.(2010•重庆)解方程:+=122.(2010•孝感)解方程:24.(2010•恩施州)解方程:26.(2009•聊城)解方程:28.(2009•南平)解方程:30.(2007•孝感)解分式方程:+.23.(2010•西宁)解分式方程:25.(2009•乌鲁木齐)解方程:=127.(2009•南昌)解方程:29.(2008•昆明)解方程:.[键入笔墨]答案与评分标准一.解答题(共30小题)1.(2011•自贡)解方程:.考点:解分式方程。

专题:计算题。

分析:方程两边都乘以最简公分母y(y﹣1),得到关于y的一元一方程,然后求出方程的解,再把y的值代入最简公分母进行检验.解答:解:方程两边都乘以y(y﹣1),得2y2+y(y﹣1)=(y﹣1)(3y﹣1),2y2+y2﹣y=3y2﹣4y+1,3y=1,解得y=,检修:当y=时,y(y﹣1)=×(﹣1)=﹣≠,∴y=是原方程的解,∴原方程的解为y=.点评:此题考察相识分式方程,(1)解分式方程的根本头脑是“转化头脑”,把分式方程转化为整式方程求解.(2)解分式方程肯定留意要验根.2.(2011•孝感)解关于的方程:.考点:解分式方程。

初中数学:分式方程习题精选(附参考答案)

初中数学:分式方程习题精选(附参考答案)

初中数学:分式方程习题精选(附参考答案)1.某学校组织七、八两个年级学生到黄河岸边开展植树造林活动,已知七年级植树900棵与八年级植树1 200棵所用的时间相同,两个年级平均每小时共植树350棵。

求七年级年级平均每小时植树多少棵?设七年级年级平均每小时植树x 棵,则下面所列方程中正确的是( ) A .900350−x =1 200xB .900x =1 200350+xC .900350+x =1 200xD .900x=1 200350−x2.若关于x 的方程2x =m2x+1无解,则m 的值为( ) A .0 B .4或6 C .6D .0或43.解分式方程2x −1x+1=0去分母时,方程两边同乘的最简公分母是_____________. 4.分式方程3−x x−4+14−x=1的解是________.5.甲、乙两人做某种机器零件,甲每小时比乙每小时多做10个,甲做160个所用时间与乙做140个所用时间相等,甲、乙两人每小时分别做多少个?设甲每小时做x 个,则可列分式方程为__________. 6.(1)解方程:xx+1=2x 2−1(2)解方程:1x−1+1=32x−27.为了让学生崇尚劳动,尊重劳动,在劳动中提升综合素质,某校定期开展劳动实践活动。

甲、乙两班在一次体验挖土豆的活动中,甲班挖1 500千克土豆与乙班挖1 200千克土豆所用的时间相同。

已知甲班平均每小时比乙班多挖100千克土豆,问:乙班平均每小时挖多少千克土豆?8.已知点P (1-2a ,a -2)关于原点的对称点在第一象限内,且a 为整数,则关于x 的分式方程x+1x−a =2的解是( ) A .x =5 B .x =1 C .x =3D .不能确定9.某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个。

设原计划每天生产x 个,根据题意可列分式方程为( ) A .20x+10x+4=15 B .20x−10x+4=15 C .20x+10x−4=15 D .20x−10x−4=1510.照相机成像应用了一个重要原理,用公式1f =1u +1v (v ≠f )表示,其中f 表示照相机镜头的焦距,u 表示物体到镜头的距离,v 表示胶片(像)到镜头的距离。

中考复习分式方程应用题专题(含答案)

中考复习分式方程应用题专题(含答案)

分式方程应用题专题1、我国“八纵八横〞铁路骨干网的第八纵通道——温〔州〕福〔州〕铁路全长298千米.将于2021年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间〔结果精确到0.01小时〕.2、某商店在“端午节〞到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.3、南宁市2006年的污水处理量为10万吨/天,2007年的污水处理量为34万吨/天,2007年平均每天的污水排放量是2006年平均每天污水排放量的1.05倍,假设2007年每天的污水处理率比2006年每天的污水处理率提高40%〔污水处理率 污水处理量〕.污水排放量〔1〕求南宁市2006年、2007年平均每天的污水排放量分别是多少万吨?〔结果保存整数〕〔2〕预计我市2021年平均每天的污水排放量比2007年平均每天污水排放量增加20%,按照国家要求“2021年省会城市的污水处理率不低于...70%〞,那么我市2021年每天污水处理量在2007年每天污还需要增加多少万吨,才能符合国家规定的要求?水处理量的根底上至少..4、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要〔 〕A.6天B.4天 C.3天 D.2天5、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的选项是〔 〕A .66602x x =-B .66602x x =-C .66602x x =+D .66602x x=+ 6、张明与李强共同清点一批图书,张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程〔 〕A .9001500300x x=+ B .9001500300x x =- C .9001500300x x =+ D .9001500300x x =- 8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:通过这段对话,请你求出该地驻军原来每天加固的米数.9、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?10、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在方案每天加固的长度比原方案增加了20m ,因而完成河堤加固工程所需天数将比原方案缩短2天,假设设现在方案每天加固河堤x m ,那么得方程为 .11、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?〔利润=售价-进价,利润率100%=⨯利润进价〕12、某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原方案提高了20%,结果提前8小时完成任务.求原方案每小时修路的长度.假设设原方案每小时修x m ,那么根据题意可得方程 .13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?14、某书店老板去图书批发市场购置某种图书.第一次用1200元购书假设干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了〔不考虑其它因素〕?假设赔钱,赔多少?假设赚钱,赚多少?15、甲、乙两火车站相距1280千米,采用“和谐〞号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.16、某公司投资某个工程工程,现在甲、乙两个工程队有能力承包这个工程.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?17、A、B两地相距18公里,甲工程队要在A、B两地间铺设一条输送天然气管道,乙工程队要在A、B两地间铺设一条输油管道.甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?18、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,那么轮船在静水中的速度是千米/时.。

解分式方程专项练习200题(有答案)

解分式方程专项练习200题(有答案)

解分式方程专项练习200题(有答案)(1)=1﹣;(2)+=1.(3)+=1;(4)+2=.(5)+=(6)+=﹣3.(7)(8).(9)(10)﹣=0.(11)(12).(13)+3=(14)+=.(15)=;(16).(17)(18).(19)﹣=1 (20)=+1.(21);(22).(23)=1;(24).(25);(26).(27);(28).(29)=;(30)﹣=1.(31);(32).(33);(34).(35)=(36)=.(37)(38)(39)(40)(41);(42).(43)=(44).(45)(46)=1﹣.(47);(48).(49)(50).(51)=;(52)=1﹣.(53)(54).(55).(56);(57).(58)=;(59).(60)﹣1=(61)+=.(62)(63).(64)(65).(66).(67)﹣=.(68);(69).(70)(71).(72)(73).(74);(75).(76)(77).(78).(79)(80).(81)(82).(83)(84).(85)(86).(87);(88).(89)﹣1=;(90)﹣=.(91)﹣=1;(92)﹣1=.(93);(94).(95)﹣=1;(96)+=1.(97).(98).(99).(100)+=.(101).(102).(103)+2=.(104).(105)(106)﹣=.(107)+=1.(108)=+3.(109)(110)﹣=1(111)(112).(113)=1.(114)(115)=﹣.(116).(117).(118).(119).(120).(121);(122).(123)(124)(125).(126)(127)+=(128)(129);(130).(131)(132)(133)(134)(135)(136).(137)+2=(138)=﹣.(139).(140).(141).(142).(143).(144)(145).(146)(147)(148)﹣=1﹣.(149)(150).(151);(152).(153)(154)(155).(156)(157).(158);(159);(160);(161).(162);(163).(164);(165).(166);(167).(168)+=+.(169)﹣=﹣.(170)(171).(172);(173)=0.(174)(175).(176)(177).(178)(179).(180)(181).(182).(183)=;(184).(185)=;(186)=.(187);6yue28 (188);(189);(190).(191)=;(192).(193)=1;(194).(195)+=(196)=1;(197)(198)﹣=;(199)﹣=0(m≠n).(200)+=0;(201)+=﹣2.参考答案:(1)去分母得:2x=x﹣2+1,解得:x=﹣1,经检验x=﹣1是分式方程的解;(2)去分母得:x2﹣4x+4+4=x2﹣4,解得:x=﹣3,经检验x=﹣3是分式方程的解3.解方程:(3)去分母得:x﹣5=2x﹣5,解得:x=0,经检验x=0是分式方程的解;(4)去分母得:1﹣x+2x﹣4=﹣1,解得:x=2,经检验x=2是增根,分式方程无解(5)去分母得:x﹣1+2x+2=4,移项合并得:3x=3,解得:x=1,经检验x=1是增根,原分式方程无解;(6)去分母得:1﹣x+1=﹣3x+6,移项合并得:2x=4,解得:x=2,经检验x=2是增根,原分式方程无解(7)由原方程,得1﹣x﹣6+3x=﹣1,即2x=4,解得x=2.经检验x=2是增根.所以,原方程无解.(8)由原方程,得7(x﹣1)+(x+1)=6x,即2x=6,解得x=3.经检验x=3是原方程的根.所以,原方程的解为:x=3(9)方程两边同乘(x﹣2)(x+2),得x(x+2)+2=(x﹣2)(x+2),解得x=﹣3,检验:当x=﹣3时,(x﹣2)(x+2)≠0,所以x=﹣3是原分式方程的解;(10)方程两边同乘x(x﹣1),得3x﹣(x+2)=0,解得x=1,检验:当x=1时,x(x﹣1)=0,x=1是原分式方程的增根.所以,原方程无解(11)去分母额:x+1﹣2(x﹣1)=4,去括号得:x+1﹣2x+2=4,移项合并得:﹣x=1,解得:x=﹣1,经检验x=﹣1是增根,分式方程无解;(12)去分母得:3+x(x﹣2)=(x﹣1)(x﹣2),整理得:﹣2x+3x=2﹣3,解得:x=﹣1,经检验x=﹣1是分式方程的解(13)去分母得:1+3x﹣6=x﹣1,移项合并得:2x=4,解得:x=2,经检验x=2是增根,分式方程无解;(14)去分母得:2x﹣2+3x+3=6,移项合并得:5x=5,解得:x=1,经检验x=1是增根,分式方程无解(15)去分母得:2x=3x﹣9,解得:x=9,经检验x=9是分式方程的解;(16)去分母得:(x+1)2﹣4=x2﹣1,去括号得:x2+2x+1﹣4=x2﹣1,移项合并得:2x=2,解得:x=1,经检验x=1是增根,分式方程无解(17)去分母得:3(x﹣5)=2x,去括号得:3x﹣15=2x,移项得:3x﹣2x=15,解得:x=15,检验:当x=15时,3(x﹣5)≠0,则原分式方程的解为x=15;(18)去分母得:3(5x﹣4)+3(x﹣2)=4x+10,去括号得:15x﹣12+3x﹣6﹣4x=10,移项合并得:14x=28,解得:x=2,检验:当x=2时,3(x﹣2)=0,则原分式方程无解(19)去分母得:x(x+2)﹣1=x2﹣4,即x2+2x﹣1=x2﹣4,移项合并得:2x=﹣3,解得:x=﹣,经检验是分式方程的解;(20)去分母得:2x=4+x﹣2,移项合并得:x=2,经检验x=2是增根,分式方程无解(21)去分母得:6x﹣15﹣4x2﹣10x+4x2﹣25=0,移项合并得:﹣4x=40,解得:x=﹣10,经检验x=﹣10是分式方程的解;(22)去分母得:(x+1)2﹣4=x2﹣1,整理得:x2+2x+1﹣4=x2﹣1,移项合并得:2x=2,解得:x=1,经检验x=1是增根,分式方程无解(23)去分母得:x(x+2)+6(x﹣2)=x2﹣4,去括号得:x2+2x+6x﹣12=x2﹣4,移项合并得:8x=8,解得:x=1,经检验x=1是分式方程的解;(24)去分母得:4x﹣4+5x+5=10,移项合并得:9x=9,解得:x=1,经检验x=1是增根,分式方程无解(25)方程两边都乘以x﹣2得:x﹣1+2(x﹣2)=1,解方程得:x=2,∵经检验x=2是原方程的增根,∴原方程无解;(26)方程两边都乘以(x+1)(x﹣1)得:(x﹣1)2﹣16=(x+1)2,解得:x=﹣4,∵经检验x=﹣4是原方程的解,∴原方程的解是x=﹣4(27)解:两边同乘x﹣2,得:3+x=﹣2(x﹣2),去括号得:3+x=﹣2x+4,移项合并得:3x=1,解得:x=,经检验,x=是原方程的解;(28)两边同乘(x﹣1)(x+1),得:(x+1)2﹣4=x2﹣1,去括号得:x2+2x+1﹣4=x2﹣1,移项合并得:2x=2,解得:x=1,经检验,x=1是原方程的增根,则原方程无解(29)去分母得:2(x+1)=3x,去括号得:2x+2=3x,解得:x=2,经检验:x=2是原方程的解;(30)去分母得:(x+1)2﹣4=x2﹣1,去括号得:x2+2x+1﹣4=x2﹣1,解得:x=1,经检验:x=1 是原方程的增根,原方程无解(31)去分母得:2(x﹣9)+6=x﹣5,去括号得:2x﹣18+6=x﹣5,解得:x=7;(32)去分母得:3x+15+4x﹣20=2,移项合并得:7x=7,解得:x=1(33)去分母得:2x﹣18+6=x﹣5,移项合并得:x=7;(34)去分母得:5(x+2)﹣4(x﹣2)=3x,去括号得:5x+10﹣4x+8=3x,移项合并得:2x=18,解得:x=9(35)去分母得:6x=3x+3﹣x,移项合并得:4x=3,解得:x=,经检验x=是原方程的根;(36)去分母得:6x+x(x+1)=(x+4)(x+1),去括号得:6x+x2+x=x2+5x+4,移项合并得:2x=4,解得:x=2,经检验x=2是原方程的根(37)方程两边同乘(x﹣1)(x+1),得:2(x﹣1)﹣x=0,整理解得x=2.经检验x=2是原方程的解.(38)方程两边同乘(x﹣3)(x+3),得:3(x+3)=12,整理解得x=1.经检验x=1是原方程的解(39)方程两边同乘(x+1)(x﹣1),得:(x+1)2﹣4=(x+1)(x﹣1),整理解得x=1.检验x=1是原方程的增根.故原方程无解.(40)方程两边同乘x﹣5,得:3+x+2=3(x﹣5),解得x=10.经检验:x=10是原方程的解(41)方程两边同乘(x﹣3),得:2﹣x﹣1=x﹣3,整理解得x=2,经检验x=2是原方程的解;(42)方程两边同乘2(x﹣1),得:3﹣2=6x﹣6,解得x=,经检验x=是方程的根(43)原方程变形得2x=x﹣1,解得x=﹣1,经检验x=﹣1是原方程的根.∴原方程的解为x=﹣1.(44)两边同时乘以(x2﹣4),得,x(x﹣2)﹣(x+2)2=8,解得x=﹣2.经检验x=﹣2是原方程的增根.∴原分式方程无解(45)方程两边同乘(x﹣2),得:x﹣1﹣3(x﹣2)=1,整理解得x=2.经检验x=2是原方程的增根.∴原方程无解;(46)方程两边同乘(3x﹣8),得:6=3x﹣8+4x﹣7,解得x=3.经检验x=3是方程的根(47)方程两边同乘以(x﹣2),得1﹣x+2(x﹣2)=1,解得x=4,将x=4代入x﹣2=2≠0,所以原方程的解为:x=4;(48)方程两边同乘以(2x+3)(2x﹣3),得﹣2x﹣3+2x﹣3=4x,解得x=﹣,将x=﹣代入(2x+3)(2x﹣3)=0,是增根.所以原方程的解为无解(49)方程两边同乘以(x﹣1)(x+1)得,2(x﹣1)﹣(x+1)=0,解得x=3,经检验x=3是原方程的解,所以原方程的解为x=3;(50)方程两边同乘以(x﹣2)(x+2)得,(x﹣2)2﹣(x﹣2)(x+2)=16,解得x=﹣2,经检验x=﹣2是原方程的增根,所以原方程无解(51)方程两边同乘x(x+1),得5x+2=3x,解得:x=﹣1.检验:将x=﹣1代入x(x+1)=0,所以x=﹣1是原方程的增根,故原方程无解;(52)方程两边同乘(2x﹣5),得x=2x﹣5+5,解得:x=0.检验:将x=0代入(2x﹣5)≠0,故x=0是原方程的解(53)方程两边同乘以(x﹣3)(x+3),得x﹣3+2(x+3)=12,解得x=3.检验:当x=3时,(x﹣3)(x+3)=0.∴原方程无解;(54)方程的两边同乘(x﹣2),得1﹣2x=2(x﹣2),解得x=.检验:当x=时,(x﹣2)=﹣≠0.∴原方程的解为:x=(55).(55)方程的两边同乘(x+1)(x﹣1),得1﹣3x+3(x2﹣1)=﹣(x+1),3x2﹣2x﹣1=0,(4分)解得:.经检验,x1=1是原方程的增根,是原方程的解.∴原方程的解为x2=﹣.(56);(57).(56)方程两边同乘2(x﹣2),得:3﹣2x=x﹣2,解得x=.检验:当x=时,2(x﹣2)=﹣≠0,故原方程的解为x=;(57)方程两边同乘3(x﹣2),得:3(5x﹣4)=4x+10﹣3(x﹣2),解得x=2.检验:当x=2时,3(x﹣2)=0,所以x=2是原方程的增根(58)=;(59).(58)方程两边同乘以(2x+3)(x﹣1),得5(x﹣1)=3(2x+3)解得:x=﹣14,检验:当x=﹣14时,(2x+3)(x﹣1)≠0所以,x=﹣14是原方程的解;(59)方程两边同乘以2(x﹣1),得2x=3﹣4(x﹣1)解得:,检验:当时,2(x﹣1)≠0∴是原方程的解(60)方程两边都乘以2(3x﹣1)得:4﹣2(3x﹣1)=3,解这个方程得:x=,检验:∵把x=代入2(3x﹣1)≠0,∴x=是原方程的解;(61)原方程化为﹣=,方程两边都乘以(x+3)(x﹣3)得:12﹣2(x+3)=x ﹣3解这个方程得:x=3,检验:∵把x=3代入(x+3)(x﹣3))=0,∴x=3是原方程的增根,即原方程无解(62)方程的两边同乘(x﹣3),得2﹣x﹣1=x﹣3,解得x=2.检验:把x=2代入(x﹣3)=﹣1≠0.∴原方程的解为:x=2.(63)方程的两边同乘6(x﹣2),得3(x﹣4)=2(2x+5)﹣3(x﹣2),解得x=14.检验:把x=14代入6(x﹣2)=72≠0.∴原方程的解为:x=14(64)方程的两边同乘2(3x﹣1),得﹣2﹣3(3x﹣1)=4,解得x=﹣.检验:把x=﹣代入2(3x﹣1)=﹣4≠0.∴原方程的解为:x=﹣;(65)方程两边同乘以(x+2)(x﹣2),得x(x﹣2)﹣(x+2)2=8,x2﹣2x﹣x2﹣4x﹣4=8,解得x=﹣2,将x=﹣2代入(x+2)(x﹣2)=0,所以原方程无解(66)方程两边同乘以(x﹣2)得:1+(1﹣x)=﹣3(x ﹣2),解得:x=2,检验:把x=2代入(x﹣2)=0,即x=2不是原分式方程的解,则原分式方程的解为:x=2;(67)解:方程两边同乘以(x+1)(x﹣1)得:(x+1)﹣2(x﹣1)=1解得:x=2,检验:当x=2时,(x+1)(x﹣1)≠0,即x=2是原分式方程的解,则原分式方程的解为:x=2(68)方程的两边同乘2(x﹣2),得:1+(x﹣2)=﹣6,解得:x=﹣5.检验:把x=﹣5代入2(x﹣2)=﹣14≠0,即x=﹣5是原分式方程的解,则原方程的解为:x=﹣5.(69)方程的两边同乘x(x﹣1),得:x﹣1+2x=2,解得:x=1.检验:把x=1代入x(x﹣1)=0,即x=1不是原分式方程的解;则原方程无解(70)方程的两边同乘(2x+1)(2x﹣1),得:2(2x+1)=4,解得x=.检验:把x=代入(2x+1)(2x﹣1)=0,即x=不是原分式方程的解.则原分式方程无解.(71)方程的两边同乘(2x+5)(2x﹣5),得:2x(2x+5)﹣2(2x﹣5)=(2x+5)(2x﹣5),解得x=﹣.检验:把x=﹣代入(2x+5)(2x﹣5)≠0.则原方程的解为:x=﹣(72)原式两边同时乘(x+2)(x﹣2),得2x(x﹣2)﹣3(x+2)=2(x+2)(x﹣2),2x2﹣4x﹣3x﹣6=2x2﹣8,﹣7x=﹣2,x=.经检验x=是原方程的根.(73)原式两边同时乘(x2﹣x),得3(x﹣1)+6x=7,3x﹣3+6x=7,9x=10,x=.经检验x=是原方程的根(74)方程两边都乘以(x+1)(x﹣1)得,3(x+1)﹣(x+3)=0,解得x=0,检验:当x=0时,(x+1)(x﹣1)=(0+1)(0﹣1)=﹣1≠0,所以,原分式方程的解是x=0;(75)方程两边都乘以2(x﹣2)得,3﹣2x=x﹣2,解得x=,检验:当x=时,2(x﹣2)=2(﹣2)≠0,所以,原分式方程的解是x=(76)最简公分母为x(x﹣1),去分母得:3x﹣(x+2)=0,去括号合并得:2x=2,解得:x=1,将x=1代入得:x(x﹣1)=0,则x=1为增根,原分式方程无解;(77)方程变形为﹣=1,最简公分母为x﹣3,去分母得:2﹣x﹣1=x﹣3,解得:x=2,将x=2代入得:x﹣3=2﹣3=﹣1≠0,则分式方程的解为x=2(78)去分母得:1﹣x=﹣1﹣2(x﹣2),去括号得:1﹣x=﹣1﹣2x+4,解得:x=2,经检验x=2是增根,原分式方程无解(79)去分母得:x2﹣6=x2﹣2x,解得:x=3,经检验x=3是分式方程的解;(80)去分母得:x﹣6=2x﹣5,解得:x=﹣1,经检验x=﹣1是分式方程的解(81)去分母得:x=3x﹣6,移项合并得:2x=6,解得:x=3,经检验x=3是分式方程的解;(82)去分母得:(x﹣2)2﹣x2+4=16,整理得:﹣4x+4+4=16,移项合并得:﹣4x=8,解得:x=﹣2,经检验x=﹣2是增根,原分式方程无解(83)方程两边同时乘以y(y﹣1)得,2y2+y(y﹣1)=(3y﹣1)(y﹣1),解得y=.检验:将y=代入y(y﹣1)得,(﹣1)=﹣符合要求,故y=是原方程的根;(84)方程两边同时乘以x2﹣4得,(x﹣2)2﹣(x+2)2=16,解得x=﹣2,检验:将x=2代入x2﹣4得,4﹣4=0.故x=2是原方程的增根,原方程无解(85)去分母得:x﹣3+x﹣2=﹣3,整理得:2x=2,解得:x=1,经检验x=1是分式方程的解;(86)去分母得:x(x﹣1)=(x+3)(x﹣1)+2(x+3),去括号得:x2﹣x=x2﹣x+3x﹣3+2x+6,移项合并得:﹣5x=3,解得:x=﹣,经检验x=﹣是分式方程的解(87)原方程可化为:,方程的两边同乘(2x﹣4),得1+x﹣2=﹣6,解得x=﹣5.检验:把x=﹣5代入(2x﹣4)=﹣14≠0.∴原方程的解为:x=﹣5.(88)原方程可化为:,方程的两边同乘(x2﹣1),得2(x﹣1)+3(x+1)=6,解得x=1.检验:把x=1代入(x2﹣1)=0.∴x=1不是原方程的解,∴原方程无解.(89)去分母得:x(x+1)﹣x2+1=2,去括号得:x2+x﹣x2+1=2,解得:x=1,经检验x=1是增根,分式方程无解;(90)去分母得:(x﹣2)2﹣16=(x+2)2,去括号得:x2﹣4x+4﹣16=x2+4x+4,移项合并得:8x=﹣8,解得:x=﹣1,经检验x=﹣1是分式方程的解(91)去分母得:x(x+1)﹣2(x﹣1)=x2﹣1,去括号得:x2+x﹣2x+2=x2﹣1,解得:x=3,经检验x=是分式方程的解;(92)去分母得:x(x+2)﹣(x+2)(x﹣1)=3,去括号得:x2+2x﹣x2﹣x+2=3,解得:x=1,经检验x=1是增根,原方程无解(93)去分母得:3﹣2=6x﹣6,解得:x=,经检验是分式方程的解;(94)去分母得:15x﹣12=4x+10﹣3x+6,移项合并得:14x=28,解得:x=2,经检验x=2是增根,分式方程无解(95)去分母得:(x+1)2﹣4=x2﹣1,去括号得:x2+2x+1﹣4=x2﹣1,移项合并得:2x=2,解得:x=1,经检验x=1是增根,分式方程无解;(96)去分母得:x﹣5=2x﹣5,解得:x=0,经检验x=0是分式方程的解(97)解:方程的两边同乘(x+2)(x﹣2),得x+2+x﹣2=3,解得x=.检验:把x=代入(x+2)(x﹣2)=﹣≠0.∴原方程的解为:x=(98)去分母两边同时乘以x(x﹣2),得:4+(x﹣2)=3x,去括号得:4+x﹣2=3x,移项得:x﹣3x=2﹣4,合并同类项得:﹣2x=﹣2,系数化为1得:x=1.把x=1代入x(x﹣2)=﹣1≠0,∴原方程的解是:x=1(99)去分母得:x2﹣9=x2+3x﹣3,移项合并得:3x=﹣6,解得:x=﹣2,经检验x=﹣2是分式方程的解(100)方程的两边同乘(x+1)(x﹣1),得6x+x(x+1)=(x+4)(x﹣1),解得x=﹣1.检验:把x=﹣1代入(x+1)(x﹣1)=0.∴原方程无解(101)方程两边都乘以(x﹣1)(x+2)得,3﹣x(x+2)+(x+2)(x﹣1)=0,解得x=1,检验:当x=1时,(x﹣1)(x+2)=0,所以,x=1是原方程的增根,故原方程无解(102方程两边同时乘以(x+2)(x﹣2),得x(x﹣2)﹣3(x+2)(x﹣2)=8,整理,得x2+x﹣2=0,∴x1=﹣2,x2=1.经检验x1=﹣2是增根,x2=1是原方程的解,∴原方程的解为x2=1(103)方程两边都乘以x(x+1)去分母得:1+2x2+2x=2x2+x,解得x=﹣1,检验:当x=﹣1时,x(x+1)=﹣1×(﹣1+1)=0,所以,x=﹣1不是原方程的解,所以,原分式方程无解(104)原方程可化为:﹣=1,方程的两边同乘(2x﹣5),得x﹣6=2x﹣5,解得x=﹣1.检验:把x=﹣1代入(2x﹣5)=﹣7≠0.∴原方程的解为:x=﹣1(105)方程两边同乘(x﹣1)(x+2),得:x(x+2)=(x﹣1)(x+2)+3化简得2x=x﹣2+3,解得x=1.经检验x=1时,(x﹣1)(x+2)=0,1不是原方程的解,∴原分式方程无解(106)去分母得:x﹣1+2(x+1)=1,去括号得:x﹣1+2x+2=1,移项合并得:3x=0,解得:x=0,经检验x=0是分式方程的解(107)解:去分母得:x2+5x+2=x2﹣x,移项合并得:6x=﹣2,解得:x=﹣,经检验是分式方程的解(108)解:去分母得:x﹣1=3﹣x+3x+6,解得:x=﹣10,经检验x=﹣10是分式方程的解(109)解:去分母得:2(x+1)﹣4=5(x﹣1),2x+2﹣4﹣5x+5=0,﹣3x=﹣3,∴x=1,经检验x=1是增根舍去,所以原方程无解(110)解:﹣=1﹣=1(4分)=1,∴a=2.经检验a=2是原方程的解,故此方程的根为:a=2(111)解:原方程可化为:=1+,方程的两边同乘(2x﹣1),得x﹣1=2x﹣1+2,解得x=﹣2.检验:把x=﹣2代入(2x﹣1)=﹣5≠0.∴原方程的解为x=﹣2(112)解:.=,=,(x﹣1)2+9=3(x+2)x2﹣5x+4=0,x1=4,x2=1检验:把x1=4分别代入(x+2)(x﹣1)=18≠0,∴x1=4是原方程的解;把x2=1分别代入(x+2)(x﹣1)=0,∴x2=1不是原方程的解,∴x=4是原方程的解(113)解:原方程可化为:﹣=1,方程的两边同乘(a﹣1)2,得(a﹣1)(a+1)﹣a2=(a﹣1)2,﹣1=(a﹣1)2,因为(a﹣1)2是非负数,故原方程的无解(114)解:原方程化为:+=﹣,去分母,得5(x+3)+5(x﹣3)=﹣4(x+3)(x﹣3),去括号,整理,得2x2+5x﹣18=0,即(2x+9)(x﹣2)=0,解得x1=﹣,x2=2,经检验,当x=﹣或2时,5(x+3)(x﹣3)≠0,所以,原方程的解为x1=﹣,x2=2(115)解:方程的两边同乘15(m2﹣3+7m),得15(m﹣9)=﹣7(m2﹣3+7m),整理,得7m2+64m﹣156=0,解得m1=2,m2=﹣.检验:把m1=2代入15(m2﹣3+7m)≠0,则m1=2是原方程的根;把m2=﹣代入15(m2﹣3+7m)≠0,则m2=﹣是原方程的根.故原方程的解为:m1=2,m2=﹣(116)解:方程两边同乘以(x+1)(x﹣1),得(x+1)2﹣12=(x+1)(x﹣1),x2+2x+1﹣12=x2﹣1x2+2x﹣11﹣x2+1=0,2x﹣10=02x=10x=5,经检验:x=5是原分式方程的解,所以原方程的解为x=5(117)解:原方程可化为:﹣+=0,方程的两边同乘x2﹣4得:﹣6+2(x+2)=0,解得x=1.检验:把x=1代入x2﹣4=﹣3≠0,方程成立,∴原方程的解为:x=1(118)方程两边同乘最简公分母x(x﹣1),得x+4=3x,解得x=2,检验:当x=2时,x(x﹣1)=2×(2﹣1)=2≠0,∴x=2是原方程的根,故原分式方程的解为x=2(119)方程两边都乘以(x﹣1)(x+1)得,(x﹣2)(x+1)+3(x﹣1)=(x﹣1)(x+1),x2﹣x﹣2+3x﹣3=x2﹣1,2x=4,x=2,检验:当x=2时,(x﹣1)(x+1)≠0,所以,原分式方程的解x=2(120)方程的两边同乘2(x﹣2)(x+2),得3(x+2)﹣2x(x﹣2)=(x﹣2)(x+2),3x+6﹣2x2+4x=x2﹣4,3x2﹣7x﹣10=0,解得x1=﹣1,x2=.经检验:x1=﹣1,x2=是原方程的解(121)去分母得:x﹣3+2(x+3)=12,去括号得:x﹣3+2x+6=12,移项合并得:3x=9,解得:x=3,经检验x=3是增根,分式方程无解;(122)去分母得:x(x+2)﹣x﹣14=2x(x﹣2)﹣x2+4,去括号得:x2+2x﹣x﹣14=2x2﹣4x﹣x2+4,移项合并得:5x=18,解得:x=3.6,经检验x=3.6是分式方程的解(123)解:方程两边同乘3(x﹣3)得2x+9=3(4x﹣7)+6(x﹣3)解得x=3经检验x=3是原方程增根,∴原方程无解(124)方程两边同乘6(x﹣2),得3(5x﹣4)+3(x﹣2)=2(2x+5),整理得:15x﹣12+3x﹣6=4x+10,解得:x=2.检验:将x=2代入6(x﹣2)=6(2﹣2)=0.∴可得x=2是增根,原方程无解.(125)方程化为:=+1,方程两边都乘以(x+3)(x﹣1)得:x+3=4+(x+3)(x﹣1),整理得:x2+x﹣2=0,(x+2)(x﹣1)=0,解得:x1=﹣2,x2=1,检验:当x=1时,(x+3)(x﹣1)=0,即x=1是增根;当x=﹣2时(x+3)(x﹣1)≠0,即x=﹣2是方程的根,即原方程的解是x=﹣2.(126)方程两边同乘以x(x﹣1)得3(x﹣1)+2x=x+5,3x﹣3+2x=x+5,4x=8,x=2,经检验知:x=2是原方程的解(127).+=x2+2x+5(x+1)=(x+4)(x﹣1)4x=﹣9x=﹣检验:x=﹣时,(x+1)(x﹣1)≠0,所以x=﹣是原分式方程的解(128)解:原方程变形为,,,,∴x2﹣13x+42=x2﹣9x+20,∴x=,检验知x=是方程的根(129)方程的两边同乘x(x+1),得x2+x(x+1)=(2x+2)(x+1),解得x=﹣.检验:把x=﹣代入x(x+1)=﹣≠0.∴原方程的解为:x=﹣;(130)方程的两边同乘(x+1)(x﹣1),得2(x﹣1)+3(x+1)=﹣5,解得x=﹣.检验:把x=﹣代入(x+1)(x﹣1)=≠0.∴原方程的解为:x=﹣(131)方程的两边同乘2(x﹣3),得2(x﹣2)=x﹣3+2,解得x=3.检验:把x=3代入2(x﹣3)=0.x=3是原方程的增根,∴原方程无解.(132)方程的两边同乘(x﹣4),得5﹣x﹣1=x﹣4,解得x=4.检验:把x=4代入(x﹣4)=0.x=4是原方程的增根,∴原方程无解.(133)方程的两边同乘(x+1)(x﹣1),得2(x﹣1)+3(x+1)=6,解得x=1.检验:把x=1代入(x+1)(x﹣1)=0.x=1是原方程的增根,∴原方程无解.(134)方程的两边同乘(x+2)(x﹣2),得(x﹣2)2﹣16=(x+2)2,解得x=﹣2.检验:把x=﹣2代入(x+2)(x﹣2)=0.x=﹣2是原方程的增根,∴原方程无解.(135)方程的两边同乘x(x﹣1),得6x+3(x﹣1)=x+5,解得x=1.检验:把x=1代入x(x﹣1)=0.x=1是原方程的增根,∴原方程无解.(136)方程的两边同乘x(x﹣1),得x2﹣2(x﹣1)=x(x﹣1),解得x=2.检验:把x=2代入x(x﹣1)=2≠0.∴原方程的解为:x=2(137)去分母得:1+2x﹣6=x﹣4,解得:x=1,经检验x=1是分式方程的解;(138)去分母得:15x﹣12=4x+10﹣3(x﹣2),去括号得:15x﹣12=4x+10﹣3x+6,移项合并得:14x=28,解得:x=2,经检验x=2是增根,分式方程无解(139)解:去分母得:6x﹣3+5x=x+27,移项合并得:10x=30,解得:x=3.经检验x=3是分式方程的解(140)去分母得:3(x﹣2)﹣2(x﹣2)=2,即x﹣2=2,解得:x=4,经检验x=4是分式方程的解(141)解:去分母得:2﹣2x﹣3x﹣3=6,移项合并得:﹣5x=7,解得:x=﹣,经检验是分式方程的解(142)方程两边都乘以x(x+1)得,2(x+1)+6x=15,2x+2+6x=15,8x=13,x=,检验:当x=时,x(x+1)=×(+1)≠0,所以x=是分式方程的解,因此,原分式方程的解释x=(143)﹣=﹣,==方程两边都乘以(x+1)(x+2)(x+3)(x+4)得:(x+3)(x+4)=(x+1)(x+2)解方程得:x=﹣,经检验x=﹣是原方程的解,即原方程的解为x=﹣(144)原方程可化为:+2=,方程的两边同乘x﹣3,得1+2(x﹣3)=x﹣4,解得x=1.检验:把x=1代入x﹣3=﹣2≠0.∴原方程的解为:x=1;(145)方程的两边同乘(x+2)(x﹣2),得4+(x+2)(x+3)=(x﹣1)(x﹣2),解得x=﹣1.检验:把x=﹣1代入(x+2)(x﹣2)=﹣3≠0.∴原方程的解为:x=﹣1(146)方程两边同乘以(x+1)(2﹣x),得:(2﹣x)+3(x+1)=0;整理,得:2x+5=0,解得:x=﹣2.5;经检验,x=﹣2.5是原方程的解.(147)原方程可化为:(1+)﹣(1+)=(1+)﹣(1+),整理得:=,去分母得:(x+5)(x+7)=(x+1)(x+3),即:x2+12x+35=x2+4x+3,解得x=﹣4;经检验,x=﹣4是原方程的解(148)去分母得:7(x﹣1)+3(x+1)=x(x2﹣1)﹣x(x2﹣7),去括号得:7x﹣7+3x+3=x3﹣x﹣x3+7x,移项合并得:4x=4,解得:x=1,经检验x=1是增根,原分式方程无解(149)方程的两边同乘(2x﹣3),得:x﹣5=4(2x﹣3),解得:x=1.检验:把x=1代入(2x﹣3)=﹣1≠0,即x=1是原分式方程的解.则原方程的解为:x=1.(150)方程的两边同乘(x+2)(x﹣2),得:x(x﹣2)﹣(x+2)2=8,解得:x=﹣2.检验:把x=﹣2代入(x+2)(x﹣2)=0,即x=﹣2不是原分式方程的解.则原方程无解(151)方程的两边同乘(2x﹣1)(x﹣2),得2x(x﹣2)+(x﹣1)(2x﹣1)=2(2x﹣1)(x﹣2),解得x=3.检验:把x=﹣1代入(2x﹣1)(x﹣2)=5≠0.∴原方程的解为:x=3.(152)方程的两边同乘2(x+3)(x﹣3),得2(x﹣3)﹣(x+3)=3x﹣5,解得x=﹣2.检验:把x=﹣2代入2(x+3)(x﹣3)=﹣10≠0.∴原方程的解为:x=﹣2(153)方程的两边同乘(4x2﹣8)(1﹣2x),得:8(1﹣2x)+(2x+3)(4x2﹣8)=﹣(4x2﹣8)(1﹣2x),即2x2﹣2x﹣3=0,解得:x=.检验:把x=代入(4x2﹣8)(1﹣2x)≠0,故原方程的解为:x=.(154)方程的两边同乘x(x﹣1),得:3(x﹣1)+6x=7,解得:x=.检验:把x=代入x(x﹣1)=≠0,即x=是原分式方程的解,则原方程的解为:x=.(155)方程的两边同乘(3x﹣8),得:6=3x﹣8+(4x ﹣7),解得:x=3.检验:把x=3代入(3x﹣8)=1≠0,即x=3是原分式方程的解,则原方程的解为:x=3(156)去分母得:x(x﹣2)﹣(x+2)2=8,去括号得:x2﹣2x﹣x2﹣4x﹣4=8,即﹣6x=12,解得:x=﹣2,经检验x=﹣2是增根,原分式方程无解;(157)去分母得:3x=2x+3x+3,移项合并得:2x=﹣3,解得:x=﹣,经检验x=﹣是原分式方程的解(158)方程的两边同乘(x+2)(x﹣2)得3(x+2)=2(x﹣2),解得x=﹣10.检验:把x=﹣10代入(x+2)(x﹣2)=96≠0.∴原方程的解为:x=﹣10.(159)方程的两边同乘(y﹣2),得1=y﹣1﹣3(y﹣2),解得y=2.检验:把y=2代入(y﹣2)=0.y=2是原方程的增根,∴原方程无解.(160)方程的两边同乘(x+2)(x﹣2)得(x﹣2)2﹣(x+2)2=16,解得x=﹣2.检验:把x=﹣2代入(x+2)(x﹣2)=0.∴x=﹣2是原方程的增根,∴原方程无解.(161)原方程可化为:﹣20=,方程的两边同乘x,得3000﹣20x=2500,解得x=25.经检验:x不为0,x=25是原方程的解(162)方程两边都乘以(4x﹣8)(3x﹣6)得:9x﹣18=4x﹣8,9x﹣4x=﹣8+18,5x=10,x=2,检验:把x=2代入(4x﹣8)(3x﹣6)=0,即x=2是增根,即原方程无解.(163)原方程化为:+=1﹣,方程的两边都乘以(x﹣1)(x﹣3)得:﹣2(x﹣3)+x(x﹣1)=x2﹣4x+3﹣(2x﹣1),去括号得:﹣2x+6+x2﹣x=x2﹣4x+3﹣2x+1,整理得:3x=﹣2,x=﹣,检验:把x=﹣代入(x﹣1)(x﹣3)≠0,即x=﹣是原方程的解(164)方程两边都乘以2(x﹣2)得,1+x﹣2=6,解得x=7,检验:当x=7时,2(x﹣2)=2×(7﹣2)=10≠0,所以x=7是分式方程的解,故原分式方程的解是x=7;(165)方程两边都乘以(x+2)(x﹣2)得,x﹣2+4x=2(x+2),解得x=2,检验:当x=2时,(x+2)(x﹣2)=(2+2)(2﹣2)=0,所以x=2不是分式方程的解,是增根,故原分式方程无解(166)方程变形得:﹣3=,去分母得:1﹣3(x﹣2)=1﹣x,去括号得:1﹣3x+6=1﹣x,移项合并得:﹣2x=﹣6,解得:x=3,将x=3代入检验是分式方程的解;(167)最简公分母为x(x+3)(x﹣3),去分母得:x﹣3=2x+x+3,移项合并得:2x=﹣6,解得:x=﹣3,将x=﹣3代入得:x(x+3)(x﹣3)=0,则x=﹣3是增根,原分式方程无解(168)方程变形得:+=+,即1﹣+1﹣=1﹣+1﹣,整理得:+=+,即﹣=﹣,化简得:=,可得x2﹣3x+2=x2﹣13x+42,解得:x=4,经检验x=4是分式方程的解(169)方程变形得:﹣=﹣,即1﹣﹣1+=1﹣﹣1+,整理得:﹣=﹣,即=,整理得:=,去分母得:x2+5x+6=x2+13x+42,解得:x=﹣4.5,经检验是分式方程的解(170)方程的两边同乘(x﹣3),得2x+1=4x﹣5+2(x﹣3),解得x=3.检验:把x=3代入(x﹣3)=0.x=3是原方程的增根,∴原方程无解.(171)方程的两边同乘(x﹣1)2,得x2﹣3x﹣(x+1)(x﹣1)=2(x﹣1),解得x=.检验:把x=代入(x﹣1)2=≠0.∴原方程的解为:x=(172)方程的两边同乘(x+3)(x﹣3),得x﹣3﹣2(x+3)=12,解得x=﹣21.检验:把x=﹣21代入(x+3)(x﹣3)≠0.∴原方程的解为:x=﹣21.(173)方程的两边同乘(x2﹣1),得x2﹣3x+2(x2﹣1)﹣3x(x+1)=0,解得x=﹣.检验:把x=﹣代入(x2﹣1)=﹣≠0.∴原方程的解为:x=﹣(174)方程两边同乘3(x+1),得:3x=2x+3x+3,解得:x=﹣1.5.检验:把x=﹣1.5代入3(x+1)=﹣1.5≠0.所以原方程的解为:x=﹣1.5;(175)方程两边同乘x(x+2)(x﹣2),得:3(x﹣2)﹣(x+2)=0,解得x=4.检验:把x=4代入x(x+2)(x﹣2)=48≠0,故原方程的解为:x=4(176)方程的两边同乘(x﹣2),得1=x﹣1﹣3(x﹣2),解得x=2.检验:把x=2代入(x﹣2)=0.∴x=2是原方程的解为增根解,∴原方程无解;(177)方程的两边同乘(x+4)(x﹣4),得5(x+4)(x﹣4)+96=(2x﹣1)(x﹣4)+(3x﹣1)(x+4),解得x=8.检验:把x=8代入(x+4)(x﹣4)=48≠0.∴原方程的解为:x=8(178)(179).(178)方程两边同时乘以x﹣4得:x﹣4+(x﹣5)=1,则x﹣4+x﹣5=1解得:x=5,检验:当x=5时,x﹣4=1≠0,则方程的解是x=5.(179)原方程即:+=,方程两边同时乘以6(x﹣2)得:3(5x﹣4)+3=2(2x+5)解得:x=,检验:当x=时,6(x﹣2)≠0,则方程的解是:x=(180)(181).(180)去分母得:10x﹣5=4x﹣2,移项合并得:6x=3,解得:x=0.5,经检验x=0.5是分式方程的解;(181)去分母得:5x2﹣80+96=(2x﹣1)(x﹣4)+(3x ﹣1)(x+4),去括号得:5x2﹣80+96=5x2+2x,移项合并得:2x=16,解得:x=8,经检验x=8是分式方程的解(182)原方程可化为:+=1+方程两边乘x(x+1)(x﹣1)得,7(x﹣1)+3(x+1)=x(x+1)(x﹣1)+x(7﹣x2)化简得,4x=4∴x=1检验:把x=1代入x(x+1)(x﹣1)=0∴x=1是原方程的增根.∴原方程无解(183)去分母得:5x+2=3x,移项合并得:2x=﹣2,解得:x=﹣1,经检验x=﹣1是增根,分式方程无解;(184)去分母得:2x2﹣4x﹣x2﹣2x=x2﹣4﹣x﹣11,移项合并得:﹣5x=﹣15,解得:x=3,经检验x=3是分式方程的解(185)去分母得:3﹣2x=x+1,移项合并得:3x=2,解得:x=;(186)去分母得:(x﹣1)2﹣x(x+2)=9,整理得:﹣4x=8,解得:x=﹣2,经检验x=﹣2是增根,分式方程无解(187)方程两边都乘(x+4)(x﹣4),得x+4=4解得x=0.检验:当x=0时,(x+4)(x﹣4)≠0.∴x=0是原方程的解.(188)方程两边都乘x(x﹣1),得3x﹣(x+2)=0,解得x=1.检验:当x=1时,x(x﹣1)=0.∴原方程无解.(189)方程两边都乘(x﹣3),得2﹣x﹣1=3(x﹣3),解得x=.检验:当x=时,x﹣3≠0.∴x=是原方程的解.(190)方程两边都乘6(x﹣2),得3(5x﹣4)=2(2x+5)﹣3×6(x﹣2),解得x=2.检验:当x=2时,6(x﹣2)≠0.∴x=2是原方程的解(191)原方程可化为:,方程两边都乘(x﹣2)(x﹣3),得:x(x﹣3)﹣(1﹣x2)=2x(x﹣2),解得x=1检验:当x=1时,(x﹣2)(x﹣3)≠0,∴x=1是原方程的解.(192)原方程可化为:,方程两边都乘(x+3)(x﹣2)(x﹣4),得5x(x﹣4)+(2x﹣5)(x﹣2)=(7x﹣10)(x+3),解得x=1.检验:当x=1时,(x+3)(x﹣2)(x﹣4)≠0.∴x=1是原方程的解(193)=1,方程两边同乘以(1﹣x)(3﹣x),得2(3﹣x)﹣x(1﹣x)+(2x﹣1)=(1﹣x)(3﹣x),去括号,得6﹣2x﹣x+x2+2x﹣1=3﹣3x﹣x+x2,整理,得3x=﹣2,解得:x=﹣.检验:当x=﹣时,(1﹣x)(3﹣x)≠0,∴x=﹣是原方程的解.(194),原方程可化为,约分,得,方程两边同乘以(x+3)(x﹣4),得:3(x﹣4)=4(x+3),3x﹣12=4x+12,﹣x=24,∴x=﹣24,检验:当x=﹣24时,(x+3)(x﹣4)≠0,∴x=﹣24是原方程的解(195)方程两边都乘(1+3x)(1﹣3x),得:(1﹣3x)2﹣(1+3x)2=12,解得x=﹣1.检验:当x=﹣1时,(1+3x)(1﹣3x)≠0∴x=﹣1是原方程的解(196)方程两边都乘(x+1)(x﹣1),得(x+1)2﹣4=(x+1)(x﹣1),解得x=1.检验:当x=1时,(x+1)(x﹣1)=0.∴原方程无解.(197)方程两边都乘(3x﹣5)(2x﹣3),得(3x+4)(2x﹣3)+(3x﹣5)(2x﹣3)=(4x+1)(3x ﹣5),解得x=.检验:当x=时,(3x﹣5)(2x﹣3)≠0.∴x=是原方程的解(198)解:两边同乘以2(3x﹣1),得3(3x﹣1)﹣2=5,解得.经检验,是原方程的解.(199)解:两边同乘以x(x+1),得m(x+1)﹣nx=0,解得:.经检验是方程的解(200)方程两边同乘(x+1)(1﹣2x),得(x﹣1)(1﹣2x)+2x(x+1)=0,整理解得:x=.经检验:x=是原方程的解.(201)方程两边同乘(x﹣2),得3﹣x=﹣2(x﹣2),解得:x=1.经检验:x=1是原方程的解。

初中数学解分式方程综合练习题(附答案)

初中数学解分式方程综合练习题(附答案)

初中数学解分式方程综合练习题一、单选题1.下列计算正确的是( )A. 235a b ab +=B. ()222a b a b -=-C. ()32626x x =D. 835x x x ÷= 2.如图,90B D ∠=∠=︒,BC CD =,140∠=︒,则2∠=( )A.40°B.50°C.60°D.75°3.下列等式从左到右的变形一定正确的是( ) A. 11b b a a +=+ B. b bm a am = C. 2ab b a a= D. 22b b a a = 4.若,x y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( ) A.2x x y +- B.22y x C.3223y x D.()222y x y -5.在平面直角坐标系中,将函数3y x =的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为( )A.(2)0,B.(20)-,C.(6)0,D.(60)-,6.如图是三条两两相交的笔直公路,某物流公司现要修建一个货物中转站,使它到三条公路的距离相等,这个货物中转站可选的位置有( )A .3个B .4个C .5个D .6个7.如果一个正比例函数的图象经过不同象限的两点()()2,,,3A m B n ,那么一定有( )A.0,0m n >>B.0,0m n ><C.0,0m n <>D.0,0m n <<8.关于x 的方程32211x m x x -=+++无解,则m 的值为( ) A.5- B.8-C.2-D.59.下列各分式中,是最简分式的是( ) A.105xy xB. 22x y x y-- C. x y x+ D. 24x 10.若x 为整数,且使分式2123x x ++的值为整数,则满足条件的x 的值有( ) A.5个 B.6个 C.8个 D.7个11.随着时代的进步,人们对 2.5PM (空气中直径小于等于2.5微米的颗粒)的关注日益密切.某市一天中 2.5PM 的值31(ug /m )y 随时间(h)t 的变化如图所示,设2y 表示0时到t 时2.5PM 的值的极差(即0时到t 时 2.5PM 的最大值与最小值的差),则2y 与t 的函数关系大致是( )A .B .C .D .二、解答题12.某商店购进A B 、两种商品,购买1个A 商品比购买1个B 商品多花10元,并且花费300元购买A 商品和花费100元购买B 商品的数量相等.(1)求购买一个A 商品和一个B 商品各需要多少元;(2)商店准备购买A B 、两种商品共80个,若A 商品的数量不少于B 商品数量的4倍,并且购买A B 、商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?13.随着5G 技术的发展,人们对各类5G 产品的使用充满期待,某公司计划在某地区销售一款5G 产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第x (x 为正整数)个销售周期每台的销售价格为y 元,y 与x 之间满足如图所示的一次函数关系.(1)求y 与x 之间的关系式;(2)设该产品在第x 个销售周期的销售数量为p (万台),p 与x 的关系可以用1122p x =+来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?14.如图,在ABC △中,90,BAC E ∠=︒为边BC 上的点,且,AB AE D =为线段BE 的中点,过点E 作EF AE ⊥,过点A 作//AF BC ,且,AF EF 相交于点F .(1)求证:C BAD ∠=∠;(2)求证:AC EF =.15.如图, ,60,AB BC ABC BDC =∠=∠=︒求证: AD CD BD +=;三、计算题16.计算: 1.(6)(2)(3)a a a a +--+2.221121x x x x x x--÷+++17.计算:(1)222123234x y x xy --; (2)22y x x xy y x+--. 18.计算:693()(1).x x x x--÷- 19.计算下列小题:(1)计算:20(2)3(6)----;(2)解分式方程:22511x x =--.20.若33m n a a -÷=,且22m n +=,求34m n -21.化简(1)2245a a +--(2)()()22228423xy x y x y xy -+--+-22.对于实数,a b 定义运算:(,0)(,0)b b a a b a a b a a b a -⎧>≠⎪=⎨≤≠⎪⎩▲ 如: 3123=2,8-=▲242416==▲. 照此定义的运算方式计算: [][]2(4)(4)(2)-⨯--▲▲四、填空题23.已知分式2x m x n -+,当2x =时,分式的值为0;当1x =时,分式无意义,则m n += . 24.分式22,b a b a ab a ab ---+的最简公分母是 . 25.一个周长是20cm 的长方形,它的面积()2cm S 与长边()cm x 之间的函数表达式为 ,自变量x 的取值范围是 .26.已知()214k y k x k =-+-是一次函数,则()201932k += .27.如图,在ABC △中,10,12,8,AB AC BC AD AD ====是BAC ∠的平分线.若,P Q 分别是AD 和AC 上的动点,则PC PQ +的最小值是 .28.如图,BD 是ABC △的角平分线,它的垂直平分线分别交AB ,BD ,BC 于点E ,F ,G ,若30ABC ∠=︒,45C ∠=︒,ED =H 是BD 上的一个动点,则HG HC +的最小值为 .29.分解因式:3x x -=___________.参考答案1.答案:D解析:A 、23a b +,无法计算,故此选项错误;B 、222()2a b a ab b -=-+,故此选项错误;C 、()32628x x =,故此选项错误; D 、835x x x ÷=,故此选项正确;故选:D .2.答案:B解析:3.答案:C解析:分式的基本性质是分式的分子、分母同乘(或除以)一个不为零的整式,分式的值不变.选项A,分子、分母同加1,不符合分式的基本性质,故A 错;选项B,分子、分母同乘m ,没有限制m 不等于零,故B 错;选项D,分子乘b ,分母乘a ,故D 错;选项C,分式2ab a中暗含0a ≠这个条件,所以分子、分母同时除以a ,分式值不变,故选C.4.答案:D解析:根据分式的基本性质,可知若,x y 的值均扩大为原来的3倍,选项A 中,23233x x x y x y ++≠-- ,故此选项错误;选项B 中,22629y y x x≠故此选项错误;选项C 中,3322542273y y x x≠ ,故此选项错误;选项D 中22221829()()y y x y x y =--,故此选项正确.5.答案:B解析:根据函数图象的平移规律,可知3y x =向上平移6个单位后得到的函数解析式为36y x =+,令0y =,即360x +=,解得2x =-,∴与x 轴的交点坐标为(20)-,,故选B6.答案:B 解析:利用角平线性质知角平分线上的点到角两边距离相等,通过三角形内心为其内切圆的圆心来解得.解答:根据三条路线构成的三角形知,三角形的内心为三角形内角角平分线的交点. 由三角形内心为该三角形内切圆的圆心,∴所以符合货物中转站到各路的距离相等.这样的点可找到一个.两外角平分线的交点,到三条公路的距离也相等,可找到三个.故答案为:B .7.答案:D 解析:∵点()2,A m 的横坐标为20>, ∴此点在一、四象限;∵点(),3B n 的纵坐标为30>,∴此点在一、二象限,∴此函数的图象一定经过二、四象限,∴点()2,A m 在第四象限,(),3B n 在第二象限,∴0,0m n <<.故答案为:0,0m n <<.8.答案:A解析:原分式通分得322(1)11x x m x x -++=++ 等式两边同时乘以(1)x +,得322(1)x x m -=++整理得4x m =+因为原分式无解,所以原分式的分母10x +=,即1x =-代入4x m =+中得,14m -=+,解得5m =-,故选A.9.答案:C解析:10.答案:C解析:2122(3)662333x x x x x +++==++++31,2,3,6x ∴+=±±±±,即4,2,1,5,0,6,3,9x =------时,分式的值为整数.故选C.11.答案:B解析:当0t =时,极差285850y -==,当010t <≤时,极差2y 随t 的增大而增大,最大值为43; 当1020t <≤时,极差2y 随t 的增大保持43不变;当2024t <≤时,极差2y 随t 的增大而增大,最大值为98; 故选:B .12.答案:解:(1)设购买一个B 商品需要x 元,则购买一个A 商品需要(10)x +元, 依题意,得:30010010x x=+, 解得:5x =,经检验,5x =是原方程的解,且符合题意,1015x ∴+=.答:购买一个A 商品需要15元,购买一个B 商品需要5元.(2)设购买B 商品m 个,则购买A 商品(80)m -个,依题意,得:80415(80)5100015(80)51050m m m m m m -≥⎧⎪-+≥⎨⎪-+≤⎩,解得:1516m ≤≤. m 为整数,15m ∴=或16.∴商店有2种购买方案,方案①:购进A 商品65个、B 商品15个;方案②:购进A 商品64个、B 商品16个.解析:13.答案:解:(1)设函数的解析式为:(0)y kx b k =+≠,由图象可得,700055000k b k b +=⎧⎨+=⎩, 解得,5007500k b =-⎧⎨=⎩, ∴y 与x 之间的关系式:5007500y x =-+;(2)设销售收入为w 万元,根据题意得,11(5007500)()22w yp x x ==-++, 即2250(7)16000w x =--+,∴当7x =时,w 有最大值为16000,此时500775004000y =-⨯+=(元)答:第7个销售周期的销售收入最大,此时该产品每台的销售价格是4000元.解析:14.答案:(1),AB AE D =为线段BE 的中点,AD BC ∴⊥, 90C DAC ∴∠+∠=︒,90BAC ∠=︒,90BAD DAC ∴∠+∠=︒,C BAD ∴∠=∠.(2)//AF BC ,FAE AEB ∴∠=∠,AB AE =,B AEB ∴∠=∠B FAE ∴∠=∠,且90,AEF BAC AB AE ∠=∠=︒=.()ABC EAF ASA ∴≌△△,AC EF ∴=.解析:15.答案:证明:如图2中,延长DC 到E,使得DB DE =∵,60DB DE BDC =∠=︒,∴△BDE 是等边三角形,,60,BD BE DBE ABC ∴∠=∠=∠=︒ABD CBE ∴∠=∠,∵AB BC =,∴△ABD ≅ △CBE ,∴AD EC =,∴BD DE DC CE DC AD ==+=+.∴AD CD BD +=.解析:16.答案:1.原式22412312a a a a a =+---=-2.原式21(1)(1)11x x x x x x x -+=⋅=+-+ 解析: 17.答案:解:(1)原式2222222689121212y y x x y x y x y =--222689.12y y x x y--= (2)原式2()y x x x y x y=--- 22()()y x x x y x x y =--- .x y x+=- 解析:18.答案:解:原式22693(3) 3.3x x x x x x x x x x -+--=÷=⋅=-- 解析:19.答案:解:(1)原式43416=-++=;(2)两边都乘以(1)(1)x x +-,得:2(1)5x +=, 解得:32x =, 检验:当32x =时,5(1)(1)04x x +-=≠, ∴原分式方程的解为32x =. 解析:20.答案:解:由1333m n m n a a a ---÷==,得到10m n --=,即1m n =+,代入22m n +=中得:222n n ++=,即0n =,把0n =代入得:1m =,则343m n -=.解析:21.答案:(1)原式3425a a =-+-3a =--(2)原式2222844812xy x y x y xy =-+-+-+225512x y =++ 解析:22.答案:解:根据题意得,412(4)216--==▲,2(4)(2)(4)16--=-=▲, 则[][]12(4)(4)(2)16116-⨯--=⨯=▲▲ 解析:23.答案:3解析:由题意,得402010m n n -=⎧⎪+≠⎨⎪+=⎩,解得41m n =⎧⎨=-⎩,故4(1)3m n +=+-=. 24.答案:()()a a b a b +-解析: 分式22,b a b a ab a ab---+的分母分别是22(),()a ab a a b a ab a a b -=-+=+,故最简公分母是()()a a b a b +-25.答案:210S x x =-+;510x <<解析:长方形的长为cm x ,周长为20cm ,则宽为()10cm x -, 所以它的面积()21010S x x x x =-=-+,易得010010x x x x >⎧⎪->⎨⎪>-⎩,解得510x <<.26.答案:1- 解析:由题意得1k =且10k -≠,解得1k =-,所以()()2019201932321k ++=-=-.27.答案:9.6解析:如图,连接.,BP AB AC AD =是BAC ∠的平分线,AD ∴垂直平分,.BC BP CP ∴=过点B 作BQ AC ⊥于点, Q BQ 交AD 于点P ,则此时PC PQ +取得最小值,最小值为BQ 的长,如图所示.11,22ABC S BC AD AC BQ =⋅=⋅△1289.610BC AD BQ AC ⋅⨯∴===28.答案:解析:29.答案:(1)(1)x x x +-解析:本题考查了分解因式,遵循先提取公因式,再利用平方差公式的顺序,32(1)(1)(1)x x x x x x x -=-=+-.。

中考数学复习《分式方程》专项提升训练(附答案)

中考数学复习《分式方程》专项提升训练(附答案)

中考数学复习《分式方程》专项提升训练(附答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列关于x 的方程,是分式方程的是( )A.3+x 2-3=2+x 5B.2x -17=x 2C.x π+1=2-x 3D.12+x =1-2x2.分式方程2x -2+3x 2-x=1的解为( ) A.x =1 B.x =2 C.x =13D.x =0 3.若x =3是分式方程a -2x -1x -2=0的解,则a 的值是( ) A.5 B.-5 C.3 D.-34.分式方程x +1x +1x -2=1的解是( ) A.x =1 B.x =-1 C.x =3 D.x =-35.分式方程x x -1-1=3(x -1)(x +2)的解为( ) A.x =1 B.x =2 C.x =-1D.无解6.解分式方程1x -5﹣2=35-x,去分母得( ) A.1﹣2(x ﹣5)=﹣3 B.1﹣2(x ﹣5)=3C.1﹣2x ﹣10=﹣3D.1﹣2x +10=37.如果分式方程113122=x++-x a+无解,那么a 的值为( )A.2B.﹣2C.2或﹣2D.﹣2或48.解分式方程2x +1+3x -1=6x 2-1分以下几步,其中错误的一步是( ) A.方程两边分式的最简公分母是(x -1)(x +1)B.方程两边都乘以(x -1)(x +1),得整式方程2(x -1)+3(x +1)=6C.解这个整式方程,得x=1D.原方程的解为x=19.某生态示范园计划种植一批梨树,原计划总产量30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为( )A.30x ﹣361.5x =10B.30x ﹣301.5x=10 C.361.5x ﹣30x =10 D.30x +361.5x=10 10.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务. 设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A.60x -60(1+25%)x =30 B.60(1+25%)x -60x=30 C.60×(1+25%)x -60x =30 D.60x -60×(1+25%)x=30 二、填空题11.下列方程:①x -12=16;②x ﹣2x =3;③x (x -1)x =1;④4-x π=π3;⑤3x +x -25=10;⑥1x +2y=7,其中是整式方程的有 ,是分式方程的有 . 12.若关于x 的方程211=--ax a x 的解是x=2,则a= . 13.方程2x +13-x =32的解是 . 14.关于x 的方程2x +a x -1=1的解满足x >0,则a 的取值范围是________. 15.A ,B 两市相距200千米,甲车从A 市到B 市,乙车从B 市到A 市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x 千米/小时,则根据题意,可列方程____________________.16.对于实数a ,b ,定义一种新运算⊗为:a ⊗b =1a -b 2,这里等式右边是实数运算.例如:1⊗3=11-32=﹣18,则方程x ⊗(﹣2)=2x -4﹣1的解是__________. 三、解答题17.解分式方程:xx-1﹣2x=1;18.解分式方程:2x-3=3x;19.解分式方程:1-xx-2=x2x-4﹣1;20.解分式方程:xx-1-1=3(x-1)(x+2)21.对于分式方程x-3x-2+1=32-x,小明的解法如下:解:方程两边同乘(x﹣2) 得x﹣3+1=﹣3①解得x=﹣1②检验:当x=﹣1时,x﹣2≠0③所以x=﹣1是原分式方程的解.小明的解法有错误吗?若有错误,错在第几步?请你帮他写出正确的解题过程.22.当x为何值时,分式的值比分式的值小2?23.某小区为了排污,需铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,须缩短施工时间,实际施工时每天铺设管道的长度是原计划的1.2倍,结果提前2天完成任务,求原计划每天铺设管道的长度.24.随着中国特色社会主义进入新时代,作为“中国名片”的高速铁路也将踏上自己的新征程,跑出发展新速度,这就意味着今后外出旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车;已知从A地到某市的高铁行驶路程是400千米,普通列车的行驶路程是高铁行驶路程的1.3倍,请完成以下问题:(1)普通列车的行驶路程为多少千米?(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求普通列车和高铁的平均速度.25.某中学在商场购买甲、乙两种不同的足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元(1)求购买一个甲种足球,一个乙种足球各需多少元?(2)这所学校决定再次购买甲、乙两种足球共50个,预算金额不超过3000元.去到商场时恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果该学校此次需购买20个乙种足球,请问该学校购买这批足球所用金额是否会超过预算?答案1.D2.A3.A4.A5.D6.A7.D8.D9.A10.C11.答案为:①④⑤,②③⑥.12.答案为:54 .13.答案为:x=1.14.答案为:a<-1 且a≠-2.15.答案为:200x﹣200x+15=12.16.答案为:x=517.解:去分母得x2﹣2x+2=x2﹣x解得x=2检验:当x=2时,x(x﹣1)≠0故x=2是原方程的解;18.解:(1)方程两边乘x(x﹣3),得2x=3(x﹣3).解得x=9.检验:当x=9时,x(x﹣3)≠0.所以,原方程的解为x=9;19.解:去分母,得2(1﹣x)=x﹣(2x﹣4),解得x=﹣2 检验:当x=﹣2时,2(x﹣2)≠0故x=﹣2是原方程的根;20.解:方程两边同乘(x-1) (x+2)得x(x+2)-(x-1) (x+2)=3化简,得 x+2=3解得x=1检验:x=1时(x-1) (x+2)=0,x=1不是分式方程的解所以原分式方程无解.21.解:有错误,错在第①步,正确解法为:方程两边同乘(x﹣2)得x﹣3+x﹣2=﹣3解得x=1经检验x=1是分式方程的解所以原分式方程的解是x=1.22.解:由题意,得﹣=2,解得,x=4经检验,当x=4时,x﹣3=1≠0,即x=4是原方程的解.故当x=4时,分式的值比分式的值小2.23.解:设原计划每天铺设管道x米.由题意,得.解得x=60.经检验,x=60是原方程的解.且符合题意.答:原计划每天铺设管道60米.24.解:(1)普通列车的行驶路程为:400×1.3=520(千米);(2)设普通列车的平均速度为x千米/时,则高铁的平均速度为2.5千米/时则题意得:=﹣3,解得:x=120经检验x=120是原方程的解则高铁的平均速度是120×2.5=300(千米/时)答:普通列车的平均速度是120千米/时,高铁的平均速度是300千米/时.25.解:(1)设购买一个甲种足球需要x元=×2,解得,x=50经检验,x=50是原分式方程的解∴x+20=70即购买一个甲种足球需50元,一个乙种足球需70元;(2)设这所学校再次购买了y个乙种足球70(1﹣10%)y+50(1+10%)(50﹣y)≤3000解得,y≤31.25∴最多可购买31个足球所以该学校购买这批足球所用金额不会超过预算.。

中考数学《分式及分式方程》计算题(附答案)

中考数学《分式及分式方程》计算题(附答案)

[键入文字]=+1..解方程:.解分式方程:15.(1)解方程:(2)解不等式组.16.解方程:.17.①解分式方程;②解不等式组.18.解方程:.19.(1)计算:|﹣2|+(+1)0﹣()﹣1+tan60°;(2)解分式方程:=+1.20.解方程:21.解方程:+=122.解方程:.23.解分式方程:24.解方程:25.解方程:26.解方程:+=127.解方程:28.解方程:29.解方程:30.解分式方程:.答案与评分标准一.解答题(共30小题)1.解方程:.考点:解分式方程。

专题:计算题。

分析:方程两边都乘以最简公分母y(y﹣1),得到关于y的一元一方程,然后求出方程的解,再把y的值代入最简公分母进行检验.解答:解:方程两边都乘以y(y﹣1),得2y2+y(y﹣1)=(y﹣1)(3y﹣1),2y2+y2﹣y=3y2﹣4y+1,3y=1,解得y=,检验:当y=时,y(y﹣1)=×(﹣1)=﹣≠0,∴y=是原方程的解,∴原方程的解为y=.点评:本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.2.解关于的方程:.考点:解分式方程。

专题:计算题。

分析:观察可得最简公分母是(x+3)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘(x+3)(x﹣1),得x(x﹣1)=(x+3)(x﹣1)+2(x+3),整理,得5x+3=0,解得x=﹣.检验:把x=﹣代入(x+3)(x﹣1)≠0.∴原方程的解为:x=﹣.点评:本题考查了解分式方程.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.3.解方程.考点:解分式方程。

专题:方程思想。

分析:观察可得最简公分母是(x+1)(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:两边同时乘以(x+1)(x﹣2),得x(x﹣2)﹣(x+1)(x﹣2)=3.(3分)解这个方程,得x=﹣1.(7分)检验:x=﹣1时(x+1)(x﹣2)=0,x=﹣1不是原分式方程的解,∴原分式方程无解.(8分)点评:考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.4.解方程:=+1.考点:解分式方程。

分式方程计算30题(附答案、讲解)

分式方程计算30题(附答案、讲解)

郭氏数学公益教学博客中考分式方程计算30题(附答案、讲解)一.解答题(共30小题)1.(2011•自贡)解方程:.2.(2011•孝感)解关于的方程:.3.(2011•咸宁)解方程.4.(2011•乌鲁木齐)解方程:=+1.5.(2011•威海)解方程:.6.(2011•潼南县)解分式方程:.7.(2011•台州)解方程:.8.(2011•随州)解方程:.9.(2011•陕西)解分式方程:.10.(2011•綦江县)解方程:.11.(2011•攀枝花)解方程:.12.(2011•宁夏)解方程:.13.(2011•茂名)解分式方程:.14.(2011•昆明)解方程:.15.(2011•菏泽)解方程:16.(2011•大连)解方程:.17.(2011•常州)解分式方程;18.(2011•巴中)解方程:.(2)解分式方程:=+1.20.(2010•遵义)解方程:21.(2010•重庆)解方程:+=122.(2010•孝感)解方程:.23.(2010•西宁)解分式方程:24.(2010•恩施州)解方程:25.(2009•乌鲁木齐)解方程:26.(2009•聊城)解方程:+=1 27.(2009•南昌)解方程:28.(2009•南平)解方程:29.(2008•昆明)解方程:30.(2007•孝感)解分式方程:.答案与评分标准一.解答题(共30小题)1.(2011•自贡)解方程:.考点:解分式方程。

专题:计算题。

分析:方程两边都乘以最简公分母y(y﹣1),得到关于y的一元一方程,然后求出方程的解,再把y的值代入最简公分母进行检验.解答:解:方程两边都乘以y(y﹣1),得2y2+y(y﹣1)=(y﹣1)(3y﹣1),2y2+y2﹣y=3y2﹣4y+1,3y=1,解得y=,检验:当y=时,y(y﹣1)=×(﹣1)=﹣≠0,∴y=是原方程的解,∴原方程的解为y=.点评:本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.2.(2011•孝感)解关于的方程:.考点:解分式方程。

分式方程练习题精选(含答案)

分式方程练习题精选(含答案)

分式方程练习题精选(含答案)一、选择题:1.以下是方程211x x x-=-去分母的结果,其中正确的是 . A .2(1)1x x --= B .2221x x --= C .2222x x x x --=- D .2222x x x x -+=- 2.在下列方程中,关于x 的分式方程的个数有 .①0432212=+-x x ②.4=a x ③;4=x a④.;1392=+-x x⑤;621=+x⑥211=-+-a x a x .A.2个B.3个C.4个D.5个 3.分式25m +的值为1时,m 的值是 . A .2 B .-2 C .-3 D .34.不解下列方程,判断下列哪个数是方程21311323x x x x =+++--的解 . A .x=1 B .x=-1 C .x=3 D .x=-35.若关于x 的方程122x mx x +=++有增根,则m 的值为 . A .1 B .-1 C .-2 D .2 6.若分式x 2-12(x+1) 的值等于0,则x 的值为 . A 、1 B 、±1 C 、12 D 、-17.赵强同学借了一本书,共280页,要在两周借期内读完,当他读了一半时,发现平时每天要多读21页才能在借期内读完.他读了前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下列方程中,正确的是 . A 、1421140140=-+x x B 、1421280280=++x x B 、1211010=++x x D 、1421140140=++x x8.关于x 的方程2354ax a x +=-的根为x =2,则a 应取值 . A.1B.3C.-2D.-39.在正数范围内定义一种运算☆,其规则为a ☆b =ba 11+,根据这个规则x ☆23)1(=+x 的解为 . A .32=x B .1=xC .32-=x 或1 D .32=x 或1-10.“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设参加游览的同学共x 人,则所列方程为 . A .32180180=+-x x B .31802180=-+x x C .32180180=--x x D .31802180=--xx11.李老师在黑板上出示了如下题目:“已知方程012=++kx x ,试添加一个条件,使方程的解是x=-1”后,小颖的回答是:“添加k=0的条件”;小亮的回答是:“添加k=2的条件”,则你认为 .A 、只有小颖的回答正确B 、小亮、小颖的回答都正确C 、只有小亮的回答正确D 、小亮、小颖的回答都不正确 12.某工地调来72人挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调配劳动力才使挖掘出来的土能及时运走,且不窝工,解决此问题,可设派x 人挖土,其它人运土,列方程:①723x x -=②723x x -=③372x x +=④372xx=-上述所列方程,正确的有 .A .1个B .2个C .3个D .4个 二、填空题:13.若分式11--x x 的值为0,则x 的值等于14.若分式方程xmx x -=--2524无解,那么m 的值应为 15.某项工程限期完成,甲单独做提前1天完成,乙单独做延期2天完工,现两人合作1天后,余下的工程由乙队单独做,恰好按期完工,求该工程限期 天. 16.阅读材料: 方程1111123x x x x -=-+--的解为1x =, 方程1111134x x x x -=----的解为x=2, 方程11111245x x x x -=-----的解为3x =,…请写出能反映上述方程一般规律的方程,并直 接写出这个方程的解是 . 三、解答题:17.解方程)2)(1(311+-=--x x x x 18.先化简代数式1121112-÷⎪⎭⎫⎝⎛+-+-+x x x x x x ,然后选取一个使你喜欢的x 的值代入求值.19.若方程122-=-+x ax 的解是正数,求a 的取值范围。

分式方程专项练习50题(有答案)

分式方程专项练习50题(有答案)

分式方程专项练习50题(有答案)1.$\frac{x}{x+2}=\frac{2}{x-1}$,改写为$x(x-1)=2(x+2)$。

2.$\frac{5x-3}{x^2}=0$,当 $5x-3=0$ 时成立,即$x=\frac{3}{5}$。

3.$\frac{x}{x}+\frac{1}{x}=1$,当 $x\neq 0$ 时成立。

4.$x^2+2x=0$,当 $x=0$ 或 $x=-2$ 时成立。

5.$\frac{13}{x(x-2)}=\frac{1}{x-1}$,改写为 $13(x-1)=x(x-2)$。

6.$\frac{1}{x-1}-\frac{2}{x+1}=\frac{1}{2}$,改写为$3x^2-2x-5=0$,当 $x=\frac{1}{3}$ 或 $x=-\frac{5}{3}$ 时成立。

7.$\frac{x+1}{x-1}=\frac{x}{x+1}$,改写为 $x^2-1=0$,当 $x=1$ 或 $x=-1$ 时成立。

8.$\frac{2x-5}{3-x}=\frac{2x-2}{x+1}$,改写为 $4x^2-13x+7=0$,当 $x=1$ 或 $x=\frac{7}{4}$ 时成立。

9.$\frac{2x-5}{x-2}-\frac{1}{x+2}=x$,改写为 $3x^2-4x-3=0$,当 $x=\frac{1\pm\sqrt{13}}{3}$ 时成立。

10.$\frac{2x-1}{x+1}=1-\frac{1}{x+1}$,改写为 $x^2+3x-2=0$,当 $x=-3+\sqrt{11}$ 或 $x=-3-\sqrt{11}$ 时成立。

11.$\frac{x}{x+1}+\frac{x}{x-1}=2$,改写为 $2x^2-2x-1=0$,当 $x=\frac{1\pm\sqrt{3}}{2}$ 时成立。

12.$\frac{1}{x-1}+\frac{1}{x+1}=\frac{4}{x^2-1}$,改写为 $3x^4-8x^2-5=0$,当 $x=\pm\sqrt{\frac{5}{3}}$ 或$x=\pm\sqrt{\frac{8}{3}}$ 时成立。

分式方程练习题精选(含答案)

分式方程练习题精选(含答案)

分式方程练习题精选(含答案)一、 选择题:1.以下是方程211x x x -=-去分母的结果,其中正确的是 . A .2(1)1x x --= B .2221x x --= C .2222x x x x --=- D .2222x x x x -+=-2.在下列方程中,关于x 的分式方程的个数有 . ①0432212=+-x x ②.4=a x ③;4=x a ④.;1392=+-x x ⑤;621=+x ⑥211=-+-a x a x . A.2个 B.3个 C.4个 D.5个3.分式25m +的值为1时,m 的值是 . A .2 B .-2 C .-3 D .34.不解下列方程,判断下列哪个数是方程21311323x x x x =+++--的解 . A .x=1 B .x=-1 C .x=3 D .x=-35.若关于x 的方程122x m x x +=++有增根,则m 的值为 . A .1 B .-1 C .-2 D .26.若分式x 2-12(x+1) 的值等于0,则x 的值为 .A 、1B 、±1C 、12D 、-17.赵强同学借了一本书,共280页,要在两周借期内读完,当他读了一半时,发现平时每天要多读21页才能在借期内读完.他读了前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下列方程中,正确的是 .A 、1421140140=-+x xB 、1421280280=++x x B 、1211010=++x x D 、1421140140=++x x8.关于x 的方程2354ax a x +=-的根为x =2,则a 应取值 . A.1B.3C.-2D.-39.在正数范围内定义一种运算☆,其规则为a ☆b =ba 11+,根据这个规则x ☆23)1(=+x 的解为 . A .32=x B .1=x C .32-=x 或1 D .32=x 或1- 10.“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设参加游览的同学共x 人,则所列方程为 .A .32180180=+-x x B .31802180=-+x x C .32180180=--x x D .31802180=--x x 11.李老师在黑板上出示了如下题目:“已知方程012=++kx x ,试添加一个条件,使方程的解是x=-1”后,小颖的回答是:“添加k=0的条件”;小亮的回答是:“添加k=2的条件”,则你认为 .A 、只有小颖的回答正确B 、小亮、小颖的回答都正确C 、只有小亮的回答正确D 、小亮、小颖的回答都不正确12.某工地调来72人挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调配劳动力才使挖掘出来的土能及时运走,且不窝工,解决此问题,可设派x 人挖土,其它人运土,列方程:①723x x -=②723x x -=③372x x +=④372x x=-上述所列方程,正确的有 .A .1个B .2个C .3个D .4个二、 填空题: 13.若分式11--x x 的值为0,则x 的值等于14.若分式方程xm x x -=--2524无解,那么m 的值应为 15.某项工程限期完成,甲单独做提前1天完成,乙单独做延期2天完工,现两人合作1天后,余下的工程由乙队单独做,恰好按期完工,求该工程限期 天.16.阅读材料: 方程1111123x x x x -=-+--的解为1x =, 方程1111134x x x x -=----的解为x=2, 方程11111245x x x x -=-----的解为3x =,… 请写出能反映上述方程一般规律的方程,并直 接写出这个方程的解是 .三、 解答题:17.解方程)2)(1(311+-=--x x x x18.先化简代数式1121112-÷⎪⎭⎫⎝⎛+-+-+x x x x x x ,然后选取一个使你喜欢的x 的值代入求值.19.若方程122-=-+x a x 的解是正数,求a 的取值范围。

50道解分式方程及答案

50道解分式方程及答案

50道解分式方程及答案1.解分式方程:$\frac{5x-23}{x(x^2-1)}=\frac{2-x}{1}+4$2.解分式方程:$\frac{2-x}{1}+4=\frac{x-3}{3-x}$3.解分式方程:$\frac{x-3}{3-x}-x=1$4.解分式方程:$\frac{x^2}{x-2}-\frac{4}{2x-3}=1$5.解分式方程:$\frac{1}{2x-4}-\frac{2}{2x+2}=\frac{1}{2x-3}$6.解分式方程:$\frac{2}{2x-3}-\frac{1}{2x+3}=1$7.解方程:$\frac{2}{x-1}-\frac{3}{x+1}=1$8.解方程:$\frac{2x+1}{x-1}-\frac{3x-1}{x+1}=2$9.解方程:$\frac{5}{x-1}-\frac{3}{x+2}=2$10.解方程:$\frac{x^2}{x-4}-1=\frac{x}{2x-3}$11.解方程:$\frac{13}{x+2}=\frac{x-1}{x+3}$12.解关于$x$的方程:$\frac{2}{x+1}-\frac{1}{x-2}=x$13.解方程:$\frac{x+1}{x^2+3x-1}=\frac{1}{x-1}$14.解方程:$\frac{x+1}{x-1}+\frac{2}{x+2}=3$15.阅读理解:小云用换元法解方程$\frac{x+1}{x+1+y}+\frac{2y}{x+1+y}=3$,得到$y=1$,从而解得$x=0$。

16.解分式方程:$\frac{x^4}{x-2x^3}+2=\frac{x}{2x-3}$17.解分式方程:$\frac{2x-1}{x-1}-\frac{2x+1}{x+1}=1$18.解分式方程:$\frac{1-x}{x-2}+2=\frac{1}{x-2}$19.解分式方程:$\frac{x-1}{x+1}-\frac{x+1}{x-1}=2$20.解分式方程:$\frac{1}{x^2-1}-\frac{1}{x+1}=1$21.解分式方程:$\frac{2x-1}{x+1}-\frac{x+2}{x-1}=3$22.解分式方程:$\frac{4x-1}{x-1}-\frac{1}{x+1}=\frac{3x+1}{x^2-1}$23.解分式方程:$\frac{x-3}{3-x}-\frac{x}{x-2}=1$24.解分式方程:$\frac{x}{x+2}-\frac{1}{x-1}=\frac{4}{x+5}$25.解分式方程:$\frac{x+1}{x-1}+\frac{1}{x+1}=2$26.解分式方程:$\frac{x+1}{x-1}-\frac{1}{x+1}=1$27.解分式方程:$\frac{x-1}{x+1}-\frac{1}{x-1}=1$28.解分式方程:$\frac{2}{x-1}-\frac{1}{x+1}=\frac{2x}{x^2-1}$29.解分式方程:$\frac{3x}{2x-4}-1=\frac{2}{2x-2}$30.解分式方程:$\frac{5}{2x+3}-\frac{1}{x-x^2}=\frac{1}{x}$31.解分式方程:$\frac{x+1}{x-2}-\frac{2}{x+1}=1$32.解分式方程:$\frac{x-1}{x-2}+\frac{1}{2-x}=1$9.解法一:首先,将原方程化简为 $\frac{x-2}{2}=\frac{1}{y-2}$,令$y-2=t$,则原方程变为 $\frac{x-2}{2}=\frac{1}{t}$。

100道解分式方程及答案

100道解分式方程及答案

100道解分式方程练习题(带答案)解答:一、复习例解方程:(1)2x+xx+3=1; (2)15x=2×15 x+12;(3)2(1x+1x+3)+x-2x+3=1.解(1)方程两边都乘以x(3+3),去分母,得2(x+3)+x2=x2+3x,即2x-3x=-6所以x=6.检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根.(2)方程两边都乘以x(x+12),约去分母,得15(x+12)=30x.解这个整式方程,得x=12.检验:当x=12时,x(x+12)=12(12+12)≠0,所以x=12是原分式方程的根.(3)整理,得2x+2x+3+x-2x+3=1,即2x+2+x-2 x+3=1,即2x+xx+3=1.方程两边都乘以x(x+3),去分母,得2(x+3)+x2=x(x+3),即2x+6+x2=x2+3x,亦即2x-3x=-6.解这个整式方程,得x=6.检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根.二、新课例1 一队学生去校外参观,他们出发30分钟时,学校要把一个紧急通知传给带队老师,派一名学生骑车从学校出发,按原路追赶队伍.若骑车的速度是队伍进行速度的2倍,这名学生追上队伍时离学校的距离是15千米,问这名学生从学校出发到追上队伍用了多少时间?请同学根据题意,找出题目中的等量关系.答:骑车行进路程=队伍行进路程=15(千米);骑车的速度=步行速度的2倍;骑车所用的时间=步行的时间-0.5小时.请同学依据上述等量关系列出方程.答案:方法1 设这名学生骑车追上队伍需x小时,依题意列方程为15x=2×15 x+12.方法2 设步行速度为x千米/时,骑车速度为2x千米/时,依题意列方程为15x-15 2x=12.解由方法1所列出的方程,已在复习中解出,下面解由方法2所列出的方程.方程两边都乘以2x,去分母,得30-15=x,所以x=15.检验:当x=15时,2x=2×15≠0,所以x=15是原分式方程的根,并且符合题意.所以骑车追上队伍所用的时间为15千米30千米/时=12小时.答:骑车追上队伍所用的时间为30分钟.指出:在例1中我们运用了两个关系式,即时间=距离速度,速度=距离时间.如果设速度为未知量,那么按时间找等量关系列方程;如果设时间为未知量,那么按速度找等量关系列方程,所列出的方程都是分式方程.例2 某工程需在规定日期内完成,若由甲队去做,恰好如期完成;若由乙队去做,要超过规定日期三天完成.现由甲、乙两队合做两天,剩下的工程由乙独做,恰好在规定日期完成,问规定日期是多少天?分析;这是一个工程问题,在工程问题中有三个量,工作量设为s,工作所用时间设为t,工作效率设为m,三个量之间的关系是s=mt,或t=sm,或m=st.请同学根据题中的等量关系列出方程.答案:方法1 工程规定日期就是甲单独完成工程所需天数,设为x天,那么乙单独完成工程所需的天数就是(x+3)天,设工程总量为1,甲的工作效率就是x1,乙的工作效率是1x+3.依题意,列方程为2(1x+1x3)+x2-xx+3=1.指出:工作效率的意义是单位时间完成的工作量.方法2 设规定日期为x天,乙与甲合作两天后,剩下的工程由乙单独做,恰好在规定日期完成,因此乙的工作时间就是x天,根据题意列方程2x+xx+3=1.方法3 根据等量关系,总工作量—甲的工作量=乙的工作量,设规定日期为x天,则可列方程1-2x=2x+3+x-2x+3.用方法1~方法3所列出的方程,我们已在新课之前解出,这里就不再解分式方程了.重点是找等量关系列方程.三、课堂练习1.甲加工180个零件所用的时间,乙可以加工240个零件,已知甲每小时比乙少加工5个零件,求两人每小时各加工的零件个数.2.A,B两地相距135千米,有大,小两辆汽车从A地开往B地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟.已知大、小汽车速度的比为2:5,求两辆汽车的速度.答案:1.甲每小时加工15个零件,乙每小时加工20个零件.2.大,小汽车的速度分别为18千米/时和45千米/时.四、小结1.列分式方程解应用题与列一元一次方程解应用题的方法与步骤基本相同,不同点是,解分式方程必须要验根.一方面要看原方程是否有增根,另一方面还要看解出的根是否符合题意.原方程的增根和不符合题意的根都应舍去.2.列分式方程解应用题,一般是求什么量,就设所求的量为未知数,这种设未知数的方法,叫做设直接未知数.但有时可根据题目特点不直接设题目所求的量为未知量,而是设另外的量为未知量,这种设未知数的方法叫做设间接未知数.在列分式方程解应用题时,设间接未知数,有时可使解答变得简捷.例如在课堂练习中的第2题,若题目的条件不变,把问题改为求大、小两辆汽车从A地到达B地各用的时间,如果设直接未知数,即设,小汽车从A地到B地需用时间为x小时,则大汽车从A地到B地需(x+5-12)小时,依题意,列方程135 x+5-12:135x=2:5.解这个分式方程,运算较繁琐.如果设间接未知数,即设速度为未知数,先求出大、小两辆汽车的速度,再分别求出它们从A地到B地的时间,运算就简便多了.五、作业1.填空:(1)一件工作甲单独做要m小时完成,乙单独做要n小时完成,如果两人合做,完成这件工作的时间是______小时;(2)某食堂有米m公斤,原计划每天用粮a公斤,现在每天节约用粮b公斤,则可以比原计划多用天数是______;(3)把a千克的盐溶在b千克的水中,那么在m千克这种盐水中的含盐量为______千克.2.列方程解应用题.(1)某工人师傅先后两次加工零件各1500个,当第二次加工时,他革新了工具,改进了操作方法,结果比第一次少用了18个小时.已知他第二次加工效率是第一次的2.5倍,求他第二次加工时每小时加工多少零件?(2)某人骑自行车比步行每小时多走8千米,如果他步行12千米所用时间与骑车行36千米所用的时间相等,求他步行40千米用多少小时?(3)已知轮船在静水中每小时行20千米,如果此船在某江中顺流航行72千米所用的时间与逆流航行48千米所用的时间相同,那么此江水每小时的流速是多少千米?(4)A,B两地相距135千米,两辆汽车从A地开往B地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟.已知两车的速度之比是5:2,求两辆汽车各自的速度.答案:1.(1)mn m+n; (2)m a-b-ma; (3)ma a+b.2.(1)第二次加工时,每小时加工125个零件.(2)步行40千米所用的时间为40 4=10(时).答步行40千米用了10小时.(3)江水的流速为4千米/时.课堂教学设计说明1.教学设计中,对于例1,引导学生依据题意,找到三个等量关系,并用两种不同的方法列出方程;对于例2,引导学生依据题意,用三种不同的方法列出方程.这种安排,意在启发学生能善于从不同的角度、不同的方向思考问题,激励学生在解决问题中养成灵活的思维习惯.这就为在列分式方程解应用题教学中培养学生的发散思维提供了广阔的空间.2.教学设计中体现了充分发挥例题的模式作用.例1是行程问题,其中距离是已知量,求速度(或时间);例2是工程问题,其中工作总量为已知量,求完成工作量的时间(或工作效率).这些都是运用列分式方程求解的典型问题.教学中引导学生深入分析已知量与未知量和题目中的等量关系,以及列方程求解的思路,以促使学生加深对模式的主要特征的理解和识另别,让学生弄清哪些类型的问题可借助于分式方程解答,求解的思路是什么.学生完成课堂练习和作业,则是识别问题类型,能把面对的问题和已掌握的模式在头脑中建立联系,探求解题思路.3.通过列分式方程解应用题数学,渗透了方程的思想方法,从中使学生认识到方程的思想方法是数学中解决问题的一个锐利武器.方程的思想方法可以用“以假当真”和“弄假成真”两句话形容.如何通过设直接未知数或间接未知数的方法,假设所求的量为x,这时就把它作为一个实实在在的量.通过找等量关系列方程,此时是把已知量与假设的未知量平等看待,这就是“以假当真”.通过解方程求得问题的解,原先假设的未知量x就变成了确定的量,这就是“弄假成真”.解分式方程的例题及答案第2 篇一认识分式知识点一分式的概念1、分式的概念从形式上来看,它应满足两个条件:(1)写成的形式(A、B表示两个整式)(2)分母中含有这两个条件缺一不可2、分式的意义(1)要使一个分式有意义,需具备的条件是(2)要使一个分式无意义,需具备的条件是(3)要使分式的值为0,需具备的条件是知识点二、分式的基本性质分式的分子与分母都乘以(或除以)同一个分式的值不变用字母表示为= (其中M是不等于零的整式)知识点三、分式的约分1、概念:把一个分式的分子和分母中的公因式约去,这种变形称为分式的约分2、依据:分式的基本性质注意:(1)约分的关键是正确找出分子与分母的公因式(2)当分式的分子和分母没有公因式时,这样的分式称为最简分式,化简分式时,通常要使结果成为最简分式或整式。

解分式方程专项练习200题(精心整理有答案)之欧阳家百创编

解分式方程专项练习200题(精心整理有答案)之欧阳家百创编

解分式方程专项练习200题(有答案)(1)=1﹣;(2)+=1.(3)+=1;(4)+2=.(5)+=(6)+=﹣3.(7)(8).(9)(10)﹣=0.(11)(12).(13)+3=(14)+=.(15)=;(16).(17)(18).(19)﹣=1 (20)=+1.(21);(22).(23)=1;(24).(25);(26).(27);(28).(29)=;(30)﹣=1.(31);(32).(33);(34).(35)=(36)=.(37)(38)(39)(40)(41);(42).(43)=(44).(45)(46)=1﹣.(47);(48).(49)(50).(51)=;(52)=1﹣.(53)(54).(55).(56);(57).(58)=;(59).(60)﹣1=(61)+=.(62)(63).(64)(65).(66).(67)﹣=.(68);(69).(70)(71).(72)(73).(74);(75).(76)(77).(78).(79)(80).(81)(82).(83)(84).(85)(86).(87);(88).(89)﹣1=;(90)﹣=.(91)﹣=1;(92)﹣1=.(93);(94).(95)﹣=1;(96)+=1.(97).(98).(99).(100)+=.(101).(102).(103)+2=.(104).(105)(106)﹣=.(107)+=1.(108)=+3.(109)(110)﹣=1 (111)(112).(113)=1.(114)(115)=﹣.(116).(117).(118).(119).(120).(121);(122).(123)(124)(125).(126)(127)+=(128)(129);(130).(131)(132)(133)(134)(135)(136).(137)+2=(138)=﹣.(139).(140).(141).(142).(143).(144)(145).(146)(147)(148)﹣=1﹣.(149)(150).(151);(152).(153)(154)(155).(156)(157).(158);(159);(160);(161).(162);(163).(164);(165).(166);(167).(168)+=+.(169)﹣=﹣.(170)(171).(172);(173)=0.(174)(175).(176)(177).(178)(179).(180)(181).(182).(183)=;(184).(185)=;(186)=.(187); 6yue28 (188);(189);(190).(191)=;(192).(193)=1;(194).(195)+=(196)=1;(197)(198)﹣=;(199)﹣=0(m≠n).(200)+=0;(201)+=﹣2.参考答案:(1)去分母得:2x=x﹣2+1,解得:x=﹣1,经检验x=﹣1是分式方程的解;(2)去分母得:x2﹣4x+4+4=x2﹣4,解得:x=﹣3,经检验x=﹣3是分式方程的解3.解方程:(3)去分母得:x﹣5=2x﹣5,解得:x=0,经检验x=0是分式方程的解;(4)去分母得:1﹣x+2x﹣4=﹣1,解得:x=2,经检验x=2是增根,分式方程无解(5)去分母得:x﹣1+2x+2=4,移项合并得:3x=3,解得:x=1,经检验x=1是增根,原分式方程无解;(6)去分母得:1﹣x+1=﹣3x+6,移项合并得:2x=4,解得:x=2,经检验x=2是增根,原分式方程无解(7)由原方程,得1﹣x﹣6+3x=﹣1,即2x=4,解得x=2.经检验x=2是增根.所以,原方程无解.(8)由原方程,得7(x﹣1)+(x+1)=6x,即2x=6,解得x=3.经检验x=3是原方程的根.所以,原方程的解为:x=3(9)方程两边同乘(x﹣2)(x+2),得x(x+2)+2=(x﹣2)(x+2),解得x=﹣3,检验:当x=﹣3时,(x﹣2)(x+2)≠0,所以x=﹣3是原分式方程的解;(10)方程两边同乘x(x﹣1),得3x﹣(x+2)=0,解得 x=1,检验:当x=1时,x(x﹣1)=0,x=1是原分式方程的增根.所以,原方程无解(11)去分母额:x+1﹣2(x﹣1)=4,去括号得:x+1﹣2x+2=4,移项合并得:﹣x=1,解得:x=﹣1,经检验x=﹣1是增根,分式方程无解;(12)去分母得:3+x(x﹣2)=(x﹣1)(x﹣2),整理得:﹣2x+3x=2﹣3,解得:x=﹣1,经检验x=﹣1是分式方程的解(13)去分母得:1+3x﹣6=x﹣1,移项合并得:2x=4,解得:x=2,经检验x=2是增根,分式方程无解;(14)去分母得:2x﹣2+3x+3=6,移项合并得:5x=5,解得:x=1,经检验x=1是增根,分式方程无解(15)去分母得:2x=3x﹣9,解得:x=9,经检验x=9是分式方程的解;(16)去分母得:(x+1)2﹣4=x2﹣1,去括号得:x2+2x+1﹣4=x2﹣1,移项合并得:2x=2,解得:x=1,经检验x=1是增根,分式方程无解(17)去分母得:3(x﹣5)=2x,去括号得:3x﹣15=2x,移项得:3x﹣2x=15,解得:x=15,检验:当x=15时,3(x﹣5)≠0,则原分式方程的解为x=15;(18)去分母得:3(5x﹣4)+3(x﹣2)=4x+10,去括号得:15x﹣12+3x﹣6﹣4x=10,移项合并得:14x=28,解得:x=2,检验:当x=2时,3(x﹣2)=0,则原分式方程无解(19)去分母得:x(x+2)﹣1=x2﹣4,即x2+2x﹣1=x2﹣4,移项合并得:2x=﹣3,解得:x=﹣,经检验是分式方程的解;(20)去分母得:2x=4+x﹣2,移项合并得:x=2,经检验x=2是增根,分式方程无解(21)去分母得:6x﹣15﹣4x2﹣10x+4x2﹣25=0,移项合并得:﹣4x=40,解得:x=﹣10,经检验x=﹣10是分式方程的解;(22)去分母得:(x+1)2﹣4=x2﹣1,整理得:x2+2x+1﹣4=x2﹣1,移项合并得:2x=2,解得:x=1,经检验x=1是增根,分式方程无解(23)去分母得:x(x+2)+6(x﹣2)=x2﹣4,去括号得:x2+2x+6x﹣12=x2﹣4,移项合并得:8x=8,解得:x=1,经检验x=1是分式方程的解;(24)去分母得:4x﹣4+5x+5=10,移项合并得:9x=9,解得:x=1,经检验x=1是增根,分式方程无解(25)方程两边都乘以x﹣2得:x﹣1+2(x﹣2)=1,解方程得:x=2,∵经检验x=2是原方程的增根,∴原方程无解;(26)方程两边都乘以(x+1)(x﹣1)得:(x﹣1)2﹣16=(x+1)2,解得:x=﹣4,∵经检验x=﹣4是原方程的解,∴原方程的解是x=﹣4(27)解:两边同乘x﹣2,得:3+x=﹣2(x﹣2),去括号得:3+x=﹣2x+4,移项合并得:3x=1,解得:x=,经检验,x=是原方程的解;(28)两边同乘(x﹣1)(x+1),得:(x+1)2﹣4=x2﹣1,去括号得:x2+2x+1﹣4=x2﹣1,移项合并得:2x=2,解得:x=1,经检验,x=1是原方程的增根,则原方程无解(29)去分母得:2(x+1)=3x,去括号得:2x+2=3x,解得:x=2,经检验:x=2是原方程的解;(30)去分母得:(x+1)2﹣4=x2﹣1,去括号得:x2+2x+1﹣4=x2﹣1,解得:x=1,经检验:x=1 是原方程的增根,原方程无解(31)去分母得:2(x﹣9)+6=x﹣5,去括号得:2x﹣18+6=x﹣5,解得:x=7;(32)去分母得:3x+15+4x﹣20=2,移项合并得:7x=7,解得:x=1(33)去分母得:2x﹣18+6=x﹣5,移项合并得:x=7;(34)去分母得:5(x+2)﹣4(x﹣2)=3x,去括号得:5x+10﹣4x+8=3x,移项合并得:2x=18,解得:x=9(35)去分母得:6x=3x+3﹣x,移项合并得:4x=3,解得:x=,经检验x=是原方程的根;(36)去分母得:6x+x(x+1)=(x+4)(x+1),去括号得:6x+x2+x=x2+5x+4,移项合并得:2x=4,解得:x=2,经检验x=2是原方程的根(37)方程两边同乘(x﹣1)(x+1),得:2(x﹣1)﹣x=0,整理解得x=2.经检验x=2是原方程的解.(38)方程两边同乘(x﹣3)(x+3),得:3(x+3)=12,整理解得x=1.经检验x=1是原方程的解(39)方程两边同乘(x+1)(x﹣1),得:(x+1)2﹣4=(x+1)(x﹣1),整理解得x=1.检验x=1是原方程的增根.故原方程无解.(40)方程两边同乘x﹣5,得:3+x+2=3(x﹣5),解得x=10.经检验:x=10是原方程的解(41)方程两边同乘(x﹣3),得:2﹣x﹣1=x﹣3,整理解得x=2,经检验x=2是原方程的解;(42)方程两边同乘2(x﹣1),得:3﹣2=6x﹣6,解得x=,经检验x=是方程的根(43)原方程变形得2x=x﹣1,解得x=﹣1,经检验x=﹣1是原方程的根.∴原方程的解为x=﹣1.(44)两边同时乘以(x2﹣4),得,x(x﹣2)﹣(x+2)2=8,解得x=﹣2.经检验x=﹣2是原方程的增根.∴原分式方程无解(45)方程两边同乘(x﹣2),得:x﹣1﹣3(x﹣2)=1,整理解得x=2.经检验x=2是原方程的增根.∴原方程无解;(46)方程两边同乘(3x﹣8),得:6=3x﹣8+4x﹣7,解得x=3.经检验x=3是方程的根(47)方程两边同乘以(x﹣2),得1﹣x+2(x﹣2)=1,解得x=4,将x=4代入x﹣2=2≠0,所以原方程的解为:x=4;(48)方程两边同乘以(2x+3)(2x﹣3),得﹣2x﹣3+2x﹣3=4x,解得x=﹣,将x=﹣代入(2x+3)(2x﹣3)=0,是增根.所以原方程的解为无解(49)方程两边同乘以(x﹣1)(x+1)得,2(x﹣1)﹣(x+1)=0,解得x=3,经检验x=3是原方程的解,所以原方程的解为x=3;(50)方程两边同乘以(x﹣2)(x+2)得,(x﹣2)2﹣(x﹣2)(x+2)=16,解得x=﹣2,经检验x=﹣2是原方程的增根,所以原方程无解(51)方程两边同乘x(x+1),得5x+2=3x,解得:x=﹣1.检验:将x=﹣1代入x(x+1)=0,所以x=﹣1是原方程的增根,故原方程无解;(52)方程两边同乘(2x﹣5),得x=2x﹣5+5,解得:x=0.检验:将x=0代入(2x﹣5)≠0,故x=0是原方程的解(53)方程两边同乘以(x﹣3)(x+3),得x﹣3+2(x+3)=12,解得x=3.检验:当x=3时,(x﹣3)(x+3)=0.∴原方程无解;(54)方程的两边同乘(x﹣2),得1﹣2x=2(x﹣2),解得x=.检验:当x=时,(x﹣2)=﹣≠0.∴原方程的解为:x=(55).(55)方程的两边同乘(x+1)(x﹣1),得1﹣3x+3(x2﹣1)=﹣(x+1),3x2﹣2x﹣1=0,(4分)解得:.经检验,x1=1是原方程的增根,是原方程的解.∴原方程的解为x2=﹣.(56);(57).(56)方程两边同乘2(x﹣2),得:3﹣2x=x﹣2,解得x=.检验:当x=时,2(x﹣2)=﹣≠0,故原方程的解为x=;(57)方程两边同乘3(x﹣2),得:3(5x﹣4)=4x+10﹣3(x﹣2),解得x=2.检验:当x=2时,3(x﹣2)=0,所以x=2是原方程的增根(58)=;(59).(58)方程两边同乘以(2x+3)(x﹣1),得5(x﹣1)=3(2x+3)解得:x=﹣14,检验:当x=﹣14时,(2x+3)(x﹣1)≠0所以,x=﹣14是原方程的解;(59)方程两边同乘以2(x﹣1),得2x=3﹣4(x﹣1)解得:,检验:当时,2(x﹣1)≠0∴是原方程的解(60)方程两边都乘以2(3x﹣1)得:4﹣2(3x﹣1)=3,解这个方程得:x=,检验:∵把x=代入2(3x﹣1)≠0,∴x=是原方程的解;(61)原方程化为﹣=,方程两边都乘以(x+3)(x﹣3)得:12﹣2(x+3)=x ﹣3解这个方程得:x=3,检验:∵把x=3代入(x+3)(x﹣3))=0,∴x=3是原方程的增根,即原方程无解(62)方程的两边同乘(x﹣3),得2﹣x﹣1=x﹣3,解得x=2.检验:把x=2代入(x﹣3)=﹣1≠0.∴原方程的解为:x=2.(63)方程的两边同乘6(x﹣2),得3(x﹣4)=2(2x+5)﹣3(x﹣2),解得x=14.检验:把x=14代入6(x﹣2)=72≠0.∴原方程的解为:x=14(64)方程的两边同乘2(3x﹣1),得﹣2﹣3(3x﹣1)=4,解得x=﹣.检验:把x=﹣代入2(3x﹣1)=﹣4≠0.∴原方程的解为:x=﹣;(65)方程两边同乘以(x+2)(x﹣2),得x(x﹣2)﹣(x+2)2=8,x2﹣2x﹣x2﹣4x﹣4=8,解得x=﹣2,将x=﹣2代入(x+2)(x﹣2)=0,所以原方程无解(66)方程两边同乘以(x﹣2)得:1+(1﹣x)=﹣(x﹣2),解得:x=2,检验:把x=2代入(x﹣2)=0,即x=2不是原分式方程的解,则原分式方程的解为:x=2;(67)解:方程两边同乘以(x+1)(x﹣1)得:(x+1)﹣2(x﹣1)=1解得:x=2,检验:当x=2时,(x+1)(x﹣1)≠0,即x=2是原分式方程的解,则原分式方程的解为:x=2(68)方程的两边同乘2(x﹣2),得:1+(x﹣2)=﹣6,解得:x=﹣5.检验:把x=﹣5代入2(x﹣2)=﹣14≠0,即x=﹣5是原分式方程的解,则原方程的解为:x=﹣5.(69)方程的两边同乘x(x﹣1),得:x﹣1+2x=2,解得:x=1.检验:把x=1代入x(x﹣1)=0,即x=1不是原分式方程的解;则原方程无解(70)方程的两边同乘(2x+1)(2x﹣1),得:2(2x+1)=4,解得x=.检验:把x=代入(2x+1)(2x﹣1)=0,即x=不是原分式方程的解.则原分式方程无解.(71)方程的两边同乘(2x+5)(2x﹣5),得:2x (2x+5)﹣2(2x﹣5)=(2x+5)(2x﹣5),解得x=﹣.检验:把x=﹣代入(2x+5)(2x﹣5)≠0.则原方程的解为:x=﹣(72)原式两边同时乘(x+2)(x﹣2),得2x(x﹣2)﹣3(x+2)=2(x+2)(x﹣2),2x2﹣4x﹣3x﹣6=2x2﹣8,﹣7x=﹣2,x=.经检验x=是原方程的根.(73)原式两边同时乘(x2﹣x),得3(x﹣1)+6x=7,3x﹣3+6x=7,9x=10,x=.经检验x=是原方程的根(74)方程两边都乘以(x+1)(x﹣1)得,3(x+1)﹣(x+3)=0,解得x=0,检验:当x=0时,(x+1)(x﹣1)=(0+1)(0﹣1 =﹣1≠0,所以,原分式方程的解是x=0;(75)方程两边都乘以2(x﹣2)得,3﹣2x=x﹣2,解得x=,检验:当x=时,2(x﹣2)=2(﹣2)≠0,所以,原分式方程的解是x=(76)最简公分母为x(x﹣1),去分母得:3x﹣(x+2)=0,去括号合并得:2x=2,解得:x=1,将x=1代入得:x(x﹣1)=0,则x=1为增根,原分式方程无解;(77)方程变形为﹣=1,最简公分母为x﹣3,去分母得:2﹣x﹣1=x﹣3,解得:x=2,将x=2代入得:x﹣3=2﹣3=﹣1≠0,则分式方程的解为x=2(78)去分母得:1﹣x=﹣1﹣2(x﹣2),去括号得:1﹣x=﹣1﹣2x+4,解得:x=2,经检验x=2是增根,原分式方程无解(79)去分母得:x2﹣6=x2﹣2x,解得:x=3,经检验x=3是分式方程的解;(80)去分母得:x﹣6=2x﹣5,解得:x=﹣1,经检验x=﹣1是分式方程的解(81)去分母得:x=3x﹣6,移项合并得:2x=6,解得:x=3,经检验x=3是分式方程的解;(82)去分母得:(x﹣2)2﹣x2+4=16,整理得:﹣4x+4+4=16,移项合并得:﹣4x=8,解得:x=﹣2,经检验x=﹣2是增根,原分式方程无解(83)方程两边同时乘以y(y﹣1)得,2y2+y(y﹣1)=(3y﹣1)(y﹣1),解得y=.检验:将y=代入y(y﹣1)得,(﹣1)=﹣符合要求,故y=是原方程的根;(84)方程两边同时乘以x2﹣4得,(x﹣2)2﹣(x+2)2=16,解得x=﹣2,检验:将x=2代入x2﹣4得,4﹣4=0.故x=2是原方程的增根,原方程无解(85)去分母得:x﹣3+x﹣2=﹣3,整理得:2x=2,解得:x=1,经检验x=1是分式方程的解;(86)去分母得:x(x﹣1)=(x+3)(x﹣1)+2(x+3),去括号得:x2﹣x=x2﹣x+3x﹣3+2x+6,移项合并得:﹣5x=3,解得:x=﹣,经检验x=﹣是分式方程的解(87)原方程可化为:,方程的两边同乘(2x﹣4),得1+x﹣2=﹣6,解得x=﹣5.检验:把x=﹣5代入(2x﹣4)=﹣14≠0.欧阳家百创编 2021.03.07∴原方程的解为:x=﹣5.(88)原方程可化为:,方程的两边同乘(x2﹣1),得2(x﹣1)+3(x+1)=6,解得x=1.检验:把x=1代入(x2﹣1)=0.∴x=1不是原方程的解,∴原方程无解.(89)去分母得:x(x+1)﹣x2+1=2,去括号得:x2+x﹣x2+1=2,解得:x=1,经检验x=1是增根,分式方程无解;(90)去分母得:(x﹣2)2﹣16=(x+2)2,去括号得:x2﹣4x+4﹣16=x2+4x+4,移项合并得:8x=﹣8,解得:x=﹣1,经检验x=﹣1是分式方程的解(91)去分母得:x(x+1)﹣2(x﹣1)=x2﹣1,去括号得:x2+x﹣2x+2=x2﹣1,解得:x=3,经检验x=是分式方程的解;(92)去分母得:x(x+2)﹣(x+2)(x﹣1)=3,去括号得:x2+2x﹣x2﹣x+2=3,解得:x=1,经检验x=1是增根,原方程无解(93)去分母得:3﹣2=6x﹣6,解得:x=,经检验是分式方程的解;(94)去分母得:15x﹣12=4x+10﹣3x+6,移项合并得:14x=28,解得:x=2,经检验x=2是增根,分式方程无解(95)去分母得:(x+1)2﹣4=x2﹣1,去括号得:x2+2x+1﹣4=x2﹣1,移项合并得:2x=2,解得:x=1,经检验x=1是增根,分式方程无解;(96)去分母得:x﹣5=2x﹣5,解得:x=0,经检验x=0是分式方程的解(97)解:方程的两边同乘(x+2)(x﹣2),得x+2+x﹣2=3,解得x=.检验:把x=代入(x+2)(x﹣2)=﹣≠0.∴原方程的解为:x=(98)去分母两边同时乘以x(x﹣2),得:4+(x﹣2)=3x,去括号得:4+x﹣2=3x,移项得:x﹣3x=2﹣4,合并同类项得:﹣2x=﹣2,系数化为1得:x=1.把x=1代入x(x﹣2)=﹣1≠0,∴原方程的解是:x=1(99)去分母得:x2﹣9=x2+3x﹣3,移项合并得:3x=﹣6,解得:x=﹣2,经检验x=﹣2是分式方程的解(100)方程的两边同乘(x+1)(x﹣1),得欧阳家百创编 2021.03.076x+x(x+1)=(x+4)(x﹣1),解得x=﹣1.检验:把x=﹣1代入(x+1)(x﹣1)=0.∴原方程无解(101)方程两边都乘以(x﹣1)(x+2)得,3﹣x(x+2)+(x+2)(x﹣1)=0,解得x=1,检验:当x=1时,(x﹣1)(x+2)=0,所以,x=1是原方程的增根,故原方程无解(102方程两边同时乘以(x+2)(x﹣2),得x(x﹣2)﹣3(x+2)(x﹣2)=8,整理,得x2+x﹣2=0,∴x1=﹣2,x2=1.经检验x1=﹣2是增根,x2=1是原方程的解,∴原方程的解为x2=1(103)方程两边都乘以x(x+1)去分母得:1+2x2+2x=2x2+x,解得x=﹣1,检验:当x=﹣1时,x(x+1)=﹣1×(﹣1+1)=0,所以,x=﹣1不是原方程的解,所以,原分式方程无解(104)原方程可化为:﹣=1,方程的两边同乘(2x﹣5),得x﹣6=2x﹣5,解得x=﹣1.检验:把x=﹣1代入(2x﹣5)=﹣7≠0.∴原方程的解为:x=﹣1(105)方程两边同乘(x﹣1)(x+2),得:x(x+2)=(x﹣1)(x+2)+3化简得2x=x﹣2+3,解得x=1.经检验x=1时,(x﹣1)(x+2)=0,1不是原方程的解,∴原分式方程无解(106)去分母得:x﹣1+2(x+1)=1,去括号得:x﹣1+2x+2=1,移项合并得:3x=0,解得:x=0,经检验x=0是分式方程的解(107)解:去分母得:x2+5x+2=x2﹣x,移项合并得:6x=﹣2,解得:x=﹣,经检验是分式方程的解(108)解:去分母得:x﹣1=3﹣x+3x+6,解得:x=﹣10,经检验x=﹣10是分式方程的解(109)解:去分母得:2(x+1)﹣4=5(x﹣1),2x+2﹣4﹣5x+5=0,﹣3x=﹣3,∴x=1,经检验x=1是增根舍去,所以原方程无解(110)解:﹣=1﹣=1(4分)=1,欧阳家百创编 2021.03.07∴a=2.经检验a=2是原方程的解,故此方程的根为:a=2(111)解:原方程可化为:=1+,方程的两边同乘(2x﹣1),得x﹣1=2x﹣1+2,解得x=﹣2.检验:把x=﹣2代入(2x﹣1)=﹣5≠0.∴原方程的解为x=﹣2(112)解:.=,=,(x﹣1)2+9=3(x+2)x2﹣5x+4=0,x1=4,x2=1检验:把x1=4分别代入(x+2)(x﹣1)=18≠0,∴x1=4是原方程的解;把x2=1分别代入(x+2)(x﹣1)=0,∴x2=1不是原方程的解,∴x=4是原方程的解(113)解:原方程可化为:﹣=1,方程的两边同乘(a﹣1)2,得(a﹣1)(a+1)﹣a2=(a﹣1)2,﹣1=(a﹣1)2,因为(a﹣1)2是非负数,故原方程的无解(114)解:原方程化为:+=﹣,去分母,得5(x+3)+5(x﹣3)=﹣4(x+3)(x﹣3),去括号,整理,得2x2+5x﹣18=0,即(2x+9)(x﹣2)=0,解得x1=﹣,x2=2,经检验,当x=﹣或2时,5(x+3)(x﹣3)≠0,所以,原方程的解为x1=﹣,x2=2(115)解:方程的两边同乘15(m2﹣3+7m),得15(m﹣9)=﹣7(m2﹣3+7m),整理,得7m2+64m﹣156=0,解得m1=2,m2=﹣.检验:把m1=2代入15(m2﹣3+7m)≠0,则m1=2是原方程的根;把m2=﹣代入15(m2﹣3+7m)≠0,则m2=﹣是原方程的根.故原方程的解为:m1=2,m2=﹣(116)解:方程两边同乘以(x+1)(x﹣1),得(x+1)2﹣12=(x+1)(x﹣1),x2+2x+1﹣12=x2﹣1x2+2x﹣11﹣x2+1=0,2x﹣10=02x=10x=5,经检验:x=5是原分式方程的解,欧阳家百创编 2021.03.07所以原方程的解为x=5(117)解:原方程可化为:﹣+=0,方程的两边同乘x2﹣4得:﹣6+2(x+2)=0,解得x=1.检验:把x=1代入x2﹣4=﹣3≠0,方程成立,∴原方程的解为:x=1(118)方程两边同乘最简公分母x(x﹣1),得x+4=3x,解得x=2,检验:当x=2时,x(x﹣1)=2×(2﹣1)=2≠0,∴x=2是原方程的根,故原分式方程的解为x=2(119)方程两边都乘以(x﹣1)(x+1)得,(x﹣2)(x+1)+3(x﹣1)=(x﹣1)(x+1),x2﹣x﹣2+3x﹣3=x2﹣1,2x=4,x=2,检验:当x=2时,(x﹣1)(x+1)≠0,所以,原分式方程的解x=2(120)方程的两边同乘2(x﹣2)(x+2),得3(x+2)﹣2x(x﹣2)=(x﹣2)(x+2),3x+6﹣2x2+4x=x2﹣4,3x2﹣7x﹣10=0,解得x1=﹣1,x2=.经检验:x1=﹣1,x2=是原方程的解(121)去分母得:x﹣3+2(x+3)=12,去括号得:x﹣3+2x+6=12,移项合并得:3x=9,解得:x=3,经检验x=3是增根,分式方程无解;(122)去分母得:x(x+2)﹣x﹣14=2x(x﹣2)﹣x2+4,去括号得:x2+2x﹣x﹣14=2x2﹣4x﹣x2+4,移项合并得:5x=18,解得:x=3.6,经检验x=3.6是分式方程的解(123)解:方程两边同乘3(x﹣3)得2x+9=3(4x﹣7)+6(x﹣3)解得x=3经检验x=3是原方程增根,∴原方程无解(124)方程两边同乘6(x﹣2),得3(5x﹣4)+3(x﹣2)=2(2x+5),整理得:15x﹣12+3x﹣6=4x+10,解得:x=2.检验:将x=2代入6(x﹣2)=6(2﹣2)=0.∴可得x=2是增根,原方程无解.(125)方程化为:=+1,方程两边都乘以(x+3)(x﹣1)得:x+3=4+(x+3)(x﹣1),整理得:x2+x﹣2=0,(x+2)(x﹣1)=0,解得:x1=﹣2,x2=1,检验:当x=1时,(x+3)(x﹣1)=0,即x=1是增根;当x=﹣2时(x+3)(x﹣1)≠0,即x=﹣2是方程的根,即原方程的解是x=﹣2.(126)方程两边同乘以x(x﹣1)得欧阳家百创编 2021.03.073(x﹣1)+2x=x+5,3x﹣3+2x=x+5,4x=8,x=2,经检验知:x=2是原方程的解(127).+=x2+2x+5(x+1)=(x+4)(x﹣1)4x=﹣9x=﹣检验:x=﹣时,(x+1)(x﹣1)≠0,所以x=﹣是原分式方程的解(128)解:原方程变形为,,,,∴x2﹣13x+42=x2﹣9x+20,∴x=,检验知x=是方程的根(129)方程的两边同乘x(x+1),得x2+x(x+1)=(2x+2)(x+1),解得x=﹣.检验:把x=﹣代入x(x+1)=﹣≠0.∴原方程的解为:x=﹣;(130)方程的两边同乘(x+1)(x﹣1),得2(x﹣1)+3(x+1)=﹣5,解得x=﹣.检验:把x=﹣代入(x+1)(x﹣1)=≠0.∴原方程的解为:x=﹣(131)方程的两边同乘2(x﹣3),得2(x﹣2)=x﹣3+2,解得x=3.检验:把x=3代入2(x﹣3)=0.x=3是原方程的增根,∴原方程无解.(132)方程的两边同乘(x﹣4),得5﹣x﹣1=x﹣4,解得x=4.检验:把x=4代入(x﹣4)=0.x=4是原方程的增根,∴原方程无解.(133)方程的两边同乘(x+1)(x﹣1),得2(x﹣1)+3(x+1)=6,解得x=1.检验:把x=1代入(x+1)(x﹣1)=0.x=1是原方程的增根,∴原方程无解.欧阳家百创编 2021.03.07(134)方程的两边同乘(x+2)(x﹣2),得(x﹣2)2﹣16=(x+2)2,解得x=﹣2.检验:把x=﹣2代入(x+2)(x﹣2)=0.x=﹣2是原方程的增根,∴原方程无解.(135)方程的两边同乘x(x﹣1),得6x+3(x﹣1)=x+5,解得x=1.检验:把x=1代入x(x﹣1)=0.x=1是原方程的增根,∴原方程无解.(136)方程的两边同乘x(x﹣1),得x2﹣2(x﹣1)=x(x﹣1),解得x=2.检验:把x=2代入x(x﹣1)=2≠0.∴原方程的解为:x=2(137)去分母得:1+2x﹣6=x﹣4,解得:x=1,经检验x=1是分式方程的解;(138)去分母得:15x﹣12=4x+10﹣3(x﹣2),去括号得:15x﹣12=4x+10﹣3x+6,移项合并得:14x=28,解得:x=2,经检验x=2是增根,分式方程无解(139)解:去分母得:6x﹣3+5x=x+27,移项合并得:10x=30,解得:x=3.经检验x=3是分式方程的解(140)去分母得:3(x﹣2)﹣2(x﹣2)=2,即x﹣2=2,解得:x=4,经检验x=4是分式方程的解(141)解:去分母得:2﹣2x﹣3x﹣3=6,移项合并得:﹣5x=7,解得:x=﹣,经检验是分式方程的解(142)方程两边都乘以x(x+1)得,2(x+1)+6x=15,2x+2+6x=15,8x=13,x=,检验:当x=时,x(x+1)=×(+1)≠0,所以x=是分式方程的解,因此,原分式方程的解释x=(143)﹣=﹣,==方程两边都乘以(x+1)(x+2)(x+3)(x+4)得:(x+3)(x+4)=(x+1)(x+2)解方程得:x=﹣,经检验x=﹣是原方程的解,即原方程的解为x=﹣欧阳家百创编 2021.03.07(144)原方程可化为:+2=,方程的两边同乘x﹣3,得1+2(x﹣3)=x﹣4,解得x=1.检验:把x=1代入x﹣3=﹣2≠0.∴原方程的解为:x=1;(145)方程的两边同乘(x+2)(x﹣2),得4+(x+2)(x+3)=(x﹣1)(x﹣2),解得x=﹣1.检验:把x=﹣1代入(x+2)(x﹣2)=﹣3≠0.∴原方程的解为:x=﹣1(146)方程两边同乘以(x+1)(2﹣x),得:(2﹣x)+3(x+1)=0;整理,得:2x+5=0,解得:x=﹣2.5;经检验,x=﹣2.5是原方程的解.(147)原方程可化为:(1+)﹣(1+)=(1+)﹣(1+),整理得:=,去分母得:(x+5)(x+7)=(x+1)(x+3),即:x2+12x+35=x2+4x+3,解得x=﹣4;经检验,x=﹣4是原方程的解(148)去分母得:7(x﹣1)+3(x+1)=x(x2﹣1)﹣x(x2﹣7),去括号得:7x﹣7+3x+3=x3﹣x﹣x3+7x,移项合并得:4x=4,解得:x=1,经检验x=1是增根,原分式方程无解(149)方程的两边同乘(2x﹣3),得:x﹣5=4(2﹣3),解得:x=1.检验:把x=1代入(2x﹣3)=﹣1≠0,即x=1是原分方程的解.则原方程的解为:x=1.(150)方程的两边同乘(x+2)(x﹣2),得:x(﹣2)﹣(x+2)2=8,解得:x=﹣2.检验:把x=﹣2代入(x+2)(x﹣2)=0,即x=﹣2是原分式方程的解.则原方程无解(151)方程的两边同乘(2x﹣1)(x﹣2),得2x(x﹣2)+(x﹣1)(2x﹣1)=2(2x﹣1)(x﹣2),解得x=3.检验:把x=﹣1代入(2x﹣1)(x﹣2)=5≠0.∴原方程的解为:x=3.(152)方程的两边同乘2(x+3)(x﹣3),得2(x﹣3)﹣(x+3)=3x﹣5,解得x=﹣2.检验:把x=﹣2代入2(x+3)(x﹣3)=﹣10≠0.∴原方程的解为:x=﹣2(153)方程的两边同乘(4x2﹣8)(1﹣2x),得:8(1﹣2x)+(2x+3)(4x2﹣8)=﹣(4x2﹣8)(1 2x),即2x2﹣2x﹣3=0,解得:x=.检验:把x=代入(4x2﹣8)(1﹣2x)≠0,欧阳家百创编 2021.03.07故原方程的解为:x=.(154)方程的两边同乘x(x﹣1),得:3(x﹣1)+6x=7,解得:x=.检验:把x=代入x(x﹣1)=≠0,即x=是原分式方程的解,则原方程的解为:x=.(155)方程的两边同乘(3x﹣8),得:6=3x﹣8+(4x﹣7),解得:x=3.检验:把x=3代入(3x﹣8)=1≠0,即x=3是原分式方程的解,则原方程的解为:x=3(156)去分母得:x(x﹣2)﹣(x+2)2=8,去括号得:x2﹣2x﹣x2﹣4x﹣4=8,即﹣6x=12,解得:x=﹣2,经检验x=﹣2是增根,原分式方程无解;(157)去分母得:3x=2x+3x+3,移项合并得:2x=﹣3,解得:x=﹣,经检验x=﹣是原分式方程的解(158)方程的两边同乘(x+2)(x﹣2)得3(x+2)=2(x﹣2),解得x=﹣10.检验:把x=﹣10代入(x+2)(x﹣2)=96≠0.∴原方程的解为:x=﹣10.(159)方程的两边同乘(y﹣2),得1=y﹣1﹣3(y﹣2),解得y=2.检验:把y=2代入(y﹣2)=0.y=2是原方程的增根,∴原方程无解.(160)方程的两边同乘(x+2)(x﹣2)得(x﹣2)2﹣(x+2)2=16,解得x=﹣2.检验:把x=﹣2代入(x+2)(x﹣2)=0.∴x=﹣2是原方程的增根,∴原方程无解.(161)原方程可化为:﹣20=,方程的两边同乘x,得3000﹣20x=2500,解得x=25.经检验:x不为0,x=25是原方程的解(162)方程两边都乘以(4x﹣8)(3x﹣6)得:9x﹣18=4x﹣8,9x﹣4x=﹣8+18,5x=10,x=2,检验:把x=2代入(4x﹣8)(3x﹣6)=0,即x=2是增根,即原方程无解.(163)原方程化为:+=1﹣,方程的两边都乘以(x﹣1)(x﹣3)得:﹣2(x﹣3)+x(x﹣1)=x2﹣4x+3﹣(2x﹣1),欧阳家百创编 2021.03.07去括号得:﹣2x+6+x2﹣x=x2﹣4x+3﹣2x+1,整理得:3x=﹣2,x=﹣,检验:把x=﹣代入(x﹣1)(x﹣3)≠0,即x=﹣是原方程的解(164)方程两边都乘以2(x﹣2)得,1+x﹣2=6,解得x=7,检验:当x=7时,2(x﹣2)=2×(7﹣2)=10≠0,所以x=7是分式方程的解,故原分式方程的解是x=7;(165)方程两边都乘以(x+2)(x﹣2)得,x﹣2+4x=2(x+2),解得x=2,检验:当x=2时,(x+2)(x﹣2)=(2+2)(2﹣2)=0,所以x=2不是分式方程的解,是增根,故原分式方程无解(166)方程变形得:﹣3=,去分母得:1﹣3(x﹣2)=1﹣x,去括号得:1﹣3x+6=1﹣x,移项合并得:﹣2x=﹣6,解得:x=3,将x=3代入检验是分式方程的解;(167)最简公分母为x(x+3)(x﹣3),去分母得:x﹣3=2x+x+3,移项合并得:2x=﹣6,解得:x=﹣3,将x=﹣3代入得:x(x+3)(x﹣3)=0,则x=﹣3是增根,原分式方程无解(168)方程变形得:+=+,即1﹣+1﹣=1﹣+1﹣,整理得:+=+,即﹣=﹣,化简得:=,可得x2﹣3x+2=x2﹣13x+42,解得:x=4,经检验x=4是分式方程的解(169)方程变形得:﹣=﹣,即1﹣﹣1+=1﹣﹣1+,整理得:﹣=﹣,即=,整理得:=,去分母得:x2+5x+6=x2+13x+42,解得:x=﹣4.5,经检验是分式方程的解欧阳家百创编 2021.03.07。

(完整)初三解分式方程专题练习(附答案)

(完整)初三解分式方程专题练习(附答案)

初三解分式方程专题练习一.解答题(共30小题)1.解方程:.2.解关于的方程:.3.解方程.4.解方程:=+1.6.解分式方程:.5.解方程:.7.(2011•台州)解方程:.8.解方程:.9.解分式方程:.10.解方程:.11.解方程:.12.解方程:.14.解方程:.13.解方程:.15.解方程:16.解方程:.17.①解分式方程;18.解方程:.19.(1)计算:|﹣2|+(+1)0﹣()﹣1+tan60°;(2)解分式方程:=+1.20.解方程:21.解方程:+=123.解分式方程:22.解方程:.24.解方程:25.解方程:27.解方程:26.解方程:+=128.解方程:29.解方程:30.解分式方程:.初三解分式方程专题练习答案与评分标准一.解答题(共30小题)1.解方程:.解答:解:方程两边都乘以y(y﹣1),得2y2+y(y﹣1)=(y﹣1)(3y﹣1),2y2+y2﹣y=3y2﹣4y+1,3y=1,解得y=,检验:当y=时,y(y﹣1)=×(﹣1)=﹣≠0,∴y=是原方程的解,∴原方程的解为y=.2.解关于的方程:.解答:解:方程的两边同乘(x+3)(x﹣1),得x(x﹣1)=(x+3)(x﹣1)+2(x+3),整理,得5x+3=0,解得x=﹣.检验:把x=﹣代入(x+3)(x﹣1)≠0.∴原方程的解为:x=﹣.3.解方程.解答:解:两边同时乘以(x+1)(x﹣2),得x(x﹣2)﹣(x+1)(x﹣2)=3.(3分)解这个方程,得x=﹣1.(7分)检验:x=﹣1时(x+1)(x﹣2)=0,x=﹣1不是原分式方程的解,∴原分式方程无解.(8分)4.解方程:=+1.解答:解:原方程两边同乘2(x﹣1),得2=3+2(x﹣1),解得x=,检验:当x=时,2(x﹣1)≠0,∴原方程的解为:x=.5.(2011•威海)解方程:.解答:解:方程的两边同乘(x﹣1)(x+1),得3x+3﹣x﹣3=0,解得x=0.检验:把x=0代入(x﹣1)(x+1)=﹣1≠0.∴原方程的解为:x=0.6.(2011•潼南县)解分式方程:.解答:解:方程两边同乘(x+1)(x﹣1),得x(x﹣1)﹣(x+1)=(x+1)(x﹣1)(2分)化简,得﹣2x﹣1=﹣1(4分)解得x=0(5分)检验:当x=0时(x+1)(x﹣1)≠0,∴x=0是原分式方程的解.(6分)7.(2011•台州)解方程:.解答:解:去分母,得x﹣3=4x (4分)移项,得x﹣4x=3,合并同类项,系数化为1,得x=﹣1(6分)经检验,x=﹣1是方程的根(8分).8.(2011•随州)解方程:.解答:解:方程两边同乘以x(x+3),得2(x+3)+x2=x(x+3),2x+6+x2=x2+3x,∴x=6检验:把x=6代入x(x+3)=54≠0,∴原方程的解为x=6.9.(2011•陕西)解分式方程:.解答:解:去分母,得4x﹣(x﹣2)=﹣3,去括号,得4x﹣x+2=﹣3,移项,得4x﹣x=﹣2﹣3,合并,得3x=﹣5,化系数为1,得x=﹣,检验:当x=﹣时,x﹣2≠0,∴原方程的解为x=﹣.解答:解:方程两边都乘以最简公分母(x﹣3)(x+1)得:3(x+1)=5(x﹣3),解得:x=9,检验:当x=9时,(x﹣3)(x+1)=60≠0,∴原分式方程的解为x=9.11.(2011•攀枝花)解方程:.解答:解:方程的两边同乘(x+2)(x﹣2),得2﹣(x﹣2)=0,解得x=4.检验:把x=4代入(x+2)(x﹣2)=12≠0.∴原方程的解为:x=4.12.(2011•宁夏)解方程:.解答:解:原方程两边同乘(x﹣1)(x+2),得x(x+2)﹣(x﹣1)(x+2)=3(x﹣1),展开、整理得﹣2x=﹣5,解得x=2.5,检验:当x=2.5时,(x﹣1)(x+2)≠0,∴原方程的解为:x=2.5.13.(2011•茂名)解分式方程:.解答:解:方程两边乘以(x+2),得:3x2﹣12=2x(x+2),(1分)3x2﹣12=2x2+4x,(2分)x2﹣4x﹣12=0,(3分)(x+2)(x﹣6)=0,(4分)解得:x1=﹣2,x2=6,(5分)检验:把x=﹣2代入(x+2)=0.则x=﹣2是原方程的增根,检验:把x=6代入(x+2)=8≠0.∴x=6是原方程的根(7分).14.(2011•昆明)解方程:.解答:解:方程的两边同乘(x﹣2),得3﹣1=x﹣2,解得x=4.检验:把x=4代入(x﹣2)=2≠0.解答:(1)解:原方程两边同乘以6x,得3(x+1)=2x•(x+1)整理得2x2﹣x﹣3=0(3分)解得x=﹣1或检验:把x=﹣1代入6x=﹣6≠0,把x=代入6x=9≠0,∴x=﹣1或是原方程的解,故原方程的解为x=﹣1或(6分)16.(2011•大连)解方程:.解答:解:去分母,得5+(x﹣2)=﹣(x﹣1),去括号,得5+x﹣2=﹣x+1,移项,得x+x=1+2﹣5,合并,得2x=﹣2,化系数为1,得x=﹣1,检验:当x=﹣1时,x﹣2≠0,∴原方程的解为x=﹣1.17.(2011•常州)①解分式方程;解答:解:①去分母,得2(x﹣2)=3(x+2),去括号,得2x﹣4=3x+6,移项,得2x﹣3x=4+6,解得x=﹣10,检验:当x=﹣10时,(x+2)(x﹣2)≠0,∴原方程的解为x=﹣10;18.(2011•巴中)解方程:.解答:解:去分母得,2x+2﹣(x﹣3)=6x,∴x+5=6x,解得,x=1经检验:x=1是原方程的解.19.(2011•巴彦淖尔)(1)计算:|﹣2|+(+1)0﹣()﹣1+tan60°;(2)解分式方程:=+1.(2)方程两边同时乘以3(x+1)得3x=2x+3(x+1),x=﹣1.5,检验:把x=﹣1.5代入(3x+3)=﹣1.5≠0.∴x=﹣1.5是原方程的解.20.(2010•遵义)解方程:解答:解:方程两边同乘以(x﹣2),得:x﹣3+(x﹣2)=﹣3,解得x=1,检验:x=1时,x﹣2≠0,∴x=1是原分式方程的解.21.(2010•重庆)解方程:+=1解答:解:方程两边同乘x(x﹣1),得x2+x﹣1=x(x﹣1)(2分)整理,得2x=1(4分)解得x=(5分)经检验,x=是原方程的解,所以原方程的解是x=.(6分)22.(2010•孝感)解方程:.解答:解:方程两边同乘(x﹣3),得:2﹣x﹣1=x﹣3,整理解得:x=2,经检验:x=2是原方程的解.23.(2010•西宁)解分式方程:解答:解:方程两边同乘以2(3x﹣1),得3(6x﹣2)﹣2=4(2分)18x﹣6﹣2=4,18x=12,x=(5分).检验:把x=代入2(3x﹣1):2(3x﹣1)≠0,∴x=是原方程的根.∴原方程的解为x=.(7分)24.(2010•恩施州)解方程:经检验:当x=3时,x﹣4=﹣1≠0,所以x=3是原方程的解.(8分)25.(2009•乌鲁木齐)解方程:解答:解:方程两边都乘x﹣2,得3﹣(x﹣3)=x﹣2,解得x=4.检验:x=4时,x﹣2≠0,∴原方程的解是x=4.26.(2009•聊城)解方程:+=1解答:解:方程变形整理得:=1方程两边同乘(x+2)(x﹣2),得:(x﹣2)2﹣8=(x+2)(x﹣2),解这个方程得:x=0,检验:将x=0代入(x+2)(x﹣2)=﹣4≠0,∴x=0是原方程的解.27.(2009•南昌)解方程:解答:解:方程两边同乘以2(3x﹣1),得:﹣2+3x﹣1=3,解得:x=2,检验:x=2时,2(3x﹣1)≠0.所以x=2是原方程的解.28.(2009•南平)解方程:解答:解:方程两边同时乘以(x﹣2),得4+3(x﹣2)=x﹣1,解得:.检验:当时,,∴是原方程的解;29.(2008•昆明)解方程:解答:解:原方程可化为:,方程的两边同乘(2x﹣1),得2﹣5=2x﹣1,∴原方程的解为:x=﹣1.30.(2007•孝感)解分式方程:.解答:解:方程两边同乘以2(3x﹣1),去分母,得:﹣2﹣3(3x﹣1)=4,解这个整式方程,得x=﹣,检验:把x=﹣代入最简公分母2(3x﹣1)=2(﹣1﹣1)=﹣4≠0,∴原方程的解是x=﹣(6分)。

分式方程练习题(含答案)

分式方程练习题(含答案)

分式方程精华练习题一.选择题1.在下列方程中,关于x 的分式方程的个数(a 为常数)有( ) ①0432212=+-x x ②.4=a x ③.;4=x a ④.;1392=+-x x ⑤;621=+x ⑥211=-+-ax a x . A.2个 B.3个 C.4个 D.5个2. 关于x 的分式方程15m x =-,下列说法正确的是( ) A .方程的解是5x m =+ B .5m >-时,方程的解是正数C .5m <-时,方程的解为负数D .无法确定3.方程x x x-=++-1315112的根是( ) A.x =1 B.x =-1 C.x =83 D.x =2 4.,04412=+-x x 那么x 2的值是( ) A.2 B.1 C.-2 D.-15.下列分式方程去分母后所得结果正确的是( ) A.11211-++=-x x x 去分母得,1)2)(1(1-+-=+x x x ; B.125552=-+-xx x ,去分母得,525-=+x x ; C.242222-=-+-+-x x x x x x ,去分母得,)2(2)2(2+=+--x x x x ; D.,1132-=+x x 去分母得,23)1(+=-x x ; 6. .赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半书时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下面所列方程中,正确的是( ) A.21140140-+x x =14 B.21280280++x x =14 C.21140140++x x =14 D.211010++x x =1 7.若关于x 的方程0111=----x x x m ,有增根,则m 的值是( ) A.3 B.2 C.1 D.-18.若方程,)4)(3(1243+-+=++-x x x x B x A 那么A 、B 的值为( )A.2,1B.1,2C.1,1D.-1,-19.如果,0,1≠≠=b b a x 那么=+-ba b a ( ) A.1-x 1 B.11+-x x C.x x 1- D.11+-x x 10.使分式442-x 与6526322+++-+x x x x 的值相等的x 等于( ) A.-4 B.-3 C.1 D.10二.填空题11. 满足方程:2211-=-x x 的x 的值是________. 12. 当x =________时,分式xx ++51的值等于21. 13.分式方程0222=--x x x 的增根是 . 14. 一汽车从甲地开往乙地,每小时行驶v 1千米,t 小时可到达,如果每小时多行驶v 2千米,那么可提前到达________小时.15. 农机厂职工到距工厂15千米的某地检修农机,一部分人骑自行车先走40分钟后,其余人乘汽车出发,结果他们同时到达,已知汽车速度为自行车速度的3倍,若设自行车的速度为x 千米/时,则所列方程为 .16.已知,54=y x 则=-+2222yx y x . 17.=a 时,关于x 的方程53221+-=-+a a x x 的解为零. 18.飞机从A 到B 的速度是,1v ,返回的速度是2v ,往返一次的平均速度是 .19.当=m 时,关于x 的方程313292-=++-x x x m 有增根. 20. 某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路x m ,则根据题意可得方程 .三.计算21. .解下列方程 (1)x x x --=+-34231 (2) 2123442+-=-++-x x x x x (3)21124x x x -=--.四.解答题22.10年前父亲的年龄是女儿的7倍,15年后父亲的年龄是女儿的2倍,现在父亲的年龄有多大?23.两个人同走一段路,甲每小时走4250米,乙每小时走3000米,甲比乙少用2.5小时走完这段路,求这段路有多长?24.修一条公路,未修长度是已修长度的3倍,如果再修300米,未修长度就是已修的2倍,这条公路长多少米?、25.某制衣厂加工一批定货服装,按计划完成天数生产,如果每天均生产20套,就比定货任务少100套;如果每天生产23套服装,就可超过定货任务20套,问这批服装的订货任务是多少?原计划几天完成?25. 有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?26.小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室内发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元钱,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多53倍,问她第一次在供销大厦买了几瓶酸奶?答案一、1.B ,2.C 3.C ;4.B ,5.D ,6.C , 7.B ,8.C9.B ,10.D ;二、11.0;12.3,13.2=x ;14. 212v v t v +;15. 3215315-=x x ;16.941-. 17.51=a ;18.21212v v v v +;19.6或12,20. ()240024008120%x x-=+; 三、21.(1)无解(2)x = -1;(3)方程两边同乘(x-2)(x+2),得x(x+2)-(x 2-4)=1, 化简,得2x=-3,x= 32- 经检验,x=32-是原方程的根. 22.6天,24.解;5=x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 3. 5. 7. 9. .解答题(共30小题)解方程 一 — 初二解分式方程专题练习1_(K +n(K -IT3 解方程:x _ 1 (2011?台州)解方程: s _ 3 2x解分式方程: 4: _ 1_ 3 s- 2 ~2-s11 .解方程: 13.解方程:圧匕. x+2 15.解方程: x+1 x+117.①解分式方程 19. (1)计算:| —2|+ ( . :+1) 0-(二)-1+ta n60° 20. 解方程: 22. 解方程:口+id2-22- x2 - x 1 7T 3+3- s = 1 24. 解方程:26. 解方程:2•解关于的方程:二4 .解方程:一!— =+1 .x- 1 2s- 26 .解分式方程: 一—----s+1 i-l8 .解方程:一一一-10.解方程:—」12.解方程:14.解方程:16.解方程: 18.解方程:X - 3二2x+2 _x+l(2)解分式方程:x+1 3i+3+1.21.解方程:------- + =13 _ 1 K 23.解分式方程:1_1 ox _ 23 y — 325 .解方程:——X *■ Z Z - K27.解方程:28•解方程:- 30•解分式方程:…初三解分式方程专题练习答案与评分标准.解答题(共30小题)1.解方程:y-1 y解答:解:方程两边都乘以 y (y - 1),得22y +y (y - 1) = (y - 1) ( 3y — 1),2 2 22y +y - y=3y - 4y+1 , 3y=1 , 解得y= •,3检验:当 y= •时,y (y - 1) =— x( — - 1)=-—旳,33 39••• y= 一是原方程的解,3•原方程的解为y=.32. 解关于的方程:一‘ I ,.s+3 x _ 1解答:解:方程的两边同乘(x+3) (x - 1),得 x (x - 1) = (x+3) (x - 1) +2 (x+3), 整理,得5x+3=0, •••原方程的解为:x=-仝53. 解方程:訂解答:解:两边同时乘以(x+1) (x - 2), 得 x ( x - 2)-( x+1) (x - 2) =3. (3 分) 解这个方程,得x= - 1 . (7分)检验:x= - 1时(x+1) (x - 2) =0 , x= - 1不是原分式方程的解, •原分式方程无解.(8分)1 34. ----------------------- 解方程: = +1 .x - 1 2解答:解:原方程两边同乘 2 (x - 1),得2=3+2 (x - 1), 解得x=,2检验:当x=时,2 (x - 1)旳,2•••原方程的解为:x=,.解得x=-' 29.解方程:(x+3) (x - 1)检验:把解答:解:方程的两边同乘(x - 1) (x+1),得 3x+3 - x - 3=0, 解得x=0 .检验:把 x=0代入(x - 1) (x+1) = - 1老. •••原方程的解为:x=0. 6.(2011?潼南县)解分式方程:一 - 1'x+1 z _ 1解答:解:方程两边同乘(x+1) (x - 1),得 x ( x - 1)-( x+1) = (x+1) ( x - 1) ( 2 分) 化简,得-2x -仁-1 ( 4分) 解得x=0 (5分)检验:当 x=0 时(x+1) (x - 1) , • x=0是原分式方程的解.(6分)917. (2011?台州)解方程:一.x _ 3 2s解答:解:去分母,得x - 3=4x (4分)移项,得x - 4x=3 ,合并同类项,系数化为 1,得x= - 1 (6分) 经检验,x= - 1是方程的根(8分). &( 2011?随州)解方程:解答:解:方程两边同乘以 x (x+3),2得 2 (x+3) +x =x (x+3),2 22x+6+x =x +3x , 二 x=6检验:把 x=6代入x ( x+3) =54老, •原方程的解为x=6.9. (2011?陕西)解分式方程: 二 -1x — 2 2 -解答:解:去分母,得4x -( x - 2) = - 3, 去括号,得4x - x+2= - 3, 移项,得 4x - x= - 2- 3, 合并,得3x= - 5, 化系数为1,得x=-',35检验:当x=-.时,x - 2和,■35•原方程的解为x=-.33510. (2011?綦江县)解方程: ——7 ——s _ 3 x+1 解答:解:5. (2011?威海)解方程:x+3方程两边都乘以最简公分母(x - 3) (x+1)得:3 (x+1 ) =5 (x - 3), 解得:x=9,2检验:当 x=9 时,(x - 3) (x+1) =60 和, •••原分式方程的解为 x=9 .11 (2011?攀枝花)解方程:,—J —解答:解:方程的两边同乘(x+2) (x - 2),得 2-( x - 2) =0, 解得x=4 .检验:把 x=4代入(x+2 ) (x - 2) =12旳. •••原方程的解为:x=4.12. (2011?宁夏)解方程: 一 -I. —x _ 1 x+2解答:解:原方程两边同乘(x - 1) (x+2), 得 x (x+2)-( x - 1) (x+2) =3 (x - 1), 展开、整理得-2x= - 5, 解得x=2.5 ,检验:当 x=2.5 时,(x - 1) (x+2)老, •••原方程的解为:x=2.5.解答:解:方程两边乘以(x+2), 得:3x 2- 12=2x (x+2) ( 1 分)2 23x - 12=2x +4x , (2 分)2x - 4x - 12=0, (3 分)(x+2) (x - 6) =0, (4 分) 解得:X 1= - 2, X 2=6 , (5 分)检验:把x= - 2代入(x+2) =0.则x= - 2是原方程的增根, 检验:把 x=6代入(x+2) =8M D . • x=6是原方程的根(7 分).3 114. (2011?昆明)解方程:一. 二ix _ 2 2 ~ x 解答:解:方程的两边同乘(x - 2),得 3 - 1=x - 2, 解得x=4 .检验:把 x=4代入(x - 2) =2和. •••原方程的解为:x=4.15. (2011?荷泽)(1 )解方程:_4亠_;:-丄 解答:(1 )解:原方程两边同乘以 6x , 得 3 (x+1) =2x? (x+1)2整理得2x -x - 3=0 (3分) 解得x= - 1或-■一’2检验:把 x= - 1代入6x= - 6M D , 3把x^—代入6x=9旳,13. (2011?茂名)解分式方程:3异-12x+2•x= - 1或--一是原方程的解,2故原方程的解为x= - 1或 '(6分)K _2RX - 116. (2011?大连)解方程:一2^22 _ x解答:解:去分母,得 5+ ( x - 2) = -( x - 1), 去括号,得5+x - 2=- x+1 ,移项,得 x+x=1+2 - 5, 合并,得2x= - 2,化系数为1,得x= - 1, 检验:当x= - 1时,x - 2老, 原方程的解为x= - 1 .17. (2011?常州)①解分式方程丄二 解答:解:① 去分母,得2 (x - 2) =3 (x+2 ), 去括号,得2x - 4=3x+6 , 移项,得 2x - 3x=4+6 , 解得x= - 10, 检验:当 x= - 10 时,(x+2) ( x - 2)老, 原方程的解为x= - 10; 解答:解:去分母得, 2x+2 -( x - 3) =6x , /• x+5=6x , 解得,x=1经检验:x=1是原方程的解.19. (2011?巴彦淖尔)(1)计算:-2|+ ( ':+1) 0-(2)解分式方程: :,'=-亠一+1.K +1 31+3 解答:解:(1)原式=2+1 - 3+ 二 =7:- ■;(2)方程两边同时乘以 3 (x+1 )得 3x=2x+3 (x+1), x= - 1.5,检验:把 x= - 1.5 代入(3x+3) = - 1.5 旳. ••• x= - 1.5是原方程的解.疋一3 320. (2010?遵义)解方程:-— -—直1丄 Z _ X 解答:解:方程两边同乘以(x - 2),得:x - 3+ (x - 2) =- 3, 解得x=1 ,检验:x=1时,x - 2和, • x=1是原分式方程的解.一覚121 . (2010?重庆)解方程:'+ =1 X _ 1 X解答:解:方程两边同乘 x (x - 1),得x 2+x -仁X (x - 1) (2分) 整理,得2x=1 (4分)18. (2011?巴中)解方程: X - 3二2 x+2 _z+l1+ta n60 °解得x= _ (5分)2经检验,x=「是原方程的解,所以原方程的解是x= .(6分)2 22 =x 122. (2010?孝感)解方程:一I ~ 3 3 _ s解答:解:方程两边同乘(x - 3),得: 2- x - 1=x - 3,整理解得:x=2 ,经检验:x=2是原方程的解.23. (2010?西宁)解分式方程:j - 1 _3x- 1 6x- 2解答:解:方程两边同乘以 2 (3x - 1),得 3 (6x - 2)- 2=4 (2 分)18x - 6 - 2=4,18x=12 ,9x= (5 分).检验:把x=2代入 2 (3x- 1) : 2 (3x - 1)用,3••• X=—是原方程的根.3•原方程的解为x= ■. (7分)3—* 124. (2010?恩施州)解方程:一1-4 4 -x解答:解:方程两边同乘以x - 4,得:(3 - x)- 1=x - 4 (2分)解得:x=3 (6分)经检验:当x=3时,x - 4= - 1旳,所以x=3是原方程的解.(8分)25. (2009?乌鲁木齐)解方程:一1 2 2 - K解答:解:方程两边都乘x - 2,得3-(x - 3)=x - 2,解得x=4 .检验:x=4时,x - 2和,•原方程的解是x=4.乂■ 2 Q26. (2009?聊城)解方程:.■ + _ . =1时2 4- X2解答:解:方程变形整理得: 8x+2 (x+2)(K-2)方程两边同乘(x+2 )(x - 2),得:(x - 2)2- 8= (x+2)(x - 2), 解这个方程得:x=0 , 检验:将x=0代入(x+2)(x - 2)= - 4老,• x=0是原方程的解.27. (2009?南昌)解方程:解答:解:方程两边同乘以 2 (3x - 1),得:- 2+3x - 1=3,解得:x=2 ,检验:x=2 时,2 (3x- 1)老.所以x=2是原方程的解.4 128. (2009?南平)解方程:一■--x 2 2解答:解:方程两边同时乘以(x - 2),得4+3(x - 2)=x - 1,••••--丄是原方程的解;x 229. (2008?昆明)解方程:解答:解:原方程可化为: 方程的两边同乘(2x- 1),得2 -5=2x - 1,解得x= - 1.检验:把x= - 1代入(2x - 1)= - 3和.•••原方程的解为:x= - 1 .1 3 230. (2007?孝感)解分式方程:-1 _3x z _1解答:解:方程两边同乘以 2 (3x - 1),去分母, 得:-2 - 3 (3x - 1) =4 ,解这个整式方程,得1 X=-;,检验:把x=-一代入最简公分母 2 ( 3x - 1) =2 (- 1 - 1) = - 4旳, 3•原方程的解是x= -—(6分)32x- 1 2x- 1。

相关文档
最新文档