Fully developed turbulent dynamo at low magnetic Prandtl numbers
专业英语
questions
How
do you distinguish steel from cast iron? How do you distinguish low alloy steel from high alloy steel?
1.1.1 Iron and Steel
The earth contains a large number of metals which are useful to man. One of the most important of these is iron. Modern industry needs considerable quantities of this metal, either in the form of iron or in the form of steel.
Mechanical Engineering materials
Organic polymer materials Inorganic non-metallic materials
plastic rubber Synthetic Fibers Traditional ceramics Special Ceramics Metal Matrix Composites
1.1.1 Iron and Steel
The ore becomes molten, and its oxides combine with carbon from the coke. The non-metallic constituents of the ore combine with the limestone to form a liquid slag. This floats on top of the molten iron, and passed out of the furnace through a tap. The metal which remains is pig iron.
中国地质大学(北京)考博专业英复习材料
晶) is said to have a porphyritic texture(斑状结构). The classification of fine-grained rocks, then, is based on the proportion of minerals which form phenocrysts and these phenocrysts (斑晶)reflect the general composition of the remainder(残留) of the rock. The fine-grained portion of a porphyritic(斑岩) rock is generally referred to as the groundmass(基质) of the phenocrysts. The terms "porphyritic" and "phenocrysts" are not restricted to fine-grained rocks but may also apply to coarse-grained rocks which contain a few crystals distinctly larger than the remainder. The term obsidian(黑曜岩) refers to a glassy rock of rhyolitic(流纹岩) composition. In general, fine-grained rocks consisting of small crystals cannot readily be distinguished from③ glassy rocks in which no crystalline material is present at all. The obsidians, however, are generally easily recognized by their black and highly glossy appearanceass of the same composition as obsidian. Apparently the difference between the modes of formation of obsidian and pumice is that in pumice the entrapped water vapors have been able to escape by a frothing(起泡) process which leaves a network of interconnected pore(气孔) spaces, thus giving the rock a highly porous (多孔的)and open appearance(外观较为松散). ④ Pegmatite(结晶花岗岩) is a rock which is texturally(构造上地) the exact opposite of obsidian. ⑤ Pegmatites are generally formed as dikes associated with major bodies of granite (花岗岩) . They are characterized by extremely large individual crystals (单个晶体) ; in some pegmatites crystals up to several tens of feet in length(宽达几十英尺)have been identified, but the average size is measured in inches (英寸) . Most mineralogical museums contain a large number of spectacular(壮观的) crystals from pegmatites. Peridotite(橄榄岩) is a rock consisting primarily of olivine, though some varieties contain pyroxene(辉石) in addition. It occurs only as coarse-grained intrusives(侵入), and no extrusive(喷出的) rocks of equivalent chemical composition have ever been found. Tuff (凝灰岩)is a rock which is igneous in one sense (在某种意义上) and sedimentary in another⑥. A tuff is a rock formed from pyroclastic (火成碎 屑的)material which has been blown out of a volcano and accumulated on the ground as individual fragments called ash. Two terms(igneous and sedimentary) are useful to refer solely to the composition of igneous rocks regardless of their textures. The term silicic (硅质 的)signifies an abundance of silica-rich(富硅) and light-colored minerals(浅 色矿物), such as quartz, potassium feldspar(钾长石), and sodic plagioclase (钠长石) . The term basic (基性) signifies (意味着) an abundance of dark colored minerals relatively low in silica and high in calcium, iron, and
托福听力地质考古主题必考词汇
托福听力讲座高频词汇:地质类crust地壳Core地核mantle地幔Rock岩石mineral矿物aquifer蓄水层layer层sediment沉积;沉淀物fossil化石stratum地层fault断层fold折痕Dating techniques年代测定技术Earthquake地震seismicwaves地震波epicenter 震中magnitude震aftershock余震volcano火山erode腐蚀,侵蚀sedimentaryrock沉积岩limestone石灰岩granite花岗岩Eruption爆发magma岩浆lava火山岩浆Ash火山灰chamber房间crater火山口Activevolcano活火山dormantvolcano休眠火山extinctvolcano死火山bedrock基岩tsunami海啸landslide山崩mudslide泥流avalanche雪崩托福听力讲座高频词汇:考古类Relative dating 相对年龄测定Absolute dating 绝对测年法Radiocarbon dating 放射性碳定年法Radiometric Dating同位素年龄测定radiocarbon dating 放射性碳定年法Radiometric Dating 同位素年龄测定Excavate 发掘Paleolithic [,pel?o‘l?θ?k] 旧石器时代Mesolithic [?mi?z?(?)?l?θ?k] 中石器时代Neolithic [?ni??l?θ?k] 新石器时代' Chronological 年代的Remnant 遗迹Pottery 陶Ceramics 陶Antique 古老的Artifact 手工艺品托福听力:听力笔记的5个方法一、缩进式这是笔记中最常见的方式,能够非常清晰地表明文章的结构。
一般把做笔记的纸分成两部分,一列一列从上往下记。
蒸汽涡轮机英文作文
蒸汽涡轮机英文作文Title: The Steam Turbine - A Pioneering Invention in Energy ConversionThe steam turbine is a remarkable invention that revolutionized the field of energy conversion. This mechanical device extracts energy from pressurized steam and converts it into rotational motion, making it a crucial component in various industrial applications, particularly in power generation.The steam turbine operates on the principle of thermodynamics. Pressurized steam is directed into the turbine, where it expands and rotates the turbine blades. This rotational motion is then harnessed to perform work, such as driving a generator to produce electricity.The efficiency and reliability of the steam turbine have made it a preferred choice in power plants worldwide. Its ability to convert thermal energy into mechanical energy with minimal losses has been a key factor in its widespread adoption. Furthermore, the steam turbine is highly scalable, allowing it to be tailored to meet the specific needs ofdifferent power plants, from small-scale industrial applications to large-scale utility plants.The impact of the steam turbine on society is immense. It has been instrumental in powering industrial revolution, enabling the production of goods and services on an unprecedented scale. Moreover, the widespread use of steam turbines in power generation has contributed to the availability of affordable and reliable electricity, which is crucial for modern society.However, the steam turbine is not without its challenges. The high temperatures and pressures involved in its operation require robust materials and precise engineering. Additionally, the maintenance of steam turbines can be complex and costly.尽管如此,随着technological advancements, the efficiency and durability of steam turbines have been continuously improved, making them more sustainable and cost-effective.In conclusion, the steam turbine stands as a testament to human ingenuity in energy conversion. Its pivotal role in powering industrial revolution and modern society cannot be overstated. With continuous innovation and improvement, the steam turbine remains a crucial component in our energyinfrastructure, driving us towards a brighter and more sustainable future.。
自动化专业英语 unit3 新能源 全文翻译
可再生能源可再生能源的说明燃烧矿物质燃料提供能源是造成气候变化的主要的原因。
煤,油,天然气的燃烧产生的二氧化碳是其中主要的造成全球气候变暖的温室气体。
为了解决气候变化,找到一种将来使用的可持续的能源,我们急需采取更加有效的技术降低能源消耗,从能释放更少的甚至没有二氧化碳到大气中的可再生能源中获得能源。
可再生能源技术(像风,海浪,潮汐,水电,生物能——栽培和燃烧农作物所产生的能量)能提供清洁的无碳的能源作为矿物燃料(天然气,油,煤)的替代品。
他们通常用来加热和发电。
(生物能除外,尽管它释放二氧化碳,但它只是把植物一生光当中合作用所吸收的二氧化碳释放到空气中)。
与此相反,燃烧化石燃料会释放出地壳中锁藏了几十亿年的二氧化碳到大气中。
矿石能源的供给是有限的,也因此它们的持续利用是无法支撑到底的。
可再生技术是一种持可持续能源的产生办法,事实上,像风,海浪,太阳能等是不可能被耗尽的。
可再生能源可再生能源包括以下:太阳能太阳能给所有生命体提供最基本形式的能量。
太阳能是免费的,用之不竭的。
将太阳能转化成人类可以消耗的能源将产生成本。
几千年以来,太阳能一直被人们用来晒粮食或者为水,建筑物加热。
二十世纪采用的是将阳光直接转换为电能的光电技术。
风能空气的运动自古以来就被用作一种能源。
今天,先进的空气动力学研究已经研究出可以非常经济发电的风力涡轮机。
风力涡轮机常常被成组的放在位于乡间宽阔地带或沿海,山顶等常年有盛行风的农场。
地热能地壳下面的岩石包含了一直在衰减的放射性材料,像铀和钾。
这些材料持续不断的提高热能,在地球表面一万米以下的热能比世界上的所有的油气资源所含的能量多50000倍多。
地热能是发掘地壳下面的热量来加热水。
之后热水用来驱动电涡轮机加热建筑,具有最高地热的区域常位于活跃的或新形成的火山周围。
这些“热点”位于地壳构造边缘,这里的地壳很薄,足够热量通过。
许多这样的“热点”分布在太平洋沿岸。
水电在地球上,水既不能被创造,也不能被毁灭。
石油英语词汇M5
石油英语词汇(M5)moor coal 沼煤moor peat 高位泥炭moor 沼泽moorage 系泊;系泊费moored sonobuoy 锚系声呐浮标Mooreisporites 叉角孢属mooring basin 泊地mooring buoy 系泊浮筒mooring capacity 系泊能力mooring cleat 系泊羊角mooring dolphin 系泊系缆桩mooring force 系泊力mooring head 系泊头mooring island 系泊岛mooring leg 系泊腿mooring line 锚绳mooring pattern 系泊缆布置方式mooring pile 系泊桩mooring pipe 导缆孔mooring platform 系泊平台mooring plug 系泊栓mooring post 系泊柱mooring restraint 系泊约束力mooring ring 系泊环mooring strain 系泊变形mooring swivel 双锚锁环mooring system 系泊系统mooring template 系泊底盘mooring trial 系泊试验mooring tubular 系泊管mooring winch 系泊绞车mooring yoke 系泊轭mooring 停泊mop 地板擦;擦光辊MOP 可动油图MOP 最高工作压力mop-up 擦除;结束MOPA 调制振荡器的功率放大器MOPA 主控振荡器的功率放大器mope pole 下管撬杆MOPF 可动油图标志MOR system 洋中脊系mor 粗腐殖质MOR 存储器输出寄存器morainal apron 冰碛平原moraine deposit 冰碛物moraine 冰碛morainic succession 冰碛层序moral hazard 道德危险moral obligation 道义责任moral 道德的;教训;道德morale 纪律morality 道德;道义;品行morass 沼泽;艰难;困境MORB 中央海岭玄武岩mordant 腐蚀剂mordanting 媒染;腐蚀mordenite 丝光沸石more or less clause 溢短装条款More strength criterion 莫尔强度准则more 更moretane 莫烷moretanoids 莫烷类morfa 沼泽Morgan Guaranty Trust Co. 摩根保证信托公司Morgan's theorem 摩根定理Morisette expansion reamer 刀翼可撑出的扩眼器morning clearing 午前结算morning drilling report 钻井晨报morning shift 早班morning tour 早班morpheme 词头morphine 吗啡morpho- 形状morphogenesis 地貌成因morphogenetic 地貌成因的morphogenic phase 地貌发生幕morphogenic 地貌成因的morphogeny 地貌形成作用morphographic map 鸟瞰地形图morphography 描述地貌学morpholine 吗啉morphologic analysis 地貌分析morphologic basin 地形盆地morphologic characteristics 地貌特征morphologic deep 深坳陷morphologic expression 形态显示morphologic geotectonics 形态大地构造学morphologic landscape unit 地貌景观单元morphologic modeling 形态模型建立技术morphologic prominence 地貌起伏morphologic region 地貌区;地形区morphologic rheology 形态流变学morphologic species 形态种型morphologic variation 形态变异morphologic vertical zoning 地貌垂直分带morphologic =morphological 形态学的morphologic-structural configuration 地形构造轮廓morphology 形态学;地貌学morphometry 地形测量morphorogenic phase 造山幕morphosculpture 刻蚀地貌morphosequent 地表地貌morphostratigraphic unit 地貌地层单位morphostructural analysis 地貌构造分析morphostructure 地貌构造morphotectonics 地貌构造分析morphotropism 变晶现象;准同形性morphotropy 变形性;变晶;应变morphotype 形态类型morriner 蛇形丘Morse code 莫尔斯码Morse lamp 莫尔斯信号灯morsel 少量;分成小块mort 搬出钻井工具mort-lake 弓形湖mortality ratio 死亡率mortality 死亡率mortar texture 碎斑结构mortar 灰浆mortgage bond 抵押债券mortgage loan 抵押贷款mortgage 抵押mortise 榫眼槽;沟;孔;接榫;牢固结合MOS 金属氧化物半导体MOS 金属氧化物硅mos 月数mosaic angle 镶嵌角mosaic assembly 空中照片嵌拼图mosaic block 镶嵌块mosaic breccia 镶嵌角砾岩mosaic color map 镶嵌彩图mosaic crystal 镶嵌晶体mosaic image 镶嵌图象mosaic imaging 镶嵌成象mosaic map 镶图mosaic pattern 镶嵌图案mosaic photo strip 航空连续摄影嵌拼照片mosaic photography 航空嵌拼照相术mosaic texture 镶嵌结构mosaic 拼成的Moscovian series 莫斯科统Moscow 莫斯科mose 沼泽Mosherella 莫希尔牙形石属MOSIC 金属氧化物半导体集成电路mosquito bill 抽油杆泵之下mosquito 蚊子;蚊式;小型moss land 泥炭沼泽moss peat 高位泥炭Moss scale of hardness 莫氏硬度表moss 沼泽mosslike 苔藓状的most advanced industry 尖端产业most favoured license clause 最惠特许条款most favoured nation treatment 最惠国待遇most favoured nation 最惠国most likely duration 最可能持续时间most permeable medium 高渗透多孔介质most permeable system 高渗透系统most permeable zone 高渗透层most probable value 最概然值most significant bit 最高有效位most significant character 最高有效字符most significant digit 最高位most stringent test 最紧检验mot op 电动机拖动的mot 马达mota 粘土mote 微尘;瑕疵moth proofing agent 防蛀剂moth repellent 防蛀剂moth 蛾;摧毁雷达台的导弹;锌褐锰矿;蛀虫mothball 防蠹丸;保藏;后备的;樟脑丸mothballed plant 封存装置mothballed refinery 封存炼厂mothballed 检修好存置备用的mothballing 封存mother cell 母细胞mother crystal 原晶体mother current 主流mother earth 大地mother geosyncline 母地槽mother Hubbard packer 一种手工制封隔器mother liquid 母液mother liquor 母液mother lode 母脉mother machine 机床mother map 底图mother metal 母材mother nuclide 母核mother nut 主螺母mother oil 原生石油mother rock 原生岩mother ship 母舰mother solution 母溶液mother substance 油母质mother water 母液mother 母体;母同位素;根本mother-daughter relationship 母子体关系mother-of-coal 丝炭mother-source rock 原始生油岩motherboard 母板motif 主题;基本花纹;动机motile 活动的motility 游动motion compensator unit 运动补偿装置motion compensator 运动补偿器motion model 运动模型motion parts 运动部分motion response 运动反应motion with variable velocity 变速运动motion 运动motion-compensation ability 运动补偿能力motion-sensitive geophone 动敏式检波器motional feedback amplifier 动反馈放大器motional impedance 动生阻抗motional waveguide joint 活动波导管连接motionless 不动的motivating force 驱动力motivation 动机形成motivator 操纵机构;舵motive power 原动力motive 原动的;运动的;动机;促动motivity 发动力;储能motometer 转速计motor boat 摩托艇motor car engine 汽车发动机motor control panel 马达控制面板motor dory 摩托艇motor driven slush pump 电动泥浆泵motor fireman 发动机司机motor frame 电动机架motor fuel 发动机燃料motor gasoline 车用汽油motor grader 机动平地机motor hand 柴油机工motor hoist 电动提升机motor meter 电动机型积算仪表motor octane number 马达法辛烷值motor oil 内燃机机油motor operated switch 电动开关motor operated 电动的motor rule 电动机定则motor spirit 车用汽油motor starter 电机启动器motor supervision 马达监控motor torque 发动机转矩motor truck 载重汽车motor wire brush 电动钢丝刷motor 电动机motor-bent sub combination 马达-弯接头组合motor-bug 机动小车motor-driven turbine pump 电动涡轮泵motor-driven 电机驱动的motor-generator 电动机-发电机组motorboating 汽船声motorbus 公共汽车motorcar 汽车;机动车厢motorcycle 摩托车motordynamo 电动直流发电机motoring test 空转试验motoring 汽车运输;电动回转;倒拖;汽车的motorist 汽车司机;乘汽车旅行者motorization 机动化motorized grader 平地机motorized pipe anchor 电动管锚motorized valve 电动阀motorized 装电动机的;机动化的motorlorry 运货汽车motorman 动力机工motormen motorman的复数motorway 汽车道;快车道mottle 斑点mottled sandstone 杂色砂岩mottled tone pattern 斑点状色调图形mottled 斑点状的mottling 斑块mould oil 滑模油mould =moldmouldboard 型板moulded displacement 型排水量moulded draft 型吃水moulder =moldermoulders oil 陶瓷脱模油moulding compound 模塑料moulding floor 翻砂车间moulding sand 型砂moulding wax 滑模蜡moulding =moldingmoulinet 扇闸mound breakwater 斜坡式防波堤mound seismic reflection configuration 丘形地震反射结构mound 丘mounded facies 丘状相mounded tank 半埋设罐mounded 半埋设的moundy 丘状mount 山mountain apron 山麓冲积裙mountain arc 山弧mountain bog 山地沼泽mountain chain 山脉mountain climate 山地气候mountain coast 山地海岸mountain cork 石棉mountain creep 崩坍mountain effect 山地效应mountain flour 石粉mountain folding 造山作用mountain front 山前带mountain glacier 高山冰川mountain knot 山结mountain leather 石棉mountain making 造山作用mountain meal 硅藻土mountain of dislocation 断层山mountain pitch 山沥青mountain ridge 山脊mountain root 山根mountain slip 地滑mountain soap 皂石mountain station 山区站mountain stream 山区河流mountain tar 胶结沥青mountain topography 山地地形mountain waste 山地岩屑mountain wax 地蜡mountain 山mountain-building movement 造山运动mounted mosaic 裱装镶嵌图mounted 安装好的mounting cost 安装费mounting deflection 安装挠曲mounting flange 固定法兰mounting hole 安装孔mounting list 安装说明mounting plate 装配板mounting pole 安装扒杆mounting 安装;配件mourishment 食物;滋养品mouse ahead 缩小井径钻进mouse hole 小鼠洞mouse trap 鼠笼式打捞器mouse 耗子;灰褐色;鼠标器MOUSE 无人最小人造地球卫星mousehole drilling 钻小鼠洞mouth bar 河口坝mouth down 口朝下mouth of hook 钩口mouth of shears 冲剪口mouth of tongs 大钳口mouth piece 接口管mouth 口;炉口;输出端movability 移动性movable bed 易搬运物质的河床movable center 弹性顶尖movable coil 动圈movable contact 活动触头movable electrode 可动电极movable element 活动元件movable fit 动配合movable gas saturation 可动气饱和度movable head 可动式磁头movable hydrocarbon 可动油气movable mark 可动刻度标志movable oil index 可动油指数movable oil plot flag 可动油图标志movable oil plot 可动油图movable oil 可动油movable plate 活动片movable platen 移动模板movable pore volume 流体可驱移的孔隙容积movable property 动产movable pulley 动滑轮movable receiver 活动型接收机movable space 活动间距movable support 可动支架movable water 可动水movable 活动的move about 动来动去move up-dip 向上倾移动move 移动move-off 移开move-on 装上movement capacity 运输能力movement plan 运输计划movement velocity 运动速度movement 运动moveout equation 时差方程moveout filtering 时差滤波moveout function 时差函数moveout scan 时差扫描moveout term 时差项moveout velocity 时差速度moveout-equivalent canonical profile 时差等效标准剖面mover 原动机;推进器movie 电影moving armature geophone 电动式地震检波器moving average cost method 滑动平均成本法moving average 移动平均moving axis 动轴moving ball type viscometer 动球式粘度计moving bed flow pattern 运动砂床流动型式moving bed 移动床moving blade 动叶片moving boundary 移动边界moving casing 活动套管moving component 运动部件moving conductor geophone 电动式地震检波器moving contact 动触点moving coordinate system 运动坐标系moving fault 活动断层moving phase 流动相moving plate 移动板块moving platform correction 活动平台校正moving source-receiver method 移动电源-接收器电磁勘探法moving time 搬家时间moving vane 动叶片moving water 流水moving wave 行波moving window 滑动窗口moving 移动moving-average operator 移动平均算子moving-coil galvanometer 动圈式检流计moving-coil geophone 动圈式检波器moving-interface survey 移动界面测量moving-receiver method 移动检波器法moving-source method 震源移动法moving-window correlation analysis 移动窗相关分析moviola 声象同步装置mower 割草机MOWS 完全自给的钟形潜水舱MOX 金属氧化物MOX 金属氧化物电阻moyite 钾长花岗岩Moyno pump 莫伊诺单螺杆泵MP method 微孔法MP separator 中压分离器MP steam 中压蒸汽MP 安全设施MP 测量点MP 敷金属纸MP 管汇压力MP 计量泵MP 甲基菲MP 熔点MP 微孔MP 压力计压力MP 造山期MP 中等压力MP 主控制盘MP 最高压力MPA 多倍精度计算MPA 已调脉冲放大器MPa 兆帕MPC 敷金属纸质电容器MPC 最大允许浓度MPD 最大允许剂量MPE 电子仪器零件的机械化生产MPE 多相喷射器MPE 最大容许照射mpg 英里加仑mph 米小时mph 英里小时mphps 英里小时秒MPI fluorescent magnetic particles 荧光磁粉MPI 磁粉探伤法MPI 甲基菲指数MPI 最大容许进气量MPL 可移动的岩石物理学实验室MPL 微电极-邻近侧向测井MPL 岩石力学性质测井曲线mpm 英里分MPN 或然数MPR 多频率电磁波传播电阻率测井仪MPR 甲基菲菲比值MPR 最大压力限制MPR 最大允许产量MPS 多用途潜水器MPSS 多功能半潜式装置MPT 邻近侧向-微电极测井仪MPU 微处理机MPY 密耳年MQR 乘商寄存器MRIL 核磁共振成象测井Ms Th 新钍MS 安全系数MS 材料规格MS 磁致伸缩MS 存储系统MS 分子筛ms 毫秒MS 结构钢MS 均方ms 米秒MS 米制ms 通信;消息;文电MS 微秒ms 英里秒MS 质谱分析法ms 质谱仪MS 中碳钢MS 总开关MSA 美国矿物学会MSA 主台放大器MSA 最小声幅MSB 总配电盘MSB 最高有效位MSc 理科硕士MSC 最高有效字符MSCF 千标准立方英尺Mscfd 千标准立方英尺日MSD 多频信号检波器MSD 均方地层倾角程序MSD 均方偏差MSD 质谱检定MSD 最高有效位MSDTA 质谱差热分析MSE 均方误差msec 毫秒msec 米秒Msec 微秒Msec 兆秒MSER 均方误差比MSF 多级闪蒸MSF 信息转换设备MSF 中波标准频率MSFL 微球形聚焦测井MSFT 微球形聚焦测井下井仪MSG 泥浆比重MSG 最小滑动门MSI 多参数能谱测井仪MSI 中规模集成MSI 最小泥质指数MSL 平均海平面MSP 多炮点处理MSP 最大作业压力MSP 最高地面压力MSR 磁移位寄存器msr 均方根MSR 微波扫描辐射计MSR 中等抗硫酸盐型MSS 多级分离MSS 多谱线扫描器mss 通信;消息;文电MSS 原稿MSS 制造商标准化学会MST 磁导向工具MST 单片系统工艺MST 通用型板MST 微电阻率扫描测井下井仪MST 最低软化点MST 最小生成树mst. 测量MSTA 质谱热分析MSTB 千储罐桶数MSV 多用供应船MSW 金属绕圈MSYN 主同步信号MT 百万吨级MT 磁带MT 大地电磁的MT 多节地层测试器MT 公吨MT 机动车运输MT 联运MT 模变换器MT 泥浆类型MT 平均时MT 汽车运输MT 主定时器;主要时间延迟调节器MT 最大扭矩mt. 测定Mt. 矩Mt. 山MTBF 故障平均间隔时间MTBM 维修平均间隔时间MTC 磁带机控制器MTC 厘米纵倾力矩MTD 测试深度MTD 磁带磁鼓MTD 平均温差MTE 多系统试验设备MTF 调制传递函数MTF 机械定时引信MTF 挪威工程材料协会mtg. 安装mtg. 抵押;抵押契约mtg. 会议MTH 磁带信息处理机mth. 月MTI 磁带机接口MTI 活动目标显示器MTI 每英寸纵倾力矩MTIT 大地电磁阻抗张量MTL Valve Tray 塔板定位架浮阀塔盘MTL 平均容许限度;平均耐药量mtl. 材料MTM 操作方法时间测量Mtoe 百万吨油当量MTP 顶部最高压力MTP 最高油压Mtpa 百万吨年MTR 材料试验反应堆MTR 磁带记录器MTR 多路跟踪雷达MTR 多路无线电信标MTR 泥浆马达MTRBRG 泥浆马达轴承MTS 磁带机子系统MTS 海洋技术学会MTS 压力计-温度计探测器Mts. 山脉MTTF 平均无故障时间MTTFF 首次故障前平均时间MTTR 平均维修时间MTU 磁带机MTU 主终端设备MU 测量装置;测量单位MU 存储器MU 机械利用MU 监视器MU 质量单位mu-factor μ系数mu-metal μ磁性合金much 许多;大量much-faulted anticline 断裂程度很大的背斜mucilage 粘液;粘胶mucin 粘蛋白muciparous 分泌粘液的muck car 泥车muck 腐殖土muck-stick 铲子mucker 挖沟机mucking 清理管沟muckite 小粒黄色琥珀mucosity 粘性mucous membrane 粘膜MUCP 多级离心泵mucus 粘液mud acid treatment 土酸处理mud acid 土酸mud additive 泥浆添加剂mud aggregate 泥粒集合体mud agitator 泥浆搅拌器mud anchor 砂锚mud arrival 泥浆波mud baffle 泥浆挡板mud balance 泥浆比重秤mud bank 泥滩mud bin 泥浆贮藏箱mud bit 钻泥层用钻头mud blanket 毯状泥层mud board 底泥板mud body 泥浆结构mud boulder 泥球mud breccia 泥角砾岩mud bridges 泥饼桥mud buoyancy correction 泥浆浮力校正mud buoyancy 泥浆浮力mud cake buildup 泥饼形成mud cake 泥饼mud channel 泥浆管路mud channeling 泥浆窜流mud circulating system 泥浆循环系统mud clean-up acid 除泥浆酸mud cleaner 泥浆清洁器mud column 泥浆柱mud conditioner 泥浆处理剂mud cone 泥火山mud control 泥浆性能的控制;用泥浆控制井眼mud crack cast 泥裂铸型mud crack 泥裂mud cup 泥浆杯mud damage 泥浆对地层的损害mud decontaminant 泥浆净化剂mud degasser 泥浆除气器mud degassing still 泥浆脱气蒸馏mud density indicator 泥浆密度指示器mud desander 泥浆除砂器mud ditch 泥浆槽mud driven turbine-alternator 泥浆驱动的涡轮发电机mud filter cell 储浆杯mud filtrate 泥浆滤液mud flow fill indicator 灌泥浆指示器mud flow monitor 泥浆流量监测仪mud flow on trips 起下钻时泥浆外溢mud flow rate meter 泥浆流量计mud flowage 泥流mud fluid 泥浆mud flume 泥浆槽mud foreshore 泥质前滨mud furrow 泥裂沟mud gas 泥浆气mud glacier 泥川mud gun 泥浆枪mud hog 泥浆泵mud hopper 泥浆漏斗mud hose 泥浆软管mud house 泥浆房mud hydraulics 泥浆水力学mud in 在充满粘泥浆井中下入mud ingredient 泥浆拼料mud laden fluid 泥浆mud launder 泥浆槽mud line casing support system 泥线套管支承系统mud line suspension system 泥线悬挂系统mud line 泥浆管线;泥线mud lining 结泥饼mud logging 气测井mud loss 泥浆漏失mud lubrication 泥浆压井mud lubricator 泥浆压井器mud making formation 造浆地层mud mixer 泥浆搅拌器mud mixing appliance 配泥浆的设备mud motor 井下动力钻具mud motor-bent sub 泥浆马达-弯接头mud off 泥封mud particles 泥浆中的固体颗粒mud pebble 泥砾mud pellet 泥粒mud piston 泥浆泵活寒mud pit 泥浆池mud plant 泥浆站mud pocket 泥浆包mud pressure indicator 泥浆压力计mud program 泥浆设计mud property ratio 泥浆性能指数mud property 泥浆性能mud pulse valve 泥浆脉冲阀mud pump shock pressure 泥浆泵振动压力mud pumpability 泥浆可泵性mud purification 泥浆净化mud reclamation 泥浆回收mud relief valve 泥浆泵安全阀mud removal agent 泥浆清除剂mud rim 锅炉灰坑的衬泥边缘mud ring 泥饼圈mud rock 泥岩mud salinity 泥浆矿化度mud sample 泥浆试样mud saver bucket 护罩mud saver 泥浆护罩mud scale 泥浆比重计mud scow 移动式钻井泥浆罐;向沼泽地运送管子和设备的大型滑橇mud screen 泥浆筛mud separator 泥浆分离器mud settling sump 泥浆沉淀池mud shaker 泥浆振动筛mud shale 泥页岩mud sheath 泥饼mud sill 排架座木;底基;底梁mud siren 泥浆警报器mud slip 泥浆冲出钻屑mud socket 捞砂筒mud solid 泥浆中的固相物质mud stability 泥浆稳定性mud stalagmite 泥石笋mud stream 泥浆流mud suction hose 泥浆吸入软管mud sump 泥浆池mud system 泥浆循环系统;泥浆体系mud tank 泥浆罐mud thickener 泥浆增稠剂mud thinner 泥浆减稠剂mud travel time 泥浆旅行时间mud turbine generator 泥浆涡轮发电机mud up 泥浆封住油层mud viscosity 泥浆粘度mud volcano 泥火山mud volume totaliser 泥浆体积累加器mud weight balance 泥浆比重天平mud weight indicator 泥浆比重指示计mud weight 泥浆比重MUD WT IN 进口泥浆比重MUD WT OUT 出口泥浆比重mud 泥浆mud's college education 配制优质泥浆mud-cooling tower 泥浆冷却塔mud-cracked clay 泥裂粘土岩mud-daubed 用泥浆修补的mud-filled 充满泥浆的mud-flow indicator 泥浆流量指示器mud-framework reef 泥格架岩礁mud-gas cutting 泥浆气侵mud-gas logging 泥浆气侵录井mud-gas separator 泥浆-天然气分离器mud-log 井下泥浆测量曲线mud-motor orientation angle 泥浆马达定向角mud-pressure pulses 泥浆压力脉冲mud-propelled turbine 泥浆驱动的涡轮mud-pulse telemetry 泥浆脉冲遥测技术mud-pulse transmitter 泥浆脉冲发射器mud-pulse 泥浆脉冲mud-rock flow 泥石流mud-supported biomicrite 灰泥支撑的生物微晶灰岩mudapron 挡泥板mudcake correction 泥饼校正mudcake effect 泥饼影响mudded off 泥封的mudding action 造壁作用mudding in 在充满泥浆井中下mudding off 造壁mudding up 泥浆制备mudding 泥封muddle 混乱;浑浊muddy intercalation 泥质夹层muddy limestone 泥灰岩muddy rip-up clast 泥浆撕裂碎屑muddy sand 泥质砂层muddy 泥质的mudflat 泥质潮滩mudflow 泥流mudguard 挡泥板mudhole 除泥孔;澄泥箱mudjack 压浆mudlark 清沟工mudlegs 存污管段mudline 泥线mudlump 泥火山mudprone facies 泥坡相mudprone 泥坡的mudpump 抽泥;泥浆泵mudslide platform 抗泥崩平台mudslide 泥崩mudslides 海底泥滑动mudspate 泥流mudstone 泥岩;泥状灰岩mudsupported 灰泥支撑的muff 套筒;保温套;衬套;轴套muffle burner 马弗炉喷燃器muffle furnace 马弗炉muffle 包;蒙住;消声器;马弗炉muffler tail pipe 回气管尾管muffler 消声器;马弗炉;消弧片mugearite 橄榄粗安岩mulching film 地膜muldakaite 次闪辉绿岩mulde 凹地mule foot a bit 钻头偏磨mule head 驴头mule shoe guide 斜口引鞋mule shoe latch 斜口管鞋爪mule skinner's delight 小钻杆mule 骡;牵引车mule's foot 驴蹄形绳结mule-head hanger 驴头上挂抽油杆的装置mule-shoe nipple 斜口管鞋短节muleshoe orientation method 斜口管鞋定向法muleshoe orienting device 斜孔造斜工具muleshoe slinger lock 斜口管鞋投掷锁定器muleshoe sub 斜口接头mull 细软薄布;细腐殖质;混乱;弄糟;研磨muller 研磨机mullet 钻井投资者mullion structure 窗棂构造mullite 模来石mulser 乳化机multcan 多分管的;分管型燃烧室multeity =multiplicitymulti phase region 多相区multi- 多multi-access 多路存取multi-address code 多地址码multi-address computer 多地址计算机multi-address imstruction 多地址指令multi-address message 多地址信息multi-address order code 多地址指令码multi-amplifier 多级放大器multi-aperture device 多孔磁心;多孔器件multi-aperture 多孔的multi-armed centralizer 多臂扶正器multi-associative processor 多路相联处理机multi-attribute-utility 多属性效用multi-azimuth 多方位multi-bank 多组的multi-beam scan imaging method 多波束扫描成象法multi-beam sonar 多波束声呐multi-beam 多波束multi-blade 多刃的multi-block linear polymer 多嵌段线性聚合物multi-bore well 多底井multi-bucket dredger 多斗挖泥机multi-bucket excavator 多斗挖掘机multi-buoy mooring system 多浮筒系泊系统multi-cell electrodialyzer 多室电渗析器multi-chain condensation polymer 星形缩聚物multi-channel acquisition 多道采集multi-channel data acquisition system 多道数据采集系统multi-channel magnetic tape 多道磁带multi-channel memorizer 多道存储器multi-channel oscillograph 多路示波器multi-channel 多道multi-color spectrum 多色谱multi-combination meter 多用途复合仪表multi-combustion chamber heater 多燃烧室加热炉multi-compartment bed 多级床multi-connector 复式连接器multi-core magnetic memory 多磁心存储器multi-cycle composite basin 多旋回复合盆地multi-dimensional multi-phase flow 多维多相流动multi-dimensional scaled physical model 多维相似物理模型multi-dimensional signal 多维信号multi-disk flexible coupling 多盘弹性联轴节multi-domain approach 多域法multi-domain F-K filtering 多域F-K滤波multi-domain technique 多域技术multi-effect evaporator 多效蒸发器multi-effect 多效的multi-element filter unit 多芯过滤装置multi-expansion 多次膨胀multi-file volume 多文件磁带卷multi-finger caliper 多臂井径仪multi-fracture gas pool 多裂缝气藏multi-frequency 多频multi-gain buffer 多增益缓冲器multi-holed jet 多孔喷丝头multi-industry 跨行业multi-input 多端输入multi-job 多道作业multi-line acquisition 多线采集multi-line 多线multi-list processor 多道程序处理机multi-lobe 多叶片的multi-lobed filament 多叶形长丝multi-nozzle 多喷嘴multi-operator welding set 多站电焊机multi-orifice valve 多孔阀multi-pass compiler 多遍编译程序multi-pass operations 多次操作multi-pass swivel 多路旋转接头multi-pass welding 多道焊multi-pede traverse system 多头横动体系multi-pen plotter 多笔绘图仪multi-point open-flow potential test 多点无阻流量测试multi-point-scanner 多点扫描器multi-pore media 多重孔隙介质multi-position valve 多位阀multi-product line 多油品管线multi-programmed computer 多道程序计算机multi-programmed time-sharing system 多道程序分时系统multi-purpose adhesive 万能胶multi-purpose computer 通用计算机multi-purpose gear oil 通用齿轮油multi-purpose semisubmersible 多功能半潜式装置multi-purpose tool 多功能工具multi-purpose tubing 多用途油管multi-repeat station 多次重复测点multi-row 多行multi-run station 多管计量站multi-run welding 多道焊multi-screw pump 多螺杆泵multi-shut-in tool 多次关井器multi-speed rheometer 变速流变仪multi-stage decision procedure 多阶段决策程序multi-stage motor 多级马达multi-stage uniaxial orientation 多级单轴取向multi-start 多头;多头的multi-step thread 多头螺纹multi-strand wire rope 多股钢丝绳multi-string cutter 多层管柱割刀multi-string target 多层管柱试验靶multi-stylus 多笔尖multi-tensioner 多向张力器multi-terminal network 多端网络multi-tier conveyor drier 多层输送带式干燥机multi-trayed vessel 多盘式容器multi-tube cooler 多管冷却器multi-tube orifice meter 多管孔板流量计multi-tubular reactor 多管式反应器multi-usage 多用途multi-user operating system 多用户操作系统multi-variate random process 多变量随机过程multi-vessel configuration 多级液罐组合配置multi-viscosity number oil 多粘度牌号润滑油multi-wash test 多次洗涤试验multi-way switch 多路开关multi-well bounded reservoir 多井封闭油藏multi-well histogram 多井直方图multi-well profile planning 丛式井剖面设计multi-well transient test 多井不稳定试井multi-zone relay 分段限时继电器multiaccelerator 多重加速器multiaction problem 多行动方案问题multiaddress 多地址multianalysis 多方面分析multiar 多向振幅比较电路multiaxial 多轴multiband aerial camera 多波段航空摄影机multiband imagery 多波段成象multiband photograph 多波段摄影相片multiband photographic image 多波段摄影图象multiband photography 多波段摄影multiband remote sensing 多波段遥感multiband sensor 多波段传感器multiband spectral analysis 多波段光谱分析multibeacon 多重调制指点标multibeam antenna 多波束天线multibeam oscilloscope 多线示波器multibeam ultrasonic meter 多束超声流量计multibloc model 垒块模型multibolt flange 多螺栓法兰multibranched drilling 多底井钻井multibranched polymer 多支链聚合物multibreak 多重开关;多断点的multibuoy 多点系泊浮筒multiburst signal 多频率正弦波群信号multibus adapter 多总线适配器multibus 多总线multicable 多芯电缆multican 多分管的multicased deep well 多套管深井multicasting 立体声双声道调频广播multicell 多网格的Multicellaesporifes 无孔多孢孢属multicellular animals 多细胞动物multicellular filament 多细胞丝状体multicenter bond 多中心键multichain polymer 多链聚合物multichannel amplifier 多通道放大器multichannel analyzer 多道分析器multichannel coherence 多道相干multichannel coherency filter 多道相干滤波器multichannel deconvolution 多道反褶积multichannel discriminator 多道甄别器multichannel filtering 多道滤波multichannel gamma ray spectrometer 多道伽马射线谱仪multichannel multiplier 多通道乘法器multichannel optimal filter 多道最佳滤波multichannel processing 多道处理multichannel processor 多道信息处理机multichannel record 多道记录multichannel recording oscillograph 多路录波器multichannel seismic exploration 多道地震勘探multichannel seismic instrument 多道地震仪multichannel spectrometer 多道谱仪multichannel technique 多道技术multichannel telemetry seismic system 多道遥测地震系统multichromatic spectrophotometry 多色分光光度计multiclone 多管式旋流除尘器multicoil focused induction tool 多线圈聚焦感应测井仪multicoil induction system 多线圈感应测井装置multicoil 多线圈multicolor hologram 多色全息图multicolor image 多色图象multicolor three dimension image 多色三维图象multicompleted well 多层完成的井multicomponent brine 多组分盐水multicomponent distillation 多组分蒸馏multicomponent fibre 多组分纤维multicomponent film fibre 多组分薄膜纤维multicomponent flash calculation 多组分闪蒸计算multicomponent mixture 多元混合物multicomponent polymer fibre 多组分共聚物纤维multicomponent 多组分的;多元的multicomputing unit 多运算器处理机multiconductor calbe 多芯电缆multicontact miscibility 多次接触混相multicontact miscible 多次接触混相的multicontact switch 多触点开关multicore cable 多芯电缆multicore conductor 多芯电缆multicoupler 多路耦合器multicurve 多曲线multicut 多刀切削multicycle 多周期的multicyclic 多旋回的multicyclone 多管式旋流器multicylinder engine 多缸发动机multicylinder pump 多缸泵multicylinder 多缸的multidate image 多日期摄影图象multidate photograph 多日期摄影相片multidate photography 多日摄影术multideck 多层的multideformed terrain 多次变形区multidemodulation 多解调电路multidetector array 多检波器组合multidetector 多探测器multidigit 多位的multidimensional access 多维存取multidimensional convolution 多维褶积multidimensional flow 多维流动multidimensional Fourier trans form 多维傅里叶变换multidimensional geometry 多维几何形态multidimensional integrals 多维积分multidimensional linearized inversion 多维线性反演multidimensional model 多维模型multidimensional normal distribution 多维正态分布multidimensional objective function 多维目标函数multidimensional optimization problem 多维最优化问题multidimensional scaling 多维标度法multidimensional 多维的multidirectional block faulting 多向块断作用multidirectional drilling 多筒钻井multidirectional firing gun 多方向点火枪multidirectional normal fault 多向正断层multidirectional 多向的multidisciplinary analysis 多学科分析multidisciplinary 多学科的multidivisional problem 多部门问题multidrain well 多眼泄油井multidraw 多点取样multidrop communication network 多站通信网络multidrop line 多分支线multidrop 单线多站通信multiecho 多次回声multielement activation analysis 多元素活化分析multielement array 多元天线阵multielement oscillograph 万用示波器multielement parasitic array 多元无源天线阵multielement 多元素multifaceted 多层面的multifeeler casing caliper 多触点套管井径仪multifilament yarn 复丝multifilament 复丝multifinger contactor 多点接触器multiflow evaluator 多级流量地层测试器multifoam 多元泡沫塑料multifold coverage 多次覆盖multifold line 多次覆盖测线multifold profiling 多次覆盖剖面法multifold 多样的multiform function 多值函数multiform 多形multiformat output 多格式输出multiformed 多次变形的multiformity 多形multifrequency exploration 多频勘探multifrequency transmission 多频发射multifrequency vibration 复频振动multifuel engine 多燃料发动机multifunction 多功能multifunctional concentrate 多功能母料multifunctional molecule 多官能团分子multifunctionality 多功能性multigage 多用量测仪表;多用规;多用检测计multigang switch 多联开关Multigate Decay-Lithology Tool 多门衰减岩性测井仪multigelation 反复冻融作用multigrade lubricating oil 多品位润滑油multigrade oil 多级通用机油multigrade 多级的multigroup approximation 多群近似multigroup theory 多群理论multigun 多枪的multiharmonigraph 多谐记录仪multiheaded oil blob 多头油滴multihole drilling 多井眼钻井multihop 多次反射multihypothesis test 多假设检验multiimage 重复图象multikeyway 多键槽multilateral sand 横向重叠砂体multilateral trade 多边贸易multilateral treaty 多边契约multilateral 多边的multilayer adsorption 多层吸附multilayer board 多层板multilayer copolymer 多层共聚物multilayer film 多层薄膜multilayer injector 合注井multilayer performance 多层动态multilayer producer 合采井multilayer reservoir model 多油层油藏模型multilayer type fiber 多层型纤维multilayer welding 多层焊multilayer winding 多层绕组multilayer 多层的multilayered fold 多层褶皱multilayered medium 多层介质multilayered model 多层模型multilayered reservoir 多油层油藏multilength arithmetic 多倍长度运算multilength working 多倍长度工作单元multilens composite photo 多镜头联配相片multilens photography 多镜头摄影术multilevel addressing 多级地址multilevel difference equation 多层差分方程multilevel 多层的multiline shooting 多线激发multilinear failure 多线性破坏multilinear function 多重线性函数multilobate delta 多叶三角洲multiloop feed-back 多路反馈multimetallic catalyst 多金属催化剂multimeter 万用表multimetering 多点测量multimineral model 多矿物模型multimodal probability distribution 多重模态概率分布multimode disturbance 多模干扰multimode Kalman filter 多模卡尔曼滤波器multimode optical fibers 多模光纤multimode wave 多波型波multimode 多方式;多模;多波型multimoding 多型性;多波性multimolecular film 多分子膜multimolecular reaction 多分子反应multinational bank 多国银行multinational company 多国公司multinational corporation 多国公司multinational enterprise 多国性企业multinational firm 多国商号multinationalization 跨国化Multinodisporites 繁瘤孢属multinomial coefficient 多项式系数multinomial expansion 多项式展开multinomial 多项式;多项的multinuclear imaging 多核成象multinuclear 多核的multiobjectives decision 多目标决策multioffice 多局制Multioistodus 多箭牙形石属multioutlet 多引线multipactor 具有二次电子倍增器的析象管;高速微波功率开关multiparallel-layered medium 平行多层介质multiparameter analyzer 多参数分析器multiparameter seismic inversion 多参数地震反演multiparameter 多参数multiparticle spectrometer 多粒子光谱仪multipass airlay dryer 多路气流式烘干机multipass boiler 多回程锅炉multipass decomposition approach 多次分解法multipass exchanger 多程换热器multipass sort 多次扫描分类;多级分选multipass 多路multipath interference 多道干涉multipath propagation 多路径传播multipath ray 多路径射线。
特种功能材料 石墨烯
1.2 Multitude of striking properties of single-and few layer graphene
3. Optimal mechanical properties 石墨是矿物质中最软的,其莫氏硬度只有1-2 级,但被分离成一个碳原子
厚度的石墨烯后,性能则发生突变,其硬度将比莫氏硬度10 级的金刚石还高, 却又拥有很好的韧性,且可以弯曲。
A是表面钻有小孔的晶体薄板, 这些孔的直径为1--1.5um C是对放在晶体板上的石墨烯 进行纳米压痕处理的原理图。
1.3 Preparation of graphene
1.3 Preparation of graphene
Graphene can be
0D: fullerenes (wrapped up) 1D: nanotubes (rolled into) 3D: graphite (stacked into)
据测算如果用石墨烯制成厚度相当于普通食品塑料包装袋厚度的薄膜(厚 度约100 纳米),那么它将能承受大约两吨重物品的压力,而不至于断裂
根据石墨烯超薄,强度超大的特性,石墨烯可被广泛应用于各领域,比如 超轻防弹衣,超薄超轻型飞机材料等。
1.2 Multitude of striking properties of single-and few layer graphene
远远超过了电子在一般导体中的运动速度(非常高的电子迁移率)。 因此,在微电子领域, 制造超微型晶体管,用来生产未来的超级计算机,
以获得更高的速度,石墨烯有可能会成为硅的替代品。
石墨烯结构非常稳定,迄今为止,研究者仍未发现石墨烯中有碳原子缺失的 情况。石墨烯中各碳原子之间的连接非常柔韧,当施加外部机械力时,碳原子面 就弯曲变形,从而使碳原子不必重新排列来适应外力,也就保持了结构稳定。这 种稳定的晶格结构使碳原子具有优秀的导电性。石墨烯中的电子在轨道中移动时, 不会因晶格缺陷或引入外来原子而发生散射。由于原子间作用力十分强,在常温 下,即使周围碳原子发生挤撞,石墨烯中电子受到的干扰也非常小。
稠油井工况判断智能预警模型的应用
119近年来,随着新型采油管理区的建设,油气生产信息化手段更加丰富,为稠油油藏的管理提供了强有力的技术支持。
依托四化等信息辅助系统,实时提取功图、地面等多项参数,结合现场管理经验,利用判别分析等统计学方法建立油井正常工况与异常工况预警模型[1]。
目前针对稠油油井,利用多参数统计方法建立工况预警模型的研究相对较少,且研究时将各影响参数孤立。
面对稠油开发易出现出砂、汽窜、油稠、断脱等异常工况问题,如何降低工况异常造成的产量损失,保持油田稳产已成为当前的重要工作,有必要利用信息化手段,对稠油井况预警模型进行深入研究。
1 稠油井况参数统计分析1.1 示功图参数示功图是载荷随位移的变化关系曲线所构成的封闭曲线图,主要包括最小载荷、最大载荷、面积、功图形状等参数,除功图形状之外均可以量化。
A区块最小载荷分布以11~20kN和21~30kN 这两个区间为主,合计占81%。
最大载荷分布以91kN以上这一区间为主,占42%。
71~80kN以及81~90kN这两个区间合计占比50%。
功图面积分布以201~300区间为主,占比达43%;0~100区间分布较小,占比为12%。
1.2 示功图形状将工况异常井的示功图进行分类统计,提取问题井典型示功图,对稠油井常出现的出砂、汽窜、泵漏、断脱、油稠等异常工况进行描述,建立其相应图版。
(1)出砂。
示功图左下为尖镰刀状,表现为泵筒内无液柱,载荷在下死点附近才卸载,液面接近泵深。
如果泵的入口受到阻塞或有流体供应不足,会导致泵筒内无液柱形成,液位接近泵深。
这可能是由于管道堵塞、阀门关闭或进水源出现问题等原因引起的。
如果泵的装置不正确,例如进口管道截面积太小或泵的位置不正确,会导致泵无法充分吸入液体形成液柱,使载荷在下死点附近才卸载。
这可能需要重新检查和调整泵的安装[2]。
(2)泵漏。
泵漏井示功图整体图形与正常时变化不大,最大载荷变小,最小载荷变大,形状稠油井工况判断智能预警模型的应用武杰中国石化胜利油田石油开发中心 山东 东营 257000摘要:对于蒸汽吞吐开发的稠油油藏,易出现出砂、汽窜、套坏等异常工况问题,如何利用油井工况参数建立有效的预警模型,并智能判断处置从而降低异常工况造成的产量损失已成为油田稳产的关键。
Characteristics of Turbulent Round Jets in its
J
ETS emerging from round nozzles into un-confined surroundings are useful in several areas of technical interest. Jet flows are encountered in a variety of engineering applications including combustion, chemical processes, pollutant discharge, cooling process, mixing and drying processes. The structure and development of turbulent jets were studied by many researchers [1,2,3]. The near-field development and spectra of turbulent jets were reported by a few authors [4,5], where it was concluded that the near-field region is susceptible to the variations in initial and boundary conditions. This created a wide area for jet research comprising of different initial and boundary conditions in the near-field of a jet. Studies were reported on turbulent jets, considering the variations in parameters such as the Reynolds number [6], nozzle geometry and turbulent intensity at the nozzle exit [7,8,9,10,11]. The effect of different nozzle intrusions in the jet was studied by a few researchers [12,13,14]. The effect of Reynolds number in the near-field of turbulent round jet had been studied by using stationary and flying hotwire anemometer [6]. Experiments were carried out for a range of Reynolds numbers, however, detailed results for a Reynolds number of 30000 was reported. It had been observed that the length of potential core decreases with increase in Reynolds number. The effect of Reynolds number on the near-field of a plane jet was also studied [15], where it was reported that multiple frequency peaks prevail in the near-field region at low Reynolds number. It had also been mentioned that plane jets at
Advanced Manufacturing Processes
Advanced Manufacturing Processes Advanced manufacturing processes have revolutionized the way products are designed, produced, and delivered to consumers. These processes encompass a wide range of technologies and methods, including additive manufacturing, robotics, automation, and digitalization. They have the potential to significantly improve efficiency, reduce costs, and enhance product quality. However, they also present challenges and implications for the workforce, the environment, and the overall economy. From an economic perspective, advanced manufacturing processes have the potential to drive significant growth and innovation. By leveraging cutting-edge technologies such as 3D printing and advanced robotics, manufacturers can streamline production processes, reduce lead times, and create more customized products. This can lead to increased competitiveness, job creation, and economic development. Furthermore, the adoption of advanced manufacturing processes can also lead to the reshoring of production facilities, as companies seek to reduce reliance on overseas suppliers and bring production closer to their primary markets. On the other hand, the widespread adoption of advanced manufacturing processes also raises concerns about the displacement of traditional manufacturing jobs. As automation and robotics become more prevalent on the factory floor, there is a risk that many low-skilled workers could find themselves unemployed. This can have significant social and economic implications, as these workers may struggle to transition to new roles in the digital economy. It is crucial for policymakers and industry leaders to address these challenges by investing in workforcetraining and education programs that equip workers with the skills needed tothrive in a rapidly evolving manufacturing landscape. In addition to the impact on the workforce, advanced manufacturing processes also have environmental implications. While these processes have the potential to reduce waste and energy consumption through more efficient production methods, they also raise concerns about e-waste and the environmental impact of new materials used in additive manufacturing. It is essential for manufacturers to prioritize sustainability and invest in research and development efforts that minimize the environmental footprint of advanced manufacturing processes. From a technological perspective, the adoption of advanced manufacturing processes also presents cybersecuritychallenges. As manufacturing systems become more interconnected and reliant on digital technologies, they become more susceptible to cyber threats. Manufacturers must invest in robust cybersecurity measures to protect their intellectual property, production processes, and supply chain from potential cyber-attacks. Moreover, the integration of advanced manufacturing processes also requires significant upfront investment in new technologies, equipment, and skills training. This can be a barrier for small and medium-sized manufacturers, who may struggleto access the capital needed to modernize their operations. It is essential for policymakers to provide support and incentives for these companies to adopt advanced manufacturing processes, as they play a vital role in driving local economies and providing employment opportunities. In conclusion, advanced manufacturing processes have the potential to drive significant economic growthand innovation, but they also present challenges and implications for the workforce, the environment, and the overall economy. It is crucial for industry leaders, policymakers, and stakeholders to work together to address these challenges and ensure that the benefits of advanced manufacturing processes are realized in a sustainable and inclusive manner. By investing in workforce training, sustainability, cybersecurity, and support for small and medium-sized manufacturers, we can harness the full potential of advanced manufacturing processes for the betterment of society.。
航空发动机专业英语词汇大全
航空发动机专业英语词汇大全,值得收藏!2016-01-29航佳技术飞机维修砖家Part 1Para. 1gas turbine engine燃气涡轮发动机aircraft 飞机,飞行器(单复同形)power plant 发动机,动力装置appreciate 理解,意思到prior to 在…之前propulsion 推进reaction 反作用jet 喷气, 喷射, 喷气发动机designer 设计师initially 最初,开始时unsuitability 不适应性piston engine 活塞发动机airflow 空气流present 带来, 产生obstacle 障碍Para. 2patent 专利, 获得专利jet propulsionengine 喷气推进发动机athodyd 冲压式喷气发动机heat resistingmaterial 耐热材料develop 研究出,研制出in the secondplace 其次inefficient 效率底的ram jet, ramjet冲压式喷气发动机conception 构想, 设计,概念Para. 3grant 授予propulsive jet 推进喷射turbo-jet engine 涡轮喷气发动机turbojetturbo-propellerengine涡轮螺桨发动机turbopropVickers Viscountaircraft 维克斯子爵式飞机be fitted with 配备term 术语, 称为, 叫做twin-spool engine 双转子发动机triple-spoolengine三转子发动机by-pass engine 双涵道发动机ducted fan 涵道风扇发动机unducted fan (UDF)无涵道风扇发动机propfan 桨扇发动机inevitable 不可避免的, 必然的p.4propeller 螺旋桨basic principle 基本原理effect 产生propel 推进solely 单独, 只thrust 推力p.5popularly 普遍地, 一般地pulse jet 脉动式喷气发动机turbo/ram jet 涡轮冲压式喷气发动机turbo-rocket 涡轮火箭p.6accelerate 加速acceleration 加速度apparatus 装置, 机器slipstream 滑流p.7momentum 动量issue 冒出to impart M to N 把M给与N revolve 旋转p.8whirl 旋转sprinkler 喷水器mechanism 机构by [in] virtue of 依靠hose 软管afford 提供carnival 狂欢节p.9definitely 确切地, 明确地assume 想象, 以为expel 排出, 驱逐propulsiveefficiency 推进效率Page 3p.10differ 不同convert 转换p.11thermodynamic 热动力的divergent 扩散diverge 扩散convergent 收敛converge收敛entry 进气段exit 排气管kinetic energy 动能air intake 空气进口diverging duct 扩散管道outlet duct 排气管missile 导弹target vehicle 靶机p.12intermittentcombustion 间断式燃烧aerodynamic 空气动力的involve 具有robust 结实的, 坚固的inlet valve 进气阀inject 喷入eject 喷出depression 降压, 减压exhaust 排气cycle 循环helicopter rotorpropulsion 直升飞机旋翼驱动器dispense with 省去, 无需resonate 共振resonating cycle 共振循环fuel consumption 燃油消耗equal 比得上performance 性能p.13decompose 分解p.14inherent 固有的draw 吸入p.15arrangement 结构simplicity 简单性subsequent 接下来的thermodynamic 热力的Page 7p.16disturbance 扰动blade-tip 叶尖departure from 背离p.17offset 抵消exceed 超过p.18Mach number 马赫数p.19variable intake 可变进口afterburning 加力燃烧variable nozzle 可调喷口conventional 常规的afterburner 加力燃烧室inoperative 不工作的divert 使转向guide vane 导流叶片duct 管道,用管道输送sustained 持续的cruise 巡航mode 模式p.21multi-stageturbine 多级涡轮derive 得到,取得kerosene, kerosine煤油be in the orderof…达到…的量级spray 喷雾fuel-rich mixture 富油混合物dilute 稀释surplus 剩余的p.22interceptor 截击机space-launcher 航天发射器altitude 高度attitude 态度、姿态latitude 纬度longitude 经度accelerative 加速的duration 持续时间Part2Para.1working fluid 工作流体conversion 转换jet efflux 喷射气流Para.2four-stroke pistonengine 四冲程活塞发动机constant pressure 等压constant volume 等容induction 进气compression 压缩intermittent 间断的be involved in…与…有关charging 进气eliminate 消除idle stroke 空冲程Para.3peak 峰, 峰值fluctuate,fluctuating 波动, 起伏withstand,withstood 承受in excess of 超过employ 采用cylinder 汽缸high octane fuel 高辛烷值燃料low octane fuel 低辛烷值燃料fabricated 装配式的Para.4function 运行, 运转introduce,introducing 输入remainder 剩余部分discharge 排出Para.5,6turbine assembly 涡轮部件air-cooled blade 气冷叶片consequently 随之而来的, 因此, 所以Para.7embody 体现be embodied in M 体现在M中be directlyproportional to…与…成正比be inversely proportional to…与…成反比Para.9trace 描绘show up 表现Para.10attain 达到, 实现conversely 相反地Para.11adiabatic 绝热的friction 摩擦conduction 传导turbulence 紊流Para.12propelling nozzle 推力喷管momentum 动量deceleration 减速Page 14Para.13effect 实现conversion 转换convert 转换sonic 音速的subsonic 亚音速的supersonic 超音速的encounter 遇到venturi 文氏管Para.14interference 干扰component failure 部件失效eddy 涡流turbulence 紊流Para.15frontal area 迎面面积straight-throughflow system 直流式系统reverse flowsystem 回流式系统subsequent 接下来的Para.17conventionally 常规地percentage 部分,百分比duct 管道,用管道输送remainder 剩余物deliver 送,流to be conducive to…有利于…specific fuelconsumption 燃油消耗率Para.18design feature 设计特征by-pass engine 双涵道发动机by-pass ratio 涵道比twin-spoolconfiguration 双转子结构propfan 桨扇发动机turbo-propeller 涡轮螺桨发动机Para.19by-pass airstream 外涵道气流overboard 向船外,排出ducted fan 涵道式风扇发动机aft fan 后风扇发动机Part 3centrifugal 离心的axial 轴流的couple 耦合,联接coupling 联轴器coupler联轴器shaft 轴Para.2centrifugal (flow)compressor 离心压气机impeller 叶轮diffuser 扩散器axial (flow)compressor 轴流压气机multi-stage unit 多级装置alternate 交替的rotor blade转子叶片stator vane 静子叶片diffuse 扩散boost 增压booster 增压器with regard to 关于robust 坚固,结实develop andmanufacture 设计与制造consume 消耗,使用attain 达到air flow 空气流量,空气流adoption 采用favour (Am. E favor) 喜爱,偏爱ruggedness坚固性rugged 坚固的outweigh 胜过,重于Fig. 3-1rotating guidevane 旋转导流叶片intake chute 进气斜道swirl vane 旋流叶片Para.5diffuser vane 扩散器叶片double-entry impeller双面进气叶轮plenum chamber 稳流室Para.6induce 吸入radially 径向地intake duct 进气管initial swirl 预旋Para.7divergent nozzle 扩散排气管Para.8tip speed 叶尖速度Para.9maintain 保持leakage 泄漏clearance 间隙Para.10construction 结构center around(about, at, in, on, round, upon)…以…为中心ball bearing 滚珠轴承roller bearing 滚柱轴承split 分开detachment 拆开,分离Para.11forged 锻造的radially disposedvanes 径向排列的叶片in conjunctionwith… 和…共同swept back 后掠Para.12attach 联接tangential 相切的inner edge 内缘in line with… 与…一致buffeting impulse 扰流抖振脉冲Para. 13rotor assembly 转子部件airfoilsection 翼型截面mount 安装bearing 轴承incorporate 安有,装有in series 依次地design condition 设计状态incorporation 引入,采用variable statorvane 可调静子叶片succeeding stage下一级Para. 14gradual reduction 逐渐减小annulus 环型stator casing 静子机匣maintain 保持density 密度convergence 收敛taper,tapering 带斜度,带锥度arrangement 结构Para. 16multi-spoolcompressor 多转子压气机optimum 最佳(的),最优(的)flexibility 适应性,灵活性Para. 17handle 处理duct 管道,用管道输送exhaust system 排气系统propelling nozzle 推力喷管match 使匹配obsolete 已不用but 除…….之外Para. 18trend 趋势stage 阶段, 级undergo 承受split 分开core 核心gas generator 燃气发生器optimumarrangement 最佳结构Para. 19induce 吸入,引入,引导sweep, swept 扫,猛推adjacent 相邻的translate 翻译,转换decelerate 减速serve 起……作用deflection 偏转straightener 整流器swirl 旋流diagrammatically 图示地accompany 伴随progressive 不断的,逐渐的Para. 20breakaway 分离stall 失速precede 在……前面Para. 21incidence 攻角tolerate 允许interstagebleed 级间放气intermediatestage 中间级Para. 22proportion 比例pl. 尺寸, 大小coaxial 同轴的inner radius 内半径supercharge 增压akin 相似的Para.23to center around(round, on, upon, about, at, in)…以…为中心alignment 对中, 同心cylindrical 圆筒形的bolted axial joint轴向螺栓联接bolted center linejoint 中心线螺栓联接Para.24secure 固定assemble 装配weld 焊接periphery 边缘drum 鼓筒Para.25circumferential 周向的fixing 安装, 固定maintainability 维护性blisk 整体叶盘Para.26gradient 梯度balance out 抵消angle of incidence攻角boundary layer 附面层, 边界层stagnant 滞止的compensate for 补偿camber 弯度extremity 端部end-bend 端弯Para.27retaining ring 保持环in segments 成组的shroud 叶冠Para.28dissimilar 不相似的, 不同的workable 可用的, 可运转的implement 实现, 执行, 完成retain 保持impose upon… 强加于…之上depart from 偏离intention 意图positive incidencestall 正攻角失速negative incidencestall 负攻角失速blading 叶栅sustain 承受得住surge 喘振instantaneous 即刻的expel 排出margin 欲度instability 不稳定性Para. 30provision 提供margin 欲度hydraulic 液压的pneumatic 气动的electronic 电子的cost effective 成本效益好的prevail 流行,胜利Para. 32rigid 刚性的clearance 间隙alloy 合金nickel based alloy镍基合金titanium 钛in preference to 优先于rigidity todensity ratio 刚度密度比Para. 33prime 主要的fatigue strength 疲劳强度notch 切口,开槽ingestion 吸气inferior 差的decline 下降rub 碰磨ignite 点燃airworthiness 飞行性能hazard 危险Para. 34dominate 起支配作用Para. 35solid forging 实锻件chord 弦mid-span 叶片中部snubber 减振器clapper 拍板fabricate 制造skin 蒙皮honeycomb 蜂窝Para. 36robust section 坚固截面ingestioncapability 吸气能力Part4Para.1fuel supply nozzle燃油喷嘴extensive 广泛的,大量的accomplish 完成Para.2range 范围C---Centigrade orCelsius turbine nozzle涡轮导向器Para.3consequent 随之发生的,结果的Para.4kerosene, cerosine煤油light, lit orlighted 点燃blow, blew,blown 吹alight 燃烧的Para.5flame tube 火焰筒liner 衬筒meter, metering 调节配量Para.6snout 进气锥体downstream 下游,顺流swirl vane 旋流叶片perforated flare 带孔的喇叭管primary combustionzone 主燃区upstream上游,逆流promote 促进,引起recirculation 环流,回流Para.7secondary air hole二股气流孔toroidal vortex 喇叭口形涡流anchor, anchoring 锚,固定hasten 促进,加速droplet 小滴ignitiontemperature 燃点Para.8conical 锥形的intersect 相交turbulence 紊流break up, breakingup 分裂,破碎incoming 进来的Para.9nozzle guide vane 涡轮导向叶片amount to 占…比例, 达到progressively 逐渐地dilution zone 掺混区remainder 剩余物insulate M from N 使M与N隔离Para.10,11electric spark 电火花igniter plug 点火塞self-sustained 自持的Para.12airstream =airflow distinct =different type injection 喷射,喷入ejection 喷射,喷出atomize 使雾化spray nozzle 喷嘴pre-vaporization 预蒸发Para.13vapor 蒸汽vaporize 蒸发vaporizer 蒸发器feed tube 供油管vaporizing tube 蒸发管atomizer flametube装有雾化喷嘴的火焰筒Para.14multiple(combustion) chamber 分管燃烧室tubo-annular(combustion) chamber 环管燃烧室cannular(combustion) chamber 环管燃烧室annular(combustion) chamber 环形燃烧室Para.15F.g.4-6Para.16dispose 布置delivery 排气Para.17interconnect 互相连通propagate传播Para.18bridge a gapbetween填补空白,使连接起来evolutionary 发展,演变arrangement 结构overhaul 大修compactness 紧凑性Para.19contain 包含,安装be open to 与…相通Para.20elimination 消除propagation 传播Para.21virtually 实际上oxidize 氧化carbon monoxide 一氧化碳non-toxic 无毒的carbon dioxide 二氧化碳Para.22aerate, aerating 吹气,供气over-rich pocket 过富区fuel vapour 燃油蒸汽carbon formation积碳形成Para.23incur 招致extinction 熄灭relight 重新点燃perform,performing 完成,执行spray nozzleatomizer 喷嘴雾化器Para.25intensity 强度compact 紧凑的exceptionally 格外地,特别地Para.26calorific value 热值British thermalunit (BTU)英国热量单位=252卡expenditure 使用,消耗Para.27altitude cruise 高空巡航Para.29weak limit 贫油极限rich limit 富油极限extinguish 熄灭extinguisher 灭火器dive 俯冲idle, idling 空载,慢速mixture strength 混合物浓度Para.30stability loop 稳定区Para.32emission 排放物pollutant污染物create 产生,形成legislatively 立法地hydrocarbon 碳氢化合物oxides of nitrogen氧化氮Para.34suppression 抑制desirable 合乎需要的conflict 冲突compromise 折中combustor 燃烧室substantially 实际上Para.35coating 涂层insulation 隔热,隔离Para.36corrosion 腐蚀creep failure 蠕变失效fatigue 疲劳Part5Para.1accessory,accessories 附件solely = onlyextract,extracting 提取to expose M to N 使M暴露于N M is exposed to Ntorque 扭矩Para.3intermediate 中间的interpose 置于…之间to be derivedfrom… 从…获得, 取自free-power turbine自由动力涡轮to be independentof…不受…的限制Para.4mean 平均的deflection 偏转in proportion to 按比例sectionalthickness 截面厚度disproportionately不相称地Para.5broadly 主要地aerofoil shape 翼型形状impulse turbine 冲击式涡轮reaction turbine 反作用式涡轮incorporate 采用cartridge starter 弹药筒式起动机air starter 空气起动机to force one’s wayinto 有力地冲入spin 旋转whirl 旋转Para.8to be governed by 取决于, 由…决定substantially 实际上, 大体上excessive 过分的residual 剩余的,剩余detrimental =harmfulstrut 支柱, 支杆Para.9twist, twisted 带扭向的stagger angle 斜罩角Para.10mean section 中间截面Para.12self-aligningcoupling 自动调节联轴器Para.15machined forging 机加锻件flange 法兰,安装边bolt 螺栓,用螺栓联结perimeter 周边,圆周to have provisionfor…为…作好准备attachment 联接, 安装Para.16heat conduction 热传导Para.17degree of reaction反力度Para.18fix 确定, 决定,trailing edge 排气边so as to (do) 为了prevent M (from)+ingPara.19attach联接, 安装fixing 联接have a bearing on …对…有影响rim speed 轮缘速度de Laval bulb root圆头叶根supersede 代替, 取代fir-tree fixing 纵树榫头联接involve 需要, 要求serration 榫齿stiffen 加劲, 固牢Para.20contraction 收缩shroud 叶冠fit 配备, 安装segment 部分, 片peripheral 外围的, 周边的abradable lining 易磨涂层A.C.C. ---activeclearance control shroudless blade 无冠叶片Para.21revolve 旋转extract 提取conventional 常规的Para.22impractical 不实际的dual alloy disc 双金属轮盘blisk 整体叶轮cast 铸造bond 粘接Para.23match 匹配nozzle guide vane 涡轮导向叶片back pressure 反压surge 喘振choke 壅塞,阻塞Para.24obstacle 障碍impart to…给与tensile stress 拉应力limiting factor 限制因素Para.25endure 承受nickel alloy 镍合金ceramic coating 陶瓷涂层enhance 增强Para.26resistance 抵抗,耐fatigue cracking 疲劳破坏Para.27ferritic 铁素体terrific 可怕的,极妙的austenitic 奥氏体alloying element 合金元素extend 延长fatigue resistance抗疲劳性powder metallurgy 粉末冶金Para.28in connection with关于,与…有关glowing red-hot 赤热发光ounce 盎施=28.35 gbending load 弯曲载荷thermal shock 热冲击corrosion 腐蚀oxidization 氧化Para.29foregoing 前面的, 上述的it follows that 因此, 可见permissible 允许的metallurgist 冶金学家Para.30creep 蠕变finite useful life有限使用寿命failure 失效Para.31forge 锻造forging 锻件cast 铸造creep property 蠕变性能fatigue property 疲劳性能Para.32reveal 揭示, 显示a myriad of 无数crystal 晶体equi-axed 等轴的service life 使用寿命directionalsolidification 定向凝固useful creep life 有效蠕变寿命single crystalblade 单晶叶片substantially 实质上, 显著地Para.33reinforced ceramic加固陶瓷Para.34balancing 平衡operation 工序in view of 考虑到Part 6Para.1aero 航空的pass 排送resultant thrust 合成推力,总推力create 引起,产生contribute 提供absorb 吸收exert an influenceon…对…产生影响jet pipe 尾喷管propelling nozzle 推力喷管outlet nozzle 出口喷管Para.2distortion 扭曲, 变形cracking 产生裂纹Para.3thrust reverser 推力反向装置noise suppressor 消音器entail 需要, 要求low by-pass engine低涵道比发动机mixer unit 掺混装置encourage 促进Para.4exhaust cone 排气锥hold 保持residual whirl 剩余旋流strut 支板straighten 整流Para.5in relation to…对…来说choked 壅塞, 阻塞upstream totalpressure 上游总压pressure thrust 压力推力momentum 动量Para.6wastage 损失, 消耗with advantage 有效地convergent-divergentnozzle 收扩喷管recover 重新获得Para.7flared 扩张的restriction 限制progressively 逐渐地longitudinal 纵向的Para.9fixed area nozzle 固定面积喷口variable areanozzle 可变面积喷口offset 抵消Para.13nickel 镍titanium 钛ventilate,ventilating 通风lag, lagging 用隔热材料保护insulating blanket隔热层fibrous 纤维状的stainless steel 不锈钢dimple 使起波纹acousticallyabsorbent material 吸声材料Para.14double-wallconstruction 双壁结构induce 引导ejector action 喷射器作用engine nacelle 发动机短舱Para.15streamline fairing流线型整流板vent hole 通气孔Para.16chute 斜道bonded honeycombstructure 粘接的蜂窝结构integrated nozzleassembly 整体喷管部件lightweightstrength 低重强度。
2025年高考(新高考)模拟试卷英语试题(二)(含听力音频和答案)
2025届仿真模拟★第02套2025年普通高等学校招生全国统一考试英语注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
英语听力 高三模拟 第2025-02套.mp4第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
例:How much is the shirt?A. £19.15.B. £9.18.C. £9.15.答案是C。
1.Where does the conversation probably take place?A. In a supermarket.B. In the post office.C. In the street. 2.What did Carl do?A. He designed a medal.B. He fixed a TV set.C. He took a test.3.What does the man do?A. He’s a tailor.B. He’s a waiter.C. He’s a shop assistant. 4.When will the flight arrive?A. At 18:20.B. At 18:35.C. At 18:50.5.How can the man improve his article?A. By deleting unnecessary words.B. By adding a couple of points.C. By correcting grammar mistakes.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
turbulent flow popes pdf
turbulent flow popes pdf 标题:Turbulent Flow in Pipes: An Overview of Pope's PDF Approach引言概述:Turbulent flow in pipes is a complex phenomenon that has been extensively studied in fluid dynamics. Understanding the characteristics and behavior of turbulent flow is crucial for various engineering applications, such as the design of pipelines, optimization of industrial processes, and prediction of pressure drops. In this article, we will explore the concept of turbulent flow in pipes and focus on Pope's Probability Density Function (PDF) approach, which provides a comprehensive framework for analyzing turbulent flow.正文内容:1. Introduction to Turbulent Flow in Pipes1.1 Definition of Turbulent Flow1.1.1 Turbulent vs. Laminar Flow1.1.2 Reynolds Number and its Significance1.2 Characteristics of Turbulent Flow in Pipes1.2.1 Randomness and Chaotic Nature1.2.2 Velocity Fluctuations and Vortices1.2.3 Energy Dissipation and Mixing2. Overview of Pope's PDF Approach2.1 Introduction to Probability Density Function (PDF)2.1.1 Definition and Purpose of PDF2.1.2 PDF as a Statistical Representation of Turbulent Flow 2.2 Pope's PDF Approach2.2.1 Formulation of PDF Equation2.2.2 Closure Problem and Reynolds Stress Modeling2.2.3 Advantages and Limitations of Pope's PDF Approach3. Applications of Pope's PDF Approach3.1 Prediction of Scalar Transport in Turbulent Flow3.1.1 Modeling of Concentration or Temperature Fluctuations 3.1.2 Estimation of Scalar Dissipation Rate3.2 Analysis of Turbulent Combustion3.2.1 Modeling of Reactive Species Concentration3.2.2 Prediction of Flame Structure and Combustion Efficiency 3.3 Simulation of Turbulent Flow in Industrial Processes3.3.1 Optimization of Mixing and Heat Transfer3.3.2 Prediction of Pressure Drops and Flow Distribution4. Challenges and Future Directions4.1 Closure Problem in Pope's PDF Approach4.1.1 Need for Accurate Reynolds Stress Modeling4.1.2 Development of Advanced Closure Models4.2 Integration with Other Turbulence Models4.2.1 Hybrid Models for Improved Predictions4.2.2 Combination with Large Eddy Simulation (LES)4.3 Advancements in Computational Power and Numerical Methods4.3.1 High-Performance Computing for Complex Simulations4.3.2 Development of Efficient Numerical Algorithms总结:In conclusion, Pope's PDF approach provides a valuable tool for understanding and analyzing turbulent flow in pipes. By utilizing the concept of probability density function, this approach allows for the statistical representation of turbulent flow characteristics. The applications of Pope's PDF approach range from predicting scalar transport in turbulent flow to simulating turbulent combustion and industrial processes. However, challenges such as the closure problem and integration with other turbulence models remain, and future research should focus on developing advanced closure models, hybrid approaches, and leveraging advancements in computational power and numerical methods. Overall, Pope's PDF approach offers a promising avenue for furthering our understanding of turbulent flow in pipes and improving engineering applications.。
2020中石油托福考试模拟题
2020中石油托福考试模拟题题目一:托福阅读托福考试是世界上最具权威性的英语水平考试之一,被广泛认可和采用。
在2020年的中石油托福考试模拟题中,阅读部分将是考试的重要组成部分。
本文将针对2020中石油托福考试模拟题中的阅读部分进行解析和探讨。
首先,让我们来看一道典型的托福阅读题目:Passage 1: Fossils in Greenland。
这道题目要求考生们通过阅读一篇关于格陵兰岛化石的文章,并回答相关问题。
阅读材料将围绕格陵兰岛的地质构造、化石种类和形成时间等方面展开。
在解答问题之前,我们应该先通读全文,掌握阅读材料的大意和主要内容。
接下来,我们需要开展逐题分析。
每道题目都有其特定的要求和难点,我们需要抓住关键词,理清答题思路。
例如,题目一要求我们判断下列哪个选项正确地描述了格陵兰岛地质构造的变化。
我们可以通过定位关键词,并结合文中相关段落,找到正确答案。
此外,托福阅读还会考察考生们的词汇理解能力,对于一些生词和专业术语的掌握是必要的。
在遇到生词时,我们可以通过上下文来猜测其意思,或者借助词根词缀的知识进行推测。
除了阅读理解之外,本次托福模拟考试还设置了一些其他类型的阅读题目,例如配对题、细节理解题等。
针对这些题型的答题要求,我们需要加强对文章细节的理解,通过逐行阅读和标注关键信息的方式来提高答题准确率。
在备考过程中,没有捷径可走,唯有多加练习。
阅读大量的英语文章,并进行适当的阅读速度和理解力的训练,可以提高自己的阅读水平和应对考试的能力。
在结尾处,我们总结了本文讨论的重点。
在2020中石油托福考试模拟题中,阅读部分的复杂性不容小觑。
掌握阅读技巧、扩充词汇量、培养快速阅读能力,都是提高阅读成绩的关键。
希望本文提供的解析和建议能够对考生备考托福阅读部分有所帮助。
题目二:托福听力托福考试中的听力部分是每位考生需要关注和重视的重要环节。
2020中石油托福考试模拟题中的听力部分涵盖了不同场景和话题,要求考生们能够快速听懂并准确理解听力材料的内容。
锌碘电池 正极要求
锌碘电池正极要求英文回答:I once embarked on a quest to understand the essence of zinc-iodine batteries, particularly focusing on the requirements for their positive electrodes. These batteries, renowned for their efficiency and reliability, demand meticulous attention to their positive terminals. So, what exactly are the prerequisites for these crucial components?Firstly, it's imperative to ensure that the positive electrode possesses commendable conductivity. This characteristic enables efficient transfer of electrons during the battery's operation. In simpler terms, imagine electrons flowing smoothly like a river, rather than sluggishly trickling like a leaky faucet. Achieving optimal conductivity involves selecting suitable materials and crafting the electrode's structure with precision.Additionally, the positive electrode must exhibitexcellent chemical stability. This trait is vital for the battery's longevity and safety. Picture a stable and sturdy foundation for a building – it ensures the structure remains intact even during tumultuous weather. Similarly, a chemically stable positive electrode ensures the battery operates smoothly without succumbing to degradation or hazardous reactions.Furthermore, the morphology of the positive electrode plays a pivotal role in the battery's performance. It's akin to the shape of puzzle pieces fitting snugly together to form a complete picture. A well-designed morphology facilitates efficient ion transport and minimizes resistance within the battery, thereby enhancing itsoverall efficiency and lifespan.In summary, the positive electrode of a zinc-iodine battery must exhibit commendable conductivity, excellent chemical stability, and an optimized morphology. These qualities are fundamental for ensuring the battery's functionality and longevity.中文回答:对于锌碘电池的正极要求,我曾经进行了一番探索,特别关注它们的正极要求。
Geometric Modeling
Geometric ModelingGeometric modeling is a crucial aspect of computer graphics and design, playing a significant role in various fields such as engineering, architecture, animation, and gaming. It involves the creation and manipulation of geometric shapes and structures in a digital environment, allowing for the visualization and representation of complex objects and scenes. However, despite its importance, geometric modeling presents several challenges and limitations that need to be addressed in order to improve its efficiency and effectiveness. One of the primary issues in geometric modeling is the complexity of representing real-world objects and environments in a digital format. The process of converting physical objects into digital models involves capturing and processing a vast amount of data, which can be time-consuming and resource-intensive. This is particularly challenging when dealing with intricate and irregular shapes, as it requires advanced techniques such as surface reconstruction and mesh generation to accurately capture the details of the object. As a result, geometric modeling often requires a balance between precision and efficiency, as the level of detail in the model directly impacts its computational cost and performance. Another challenge in geometric modeling is the need for seamless integration with other design and simulation tools. In many applications, geometric models are used as a basis for further analysis and manipulation, such as finite element analysis in engineering or physics-based simulations in animation. Therefore, it is essential for geometric modeling software to be compatible with other software and data formats, allowing for the transfer and utilization of geometric models across different platforms. This interoperability is crucial for streamlining the design and production process, as it enables seamless collaboration and data exchange between different teams and disciplines. Furthermore, geometric modeling also faces challenges related to the representation and manipulation of geometric data. Traditional modeling techniques, such as boundary representation (B-rep) and constructive solid geometry (CSG), have limitations in representing complex and organic shapes, often leading to issues such as geometric inaccuracies and topological errors. To address this, advanced modeling techniques such as non-uniform rational B-splines (NURBS) and subdivision surfaces have been developed toprovide more flexible and accurate representations of geometric shapes. However, these techniques also come with their own set of challenges, such as increased computational complexity and difficulty in controlling the shape of the model. In addition to technical challenges, geometric modeling also raises ethical and societal considerations, particularly in the context of digital representation and manipulation. As the boundary between physical and digital reality becomes increasingly blurred, issues such as intellectual property rights, privacy, and authenticity of digital models have become more prominent. For example, the unauthorized use and reproduction of digital models can lead to copyright infringement and legal disputes, highlighting the need for robust mechanisms to protect the intellectual property of digital content creators. Similarly, the rise of deepfakes and digital forgeries has raised concerns about the potential misuse of geometric modeling technology for malicious purposes, such as misinformation and identity theft. It is crucial for the industry to address these ethical concerns and develop standards and regulations to ensure the responsible use of geometric modeling technology. Despite these challenges, the field of geometric modeling continues to evolve and advance, driven by the growing demand forrealistic and interactive digital experiences. Recent developments in machine learning and artificial intelligence have shown promise in addressing some of the technical limitations of geometric modeling, such as automated feature recognition and shape optimization. Furthermore, the increasing availability of powerful hardware and software tools has enabled more efficient and accessible geometric modeling workflows, empowering designers and artists to create intricate and immersive digital content. With ongoing research and innovation, it is likely that many of the current challenges in geometric modeling will be overcome, leading to more sophisticated and versatile tools for digital design and visualization. In conclusion, geometric modeling is a critical component of modern digital design and visualization, enabling the creation and manipulation of complex geometric shapes and structures. However, the field faces several challenges related to the representation, integration, and ethical implications of geometric models. By addressing these challenges through technological innovation and ethical considerations, the industry can continue to push the boundaries of what ispossible in digital design and create more immersive and impactful experiences for users.。
The proper orthogonal decomposition in the analysis of turbulent flows
Annu. Rev. Fluid Mech. 1993.25: 539-75 Copyrinht 0 1993 by Annual Reviews Inc. All rights reserved
Annu. Rev. Fluid Mech. 1993.25:539-575. Downloaded from by University of Science & Technology of China on 02/15/12. For personal use only.
THE PROPER ORTHOGONAL DECOMPOSITION IN THE ANALYSIS OF TURBULENT FLOWS
Gal Berkooz, Philip Holmes, and John L. Lumley
Cornell University, Ithaca, New York 14853
space of a strange attractor in phase space. Since 1971 we have witnessed great advances in dynamical-systems theory and manyapplications of it to fluid mechanics, with, alas, mixed results in turbulence--despite the attractive notion of using deterministic chaos in resolving the apparent paradox of a deterministic model(Navier-Stokes) that exhibits apparently random solutions. This is due not solely to the technical difficulties involved: Proof of global existence and a finite-dimensional strange attractor for the 3-D equations in a general setting wouldbe a great mathematical achievement, but wouldprobably be of little help to specific problemsin, say, turbomachinery. For a start, rigorous estimates of attractor dimension (T6man1988) indicate that any dynamical system which captures all the relevant spatial scales will be of enormousdimension. Advancesin such areas will most probably nccessitate a dramatic reduction in complexity by the removal of inessential degrees of freedom. The first real evidence that this reduction in complexitymight be possible for fully developed turbulent flows came with the experimental discovery of coherent structures around the outbreak of the second world war, documented by J. T. C. Liu (1988). The existence of these structures was probably first articulated by Liepmann(1952), and was thoroughly exploited by Townsend(1956). Extensive experimental investigation did not take place until after 1970, however (see Lumley 1989). Coherent structures are organized spatial features which repeatedly appear (often in flows dominatedby local shear) and undergo a characteristic temporal life cycle. The proper orthogonal decomposition, which forms the subject of this review, offers a rational methodfor the extraction of such features. Before we begin our discussion of it, a few more general observations on turbulence studies are appropriate. Simulations, Analysis, and Understanding 1.2 Experiments, In analytical studies of turbulence, two grand currents are clear: statistical and deterministic. The former originates in the work of Reynolds (1894). Thelatter is harder to pin down;linear stability theory is felt to havelittle to do with turbulence. Nonlinear stability, however, and such things as amplitude equations, definitely are relevant, so perhaps L. D. Landau and J. T. Stuart should be credited with the beginnings of an analytical nonstatistical approach. Lorenz’ work was certainly seminal. Over the past twenty years a third stream has emerged and grown to a torrent which threatens to carry everything in its path: computational fluid dynamics. Both analytical approaches have drawbacks. Statistical methods, involving averaged quantities, immediately encounter closure problems (Monin & Yaglom 1987), the resolution of which, even in sophisticated renormalization group theories (cf McComb 1990) usually requires use
风力发电常用英语词汇
风电项目常用英语词汇tubular tower 塔筒式塔架lattice tower 桁架式塔架nacelle 机舱gearbox 齿轮箱rotor shaft 转轴generator 发电机yaw base 偏航基座、偏航盘yaw gear 偏航齿轮asynchronous generator 异步发电机turbine 涡轮hub 轮毂grid 电网blade 叶片diameter 直径area swept 扫掠面积speed of revolution 旋转速度operational interval 转速变化范围power regulation 功率调节air brake 空气制动cut-in speed 切入风速nominal wind speed 额定风速cut-out speed 切出风速stop wind speed 停止风速hub controller 轮毂控制器pitch cylinder 桨距调节气缸blade hub 叶片轮毂blade bearing 叶片轴承main shaft 主轴oil cooler 油冷却器parking brake 制动装置service crane 维护吊车transformer 变压器yaw 偏航revolution 旋转anemometer 测风仪vane 风向标planet/parallel axles 行星/平行轴microprocessor 微处理器pitch regulation 桨距调节synchronous 同步的asynchronous 异步的foundation 基础wind turbine generating 风力发电机组power performance 功率特性off-grid 离网grid connected 并网acoustic noise 噪声diameter 直径epoxy. 环氧的beam. 梁pitch angle. 桨距角perpendicular 正交的humidity 湿度operational interval 转速变化范围corrosion 腐蚀cable 电缆grid dropout 掉网earthing 接地terrain 地形tower shadow effect 塔影效应wind turbine wake 风轮机尾波vortexattack angle 攻角tip speed ratio 叶尖速比lift force 升力drag force (迎面)阻力thrust coefficient 推力系数stream tube theory 流管理论Rotor Disc Theory 转子盘理论blade element theory 叶片元理论(也有人称之为“叶片素理论”,或“叶素理论”) momentum theory 动量理论angular momentum theory 角动量理论abrasive研磨料abrasive disc磨料盘accumulator 储压罐acetone丙酮activation活动,赋活,激活,活化,激励,启用acute angle锐角adhesive 带粘性的, 胶粘, 粘合剂adjustable spanner 活动扳手admixture 混合, 混合物adversely逆地, 反对地adze扁斧aerial航空的, 生活在空气中的, 空气的, 高耸的,天线aerosol 浮质,气溶胶, 气雾剂, 烟雾剂aggregate 合计, 总计, 集合体aggressively 侵略地, 攻势地air inlet通风口air-cushion vehicle气垫船air gap气隙align对准,校直,定位;调,排列, 使结盟, 使成一行alkali-sensitive碱性感测allen key 六方allen wrench 六方扳手alloy 合金alteration变更, 改造alternator 交替符;交流发电机ammeter安培计,电流表anaerobic没有空气而能生活的, 厌氧性的anchor 锚, 抛锚, 锚定aneroid barometer无液气压表, 无液晴雨angle grinder角锉angle plate角盘annealing 退火annulus环面anode阳极, 正极anodization阳极氧化antenna 天线;触角antifriction减低或防止磨擦之物, 润滑剂anvil铁砧approximate近似, 接近, 约计adjarbor 树阴;凉亭;藤架〈机〉柄轴;心轴arc 弧, 弓形, 拱,电弧arc welding 电弧焊archimedean screw阿基米德螺线arrmature 电枢articulated接合,链接,有关节的assemble集合, 聚集, 装配assorted files分类排列;相匹配(文件)assume假定, 设想, 采取, 呈现attenuation变薄, 稀薄化, 变细, 衰减auger打孔钻,螺丝钻averagen. 平均, 平均水平, 平均数, 海损, 一般的, 通常的awln锥子axe斧, (经费的)大削减axle. 轮轴, 车轴Bback saw背锯backlash反冲,无效行程;间隙,偏移;退ball bearing滚珠轴ball saddle滚珠支撑ball-peen hammerband区;带,波段带子, 镶边, 波段, 队, 乐队. 联合, 结合bandsaw用带锯锯bar magnet磁条barometer气压计;晴雨表battery power drill电池钻beach海滨;湖滨;河滩bead 珠子, 水珠beam compass长臂圆规beam trammel骨架bearer 支架,托架,支座,载体bell crank曲柄belting制带的材料, 带类, 调带装置bessemer酸性转炉钢bessemer converter . 酸性转炉,贝塞麦转炉bevel gear斜角;斜齿轮bevel-edge shisel斜缘薄钢板biconcave lens两面凹镜biconvex lens两面凸镜bifurcated rivetbimetallic双金属的bin二进制;双态bit 位, 比特blade for iron saw剧刃blast 强风,过载blast furnace鼓风炉blast cleaning皮老虎bleed 放出(液体,气体等);漏出,漏入,泄漏,色料扩散bleeder valve 溢流阀block and tackle滑轮组blowlamp喷灯blowpipe吹风管blowtorch 吹管, 喷灯board 底板,板boiler锅炉;煮器;烧水器bolt螺栓,螺钉,支持,维持bone 骨剔除bonnet软帽,汽车发动机罩bore钻孔,钻bottom dead-centrebow-spring compassbox spanner管钳子box spanner insetbrac支柱, 带子, 振作精神bracket托架, 括弧, 支架brad曲头钉bradawl小锥Brakebrake lining闸, 刹车的衬里, 内层, 衬套brake shoe 闸轨branch of joint连接分支brass黄铜, 黄铜制品,brazing铜焊breast drillbreather 呼吸者, 喘息者, 剧烈的运动bricklayer's hammerbubble 磁泡,水泡,气泡bucket桶, 一桶的量, 铲斗Buffing wheelbulk大小, 体积, 大批, 大多数, 散装bulkhead隔壁, 防水壁bulldozer 推土机bunsen burner 本生灯burr芒刺;刺果植物;针球burstn. 突然破裂, 爆发, 脉冲bursting discbush 矮树丛, (机械)衬套bushing轴衬, 套管Ccabinet screw drivercable bundle 束,光纤束;捆,卷cable reel电缆盘cable shear电缆剪cable shoes电缆靴cable tie电缆带calibration标度, 刻度, 校准caliper测径器, 卡钳, 弯脚器cam凸轮camber 拱形camshaft凸轮轴cantilever伸臂,悬臂;悬臂梁cap帽,罩cap nut螺冒capaciron电容汞弧管capacitance电容;电容量capstan lathe绞盘车床carburettor 汽化器cardan shaft万向轴cartridge额盒式磁盘[带](机);夹头cast投;掷;抛casting. 铸件, 铸造castle nut城堡螺母catalyst 催化剂,触媒cathode 阴极cathode-ray tube阴极射线管catwalk桥上人行道, 狭小通道caulking 填...以防漏caution小心, 谨慎, 警告cement 水泥, 接合剂, 接合, 用水泥涂, 巩固, 粘牢center puncher中心冲centre bit中心位centrifugal离心centrifugal unit离心单元ceramics 陶瓷;陶瓷技术chain vice链式钳chain wheel 滑轮chain-grate stoker链条炉排加煤机change over 改变成,对调位chaser猎人, 驱逐舰cheese 干酪,垫砖cheese-head screw 有槽凸圆柱头螺钉chisel 凿子砍凿chloride氯化物,漂白粉choke窒息, 阻气门choke valve阻气阀chord弦, 和音, 情绪chrome 铬;铬矿石;氧化铬chuck. 轻拍, 抛掷, 驱逐, 丢弃, 用卡盘夹住circlip环形circular圆形,环;循环circular saw圆锯circulate 循环;流通circulating循环, 流通circumference周线;外围;周围clamp夹子, 夹具, 夹钳clamp ammeter钳形表claw hammer 拔钉锤clearancen清理,清除;出空,间空,间隔;距离cleat夹板clog填塞;塞满close grainedclout nail大帽钉club hammer锤子,榔头clutch离合器,联轴器coarse粗(糙,略),近似cobalt钴(符号为Co), 钴类颜料, 由钴制的深蓝色coil线圈,绕组coil spring弹圈collar 凸缘;圈,环,套环,轴;卡圈;安装环collar bolt凸缘螺栓combination结合, 联合, 合并, 化合, 化合物combination pliers台钳combustion chamber燃烧室compound 混合物, [化]化合物复合的, 混合, 配合compresso压缩物, 压缩机, 收缩肌comutator 换向器, 转接器concave len凹面镜concave-convex len凸凹镜concrete混凝土;具体concrete drill混凝土钻condenser冷凝器;凝结器,电容器conduit管道, 导管, 沟渠, 泉水, 喷泉cone数、物]锥形物, 圆锥体, (松树的)球果, 使成锥形cone and cup unionconical 圆锥的, 圆锥形的conjunction联合, 关联, 连接词connecting rod连接杆considerably 相当地consistency连结, 结合, 坚固性, 浓度, 密度, 一致性, 连贯性console 安慰, 藉慰,控制台container箱;罐;容器集装箱,货柜contaminate污染,弄污contrast使与...对比, 使与...对照, 和...形成对照, 对比, 对照, (对照中的) Controlconvection传送;运流;对流converter换流器;变换器;变流器convex lens凸透镜cooling冷却;冷却技术core sandcorrespond符合, 协调, 通信, 相当, 相应corrosion腐蚀,浸蚀cotter pincountersink bit装定位countersunk埋头孔, 暗钉眼countersunk rivetcountersunk-head screwcounting计算coupling bolt 联结, 接合, 耦合,耦合性,耦合技术coverage 覆盖;敷层;有效区域crack 裂纹,裂缝cramp 钳位(电路);压[夹板];卡子,夹(子);压[夹]紧crane起重机crank不稳定的,摇晃的,曲柄crankcase曲柄轴箱crankshaft曲轴;机轴criterion标准,判据,准则cross mark十字标记cross slotted screw十字长孔crosshead 小标题, 子题, [机]十字头, 丁字头cross-peen hammer 横头锤cross-section横断面;横切面;截面crosswise斜地, 成十字状地, 交叉地crowbar撬棍;铁棍;起货钩crown wheel 顶圈crucible坩锅, 严酷的考验cupola furnace园顶熔炉current ration电流定值customs 进口税, 海关cutter刀具, 切割机cutting disk切割盘cylinder block缸体cylinder head缸头cylinder-head gasket缸头垫片,垫圈;接合垫cylindrical圆柱形,圆柱体;柱面Ddampen使潮湿, 使沮丧damper风门;节气阀darwing board画图板deactivate释放;去激励;停用;退出工作;使无效debris碎片, 残骸decimal 十进的, 小数的,小数defective有缺陷的,欠缺的deflect (使)偏斜, (使)偏转deflection偏向;偏斜;转向deformation 变形,形变;畸变,失真degrease脱脂, 除油污degree celsius摄氏度deploy展开, 配置deposit 堆积物, 沉淀物, 存款, 押金, 保证金, 存放物depress使沮丧, 使消沉, 压下, 压低depression 沮丧, 消沉, 低气压, 低压depressurizes 使减压, 使降压depth gauge深度计detergent 清洁剂, 去垢剂deviation 偏差,偏移dial gauge量规dial micrometer千分尺dielectric 电介质, 绝缘体diestock螺丝攻differential gear差速齿轮differential protection差动保护diffuser 漫射体;(扬声器)纸盆;扩散器digger挖掘者挖掘机digital clock数字钟digitizing tablet数字面板dilute 冲淡, 变淡, 变弱, 稀释discharge 卸下, 放出, 清偿(债务), 履行(义务), 解雇, 开(炮), 放(枪), 射(箭). 卸货, 流注, 放电dismantle拆除,拆卸dismount 拆卸,卸下disposal 处理, 处置, 布置, 安排, 配置, 支配dissipation 分散, 浪费, 损耗,耗散,消耗distance ring间隔环distributor发行人,分电盘,配电器dividers圆规double phase两相dog clutchdolly洋娃娃,移动车,台车,,移动摄影车domed nut 圆顶螺母doubt不确定;疑惑dowel 木钉, 销子, 用暗销接合drain排水沟, 消耗, 排水drain tap排气阀draw bar绘图刀drawing pin图钉drawing point绘图点drift 漂移,偏差drill 训练, 钻孔, 条播, 钻头;锥子;钻孔机;钻床;钻drill gauge钻规driller 钻孔者, 钻孔机drilling machine 钻床drip pan油滴盘drop hammer落锤drum鼓, 鼓声drum brake鼓状刹车dryness干, 干燥duplex双(向,重),双工,二重durability 耐久性,耐用性duration宽度,持续时间dust 灰尘, 尘土, 尘埃dynamo 发电机dynamometer 测力计, 功率计Eearthmover 重型推土机eccentric古怪的;偏执的不同圆心的,离心的;不正圆的edge刀口, 利刃, 锋, 优势, 边缘, 优势, 尖锐elbow机械肘, 肘electric furnace电熔炉electric plier电气钳electric screw driver电钻electric welding电焊electricalelectrode 电极electrolysis 电解,电蚀electrolyte电解, 电解液electroplating 电镀, 电镀术eliminate消除,删去,排除;切断emery 金刚砂, 刚玉砂emery cloth砂布,金刚砂布emery wheel. 金刚砂旋转磨石, 砂轮endplate终板endwise末端朝前或向上的,向前的energizing使活跃, 给予精力, 加强, 给与...电压激励,赋能;接通epicyclic gear计数齿epoxy 环氧树脂epoxy-glued环氧胶equilateral triangle 等边三角形erection直立, 竖起, 建筑物exectric arc电弧exhaust pipe 排气管exhaust valve排气阀expanded metal膨胀金属expander扩展器,扩展电路,扩大器expansion bolt自攻螺丝explanatory quad填充铅块extension tube伸缩管extern外(面)的, 外来的external callipers外卡钳extrusion 挤压,挤压成形eye bolt吊耳eye screw螺丝眼Ffabrication 制造;生产;结构faceplate面板, 花盘facilitate使容易, 使便利, 推动, 帮助, 使容易, 促进fag bolt, 疲劳螺栓fake假货, 欺骗, 伪造, 赝造, 捏造, 假造, 仿造fan belt风扇皮带fan heate风扇加热器feeler gauge触规felling axe外轮轴fetch 接来, 取来, 带来, 售得, 引出, 吸引, 到达, 演绎出filament灯丝;细丝fire extinguisher灭火器firebrick 耐火砖fireman's axe消防斧firmer chisel . 凿子flange 边缘, 轮缘, 凸缘, 法兰flange coupling凸缘联轴器flanged nut凸缘螺母flanged union凸缘连接flank侧面, 军队侧翼, 侧腹, 胁flash welding 闪光焊flashlight 手电筒, 闪光灯flashpoint闪点flat 平坦的, 扁平的, 单调的, 倒下的, 浅的flat nut平螺母flat-head rivet平头铆钉flaw裂缝,缺陷,疵瑕flex弯曲(四肢), 伸缩, 折曲flexure 弯曲,挠曲float chamber浮子floating. 漂浮的, 浮动的, 移动的, 流动的, 不固定的flue烟洞, 烟道, 暖气管, 蓬松的东西flush刷新flux 磁通,通量;焊剂;流动, 熔化, 流出footpump脚泵forge炼炉;熔炉fork 派生(指令),分叉(指令),分支fork-lift truck叉架式运货车,铲车formation 构造,结构;形成,建立;形式forming印版foundry铸造, 翻砂, 铸工厂, 玻璃厂, 铸造厂foundation 基础, 根本, 建立, 创立, 地基,four-jaw chuck四爪卡盘four-stroke四冲程frame帧,画面;框架机架,架,机柜fret-saw线剧friction 摩擦, 摩擦力friction grip摩擦盘frictional摩擦的, 摩擦力的frost霜, 霜冻, 严寒, 结霜funnel 漏斗, 烟窗furnace炉子, 熔炉furnish 供应, 提供, 装备, 布置Ggale强风,大风galvanizing. 通电流于, 电镀gang saw 直锯gas burner. 煤气灶, 煤气火焰gas main. 煤气总管gas mask防毒面具gas pedal气体, 煤气, 毒气, 汽油, 瓦斯gas turbine 燃气涡轮gas well 天然气井gas works煤气厂gasket垫片,垫圈;接合垫gaskets垫片,垫圈;接合垫gasometer煤气厂, 气量计gate pole门极gate valve门阀gauge标准尺, 规格, 量规, 量表, 测量gavel 槌gear lever 变速杆gear train齿轮系gear wheel齿轮geiger counter盖格计数器gel-coated胶衣gimbals 平衡环,平衡架gimlet手钻;螺丝锥girder 梁, 钢桁的支架girder bridgegland腺,密封管glass cutter玻璃刀glaze釉料, 釉面, 光滑面, 上釉, 上光globe valve球形阀gloss注释;注解;评注, 光泽的表面, 光彩, 欺人的表面, 假象, gloss paint光滑涂料glossy 平滑的, 有光泽的glove手套glue胶, 胶水, 胶合, 粘贴, 粘合goggle 眼睛睁视, (复数)风镜, 护目镜gold leaf金叶goons细打包麻布gouge弧口凿,半圆凿governor 调节器;控制器grab 抢夺, 攫取, 夺取grader 分类机,分级机grain 颗粒,晶粒,粒度;纹理graph 图表, 曲线图grease油膏;润滑油grease gun注油枪;滑脂枪grease nipple油管grinding磨的, 磨擦的, 碾的grinding disk 磨擦盘grinding machine磨床grinding wheel 砂轮groove凹槽, 惯例, 最佳状态grout. 薄泥浆, 水泥浆grouting给…灌灰浆,给…涂薄胶泥grub screw自攻螺丝guide bars导向棍guide block导向块guide ring导向绳guiding shaft导向轴guillotine闸刀,处斩刑, 切(纸)gumming树胶分泌gyroscope 陀螺仪, 回旋装置, 回转仪, 纵舵调整器Hhacksaw可锯金属的弓形锯, 钢锯hairspring细弹簧, 游丝half shaft半轴half-round file半圆锉halfway中途的, 部分的, 不彻底的,半路地,在中途, 在半途handling 处理(技术,方法)hanging顶端对齐,悬挂hardener 固化剂,硬化剂harder硬的, 坚固的, (问题, 工作等)困难的, 艰苦的, 猛烈的, 确实的harness导线,装备;利用harrow耙hatch, 舱口, 舱口盖,开口,. 孵, 孵出,策划, 图谋hatchet. 短柄斧hazard 冒险(性);相关危险;事故,故障headscrew主轴螺杆headstock主轴箱helical gearing螺旋齿helix. 螺旋, 螺旋状物hemp 大麻, 纤维hereafter. 今后, 从此以后herring-bone gearhexagon screw diehexagon spanner六方hexagonal nut六角螺母hightensile 高强度high-tension cable高压电缆hissing发嘶嘶声, 蔑视hob滚刀, 铁架hoe 锄头,用锄耕地, 锄hoist升起;吊起;推起, 起重机, (台、架等)支持物, 固定器hollow空的,中空的hook bolt吊耳hook spanner 钩,弯脚扳手hook's jointhopper. 单足跳者horizontal地平线的, 水平的horseshoe magnet马蹄形磁铁hose 软管,胶皮管,蛇管hose clip管夹hot-dip热沾hottest. 热的,热烈的housing住房,房屋,护盖,框架hovercraft 水翼船hub rigidity轮毂刚度hubcap. 轮毂罩hull外壳, 船体humidity湿气, 潮湿, 湿度hydraulic水压的;液压的hydraulic block液压块hydraulic ram液压活塞hygrographs 自动湿度记录计hygrometer湿度计hysteresis. 滞后作用, [物]磁滞现象Ii-beamidler gear惰轮齿idler pulley惰轮,空转轮,导轮idling 空载,无载impeller 推进者, 叶轮impinge 撞击,冲击imprint 印记imprison监禁, 关押impulse推动, 刺激, 冲动, 推动力, 脉冲impurity杂质, 混杂物, 不洁, 不纯inductance 感应系数, 自感应,电感induction coil电感线圈inductive 诱导的, 感应的inflammable易燃的, 易怒的ingot条,块,锭initial 最初的, 词首的, 初始的initialize初始化initials缩写injector. 注射器injure 损害, 伤害inlet 进口, 入口inlet valve入口阀inner 内部的, 里面的, 内心的,内部inoperative不起作用的;无效的inspection 审查,检查instance 例图;事[实,范]例,样品,实例, 建议, 要求, 情况, 场合instantaneous瞬间的, 即刻的, 即时的,瞬时,立即insufficient不充足的,不适合的,不能胜任的insulation绝热;绝缘;隔离,绝缘体;绝缘材料intensive强烈的, 精深的, . 加强器interchange 互换,交换;交换机interlock连锁装置, 连锁internal callipers内卡钳internal-combustion engine内燃机inertia switch惯性开关interval 间隔,时间间隔,区间intervene干涉, 干预, 插入, 介入inverter反用换流器, 变极器, 反相器;"非"门irregularity 不规则, 无规律不规则性,不正则性irritation激怒;被激怒疼痛处isolating 孤立的,绝缘的isolation 隔绝, 孤立, 隔离, 绝缘, 离析isometric projection等边体isosceles triangle等边三角形Jjack 插孔,插口,插座;插头,接头;千斤顶jet 喷嘴;射流jib crane挺杆臂,转臂起重机jig 钻模;夹具;定位;模具jointing compound复合填料joist托梁,搁栅jubilee clipjumper 跨接线,跨接,跨[短]接片,跳接器,∏型短路线Kkeyhole sawkey-operate键盘操作keyway 键槽king dick spannerking pin大头钉kit成套工具, 用具包, 工具箱, 成套用具knob 按钮;调节器knuckle joint万向接头knurled nut凸螺母knurling多瘤的, 多节的Llabel 标签, 签条, 商标, 标志labyrinth迷路, 迷宫, 难解的事物ladder. 梯子, 阶梯ladle杓子, 长柄杓lager贮藏啤酒lagging绝缘层材料laminate 层压(制品),迭片,迭层板,绝缘板; 碾压lamp holder 灯座lapjoint搭接lap 盖板;搭接,重迭;研磨,抛光lapping compound研磨,抛光化合物large power drill大型钻latch 锁存器;门闩线路;凸轮;闩锁lathe 车床lathe tool车床工具layout 规划, 设计, 编排, 版面, 配线, 企划, 设计图案,布局图, 版面设计leaf spring叠簧leaflet 小叶, 传单leak漏洞, 漏出, 漏出物, 泄漏, 泄漏leakage 漏, 泄漏, 渗漏left-hand thread左旋螺纹lengthwise纵长的,纵向长的level水平, 水平面, 水准, 标准, 级别leverage杠杆作用liberal自由,丰富,充足lid. 盖子lifting提升light光, 日光, 发光体, 灯轻的, 发光的light metal spirit level光金属水平仪lighting conductor光导体limit gaugelining内衬,衬里link链环, 连结物, 火把, 链接, 连结, 联合lintel楣, 过梁lip. 嘴唇, 唇缘lithium saponify锂基脂litre 升local地方的, 当地的, 局部的, 乡土的,当地居民, 本地新闻, 慢车, 局部locate定位,位置location单元;位置,定位lock 加锁,锁(紧,定),封闭;自动跟踪locking nut自锁螺母locknut防松螺母,对开螺母locomotive 机车, 火车头log(运行)记录,(系统)日志logging saw伐木锯loom. 织布机, 织机, 隐现, 迫近lorry卡车, 铁路货车lost-head nail断头钉loudspeaker 扩音器, 喇叭lubricant润滑剂lubricate 润滑lug 接线柱;柄,把手;突起Mmachine tools 工作母机magnet 磁体, 磁铁magnetic 磁的, 有磁性的, 有吸引力的magnifier 放大器magnifying glass放大镜main主要部分, 体力, 力量, 大陆, 要点, 干线main spar主梁mallet木槌,球棍mandrel 半导体阴极金属心;心轴manhole人孔, 检修孔manner礼貌, 风格, 方式, 样式, 习惯manometer 流体压力计manometric. 压力计的, 用压力计测量的manual 手册,指南,人[手]工,手控,手动marine engine海用引擎masonry 石工术, 石匠职业masonry drill石钻masonry nail 水泥钉master征服,控制,精通master cylinder主液压缸mat 字模,垫块material 物质,材料;资料measureing scale测量刻度measuring 测量measuring tape卷尺mechanical机械的, 机械制的, 机械似的mechanical drawing机械图mechanism 机制;机械学,结构方式;机械装置;技巧;机械论medium媒体;介质;平均值;手段,方法;中(等);粗略,一般[M] membrane 薄膜;隔板;表层memory记忆, 记忆力, 回忆, 存储(器), 存储器,内存mention 提及, 说起mercury barometer 汞,水银气压计meshing接合;相合;啮合message 消息报文,电文;信息micrometer screw gauge螺旋测位器microprocessing unit 微处理器microscope显微镜microswitch 微动开关middle中间,中型;mill 碾磨, 磨细milling轧齿边milling machine 铣床mineral. 矿物, 矿石minimise 成极小,求最小值minor次要,局部,小minus 减(号);负missing 故障,损失,遗漏mitre block 斜接,斜面接合块mitre joint 斜接mitring machinemix 混合mixture混合, 混合物, 混合剂Monitoring监控mode方式, 模式, 样式, 时尚modem 调制解调器modification修改,改造,改变,变型,变体module 模数, 模块, 登月舱, 指令舱modulus模量,系数,模数moisture 湿气,湿度,潮湿molding塑造;铸型;造型塑造物;铸造物mole wrenchmomentary刹那间的;顷刻的;短暂的mortar 臼, 研钵, 灰泥mortise. 榫眼mortise chisel榫.Motor start马达启动moulding sand沙模multimeter 万用表,多用途计量器multi-meter万用表multiplication乘法, 增加, (动, 植的)繁殖, 增殖multiplier 增加者, 繁殖者,乘数, 增效器, 乘法器multiply 繁殖, 乘, 增加Nnacelle发动机舱,机舱nail指甲, 钉, 钉子needle file 针锉needle valve 针形阀, 针状活门negative 否定, 负数,阴性的;负极的network. 网络, 网状物, 广播网neutralization中立化, 中立状态, [化]中和noise噪声,噪音non-shrinking非收缩性normal正常,普通,标准nose cone. 火箭或飞弹之鼻锥体, 头锥体nozzle管口, 喷嘴nut 坚果, 螺母, 螺帽, 难解的问题nut tap自攻螺母nylon 尼龙Oobstruct 阻隔, 阻塞, 遮断(道路、通道等), 阻碍物, 障碍物obtuse angle 钝角obtuse-angled triangle钝角三角形occur 发生, 出现off-shore oil rig海上平台oil ringoil switch油开关oil well 油井oilstone油石oldham coupling欧氏联轴节on-site在场open ring wrench开口扳手open-hearth furnace平炉optimum最佳,最优orifice 孔, 口oscillation摆动, 振动outlet 输出;出口;引出线,电源插座output 产量, 输出, 输出量out yawing外偏航oval nail椭圆钉over speed过速overaging超龄的;老朽的;旧式的over current protection过电流保护overhead-valve engine 顶阀发动机,预置气门发动机overheat加热过度使发展过快,使过热overlap重叠,覆盖overload 超载,过载,过负荷overpressure过压overproduction生产过剩overspeed 超速over voltage过电压oxidation氧化[作用];氧化层oxyacetylene welding氧乙炔焊Ppackaging. 包装packaging 封装,组装packing 压[紧]缩;组装;包装,打包pad 焊点焊盘;填充,插入,拼凑篇幅;衰减器paint 上色,着色;涂料,油漆;paint brush漆刷paint roller. 漆滚筒, 辊子pallet扁平工具, 棘爪, 货盘panel pinpanel sawparallel 并行,并联,平行parallel connectionparallelogram平行四边形parallels平行线parameter 参数[量],变量parity奇偶particle粒子, 点, 极小量, 微粒, 质点pawl掣子;棘爪;制转杆peak 峰值,波峰pedal踏板;踏蹬pedestal 基架, 底座, 基础peg 钉, 栓, 桩, 销子pendulum 摆,振动体;钟摆perfect, 正确的, 熟练的, 精通的,完美的perform. 履行, 执行, 表演, 演出performance 性能,特性;实绩;【动】完成,实现,执行permanent永久的, 持久的permeate 弥漫, 渗透, 透过, 充满permissible 可允许的, 可容许程度的persistent持久性,不变personnel 人员, 职员perspective drawing透视图pestle and mortar 研杵petrol engine汽油机petroleum石油phase 阶段, 状态, 相, 相位phenomena 现象pick 抓[拾]取,挑,检,挑选,挑拣pile 堆积,堆,桩pile-driver打桩机pillar crane支柱起重机pilot 驾驶(飞机等), 领航, 引水pin 插针引脚,插头;引线;管脚pin puncherpin spannerpincers铁钳;钳子pinion 小齿轮pipe wrenchpiston活塞, 瓣piston ring. 活塞环pitch桨矩pitch angle桨矩角pivot枢;枢轴;支点plane平面, 飞机, 水平, 程度, 刨planet gear 行星齿轮planetary gear 行星planetary wheel行星架planimeter. 测面器, 求积计planing machine 刨床plano-concave lens 平凹镜plano-convex lens平凸镜plaster 石膏, 灰泥, 膏药, 橡皮膏plastic塑胶, 可塑体, 塑料制品, 整形plastic hammer塑胶榔头plate clutch 盘式离合器,联轴器platform)月台, 讲台, 讲坛平台platinum 白金, 铂plenty. 丰富, 大量pliers. 钳子, 老虎钳plug 插头;插塞, 插栓plumb line铅垂线pneumatic drill气[风]动钻polarization 偏振,极化polish 抛光,磨光polishing machine抛光机polyester 聚酯polymer聚合体;聚合物polymidwasherpoppet valve 提升阀pore 气孔,微孔port 端口,通信口,进出口position 位置,定位,部位;状态positive正(确;片,数,极),阳性,无条件,肯定potential-freepotentiometerrpour灌注, 倾泻, 涌入, 流power factor功率因数power hammerprecaution 预防, 警惕, 防范, 预防措施;预防方法precise 精确的, 准确的, 精确predetermine. 预定, 预先确定preserve 保护, 保持, 保存, 保藏press 压, 按, 印刷, 压力, 拥挤, 紧握, 新闻press plier压钳pressure 压, 压力, 电压, 压迫, 强制, 紧迫pressure gauge 压力计pressure switch压力开关pressurize增压, 密封, 使...加压prestressed concrete 钢筋混凝土pretension 借口, 要求, 主张, 自负, 骄傲prevailing流行,占优势prevent防止;预防priority 优先级,优先(权)prism 棱镜,棱柱(体);棱形procedure. 程序, 手续produce 提出, 出示, 生产, 制造, 结(果实),引起, 招致, 创作profile 剖面, 侧面, 外形, 轮廓prolong延长;伸展propeller螺旋桨;推进器propeller shaft桨轴property 财产, 所有物, 所有权, 性质,特性, (小)道具proportional dividers比列规protection保护protection glasses保护镜protocol 草案, 协议protractor量角器;分度规pulley 滑车, 滑轮pump泵,抽水机pump ability泵性能punch冲孔, 打孔punching machine冲孔, 打孔机punner夯,夯具purging清除,清理pyramid角锥、棱椎, 金字塔Qquality质量, 品质, 性质quantity 量,数量;大量quenching 淬火, 熄query 询问,查询;询问程序Rrace 竞争,追赶raceway水沟, (赛车用的)跑道rack and pinion机架,(框)架和小齿轮radiation 发散, 发光, 发热, 辐射, 放射,放射线, 放射物radius 半径, 范围, 辐射光线, 有效航程,范围, 界限rag. 抹布raised-head screwram 随机存储器rammer撞锤range 范围,(值,区)域;量[射]程rash鲁莽的;轻率的rasp. 粗锉, 锉磨ratch screw dieratchet 棘轮;棘爪ratchet handleratchet screwdriverratio of transformation 变换比rawhide hammerread out读出readjust重新调整, 再调整ready就绪;【修】准备好,已备ready-misedreamer 钻孔器, 刀, 铰床rear bearing后轴承rear lights 尾灯rebuild重构,重建receiver 接受者, 接收器, 收信机reciprocal互逆[反],可逆;倒数reciprocating engine往复式发动机recognition 承认, 重视, 公认, 赏识识别recognize认可, 承认, 公认, 赏识record 记录;录制recover 恢复,再现rectifier纠正者, 整顿者, 校正者, 整流器rectify 矫正, 调整, 整流,检波;(图形的)纠正;提纯,蒸馏,精炼reducer 缩减者, 减压器, 还原剂reduction gear 变形齿refill v. 再装满, 补充, 再充填n.新补充物, 替换物refining 精炼,提纯,细化refractory brickregion 区域,区,范围register记录, 登记簿, 登记, 注册, 寄存器reinforced concrete 钢筋混凝土reinitialisationreinstall 重新安装relation 关系;关系式relay 继电器,中继,(无线电)接力,转播relay circuit board继电器板release 释放;核发,发布;解除;(程序,软件)版(本)relevant相关,关联reliability 可靠性relief valve 安全阀remain. 保持, 逗留, 剩余, 残存remote control 遥控, 遥控装置, 遥控操作rendering 绘制;翻译;初涂;透视图repair 修理,修复replugreport 报表;报告representative典型;表示;代表rerticalreserve. 储备, 保存, 保留, 预定, 预约reservoir 容器;蓄水池,储藏处;贮存器reset 复位,(又称)重置;置"0",清除resettle重新定居residue 剩余;残数,留数;余式,余项, 残余物;残基;残渣resin树脂resist抗蚀剂;保护层restart重新启动result结果, 成效, 计算结果retain 保持, 保留retaining screwretraction收回reverberatory furnace反射炉revolution革命, 旋转revolution counter旋转计数器rheostat变阻器ribbed有罗纹的;有棱条纹的riffler 曲锉(用来雕模)rigging 索具, 绳索, 传动装置, 装备right angle直角right-angled screwdriver平口起子rigid硬,刚性;固定;严格ring环, 环形物, 环状, 铃声, 声调, 打电话ring circuit回路ring mainring renchring spanner环形扳子ripsaw粗齿锯rise上升, 增加, 上涨rivet铆钉,固定road rollerrocker arm摇臂rod杆, 棒rolled-steel joistroller滚轮(轴,筒),墨辊,印辊roller bearing 滚柱轴承rolling mill 轧钢厂rope 绳, 索, 绳索rotary旋转;循环rotary converterrotary engine旋转机rotating union旋转体rotor[route]①转子,电枢②转动体,旋转部(分),回(旋)转器③转[动]片,叶轮,round-head rivet铆钉round-head screw园头螺丝[钉];螺旋体routine 例行公事, 常规, 日常事务, 程序例程,例行程序;rubber 橡皮;橡胶rule 规则,法则;尺runway 飞机跑道, 斜坡跑道, 河道rust锈;衰退,迟钝rustling沙沙声rusty生锈的, 迟钝的, 腐蚀了的, 铁锈色的生了锈的saddle. 鞍, 鞍状物safety 安全, 保险, 安全设备, 保险装置sample. 标本, 样品, 例子sand blasting沙暴sander 沙, 沙子, [pl. ] 沙滩, 沙地sandingsandpaper砂纸sandwich夹层,层状[夹心]结构satisfactory符合要求的;合适的saturate. 使饱和, 浸透, 使充满saw 锯sawing machinescaffolding 脚手架scale 刻度,标度;比例尺,标尺;尺度,规模;【动】定标;换算;【WIN,NT】数值,缩放(比例scalene trangle不等边的(三角形)scarringscraper刮器,擦具;鞋刮子;刮刀,刮漆刀scratch 划痕,刻痕;【动】擦除;【修】临时screen 屏(幕,面),荧光屏;筛选;屏蔽;网screw螺丝钉, 螺旋, 螺杆, 螺孔, 螺旋桨,screw callipersscrew clampscrew driverscrew extractor拉马screw jack 螺旋千斤顶screw pitch gaugescrew tap 螺丝攻screw thread. 螺纹screwdriver 螺丝刀,起子scriber划线器, 描绘标记的用具scribing block划线笔sealing密封seam welding接合焊seat座, 座位, 所在地, 场所, 席位secger plierrsecure安全,可靠,保密securedsecurity 安全(性),保密(性),安全措施segregation分离,分凝法self-starter自动点火装置;自动启动器self-tapping screw自攻螺丝sensitivity 敏感, 灵敏(度), 灵敏性sensor 传感器,检测器;读出器,感测器;敏感元件sentsequence 顺序,时序;数列;定序,排序,序列series connectionservice 服务,服务程序;业务;维修,维护set screwset squaresetting设置[定]值;设置settle稳定,固定;调整,调度shackle 手铐, 脚镣, 桎梏, 束缚物shaft 轴, 杆状物shank 胫, 腿骨shaping machineshaping toolsharpness锐利shears 剪, 修剪, 剪切sheartubeshicknessshield屏蔽,罩;防护,庇护shim 垫片;填隙片shimming 摇动,震颤,晃动shock 冲击;震动shock absorber 减震器,震动吸收器short circuit. 短路shovel 铲, 铁铲shrink缩小,收缩shutdown 停止系统运行,停工[机],关机shutter 遮挡板,光闸,光阀;快门shuttle 梭;航天飞机,宇宙飞船,空间渡船;往返空间sidelight侧面射进来的光线, 侧灯,舷灯, 拾零, 杂闻, 间接说明side-valve enginesight glasssimultaneous同时的, 同时发生的sine wave正弦波single phase单相singnalsink 散热器,接收器,转接器;吸收(电流等);沟(半导体耗尽层的);汇点,收点;宿,汇集sintering烧结siphon 虹吸管site-mixedskew wind 歪斜,偏斜,扭斜[曲,动];相位偏移;变形,时滞(同一脉冲通过不同电路的时差);不齐,不齐量,偏离;【修】歪,斜,扭skin-halveskip 跳跃(进位);跳行[越,过];空指令slag. 矿渣, 炉渣, 火山岩渣sledge hammer大锤, 有压服力的东西sleeve 套筒,套管slide 滑动触头;【动】使滑动slide caliperrslide rule计算尺slide valve滑阀sliding滑动,活动;可调整slight 轻微的, 微小的slipping clutchslope 斜坡, 斜面, 倾斜slot 插槽,存储槽,槽口;开缝,存取窗口;裂缝[口],切口,沟;时间段片slow-running screwsmelting熔炼smooth平稳,平滑snips 剪断socket 插座[槽,孔,口];管座;套接字(报文包的);socket spanner套筒扳手soft cut in软切入software软件,软设备soldering 焊料,焊锡;焊接,结合soldering iron 烙铁solenoid螺线管solenoid valve电磁阀solitary单独,唯一solvent溶媒, 溶剂, 解决方法spacer. 取间隔的装置, 逆电流器,衬垫,衬套,衬片spade 铲, 铁锹spanner扳手;活络扳手;扳子sparking plug 火花塞spigot 插口;插头,塞子;(水)龙头spindle 主轴,心轴spinner 微调控制项spiral gear螺旋齿spirit level 水平仪spirit varnishsplash. 溅, 飞溅, 斑点spline方栓, 齿条, 止转楔, 花键splined shaftsplint夹板,托板split bearing分离轴承split pinspokeshave辐刀spot 斑点,点;地点;点焊spot welding点焊sprayer 喷出水沫者, 喷雾, 喷雾器sprig图钉spring 弹簧;【动】弹出spring balance弹簧秤spring washer弹垫spring-bow compasssprocket 链轮齿spur gear正齿轮spur wheel gear正齿轮square 平方;方块;【修】矩形[SQ],正方形的, 四方的,直角的, 正直的, 公平的, 结清的, 平方的, 彻底的square nut 四方螺母, 螺帽square thread矩形螺纹square-head bolt方头螺栓stabilizer稳定器;平衡器;安定剂stable稳定,稳态stage 级;阶段,程度;【动】登台,升级stain 着色,染色;着色剂;污点stainless 纯洁的, 无瑕疵的, 不锈的stall失速,使失速standard标准(型),规范,准则;【印】常身;正常体standing 直立的, 停滞的, 固定的, 常备的, 标准的, 常设的standstill静止状态;停顿star drillstart up 发动, 开动starter motor马达启动startup 启动steam engine 蒸汽机steam roller蒸汽压路机, 高压手段steam turbine 蒸汽轮机steel sheet scissorsteel wool钢丝线steering box舵盘steering gear方向齿steering wheel舵轮,方向盘step-down(up) transformer降压器stiffen 变粘, 变硬, 变猛烈stillson wrenchstipulate 规定, 保证stock 库存, 股票, 股份, 托盘, 祖先, 血统, 原料stoker 司炉, 烧炉工人, 加煤机stopcock管闩, 活塞, 活栓, 旋塞阀stoppage 中断, 填塞store 存储,存储器straight edge直刃strange陌生的, 生疏的, 前所未知的, 奇怪的, 奇异的, 不惯的strap 短接,跨接strap wrench绑扎带streak 条纹,拖尾strike 打, 打击, 罢工, 抓, 敲, 搏动, 打动, 穿透。
中国石油大学高级英语译文及答案
Unit 1 Sources of EnergyText APetroleumSentence structure analysis1. Instead of originating in accumulating woody matter, petroleum may be the product of the accumulating fattymatter of ocean organisms such as plankton, the myriads of single-celled creatures that float in the surface layer of the ocean. (Para.2) 石油,并不是来自于逐渐积聚的木质物质,而可能是来自于逐渐积聚的海洋生物的脂肪物质。
比如浮游生物:大量浮游在海水表层的单细胞生物。
这是一个简单句,主语petroleum,谓语动词may be,表语product,构成句子主干。
instead of 介词短语作状语,such as plankton是product一词的同位语,the myriads of single-celled creatures that float in the surface layer of the ocean是名词性短语,做plankton的同位语。
2. It is only necessary that the organisms settle down into the ooze underlying shallow arms of the ocean underconditions of oxygen shortage. (Para. 3) 生物有机体只需在缺氧的条件下沉积到海湾浅水处的淤泥里。
该句的框架为:it is +adj.+that从句,it做形式主语,真正的主语是that从句的内容。
现在分词短语underlying…做后置定语修饰ooze。
拓扑物态 总理报告英语
拓扑物态总理报告英语## Topological Quantum Matter: A Prime Ministerial Report.Topological quantum matter is a new state of matterthat has emerged as a major focus of research in condensed matter physics. These materials have unusual electronic properties that are protected by topology, a branch of mathematics that deals with the properties of shapes and spaces.One of the most striking features of topological quantum matter is its ability to conduct electricity without any loss of energy. This is in contrast to ordinary metals, which lose energy due to the scattering of electrons by impurities and other defects. The ability of topological materials to conduct electricity without loss of energy is due to the topological protection of their electronic states.Topological quantum matter has been found to occur in a variety of materials, including semiconductors, insulators, and superconductors. Some of the most well-known examples of topological materials include topological insulators, topological superconductors, and Weyl semimetals.Topological insulators are materials that areinsulating in the bulk but conducting on the surface. This is due to the fact that the surface of a topological insulator has a different topology than the bulk. The surface of a topological insulator is home to a type of electron called a Dirac fermion, which is a massless particle that behaves like a relativistic electron.Topological superconductors are materials that are superconducting in the bulk but insulating on the surface. This is due to the fact that the surface of a topological superconductor has a different topology than the bulk. The surface of a topological superconductor is home to a type of electron called a Majorana fermion, which is a particle that is its own antiparticle.Weyl semimetals are materials that are semimetals, meaning that they have a non-zero density of electrons and holes. Weyl semimetals are characterized by the presence of Weyl fermions, which are massless particles that behavelike relativistic electrons.Topological quantum matter has a wide range ofpotential applications, including in the development of new electronic devices, such as topological insulators for spintronics and topological superconductors for quantum computing. Topological quantum matter also has thepotential to lead to new discoveries in physics, such as the discovery of new particles and the development of new theories of quantum matter.Recommendations.In light of the great potential of topological quantum matter, I recommend that the government take the following steps to support research in this area:Increase funding for research in topological quantummatter.Establish a national center for topological quantum matter research.Create a fellowship program to support graduate students and postdoctoral researchers working intopological quantum matter.Develop educational programs to train the next generation of scientists in topological quantum matter.By taking these steps, the government can help to ensure that the United States remains a leader in the field of topological quantum matter and that this exciting new area of research continues to yield new discoveries and applications.Conclusion.Topological quantum matter is a new and exciting state of matter with the potential to revolutionize ourunderstanding of physics and lead to the development of new technologies. The government should take steps to support research in this area in order to ensure that the United States remains a leader in this field.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a r X i v :p h y s i c s /0701152v 1 [p h y s i c s .f l u -d y n ] 12 J a n 2007Journal of TurbulenceVol.00,No.00,January 2006,1–19Fully developed turbulent dynamo at low magnetic Prandtlnumbers.Rodion Stepanov †Institute of Continuous Media Mechanics,Korolyov 1,614013Perm,RussiaFranck Plunian ‡Laboratoires des Ecoulements G´e ophysiques et Industriels,B.P.53,38041Grenoble Cedex 9,France(February 2,2008)We investigate the dynamo problem in the limit of small magnetic Prandtl number (Pm)using a shell model of magnetohydrodynamic turbulence.The model is designed to satisfy conservation laws of total energy,cross helicity and magnetic helicity in the limit of inviscid fluid and null magnetic diffusivity.The forcing is chosen to have a constant injection rate of energy and no injection of kinetic helicity nor cross helicity.We find that the value of the critical magnetic Reynolds number (Rm)saturates in the limit of small Pm.Above the dynamo threshold we study the saturated regime versus Rm and Pm.In the case of equipartition,we find Kolmogorov spectra for both kinetic and magnetic energy except for wave numbers just below the resistive scale.Finally the ratio of both dissipation scales (viscous to resistive)evolves as Pm −3/4for Pm <1.1IntroductionMost of astrophysical bodies possess or have had in their history their own magnetic fields.In most cases their generation rely on inductive processes produced by the turbulent motion of the electroconducting fluid within the body [1].An important parameter of the problem is the magnetic Prandtl number defined by Pm =ν/ηwhere νis the viscosity and ηthe magnetic diffusivity of the fluid.In the “magnetic”universe Pm varies from values as large as 1014for the interstellar medium [2]to values as small as 10−6for the iron core of planets or stellar plasmas.This large spectrum of possible Pm values implies strong differences between possible generation mechanisms.In some sense Pm is a measure of the kinetic energy spectrum availablefor2Rodion Stepanov and Franck Pluniangenerating magnetic energy.When Pm≥1the resistive scale is smaller thanthe viscous scale implying that all velocity scales are available for generatingsome magneticfield.In the other hand for Pm<1,only the velocity scaleslarger than the resistive scale are available for the magneticfield generation.Inthat case,the velocity scales smaller than the resistive scale are enslaved to thelarger scales and in essence they stay passive in the generation process.Besidesthis is why the large eddy simulation technique may be recommended in thatcase[3].Therefore,atfirst sight one can expect that dynamo action is all the more difficult to obtain since Pm is smaller in reason of a smaller velocityspectrum available for the magnetic generation.This is indeed what comes outfrom recent numerical simulations[4,5,6,7,8,9](see also[10]and referencestherein for an alternative approach).Though,we have evidence of magneticfield in planets and stars,and dynamo action has also been reproduced inexperiments working with liquid sodium for which Pm is small(∼10−6)[11, 12,13,14].These experiments and further devices in preparation[15,16,17]aredesigned in such a way that the dynamo mechanism is produced by the largescale of theflow due to an appropriate large scale forcing.The turbulencenaturally developing at smaller scales may play a role though this is stillunclear[18,19,3,20,21].In these experiments,the choice of the forcing isbased on the hypothesis that it is the stationary part of the large scaleflowwhich should be important for the generation mechanism.A number offlowgeometries studied in the past turned out to be good candidates for such experiments[22,23,24].In the present paper we are interested in the possibility for a Kolmogorovtype turbulentflow to generate dynamo action at low Pm,without need fora large scale motion controlling the generation mechanism.We expect theeddies having the highest shearing rate to be the more active for generating themagneticfield,at least during the kinematic stage of magneticfield growth.Asin Kolmogorov turbulence u l/l≈l−2/3,these eddies correspond to the smallest available scale which is the viscous scale for Pm≥1[25]and the resistive scale for Pm<1[9].Eventually the magneticfield will then spread out to larger scales due to the nonlinear interactions.This problem is hard to solve by direct numerical simulation for it needs high resolution in order to describe magnetic phenomena adequately[26].Some results have been obtained using the EDQNM closure applied to the MHD equations[27]near the critical Rm and for arbitrary low values of Pm.Here we want to investigate arbitrary large values of Rm and small values of Pm.For that we use a shell model of MHD turbulence introduced by Frick and Sokoloff[28].This model is the successor of several other shell models for MHD turbulence[29,30,31,32,33,34,35]but it is the only one to conserve all integrals of motions including magnetic helicity (or kinetic helicity for the non magnetic case).It is based on the so-called GOY hydrodynamic shell model[36,37,38,39].In[28],Frick and SokoloffhaveDynamo action at low Pm3 derived a model which represents either2D or3D MHD turbulence,depending on the choice of two parameters.As in real MHD turbulence the2D model leads to the impossibility of dynamo action[40].This shows that in spite that such a shell model is a drastic simplification of the real MHD turbulence, ignoring for example the geometrical structures of the motion and magnetic field,it contains enough features to make the difference between the2D and3D problems(see also[41]).It also reproduces quite well the structure functions at different orders of real MHD turbulence.Here we consider only the3D model herein after referred to as FS98.This model has also been used by Lozhkin et al.[42]to show that small scale dynamo is possible at low Pm,contrary to the hypothesis put forward by Batchelor[43].Giulani and Carbone[41]have shown that long runs with the FS98model lead inevitably towards a“dynamical alignement”stopping the nonlinear transfer towards the smaller scales.Giulani and Carbone[41]suggested that this problem might be overcome with an other choice of the external driving force.This is what we have done here,adopting a forcing in such a way that it acts on several scales and depends on time with a random phase at each forc-ing scale(see section2.2).Finally,we took care to have long runs well beyond any transient state,in order to have good statistics and reliable results.2Shell model for MHD turbulence2.1Model equationsThe shell model is built up by truncation of the Navier-Stokes and induction equations.We define logarithmic shells,each shell being characterized by one real wave number k n=k0λn and dynamical complex quantities U n and B n representative of the velocity and magneticfluctuations for wave vectors of norm ranging between k n and k n+1.The parameterλis taken equal to the √gold number(1+4Rodion Stepanov and Franck Plunian+c3X∗n−2Y∗n−1.(3) represents the nonlinear transfer rates with the four neighbouring shells n−2, n−1,n+1and n+2.In addition we have to take U−2=U−1=U N+1= U N+2=0and B−2=B−1=B N+1=B N+2=0.The parameter F n is the forcing at shell n.The time unit is defined by the turnover time of the largest scaleτ=(|U0|k0)−1.To determine the complex coefficients a j and b j, j=1,2,3we apply the property that the total energy E tot,cross-helicity H C and magnetic helicity H B must be conserved in the limit of non-viscous and non-resistive limitν=η=0.In our shell model,these quadratic quantities write in the following formE tot=12Nn=0(U n B∗n+B n U∗n),(5)H B=12Nn=0(−1)n|U n|2k n.(7)2.2Forcing and initial conditionsThe forcing is chosen in order to control the injection rate of kinetic energy, cross and kinetic helicities.For that we spread the forcing on three neighbour-ing shells n f,n f+1and n f+2with F nf+j =f j e iφj,j=0,1,2where the f jare positive real quantities and where theφj∈[0,2π]are random phases.In that case the forcing isδ-correlated.Alternatively we also used a forcing for which the phasesφj are constant during a certain timeτc,which can be inter-preted as afinite correlation time.In fact this does not make much difference either on the autocorrelation functions of U n nor on the subsequent results. Therefore it is sufficient to use random phases.As we are interested to injectDynamo action at low Pm5 neither kinetic helicity nor cross-helicity,the forcing functions must satisfy112|U n|2and E B(n)=6Rodion Stepanov and Franck PlunianFollowing[46]we define the spectral energyfluxes from the inside of the U(or B)-sphere(shells with k<k n)to the outside of the U(or B)-sphere(shellswith k≥k n).We note for exampleΠB<U>(n)the energyflux from the inside ofthe B-sphere to the outside of the U-sphere.Then we haveΠU< U>(n)=n−1j=0ℑ{k j U∗j Q j(U,U,a)}(14)ΠB< U>(n)=n−1j=0ℑ{−k j U∗j Q j(B,B,a)}(15)ΠU< B>(n)=n−1j=0ℑ{−k j B∗j Q j(B,U,b)}(16)ΠB< B>(n)=n−1j=0ℑ{k j B∗j Q j(U,B,b)}.(17)In FS98the time average ofΠU<U>(n)is denotedΠn.We also define the energyfluxes from the inside of the U-and-B-spheres to the outside of the U-sphere or B-sphere byΠU(n)=ΠU<U>(n)+ΠB<U>(n)(18)ΠB(n)=ΠU<B>(n)+ΠB<B>(n)(19)and the total energyflux byΠtot(n)=ΠU(n)+ΠB(n).(20) We define the viscous and resistive dissipation rates D U(n)and D B(n)in shell n,byD U(n)=νk2n|U n|2(21)D B(n)=ηk2n|B n|2(22) and the total dissipation rate byD tot=Nn=0(D U(n)+D B(n)).(23)Dynamo action at low Pm7 With these definitions we obtain the following shell-by-shell energy budget equations:d tnj=0E U(j)+ΠU(n)=−nj=0D U(j)+ǫ(24)d tnj=0E B(j)+ΠB(n)=−nj=0D B(j).(25)For a statistical stationary solution(d t E U(j) =d t E B(j) =0)we have thenΠtot(n) =−nj=0D U(j) −nj=0D B(j) +ǫ.(26)where here and after denotes time averaged quantities.We define the kinetic and magnetic Reynolds numbers asRe= E tot 2/(ν D tot )(27)Rm= E tot 2/(η D tot ).(28)Finally,following[47],we define the viscous(resp.resistive)scale k−1ν(resp. k−1η)as the one at which the viscous(resp.Ohmic)decay timeτν=(νk2n)−1 (resp.τη=(ηk2n)−1)becomes comparable to the typical turn-over timeτU= (k n |U n|2 1/2)−1.3HydrodynamicsChoosing the appropriate forcing corresponding to B n=0we present in Fig.1 some results concerning the pure hydrodynamic case forν=10−8and n f=8. In this case the forcing isδ-correlated.Though the autocorrelation function, defined bycor(n,τ)= U∗n(t)U n(t+τ)+U n(t)U∗n(t+τ)dtU∗n(t)U n(t)dt U n(t+τ)U∗n(t+τ)dt(29)and plotted in Fig.1a,is far from being the one of aδ-correlated velocity contrary to the Kasantzev model[9].We also made comparisons with afinite8Rodion Stepanov and Franck PlunianΤc o r n ,Τlog 10k2468log 10k54 3 2 101 21234567log 10k00.20.40.60.8l o g 10 U U ,l o g 10 D u(c)(d)Figure 1.Hydrodynamic case for ν=10−8and a forcing scale (arrow)corresponding to n f =8.The output Reynolds number is Re =8107.In (a),the autocorrelation function cor (n,τ)for a δ-correlated forcing is plotted versus τand for several shells n .In (c),the turn-over (black dots)and dissipation (straight line)characteristic times are plotted versus log 10k .In (b),the energyspectrum is plotted versus log 10k and the k −2/3slope (full line)is plotted for comparison.In (d),the energy flux (black dots)and the dissipation Pn j =0D U (j )(gray dots)are plotted versus log 10k .correlation time forcing without finding any significant differences.Thereforethe δ-correlated forcing does not seem to be an issue in our problem.The kinetic energy spectrum (Fig.1b,black dots)of the stationary statistical state is found to be in k −2/3(which corresponds to a Fourier energy spectrum of k −5/3as expected in Kolmogorov turbulence).In Fig.1c,the spectral flux ΠU (n )(black dots)and the dissipation nj =0D U (j )(gray dots)are found tosatisfy the kinetic energy budget (24)with ǫ=1.In addition,in the inertial range we find that ΠU (n )∼ǫand nj =0D U (j )∼0as predicted by a Kol-mogorov turbulence.After the viscous scale,ΠU (n )∼0and n j =0D U (j )∼ǫ.As previously defined,the viscous scale is the one at which the viscousdecay time τν=(νk 2n)−1(full curve of Fig.1c)becomes comparable to the typical turn-over time τU =(k n U n )−1(black dots of Fig.1c).This leads to k ν∼106and compares indeed very well with the Kolmogorov dissipationscale k −1ν∼(ν3/ǫ)1/4.Finally the little bump of ΠU(n )(black dots Fig.1d)just before the viscous scale looks like a bottle-neck effect [48].Dynamo action at low Pm9100200300400500600t1234E 0100200300400500600t0.511.52E U100200300400500600t0.511.522.533.5E B(a)(b)(c)100200300400500600t2002040H U100200300400500600t0.00080.0006 0.0004 0.000200.0002H B100200300400500600t0.40.200.20.40.6H C(d)(e)(f)Figure2.Quadratic quantities (a)E tot ,(b)E U ,(c)E B ,(d)H U ,(e)H B and (f)H C /√E U E B oscillates around zero.The fact that this latter quantity doesnot reach an asymptotic limit of ±1shows that there is no “dynamical aligne-ment”.Therefore we are confident that our choice of forcing overcomes the problem raised by Giulani and Carbone [41].4.2Spectrum analysisIn Fig.3we show the kinetic and magnetic spectrum at four successive times for again ν=10−9and η=10−6(Pm =10−3).Each snapshot corresponds to an average over a not so large amount of time which explains why at early time the kinetic spectrum is not very smooth at large scales.In the early time,when the magnetic field is still not significant,the kinetic energy spectrum has10Rodion Stepanov and Franck Plunianlog 10kE uE u10 E ulog 10kEFigure 3.Kinetic (black dots)and magnetic (gray dots)spectra at four successive times (from (a)to (d))for n f =4,ν=10−9and η=10−6.See also the movie energy1.mpg in which log 10E U (n )and log 10E B (n )are plotted versus log 10k with respectively red and blue dots.a slope in k −2/3(corresponding to a Fourier spectrum in k −5/3).Then,as Rm is much larger than the critical value of the dynamo instability,the magnetic energy starts to grow (Fig.3a).We expect magnetic energy to be initially amplified by the eddies having the highest sharing rate,i.e.the smallest scale eddies.As Pm <1,the smallest eddies available for dynamo action correspond to eddies at resistive scale.This is indeed what we find,as here,the resistive scale (defined as in section 2.3)corresponds to log 10k η∼4.1.We note that the Kolmogorov resistive scale given by k η∼(ǫ/η3)1/4(see section 4.3)with η=10−6,leads to a slightly higher value log 10k η∼4.5.As Rm is sufficiently large,at subsequent times the magnetic energy reaches the level of kinetic energy (Fig.3c).At that time the kinetic spectrum is not influenced yet by the nonlinear feedback of the magnetic field and is still in k −2/3.Then the dynamical equilibrium between the magnetic and velocity fields settles down (Fig.3d).A striking feature of this equilibrium is the change of slope (from -2/3to ∼-1)of the kinetic energy spectrum for k ≤k ηwhile the magnetic spectrum is slightly above the kinetic spectrum.We also note that the viscous dissipation scale has increased (the right part of the kinetic spectrum drifting to the left).This probably comes from the fact that therelog10kFigure4.Kinetic(black dots)and magnetic(gray dots)spectra forν=10−9and for Pm=(a)10−2,(b)10−1,(c)100and Re=(a)6.5109,(b)4.4109,(c)4.4109.The forcing scalecorresponds to n f=4.10kforν=10−9and Pm=10−3.is less energy to dissipate by viscosity than at earlier time because of the additional Joule dissipation.When changing the value of Pm while keeping the same value ofνand cal-culating again thefinal statistically stationary state,we observe again(Fig.4) a deviation of the kinetic energy slope from-2/3to∼-1whatever the value of Pm.To understand better these spectra,we plotted severalfluxes in Fig.5, forν=10−9and Pm=10−3.Looking at curve(a)which represents the totalfluxΠtot(n)versus log10k, one can distinguish three plateaus:thefirst one corresponds to scales larger than the resistive scale(1≤log10k≤3),the second one for scales smaller than the resistive scale but larger than the viscous scale(log10k∼5),and the third one for scales smaller than the viscous scale(log10k≥7).The drop from thefirst to the second plateau corresponds to the ohmic dissipation rateǫη= N j=0D B(j).The drop from the second to the third plateau corresponds to the viscous dissipation rateǫν= N j=0D U(j).We clearly haveǫ=ǫν+ǫηas expected from(26)for n=N.The curve(b)corresponds toΠU(n)versus log10k with two plateaus,de-pending if the scale is larger or smaller than the viscous scale.Thefirst plateau(k≤6)corresponds toΠU(n)∼ǫand the second one(k≥7)to ΠU(n)∼ǫ−ǫν=ǫη.In particular,there is no clear change ofΠU(n)just before the resistive scale that could explain the change of slope of the kinetic energy spectrum as previously pointed out.Now let us have a look at curve(c).The transfer rateΠU<U>(n)is responsiblefor the direct cascade of kinetic energy and would be constant leading to a Kolmogorov spectrum if the magneticfield was null(see Fig.1).This would remain true for a non zero magneticfield only if the curve(c)was stayingflatwithΠU<U>(n)=ǫνfor2<log10k<5.5.In that case the curve(d)would beflat as well withΠB<U>(n)=ǫηfor k>2.Instead,there is a drop ofΠU<U>(n)compensated by a symmetric bump ofΠB<U>(n)for2<log10k<4.5.This dropofΠU<U>(n)is consistent with a spectrum steeper than k−2/3.Indeed,the bumpofΠB<U>(n)corresponds to some extra energy taken fromǫand dissipated byJoule effect.Then there is less energy to be transferred through the kineticenergy cascade.The physical reason why this scenario happens for scales justlarger than the resistive scale,however is still unclear.For the parameters of Fig.5the Kolmogorov dissipation scales are given bykη=(ǫ/η3)1/4=104.5and kη=(ǫ/ν3)1/4=106.75which correspond quan-titatively well with the beginning of the second and third plateau ofΠtot(n).This shows that the arguments leading to the Kolmogorov dissipation scales (see next section)are not affected by the change of spectra slopes observed inFig.4.Finally for completeness,we produced three movies showing the time evo-lution of the spectra of the other quadratic quantities.In u-helicity.mpg,b-helicity.mpg and cross-helicity.mpg,log10H U(n),log10H B(n)and log10H C(n) are plotted versus log10k where the blue and red dots denote positive and neg-ative signs.4.3Dissipation scales ratioAt the end of section2.3we have already explained how we identify the viscousand resistive scales kνand kη,by comparing the turn over time to the respec-tive dissipative times.In Fig.6we plot the ratio kν/kηversus Pm≤1for different values of Re.Wefind that kν/kη∼Pm−3/4.To understand why,it is sufficient to say that between kηand kνthe kinetic energy obeys a Kolmogorov-6-5-4-3-2-1log 10Pm1234l o g 10k Ν k Η1091081071061051041033 4Figure 6.Ratio k ν/k ηversus Pm for different values of ν−1indicated in the legend.The straightline k −3/4is plotted (dashed line)for comparison.spectrum U (k )=ǫ1/3k −1/3(see Fig.4),leading to τ−1U=kU (k )=ǫ1/3k 2/paring τ−1U with respectively τ−1ν=νk 2and τ−1η=ηk 2leads [47]to the dissipation scales k ν∼(ν3/ǫ)−1/4and k η∼(η3/ǫ)−1/4.This in turn leads toa dissipation scales ratio in Pm −3/4.4.4Route to saturationIn this section we study the influence of Pm on the way the dynamo saturates.For that we calculate the ratio of magnetic to kinetic energy E B /E U ,E B and E U being defined as in (12).In Fig.7,E B /E U is plotted versus Rm for three values of Pm.We note that for Rm much larger than the critical value,the level of saturation E B /E U may go beyond 1for Rm ∼105.Such a super saturation state could be expected from the spectra of Fig.4.At the threshold,the slope of E B /E U versus Rm follows a turbulent scaling of the form E B /E U ∼(Rm −Rm c )/Rm 2c as expected by P´e tr´e lis and Fauve [49].Indeed as in this case the threshold Rm c does not vary very much with Pm,the slopes at Rm =Rm c are similar.This is to contrast with the laminar scaling E B /E U ∼Pm(Rm −Rm c )/Rm 2c [49]which would lead to a quasi-horizontalslope for Pm =10−4.1234567log 10Rm0.250.50.7511.251.5E B E UPm 1 Pm 10 2 Pm 10 4Figure 7.The energy ratio E B /E U versus Rm for n f =4and three values of Pm.4.5Dynamo thresholdIn Fig.8the dynamo threshold Rm c is plotted versus Pm −1for n f =4.For increasing values of Pm −1up to 103the threshold first increases in accordance with previous direct numerical simulations [4,5,6,7,8,9].However,for values of Pm −1larger than 103the threshold Rm c is found to reach a plateau.For each value of Pm,the vertical bar around Rm c corresponds to values of Rm for which the magnetic solution is erratic.In other words,below the bars there is no dynamo action and above the bars there is a well define statistically stationary magnetic solution.In between though we do not observe intermittency as in [50,51],the dynamo is irregular,the mean magnetic energy increasing and decreasing versus time.4.6Influence of a forcing scale smaller than the resistive dissipation scaleIn Fig.9,the kinetic and magnetic spectra are plotted for a forcing scale smaller than the resistive scale k η.In that case the inertial range does not play a role in the magnetic generation and a kinetic spectra in k −2/3is recovered.5DiscussionIn this paper we investigated the fully developed MHD turbulence at magnetic Prandtl number lower than unity,using a shell model of MHD turbulence with an appropriate forcing.The main results are:log 10Pm 1R mFigure 8.Dynamo threshold Rm c versus Pm −1for n f =4.10l o g EFigure 9.Kinetic (black dots)and magnetic (gray dots)stationary spectra for ν=10−9,Pm =10−7and a forcing scale corresponding to n f =12.See also the movie energy2.mpg in whichlog 10E U (n )and log 10E B (n )are plotted versus log 10k with respectively red and blue dots.1.For strong MHD turbulent dynamo states (large Rm)we find kinetic and magnetic energy spectra close to the Kolmogorov spectrum k −2/3except at scales just larger than the resistive dissipation scale for which there is a weaker (stronger)slope of the kinetic (magnetic)spectrum.This corresponds to the work of the Lorentz forces which increases with k up to k =k η.2.The evaluation of the viscous and resistive dissipation scales are consistent with Kolmogorov estimates leading to k ν/k η∼Pm −3/4.3.At the dynamo threshold Rm c ,the ratio of magnetic to kinetic energy scaleslike E B/E U∼(Rm−Rm c)/Rm2c,as predicted by a turbulent scaling[49].4.At very low values of Pm,the dynamo threshold Rm c reaches a plateau. Of course all these results rely on the assumption that the interactions between the different scales of motion and magneticfield are local interactions, each shell interacting with a few shells above and below.We believe that this should not make much difference as long as Pm is small,the Kolmogorov turbulence being governed by local interaction.In the other hand our results can not being tested against the Iroshnikov-Kraichnan k−3/2Fourier spectrum prediction[52]resulting from non local interactions between theflow and some large scale magneticfield which could result for example from dynamo action.By the way we believe that the k−3/2slope in FS98is due to a lack of statistics as can be seen from the energyfluxes which are notflat and from the corresponding small range of scales.Adding some non local interaction with a large scale magneticfield in a local shell model,Biskamp[34]found a k−3/2slope,though taking only one such a non local interaction is somewhat artificial.Recently Verma[53]revisited the Iroshnikov-Kraichnan theory in which he shows that the large scale magneticfield becomes renormalized due to the nonlinear term,leading back to the Kolmogorov spectrum.This emphasizes the need for a complete nonlocal shell model in which any shell could interact with the others.This could be a good test against one theory or the other.Such a model would be also welcome for simulations at large Pm.Indeed at large Pm we expect the more energetic scales of theflow, corresponding to scales close to the viscous scales,to interact directly with the smaller scales of the magneticfield.Our local shell model can not catch such features and this is why we did not show results at large Pm for they surely lack physical ground.A further issue that could be addressed by a nonlocal shell model could be to distinguish between a large scalefield generated by a small scale velocityfield resulting from non local interactions(developed in the meanfield formalism)and a large scalefield generated by an”inverse cascade”as for example in Fig.3or in[54],resulting from local interactions. Concerning our local model,we believe that the results presented in Fig.8 showing that the dynamo threshold does not depend on Pm at low values of Pm would stay qualitatively the same if additional nonlocal interactions were included in the model.Indeed the dynamo threshold corresponds to the growth start of the magneticfield which is then still not significant.Therefore any non local interactions(e.g.Alfven sweeping effect)might not change the threshold.6AcknowledgmentsMost of this work was done during a stay of R.S.at the LEGI,with a grant from the Universit´e Joseph Fourier,Grenoble,France and completed during the visit of F.P.at the ICMM,Perm,Russia,supported by the ECO-NET program10257QL.R.S.is also thankful for support from the BRHE program. 7AppendixFor the pure hydrodynamic case(B n=0),only the twofirst conditions(8) and(9)are necessary to derive the forcing equations.In that case the forcing set writesλεf0=(λ+1)u1cos(φ1−ω1)(31)f2=0,(32)while for the full MHD case the forcing set is derived from the three conditions (8),(9)and(10)A(1+λ)f1=b2u0cos(θ2−φ2)cos(φ0−ω0)ε−λ2b0u2cos(θ0−φ0)cos(φ2−ω2)(34) Aand where u j andωj(resp.b j andθj)are the complex modulus and argumentof U nf+j (resp.B nf+j).References[1]G.R¨u diger and R.Hollerbach,2004,The magnetic Universe,Wiley-VCH.[2]A.A.Schekochihin,S.C.Cowley and S.F.Taylor2004,Simulations of the small-scale turbulentdynamo,ApJ612276.[3]Y.Ponty,P.D.Mininni,A.Pouquet,H.Politano,D.C.Montgomery and J.-F.Pinton,2005,Numerical study of dynamo action at low magnetic Prandtl numbers,Phys.Rev.Lett.94164502.[4]A.Nordlund,A.Brandenburg,R.L.Jennings,M.Rieutord,J.Ruokolainen,R.Stein and I.Tuominen,1992,Dynamo action in stratified convection with overshoot,Astrophys.J.,392647.[5]A.Brandenburg,R.L.Jennings,A.Nordlund,M.Rieutord,R.Stein and I.Tuominen,Magneticstructures in a dynamo simulation,1996,J.Fluid Mech.,306325.[6]C.Nore,M.E.Brachet,H.Politano and A.Pouquet,1997,Dynamo action in the Taylor–Greenvortex near threshold,Phys.Plasmas,41.[7]U.Christensen,P.Olson and G.A.Glatzmaier,1999,Numerical modeling of the geodynamo:asystematic parameter study,Geophys.J.Int.,138393.[8]T.A.Yousef,A.Brandenburg and G.R¨u diger,2003,Turbulent magnetic Prandtl number andmagnetic diffusivity quenching from simulations,Astron.Astrophys.,411321.[9]A.A.Schekochihin,S.C.Cowley,J.L.Maron and J.C.McWilliams,2004,Critical magneticPrandtl number for small-scale dynamo Phys.Rev.Lett.,9254502.[10]I.Rogachevskii and N.Kleeorin,2004,Nonlinear theory of a“shear-current”effect and mean-field magnetic dynamos Phys.Rev.E,70046310.[11]A.Gailitis,O.Lielausis,S.Dementiev,E.Platacis,A.Cifersons,G.Gerbeth,Th.Gundrum,F.Stefani,M.Christen,H.H¨a nel and G.Will,2000,Detection of a Flow Induced Magnetic Field Eigenmode in the Riga Dynamo Facility,Phys.Rev.Lett.,844365.[12]A.Gailitis,O.Lielausis,E.Platacis,S.Dementiev,A.Cifersons,G.Gerbeth,Th.Gundrum,F.Stefani,M.Christen and G.Will,2001,Magnetic Field Saturation in the Riga Dynamo Experi-ment,Phys.Rev.Lett.,863024.[13]R.Stieglitz and U.M¨u ller,2001,Experimental demonstration of a homogeneous two-scale dy-namo,Phys.Fluids,13561.[14]U.M¨u ller,R.Stieglitz and S.Horanyi,2004,A two-scale hydromagnetic dynamo experiment,J.Fluid Mech.,49831-71.[15]M.Bourgoin,L.Mari´e,F.P´e tr´e lis,C.Gasquet,A.Guigon,J.-B.Luciani,M.Moulin,r,J.Burgete,A.Chiffaudel,F.Daviaud,S.Fauve,P.Odier and J.-F.Pinton,2002,Magnetohydro-dynamics measurements in the von Karman sodium experiment,Phys.Fluids,143046-3058. [16]F.Ravelet,A.Chiffaudel,F.Daviaud and J.L´e orat,2005,Towards an experimental von Karmandynamo:numerical studies for an optimized design,Phys.Fluids,submitted.[17]P.Frick,V.Noskov,S.Denisov,S.Khripchenko,D.Sokoloff,R.Stepanov,A.Sukhanovsky,2002,Non-stationary screwflow in a toroidal channel:way to a laboratory dynamo experiment, Magnetohydrodynamics,38,143-162[18]C.Normand,2003,Ponomarenko dynamo with time-periodicflow,Phys.Fluids,151606-1611.[19]N.Leprovost,2004,Influence des petites chelles sur la dynamique grande chelle en turbulencehydro et magntohydrodynamique,PhD thesis,Paris6.[20]R.Stepanov and K.-H.R¨a dler,2004,The dynamo in a turbulent screwflow,Advances in Tur-bulence X(Proceedings of the Tenth European Turbulence Conference,789-792[21]val,P.Blaineau N.Leprovost,B.Dubrulle and F.Daviaud2006,Influence of turbulenceon the dynamo threshold,submitted.[22]G.O.Roberts,1972,Spatially periodic dynamos,Phil.Trans.R.Soc.Lond.A,271411.[23]Y.B.Ponomarenko,1973,Theory of the hydromagnetic generator,J.Appl.Mech.Tech.Phys.,14775-778.[24]M.L.Dudley and R.W.James,1989,Time-dependent kinematic dynamos with stationaryflows,Proc.R.Soc.Lond.A,425407-429.[25]R.M.Kulsrud and S.W.Anderson,1992,Time-dependent kinematic dynamos with stationaryflows,Astrophys.J.,396606.[26]S.Boldyrev and F.Cattaneo,2004,Magnetic-field generation in Kolmogorov turbulence,Phys.Rev.Lett.,92144501.。