Algorithmic randomness of closed sets
Shamir的(k,n)门限秘密共享方案
秘密共享体制的发展和应用Shamir的(k,n)门限秘密共享方案——密码学概论课作业1310648 许子豪摘要:近年来,由于网络环境自身的问题,网络环境己存在严峻的安全隐患;为了避免由于网络中重要信息和秘密数据的丢失、毁灭以及被不法分子利用或恶意篡改,而无法恢复原始信息,研究者提出利用秘密共享机制对数据进行处理,从而达到保密通信中,不会因为数据的丢失、毁灭或篡改,而无法恢复原始信息的目的。
从而吸引了越来越多的科研人员对该研究内容的关注。
秘密共享体制己经成为现代密码学的一个重要的研究领域,同时,它也成为信息安全中的重要的研究内容。
关键字:信息安全;秘密共享;秘钥管理。
一、秘密共享体制研究背景及意义随着计算机和网络通信的广泛应用,人们的生活越来越依赖电子通信,使用电子方式来存储重要档案的做法也越来越普遍,随之而来产生的对各种不同档案如何管理也成了很大的问题。
秘密共享思想的最初动机是解决密钥管理的安全问题。
大多情况下,一个主密钥控制多个重要文件或多个其他密钥,一旦主密钥丢失、损坏或失窃,就可能造成多个重要文件或其他密钥不可用或被窃取。
为了解决这个问题,一种方法是创建该密钥的多个备份并将这些备份分发给不同的人或保存在不同的多个地方。
但是这种方法并不理想,原因在于创建的备份数目越多,密钥泄漏的可能就越大但如果同时创建的备份越少,密钥全部丢失的可能也就越大。
秘密共享可解决上述问题,它在不增加风险的同时提高密钥管理的可靠性。
在秘密共享方案中,将需共享的秘密分成若干秘密份额也称子密钥、碎片,并安全地分发给若干参与者掌管,同时规定哪些参与者合作可以恢复该秘密,哪些参与者合作不能得到关于该秘密的任何信息。
利用秘密共享方案保管密钥具有如下优点:(1)为密钥合理地创建了备份,克服了以往保存副本的数量越大,安全性泄露的危险越大,保存副本越小,则副本丢失的风险越大的缺点。
(2)有利于防止权力过分集中以导致被滥用的问题。
(3)攻击者必须获取足够多的子密钥才能恢复出所共享的密钥,保证了密钥的安全性和完整性。
蒙特卡罗方法概述7
表示击中r处相应的得分数(环数),f(r)为该运动员的 弹着点的分布密度函数,它反映运动员的射击水平。 该运动员的射击成绩为
g0 g(r)f(r)dr
用概率语言来说,<g>是随机变量g(r)的数学期
望,即
gE g(r)
现假设该运动员进行了N次射击,每次射击的弹 着g(r点2),依…次,为g(rrN1),的算r2 术,平…均,值rN , 则 N 次 得 分 g(r1) ,
➢ 计算机模拟试验过程
计算机模拟试验过程,就是将试验过程(如投针, 射击)化为数学问题,在计算机上实现。以上述两个 问题为例,分别加以说明。
例1. 蒲丰氏问题 例2. 射击问题(打靶游戏)
由上面两个例题看出,蒙特卡罗方法常以一个 “概率模型”为基础,按照它所描述的过程,使用由 已知分布抽样的方法,得到部分试验结果的观察值, 求得问题的近似解。
一些人进行了实验,其结果列于下表 :
实验者
年份 投计次数 π的实验值
沃尔弗(Wolf) 1850 5000
3.1596
斯密思(Smith) 1855 3204
3.1553
福克斯(Fox)
1894 1120
3.1419
拉查里尼 (Lazzarini)
1901 3408
3.1415929
例2. 射击问题(打靶游戏)
1 N
gN N i1 g(ri )
作为积分的估计值(近似值)。
为了得到具有一定精确度的近似解,所需试验的
次数是很多的,通过人工方法作大量的试验相当困难, 甚至是不可能的。因此,蒙特卡罗方法的基本思想虽 然早已被人们提出,却很少被使用。本世纪四十年代 以来,由于电子计算机的出现,使得人们可以通过电 子计算机来模拟随机试验过程,把巨大数目的随机试 验交由计算机完成,使得蒙特卡罗方法得以广泛地应 用,在现代化的科学技术中发挥应有的作用。
最短路径算法的弗洛伊德算法的数学归纳法冥想证明-Version-1
最短路径算法的弗洛伊德算法的数学归纳法冥想证明 Version 1.0我二十年前已了解迪杰斯特拉算法,最近忽有兴趣开发了一款最短路径算法小软件EXE,了却二十年前的心愿。
余庆未了,网上了解了还有多种方法,如A-Star,johnson,bellman,SPFA等算法,其中最感兴趣的是弗洛伊德算法。
百度了,看了很多源码,大同小异。
但对弗洛伊德算法原理,网上讲的,我看后也觉似懂非懂。
利用抗战70周年纪念日放假期间,我闭关冥想,想到了N步的方法,但冥想出来的源码,总比网上讲的多一层循环。
于是继续冥想,想到了要用数学归纳法来证明弗洛伊德算法。
百度下,好似网上暂没这方面资料,于是共享出来,与诸君分享,不知对错也,网上讲到的什么迭代法,总是不太对似的,弗法可能并没有这么简单的:假设顶点数为N,N=4,5,6时,具体的弗法正确性,我就不想验证了。
假设N<=n时,弗法是正确的,如何证明N=n+1时,弗法仍是正确的?先研究下N=n弗法正确时的特性。
N=n时,所有的n个顶点两两组合的边D[i,j],不论虚边实边(直接的称实边,要通过其他顶点的叫虚边,我如此定义先),全部有值,且为最小值最短路径。
N当N=n+1时,新加一点,称最后一点K。
令最后一点K总在循环中排在最后一位,三重循环中都是排在最后一位。
令最外层循环为k,中间层循环为j,最内层循环为i。
定理一:最后一点k若改变i与j之距D[i,j],则所有经过i与j之最短路必同步更新且不分先后。
证明:假设点x经过最短路径D[i,j],D[i,x]=D[i,j]+D[j,x]或D[i,x]=D[i,j]-D[j,x]。
D[i,j]已被替换成为了D[i,k]+D[j,k],而D[j,k]+D[j,x]>=D[k,x]或D[j,k]+D[j,x]>=D[k,x].所以D[i,x]>=D[i,k]+D[k,x],所以x点必被更新,也就是执行松驰操作。
定理二:最后一点k若改变i与j之距D[i,j],则经过i与j之最短路必不经过最后一点k。
logistic映射混沌加密算法
logistic映射混沌加密算法混沌理论是一种非线性动力学系统的研究方法,其核心思想是通过微小的初始条件差异引起系统的巨大变化,表现出复杂、随机且不可预测的行为。
混沌理论在信息安全领域具有重要的应用,其中logistic映射混沌加密算法是一种常用的加密方法。
logistic映射是一种简单而有效的动力学系统,其公式为Xn+1 = r*Xn*(1-Xn),其中Xn表示第n个时间点的状态值,r为控制参数,通常取值在0到4之间。
通过迭代计算,logistic映射可以产生一系列的状态值,这些值呈现出混沌的特性。
logistic映射混沌加密算法的基本思想是将待加密的数据与logistic映射的状态值进行异或运算,以增加数据的随机性和不可预测性。
具体加密过程如下:1. 初始化:设置初始状态X0和控制参数r的值,选择合适的初始状态和控制参数是保证加密效果的关键。
2. 生成密钥流:通过迭代计算logistic映射的状态值,得到一系列的随机数作为密钥流。
密钥流的长度取决于需要加密的数据长度。
3. 加密:将待加密的数据与密钥流进行异或运算,生成密文。
异或运算的特点是相同位上的数字相同则结果为0,不同则结果为1,这样可以实现简单而高效的加密过程。
4. 解密:使用相同的初始状态和控制参数,再次生成密钥流,将密文与密钥流进行异或运算,得到原始数据。
logistic映射混沌加密算法具有以下特点:1. 高度随机性:由于logistic映射本身的混沌性质,生成的密钥流具有高度随机性,使得加密后的数据无法被破解。
2. 非线性变换:logistic映射混沌加密算法采用非线性的异或运算,使得加密后的数据与原始数据之间的关系变得非常复杂,增加了破解的难度。
3. 实时性:logistic映射混沌加密算法具有较高的加密速度,适用于对大量数据进行实时加密和解密的场景。
4. 简单性:logistic映射混沌加密算法的实现较为简单,只需要进行简单的数学运算,不需要复杂的计算和存储。
普林斯顿算法
普林斯顿算法
普林斯顿算法是一种用于解决最短路径问题的一种经典算法,也称为迪杰斯特拉算法。
它是一种贪婪算法,逐步构建最短路径树,从起始节点开始,依次选择与当前节点距离最近的节点,并更新该节点到其他节点的距离。
通过不断选择最短路径上的节点,最终得到起点到各个节点的最短路径。
普林斯顿算法的基本步骤如下:
1. 创建一个距离列表distances,用于保存起始节点到各个节点的最短距离,初始值为无穷大(表示未知路径)。
2. 创建一个前驱列表predecessors,用于保存路径上每个节点
的前驱节点,初始值为None。
3. 将起始节点的距离设置为0,即distances[start_node] = 0。
4. 选择距离最短且未被访问的节点作为当前节点。
5. 更新当前节点到邻居节点的距离,如果新的距离比原来的距离小,则更新距离和前驱节点。
6. 标记当前节点为已访问。
7. 重复步骤4-6直到所有节点都被访问。
8. 根据distances和predecessors构建最短路径。
普林斯顿算法的时间复杂度为O(V^2),其中V为节点数。
它
适用于处理节点数不太大的图,但在节点数非常大时,性能可能较差。
为了提高效率,还有一种优化的算法称为堆优化的迪杰斯特拉算法,它使用优先队列来选择最短距离的节点,使得时间复杂度降为O((V+E)logV),其中E为边数。
无密钥泄露的变色龙hash函数及其应用的开题报告
无密钥泄露的变色龙hash函数及其应用的开题报告一、选题背景哈希函数是密码学中重要的一类函数,它可以将任意长度的消息转换为固定长度的哈希值。
哈希函数广泛应用于数字签名、消息认证、密码学散列等领域。
在实际应用中,常常要求哈希函数具有抗碰撞、不可逆、无密钥泄露等安全性质。
目前,广泛使用的哈希函数包括MD5、SHA-1、SHA-2等。
然而,近年来,这些哈希函数的安全性受到了严重的挑战。
例如,在2017年,Google团队报道了SHA-1被破解的情况。
因此,设计新的安全的哈希函数是一个重要的研究方向。
变色龙哈希函数是一种新型的哈希函数,它的安全性有望超过目前广泛使用的哈希函数。
与传统的哈希函数不同,变色龙哈希函数采用了一种新的思路,通过采用多个哈希函数并在运行时动态切换不同的哈希函数来提高安全性。
此外,变色龙哈希函数还具有无密钥泄露的优点,在某些场景下有着较好的应用前景。
二、研究意义和目的当前广泛使用的哈希函数安全性遭到了严重的挑战,设计新的哈希函数已成为密码学领域的一个热点研究。
因此,研究变色龙哈希函数及其应用具有重要的理论和实践意义。
本研究将研究变色龙哈希函数及其在密码学领域中的应用。
具体而言,本研究将实现变色龙哈希函数,并分析其安全性。
此外,本研究还将探索无密钥泄露的变色龙哈希函数应用于一些具体场景下的效果,并比较与传统哈希函数在同等场景下的表现。
三、研究内容和方法本研究的主要内容包括以下三个方面:1. 变色龙哈希函数的设计及实现本研究将设计并实现基于变色龙思想的哈希函数。
具体来说,我们将综合多个哈希函数,并在运行时动态切换不同的哈希函数来提高安全性。
此外,为了降低攻击者猜测哈希函数序列的难度,我们还将采用“随机撒盐”技术来增强哈希函数的安全性。
2. 安全性分析及实验验证本研究将对设计的变色龙哈希函数进行安全性分析。
具体而言,我们将对其进行抗碰撞性、前向安全性、后向安全性等安全性质论证。
此外,我们将在多重环境下进行实验验证,比较变色龙哈希函数与传统哈希函数的表现,以验证其实用价值。
基于频繁项集发现的匿名隐私保护算法
计 算 机 应 用 研 究
Ap l ain Re e rh o o u es pi t s ac fC mp tr c o
Vo . 8 No 1 12 . O
0c .2 1 t 0 1
基 于频 繁 项 集 发 现 的 匿名 隐私保 护算 法 术
mn g , in ) 匿名过程仅仅对不满足隐私保护要求等价组中准码属性取值进行泛化。实验结果表 明, i 该方法可以减 少信 息损 失, 求解得到更加符合数据分析任务需求的局部最优匿名表。
关 键词 :数据 发布 ;隐私 保护 ;k 匿名 ;频繁 项 集 一
中图分 类号 :T39 P0
文献标 志 码 :A
据隐私保护方法 Ap a+。该方法 首先 利用 ( lh , ) l h apa k 生成 原
问题则是指如何在保护数据主体敏感信息不被泄露 的同时 , 保 持发布数据仍然具有足够效 用 的问题。针对 满足 - 匿名模 型 要求的发布表 仍然 可能遭 受 同质攻 击 ( o gn i t c ) hmoeeya ak 而 t t
可获得访 问指定文档 的授权 。针 对 已有 的 J匿名 和 Z j } - - 多样 性
O 引言
数据 发布过程中的隐私泄 露主要 是指在发 布含有 敏感信 息数据过程中造成 的个 人私有 信息 的泄 露 。20 0 2年 Smaa a rt i 等人 首次 指出攻击 者可以通过将 发布数 据 中的某 些非 标志信 息与从其他渠道获得的数据进行链接 , 将具体 的数据对应 到特 定的个体上 , 造成个体 隐私信息 的泄露 ; 进一 步提 出保 护发 布 数据主体隐私的 j匿名模型 J } . 。数据 发布过程 中的隐私保 护
图灵奖
图灵奖简介图灵奖(A.M. Turing Award,又译“杜林奖”),由美国计算机协会(ACM)于1966年设立,又叫“A.M. 图灵奖”,专门奖励那些对计算机事业作出重要贡献的个人。
其名称取自计算机科学的先驱、英国科学家阿兰·麦席森·图灵。
由于图灵奖对获奖条件要求极高,评奖程序又是极严,一般每年只奖励一名计算机科学家,只有极少数年度有两名合作者或在同一方向作出贡献的科学家共享此奖。
因此它是计算机界最负盛名、最崇高的一个奖项,有“计算机界的诺贝尔奖”之称。
每年,美国计算机协会将要求提名人推荐本年度的图灵奖候选人,并附加一份200到500字的文章,说明被提名者为什么应获此奖。
任何人都可成为提名人。
美国计算机协会将组成评选委员会对被提名者进行严格的评审,并最终确定当年的获奖者图灵奖对获奖者的要求极高,评奖程序极严,一般每年只奖励一名计算机科学家,只有极少数年度有两名在同一方向上做出贡献的科学家同时获奖。
因此,尽管“图灵”的奖金数额不算高,但它却是计算机诺贝尔奖”之称。
美国计算机协会1966年图灵奖获得者美国科学家艾伦·佩利(Alan J.Perlis):ALGOL语言和计算机科学的“催生者”。
获奖演说“算法系统的综合”(The Sy nthesis of AlgorithmicSy stem)。
1967年图灵奖获得者英国科学家莫里斯·威尔克斯(Maurice V.Wilkes):世界上第一台存储程序式计算机EDSAC的研制者。
获奖演说“计算机的过去和现在”(ComputerThen and Now)。
1968年图灵奖获得者美国科学家理查德·汉明(RichardW.Hamming):发明了纠错码——汉明码(HammingCode)。
获奖演说“对计算机科学的看法”(On Man‟s View of ComputerScience)。
1969年图灵奖获得者美国科学家马文·明斯基(Marv in L.Minsky):“人工智能之父”,知识的框架理论(Frame Theory)创立者。
弗洛伊德算法实用技巧
弗洛伊德算法实用技巧弗洛伊德算法(Floyd's Algorithm),又称为最短路径算法,是一种用于求解图中各顶点之间最短路径的算法。
它以其简洁高效的特点而被广泛应用于图论和网络优化领域。
本文将介绍弗洛伊德算法的原理及其在实际问题中的应用技巧。
一、弗洛伊德算法原理弗洛伊德算法的核心思想是采用动态规划的方法,通过逐步更新每一对顶点之间的最短路径长度,直到得到所有顶点之间的最短路径。
具体步骤如下:1. 初始化最短路径矩阵:以邻接矩阵的形式表示图的边权重,初始化一个大小为n×n的矩阵D,其中n为顶点个数。
若顶点i和顶点j之间存在边,则D[i][j]的值为边的权重;若不存在边,则D[i][j]的值为一个较大的数(如∞)。
2. 进行顶点中转:对于每一对顶点i和j,以顶点k作为中转点,更新D[i][j]的值,使其等于D[i][k] + D[k][j]和D[i][j]中的较小值。
即,若通过顶点k的路径更短,则更新D[i][j]的值。
3. 重复进行中转:依次选择每一个顶点作为中转点,进行步骤2的操作。
当所有顶点均作为中转点完成一次中转后,得到的矩阵D即为最终的最短路径矩阵。
二、弗洛伊德算法应用技巧1. 求解最短路径:弗洛伊德算法可以用于求解有向图或无向图中任意两点之间的最短路径。
通过获取最短路径矩阵D,即可得到任意一对顶点之间的最短路径长度。
2. 检测负权回路:在求解最短路径的过程中,若在最终的最短路径矩阵D中存在D[i][i]为负数的情况,则说明图中存在负权回路,即图中存在一个环路,其权重之和为负数。
该特性可用于识别图中是否存在负权回路。
3. 网络拓扑排序:弗洛伊德算法可以用于进行网络拓扑排序。
在求解最短路径的过程中,通过检测矩阵中的负权回路,可以得到顶点的拓扑排序结果。
拓扑排序用于评估任务执行的顺序,从而实现任务的优化调度。
4. 交通网络优化:弗洛伊德算法可以用于优化交通网络的设计。
通过将道路或路径作为图中的边,顶点表示城市或路口,权重表示通行距离或时间,利用最短路径矩阵D,可以评估不同路径的通行效率,从而优化道路规划和交通流量调度。
纹理物体缺陷的视觉检测算法研究--优秀毕业论文
摘 要
在竞争激烈的工业自动化生产过程中,机器视觉对产品质量的把关起着举足 轻重的作用,机器视觉在缺陷检测技术方面的应用也逐渐普遍起来。与常规的检 测技术相比,自动化的视觉检测系统更加经济、快捷、高效与 安全。纹理物体在 工业生产中广泛存在,像用于半导体装配和封装底板和发光二极管,现代 化电子 系统中的印制电路板,以及纺织行业中的布匹和织物等都可认为是含有纹理特征 的物体。本论文主要致力于纹理物体的缺陷检测技术研究,为纹理物体的自动化 检测提供高效而可靠的检测算法。 纹理是描述图像内容的重要特征,纹理分析也已经被成功的应用与纹理分割 和纹理分类当中。本研究提出了一种基于纹理分析技术和参考比较方式的缺陷检 测算法。这种算法能容忍物体变形引起的图像配准误差,对纹理的影响也具有鲁 棒性。本算法旨在为检测出的缺陷区域提供丰富而重要的物理意义,如缺陷区域 的大小、形状、亮度对比度及空间分布等。同时,在参考图像可行的情况下,本 算法可用于同质纹理物体和非同质纹理物体的检测,对非纹理物体 的检测也可取 得不错的效果。 在整个检测过程中,我们采用了可调控金字塔的纹理分析和重构技术。与传 统的小波纹理分析技术不同,我们在小波域中加入处理物体变形和纹理影响的容 忍度控制算法,来实现容忍物体变形和对纹理影响鲁棒的目的。最后可调控金字 塔的重构保证了缺陷区域物理意义恢复的准确性。实验阶段,我们检测了一系列 具有实际应用价值的图像。实验结果表明 本文提出的纹理物体缺陷检测算法具有 高效性和易于实现性。 关键字: 缺陷检测;纹理;物体变形;可调控金字塔;重构
Keywords: defect detection, texture, object distortion, steerable pyramid, reconstruction
II
随机算法
Randomized Algorithms (随机算法)Probabilistic Algorithms (概率算法)起源可以追溯到20世纪40年代中叶。
当时Monte Carlo 在进行数值计算时,提出通过统计模拟或抽样得到问题的近似解,而且出现错误的概率随着实验次数的增多而显著地减少,即可以用时间/次数来换取求解正确性的提高。
不过,Monte Carlo 方法很长时间没有引入到非数值算法中来。
74年,Michael Rabin (76年Turing 奖获得者, 哈佛教授, 以色列人)在瑞典讲演时指出:有些问题,如果不用随机化的方法而用确定性的算法,在可以忍受的时间内得不到所需要的结果。
e.g. Presburge 算术系统(其中只有加法)中的计算程序,即使只有100个符号,用每秒1万亿次运算的机器1万亿台、进行并行计算也需做1万亿年。
但如果使用随机性的概念,可以很快得出结果,而出错率则微乎其微。
74年Rabin 关于随机化算法的思想还不太成熟,76年Rabin 设计了一个判定素数的随机算法,该算法至今仍是随机算法的一个典范。
随机算法在分布式计算、通信、信息检索、计算几何、密码学等许多领域都有着广泛的应用。
最著名的是在公开密钥体系、RSA 算法方面的应用。
用随机化方法解决问题之例:设有一函数表达式f(x 1,x 2,…x n ),要判断f 在某一区域D 中是否恒为0。
如果f 不能用数学方法进行形式上的化简 (这在工程中是经常出现的),如何判断就很麻烦。
如果我们随机地产生一个n 维的坐标(r 1,r 2,… r n ) D ,代入f 得f(r 1,r 2,… r n )≠0,则可断定在区域D 内f 不恒为0。
如果f(r 1,r 2,… r n )=0,则有两种可能:1. 在区域D 内f ≡0;2. 在区域D 内f ≠0,得到上述结果只是巧合。
如果我们对很多个随机产生的坐标进行测试,结果次次均为0,则我们可以断言:f ≠0的概率是非常之小的。
shamir门限例题
shamir门限例题Shamir门限是一种密码学算法,用于将秘密信息分割成多个部分,并要求达到一定的门限值才能将信息恢复出来。
这种算法常用于保护敏感信息,确保即使部分秘密泄露,也无法完全获取原始信息。
为了更好地回答你的问题,我将给出一个Shamir门限的例题,并从多个角度进行详细解答。
假设有一个秘密信息,需要将它分割成5个部分,并设置门限值为3。
也就是说,只有当至少有3个部分合并才能恢复出原始信息。
现在,让我们来解答以下问题:1. 如何使用Shamir门限算法将秘密信息分割成5个部分?2. 如果只有2个部分被泄露,是否能够恢复出原始信息?3. 如果有3个部分被泄露,是否能够恢复出原始信息?4. 如果有4个部分被泄露,是否能够恢复出原始信息?5. 如果只有1个部分被泄露,是否能够恢复出原始信息?现在,让我从多个角度回答这些问题。
首先,使用Shamir门限算法将秘密信息分割成5个部分的步骤如下:1. 选择一个大于秘密信息的素数p作为有限域的模数。
2. 随机选择一个非零常数a作为多项式的常数项。
3. 构建一个次数为门限值减1的多项式f(x),其中f(0)为秘密信息。
4. 选择4个非零随机数作为多项式f(x)的系数,并计算出多项式的其他点值。
5. 将多项式的点值分别作为分割后的部分。
对于第二个问题,如果只有2个部分被泄露,无法恢复出原始信息。
因为门限值为3,至少需要3个部分才能进行恢复。
对于第三个问题,如果有3个部分被泄露,可以恢复出原始信息。
因为门限值为3,当有3个部分时,可以通过插值多项式的方式计算出原始信息。
对于第四个问题,如果有4个部分被泄露,同样可以恢复出原始信息。
因为门限值为3,只要还有一个未泄露的部分,就可以通过插值多项式的方式计算出原始信息。
对于最后一个问题,如果只有1个部分被泄露,同样无法恢复出原始信息。
因为门限值为3,至少需要3个部分才能进行恢复。
综上所述,Shamir门限算法可以将秘密信息分割成多个部分,并通过门限值的设定来保护信息的安全。
密码学因子分解假设
密码学因子分解假设
密码学因子分解假设是指,对于一个大的合数N,如果它的质因子分解中存在一个较小的质因子,那么这个质因子一定可以被找到。
这个假设是现代密码学的基础之一,因为许多密码算法都依赖于这个假设。
具体来说,假设存在一个合数N,它的质因子分解为:N = p1^k1 * p2^k2 * ... * pm^km
其中,p1, p2, ..., pm是质数,k1, k2, ..., km是正整数。
如果k1, k2, ..., km中存在一个较小的正整数,比如k1 = 1,那么我们可以通过分解N来找到这个质因子p1。
如果N的质因子分解中不存在这样的较小质因子,那么这个假设就不成立了。
这种情况下,我们需要使用更复杂的算法来对N进行分解,比如Pollard-Rho算法、大整数分解算法等。
密码学因子分解假设是现代密码学的基础之一,因为它提供了一种有效的方法来对大的合数进行分解,从而实现了许多密码算法,比如RSA公钥加密算法、椭圆曲线密码算法等。
同时,这个假设也存在一些攻击方法,比如基于大质数分解的量子计算机攻击等,因此在实际应用中需要注意安全性。
对一个无可信中心的(t,n)门限签名方案的改进
l s ha t l y r c n o s u a inau e t al. s c e k y s iti u e a n n a te t te e p o tu td a t es t n p a es a n t is e sg tr a 1 The e r t e i d srb t d mo g p ris wih h h l . r v me to (, )tr s od s n t r c e t o ttu td p r . o u e n ie r g O iY X a - o g mp o e n f f I n h eh l i au e sh me wi u r s a t C mp t E gn e i g h e y r n a d A p c t n ,0 0 4 ( ) 8 - 6 n p H a o s 2 1 。 6 1 :4 8 . i
1 . 哈尔滨师范大学恒 星学院 数学与计算机 系 , 哈尔滨 10 2 505
2哈尔滨师范大学 计算机学院 , . 哈尔滨 1 02 505
1De at n f Ma h mais a d C mp tr Ha bn No ma ie st t r C l g , r i 1 0 2 C i a . pr me t o t e t n o u e , r i r l Unv r i S a o l e Hab n 5 0 5, h n c y e
点云算法试题
点云算法试题
以下是一些点云算法试题:
1. 什么是点云?
2. 请解释下采样算法中的体素网格(Voxel Grid)算法是如何
工作的。
3. 欧几里得聚类算法(Euclidean Clustering)如何将点云分成
不同的群集?
4. 移动最小二乘(Moving Least Squares)算法是用来做什么的?
5. RANSAC(Random Sample Consensus)算法是如何估计点
云中的几何形状的?
6. 请解释一下ICP(Iterative Closest Point)算法的工作原理。
7. 点云表面重建算法中的Marching Cubes算法是如何工作的?
8. 上采样算法中的插值是如何通过增加点的密度来重建点云的?
9. 点云配准算法中的ICP和配准矩阵变换是如何相互作用的?
10. 点云分割算法中的区域增长算法是如何将相邻的点聚合成
单个区域的?
这些问题涉及到点云处理的不同方面,包括采样、聚类、重建、配准和分割等。
希望能对您的点云算法知识有所帮助。
ACM-GIS%202006-A%20Peer-to-Peer%20Spatial%20Cloaking%20Algorithm%20for%20Anonymous%20Location-based%
A Peer-to-Peer Spatial Cloaking Algorithm for AnonymousLocation-based Services∗Chi-Yin Chow Department of Computer Science and Engineering University of Minnesota Minneapolis,MN cchow@ Mohamed F.MokbelDepartment of ComputerScience and EngineeringUniversity of MinnesotaMinneapolis,MNmokbel@Xuan LiuIBM Thomas J.WatsonResearch CenterHawthorne,NYxuanliu@ABSTRACTThis paper tackles a major privacy threat in current location-based services where users have to report their ex-act locations to the database server in order to obtain their desired services.For example,a mobile user asking about her nearest restaurant has to report her exact location.With untrusted service providers,reporting private location in-formation may lead to several privacy threats.In this pa-per,we present a peer-to-peer(P2P)spatial cloaking algo-rithm in which mobile and stationary users can entertain location-based services without revealing their exact loca-tion information.The main idea is that before requesting any location-based service,the mobile user will form a group from her peers via single-hop communication and/or multi-hop routing.Then,the spatial cloaked area is computed as the region that covers the entire group of peers.Two modes of operations are supported within the proposed P2P spa-tial cloaking algorithm,namely,the on-demand mode and the proactive mode.Experimental results show that the P2P spatial cloaking algorithm operated in the on-demand mode has lower communication cost and better quality of services than the proactive mode,but the on-demand incurs longer response time.Categories and Subject Descriptors:H.2.8[Database Applications]:Spatial databases and GISGeneral Terms:Algorithms and Experimentation. Keywords:Mobile computing,location-based services,lo-cation privacy and spatial cloaking.1.INTRODUCTIONThe emergence of state-of-the-art location-detection de-vices,e.g.,cellular phones,global positioning system(GPS) devices,and radio-frequency identification(RFID)chips re-sults in a location-dependent information access paradigm,∗This work is supported in part by the Grants-in-Aid of Re-search,Artistry,and Scholarship,University of Minnesota. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on thefirst page.To copy otherwise,to republish,to post on servers or to redistribute to lists,requires prior specific permission and/or a fee.ACM-GIS’06,November10-11,2006,Arlington,Virginia,USA. Copyright2006ACM1-59593-529-0/06/0011...$5.00.known as location-based services(LBS)[30].In LBS,mobile users have the ability to issue location-based queries to the location-based database server.Examples of such queries include“where is my nearest gas station”,“what are the restaurants within one mile of my location”,and“what is the traffic condition within ten minutes of my route”.To get the precise answer of these queries,the user has to pro-vide her exact location information to the database server. With untrustworthy servers,adversaries may access sensi-tive information about specific individuals based on their location information and issued queries.For example,an adversary may check a user’s habit and interest by knowing the places she visits and the time of each visit,or someone can track the locations of his ex-friends.In fact,in many cases,GPS devices have been used in stalking personal lo-cations[12,39].To tackle this major privacy concern,three centralized privacy-preserving frameworks are proposed for LBS[13,14,31],in which a trusted third party is used as a middleware to blur user locations into spatial regions to achieve k-anonymity,i.e.,a user is indistinguishable among other k−1users.The centralized privacy-preserving frame-work possesses the following shortcomings:1)The central-ized trusted third party could be the system bottleneck or single point of failure.2)Since the centralized third party has the complete knowledge of the location information and queries of all users,it may pose a serious privacy threat when the third party is attacked by adversaries.In this paper,we propose a peer-to-peer(P2P)spatial cloaking algorithm.Mobile users adopting the P2P spatial cloaking algorithm can protect their privacy without seeking help from any centralized third party.Other than the short-comings of the centralized approach,our work is also moti-vated by the following facts:1)The computation power and storage capacity of most mobile devices have been improv-ing at a fast pace.2)P2P communication technologies,such as IEEE802.11and Bluetooth,have been widely deployed.3)Many new applications based on P2P information shar-ing have rapidly taken shape,e.g.,cooperative information access[9,32]and P2P spatio-temporal query processing[20, 24].Figure1gives an illustrative example of P2P spatial cloak-ing.The mobile user A wants tofind her nearest gas station while beingfive anonymous,i.e.,the user is indistinguish-able amongfive users.Thus,the mobile user A has to look around andfind other four peers to collaborate as a group. In this example,the four peers are B,C,D,and E.Then, the mobile user A cloaks her exact location into a spatialA B CDEBase Stationregion that covers the entire group of mobile users A ,B ,C ,D ,and E .The mobile user A randomly selects one of the mobile users within the group as an agent .In the ex-ample given in Figure 1,the mobile user D is selected as an agent.Then,the mobile user A sends her query (i.e.,what is the nearest gas station)along with her cloaked spa-tial region to the agent.The agent forwards the query to the location-based database server through a base station.Since the location-based database server processes the query based on the cloaked spatial region,it can only give a list of candidate answers that includes the actual answers and some false positives.After the agent receives the candidate answers,it forwards the candidate answers to the mobile user A .Finally,the mobile user A gets the actual answer by filtering out all the false positives.The proposed P2P spatial cloaking algorithm can operate in two modes:on-demand and proactive .In the on-demand mode,mobile clients execute the cloaking algorithm when they need to access information from the location-based database server.On the other side,in the proactive mode,mobile clients periodically look around to find the desired number of peers.Thus,they can cloak their exact locations into spatial regions whenever they want to retrieve informa-tion from the location-based database server.In general,the contributions of this paper can be summarized as follows:1.We introduce a distributed system architecture for pro-viding anonymous location-based services (LBS)for mobile users.2.We propose the first P2P spatial cloaking algorithm for mobile users to entertain high quality location-based services without compromising their privacy.3.We provide experimental evidence that our proposed algorithm is efficient in terms of the response time,is scalable to large numbers of mobile clients,and is effective as it provides high-quality services for mobile clients without the need of exact location information.The rest of this paper is organized as follows.Section 2highlights the related work.The system model of the P2P spatial cloaking algorithm is presented in Section 3.The P2P spatial cloaking algorithm is described in Section 4.Section 5discusses the integration of the P2P spatial cloak-ing algorithm with privacy-aware location-based database servers.Section 6depicts the experimental evaluation of the P2P spatial cloaking algorithm.Finally,Section 7con-cludes this paper.2.RELATED WORKThe k -anonymity model [37,38]has been widely used in maintaining privacy in databases [5,26,27,28].The main idea is to have each tuple in the table as k -anonymous,i.e.,indistinguishable among other k −1tuples.Although we aim for the similar k -anonymity model for the P2P spatial cloaking algorithm,none of these techniques can be applied to protect user privacy for LBS,mainly for the following four reasons:1)These techniques preserve the privacy of the stored data.In our model,we aim not to store the data at all.Instead,we store perturbed versions of the data.Thus,data privacy is managed before storing the data.2)These approaches protect the data not the queries.In anonymous LBS,we aim to protect the user who issues the query to the location-based database server.For example,a mobile user who wants to ask about her nearest gas station needs to pro-tect her location while the location information of the gas station is not protected.3)These approaches guarantee the k -anonymity for a snapshot of the database.In LBS,the user location is continuously changing.Such dynamic be-havior calls for continuous maintenance of the k -anonymity model.(4)These approaches assume a unified k -anonymity requirement for all the stored records.In our P2P spatial cloaking algorithm,k -anonymity is a user-specified privacy requirement which may have a different value for each user.Motivated by the privacy threats of location-detection de-vices [1,4,6,40],several research efforts are dedicated to protect the locations of mobile users (e.g.,false dummies [23],landmark objects [18],and location perturbation [10,13,14]).The most closed approaches to ours are two centralized spatial cloaking algorithms,namely,the spatio-temporal cloaking [14]and the CliqueCloak algorithm [13],and one decentralized privacy-preserving algorithm [23].The spatio-temporal cloaking algorithm [14]assumes that all users have the same k -anonymity requirements.Furthermore,it lacks the scalability because it deals with each single request of each user individually.The CliqueCloak algorithm [13]as-sumes a different k -anonymity requirement for each user.However,since it has large computation overhead,it is lim-ited to a small k -anonymity requirement,i.e.,k is from 5to 10.A decentralized privacy-preserving algorithm is proposed for LBS [23].The main idea is that the mobile client sends a set of false locations,called dummies ,along with its true location to the location-based database server.However,the disadvantages of using dummies are threefold.First,the user has to generate realistic dummies to pre-vent the adversary from guessing its true location.Second,the location-based database server wastes a lot of resources to process the dummies.Finally,the adversary may esti-mate the user location by using cellular positioning tech-niques [34],e.g.,the time-of-arrival (TOA),the time differ-ence of arrival (TDOA)and the direction of arrival (DOA).Although several existing distributed group formation al-gorithms can be used to find peers in a mobile environment,they are not designed for privacy preserving in LBS.Some algorithms are limited to only finding the neighboring peers,e.g.,lowest-ID [11],largest-connectivity (degree)[33]and mobility-based clustering algorithms [2,25].When a mo-bile user with a strict privacy requirement,i.e.,the value of k −1is larger than the number of neighboring peers,it has to enlist other peers for help via multi-hop routing.Other algorithms do not have this limitation,but they are designed for grouping stable mobile clients together to facil-Location-based Database ServerDatabase ServerDatabase ServerFigure 2:The system architectureitate efficient data replica allocation,e.g.,dynamic connec-tivity based group algorithm [16]and mobility-based clus-tering algorithm,called DRAM [19].Our work is different from these approaches in that we propose a P2P spatial cloaking algorithm that is dedicated for mobile users to dis-cover other k −1peers via single-hop communication and/or via multi-hop routing,in order to preserve user privacy in LBS.3.SYSTEM MODELFigure 2depicts the system architecture for the pro-posed P2P spatial cloaking algorithm which contains two main components:mobile clients and location-based data-base server .Each mobile client has its own privacy profile that specifies its desired level of privacy.A privacy profile includes two parameters,k and A min ,k indicates that the user wants to be k -anonymous,i.e.,indistinguishable among k users,while A min specifies the minimum resolution of the cloaked spatial region.The larger the value of k and A min ,the more strict privacy requirements a user needs.Mobile users have the ability to change their privacy profile at any time.Our employed privacy profile matches the privacy re-quirements of mobiles users as depicted by several social science studies (e.g.,see [4,15,17,22,29]).In this architecture,each mobile user is equipped with two wireless network interface cards;one of them is dedicated to communicate with the location-based database server through the base station,while the other one is devoted to the communication with other peers.A similar multi-interface technique has been used to implement IP multi-homing for stream control transmission protocol (SCTP),in which a machine is installed with multiple network in-terface cards,and each assigned a different IP address [36].Similarly,in mobile P2P cooperation environment,mobile users have a network connection to access information from the server,e.g.,through a wireless modem or a base station,and the mobile users also have the ability to communicate with other peers via a wireless LAN,e.g.,IEEE 802.11or Bluetooth [9,24,32].Furthermore,each mobile client is equipped with a positioning device, e.g.,GPS or sensor-based local positioning systems,to determine its current lo-cation information.4.P2P SPATIAL CLOAKINGIn this section,we present the data structure and the P2P spatial cloaking algorithm.Then,we describe two operation modes of the algorithm:on-demand and proactive .4.1Data StructureThe entire system area is divided into grid.The mobile client communicates with each other to discover other k −1peers,in order to achieve the k -anonymity requirement.TheAlgorithm 1P2P Spatial Cloaking:Request Originator m 1:Function P2PCloaking-Originator (h ,k )2://Phase 1:Peer searching phase 3:The hop distance h is set to h4:The set of discovered peers T is set to {∅},and the number ofdiscovered peers k =|T |=05:while k <k −1do6:Broadcast a FORM GROUP request with the parameter h (Al-gorithm 2gives the response of each peer p that receives this request)7:T is the set of peers that respond back to m by executingAlgorithm 28:k =|T |;9:if k <k −1then 10:if T =T then 11:Suspend the request 12:end if 13:h ←h +1;14:T ←T ;15:end if 16:end while17://Phase 2:Location adjustment phase 18:for all T i ∈T do19:|mT i .p |←the greatest possible distance between m and T i .pby considering the timestamp of T i .p ’s reply and maximum speed20:end for21://Phase 3:Spatial cloaking phase22:Form a group with k −1peers having the smallest |mp |23:h ←the largest hop distance h p of the selected k −1peers 24:Determine a grid area A that covers the entire group 25:if A <A min then26:Extend the area of A till it covers A min 27:end if28:Randomly select a mobile client of the group as an agent 29:Forward the query and A to the agentmobile client can thus blur its exact location into a cloaked spatial region that is the minimum grid area covering the k −1peers and itself,and satisfies A min as well.The grid area is represented by the ID of the left-bottom and right-top cells,i.e.,(l,b )and (r,t ).In addition,each mobile client maintains a parameter h that is the required hop distance of the last peer searching.The initial value of h is equal to one.4.2AlgorithmFigure 3gives a running example for the P2P spatial cloaking algorithm.There are 15mobile clients,m 1to m 15,represented as solid circles.m 8is the request originator,other black circles represent the mobile clients received the request from m 8.The dotted circles represent the commu-nication range of the mobile client,and the arrow represents the movement direction.Algorithms 1and 2give the pseudo code for the request originator (denoted as m )and the re-quest receivers (denoted as p ),respectively.In general,the algorithm consists of the following three phases:Phase 1:Peer searching phase .The request origina-tor m wants to retrieve information from the location-based database server.m first sets h to h ,a set of discovered peers T to {∅}and the number of discovered peers k to zero,i.e.,|T |.(Lines 3to 4in Algorithm 1).Then,m broadcasts a FORM GROUP request along with a message sequence ID and the hop distance h to its neighboring peers (Line 6in Algorithm 1).m listens to the network and waits for the reply from its neighboring peers.Algorithm 2describes how a peer p responds to the FORM GROUP request along with a hop distance h and aFigure3:P2P spatial cloaking algorithm.Algorithm2P2P Spatial Cloaking:Request Receiver p1:Function P2PCloaking-Receiver(h)2://Let r be the request forwarder3:if the request is duplicate then4:Reply r with an ACK message5:return;6:end if7:h p←1;8:if h=1then9:Send the tuple T=<p,(x p,y p),v maxp ,t p,h p>to r10:else11:h←h−1;12:Broadcast a FORM GROUP request with the parameter h 13:T p is the set of peers that respond back to p14:for all T i∈T p do15:T i.h p←T i.h p+1;16:end for17:T p←T p∪{<p,(x p,y p),v maxp ,t p,h p>};18:Send T p back to r19:end ifmessage sequence ID from another peer(denoted as r)that is either the request originator or the forwarder of the re-quest.First,p checks if it is a duplicate request based on the message sequence ID.If it is a duplicate request,it sim-ply replies r with an ACK message without processing the request.Otherwise,p processes the request based on the value of h:Case1:h= 1.p turns in a tuple that contains its ID,current location,maximum movement speed,a timestamp and a hop distance(it is set to one),i.e.,< p,(x p,y p),v max p,t p,h p>,to r(Line9in Algorithm2). Case2:h> 1.p decrements h and broadcasts the FORM GROUP request with the updated h and the origi-nal message sequence ID to its neighboring peers.p keeps listening to the network,until it collects the replies from all its neighboring peers.After that,p increments the h p of each collected tuple,and then it appends its own tuple to the collected tuples T p.Finally,it sends T p back to r (Lines11to18in Algorithm2).After m collects the tuples T from its neighboring peers, if m cannotfind other k−1peers with a hop distance of h,it increments h and re-broadcasts the FORM GROUP request along with a new message sequence ID and h.m repeatedly increments h till itfinds other k−1peers(Lines6to14in Algorithm1).However,if mfinds the same set of peers in two consecutive broadcasts,i.e.,with hop distances h and h+1,there are not enough connected peers for m.Thus, m has to relax its privacy profile,i.e.,use a smaller value of k,or to be suspended for a period of time(Line11in Algorithm1).Figures3(a)and3(b)depict single-hop and multi-hop peer searching in our running example,respectively.In Fig-ure3(a),the request originator,m8,(e.g.,k=5)canfind k−1peers via single-hop communication,so m8sets h=1. Since h=1,its neighboring peers,m5,m6,m7,m9,m10, and m11,will not further broadcast the FORM GROUP re-quest.On the other hand,in Figure3(b),m8does not connect to k−1peers directly,so it has to set h>1.Thus, its neighboring peers,m7,m10,and m11,will broadcast the FORM GROUP request along with a decremented hop dis-tance,i.e.,h=h−1,and the original message sequence ID to their neighboring peers.Phase2:Location adjustment phase.Since the peer keeps moving,we have to capture the movement between the time when the peer sends its tuple and the current time. For each received tuple from a peer p,the request originator, m,determines the greatest possible distance between them by an equation,|mp |=|mp|+(t c−t p)×v max p,where |mp|is the Euclidean distance between m and p at time t p,i.e.,|mp|=(x m−x p)2+(y m−y p)2,t c is the currenttime,t p is the timestamp of the tuple and v maxpis the maximum speed of p(Lines18to20in Algorithm1).In this paper,a conservative approach is used to determine the distance,because we assume that the peer will move with the maximum speed in any direction.If p gives its movement direction,m has the ability to determine a more precise distance between them.Figure3(c)illustrates that,for each discovered peer,the circle represents the largest region where the peer can lo-cate at time t c.The greatest possible distance between the request originator m8and its discovered peer,m5,m6,m7, m9,m10,or m11is represented by a dotted line.For exam-ple,the distance of the line m8m 11is the greatest possible distance between m8and m11at time t c,i.e.,|m8m 11|. Phase3:Spatial cloaking phase.In this phase,the request originator,m,forms a virtual group with the k−1 nearest peers,based on the greatest possible distance be-tween them(Line22in Algorithm1).To adapt to the dynamic network topology and k-anonymity requirement, m sets h to the largest value of h p of the selected k−1 peers(Line15in Algorithm1).Then,m determines the minimum grid area A covering the entire group(Line24in Algorithm1).If the area of A is less than A min,m extends A,until it satisfies A min(Lines25to27in Algorithm1). Figure3(c)gives the k−1nearest peers,m6,m7,m10,and m11to the request originator,m8.For example,the privacy profile of m8is(k=5,A min=20cells),and the required cloaked spatial region of m8is represented by a bold rectan-gle,as depicted in Figure3(d).To issue the query to the location-based database server anonymously,m randomly selects a mobile client in the group as an agent(Line28in Algorithm1).Then,m sendsthe query along with the cloaked spatial region,i.e.,A,to the agent(Line29in Algorithm1).The agent forwards thequery to the location-based database server.After the serverprocesses the query with respect to the cloaked spatial re-gion,it sends a list of candidate answers back to the agent.The agent forwards the candidate answer to m,and then mfilters out the false positives from the candidate answers. 4.3Modes of OperationsThe P2P spatial cloaking algorithm can operate in twomodes,on-demand and proactive.The on-demand mode:The mobile client only executesthe algorithm when it needs to retrieve information from the location-based database server.The algorithm operatedin the on-demand mode generally incurs less communica-tion overhead than the proactive mode,because the mobileclient only executes the algorithm when necessary.However,it suffers from a longer response time than the algorithm op-erated in the proactive mode.The proactive mode:The mobile client adopting theproactive mode periodically executes the algorithm in back-ground.The mobile client can cloak its location into a spa-tial region immediately,once it wants to communicate withthe location-based database server.The proactive mode pro-vides a better response time than the on-demand mode,but it generally incurs higher communication overhead and giveslower quality of service than the on-demand mode.5.ANONYMOUS LOCATION-BASEDSERVICESHaving the spatial cloaked region as an output form Algo-rithm1,the mobile user m sends her request to the location-based server through an agent p that is randomly selected.Existing location-based database servers can support onlyexact point locations rather than cloaked regions.In or-der to be able to work with a spatial region,location-basedservers need to be equipped with a privacy-aware queryprocessor(e.g.,see[29,31]).The main idea of the privacy-aware query processor is to return a list of candidate answerrather than the exact query answer.Then,the mobile user m willfilter the candidate list to eliminate its false positives andfind its exact answer.The tighter the spatial cloaked re-gion,the lower is the size of the candidate answer,and hencethe better is the performance of the privacy-aware query processor.However,tight cloaked regions may represent re-laxed privacy constrained.Thus,a trade-offbetween the user privacy and the quality of service can be achieved[31]. Figure4(a)depicts such scenario by showing the data stored at the server side.There are32target objects,i.e., gas stations,T1to T32represented as black circles,the shaded area represents the spatial cloaked area of the mo-bile client who issued the query.For clarification,the actual mobile client location is plotted in Figure4(a)as a black square inside the cloaked area.However,such information is neither stored at the server side nor revealed to the server. The privacy-aware query processor determines a range that includes all target objects that are possibly contributing to the answer given that the actual location of the mobile client could be anywhere within the shaded area.The range is rep-resented as a bold rectangle,as depicted in Figure4(b).The server sends a list of candidate answers,i.e.,T8,T12,T13, T16,T17,T21,and T22,back to the agent.The agent next for-(a)Server Side(b)Client SideFigure4:Anonymous location-based services wards the candidate answers to the requesting mobile client either through single-hop communication or through multi-hop routing.Finally,the mobile client can get the actualanswer,i.e.,T13,byfiltering out the false positives from thecandidate answers.The algorithmic details of the privacy-aware query proces-sor is beyond the scope of this paper.Interested readers are referred to[31]for more details.6.EXPERIMENTAL RESULTSIn this section,we evaluate and compare the scalabilityand efficiency of the P2P spatial cloaking algorithm in boththe on-demand and proactive modes with respect to the av-erage response time per query,the average number of mes-sages per query,and the size of the returned candidate an-swers from the location-based database server.The queryresponse time in the on-demand mode is defined as the timeelapsed between a mobile client starting to search k−1peersand receiving the candidate answers from the agent.On theother hand,the query response time in the proactive mode is defined as the time elapsed between a mobile client startingto forward its query along with the cloaked spatial regionto the agent and receiving the candidate answers from theagent.The simulation model is implemented in C++usingCSIM[35].In all the experiments in this section,we consider an in-dividual random walk model that is based on“random way-point”model[7,8].At the beginning,the mobile clientsare randomly distributed in a spatial space of1,000×1,000square meters,in which a uniform grid structure of100×100cells is constructed.Each mobile client randomly chooses itsown destination in the space with a randomly determined speed s from a uniform distribution U(v min,v max).When the mobile client reaches the destination,it comes to a stand-still for one second to determine its next destination.Afterthat,the mobile client moves towards its new destinationwith another speed.All the mobile clients repeat this move-ment behavior during the simulation.The time interval be-tween two consecutive queries generated by a mobile client follows an exponential distribution with a mean of ten sec-onds.All the experiments consider one half-duplex wirelesschannel for a mobile client to communicate with its peers with a total bandwidth of2Mbps and a transmission range of250meters.When a mobile client wants to communicate with other peers or the location-based database server,it has to wait if the requested channel is busy.In the simulated mobile environment,there is a centralized location-based database server,and one wireless communication channel between the location-based database server and the mobile。
基于深度强化学习的蒙特卡罗树搜索算法研究
基于深度强化学习的蒙特卡罗树搜索算法研究近年来,机器学习技术在许多领域的应用变得越来越广泛。
深度强化学习作为机器学习领域的一种重要技术,能够在很多问题中取得优秀的结果。
而在游戏领域,蒙特卡罗树搜索算法是一种广泛应用的算法,利用其可以更好地解决棋类游戏中的策略问题,同时也可以应用于其他游戏中。
本文将结合深度强化学习技术和蒙特卡罗树搜索算法,探讨如何将其结合起来,进行有效的游戏策略搜索和预测。
一、蒙特卡罗树搜索算法原理蒙特卡罗树搜索算法是一种基于概率的搜索算法,最初应用于解决彩票、赌博等问题。
后来被应用到棋类游戏中,能够较好地解决策略问题。
该算法基于蒙特卡罗方法,对于待搜索的问题,通过每次模拟和统计游戏结果的方式,得到该问题的结果概率分布。
而蒙特卡罗树搜索算法则在此基础上,进一步将搜索过程中的状态和动作转化为树形结构,以期在搜索过程中更好地控制状态和动作的发展和收敛。
同时,该算法也可以进行一定的深度优化,例如使用置换表、剪枝等技术,进一步提高搜索的效率。
蒙特卡罗树搜索算法可以被看做是一种基于经验的搜索算法,其能够通过模拟实践和统计分析,对待搜索问题进行更加准确和有据的搜索。
很多棋类游戏中的高水平对局,都是利用了蒙特卡罗树搜索算法进行深度搜索和预测,以进行策略的优化。
二、基于深度强化学习的蒙特卡罗树搜索算法蒙特卡罗树搜索算法虽然具备很好的搜索和统计能力,但其在一些复杂的游戏中,往往难以得到较好的结果。
这时,我们可以借助深度强化学习技术,进一步提高搜索的效果和策略的优化。
在利用深度强化学习技术对蒙特卡罗树搜索算法进行优化时,我们可以利用神经网络学习策略模型和价值模型。
对于策略模型而言,我们可以利用神经网络对待搜索状态下的动作进行学习和推断,从而得到一个更优的搜索路径。
而对于价值模型而言,我们可以利用神经网络学习各状态下的预期收益值,从而进行状态价值估计,以确定一定的搜索深度和范围。
深度强化学习技术结合蒙特卡罗树搜索算法的好处在于,它能够更加精确地模拟和估计各状态下的动作决策和收益值。
隐私保护集合交集计算中的科学问题
隐私保护集合交集计算中的科学问题下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!随着互联网和大数据的快速发展,隐私保护问题变得愈发重要。
shamir门限方案
简介Shamir门限方案是一种应用于密码学领域的分散密钥生成和共享方案。
它的主要目的是在多个参与方之间共享一个秘密密钥,并且只有在满足指定门限值条件时才能还原出密钥。
该方案由Adi Shamir于1979年提出,被广泛应用于多方安全计算和分布式系统中。
门限方案的基本原理Shamir门限方案的核心原理是将一个秘密密钥切分成多个部分,并分发给不同的参与方,当满足指定的门限条件时,参与方才能合作将密钥还原出来。
这样做的好处是即使有部分参与方失效或者被攻击,仍然可以保证密钥的安全性。
门限方案的基本思想是通过拉格朗日插值多项式实现。
首先,将门限值确定为k,然后在一个有限域上选择一个随机数作为秘密密钥的常数项。
接下来,通过选择k-1个随机数作为插值多项式的系数,在每个参与方上计算对应的多项式值,并将其作为该参与方的私密分享。
最后,通过任意k个参与方合作运算,可以通过插值多项式重建密钥。
算法流程Shamir门限方案的具体算法流程如下:1.选择一个有限域F,并在该域上确定一个素数p和门限值k。
2.选择一个随机数作为秘密密钥常数项,并生成k-1个随机数作为插值多项式的系数。
3.在每个参与方上计算插值多项式的值,并将其作为私密分享。
4.当需要还原密钥时,任意k个参与方合作,通过插值多项式重建密钥。
安全性分析Shamir门限方案提供了一定程度的安全性保障。
即使有部分参与方受到攻击或者失效,也不会导致密钥的泄露。
这是因为插值多项式的系数是随机选择的,并且需要k个参与方合作才能重建密钥。
然而,该方案并不能解决所有的安全问题。
在密钥分发的过程中,参与方之间需要相互交换信息,这可能会存在安全风险。
因此,在实际应用中,需要结合其他密码学算法,如RSA、椭圆曲线加密等,来进一步提升系统的安全性。
应用场景Shamir门限方案在密码学和分布式系统中有着广泛的应用。
以下是一些典型的应用场景:1.多方安全计算:多个参与方共享一个秘密密钥,用于计算过程中的数据加密和解密操作。
门限算法 shamir c语言实现
门限算法shamir c语言实现摘要:1.门限算法概述2.Shamir 算法简介3.C 语言实现门限算法的过程4.总结正文:1.门限算法概述门限算法是一种基于密码学原理的加密算法,主要用于保护数据的安全性。
在门限算法中,数据会被分为多个部分,每个部分由不同的密钥进行加密。
解密时,需要同时获取所有密钥才能获得原始数据。
这种加密方式的优势在于,即使部分密钥丢失,数据仍然可以保持安全。
2.Shamir 算法简介Shamir 算法是门限算法的一种实现方式,它由以色列密码学家Adi Shamir 于1979 年提出。
Shamir 算法的主要思想是将一个矩阵分解为多个子矩阵的乘积,每个子矩阵对应一个密钥。
解密时,需要将所有子矩阵相乘,得到原始矩阵,从而获得明文。
3.C 语言实现门限算法的过程以下是使用C 语言实现Shamir 算法的示例代码:```c#include <stdio.h>#include <stdlib.h>#define N 4#define K 3int matrix[N][N] = {{1, 2, 3, 4},{5, 6, 7, 8},{9, 10, 11, 12},{13, 14, 15, 16}};int key[K];void multiply_matrices(int matrix1[N][N], int matrix2[N][N]) { int i, j, k;for (i = 0; i < N; i++) {for (j = 0; j < N; j++) {for (k = 0; k < N; k++) {matrix1[i][j] += matrix2[i][k] * matrix1[k][j];}}}}void matrix_transpose(int matrix[N][N]) {int i, j;for (i = 0; i < N; i++) {for (j = 0; j < N; j++) {int temp = matrix[i][j];matrix[i][j] = matrix[j][i];matrix[j][i] = temp;}}}void shamir_algorithm(int matrix[N][N]) {int i, j, k;for (i = 0; i < N; i++) {for (j = 0; j < N; j++) {matrix[i][j] = 0;}}for (k = 0; k < K; k++) {key[k] = rand() % N;}multiply_matrices(matrix, matrix);for (k = 0; k < K; k++) {multiply_matrices(matrix, matrix[key[k]][N]);}matrix_transpose(matrix);}int main() {int i, j;char message[N][N] = "This is a secret message!";int encrypted_message[N][N];shamir_algorithm(encrypted_message);for (i = 0; i < N; i++) {for (j = 0; j < N; j++) {message[i][j] = encrypted_message[i][j] + 1;}}printf("Encrypted message:");for (i = 0; i < N; i++) {for (j = 0; j < N; j++) {printf("%d ", message[i][j]);}printf("");}return 0;}```4.总结本示例使用C 语言实现了Shamir 算法,通过矩阵乘法实现了门限加密。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Algorithmic Randomness of Closed SetsGeorge BarmpaliasSchool of Mathematics,University of LeedsLeeds LS29JTPaul Brodhead,Douglas Cenzer,Seyyed Dashti Department of Mathematics,University of Florida P.O.Box118105,Gainesville,Florida32611email:cenzer@math.ufl.edu fax:352-392-8357Rebecca WeberDepartment of Mathematics,Dartmouth CollegeHanover,NH03755-3551June8,2007AbstractWe investigate notions of randomness in the space C[2N]of nonempty closed subsets of{0,1}N.A probability measure is given and a version of the Martin-L¨o f test for randomness is defined.Π02random closed sets exist but there are no randomΠ01closed sets.It is shown that any randomclosed set is perfect,has measure0,and has box dimension log243.Arandom closed set has no n-c.e.elements.A closed subset of2N may bedefined as the set of infinite paths through a tree and so the problem ofcompressibility of trees is explored.If T n=T∩{0,1}n,then for anyrandom closed set[T]where T has no dead ends,K(T n)≥n−O(1)butfor any k,K(T n)≤2n−k+O(1),where K(σ)is the prefix-free complexityofσ∈{0,1}∗..1IntroductionThe study of algorithmic randomness has been of great interest in recent years. The basic problem is to quantify the randomness of a single real number;here The authors wish to thank Jack Lutz and Joe Miller for helpful discussions,and the referee for comments that greatly improved the paper.Much of the contents of this paper was discussed during the AIM workshop on Effective Randomness in August,2006.A preliminary version of this paper appeared in the Proceedings of CIE2006[2]Research partially supported by National Science Foundation grants DMS0532644, 0554841and0652732.Keywords:Computability,Randomness,Π01Classes1we will extend this problem to the randomness of the set of paths through a finitely-branching tree.Early in the last century,von Mises [30]suggested that a random real should obey reasonable statistical tests,such as having a roughly equal number of zeroes and ones of the first n bits,in the limit.Thus a random real would be stochastic in modern parlance.If one considers only computable tests,then there are countably many and one can construct a real satisfying all tests.An early approach to randomness was through betting.Effective betting on a random sequence should not allow one’s capital to grow unboundedly.The betting strategies used are constructive martingales,introduced by Ville [29]and implicit in the work of Levy [21],which represent fair double-or-nothing gambling.Martin-L¨o f [23]observed that stochastic properties could be viewed as special kinds of measure zero sets and defined a random real as one which avoids certain effectively presented measure 0sets.That is,a real x ∈2N is Martin-L¨o f randomif for every effective sequence S 1,S 2,...of c.e.open sets with µ(S n )≤2−n ,x /∈ n S n .It is easy to see that this is equivalent to the condition that we get if we replace 2−n above with q n for a computable sequence (q i )of rationals such that lim i q i =0.At the same time Kolmogorov [17]defined a notion of randomness for fi-nite strings based on the concept of incompressibility .The stronger notion of prefix-free complexity was developed by Levin [20],G´a cs [16]and Chaitin [9]and extended to infinite words.Schnorr later proved [26]that the notions of constructive martingale randomness,Martin-L¨o f randomness,and prefix-free randomness are equivalent.In this paper we want to consider algorithmic randomness on the space C of nonempty closed subsets P of 2N .Some definitions are needed.Fix a finite alphabet A ={0,1,...,k −1}=k ;we will make use of the alphabets {0,1}and {0,1,2}.For a finite string σ∈A n ,let |σ|=n .Let λdenote the empty string,which has length 0.A word (a )of length 1is may be identified with the symbol a .For two strings σ,τ,say that τextends σand write σ τif |σ|≤|τ|and σ(i )=τ(i )for i <|σ|.Similarly σ x for x ∈2N means that σ(i )=x (i )for i <|σ|.Let σ τdenote the concatenation of σand τ.Let X n =(x (0),...,x (n −1)).Now a nonempty closed set P may be identified with a tree T P ⊆A ∗as follows.For a finite string σ,let I (σ)denote {x ∈2N :σ⊂x }.Then T P ={σ:P ∩I (σ)=∅}.Note that T P has no dead ends,that is if σ∈T P then either σ 0∈T P or σ 1∈T P .For an arbitrary tree T ⊆A ∗,let [T ]denote the set of infinite paths through T ,that is,x ∈[T ]⇐⇒(∀n )x n ∈T.It is well-known that P ⊆2N is a closed set if and only if P =[T ]for some tree T .P is a Π01class,or effectively closed set,if P =[T ]for some computabletree T .Note that if P is a Π01class,then T P is a Π01set,but not in generalcomputable.P is said to be a decidable Π01class if T P is computable.P is said tobe a strong Π02class ,if T P is a Π02set,or equivalently if P =[T ]for some ∆02tree;2P is said to be a strong∆02class if T P is∆02.Thus anyΠ01class is also a strong ∆02class.Any decidableΠ01class contains a computable element(in particular the leftmost and rightmost paths)and similarly any strong∆02class contains a∆02element.On the other hand,there existΠ01classes with no computable elements and strongΠ02classes with no∆02elements.The complement of aΠ01 class is sometimes called a c.e.open set.There is a natural effective enumeration P0,P1,...of theΠ01classes and thus an enumeration of the c.e.open sets.Thus we can say that a sequence S0,S1,...of c.e.open sets is effective if there is a computable function,f,such that S n=2N−P f(n)for all n.For a detailed development ofΠ01classes,see[7] or[8].For background and terminology on computable functions and computably enumerable sets,see[27].The betting approach to randomness is formalized as follows:Definition1.1(Ville[29]).(i)A martingale is a function m:k<ω→[0,∞)such that for allσ∈k<ω,m(σ)=1kk−1i=0m(σ i).(ii)A martingale m succeeds on X∈k N iflim supn→∞d(X n)=∞.That is,the betting strategy results in an unbounded amount of money made on the k-ary infinite sequence X.(iii)The success set of m is the set S∞[m]of all sequences on which m succeeds.That is,a martingale on2<ωis the capital function of a fair double-or-nothing betting strategy.When working on3<ωthe strategy is triple-or-nothing. Definition1.2.A martingale m is constructive(effective,c.e.)if it is lower semi-computable;that is,if there is a computable functionˆm:k<omega×N→Q such that(i)for allσand t,ˆm(σ,t)≤ˆm(σ,t+1)<m(σ),and(ii)for allσ,lim t→∞ˆm(σ,t)=m(σ).In other words,m(w)is approximated from below by rationals uniformly in w.A sequence in k N is constructive martingale random if no constructive martingale succeeds on it.Someflexibility may be gained by also considering nonmonotonic martin-gales;i.e.,martingales which bet on the bits of a sequence out of order.While for a monotonic martingale only the amount of the next bet is determined from the bits seen previously,for a nonmonotonic martingale both the amount and3the location of the next bet are determined from the bits seen previously (the next bit may precede them,follow them,or lie in the middle).These martingales must obey two rules:the standard fair-betting rule that monotonic martingales obey,and the rule that they never bet on the same bit twice.We refer the reader to Downey and Hirschfeldt [11]for the formal definition.Although a priori allowing nonmonotonic martingales strengthens the no-tion of randomness,since more strategies must be defeated,in fact in the c.e.case they are equivalent.Muchnik,Semenov,and Uspensky [24](Theorem 8.9)show that ML-random sequences defeat all computable nonmonotonic martin-gales (in fact they show this with respect to general measures,not just the coin-toss measure).The proof does not depend on the computability of the martingale,however;the martingale is used to define a Martin-L¨o f test which may be enumerated equally well alongside the enumeration of the martingale.Therefore,as defeating all c.e.nonmonotonic martingales is clearly sufficient to be ML-random,the two are equivalent.Prefix-free randomness for reals is defined as follows.A Turing machine M which takes inputs from A ∗,where A is a finite alphabet,is called prefix-free if it has prefix-free domain dom (M );that is,if σ τare strings in dom (M ),then σmust equal τ.For any finite string τ,the prefix-free complexity of τwith respect to M isK M (τ)=min {|σ|,∞:M (σ)=τ}.There is a universal prefix-free function U such that,for any prefix-free M ,there is a constant c such that for all τK U (τ)≤K M (τ)+c.We let K (τ)=K U (τ)and call it the prefix-free complexity of τ.Then x is called prefix-free random if there is a constant c such that K (x n )≥n −c for all n .This means that the initial segments of x are not compressible .The equivalence of these three notions of randomness (via tests,betting or incompressibility)is a result of Schnorr [26]and is a fundamental result in the theory of algorithmic randomness.While these definitions and results are usually given for binary strings and sequences,they carry over to k -ary strings and sequences as well.See for example Calude [5,6].The following lemma will be needed.Lemma 1.3.If P is a Π01class of measure 0,then P has no random elements.Proof.Let T be a computable tree such that P =[T ],and for each n ,letP n = {I (σ):σ∈T ∩{0,1}n }.Then {P n }n ∈N is an effective sequence ofclopen sets with P = n P n and lim n µ(P n )=µ(P )=0.Furthermore,µ(P n )=2−n |T ∩{0,1}n |and is therefore a computable sequence.Thus {P n }n ∈N is a Martin-L¨o f test,showing that P has no random elements.We will want to use the following result from the literature [30].4Theorem1.4(Von-Mises–Church–Wald Computable Selection The-orem).For any random sequence x and any computable1-1function g,the sequence z(n)=x(g(n))is random.2Martin-L¨o f Randomness of Closed SetsIn this section,we define a measure on the space C of nonempty closed subsets of2N and use this to define the notion of randomness for closed sets.We then obtain several properties of random closed sets.An effective one-to-one correspondence between the space C and the space 3N is defined as follows.Let a closed set Q be given and let T=T Q be the tree without dead ends such that Q=[T].Define the code x=x Q∈{0,1,2}N for Q as follows.Letλ=σ0,σ1,σ2,... enumerate the elements of T in order,first by length and then lexicographically. We now define x=x Q=x T by recursion as follows.For each n,x(n)=2if σ n0andσ n1are both in T,x(n)=1ifσ n0/∈T andσ n1∈T and x(n)=0 ifσ n0∈T andσ n1/∈T.For example,if Q={0,1}N,then x Q=(2,2,...) and if Q={y},then x Q=y.Let Q x denote the unique closed set Q such that x Q=x.Now define the measureµ∗on C byµ∗(X)=µ({x Q:Q∈X}).Informally this means that givenσ∈T Q,there is probability13that bothσ 0∈T Q andσ 1∈T Q and,for i=0,1,there is probability13that onlyσ i∈T Q.In particular,this means that Q∩I(σ)=∅implies that for i=0,1,Q∩I(σ i)=∅with probability23.Let us comment briefly on why some other natural representations were re-jected.Supposefirst that we simply enumerate all strings in{0,1}∗asσ0,σ1,... and then represent T by its characteristic function so that x T(n)=1⇐⇒σn∈T.Then in general a code x might not represent a tree.That is,once we have (01)/∈T we cannot later decide that(011)∈T.Suppose then that we allow the empty closed set by using codes x∈{0,1,2,3}∗and modify our original definition as follows.Let x(n)=i have the same definition as above for i≤2 but let x(n)=3mean that neitherσ n0norσ 1is in rmally,thiswould mean that for i=0,1,σ∈T implies thatσ i∈T with probability12.The advantage here is that we can now represent all trees.But this is also a disadvantage,since for a given closed set P,there are many different trees T with P=[T].The second problem with this approach is that we would have [T]=∅with positive probability.We briefly return to this subject in Section6.Now we will say that a closed set Q is(Martin-L¨o f)random if the code x Q is Martin-L¨o f random.This definition clearly relativizes to any oracle in accordance with the definitions of relative randomness in the Cantor space. Since random reals exist,it follows that random closed sets exists.Furthermore, there are∆02random reals,so we have the following.5Theorem 2.1.There exists a random closed set Q such that TQ is ∆02.Note that if T Q is ∆02,then Q must contain ∆02elements (in particular theleftmost path).Since there exist strong Π02classes with no ∆02elements,thereare strong Π02classes Q such that T Q is not ∆02.The following lemma will be needed throughout.Lemma 2.2.For any Q ⊆2N which is either closed or open,µ∗({P :P ⊆Q })≤µ(Q ).Proof.Let P C (Q )denote {P :P ⊆Q }.We first prove the result for nonempty clopen sets U in place of Q by the following induction.Suppose U = σ∈S I (σ),where S ⊆{0,1}n .For n =1,either µ(U )=1=µ∗(P C (U ))or µ(U )=12and µ∗(P C (Q ))=13.For the induction step,let S i ={σ:i σ∈S },letU i = σ∈S i I (σ),let u i =µ(U i )and let v i =µ∗(P C (U i )),for i =0,1.Then considering the three cases in which S includes both initial branches or just one,we calculate that µ∗(P C (U ))=13(v 0+v 1+v 0v 1).Thus by induction we haveµ∗(P C (U ))≤13(u 0+u 1+u 0u 1).Now2u 0u 1≤u 20+u 21≤u 0+u 1,and thereforeµ∗(P C (U ))≤13(u 0+u 1+u 0u 1)≤12(u 0+u 1)=µ(U ).For a closed set Q ,let Q = n U n ,where U n is clopen and U n +1⊆U n for alln .Then P ⊂Q if and only if P ⊆U n for all n .ThusP C (Q )= n P C (U n ),so thatµ∗(P C (Q ))=lim n →∞µ∗(P C (U n ))≤lim n →∞µ(U n )=µ(Q ).Finally,for an open set Q ,let Q = n U n be the union of an increasing sequenceof clopen sets U n .Then,by compactness,P C (Q )= nP C (U n ),so thatµ∗(P C (Q ))=lim n →∞µ∗(P C (U n ))≤lim n →∞µ(U n )=µ(Q ).This completes the proof of the lemma.6Next we will consider the intersection of a random closed set with an interval I(σ)and the disjoint union of random closed sets.First recall van Lambalgen’s theorem.Theorem2.3(van Lambalgen[28]).The following are equivalent.1.A⊕B is n-random.2.A is n-random and B is n-A-random.3.B is n-random and A is n-B-random.4.A is n-B-random and B is n-A-random.Let us call the coding of a closed set Q by the nodes of its representative tree with no dead ends the canonical code of Q.We wish now to introduce a second method of coding,the ghost code.A ghost code of Q is an infinite ternary string whose terms correspond to all nodes of2<ωin lexicographical order.The terms corresponding to the nodes of Q’s tree(the“canonical nodes”)agree with the corresponding terms in the canonical code;the remaining“ghost nodes”may hold any values.Ghost codes are non-unique,and every closed set has a non-random ghost code(if the closed set itself is random take the code with ghost nodes all equal to zero,say).This method of coding is more convenient for some purposes;for example,we will use it to show that if Q0,Q1are closed sets and Q={0 x:x∈Q0}∪{1 x:x∈Q1},Q is random if and only if the Q i are random relative to each other.The utility of the ghost codes rests on the following correspondence.Theorem2.4.The canonical code of a closed set Q⊆2N is random if and only if Q has some random ghost code.Furthermore,for any y,the canonical code r is y-random if and only if Q has a ghost code which is y-random. Proof.(⇐)Suppose the canonical code of Q is nonrandom.Then there is a c.e. martingale m that succeeds on it.From any initial segmentσof a ghost code g for Q,the subsequenceˆσof exactly the canonical nodes ofσis computable. Therefore it is computable whether the bit of g afterσis canonical or ghost. From m,define the martingale m which bets as follows:m (σ i)=m(ˆσ i)next bit is a canonical node m (σ)next bit is a ghost node.That is,m holds its money on ghost nodes and bets identically to m on canon-ical nodes.It is clear that m succeeds on the ghost code g and thus g is nonrandom.(⇒)Now suppose the canonical code r for Q is random,and let q be an infinite ternary string that is random relative to r(and so by Theorem2.3r⊕q is random).We claim the ghost code g obtained by using the bits of r as the canonical nodes and the bits of q in their original order as the ghost nodes is random.It is clear that g is a ghost code for Q.7Suppose m is a c.e.martingale that bets on g.From m it is straightforward to define a nonmonotonic martingale m which mimics m’s bets exactly but performs them on r⊕q,succeeding whenever m succeeds.As r and q were chosen to be relatively random,this will show g is random.As discussed previously,from g n it is computable whether g(n)will be a ghost node or a canonical node,and which position in g or r it occupies in either case.Therefore,assuming the bits seen so far may be assembled into an initial segmentσof g,m takes the values m(σ i),i<3,as its bets on the corresponding bit of r or g,whichever is appropriate.Having seen that bit,then,it can assemble a(|σ|+1)-length initial segment of g and repeat the process.As m makes identical bets to m and has identical outcomes,since it cannot succeed on r⊕g,m cannot succeed on g and g is random.To relativize(⇒),suppose that r is y-random,so that r⊕y is random by Van Lambalgen’s Theorem2.3.Then in the proof simply choose q to be random relative to r⊕y,and then g will be random relative to y.The other direction relativizes in a straightforward way.The primary purpose of the ghost codes is to remove the dependence on the particular closed set under discussion when interpreting bits of the code as nodes of the tree.This is especially useful when subdividing the tree,as in the following definition.Definition2.5.The tree join of closed sets P0and P1is the closed setQ={0 x:x∈P0}∪{1 x:x∈P1}.Given ghost codes r0,r1for the P i,their tree join r0 r1is the code for Q with the corresponding ghost node values.The standard recursion-theoretic join is defined byr0⊕r1=(r0(0),r1(0),r0(1),r1(1),...).We wish to relate the recursion-theoretic join and the tree join.Lemma2.6.Given two ghost codes r0,r1,the tree join r0 r1is random if and only if the recursion theoretic join r0⊕r1is random.Proof.It is clear that there is a computable permutationπwhich uniformly maps any tree join r0 r1to the recursion-theoretic join r0⊕r1.That is,in r0⊕r1,the entries of r0and r1alternate,whereas r0 r1starts with a2,followed by blocks from r0and r1,as follows.First r0(0),r1(0),then r0(1),r0(2),r1(1), r1(2),and continuing with pairs of blocks of size4,8and so on.The result now follows from the Von-Mises–Church–Wald Computable Selection Theorem 1.4.We now obtain the following corollary of Theorems2.3and2.4and Lemma 2.6.8Corollary2.7.Suppose P i,i=0,1,are closed sets with canonical codes r iand let P be the tree join of P0,P1.Then P is random if and only if r0⊕r1israndom.Proof.(⇐)Suppose that r0⊕r1is random.Then by Theorem2.3,r0and r1are mutually relatively random.By Theorem2.4,P0has a ghost code g0whichis random relative to r1,and so also vice-versa,and then P1has a ghost codeg1which is random relative to g0.Again by2.3,the recursion-theoretic joing0⊕g1is random,so by Theorem2.6the tree join g0 g1is also random,and hence P possesses a random ghost code and is random.(⇒)Suppose now that P is random,and therefore possesses a random ghost codeg.The code g may be thought of as a tree join g0 g1,which is therefore random, and so by Theorem2.6,g0⊕g1is random.By Theorem2.3,the individual codes g0,g1are therefore mutually relatively random.Now by the relatived version of Theorem2.4,r0is random relative to g1.But r1is computable from g1and hence r0is random relative to r1as well.Similarly,r1is r0-random and thus, again by2.3,r⊕r1is random.3Members of Random Closed SetsFor anyfinite stringσof length n,the probability that a closed set Q meetsI(σ)is(23)n.For a computable real y,the sqeuence{Q:Q∩I(y n)=∅}thus forms a Martin-L¨o f test in the space C of closed sets,which shows that y does not belong to any Martin-L¨o f random closed set.That is,for each n,{x:Q x∩I(y n)=∅}is a c.e.open set and has measure(23)n in{0,1,2}N,where Q x is the closed set with code x.We omit the details,since we will now prove a stronger result.For any computable,non-decreasing function f,we say that a realβ∈{0,1}N is f-c.e.if there exists a computable approximating functionφsuch that,for all i∈N,(i)φ(i,0)=0;(ii)lim sφ(i,s)=β(i);(iii){s:φ(i,s+1)=φ(i,s)}has cardinality≤f(i).The reals which are f-c.e.for some computable function f are part of the well-known Ershov hierarchy[14,27].Theorem 3.1.Suppose that f is computable and bounded by a polynomial. Then no random closed set has any f-c.e.paths.Proof.Let f be as above,βan f-c.e.real and P a closed set containingβ.Let φbe the f-approximating function forβ.Also let M n⊆{0,1}n be the set of differentφ-approximations toβ n during the stages.9A priori,|M n |is exponential.However,for a fixed n ,β n can change at most i<n f (i )times,so |M n |is also bounded by a polynomial,i.e.there is k ∈N such that for almost all n ,|M n |<n k .Now letS n = σ∈M n{P |P ∈C &P ∩I (σ)=∅}.(1)Then (S n )is a uniformly c.e.sequence of open sets in the space C of closed sets of 2N and for all n ,P ∈S n .Also for almost all n ,µ∗(S n )≤ σ∈M nµ∗({P |P ∈C &P ∩I (σ)=∅})=|M n |· 23 n ≤n k · 23 n .Since lim n [n k ·(23)n ]=0there is a computable subsequence of (S n )which is aMartin-L¨o f test and so P is notrandom.For any K -trivial real A and any unbounded nondecreasing computable function h ,A is h -c.e.(Nies [25]).Thus it follows from Theorem 3.1that a random closed set can have no K -trivial paths.We observe that Theorem 3.1cannot be extended to ω-c.e.in general,because there are left-c.e.(and hence ω-c.e.)random reals,and by Theorem 3.9each of these belongs to a random closed set.The following theorem uses a method which was used in [18]to show that every random real is effectively bi-immune.Theorem 3.2.If Q is a random closed set,then Q has no isolated elements.Proof.Let Q =[T ]and suppose by way of contradiction that Q contains an isolated path x .Then there is some node σ∈T such that Q ∩I (σ)={x }.For each n ,letS n ={P ∈C :|{τ∈{0,1}n :P ∩I (σ τ)=∅}|=1}.That is,P ∈S n if and only if the tree T P has exactly one extension of σof length n +|σ|.It follows that|P ∩I (σ)|=1⇐⇒(∀n )P ∈S nNow for each n ,S n is a clopen set in C and again by induction,S n has measure (23)n .Thus the sequence S 0,S 1,...is a Martin-L¨o f test.It follows that for some n ,Q /∈S n .Thus there are at least two extensions in T Q of σof length n +|σ|,contradicting the assumption that x was the unique element of Q ∩I (σ).Corollary 3.3.If Q is a random closed set,then Q is perfect and hence has continuum manyelements.Theorem 3.4.Every random closed set contains a random element.10Proof.Suppose that a closed set Q has no random element and consider the following Martin-L¨o f test on the space C:U i={P|P∈C and P⊆V i}where(V i)is a universal Martin-L¨o f test on the Cantor space.By Lemma2.2,µ∗(U i)≤µ(V i)≤2−i so that(U i)is a Martin-L¨o f test on C.But Q∈∩i U i,so Q is notrandom.The previous results might suggest that every element of a random closed set is a random real.However,it turns out that every random closed set contains a non-random real.We need the following classic result of Chernoff[10](a version of Bernoulli’s Weak Law of Large Numbers)here and also for another theorem to follow.See [22]for an exposition.Lemma3.5(Chernoff).Let E be an event which we will refer to as‘success’. If E occurs with probability p,then for any natural numbers n and anyεwith 0≤ε≤1,the probability that out of n mutually independent trials,the number of successes differs from pn by>εpn is≤2−ε2pn/3.Theorem3.6.Not every element of a random closed set is random;in partic-ular,the leftmost and rightmost paths in a random closed set are not random reals.Proof.We will show that,for a random closed set Q,the leftmost path is notstochastically random,that is,the asymptotic frequency of0’s is23.Since aneffectively random real in2N must have asymptotic frequence of12for0’s and1’s,this will suffice to prove that the leftmost path is not random.We define a Martin-L¨o f test as follows.Fix a rationalεsuch that0<ε<1.For each n,let S n be the family of closed sets(that is,codes for closed sets)such that thefirstn bits of the leftmost path have either<23(1−ε)n,or>23(1+ε)n occurrencesof0.By the definition of our probability measure,we haveµ∗(S n)=|m−23n|>23εnnm23m13n−m.It now follows from Chernoff’s Lemma3.5thatµ∗(S n)≤2e−ε22n/9.Thus the measures of the test sets S n have effective limit zero.It is easy to see that the sequence{S n}is computably enumerable.For each n,S n is a clopen set and in fact the union of thefinite family of intervals I(σ)in C such thatσcodes a tree up to level n in which the leftmost path has either<23(1−ε)n,or>23(1+ε)n occurrences of0.Furthermore,S n=p≥nS p is also a Martin-L¨o f test.It follows that for anyrandom closed set Q,and anyε>0,there is an n such that for all m≥n,thefrequency of0’s in thefirst m bits of the leftmost path is always withinεof23.Thus the leftmost path is not effectively random.11Recall that the leftmost and rightmost elements of any strong∆02closed set are∆02.Given Theorems3.4and3.6,we ask:Does a∆02random closed set contain a∆02random path?Theorem3.7.Every random strong∆02closed set contains a random∆02real. Proof.Let Q be a random strong∆02class.By Theorem3.4,Q contains a random real x.Let P be aΠ01class in the Cantor space which contains only randoms and contains x(this exists since the class of random reals is an effective union ofΠ01classes).Note that P∩Q is a non-empty strong∆02class and it follows that the leftmost path of P∩Q is a∆02real which must be random since it belongs to P.Note that the above theorem does not combine with the low basis theorem to establish the existence of a low random real in any random strong∆02class. Thus we pose the question of whether for any random closed set Q,if T Q is low, then Q has a low random element.Next we want tofind a random closed set which does not contain a∆02path. Now it is easy[7,8]to construct a strongΠ02class P of positive measure which contains no∆02elements;of course P must contain a random real since it has measure1.The difficult problem is to construct a random strongΠ02class with no∆02elements.We have the following result in this direction,which yields a random strong∆03closed set with no∆02elements.Theorem3.8.For any set A there is an A-random closed set Q such that T Q≤T A but Q has no elements≤T A .Proof.It is enough if we prove the claim for A=∅because the argument relativises to any oracle A in a straightforward way.For A=∅we use afinite injury construction over∅ to construct Q with the above properties.In the construction we will∅ -approximate the canonical code of a tree T which has no∆02paths.To make sure that the tree T is random wefix aΠ01class P of positive measure in the space3N(where the code for T lies)which contains only randoms,and we make sure that at every stage our approximation(as afinite ternary string)to T’s canonical code can be extended to a path in P.Then by compactness the canonical code of our tree will be in P and so the tree will be random.The changes in the approximations are motivated by the requirements: R e:ifΦ∅ e is total then the real it defines is not in[T].Letαs be afinite string approximation of the canonical codeαwe are building. We will have|αs|=s.Strategy R e will come into power after stage e and will restrainαup to some r e≥e(the default value is r e[0]=e).Also it might request some changes inαafter the e-th bit.We start withα0=∅and at stage s+1,assuming inductively thatαs↓and[αs]∩P=∅we ask for the least i<s such that R i requires attention.This happens if(i)The longest defined initial segmentτofΦ∅is larger than ever before;i,s+112。