第13讲小升初数论重点考查内容————约数与倍数——完全平方数
小升初数学复习知识点:约数与倍数
2019年小升初数学复习知识点:约数与倍数约数与倍数约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。
公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。
最大公约数的性质:1、几个数都除以它们的最大公约数,所得的几个商是互质数。
2、几个数的最大公约数都是这几个数的约数。
3、几个数的公约数,都是这几个数的最大公约数的约数。
4、几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m。
例如:12的约数有1、2、3、4、6、12;18的约数有:1、2、3、6、9、18;那么12和18的公约数有:1、2、3、6;那么12和18最大的公约数是:6,记作(12,18)=6;求最大公约数基本方法:1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。
2、短除法:先找公有的约数,然后相乘。
3、辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数。
公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。
12的倍数有:12、24、36、48……;18的倍数有:18、36、54、72……;那么12和18的公倍数有:36、72、108……;那么12和18最小的公倍数是36,记作[12,18]=36;最小公倍数的性质:1、两个数的任意公倍数都是它们最小公倍数的倍数。
2、两个数最大公约数与最小公倍数的乘积等于这两个数的乘积。
课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。
为什么?还是没有彻底“记死”的缘故。
要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。
可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。
这样,一年就可记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。
2019-2020-分析小升初数学约数与倍数相关知识点-优秀word范文 (2页)
2019-2020-分析小升初数学约数与倍数相关知识点-优秀word范文
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!
== 本文为word格式,下载后可方便编辑和修改! ==
分析小升初数学约数与倍数相关知识点
为了能更好更全面的做好复习和迎考准备,确保将所涉及的考点全面复习到位,让孩子们充满信心的步入考场,现特准备了约数与倍数相关知识点。
约数与倍数
约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。
公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。
最大公约数的性质:
1、几个数都除以它们的最大公约数,所得的几个商是互质数。
2、几个数的最大公约数都是这几个数的约数。
3、几个数的公约数,都是这几个数的最大公约数的约数。
4、几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公
约数乘以m。
例如:12的约数有1、2、3、4、6、12;
18的约数有:1、2、3、6、9、18;
那么12和18的公约数有:1、2、3、6;
那么12和18最大的公约数是:6,记作(12,18)=6;
求最大公约数基本方法:
1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。
2、短除法:先找公有的约数,然后相乘。
小升初数论必考知识点归纳
小升初数论必考知识点归纳数论是数学中研究整数性质的分支,对于小升初的学生来说,掌握数论的基础知识是非常重要的。
以下是一些小升初数论的必考知识点归纳:1. 整数和自然数:理解整数包括正整数、负整数和0,自然数则是从1开始的正整数。
2. 奇数和偶数:能够识别奇数(不能被2整除的整数)和偶数(能被2整除的整数)。
3. 质数和合数:质数是指只有1和它本身两个因数的大于1的自然数,合数则是有其他因数的自然数。
4. 最大公约数和最小公倍数:理解最大公约数(两个或多个整数共有约数中最大的一个)和最小公倍数(能够被几个整数整除的最小正整数)的概念,并掌握求法。
5. 因数和倍数:理解一个数的因数是能够整除该数的所有整数,倍数则是该数的整数倍。
6. 数的整除性:掌握整除的概念,即如果一个整数a除以另一个整数b(b≠0),得到的商是整数且没有余数,我们就说a能被b整除,或b能整除a。
7. 分解质因数:将一个合数写成几个质数相乘的形式,这个过程称为分解质因数。
8. 完全平方数:如果一个数可以表示为某个整数的平方,那么这个数就是完全平方数。
9. 数位和位数:理解数位是指数字在数中的位置,位数是指一个数包含的数位的个数。
10. 带余除法:掌握带余除法的概念,即除法运算中除不尽时的余数。
11. 同余:如果两个整数除以同一个数得到的余数相同,那么这两个整数是同余的。
12. 等差数列:理解等差数列的概念,即每一项与前一项的差是一个常数。
13. 奇偶性规律:掌握一些基本的奇偶性规律,如奇数加奇数等于偶数,偶数加偶数等于偶数,奇数乘以奇数等于奇数等。
14. 数的进位制:了解不同进位制的基本概念,例如十进制、二进制等。
15. 约数个数的计算:掌握如何根据一个数的质因数分解来计算它的约数个数。
通过这些知识点的学习,学生可以更好地理解整数的性质,为进一步学习数学打下坚实的基础。
在实际的学习过程中,不仅要理解这些概念,还要通过大量的练习来加深理解并提高解题能力。
新小升初数学知识点倍数与约数
新小升初数学知识点倍数与约数
为大家整理了小升初数学知识点倍数与约数,希望对大家有所帮助和练习。
并祝各位同学在考试中取得好成绩!!!。
最大公约数:几个数公有的约数,叫做这几个数的公约数。
公因数有有限个。
其中最大的一个叫做这几个数的最大公约数。
最小公倍数:几个数公有的倍数,叫做这几个数的公倍数。
公倍数有无限个。
其中最小的一个叫做这几个数的最小公倍数。
互质数:公约数只有1的两个数,叫做互质数。
相临的两个数一定互质。
两个连续奇数一定互质。
1和任何数互质。
通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。
(通分用最小公倍数)
约分:把一个分数的分子、分母同时除以公约数,分数值不变,这个过程叫约分。
最简分数:分子、分母是互质数的分数,叫做最简分数。
分数计算到最后,得数必须化成最简分数。
质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。
1不是质数,也不是合数。
质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。
分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。
初中数学知识归纳倍数和约数的概念与计算
初中数学知识归纳倍数和约数的概念与计算初中数学知识归纳:倍数和约数的概念与计算在初中数学学习中,倍数和约数是一个非常重要的概念。
本文将对倍数和约数的概念进行归纳,并介绍如何计算倍数和约数。
一、倍数的概念与计算1. 倍数的概念倍数是指一个数能够被另一个数整除,即这个数是另一个数的整数倍。
通俗来说,如果一个数能够被另一个数整除,那么这个数就是另一个数的倍数。
2. 倍数的计算方法要计算一个数的倍数,可以通过将这个数不断地加上自身,直到满足条件为止。
例如,计算4的倍数,可以开始从4开始不断加上4,直到满足条件。
依次计算得到的结果为4、8、12、16...3. 判断是否是倍数在判断一个数是否是另一个数的倍数时,可以通过判断能否整除来得出结论。
如果一个数能够整除另一个数,则它就是它的倍数。
例如,判断8是否是4的倍数,可以计算8÷4,如果结果为整数且余数为0,则8是4的倍数。
二、约数的概念与计算1. 约数的概念约数是指能够整除一个数的数,即能够整除一个数且结果为整数的数。
通俗来说,如果一个数能够被另一个数整除,那么这个数就是另一个数的约数。
2. 约数的计算方法要计算一个数的约数,可以列举所有能够整除这个数的数。
例如,计算12的约数,可以列举1,2,3,4,6,12。
这些数都能够整除12,所以它们是12的约数。
3. 判断是否是约数在判断一个数是否是另一个数的约数时,可以通过判断能否整除来得出结论。
如果一个数能够整除另一个数,则它就是它的约数。
例如,判断3是否是12的约数,可以计算12÷3,如果结果为整数且余数为0,则3是12的约数。
三、倍数和约数的关系与应用1. 倍数与约数的关系倍数和约数是密切相关的概念。
如果一个数是另一个数的倍数,那么另一个数就是这个数的约数。
例如,如果12是3的倍数,那么3就是12的约数。
2. 倍数和约数的应用倍数和约数在实际问题中有广泛应用。
例如,在分配苹果时,如果总数是12,每份是3个,那么12就是3的倍数,而3就是12的约数。
数论专题讲义
数论专题讲义数论专题数论主要分以下几个模块:1、数的整除问题2、质数合数与分解质因数3、约数与倍数4、余数问题5、奇数与偶数6、位值原理7、完全平方数8、数字谜问题一、整除问题1. 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2. 一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.【备注】(以上规律仅在十进制数中成立.)性质1 如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果c��a,c��b,那么c��(a±b).性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b�Oa,c�Ob,那么c�Oa.用同样的方法,我们还可以得出:性质3 如果数a能被数b与数c的积整除,那么a也能被b和c整除.即如果bc�Oa,那么b�Oa,c�Oa.性质4 如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b1 / 10与c的乘积整除.即如果b�Oa,c�Oa,且(b,c)=1,那么bc�Oa.性质5 如果数a能被数b整除,那么am也能被bm整除.如果 b|a,那么bm|am (m为非0整数);性质6 如果数a能整除数b,且数c能被数d整除,那么ac也能整除bd,如果 b|a ,且d|c ,那么bd|ac;1、整除判定特征如果六位数1992□□能被105整除,那么它的最后两位数是多少?2、数的整除性质应用要使15abc6能被36整除,而且所得的商最小,那么a,b,c分别是多少?3、整除综合性问题已知:23!?258D20C67388849766AB000.则DCB?A??二、质数合数与分解质因数一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数).一个数除了1和它本身,还有别的约数,这个数叫做合数.要特别记住:0和1不是质数,也不是合数.质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数. 互质数:公约数只有1的两个自然数,叫做互质数.分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.a3aka2何一个大于1的自然数n都可以写成质数的连乘积,即:n?p1a1?p2其中为?p3???pk质数,a1?a2????ak为自然数,并且这种表示是唯一的.该式称为n的质因子分解式.1、质数合数的基本概念的应用如果a,b均为质数,且3a?7b?41,则a?b?______.2、分解质因数在面前有一个长方体,它的正面和上面的面积之和是209,如果它的长、宽、高都是质数,那么这个长方体的体积是多少?3、质数合数综合型题目P是质数,P?10,P?14,P?102都是质数.求P是多少?2 / 10三、约数与倍数0被排除在约数与倍数之外①分解质因数法:先分解质因数,然后把相同的因数连乘起来.例如:231?3?7?11,252?22?32?7,所以(231,252)?3?7?21;21812②短除法:先找出所有共有的约数,然后相乘.例如:396,所以(12,18)?2?3?6;32③辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数.用辗转相除法求两个数的最大公约数的步骤如下:先用小的一个数除大的一个数,得第一个余数;再用第一个余数除小的一个数,得第二个余数;又用第二个余数除第一个余数,得第三个余数;这样逐次用后一个余数去除前一个余数,直到余数是0为止.那么,最后一个除数就是所求的最大公约数.(如果最后的除数是1,那么原来的两个数是互质的).?315例如,求600和1515的最大公约数:1515?600?2;600?315?1?285;315?285?1?30;285?30?9?15;30?15?2?0;所以1515和600的最大公约数是15.①几个数都除以它们的最大公约数,所得的几个商是互质数;②几个数的公约数,都是这几个数的最大公约数的约数;③几个数都乘以一个自然数n,所得的积的最大公约数等于这几个数的最大公约数乘以n.先把带分数化成假分数,其他分数不变;求出各个分数的分母的最小公倍数a;求出各b个分数的分子的最大公约数b;即为所求.a①分解质因数的方法;例如:231?3?7?11,252?22?32?7,所以?231,252??22?32?7?11?2772;②短除法求最小公倍数;21812例如:396 ,所以?18,12??2?3?3?2?36;32a?b.(a,b)③[a,b]?①两个数的任意公倍数都是它们最小公倍数的倍数.②两个互质的数的最小公倍数是这两个数的乘积.③两个数具有倍数关系,则它们的最大公约数是其中较小的数,最小公倍数是较大的数.先将各个分数化为假分数;求出各个分数分子的最小公倍数a;求出各个分数分母的35[3,5]15b?最大公约数b;即为所求.例如:[,]?412(4,12)4a注意:两个最简分数的最大公约数不能是整数,最小公倍数可以是整数.例如:两个自然数分别除以它们的最大公约数,所得的商互质。
小升初奥数知识点:完全平方数及余数同余与周期
小升初奥数知识点:完全平方数及余数同余与周期小升初是孩子最重要的起步方向,我们需要关注怎样的信息才能对孩子的未来有帮助呢?店铺网小编告诉大家!小升初奥数知识点:余数、同余与周期一、同余的定义:①若两个整数a、b除以m的余数相同,则称a、b对于模m同余。
②已知三个整数a、b、m,如果m|a-b,就称a、b对于模m同余,记作a≡b(mod m),读作a同余于b模m。
二、同余的性质:二、同余的性质:①自身性:a≡a(mod m);②对称性:若a≡b(mod m),则b≡a(mod m);③传递性:若a≡b(mod m),b≡c(mod m),则a≡ c(mod m);④和差性:若a≡b(mod m),c≡d(mod m),则a+c≡b+d(mod m),a-c≡b-d(mod m);⑤相乘性:若a≡ b(mod m),c≡d(mod m),则a×c≡ b×d(mod m);⑥乘方性:若a≡b(mod m),则an≡bn(mod m);⑦同倍性:若a≡ b(mod m),整数c,则a×c≡ b×c(mod m×c);三、关于乘方的预备知识:①若A=a×b,则MA=Ma×b=(Ma)b②若B=c+d则MB=Mc+d=Mc×Md四、被3、9、11除后的余数特征①一个自然数M,n表示M的各个数位上数字的和,则M≡n(mod 9)或(mod 3);②一个自然数M,X表示M的各个奇数位上数字的和,Y表示M 的各个偶数数位上数字的和,则M≡Y-X或M≡11-(X-Y)(mod 11);五、费尔马小定理:如果p是质数(素数),a是自然数,且a不能被p整除,则ap-1≡1(mod p)。
余数及其应用基本概念:对任意自然数a、b、q、r,如果使得a÷b=q……r,且0余数的性质:①余数小于除数。
②若a、b除以c的余数相同,则c|a-b或c|b-a。
小升初数论重点考查内容————约数与倍数——完全平方数
一天,一个小流氓在街上招摇撞骗,声称自己是完全平方数,只见此人长得这个模样:A=1+1×2+1×2×3+…+1×2×3×…×100,小帅侠偶指奇约一眼就瞅出了这家伙的可疑之处,你发现了吗?(2004已知自然数n满足:12!除以n得到一个完全平方数,则n的最小值为_______。
(2009一个数减去100是一个平方数,减去63也是一个平方数,问这个数是多少?在线测试题温馨提示:请在线作答,以便及时反馈孩子的薄弱环节。
1.★★下列说法不正确的是( )A .如果一个数的尾数不是0,1,4,5,6,9中的一个,那么这个数一定不是完全平方数。
B .1+2+3+4+……+102的计算结果不是完全平方数。
C .如果一个数的尾数是0,1,4,5,6,9中的一个,那么这个数是完全平方数。
D .不是完全平方数。
112123123412345123456+⨯+⨯⨯+⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯⨯⨯2.★★下面的哪个数字与2500的和是完全平方数?( )A .202B .103C .101D .1003.★★★记,这里,当在1至100间取正整数时,有______个()()12343S n k ⨯⨯⨯⨯ =++3n ≥k 不同的,使得为一个正整数的平方?k S A .6B .7C .8D .94.★★★从360到630的自然数中有奇数个约数的数有()个。
A .7B .8C .9D .105.★★★★能否找到这么一个数,它加上24和减去30所得到的两个数都是完全平方数?A .能B .不能C .无法确定D .以上答案都不对。
小升初数学知识:约数与倍数
小升初数学知识:约数与倍数小升初数学知识:约数与倍数小升初考试是小学生面临的第一次重要的考试,它关系到小学生是否可以接受更好的初等教育。
为了帮助小学生更好的做好小升初的复习备考,yjbys店铺为大家准备了小升初数学总复习知识,希望大家在小升初的备考过程中有所参考!小升初数学总复习知识:约数与倍数约数与倍数约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。
公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。
最大公约数的性质:1、几个数都除以它们的最大公约数,所得的几个商是互质数。
2、几个数的最大公约数都是这几个数的约数。
3、几个数的公约数,都是这几个数的最大公约数的约数。
4、几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m。
例如:12的约数有1、2、3、4、6、12;18的约数有:1、2、3、6、9、18;那么12和18的.公约数有:1、2、3、6;那么12和18最大的公约数是:6,记作(12,18)=6;求最大公约数基本方法:1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。
2、短除法:先找公有的约数,然后相乘。
3、辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数。
公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。
12的倍数有:12、24、36、4818的倍数有:18、36、54、72那么12和18的公倍数有:36、72、108那么12和18最小的公倍数是36,记作[12,18]=36;最小公倍数的性质:1、两个数的任意公倍数都是它们最小公倍数的倍数。
2、两个数最大公约数与最小公倍数的乘积等于这两个数的乘积。
求最小公倍数基本方法:1、短除法求最小公倍数;2、分解质因数的方法希望我们准备的小升初数学总复习知识符合小学生的实际需求,能在你们复习备考过程中起到实际的作用,愿大家都以优异的成绩考入理想的重点初中院校!。
2016年小升初数学考点:完全平方数公式
在小学阶段小升初考试是一次重要的考试,需要家长和小朋友们格外重视。
为此查字典数学网小升初频道为大家提供2016年小升初数学考点,希望能够真正的帮助到家长和小学生们!2016年小升初数学考点:完全平方数公式完全平方数完全平方数特征:1. 末位数字只能是:0、1、4、5、6、9;反之不成立。
2. 除以3余0或余1;反之不成立。
3. 除以4余0或余1;反之不成立。
4. 约数个数为奇数;反之成立。
5. 奇数的平方的十位数字为偶数;反之不成立。
6. 奇数平方个位数字是奇数;偶数平方个位数字是偶数。
7. 两个相临整数的平方之间不可能再有平方数。
平方差公式:X2-Y2=(X-Y)(X+Y)完全平方和公式:(X+Y)2=X2+2XY+Y2完全平方差公式:(X-Y)2=X2-2XY+Y2我们为大家提供的2016年小升初数学考点,希望能够满足大家的需求!同时预祝大家考入自己心目中理想的中学!。
小升初数学倍数与约数知识点分析
小升初数学倍数与约数知识点分析
小升初数学倍数与约数知识点分析
数学考试内容所占比例在整个过程中越来越大,那么如何让数学考试锦上添花呢?总结数学知识点是很有必要的网频道为大家准备的《分析数学倍数与约数知识点汇总》供大家学习,并祝各位同学在2017考试中取得优异成绩
最大公约数:几个数公有的约数,叫做这几个数的公约数。
公因数有有限个。
其中最大的一个叫做这几个数的.最大公约数。
最小公倍数:几个数公有的倍数,叫做这几个数的公倍数。
公倍数有无限个。
其中最小的一个叫做这几个数的最小公倍数。
互质数:公约数只有1的两个数,叫做互质数。
相临的两个数一定互质。
两个连续奇数一定互质。
1和任何数互质。
通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。
(通分用最小公倍数)
约分:把一个分数的分子、分母同时除以公约数,分数值不变,这个过程叫约分。
最简分数:分子、分母是互质数的分数,叫做最简分数。
分数计算到最后,得数必须化成最简分数。
质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。
1不是质数,也不是合数。
质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。
分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。
小升初数学倍数与约数知识点复习知识点总结
小升初数学倍数与约数知识点复习知识点总结
没有数学,我们无法看透哲学的深度;没有哲学,人们也无法看透数学的深度;而没有两者,人们什么也看不透。
下面是为大家收集的小升初数学倍数与约数知识点,供大家参考。
倍数与约数
最大公约数:几个数公有的约数,叫做这几个数的公约数。
公因数有有限个。
其中最大的一个叫做这几个数的最大公约数。
最小公倍数:几个数公有的倍数,叫做这几个数的公倍数。
公倍数有无限个。
其中最小的一个叫做这几个数的最小公倍数。
互质数:公约数只有1的两个数,叫做互质数。
相临的两个数一定互质。
两个连续奇数一定互质。
1和任何数互质。
通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。
(通分用最小公倍数)
约分:把一个分数的分子、分母同时除以公约数,分数值不变,这个过程叫约分。
最简分数:分子、分母是互质数的分数,叫做最简分数。
分数计算到最后,得数必须化成最简分数。
质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。
1不是质数,也不是合数。
质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。
分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。
以上是为大家准备的小升初数学倍数与约数知识点,希望对大家有所帮助。
小升初数学倍数与约数知识点总结
小升初数学倍数与约数知识点总结在小升初考试中,数学成绩是非常重要的,考得好能帮助你迅速拉高总体成绩,这就需要我们平时不断积累。
为您提供小升初数学倍数与约数的知识点总结。
倍数与约数最大公约数:几个数公有的约数,叫做这几个数的公约数。
公因数有有限个。
其中最大的一个叫做这几个数的最大公约数。
最小公倍数:几个数公有的倍数,叫做这几个数的公倍数。
公倍数有无限个。
其中最小的一个叫做这几个数的最小公倍数。
互质数:公约数只有1的两个数,叫做互质数。
相临的两个数一定互质。
两个连续奇数一定互质。
1和任何数互质。
通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。
(通分用最小公倍数)约分:把一个分数的分子、分母同时除以公约数,分数值不变,这个过程叫约分。
最简分数:分子、分母是互质数的分数,叫做最简分数。
分数计算到最后,得数必须化成最简分数。
质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。
1不是质数,也不是合数。
质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。
分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。
倍数特征:2的倍数的特征:各位是0,2,4,6,8。
3(或9)的倍数的特征:各个数位上的数之和是3(或9)的倍数。
5的倍数的特征:各位是0,5。
4(或25)的倍数的特征:末2位是4(或25)的倍数。
8(或125)的倍数的特征:末3位是8(或125)的倍数。
7(11或13)的倍数的特征:末3位与其余各位之差(大-小)是7(11或13)的倍数。
17(或59)的倍数的特征:末3位与其余各位3倍之差(大-小)是17(或59)的倍数。
19(或53)的倍数的特征:末3位与其余各位7倍之差(大-小)是19(或53)的倍数。
23(或29)的倍数的特征:末4位与其余各位5倍之差(大-小)是23(或29)的倍数。
小升初数学复习重点:约数与倍数
小升初数学复习重点:约数与倍数
求最大公约数基本方法:
1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。
2、短除法:先找公有的约数,然后相乘。
3、辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数。
公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。
12的倍数有:12、24、36、48
18的倍数有:18、36、54、72
那么12和18的公倍数有:36、72、108
那么12和18最小的公倍数是36,记作[12,18]=36;
最小公倍数的性质:
1、两个数的任意公倍数都是它们最小公倍数的倍数。
2、两个数最大公约数与最小公倍数的乘积等于这两个数的乘积。
求最小公倍数基本方法:1、短除法求最小公倍数;2、分解质因数的方法
小升初考试是小学生进入初等重点初中院校的一次重要考试,希望大家都能够认真复习,同时也希望我们准备的2019
家一臂之力!。
(2021年整理)小升初之数论专题
小升初之数论专题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(小升初之数论专题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为小升初之数论专题的全部内容。
数论[知识要点]小学升初考试中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。
主要的结论有:1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r(0≤r<b),且q,r是唯一的。
特别地,如果r=0,那么a=bq.这时,a被b整除,记作b|a,也称b是a的约数,a是b的倍数。
2.若a|c,b|c,且a,b互质,则ab|c。
3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即其中p1<p2<…<pk为质数,a1,a2,…,ak为自然数,并且这种表示是唯一的.(1)式称为n的质因数分解或标准分解.4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为:d(n)=(a1+1)(a2+1)…(ak+1)。
5.整数集的离散性:n与n+1之间不再有其他整数。
因此,不等式x<y与x≤y —1是等价的。
下面,我们将按数论题的内容来分类讲解。
第一节整除【专题简析】:在数的整除中要熟记数整除的特点,在用整除的知识来解决相关试题的时候要注意首先确定末尾那个数字,在确定其他的数字。
数整除的特征【例题精讲】例1。
老师买了72本相同价格的书,当时没有记住书的单价,只用铅笔记下了用的总钱数,回到学校后其中有两个数字已经模糊不清了,总钱数成了□13.7□元,你能帮忙补上□中数字吗?练习1.马虎的采购员,买了72只桶,洗衣服时将购货发票洗烂了,只能依稀看到72只桶共□67.9□元,□内的字迹已经看不清楚,请帮他算一下一共多少钱?例2。
2015小升初数学复习重点:约数与倍数
2015年小升初数学复习重点:约数与倍数同学们在小学阶段应该掌握最大公约数和最小公倍数的性质,因为这是小升初数学常考的知识点。
下面是为大家准备的2015年小升初数学复习重点,希望能帮助大家做好小升初数学的复习备考2015年小升初数学复习重点:约数与倍数约数与倍数约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。
公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。
最大公约数的性质:1、几个数都除以它们的最大公约数,所得的几个商是互质数。
2、几个数的最大公约数都是这几个数的约数。
3、几个数的公约数,都是这几个数的最大公约数的约数。
4、几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m。
例如:12的约数有1、2、3、4、6、12;18的约数有:1、2、3、6、9、18;那么12和18的公约数有:1、2、3、6;那么12和18最大的公约数是:6,记作(12,18)=6;求最大公约数基本方法:1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。
2、短除法:先找公有的约数,然后相乘。
3、辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数。
公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。
12的倍数有:12、24、36、4818的倍数有:18、36、54、72那么12和18的公倍数有:36、72、108那么12和18最小的公倍数是36,记作[12,18]=36;最小公倍数的性质:1、两个数的任意公倍数都是它们最小公倍数的倍数。
2、两个数最大公约数与最小公倍数的乘积等于这两个数的乘积。
求最小公倍数基本方法:1、短除法求最小公倍数;2、分解质因数的方法小升初考试是小学生进入初等重点初中院校的一次重要考试,希望大家都能够认真复习,同时也希望我们准备的2015年小升初数学复习重点能让大家在小升初的备考过程助大家一臂之力!精心整理,仅供学习参考。
小升初数学倍数与约数知识点复习
小升初数学倍数与约数知识点复习没有数学,我们无法看透哲学的深度;没有哲学,人们也无法看透数学的深度;而没有两者,人们什么也看不透。
下面是为大家收集的小升初数学倍数与约数知识点,供大家参考。
倍数与约数最大公约数:几个数公有的约数,叫做这几个数的公约数。
公因数有有限个。
其中最大的一个叫做这几个数的最大公约数。
最小公倍数:几个数公有的倍数,叫做这几个数的公倍数。
公倍数有无限个。
其中最小的一个叫做这几个数的最小公倍数。
互质数:公约数只有1的两个数,叫做互质数。
相临的两个数一定互质。
两个连续奇数一定互质。
1和任何数互质。
通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。
(通分用最小公倍数)约分:把一个分数的分子、分母同时除以公约数,分数值不变,这个过程叫约分。
最简分数:分子、分母是互质数的分数,叫做最简分数。
分数计算到最后,得数必须化成最简分数。
质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。
1不是质数,也不是合数。
质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。
我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。
特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。
小学奥数数论竞赛常考知识点:约数与倍数
小学奥数数论竞赛常考知识点:约数与倍数
约数与倍数约数和倍数:若整数a能够被b整除,a叫做b的倍数,b 就叫做a的约数。
公约数:几个数公有的约数,叫做这几个数的公约数;其中的一个,叫做这几个数的公约数。
公约数的性质:1、几个数都除以它们的公约数,所得的几个商是互质数。
2、几个数的公约数都是这几个数的约数。
3、几个数的公约数,都是这几个数的公约数的约数。
4、几个数都乘以一个自然数m,所得的积的公约数等于这几个数的公约数乘以m。
例如:12的约数有1、2、3、4、6、12;18的约数有:1、2、3、6、9、18;那么12和18的公约数有:1、2、3、6;那么12和18的公约数是:6,记作(12,18)=6;求公约数基本方法:1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。
2、短除法:先找公有的约数,然后相乘。
3、辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的公约数。
公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。
12的倍数有:12、24、36、48……;18的倍数有:18、36、54、72……;那么12和18的公倍数有:36、72、108……;那么12和18最小的公倍数是36,记作[12,18]=36;最小公倍数的性质:1、两个数的任意公倍数都是它们最小公倍数的倍数。
2、两个数公约数与最小公倍数的乘积等于这两个数的乘积。
求最小公倍数基本方法:1、短除法求最小公倍数;2、分解质因数的方法
分类精心精选精品文档,欢迎下载,所有文档经过整理后分类挑选加工,下载后可重新编辑,正文所有带XX或是空格类下载后可自行代入字词。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本讲学习重点
1.完全平方数必须具备的几个“证件”;
2.完全平方数的两个等价条件;
3.平方差公式在数论中的典型应用。
“平方族” 成员典型特征一:个位为0、1、4、5、6、9
【例1】
一天,一个小流氓在街上招摇撞骗,声称自己是完全平方数,只见此人长得这个模样:A =1+1×2+1×2×3+…+1×2×3×…×100,小帅侠偶指奇约一眼就瞅出了这家伙的可疑之处,你发现了吗?
【例2】(2004年南京市少年数学智力冬令营试题)
记S =(1×2×3×…×n )+(4k +3),这里n ≥3,当k 在1至100间取正整数时,有______个不同的 k ,使得S 为一个正整数的平方?
完全平方数等价条件一:偶指性
【例3】
已知自然数n 满足:12!除以n 得到一个完全平方数,则n 的最小值为______.
完全平方数等价条件二:奇数个约数
【例4】(2009年迎春杯初赛五年级)
200名同学编号为1至200向南站成一排,第1次全体同学向右转(转后全体同学面朝西);第2次编号为2的倍数的同学向右转;第3次编号为3的倍数的同学向右转;……第200次编号为200的倍数的同学向右转;这时面向东、面向西的同学共有多少名?
【举一反三】
礼堂里有100盏灯,依次按1~100的顺序排号。
每盏灯由一根灯绳控制,拉一个亮,再拉一下灭。
100个学生依次进入礼堂,第1名学生把编号为1的倍数的灯都拉一下,第2名学生把编号为2的倍数的灯都拉一下……第100名学生把编号为100的倍数的灯都拉一下;最后礼堂里有______盏灯是亮的?
小升初数论重点考查内容————约数与倍数
——完全平方数
平方差公式在数论中的应用
【例5】
能否找到这么一个数,它加上24和减去30所得到的两个数都是完全平方数?本讲重要内容回顾。