第七章 恒定磁场

合集下载

大学物理第7章恒定磁场(总结)

大学物理第7章恒定磁场(总结)

磁场对物质的影响实验
总结词
磁场对物质的影响实验是研究磁场对物质性 质和行为影响的实验,通过观察物质在磁场 中的变化,可以深入了解物质的磁学性质和 磁场的作用机制。
详细描述
在磁场对物质的影响实验中,常见的实验对 象包括铁磁性材料、抗磁性材料和顺磁性材 料等。通过观察这些材料在磁场中的磁化、 磁致伸缩等现象,可以研究磁场对物质内部 微观结构和宏观性质的影响。此外,还可以 通过测量物质的磁化曲线和磁滞回线等参数 ,进一步探究物质的磁学性质和磁畴结构。
毕奥-萨伐尔定律
02
描述了电流在空间中产生的磁场分布,即电流元在其周围空间
产生的磁场与电流元、距离有关。
磁场的高斯定理
03
表明磁场是无源场,即穿过任意闭合曲面的磁通量恒等于零。
磁场中的电流和磁动势
安培环路定律
描述了电流在磁场中所受的力与 电流、磁动势之间的关系,即磁 场中的电流所受的力与电流、磁 动势沿闭合回路的线积分成正比。
磁流体动力学
研究磁场对流体运动的影响,如磁场对流体流动的导向、加速和 减速作用。
磁力
磁场可以产生磁力,对物体进行吸引或排斥,可以用于物体的悬 浮、分离和搬运等。
磁电阻
某些材料的电阻会受到磁场的影响,这种现象称为磁电阻效应, 可以用于电子器件的设计。
磁场的工程应用
1 2
磁悬浮技术
利用磁场对物体的排斥力,实现物体的无接触悬 浮,广泛应用于高速交通、悬浮列车等领域。
磁动势
描述了产生磁场的电流的量,即 磁动势等于产生磁场的电流与线 圈匝数的乘积。
磁阻
描述了磁通通过不同材料的难易 程度,即磁阻等于材料磁导率与 材料厚度的乘积。
磁场中的力
安培力

厦门大学 大学物理B 第07章 恒定磁场(3)

厦门大学 大学物理B 第07章 恒定磁场(3)

I lj 由 B dl I
i S i
L 0 i
L
d
Bc
⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙
i
得:
a
B
l
b
1 B 0 jS 2
作业:
习题7-5: 如两平行长直导线相距d=40 cm,每根导线载有 电流I1=I2=20 A,电流流向如图所示。求:(1) 两导 线所在平面内与该两导线等距的一点 A 处的磁感应 强度;(2) 通过图中斜线所示面积的磁通量(r1=r3=10 cm, r2=10 cm, l=25 cm)。
0 / 2, d m 0 / 2 , d m 0
• 闭合曲面(外法线方向为面元正方向):
穿出 : 0 / 2, d m 0 穿入 : / 2 , d m 0
3.磁场的高斯定理
1 n 静电场的高斯定理: SE dS qi内 0 i 1 恒定磁场: B dS ?
S
电流元:毕奥─萨伐尔定律 0 Idl er Biblioteka B 4 r 2d m 0
Idl1 , Idl2 ,... dB1 , dB2 ,...
d m1, d m 2 ,... d m1 d m 2 ... d mN 0
Id l
r
2.1 解题要点
1)分析磁场特点,选择适当的积分回路 2)计算
B dl 3)计算 I
L
i
i
4)由

L
B dl 0 I i 求 B
i
2.2 几种常见电流的磁场 (1)无限长载流圆柱体的磁场 按电流的对称性分析, 磁场也应该有柱对称性!

07第七章恒定磁场PPT课件

07第七章恒定磁场PPT课件
教学基本要求
第七章 恒定电流与恒定磁场
一、 理解恒定电流产生的条件,理解电流密度和 电动势的概念.
二、掌握磁感应强度的概念,理解毕奥-萨伐尔 定律,能利用它计算一些简单问题中的磁感强度.
三、理解稳恒磁场的高斯定理和安培环路定理. 理解用安培环路定理计算磁感强度的条件和方法.
四、理解洛伦兹力和安培力的公式 ,能分析电 荷在均匀电场和磁场中的受力和运动. 了解磁矩的概 念, 能计算简单几何形状载流导体和载流平面线圈在 均匀磁场中或在无限长载流直导体产生的非均匀磁场 中所受的力和力矩.
线,若将电压U加在该导线的两端,则单位时间内流过 导线横截面的自由电子数为____________;若导线中自 由电子数密度为n,则电子平均漂移速率为_________.
I U jS R
R L
S
US Ud 2 dq dN dN Ud 2
I
L
4L
dt
e
dt
dt
4eL
j
U RS
U
L
u U
j neu
般金属在温度不太低时,有 2 1[1(T2 T1)]
称为电阻温度系数
恒定电流流过一段均匀导线时,
U 1 2 E dl
j
dl
jdl
I
dl
S
IR
即: U IR 此式称为部分电路的欧姆定律。
电阻 R dl 横截面均匀的导体 电阻定律 R l
S
S
第七章 恒定电流与恒定磁场
例2. 有一根电阻率为,截面直径为d、长度为L的导
u⊥dt dS
+
+
+
+
+
+
dI

物理学简明教程第七章课后习题答案—高等教育出版社

物理学简明教程第七章课后习题答案—高等教育出版社

物理学简明教程第七章课后习题答案高等教育出版社第七章 恒定磁场和电磁感应7-1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小r R B B 、满足( )(A ) r R B B 2= (B ) r R B B = (C ) r R B B =2 (D )r R B B 4=分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比21==R r n n r R 因而正确答案为(C )7-2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量 为( )(A )B r 2π2 (B ) B r 2π(C )αB r cos π22 (D ) αB r cos π2题 7-2 图分析与解 作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;S B ⋅=m Φ.因而正确答案为(D ).7-3 下列说法正确的是( )(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过(B)闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零(C)磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D)磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零分析与解由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零.因而正确答案为(B).7-4一根无限长平行直导线载有电流I,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图所示),则()(A)线圈中无感应电流(B)线圈中感应电流为顺时针方向(C)线圈中感应电流为逆时针方向(D)线圈中感应电流方向无法确定题 7-4 图分析与解由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为(B).7-5将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则()(A)铜环中有感应电流,木环中无感应电流(B)铜环中有感应电流,木环中有感应电流(C)铜环中感应电动势大,木环中感应电动势小(D)铜环中感应电动势小,木环中感应电动势大分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等, 但在木环中不会形成电流.因而正确答案为(A ).7-6 对位移电流,下述说法正确的是( )(A ) 位移电流的实质是变化的电场(B ) 位移电流和传导电流一样是定向运动的电荷(C ) 位移电流服从传导电流遵循的所有定律(D ) 位移电流的磁效应不服从安培环路定理分析与解 位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ).7-7 已知地球北极地磁场磁感强度B 的大小为6.0×10-5T .如图所示,如设想此地磁场是由地球赤道上一圆电流所激发的,此电流有多大? 流向如何?解 设赤道电流为I ,则由教材第11-4节例2 知,圆电流轴线上北极点的磁感强度 ()R IR R IR B 24202/32220μμ=+=因此赤道上的等效圆电流为A 1073.12490⨯==μRB I 由于在地球地磁场的N 极在地理南极,根据右手螺旋法则可判断赤道圆电流应该是由东向西流,与地球自转方向相反.题 7-7 图7-8 如图所示,有两根导线沿半径方向接触铁环的a 、b 两点,并与很远处的电源相接.求环心O 的磁感强度.题 7-8 图分析 根据叠加原理,点O 的磁感强度可视作由ef 、be 、fa 三段直线以及acb 、a d b 两段圆弧电流共同激发.由于电源距环较远,0=ef B .而be 、fa 两段直线的延长线通过点O ,由于0Idl r ⨯=,由毕奥-萨伐尔定律知0be fa ==B B .流过圆弧的电流I 1 、I 2的方向如图所示,两圆弧在点O 激发的磁场分别为21101π4r l I μB =,22202π4r l I μB = 其中l 1 、l 2 分别是圆弧acb 、a d b 的弧长,由于导线电阻R 与弧长l 成正比,而圆弧acb 、a d b 又构成并联电路,故有2211l I l I =将21B B 、叠加可得点O 的磁感强度B .解 由上述分析可知,点O 的合磁感强度0π4π42220211021=-=-=r l I μr l I μB B B 7-9 如图所示,几种载流导线在平面内分布,电流均为I ,它们在点O 的磁感强度各为多少?题 7-9 图分析 应用磁场叠加原理求解.将不同形状的载流导线分解成长直部分和圆弧部分,它们各自在点O 处所激发的磁感强度较容易求得,则总的磁感强度∑=i B B 0.解 (a) 长直电流对点O 而言,有0d =⨯r l I ,因此它在点O 产生的磁场为零,则点O 处总的磁感强度为1/4 圆弧电流所激发,故有RI μB 800= B 0 的方向垂直纸面向外.(b) 将载流导线看作圆电流和长直电流,由叠加原理可得RI μR I μB π22000-= B 0 的方向垂直纸面向里.(c ) 将载流导线看作1/2 圆电流和两段半无限长直电流,由叠加原理可得RI μR I μR I μR I μR I μB 4π24π4π4000000+=++= B 0 的方向垂直纸面向外.7-10 已知10 mm 2 裸铜线允许通过50 A 电流而不会使导线过热.电流在导线横截面上均匀分布.求导线内、外磁感强度的分布.题 7-10 图分析 可将导线视作长直圆柱体,电流沿轴向均匀流过导体,故其磁场必然呈轴对称分布,即在与导线同轴的圆柱面上的各点,B 大小相等、方向与电流成右手螺旋关系.为此,可利用安培环路定理,求出导线表面的磁感强度.解 围绕轴线取同心圆为环路L ,取其绕向与电流成右手螺旋关系,根据安培环路定理,有∑⎰=⋅=⋅I μB 0πr 2d l B在导线内r <R , 2222ππRIr r R I I ==∑,因而 202πRIr μB = 在导线外r >R ,I I =∑,因而rI μB 2π0= 磁感强度分布曲线如图所示.7-11 有一同轴电缆,其尺寸如图(a)所示.两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑.试计算以下各处的磁感强度:(1) r <R 1 ;(2) R 1 <r <R 2 ;(3) R 2 <r <R 3 ;(4) r >R 3 .画出B -r 图线.题 7-11 图分析 同轴电缆导体内的电流均匀分布,其磁场呈轴对称,取半径为r 的同心圆为积分路径, πr 2d ⋅=⋅⎰B l B ,利用安培环路定理∑⎰=⋅I μ0d l B ,可解得各区域的磁感强度.解 由上述分析得r <R 122101ππ12πr R μr B =⋅ 21012πR Ir μB = R 1 <r <R 2I μr B 022π=⋅rI μB 2π02= R 2 <r <R 3()()⎥⎦⎤⎢⎣⎡---=⋅I R R R r I μr B 22232203ππ2π 2223223032πR R r R r I μB --= r >R 3()02π04=-=⋅I I μr B04=B磁感强度B (r )的分布曲线如图(b).7-12 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为t Φπ100sin 100.85⨯=,式中Φ的单位为Wb ,t 的单位为s ,求在s 100.12-⨯=t 时,线圈中的感应电动势.分析 由于线圈有N 匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数和,在此情况下,法拉第电磁感应定律通常写成tψt ΦNξd d d d -=-=,其中ΦN ψ=称为磁链.解 线圈中总的感应电动势 ())V (π100cos 51.2d d t tΦN =-=ξ 当s 100.12-⨯=t 时,V 51.2=ξ.7-13 载流长直导线中的电流以tI d d 的变化率增长.若有一边长为d 的正方形线圈与导线处于同一平面内,如图所示.求线圈中的感应电动势.分析 本题仍可用法拉第电磁感应定律tΦd d -=ξ,来求解.由于回路处在非均匀磁场中,磁通量就需用⎰⋅=S S B Φd 来计算.为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即B =B (x ),故取一个平行于长直导线的宽为d x 、长为d 的面元d S ,如图中阴影部分所示,则d S =d d x ,所以,总磁通量可通过线积分求得(若取面元d S =d x d y ,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式tI M d d -=ξ求解. 解1 穿过面元d S 的磁通量为x d x I S B Φd π2d d 0μ=⋅=因此穿过线圈的磁通量为2ln π2d π2d 200⎰⎰===d d Id x x Id ΦΦμμ再由法拉第电磁感应定律,有 tI d t Φd d 21ln π2d d 0)(μξ=-= 解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为2ln π20dI Φμ=线圈与两长直导线间的互感为 2ln π20d I ΦM μ== 当电流以tI d d 变化时,线圈中的互感电动势为 tI d t I M d d 21ln π2d d 0)(μξ=-=题 7-13 图7-14 如图所示,把一半径为R 的半圆形导线OP 置于磁感强度为B 的均匀磁场中,当导线以速率v 水平向右平动时,求导线中感应电动势E 的大小,哪一端电势较高?题 7-14 图分析 本题及后面几题中的电动势均为动生电动势,除仍可由t ΦE d d -=求解外(必须设法构造一个闭合回路),还可直接用公式()l B d ⋅⨯=⎰l E v 求解.在用后一种方法求解时,应注意导体上任一导线元dl 上的动生电动势()l B d d ⋅⨯=v E .在一般情况下,上述各量可能是dl 所在位置的函数.矢量(v ×B )的方向就是导线中电势升高的方向.解1 如图(b)所示,假想半圆形导线OP 在宽为2R 的静止形导轨上滑动,两者之间形成一个闭合回路.设顺时针方向为回路正向,任一时刻端点O 或端点P 距 形导轨左侧距离为x ,则B R Rx Φ⎪⎭⎫ ⎝⎛+=2π212 即B R tx RB t ΦE v 2d d 2d d -=-=-= 由于静止的 形导轨上的电动势为零,则E =-2RvB .式中负号表示电动势的方向为逆时针,对OP 段来说端点P 的电势较高.解2 建立如图(c )所示的坐标系,在导体上任意处取导体元dl ,则()θR θB l θB E o d cos d cos 90sin d d v v ==⋅⨯=l B vB R θθBR E v v 2d cos d E π/2π/2===⎰⎰- 由矢量(v ×B )的指向可知,端点P 的电势较高.解3 连接OP 使导线构成一个闭合回路.由于磁场是均匀的,在任意时刻,穿过回路的磁通量==BS Φ常数.由法拉第电磁感应定律tΦE d d -=可知,E =0又因 E =E OP +E PO即 E OP =-E PO =2RvB由上述结果可知,在均匀磁场中,任意闭合导体回路平动所产生的动生电动势为零;而任意曲线形导体上的动生电动势就等于其两端所连直线形导体上的动生电动势.上述求解方法是叠加思想的逆运用,即补偿的方法.7-15 长为L 的铜棒,以距端点r 处为支点,以角速率ω绕通过支点且垂直于铜棒的轴转动.设磁感强度为B 的均匀磁场与轴平行,求棒两端的电势差.题 7-15 图分析 应该注意棒两端的电势差与棒上的动生电动势是两个不同的概念,如同电源的端电压与电源电动势的不同.在开路时,两者大小相等,方向相反(电动势的方向是电势升高的方向,而电势差的正方向是电势降落的方向).本题可直接用积分法求解棒上的电动势,亦可以将整个棒的电动势看作是OA 棒与OB 棒上电动势的代数和,如图(b)所示.而E OA 和E OB 则可以直接利用第12-2 节例1 给出的结果.解1 如图(a)所示,在棒上距点O 为l 处取导体元dl ,则()()r L lB ωl lB ωE L-rr ABAB 221d d --=-=⋅⨯=⎰⎰-l B v因此棒两端的电势差为()r L lB ωE U AB AB 221--==当L >2r 时,端点A 处的电势较高解2 将AB 棒上的电动势看作是O A 棒和O B 棒上电动势的代数和,如图(b)所示.其中221r ωB E OA =,()221r L B ωE OB -= 则()r L BL ωE E E OB OA AB 221--=-=7-16 如图所示,在“无限长”直载流导线的近旁放置一个矩形导体线框,该线框在垂直于导线方向上以匀速率v 向右移动,求在图示位置处,线框中感应电动势的大小和方向.题 7-16 图分析 本题亦可用两种方法求解.其中应注意下列两点:(1)当闭合导体线框在磁场中运动时,线框中的总电动势就等于框上各段导体中的动生电动势的代数和.如图(a)所示,导体eh 段和fg 段上的电动势为零[此两段导体上处处满足()0l B =⋅⨯d v ],因而线框中的总电动势为()()()()hg ef hgefghefE E E -=⋅⨯-⋅⨯=⋅⨯+⋅⨯=⎰⎰⎰⎰l B l B l B l B d d d d v v v v 其等效电路如图(b)所示.(2)用公式tΦE d d -=求解,式中Φ是线框运动至任意位置处时,穿过线框的磁通量.为此设时刻t 时,线框左边距导线的距离为ξ,如图(c )所示,显然ξ是时间t 的函数,且有v =tξd d .在求得线框在任意位置处的电动势E (ξ)后,再令ξ=d ,即可得线框在题目所给位置处的电动势.解1 根据分析,线框中的电动势为hg ef E E E -=()()⎰⎰⋅⨯-⋅⨯=hgefl B l B d d v v()⎰⎰+-=2201000d 2πd 2πl l l l d I μl d I μvv ()1202πl d d l I +=1vl μ由E ef >E hg 可知,线框中的电动势方向为efgh .解2 设顺时针方向为线框回路的正向.根据分析,在任意位置处,穿过线框的磁通量为()ξξμξμ120020lnπ2d π21l Il x x Il l +=+=Φ⎰ 相应电动势为()()1120π2d d l ξξl l I μt ΦξE +=-=v 令ξ=d ,得线框在图示位置处的电动势为()1120π2l d d l l I μE +=v由E >0 可知,线框中电动势方向为顺时针方向.7-17 在半径为R 的圆柱形空间中存在着均匀磁场,B 的方向与柱的轴线平行.如图(a)所示,有一长为l 的金属棒放在磁场中,设B 随时间的变化率tBd d 为常量.试证:棒上感应电动势的大小为2222d d ⎪⎭⎫ ⎝⎛-=l R l t B ξ题 7-17 图分析 变化磁场在其周围激发感生电场,把导体置于感生电场中,导体中的自由电子就会在电场力的作用下移动,在棒内两端形成正负电荷的积累,从而产生感生电动势.由于本题的感生电场分布与上题所述情况完全相同,故可利用上题结果,由⎰⋅=lk l E d ξ计算棒上感生电动势.此外,还可连接OP 、OQ ,设想PQOP构成一个闭合导体回路,用法拉第电磁感应定律求解,由于OP 、OQ 沿半径方向,与通过该处的感生电场强度E k 处处垂直,故0d =⋅l E k ,OP 、OQ 两段均无电动势,这样,由法拉第电磁感应定律求出的闭合回路的总电动势,就是导体棒PQ 上的电动势.证1 由电磁感应定律,在r <R 区域,⎰⎰⋅-=⋅=S B t l E k d d dd ξ tB r E r k d d ππ22-=⋅ 解得该区域内感生电场强度的大小tBr E k d d 2=设PQ 上线元dx 处,E k 的方向如图(b )所示,则金属杆PQ 上的电动势为()()222202/2d d d 2/d d 2d cos d l R l t B x r l R tB r xE lk k PQ -=-==⋅=⎰⎰θξx E证2 由法拉第电磁感应定律,有22Δ22d d d d d d ⎪⎭⎫⎝⎛-==-==l R l t B t B S t ΦE E PQ讨论 假如金属棒PQ 有一段在圆外,则圆外一段导体上有无电动势? 该如何求解?。

大学物理第七章 恒定磁场

大学物理第七章 恒定磁场


dr
0dI 0 dB dr 2r 2 0 R 0R B dr 2 0 2
解法2:运动点电荷的磁场

R o r
dB
0 dqv
4π r
2
dq 2 π rdr

dr
B
dB
0
2
dr
vr
0
2

R
0
dr
0R
2
§7.5 磁通量 磁场的高斯定理
i j k, 记忆:i j k i, k i j j k i j
z 0 x y
方向:垂直于 A,B 平面,右手螺旋
A
叉积的基本性质: ① a a 0; a b b a 体积 ② 混合积:( a b ) c
I
I
环形螺线管 的磁感线
二. 磁通量
m B dS
单位:Wb = T· m2 闭合曲面的磁通量:
S
B
dS
dS
m
S
B dS (外法线)
例 如图载流长直导线的电流为 I,试求 通过矩形面积的磁通量.
d2
I
dS
d1
l
dΦ BdS
§7.3 §7.4 §7.5 §7.6
磁场 磁感强度 毕奥-萨伐尔定律 磁通量 磁场的高斯定理 安培环路定理
§7.7 带电粒子在电场和磁场中的运动 §7.8 载流导线在磁场中所受的力
本章基本要求
• 理解毕奥-萨伐尔定律,能利用它 计算一些简单问题中的磁感强度。 • 理解稳恒磁场的高斯定理和安培环路定理, 理解用安培环路定理计算磁感强度的条件 和方法。

第07章 恒定磁场磁场强度

第07章 恒定磁场磁场强度

电流
磁场
电流
磁场是一种物质, 其物质性体现在:
1)磁场对磁铁、对电流、对运动电荷均有磁作用力; 2)载流导体在磁场中移动时,磁场的作用力对它作功。
磁场是一种客观存在,是物质存在的一种形式。
恒定磁场—在空间的分布不随时间变化的磁场。 注意:无论电荷是运动还是静止,它们之间都存在着库 仑相互作用,但只有运动着的电荷才存在着磁相互作用。
B1
0
2
NI R
B2
0 NI R2
2( R 2
x2
3
)2
R
O1
O2
(1)电流方向相同:
x
B
B1
B2
0 NI
2R
[1
(R2
R3 x2)32
]
8.51105
T
(2)电流方向相反:
B
B1
B2
0 NI
2R
[1
(R2
R3 x
2
)
3 2
]
4.06
105
T
18
例7:一根无限长导线通有电流I,中部弯成圆弧形, 如图所示。求圆心o点的磁感应强度B。
整个物体的磁效应就是所有分子电流对外界磁效应 的总和。磁性物质的本质在于其分子电流的有序排列 。
总结:一切磁现象都可以归结为运动电荷(即电流)之
间的相互作用。磁场力是电荷之间的另一种力。
4
二、磁场
磁铁和运动电荷(电流)会在周围空间激发场---磁场 磁铁与磁铁,磁铁与电流,电流与电流之间都是
通过磁场相互作用的。 磁场的基本性质:对运动电荷(电流)有力的作用。
r
dB 的方向垂直于Idl和r 所形
成的平面。

大学物理第七章恒定磁场

大学物理第七章恒定磁场
问题二
在均匀磁场中,有一段长度为l的导线,导线的一端固定在x=0处,另一端在x=l处自由悬 挂。当导线受到外力作用而摆动时,求摆动的周期T是多少?
问题三
在均匀磁场中,有一段长度为l的导线,导线的一端固定在x=0处,另一端在x=l处自由悬 挂。当导线受到外力作用而摆动时,求摆动的振幅A是多少?
THANK YOU
04
磁场中的电流
电流产生的磁场
安培环路定律
描述电流产生的磁场,即磁场与电流 成正比,并与电流的环绕方向有关。
毕奥-萨伐尔定律
描述电流在其周围空间产生的磁场, 与电流的大小和距离有关。
磁场对电流的作用
洛伦兹力
描述带电粒子在磁场中受到的力,该 力垂直于粒子的运动方向和磁场方向。
霍尔效应
当电流垂直于磁场通过导体时,会在 导体两侧产生电势差,这种现象称为 霍尔效应。
在磁场中画出一系列从N极指向S 极的曲线,表示磁力作用的路径 。
磁感应强度和磁场强度
磁感应强度
描述磁场对放入其中的导体的作用力,用B表示。
磁场强度
描述磁场本身的强弱,用H表示。
恒定磁场与变化磁场
恒定磁场
磁场强度不随时间变化的磁场。
变化磁场
磁场强度随时间变化的磁场。
03
磁场中的物质
物质的磁性分类
磁化现象
当物质处于磁场中时,物质内部会产生感应磁场,感应磁场 与外磁场相互作用,使物质表现出磁性。这种现象被称为磁 化现象。
磁滞效应
当外磁场变化时,物质的磁化强度不仅与外磁场有关,还与 外磁场的历史状态有关。这种现象被称为磁滞效应。磁滞效 应是磁性材料中常见的一种现象,也是制造电磁铁和电机的 重要原理。
磁场中的能量

大学物理 第7章 恒定磁场(总结)

大学物理 第7章 恒定磁场(总结)
解: 两直导线对O点磁场无贡献
0 I1dl 0 I1l1 B1 r 2 4 r 2 4 0
l1
l1
I 2 dl 0 I 2l2 r 2 4 r 2 0 l2 I1 R2 s l2 I l I l BO 11 2 2 I 2 R1 l1 l1 s B1 B2 方向相反
l i
相对电容率
相对磁导率
r 1 e r r 0
E dl 0
l
E0 E
r 1
r 0
高斯定理
B r B0
环路定理
B dS 0
S
部 分 习 题
习题10-10: 半径为R=0.01m的无限长半圆 柱形金属薄片,自下而上地通有电流I=5A, 求轴线上任一点P处的磁感应强度。 解:可看成由许多与轴平行的无限 长直导线所组成。
3
1 4 M dM r Bdr BR 4 0
3
R
本章结束

M m BIl l cos BIl cos 方向与M1相反
2
M1 M m BIl cos 2mglsin
2
2 Sg B tg I
习题10-43: 一平面塑料圆盘,半径为 R,电荷面密度为 ,以转动,磁 场B垂直于转轴AA’,证明磁场作用 于圆盘的力矩的大小为: 1 M R 4 B 4
7、磁力矩: M m B
二、基本规律
1、毕奥-萨伐尔定律 2、安培定律
0 Idl er dB 2 4 r dF Idl B
3、磁场的高斯定理
B dS 0
S
4、安培环路定理

大学物理第7章恒定磁场试题及答案.docx

大学物理第7章恒定磁场试题及答案.docx

第7章恒定磁场一、选择题1.磁场可以用下述哪一种说法来定义?[](A)只给电荷以作用力的物理量(B)只给运动电荷以作用力的物理量(C)贮存有能量的空间(D)能对运动电荷作功的物理量2.空间某点磁感应强度的方向,在下列所述定义中错误的是[](A)小磁针N极在该点的指向(B)运动正电荷在该点所受最大的力与其速度的矢积的方向(C)电流元在该点不受力的方向(D)载流线圈稳定平稳时,磁矩在该点的指向3.下列叙述中错误的是[](A) 一根给定的磁力线上各点处的B的大小一定相等一(B)一根给定的磁力线上各点处的〃的方向不一定相同(C)均匀磁场的磁力线是一组平行直线(D)载流长直导线周围的磁力线是一组同心圆坏4.下列关于磁力线的描述中正确的是[](A)条形磁铁的磁力线是从N极到S极的(B)条形磁铁的磁力线在磁铁内部是从S极到N极的(C)磁力线是从N极出发终止在S极的曲线(D)磁力线是不封闭的曲线5.下列叙述中不能正确反映磁力线性质的是[](A)磁力线是闭合曲线(B)磁力线上任一点的切线方向为运动电荷的受力方向(C)磁力线与载流回路彖环一样互相套连(D)磁力线与电流的流向互相服从右手定则6.关于磁场之I'可的相互作用有下列说法,其屮正确的是[](A)同性磁极相吸,异性磁极相斥(B)磁场屮小磁针的磁力线方向只有与磁场磁力线方向一致时,才能保证稳定平稳(C) 小磁针在非均匀磁场中一定向强磁场方向运动 (D) 在涡旋电场中,小磁针沿涡旋电场的电场线运动7. 一电荷放置在行驶的列车上,相对于地面来说,电荷产生电场和磁场的情况将是[](A) (B)只只产生产生电场磁场(C)既产生电场,又产生磁场 (D)既不产生电场,又不产生磁场 T7-1-7图8. 通以稳恒电流的长直导线,在其周阖产生电场和磁场的情况将是 [](A)只产生电场 (B) 只产生磁场(C) 既产生电场,又产生磁场 (D) 既不产生电场,乂不产生磁场9. 在电流元I d/激发的磁场中,若在距离电流元为r 处的磁感应强度为d B .则下列叙述中正确的是(C) dB 一的方向垂直于/d 乙与[组成的平面二T7-1-9图 (D) dB 的方向为(-厂)方向10. 决定长直螺线管中磁感应强度大小的因素是 [](A)通入导线中的电流强度 (B)螺线管的体积(C)螺线管的直径(D)与上述各因素均无关一-11. 磁场的高斯定理B-dS= 0,说明S[](A)穿入闭合曲血的磁感应线的条数必然等于穿出的磁感应线的条数(B) 穿入闭合曲面的磁感应线的条数不等于穿出的磁感应线的条数[](A) d B 一的方向与r 方向相同一(B) dB 的方向与/d/方向相同 dl(C) 一根磁感应线可以终止在闭合曲面内 (D) 一根磁感应线不可能完全处于闭合曲面内13. 磁场中的高斯路理JJ BdS= 0说明了磁场的性质之一是[](A)磁场力是保守力(B)磁力线可能闭合 (C)磁场是无源场(D)磁场是无势场14. 若某空间存在两无限长直载流导线,空间的磁场就不存在简单的对称性.此 时该磁场的分布[](A)可以直接用安培环路定理来计算 (B) 只能用安培环路定理来计算 (C) 只能用毕奥-萨伐尔定律来计算(D) 可以用安培环路定理和磁场的叠加原理求出15.对于安培环 路定律I ,在下面说法中正确的是[](A)H 只是穿过闭合环路的电流所激发,与环路外的电流无关(B)是环路内、外电流的代数和(C) 安培环路定律只在具有高度对称的磁场中才成立(D) 只有磁场分布具有高度对称性时,才能用它直接计算磁场强度的人小16. 在圆形电流的平面内取一同心圆形坏路,由于环路内无电流穿过,所以§H・d/[](A)圆形环路上各点的磁场强度为零(B) 圆形环路上各点的磁场强度方向垂直于环路平面 (C) 圆形坏路上各点的磁场强度方向指向圆心 (D) 圆形环路上各点的磁场强度方向为该点的切线方向12.安培环路定 律/说明了磁场的性质之一是[](A)磁力线是闭合曲线(C)磁场是无源场(B)磁场力是保守力 (D)磁场是无势场17.下述情况中能用安培坏路定律求磁感应强度的是[](A) 一段载流直导线 (C) 一个环形电流(B) 无限长直线电流 (D) 任意形状的电流1& 取一闭合积分回路L,使三根载流导线穿过L 所围成的面.现改变三根导线 之间的相互间隔,但不越出积分回路,则[](A)回路厶内的》/不变,厶上各点的8不变(B)回路厶内的工/不变,L 上各点的B 改变变,厶上各点的B 不变 (D)冋路厶内的》/改变,厶上各点的B 改变19.边长为L 的一个正方形线圈屮通有电流/,则线圈中心的磁感应强度的大小将](A)与厶成正比 (B)与厶成反比(C)与厶无关(D)与厶*成正比T7-1-19图 20. 一无限长直圆柱体,半径为沿轴向均匀流有电流. 磁感应强度大小为Bi,圆柱体外(r>R )感应强度大小为B2,则有[1(A) 31、均与厂成正比设圆柱体内(r<R )的 (B) B 、、B 2均与厂成反比(C) B\与F •成反比,与厂 成正比(D) B 1与F •成正比,〃2与r 成反比 T7-1-20图21.如T7-1-21图所示,两根载有相同电流的无限长直导 线,分别通过x 】 = l 和兀2=3的点,且平行于尹轴.由此可 知,磁感一应强度B 为零的地方是 O12 3 x T7-1-21 图[](A) x=2的直线上(B) x>2的区域(C) x<l 的区域 (D)不在平而内22・一个半径为R 的圆形电流厶其圆心处的磁场强度大小为[1(A)4R (B)(C) 0(D)— 2R23. 有一个圆形冋路1及一个正方形冋路2,圆的直径和正方 形回路的边长相等,二者屮通有大小相等的电流,它们在各自屮心产 生的磁感应强度的大小之比BJB.为[](A) 0.90(B) 1.00(C) 1.11 (D) 1.2224. 一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺 线管(R = 2r ),两螺线管单位长度上的匝数相等•两螺线管屮的磁感应强度大小B R 和B r 应满足关系[](A) B R =2 B 丫 r(D) B R = 4 B r25. 两根载有相同电流的通电导线,彼此之间的斥力为F.如果它们的电流均增加一 倍,相互之间的距离也加倍,则彼此之间的斥力将为变为FF[](A)—(B)— (C)F (D) 2F4226. 两束阴极射线(电子流),以不同的速率向同一方向发射,则两束射线间[](A)存在三种力:安培力、库仑力和洛仑兹力 (B) 存在二种力:库仑力和洛仑兹力 (C) 存在二种力:安培力和洛仑兹力 (D) 只存在洛仑兹力27. 可以证明,无限接近长直电流处(r->0)的B 为--有限值.可是从毕一萨定律 得到的长直电流的公式屮得出,当尸一0时B-8.解释这一矛盾的原因是 [](A)毕一萨定律得出的过程不够严密(B) 不可能存在真正的无限长直导线 (C) 当尸一0 口寸,毕一萨定律已不成立 (D) 毕一萨定律是一个近似理论28. 运动电荷受洛仑兹力后,其动能、动量的变化情况是[](A)动能守恒(B)动量守恒(C)动能、动量都守恒(D)动能、动量都不守恒29. 运动电荷垂直进入均匀磁场后,下列各量中不守恒是T7亠23图(B)B R =B 「 (C) 2B R =B[](A)动量(B)关于圆心的角动量(C)动能(D)电荷与质量的比值30. —电量为g 的带电粒子在均匀磁场中运动,下列说法中正确的是 [](A)只要速度大小相同,粒子所受的洛仑兹力就相同(B) 在速度不变的前提下,若电荷q 变为一么则粒子受力反向,数值不变 (C) 粒子进入磁场后,其动能和动量都不改变 (D) 洛仑兹力与速度方向垂直,所以其运动轨迹是圆31. 一个长直螺线管通有交流电,把一个带负电的粒子沿 螺线管的轴线射入管屮,粒子将在管屮作 ](A)圆周运动 (B)沿管轴来回运动(C)螺旋线运动 (D)匀速直线运动T7-1-31图32. 一束正离子垂直射入一个均匀磁场与均匀电场互相平行 且同向的区域.结果表明离子束在一与入射束垂直放置的荧光屏 上产生一条抛物线,则所有粒子有相同的 [](A)动能(B)质量(C)电量(D)荷质比 T7-1-32图33. 质量为〃?、电量为g 的带电粒子,以速度v 沿与均匀磁场E 成g 角方向射入磁场,英轨迹为一螺旋线.若要增大螺距,应34. 在一个由南指向北的匀强磁场中,一束电子垂直地向下通过_B此 (C) [ ] (A)磁场,受到由由磁场对西下指向上指向它东的作用力的力•向耳V® 0 0T7-1-34 图—11 11 111[](A)增大磁场B (C)减小速度v (B)减少磁场B _(D) 增加夹角q(B)(D)由由北东指向指向南西35. 一电子在垂直于一均匀磁场方向作半径为R 的圆周运动,电子的速度为v ,忽略电子产生的磁场,则此轨道内所包圉面积的磁通量为x BxnmvRT7亠35图36. 一带电粒子垂直射入均匀磁场中,如果粒子质量增大到原来的两倍,入射速度增 大到两倍,磁场的磁感应强度增大到4倍,忽略粒子运动产生的磁场,则粒子运动轨迹所包 围范围内的磁通量增大到原来的1 1 [](A)2 倍 (B)4 倍(C)2 倍(D)4倍37. 一电子以速度丿垂直地入射到一磁感应强度为B 的均匀磁场中•忽略其电子产 生的磁场,此时电子在磁场中运动的轨道所圉面积的磁通量 [](A)正比于3,正比于v 2 (B)反比于B,反比于v 2(C) 正比于5正比于v(D)反比于5反比于v38. 图中六根无限长导线相互绝缘,通过的电流均为/,区域I 、II 、均为相等的正方形.问哪个区域垂直指向里的磁通量最大?1(B) II 区/ III IV (C)III 区(D) IV 区T7-1-38 图39. 在某均匀磁场中放置有两个平面线圈,其面积S]二2S2,通有电流人二2/2,它们所受的最大磁力矩之比M 2为[](A)1 (B)2 (C)4 (D) 1/440. 有一由N 匝细导线绕成的平而正三角形线圈,边长为°,通有电流/,置于均匀外 磁场3中.当线圈平面的法向与外磁场同向时,线圈所受到的磁力矩大小为 [](A) 3Na 岳/ 2(B) 3Na 炼 /4[](A)eR 2(B) emR (C)——eR(D)兀u41.一直径为2.0cm、匝数为300匝的圆线圈,放在5xl0'2T的磁场中,当线圈内通过10mA的电流时,磁场作用于线圈的最大磁力矩为[](A) 4.7 N.m (B) 4.7xlO'2N.m(C) 4.7x1 O'5 N.m (D) 4.7x10-4 N.m42.有一直径为8 cm的线圈,共12匝,通以电流5 A.现将此线圈置于磁感应强度为0.6 T的匀强磁场屮,则[](A)作用在线圈上的最大磁力矩为M=18N.m(B)作用在线圈上的最大磁力矩为M=1.8N.m(C)线圈正法线与B成30。

大学物理稳恒磁场理论及习题解读

大学物理稳恒磁场理论及习题解读

250 0 方向垂直A面
B
BC
0 N C I C
2 RC

0 20 5
2 0.10
O BA
5000 方向垂直C面
B
2 BA
2 BC
7.02 10 T 方向 : tan
4
1
BC 63.4 BA
NIZQ
第14页
大学物理学
恒定磁场
NIZQ
问题: 磁现象产生的原因是什么?
第 2页
大学物理学
恒定磁场
• 电流的磁效应 1820年奥斯特实验表明: 电流对磁极有 力的作用. 1820年 9月 11日在法国科学院演示的奥 斯特的实验 ,引起了安培的兴趣 .一周之后 安培发现了电流间也存在着相互作用力.
此后安培又提出了著名的安 培定律 : 磁体附近的载流导线 会受到力的作用而发生运动.
NIZQ
第 3页
大学物理学
恒定磁场
结论: 磁现象与电荷的运动有着密切的关系 . 运动电荷既能产 生磁效应,也受到磁力的作用. 安培把磁性归结为电流之间的相互作用 . 1822年安培提 出了分子电流假说:
• 一切磁现象起源于电荷的运动.
• 磁性物质的分子中存在分子电流, 每个分子电流相当于一基元磁体。
写成矢量表示:
0 Idl sin
2 4π r 0 Idl r dB 4π r 3
真空中的磁导率: 0= 410-7亨利· 米-1 (H· m-1)
NIZQ
第 8页
大学物理学
恒定磁场
• 毕奥—萨伐尔定律的应用 恒定磁场的计算: 1.选取电流元或某些典型电流分布为积分元. 2.由毕-萨定律写出积分元的磁场dB .

大学物理课件第七章恒定磁场-70页PPT精选文档

大学物理课件第七章恒定磁场-70页PPT精选文档

常常把非静电力的作用看成是一种非静电场的作用, 以 E非 表示非静电场的强度。
它定义为单位正电荷所受到的非静电力,即 F非qE非
在电源内部,电荷 q 从负极到正极,非静电力作的功

W非qE非dl 代入电动势内的电定路义式,
W非 非静q 电力


E非dl

LBndl 0In

穿过回路的电流
LBnkdl 0
所有电流的总场
任意回路
Bdl L
0
Iint
i
安培环路定理的应用
(1) 分析磁场分布的对称性(方向、大小)。
(2) 选择适当的安培环路: 环路应该通过场点,
环路的各部分或∥ B,或⊥ B,
dB
dl
B
r
求无限长载流圆柱导体内外的磁场分布。
I R r
I R r
0I
B



r
(r>R)
0 Ir
2 π R 2 ( r < R )
例2 求载流螺绕环内的磁场。
设螺绕环的半径为 R1, R2 ,共 有N 匝线圈。
以平均半径 R作圆为安培回路 L,
可得:
B 0I 4πr0
2 1
s
ind
0I
4πr0
(co1scos2)
磁感应强度 B的方向,与电流成右手螺旋关系,拇指
表示电流方向,四指给出磁场方向。
B4π0rI0(co1scos2)
B
特殊情况:
(1)无限长直线:当 1 0 , 2 π 时,
BI
4 围绕多根载流导线的任一回路 L
设有 I1,I2,I3In穿过回路L, I n 1

第七章恒定磁场-习题解答

第七章恒定磁场-习题解答
第七章、稳恒磁场
7-3 如图所示,一无限长载流绝缘直导线弯成如附图所示的
形状。求使o点的磁感应强度为零的半径a和b的比值。
解 该载流系统由三部分组成,o点的磁感
应强度为载有相同电流的无限长直导线
及两个半径分别为a和b的圆环分别在该
处激发的磁感应强度的矢量和。设磁场 方向以垂直纸面向内为正,向外为负。
方向垂直纸面向里。 (2)由磁矩定义
方向垂直纸面向里。
第七章、稳恒磁场
7-20 质谱仪的构造原理如图所示。离子源S提供质量为M、
电荷为q的离子。离子初速很小,可以看作是静止的,然后经
过电压U的加速,进入磁感应强度为B的均匀磁场,沿着半圆
周运动,最后到达记录底片P上。测得离子在P上的位置到入
口处A的距离为x。试证明该离子的质量为:M ? qB 2 x 2 。
或由磁感应线是闭合曲线,也可推知
??
Φaefd
?
? Φabcd
?
0.24Wb
? Φ ? ?B?dS ? 0
第七章、稳恒磁场
7-9 一个非均匀磁场磁感应强度的变化规律为B=ky(k为常 量),方向垂直纸面向外。磁场中有一边长为a的正方形线 框,其位置如图所示。求通过线框的磁通量。
解 在线框内坐标为y处取一长为a宽为 dy的矩形面积元dS,在dS中磁场可认 为是均匀的,则通过dS的磁通量
? I2l
? 0 I1
2πx1
I2l
? ?7.2?
F2 10?4
? B2I2l N
?
? 0 I1
2πx2
I2l
负号表示合力方向水平向左。
第七章、稳恒磁场
习题7-16 一长直导线通有电流I =20A,另一导线ab通 有电流I?=10A,两者互相垂直且共面,如图所示。求导 线ab所受的作用力和对o点的力矩。

恒定磁场讲义.ppt

恒定磁场讲义.ppt

天然磁性的产生也是由于磁体内部有电流流动。
磁性物质的分子中存在着“分子电流”,每个分子电流相 当于一个小磁针(称为“基元磁铁”),物质的磁性取定 于物质中分子电流的磁效应之总和。
§2 磁场 磁感应强度
一 磁 感 强 度 B的 定 义
带电粒子在磁场中运动所受的力与运
动方向有关.
实验发现带电粒 子在磁场中沿磁场方向 运动时不受力;当带电 粒子沿垂直于磁场的方 向运动时受力最大。
放在磁体附近的载流导线或线圈会受到力 的作用而发生运动。
IN F
S
电流与电流之间存在相互作用
-
-
+-
I
I
++
I
I
-
+
磁场对运动电荷的作用
电子束
S
+
N
二、物质磁性的电本质
电荷的运动是一切磁现象的根源,即磁性来自于 运动电荷。
运动电荷 磁场
磁场 对运动电荷有磁力作用
安培指出(安培分子电流假说(1822年) ):
磁极(pole):磁性最强的区域, 分磁北极N和磁南极S。
S
N
磁极不能单独存在。
磁力(magnetic force):磁极间存在相互作用,同号 相斥,异号相吸。
11.5
磁偏角
地球是一个巨大的 永磁体。
2. 电流的磁效应
奥斯特实验(1819年)
在载流导线附近的小磁针会发生偏转
I N
S
1820年安培的发现
例 判断下列各点磁感强度的方向和大小.
1
8
2
×
7
Idl × 3
R
6
×
4
dB
5

大学物理第七章第7章恒定磁场

大学物理第七章第7章恒定磁场

恒定电流
I
S
恒定电流
恒定电场
(1)在恒定电流情况下,导体中电荷分 布不随时间变化形成恒定电场;
(2)恒定电场与静电场具有相似性质( 高斯定理和环路定理),恒定电场可引入 电势的概念;
(3)恒定电场的存在伴随能量的转换.
2020年4月22日星期三
非静电力: 能不断分离正负电荷使正电 荷逆静电场力方向运动.
磁通量:通过 某曲面的磁感线数
匀强磁场下,面 S的磁通量为:
一般情况
磁场高斯定理 物理意义:通过任意闭合曲面的磁通 量必等于零(故磁场是无源的).
例 如图载流长直导线的电流为 , 试求 通过矩形面积的磁通量.

一 安培环路定理
o
设闭合回路 为圆 形回路( 与 成右螺 旋)
若回路绕向为逆时针
+
+
+
+
+
+
:电子漂移速度的大小
电流密度:细致描述导体内各点电流分
布的情况.
方向:
该点正电荷运动方向
大小:单位时间内 过该点且垂直于正电荷 运动方向的单位面积的 电荷
二 电流的连续性方程 恒定电流条件
单位时间内通过闭合曲面向外流出的 电荷,等于此时间内闭合 曲面内电荷的减少量 .
I
S
若闭合曲面 S 内的电荷 不随时间而变化,有
五 理解洛伦兹力和安培力的公式 , 能分析电荷在均匀电场和磁场中的受力和 运动.了解磁矩的概念.
7-0 教学基本要求
➢ 六 了解磁介质的磁化现象及其微 观解释. ➢ 了解磁场强度的概念以及在各向同 性介质中H和B的关系,了解磁介质中的 安培环路定理 . ➢ 了解铁磁质的特性.

第七章:恒定磁场-1

第七章:恒定磁场-1
第七章 恒定磁场
11
物理学
第五版
第七章 恒定磁场
(3)铜导线中电流密度均匀,电流密度 值多少? 解
15 I 2 A m j 4 2 π ( 8 . 10 10 ) S 7.28106 A m 2
第七章 恒定磁场
12
物理学
第五版
第七章 恒定磁场
第七章 恒定磁场
13
无电流时磁针的N极指向北面; 加上电流,磁针会发生偏转;
3 磁现象的起源 电流 运动电荷 磁场 磁场
34
若电流方向相反,则磁针反向偏转。 电流对磁针的作用称为电流的磁效应。
第七章 恒定磁场
物理学
第五版
第七章 恒定磁场
电流之间的相互作用
I
I
第七章 恒定磁场
35
物理学第五版Fra bibliotek第七章 恒定磁场
磁铁对电流的作用
第七章 恒定磁场
U
4
物理学
第五版
第七章 恒定磁场
7-1 电流
电流密度
一、电流
1、形成电流的条件


在导体内有可以自由移动的电荷(载流子) 在半导体中是电子或空穴 在金属中是电子 在电解质溶液中是离子 在导体内要维持一个电场,或者说在导体两端要存在有电势差
2、电流的方向
正电荷移动的方向定义为电流的方向 电流的方向与自由电子移动的方向是 相反的。
物理学
第五版
第七章 恒定磁场
例(1)若每个铜原子贡献一个自由电子, 问铜导线中自由电子数密度为多少? 解
NA 28 3 n 8.4810 个 / m M
(2)家用线路电流最大值 15 A,铜导 线半径0.81 mm,此时电子漂移速率多少?

窦娥冤课文讲解

窦娥冤课文讲解

第三部分 预习检测题 及答案
三、简答题 1.请简述《窦娥冤》中窦娥的性格特点和她所遭受的不幸遭遇。 2.分析《窦娥冤》一剧是如何通过窦娥的悲惨命运揭示元代社会的 黑暗现实的。 3.讨论《窦娥冤》的艺术特色及其在中国戏曲史上的地位。
第七章 恒定磁场
预习检测题
第三部分 预习检测题 及答案
第七章 恒定磁场
第七章 恒定磁场
课文前言
主要学习内容说明
1.对课文学习目标、重难点、段落划分、中心思 想、写作手法、经典语句解读、考试题目(预习 题目)及答案、读文感知等内容进行全面深入讲 解,引领学生系统、全面的掌握课文内容。 2.适用于学生、老师等广大学者。
第七章 恒定磁场
窦娥冤——导学案 课文精讲
目录
1 学习目标 2 学习重难点 3 预习检测题及答案 4 段落划分
学习重难点
第七章 恒定磁场
学习重难点
第二部分 学习重难点
重难点1
重难点2
重难点3
重难点4
深入理解作品所 反映的元代社会 现实和封建伦理 道德对个体命运 的压迫,是学习 的重点
通过探究窦娥的 冤屈成因,我们 可以更深刻地认 识到封建社会的 黑暗与不公。
把握作品的艺术 特色也是学习的 难点。作品通过 个性化的语言、 生动的情节和深 刻的人物塑造, 展现了元代戏曲 的独特魅力。
第七章 恒定磁场
预习检测题答案
第三部分 预习检测题 及答案
三、简答题 1.【答案】窦娥是一位善良、柔弱、需要人保护的女子。她幼时丧母, 七岁又被卖为童养媳,婚后不久丈夫去世。她只想一心一意服侍婆婆,过 安安稳稳的日子。即使受到流氓张驴儿的胁迫时,她也坚守着妇德,不畏 强权,明辨是非。然而,这样一个善良、柔弱的女子,却遭受了当时官府 的任意枉杀。 2.【答案】《窦娥冤》通过窦娥的悲惨命运,深刻地揭示了元代社会的 黑暗现实。窦娥一家遭受冤屈,她本人更是被贪官污吏陷害致死,这反映 了当时社会的司法不公、官场腐败等问题。作品通过这一悲剧故事,批判 了封建社会的黑暗面,表现了人民对正义的追求和对邪恶势力的反抗。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

23
0 I B (cos 1 cos 2 ) 4r0
当导线为“无限长”时(L>>r0)时 ,
z
2
1 0, 2
0 I 0 I B (1 1) 4r0 2r0
正比于I,反比于r0。 半无限长载流长直导线
r0
x o 1
B P
y
π 1 , 2 π 2
1.单纯的静电力不能维持稳恒电流
Fk F静
I
K
Fk
非静电力。
2.在电源内部只有非静电力才能把正电荷从负极运送到 正极
9
10
3.电源
能够提供用以维持稳恒电流的(或电压的)非静电力装置(电 池、发电机)。
4.电动势
非静电力把单位正电荷从电源的负极通过电源内部移到正 极所作的功。单位:伏特(V)
BP
0 I
4πr
24
无限长载流长直导线的磁场
B
0 I
2πr
I
I
B
×
B
电流与磁感强度成右螺旋关系。
25
[例2]圆电流轴线上一点P的磁场。 解:由对称性分析,垂直轴线的分量相互抵消,平行 x
轴线分量直接相加。
0 I d l er dB 2 4 r
I dl
y

实验发现,磁力 F 总是垂直于 B 和 v 所组成的平面,因 的方向,确定 的方向如 此可以根据最大磁力 Fm 和 v B
下:由正电荷所受力Fm 的方向,按右手螺旋法则,沿小 于 的角度转向正电荷运动速度v的方向, 这时螺旋前进
可以由矢积 Fm v 的方向确定矢量 B 的方向。由这种
6.电流和电荷的关系
S
dq I dt
d q — d t时间间隔内 通过截面S的电荷量
单位:安培,符号为 A
I
3 6
1 A 10 mA 10 μA
7.恒定电流
如果导体中的电流不随时间变化,这种电流称为恒
定电流。
3
二、电流密度
1.电流密度 电流密度是矢量,其方向和大小规定如下: (1)方向 导体中任意一点电流密度的方向为该点正电荷的运 动方向。 (2)大小 导体中任意一点电流密度的大小等于在单位时间内,通 过该点附近垂直于正电荷运动方向的单位面积的电荷。
定义:非静电性场强:
Fk (非静电力 ) Ek q(电荷)
非静电力的功:W


- 内
Fk d l= qEk d l
- 内
电动势:
+ W E Ek d l - 内 q
11
5.整个闭合回路的电动势
(1)整个闭合回路都有非静电力存在。
I envd S
I 4 -1 -1 vd 5.36 10 m s 2 m h nSe
7
(3)铜导线中电流密度均匀,电流密度值多少?

15 I 2 A m j 4 2 S π ( 8.10 10 )
7.28 106 A m2
8
7-2 电源 电动势
4 R1
I
R1
* o

0 I
4 π R1
29
三、磁矩
1.圆电流的磁矩
m ISen
m-磁矩 en -圆电流平面单位正法 线矢量,
I
S en
m
与电流I的流向遵守右手螺旋法 则。
圆电流轴线上任一点的磁感应强度—当 x>>R 时,
0 IS B 2 x 3
B
0 0 m m e 3 3 n 2 x 2 x
Idz
L
0I d z r dB 3 4 r
2

0 I d z sin dB 4 r 2 0 I d z sin B dB 2 4 L r L
变量必须统一到同一变量 才能积分。 z
z
r
x
o r0 1
dB P y
r0
ctg( ) ctg
B
0 IR
2x3
2
0 IS 2 x 3
28
I
1.无限长直导线:
R
o
×
0 I B 2r0
2.半无限长直导线:
R o×
I
BO
0 I
4R
BO
0 I
8R
B
0 I
4πr
d *A
0 I BA 4πd
BO
3.圆电流中心处:
B
0 I
2R
R2
0 I
4 R2

0 I
13
二、 磁感应强度
1.磁场力的特点 (1)磁力的大小和电荷运动速度的大小和方向有关;
(2)磁力的方向总是与电荷运动的方向垂直;
(3)磁场中P点存在一个特定的 方向,当电荷沿着该方向(或其 反方向)运动时,磁力为零。定 义该方向为磁场的方向。
z
y x v∥B, F 0 14
o
v v
4.n条载流导线在空间任一点P的磁感应强度
0 I i d l ri Bi d Bi 3 4 Li ri Li
n B Bi i 1
19
5.毕奥-萨伐尔定律的说明 毕奥-萨伐尔定律是根据大量实验事实进行分析后 得出的结果,但在实验上我们无法得到电荷能在其中作 恒定运动的电流元,所以不能直接用实验来验证。但当
方向是一致的。
B
的方向便是该点 B 的方向。这就是说,对正电荷而言,
规定所确定的磁场方向和用小磁针的N极来确定的磁场
v
Fm
17
7-4 毕奥-萨伐尔定律 一、毕奥-萨伐尔定律
恒定磁场(静磁场)—恒定电流产生的磁场。在静磁场中, 磁感应强度仅是空间的坐标的函数,而与时间无关。
1.电流元-- I d l 2. I d l 在空间任一
E Ek d l
(2)只有电源内部有非静电力存在。 ①在内电路——非静电力克服静电力作功,实现其它
形式能向电能的转换。
②在外电路——只有静电力作功,它将电能转换为其
它形式的能量。
③由环路定理,电荷沿整个回路一周,静电力所作的 总功等于零,稳恒电场没有贡献任何能量。
12
7-3 磁场 磁感应强度 一、基本磁现象
F qv B
Fm B qv
描述磁场中给定点性质的基本物 理量—磁感应强度的大小可定义为: 方向:为该处小磁针N极所指的方向。
单位:特斯拉(T)
Fmax
1N 1N 1T 1 C 1 m/s 1 A 1 m
1 T 10 Gs(高斯)
4
v
q
+
B
16
4.磁感应强度方向的实验描述
我们把它应用到各种形状的电流分布时,计算得到的总
磁感应强度和实验测得的结果相符,这就间接证明了它 的正确性,同时也证明了磁感应强度和电场强度场强一 样,也遵守叠加原理。
20
二、毕奥-萨伐尔定律的应用
[例] 求圆电流中心的磁感应强度
解:任取电流元 I d l
0I d l r 根据毕奥-萨伐尔定律 d B 3 4 r
1.基本磁现象 电流与电流、磁铁,磁铁与磁铁之间存在相互作用。 2.磁性的起源
一切磁现象的根源是电流,任何物质的分子都存在回路
电流(分子电流),分子电流相当于一个基元磁铁。物质对外 显磁性,就是物质中分子电流在外界作用下趋向于沿同一方 向排列的结果。 3.任何运动的电荷或电流的周围存在磁场。 4.磁场对运动的电荷有力的作用, 磁场有能量。
z r0 ctg
r0 sin( ) sin r
r0 r sin22
z r0 ctg
r0 r sin
2
r0 d z d( r0 ctg ) r0 ( csc ) d d 2 sin
0 B 4
+
v v
B
(4)当电荷在P点沿着与磁场方向垂直的方向运动时,受 到的磁力最大,Fmax 正比于电荷量q,也正比于电荷的 速率v,但比值Fmax/qv与qv大小无关。
F Fmax F
Fmax qv
Fmax 与qv无关。 qv
15
2.洛仑兹力公式 3.磁感应强度定义
4
2.电流密度表达式
Q — t时间内通过面积元 S的电荷
Q
S
P

en
j
Q I j tS cos S cos
3. 通 过 导 体 任 一
有限截面S的电流
I j S
j d S
5
I
S
4.电流、电流密度和自由电子密度、漂移速度的关系
B
0 IR
2
2 2
2( x R )
i 3/ 2
27
讨论
(1)当x=0时, 即圆电流中心处:
B
0 IR 2
2( x R )
2 2 3/ 2
B
0 I
2R
(2)如圆电流共有N匝线圈串联并紧紧靠在一起
B
(3)当 x>>R 时,
2
0 NI
2 R
2 2 2
(x R ) x , S R
dB
I
I dl
o R
在场点O的磁感强度方向 垂直纸面向外,大小为:
0 I d l dB 2 4R
B
各电流元的磁场方向相同,大小直接相加
0 I d l 0 I 0 I B dl 2 2 ( L ) ( L ) 4R 4R 2R
相关文档
最新文档