第三章导数及其应用基础训练

合集下载

高考数学一轮复习 第三章 导数及其应用3

高考数学一轮复习 第三章  导数及其应用3

高考数学一轮复习 第三章 3.7 利用导数研究函数零点 题型一 数形结合法研究函数零点例1 (2020·全国Ⅰ)已知函数f (x )=e x -a (x +2). (1)当a =1时,讨论f (x )的单调性; (2)若f (x )有两个零点,求a 的取值范围. 解 (1)当a =1时,f (x )=e x -(x +2),f ′(x )=e x -1,令f ′(x )<0,解得x <0,令f ′(x )>0,解得x >0,所以f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增. (2)令f (x )=0,得e x =a (x +2),即1a =x +2ex ,所以函数y =1a 的图象与函数φ(x )=x +2e x 的图象有两个交点,φ′(x )=-x -1e x ,当x ∈(-∞,-1)时,φ′(x )>0; 当x ∈(-1,+∞)时,φ′(x )<0, 所以φ(x )在(-∞,-1)上单调递增, 在(-1,+∞)上单调递减,所以φ(x )max =φ(-1)=e ,且x →-∞时, φ(x )→-∞;x →+∞时,φ(x )→0, 所以0<1a <e ,解得a >1e .所以a 的取值范围是⎝⎛⎭⎫1e ,+∞. 教师备选已知函数f (x )=x e x +e x .(1)求函数f (x )的单调区间和极值;(2)讨论函数g (x )=f (x )-a (a ∈R )的零点的个数. 解 (1)函数f (x )的定义域为R , 且f ′(x )=(x +2)e x ,令f ′(x )=0得x =-2,则f ′(x ),f (x )的变化情况如表所示:x (-∞,-2)-2 (-2,+∞)f ′(x ) - 0 + f (x )单调递减-1e2 单调递增∴f (x )的单调递减区间是(-∞,-2),单调递增区间是(-2,+∞). 当x =-2时,f (x )有极小值为f (-2)=-1e 2,无极大值.(2)令f (x )=0,得x =-1, 当x <-1时,f (x )<0;当x >-1时,f (x )>0,且f (x )的图象经过点⎝⎛⎭⎫-2,-1e 2,(-1,0),(0,1). 当x →-∞时,与一次函数相比,指数函数y =e -x 增长更快,从而f (x )=x +1e -x →0;当x →+∞时,f (x )→+∞,f ′(x )→+∞,根据以上信息,画出f (x )大致图象如图所示.函数g (x )=f (x )-a (a ∈R )的零点的个数为y =f (x )的图象与直线y =a 的交点个数. 当x =-2时,f (x )有极小值f (-2)=-1e2.∴关于函数g (x )=f (x )-a (a ∈R )的零点个数有如下结论:当a <-1e 2时,零点的个数为0;当a =-1e 2或a ≥0时,零点的个数为1;当-1e2<a <0时,零点的个数为2.思维升华 含参数的函数零点个数,可转化为方程解的个数,若能分离参数,可将参数分离出来后,用x 表示参数的函数,作出该函数的图象,根据图象特征求参数的范围. 跟踪训练1 设函数f (x )=ln x +mx,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3零点的个数.解 (1)当m =e 时,f (x )=ln x +ex ,f (x )的定义域为(0,+∞), f ′(x )=1x -e x 2=x -e x 2.令f ′(x )=0,得x =e. 当x ∈(0,e)时,f ′(x )<0; 当x ∈(e ,+∞)时,f ′(x )>0,∴f (x )在(0,e)上单调递减,在(e ,+∞)上单调递增, ∴当x =e 时,f (x )取得极小值f (e)=2. (2)由题意知g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1).当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增; 当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减. ∴x =1是φ(x )的唯一极值点,且是极大值点, ∴x =1也是φ(x )的最大值点, ∴φ(x )的最大值为φ(1)=23.结合y =φ(x )的图象(如图)可知,①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.题型二 利用函数性质研究函数零点例2 (12分)(2021·全国甲卷)设函数f (x )=a 2x 2+ax -3ln x +1,其中a >0. (1)讨论f (x )的单调性; [切入点:判断f ′(x )的正负](2)若y =f (x )的图象与x 轴没有公共点,求a 的取值范围. [关键点:f (x )>0且f (x )有最小值]教师备选已知函数f (x )=x sin x +cos x ,g (x )=x 2+4. (1)讨论f (x )在[-π,π]上的单调性;(2)令h (x )=g (x )-4f (x ),试证明h (x )在R 上有且仅有三个零点. (1)解 f ′(x )=sin x +x cos x -sin x =x cos x . 当x ∈⎝⎛⎭⎫-π,-π2∪⎝⎛⎭⎫0,π2时,f ′(x )>0; 当x ∈⎝⎛⎭⎫-π2,0∪⎝⎛⎭⎫π2,π时,f ′(x )<0, ∴f (x )在⎝⎛⎭⎫-π,-π2,⎝⎛⎭⎫0,π2上单调递增,在⎝⎛⎭⎫-π2,0,⎝⎛⎭⎫π2,π上单调递减. (2)证明 h (x )=x 2+4-4x sin x -4cos x , ∵h (-x )=x 2+4-4x sin x -4cos x =h (x ), ∴h (x )为偶函数. 又∵h (0)=0,∴x =0为函数h (x )的零点.下面讨论h (x )在(0,+∞)上的零点个数: h (x )=x 2+4-4x sin x -4cos x =x (x -4sin x )+4(1-cos x ). 当x ∈[4,+∞)时, x -4sin x >0,4(1-cos x )≥0, ∴h (x )>0, ∴h (x )无零点; 当x ∈(0,4)时,h ′(x )=2x -4x cos x =2x (1-2cos x ), 当x ∈⎝⎛⎭⎫0,π3时,h ′(x )<0; 当x ∈⎝⎛⎭⎫π3,4时,h ′(x )>0,∴h (x )在⎝⎛⎭⎫0,π3上单调递减,在⎝⎛⎭⎫π3,4上单调递增, ∴h (x )min =h ⎝⎛⎭⎫π3=π29+4-4π3sin π3-4cos π3=π29+2-23π3<0,又h (0)=0,且h (4)=20-16sin 4-4cos 4>0, ∴h (x )在⎝⎛⎭⎫0,π3上无零点,在⎝⎛⎭⎫π3,4上有唯一零点. 综上,h (x )在(0,+∞)上有唯一零点, 又h (0)=0且h (x )为偶函数, 故h (x )在R 上有且仅有三个零点.思维升华 利用函数性质研究函数的零点,主要是根据函数单调性、奇偶性、最值或极值的符号确定函数零点的个数,此类问题在求解过程中可以通过数形结合的方法确定函数存在零点的条件.跟踪训练2 已知函数f (x )=13x 3-a (x 2+x +1).(1)若a =3,求f (x )的单调区间;(2)证明:f (x )只有一个零点.(1)解 当a =3时,f (x )=13x 3-3x 2-3x -3,f ′(x )=x 2-6x -3.令f ′(x )=0,解得x =3-23或x =3+2 3. 当x ∈(-∞,3-23)∪(3+23,+∞)时, f ′(x )>0;当x ∈(3-23,3+23)时,f ′(x )<0.故f (x )的单调递增区间为(-∞,3-23),(3+23,+∞), 单调递减区间为(3-23,3+23). (2)证明 因为x 2+x +1>0在R 上恒成立, 所以f (x )=0等价于x 3x 2+x +1-3a =0.设g (x )=x 3x 2+x +1-3a ,则g ′(x )=x 2x 2+2x +3x 2+x +12≥0在R 上恒成立,当且仅当x =0时,g ′(x )=0, 所以g (x )在(-∞,+∞)上单调递增.故g (x )至多有一个零点,从而f (x )至多有一个零点. 又f (3a -1)=-6a 2+2a -13=-6⎝⎛⎭⎫a -162-16<0, f (3a +1)=13>0,故f (x )有一个零点.综上所述,f (x )只有一个零点.题型三 构造函数法研究函数的零点例3 (2021·全国甲卷)已知a >0且a ≠1,函数f (x )=x aa x (x >0).(1)当a =2时,求f (x )的单调区间;(2)若曲线y =f (x )与直线y =1有且仅有两个交点,求a 的取值范围. 解 (1)当a =2时,f (x )=x 22x (x >0),f ′(x )=x 2-x ln 22x(x >0),令f ′(x )>0,则0<x <2ln 2,此时函数f (x )单调递增,令f ′(x )<0, 则x >2ln 2,此时函数f (x )单调递减, 所以函数f (x )的单调递增区间为⎝⎛⎭⎫0,2ln 2,单调递减区间为⎝⎛⎭⎫2ln 2,+∞. (2)曲线y =f (x )与直线y =1有且仅有两个交点,可转化为方程x a a x =1(x >0)有两个不同的解,即方程ln x x =ln aa 有两个不同的解.设g (x )=ln xx (x >0),则g ′(x )=1-ln xx 2(x >0),令g ′(x )=1-ln xx 2=0,得x =e ,当0<x <e 时,g ′(x )>0,函数g (x )单调递增, 当x >e 时,g ′(x )<0,函数g (x )单调递减, 故g (x )max =g (e)=1e ,且当x >e 时,g (x )∈⎝⎛⎭⎫0,1e , 又g (1)=0,所以0<ln a a <1e ,所以a >1且a ≠e ,即a 的取值范围为(1,e)∪(e ,+∞). 教师备选(2022·南阳质检)已知f (x )=13x 3+32x 2+2x ,f ′(x )是f (x )的导函数.(1)求f (x )的极值;(2)令g (x )=f ′(x )+k e x -1,若y =g (x )的函数图象与x 轴有三个不同的交点,求实数k 的取值范围.解 (1)因为f ′(x )=x 2+3x +2=(x +1)(x +2), 令f ′(x )=0,得x 1=-1,x 2=-2, 当x 变化时,f ′(x ),f (x )的变化如表所示:x (-∞,-2)-2 (-2,-1)-1 (-1,+∞)f ′(x ) + 0 - 0 + f (x )↗极大值↘极小值↗由表可知,函数f (x )的极大值为f (-2)=-23,极小值为f (-1)=-56.(2)由(1)知g (x )=x 2+3x +2+k e x -1=x 2+3x +1+k e x , 由题知需x 2+3x +1+k e x =0有三个不同的解,即k =-x 2+3x +1e x有三个不同的解.设h (x )=-x 2+3x +1e x,则h ′(x )=x 2+x -2e x =x +2x -1e x ,当x ∈(-∞,-2)时,h ′(x )>0,h (x )单调递增, 当x ∈(-2,1)时,h ′(x )<0,h (x )单调递减, 当x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增,又当x →-∞时,h (x )→-∞, 当x →+∞时,h (x )→0且h (x )<0, 且h (-2)=e 2,h (1)=-5e .作出函数h (x )的简图如图,数形结合可知,-5e<k <0.思维升华 涉及函数的零点(方程的根)问题,主要利用导数确定函数的单调区间和极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求得参数的取值范围.跟踪训练3 设函数f (x )=12x 2-m ln x ,g (x )=x 2-(m +1)x ,m >0.(1)求函数f (x )的单调区间;(2)当m ≥1时,讨论f (x )与g (x )图象的交点个数. 解 (1)函数f (x )的定义域为(0,+∞), f ′(x )=x +mx -mx .当0<x <m 时,f ′(x )<0,函数f (x )单调递减; 当x >m 时,f ′(x )>0,函数f (x )单调递增.综上,函数f (x )的单调递增区间是(m ,+∞),单调递减区间是(0,m ). (2)令F (x )=f (x )-g (x )=-12x 2+(m +1)x -m ln x ,x >0,题中问题等价于求函数F (x )的零点个数.F ′(x )=-x -1x -m x ,当m =1时,F ′(x )≤0,函数F (x )为减函数,因为F (1)=32>0,F (4)=-ln 4<0, 所以F (x )有唯一零点;当m >1时,0<x <1或x >m 时,F ′(x )<0;1<x <m 时,F ′(x )>0,所以函数F (x )在(0,1)和(m ,+∞)上单调递减,在(1,m )上单调递增,因为F (1)=m +12>0, F (2m +2)=-m ln(2m +2)<0,所以F (x )有唯一零点.综上,函数F (x )有唯一零点,即函数f (x )与g (x )的图象总有一个交点.课时精练1.(2022·贵阳模拟)已知函数f (x )=13x 3-12ax 2(a ≠0). (1)讨论f (x )的单调性;(2)当a =1时,g (x )=f (x )-2x +b ,讨论g (x )的零点个数.解 (1)f (x )的定义域为R ,f ′(x )=x 2-ax =x (x -a ),若a >0,当x ∈(-∞,0)∪(a ,+∞)时,f ′(x )>0,当x ∈(0,a )时,f ′(x )<0,若a <0,当x ∈(-∞,a )∪(0,+∞)时,f ′(x )>0,当x ∈(a,0)时,f ′(x )<0,综上,当a >0时,f (x )在(-∞,0),(a ,+∞)上单调递增,在(0,a )上单调递减, 当a <0时,f (x )在(-∞,a ),(0,+∞)上单调递增,在(a,0)上单调递减.(2)g (x )=13x 3-12x 2-2x +b , 令g (x )=0,所以b =-13x 3+12x 2+2x , 令h (x )=-13x 3+12x 2+2x , 则h ′(x )=-x 2+x +2=-(x -2)(x +1),所以h ′(2)=0,h ′(-1)=0,且当x <-1时,h ′(x )<0;当-1<x <2时,h ′(x )>0;当x >2时,h ′(x )<0,所以h (x )极小值=h (-1)=13+12-2=-76, h (x )极大值=h (2)=-13×8+12×4+4=103, 如图,当b <-76或b >103时,函数g (x )有1个零点; 当b =-76或b =103时,函数g (x )有2个零点; 当-76<b <103时,函数g (x )有3个零点.2.已知函数f (x )=e x (ax +1),曲线y =f (x )在x =1处的切线方程为y =bx -e.(1)求a ,b 的值;(2)若函数g (x )=f (x )-3e x -m 有两个零点,求实数m 的取值范围.解 (1)f (x )=e x (ax +1),则f ′(x )=e x (ax +1)+e x ·a =e x (ax +1+a ),由题意知⎩⎪⎨⎪⎧ f ′1=e 2a +1=b ,f 1=e a +1=b -e ,解得⎩⎪⎨⎪⎧a =1,b =3e , ∴a =1,b =3e.(2)g (x )=f (x )-3e x -m =e x (x -2)-m ,函数g (x )=e x (x -2)-m 有两个零点,相当于函数u (x )=e x ·(x -2)的图象与直线y =m 有两个交点,u ′(x )=e x ·(x -2)+e x =e x (x -1),当x ∈(-∞,1)时,u ′(x )<0,∴u (x )在(-∞,1)上单调递减;当x ∈(1,+∞)时,u ′(x )>0,∴u (x )在(1,+∞)上单调递增,∴当x =1时,u (x )取得极小值u (1)=-e.又当x →+∞时,u (x )→+∞,当x <2时,u (x )<0,∴-e<m <0,∴实数m 的取值范围为(-e,0).3.已知函数f (x )=e x +ax -a (a ∈R 且a ≠0).(1)若函数f (x )在x =0处取得极值,求实数a 的值,并求此时f (x )在[-2,1]上的最大值;(2)若函数f (x )不存在零点,求实数a 的取值范围.解 (1)由f (x )=e x +ax -a ,得f ′(x )=e x +a .∵函数f (x )在x =0处取得极值,∴f ′(0)=e 0+a =0,∴a =-1,∴f (x )=e x -x +1,f ′(x )=e x -1.∴当x ∈(-∞,0)时,f ′(x )<0,f (x )单调递减;当x ∈(0,+∞)时,f ′(x )>0,f (x )单调递增.易知f (x )在[-2,0)上单调递减,在(0,1]上单调递增,且f (-2)=1e 2+3,f (1)=e ,f (-2)>f (1), ∴f (x )在[-2,1]上的最大值是1e 2+3. (2)f ′(x )=e x +a .①当a >0时,f ′(x )>0,f (x )在R 上单调递增,且当x >1时,f (x )=e x +a (x -1)>0,当x <0时,取x =-1a, 则f ⎝⎛⎭⎫-1a <1+a ⎝⎛⎭⎫-1a -1=-a <0, ∴函数f (x )存在零点,不满足题意.②当a <0时,令f ′(x )=e x +a =0,则x =ln(-a ).当x ∈(-∞,ln(-a ))时,f ′(x )<0,f (x )单调递减;当x ∈(ln(-a ),+∞)时,f ′(x )>0,f (x )单调递增.∴当x =ln(-a )时,f (x )取得极小值,也是最小值.当x →-∞时,f (x )→+∞,当x →+∞时,f (x )→+∞,函数f (x )不存在零点,等价于f (ln(-a ))=e ln(-a )+a ln(-a )-a =-2a +a ln(-a )>0,解得-e 2<a <0.综上所述,所求实数a 的取值范围是(-e 2,0).4.(2022·潍坊模拟)已知函数f (x )=x 2-a sin x -2(a ∈R ). (1)若曲线y =f (x )在点⎝⎛⎭⎫π2,f ⎝⎛⎭⎫π2处的切线经过坐标原点,求实数a ; (2)当a >0时,判断函数f (x )在x ∈(0,π)上的零点个数,并说明理由.解 (1)f ′(x )=2x sin x -x 2-a cos x sin 2x, f ′⎝⎛⎭⎫π2=π,所以f (x )在点⎝⎛⎭⎫π2,f ⎝⎛⎭⎫π2处的切线方程为y =πx ,所以f ⎝⎛⎭⎫π2=π22, 即π24-a -2=π22,a =-π24-2. (2)因为x ∈(0,π),所以sin x >0,所以x 2-a sin x -2=0可转化为x 2-a -2sin x =0, 设g (x )=x 2-a -2sin x ,则g ′(x )=2x -2cos x ,当x ∈⎣⎡⎭⎫π2,π时,g ′(x )>0,所以g (x )在区间⎣⎡⎭⎫π2,π上单调递增.当x ∈⎝⎛⎭⎫0,π2时, 设h (x )=g ′(x )=2x -2cos x ,此时h ′(x )=2+2sin x >0,所以g ′(x )在x ∈⎝⎛⎭⎫0,π2上单调递增, 又 g ′(0)=-2<0,g ′⎝⎛⎭⎫π2=π>0,所以存在x 0∈⎝⎛⎭⎫0,π2使得g ′(x )=0且x ∈(0,x 0)时g (x )单调递减, x ∈⎣⎡⎭⎫x 0,π2时g (x )单调递增. 综上,对于连续函数g (x ),当x ∈(0,x 0)时,g (x )单调递减, 当x ∈(x 0,π)时,g (x )单调递增.又因为g (0)=-a <0,所以当g (π)=π2-a >0,即a <π2时,函数g (x )在区间(x 0,π)上有唯一零点,当g (π)=π2-a ≤0,即a ≥π2时,函数g (x )在区间(0,π)上无零点, 综上可知,当0<a <π2时,函数f (x )在(0,π)上有1个零点; 当a ≥π2时,函数f (x )在(0,π)上没有零点.。

微积分基础练习--导数、微分及其应用

微积分基础练习--导数、微分及其应用

(二)导数、微分及其应用一.选择题1.设⎪⎩⎪⎨⎧=≠=0,00,1cos )(2x x xx x f ,则f (x )在点x =0处的导数( ) (A )等于0 (B )等于1 (C )等于-1 (D )不存在 2.设)(x ϕ为连续函数,且0)(≠a ϕ,则)()()(x a x x f ϕ-=在点x =a 处( )(A )连续,但不可导 (B)可导,且()()f a a ϕ'= (C)不连续,更不可导 (D )可导,且()0f a '= 3.设f (x )=(x -1)sin x ,则f (x )在点x =1处的导数( )(A) 等于0 (B )等于cos1 (C )等于-cos1 (D)sin1 4.曲线ln y x =上某点的切线平行于直线23y x =-,该点坐标是( )(A) 1(2,ln )2 (B ) 1(,ln 2)2- (C ) 1(2,ln )2- (D) 1(,ln 2)25. 在抛物线21y x =+上过点(1,2)处的切线的斜率为( )(A )12 (B) 2 (C ) 2- (D) 12- 6.函数y 由方程y y x =+)(ϕ确定,)(y ϕ'若存在且不等于1,则dydx的值是( )(A ))(1y ϕ'+ (B ))(11y ϕ'- (C ))(11y ϕ'+ (D )不存在7.若f (x )为可导函数,且)(xe f y =,则y ′=( )(A ))(xxe f e ' (B))()(x f e f x'' (C ))(xe f ' (D))(xxe f e 8.f (x )是x 的可导函数,则2()df x dx=( ) (A ))(323x f x ' (B )22()xf x ' (C ))(2x f ' (D))(2x f x '9.若f (x )为可导函数,且)(x f ey =,则y ′=( )(A ))()(x f ex f ' (B ))(x f e (C ))()(x x f e f e ' (D ))(x f e x '10.导数等于1sin 22x 的函数是 ( ) (A)1cos 24x (B )21sin 2x (C ) 21cos 2x (D )11cos 22x -11.若f (u )为可导,且)(xe f y =,则有d y =( )(A ) dx e f e x x )(' (B )dx e f x)(' (C) dx e e f x x x ])([' (D) xx x de e f ])(['12.函数( )的微分等于它的增量。

导数及其应用(基础同步练习)

导数及其应用(基础同步练习)

导数及其应用一、知识梳理:(一)导数概念及基本运算1、导数的几何意义:曲线y=f (x )在某一点(x 0,y 0)处的导数f ’( x 0)就是过点(x 0,y 0)的切线的斜率,相应地,切线方程为2、几种常见函数的导数:'c = (c 为常数); ()n x '= (R n ∈);'(sin )x = ; '(cos )x = ;(ln )x '= ; (log )a x '= ;'()x e = ; '()x a =3、运算法则:'()u v ±= ;'()uv = ;'u v ⎛⎫= ⎪⎝⎭ (0)v ≠。

4、问题1:求下列函数的导数:(1)31()213f x x x =++ (2) cos x y e x = (3)2tan y x x =+问题2:cos y x x =在3x π=处的导数值是___________.问题3. 求322+=x y 在点)5,1(P 的切线方程。

(二)导数在研究函数中的应用1. 函数的单调性与导数的关系一般地,函数的单调性与其导函数的正负有如下关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在这个区间内 ;如果()0f x '<,那么函数()y f x =在这个区间内 .2. 判别f (x 0)是极大、极小值的方法:若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的 ,)(0x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的极小值点,)(0x f 是注:若函数f (x )在点x 0处取得极值,则f ‘(x 0)= 。

第16讲:第三章 一元函数的导数及其应用(测)(中档卷)(教师版)

第16讲:第三章 一元函数的导数及其应用(测)(中档卷)(教师版)

第三章 一元函数的导数及其应用(中档卷)一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2022·四川省成都市新都一中高二期中(文))函数()ln f x x x =+在1x =处的切线的斜率为( ) A .2 B .-2 C .0 D .1【答案】A ()11f x x'=+,故()12f '=, 故曲线()y f x =在1x =处的切线的斜率为2, 故选:A.2.(2022·四川省资中县球溪高级中学高二阶段练习(文))已知()()221f x x x f =+⋅',则()3f '等于( )A .-4B .2C .1D .-2【答案】B()()221f x x f +'=',令1x =得:()()1221f f =+'',解得:()12f '=-, 所以24fx x ,()3642f ='-=故选:B3.(2022·黑龙江·哈尔滨三中高二阶段练习)若函数()2()e x f x x ax a =--在区间(2,0)-内单调递减,则实数a 的取值范围是( ) A .[1,)+∞ B .[0,)+∞ C .(,0]-∞ D .(,1]-∞【答案】C∵()()2e x f x x ax a =-+,∴()()()2e 2e 2x x f x x a x x x a '⎡⎤=+-=+-⎣⎦,∵x ∈(2,0)-时,e 0x x <,∴若()f x 在(2,0)-内单调递减,则20x a +-≥在(2,0)-上恒成立, 即得2a x ≤+在(2,0)-恒成立,∴0a ≤. 故选:C.4.(2022·四川·成都七中高二期中(理))各种不同的进制在我们生活中随处可见,计算机使用的是二进制,数学运算一般用的十进制.通常我们用函数()ln ln M xf x M x=⋅表示在x 进制下表达()1M M >个数字的效率,则下列选项中表达M 个数字的效率最高的是( ) A .四进制B .三进制C .八进制D .七进制设ln ()x g x x =,则21ln ()xg x x -'=, 0e x <<时,()0g x '>,()g x 递增,e x >时,()0g x '<,()g x 递减,所以max 1()(e)eg x g ==,由于()f x 中*x N ∈,下面比较ln 22和ln 33的大小即得. ln 2ln 33ln 22ln 3ln8ln 902366---==<,所以ln 2ln 323<,所以(3)f 最大. 故选:B .5.(2022·河南洛阳·高二阶段练习(文))若函数f x ()=e e x x ax -+-有大于零的极值点,则a 的取值范围为( )A .()0,∞+B .(),0∞-C .()e,+∞D .()e -∞,【答案】A 原命题等价于'e ex xf xa 有大于零的零点,显然()'f x 在()0,x ∈+∞上单调递增,又因为x →+∞时,()'f x →+∞,所以'00f a ,所以0a >故选:A.6.(2022·全国·华中师大一附中模拟预测)已知实数a ,b ,()0,1c ∈,e 为自然对数的底数,且2e 2e a a =,3e 3e b b =,2e ln 2c c =,则( )A .b a c <<B .a b c <<C .b c a <<D .c a b <<【答案】A解:由2e 2e aa =,3e 3e bb =,2e ln 2cc =得2e e 2a a =,3e e 3b b =,ln 4e 24e ln 2ln 4ln 4c c ===, 构造函数()()e 0xf x x x >=,求导得()()2e 1x xf x x -'=,令()0f x '=,得1x =.当()0,1x ∈时,()0f x '<,()f x 单调递减;当()1,x ∈+∞时,()0f x '>,()f x 单调递增. 因为1ln 423<<<,所以()()()ln 423f f f <<,所以()()()f c f a f b <<, 又因为(),,0,1a b c ∈,()f x 在()0,1上单调递减,所以b a c <<. 故选:A .7.(2022·四川·宜宾市叙州区第一中学校模拟预测(理))已知函数()x f x e =,函数()g x 与()f x 的图象关于直线y x =对称,若()()h x g x kx =-无零点,则实数k 的取值范围是( ) A .21e ,e ⎛⎫⎪⎝⎭B .1,e e ⎛⎫⎪⎝⎭C .(e,)+∞D .1,e ⎛⎫+∞ ⎪⎝⎭由题知()ln g x x =,ln ()()0x h x g x kx k x =-=⇒=,设2ln 1ln ()()x xF x F x x x-'=⇒=,当()0F x '<时,()e,x ∈+∞,此时()F x 单调递减,当()0F x '>时,()0,e x ∈,此时()F x 单调递增,所以max 1()(e)eF x F ==,()F x 的图象如下,由图可知,当1ek >时,()y F x =与y k =无交点,即()()h x g x kx =-无零点.故选:D.8.(2022·湖北恩施·高二期中)已知1a >,1x ,2x ,3x 均为2x a x =的解,且123x x x <<,则下列说法正确的是( )A .1(2,1)x ∈--B .2e (1,e )a ∈ C .120x x +< D .232e x x +<【答案】B对于A ,令2()x f x a x =-,因为1a >,所以()f x 在(,0)-∞上单调递增,与x 轴有唯一交点,由零点存在性定理,得1(1)10f a --=-<,0(0)00f a =->,则1(1,0)x ∈-,故A 错误.对于B ,C ,D ,当0x >时,两边同时取对数,并分离参数得到ln ln 2a xx=, 令ln ()x g x x =,()21ln xg x x -'∴=, 当()0,e x ∈时,()0g x '>,()g x 单调递增; 当()e,x ∈+∞时,()0g x '<,()g x 单调递减; 如图所示,∴当0x >时,ln 2a y =与ln ()xg x x=的图象有两个交点,ln 1(0,)2ea ∈,解得2e (1,e )a ∈,故B 正确; ∴2(1,e)x ∈,由A 选项知1(1,0)x ∈-,120x x ∴+>,故C 错误;由极值点偏移知识,此时函数()g x 的极值点左移,则有23e 2x x +>,故D 错误. 故选:B.二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.(2022·黑龙江·高二期中)若函数()()22ln 12x axf x x -=++的图象上,不存在互相垂直的切线,则a 的值可以是( ) A .-1 B .3 C .1 D .2【答案】AC解:因为函数()()()22ln 112-=++>-x axf x x x ,所以()11111111'=+-=++--≥-=-++f x x a x a a a x x , 当且仅当111x x +=+,即0x =时,等号成立, 因为函数()f x 的图象上,不存在互相垂直的切线, 所以()min 0f x '≥,即10a -≥, 解得1a ≤, 故选:AC10.(2022·江苏·高二期末)【多选题】已知函数()ln xe f x x=,则( )A .()0,1x ∈时,()f x 的图象位于x 轴下方B .()f x 有且仅有一个极值点C .()f x 有且仅有两个极值点 D .()f x 在区间()1,2上有最大值 【答案】AB由题,函数 ()ln xe f x x= 满足 0ln 0x x >⎧⎨≠⎩,故函数的定义域为(0,1)(1,)⋃+∞ 由()ln xe f x x= 当(0,1)x ∈ 时 , ln 0,0x x e <> , 所以()0f x <则()f x 的图象都在轴的下方,所以A 正确; 又21ln ()(ln )x e x x f x x '⎛⎫- ⎪⎝⎭=,再令1()ln g x x x =-则 211()g x x x'=+,故()0g x '> 故()g x 单调递增, 当1x >时,由()()1110,3303g g ln =-=-, 故()g x 存在唯一的00(1)x x >,使得()00g x '=, 此时当()01,x x ∈,()0f x '<,()f x 单调递减, 当()()0,,0x x f x ∈+∞>',()f x 单调递增. 又当()0,1x ∈时,()()110g x g <=-<, 故此时()0f x '<恒成立,即()f x 单调递减,综上函数只有极值点且为极小值点,所以B 正确,C 不正确; 又1(1)10,(2)ln 202g g =-<=-> 所以函数在(1,2)先减后增,没有最大值,所以D 不正确. 故选:AB .11.(2022·重庆市第十一中学校高二阶段练习)“切线放缩”是处理不等式问题的一种技巧.如:e x y =在点()0,1处的切线为1y x =+,如图所示,易知除切点()0,1外,e x y =图象上其余所有的点均在1y x =+的上方,故有e 1x x ≥+.该结论可构造函数()e 1xf x x =--并求其最小值来证明.显然,我们选择的切点不同,所得的不等式也不同.请根据以上材料,判断下列命题中正确的命题是( )A .0x ∀>,1e ln 1x x -≥+B .a ∀∈R ,x ∀∈R ,()e e 1x ax a ≥-+C .x ∀∈R ,11e 02x x ---> D .0x ∀>,e ln 1x x x x ≥++【答案】ABD对于A ,当1x >-时,由e 1x x ≥+得:()lne ln 1xx ≥+,即()ln 1x x ≥+;()()1e 11ln 111ln 1x x x x x -∴≥=-+≥-++=+,A 正确;对于B ,由e 1xx ≥+得:e1x ax a -≥-+,即e 1ex a x a ≥-+,()e e 1x ax a ∴≥-+,B 正确;对于C ,由e 1x x ≥+得:1e x x -≥;当1x =时,1e 1x x -==,此时1322x +=, 则11e2x x -<+,即11e 02x x --->不成立,C 错误;对于D ,令()e ln 1xf x x x x =---,则()()()111e 11e x x f x x x x x ⎛⎫'=+--=+- ⎪⎝⎭, 令()()g x f x '=,则()()212e 0xg x x x '=++>,()g x ∴在()0,+∞上单调递增,又)132022f ⎛⎫'=< ⎪⎝⎭,()()12e 10f '=->,01,12x ⎛⎫∴∃∈ ⎪⎝⎭,使得()00f x '=,∴当()00,x x ∈时,0fx;当()0,x x ∈+∞时,0fx ;f x 在()00,x 上单调递减,在()0,x +∞上单调递增,()()00000e ln 1x f x f x x x x ∴≥=---;由()00f x '=得:001e x x =,00ln x x =-,()000110f x x x ∴=-+-=, ()0f x ∴≥,即0x ∀>,e ln 1x x x x ≥++,D 正确.故选:ABD.12.(2022·辽宁·抚顺市第二中学三模)已知函数()e ,1e ,1x x x x f x x x ⎧≤⎪=⎨>⎪⎩,下列选项正确的是( )A .点()0,0是函数()f x 的零点B .()()120,1,1,3x x ∃∈∃∈,使()()12f x f x >C .函数()f x 的值域为)1e ,-⎡-+∞⎣D .若关于x 的方程()()220f x af x -=⎡⎤⎣⎦有两个不相等的实数根,则实数a 的取值范围是()10,2e ⎧⎫+∞⋃-⎨⎬⎩⎭【答案】CD解:对于A ,因为()00f =,所以0x =是函数()f x 的零点,故A 错误;对于C ,当1x ≤时,()e x f x x =,则()()1e xf x x '=+,当1x <-时,()0f x '<,当11x -<<时,()0f x '>, 所以函数()f x 在(),1-∞-上递减,在()1,1-上递增,所以()()1min 1e f x f -=-=-,又当x →-∞时,()0f x -→,()e e f =,故当1x ≤时,()1e ,ef x -⎡⎤∈-⎣⎦,当1x >时,()e xf x x =,则()()2e 10x xf x x -=>,所以函数()f x 在()1,+∞上递增, 故()()1e f x f >=,故当1x >时,()()e,f x ∈+∞,综上所述,函数()f x 的值域为)1e ,-⎡-+∞⎣,故C 正确;对于B ,由C 可知,函数()f x 在()0,1上递增,在()1,3上递增, 则()()12e,e f x f x <>,所以不存在()()120,1,1,3x x ∈∃∈,使()()12f x f x >,故B 错误; 对于D ,关于x 的方程()()220f x af x -=⎡⎤⎣⎦有两个不相等的实数根, 即关于x 的方程()()20f x f x a -=⎡⎤⎣⎦有两个不相等的实数根, 所以()0f x =或()20f x a -=,由C 知,方程()0f x =只有一个实数根, 所以方程()20f x a -=也只有一个实数根, 即函数()y f x =与函数2y a =的图象只有一个交点, 如图,画出函数()y f x =的简图, 则12ea =-或20a >,所以12ea =-或0a >, 所以实数a 的取值范围是()10,2e ⎧⎫+∞⋃-⎨⎬⎩⎭,故D 正确.故选:CD.三、填空题:(本题共4小题,每小题5分,共20分,其中第16题第一空2分,第二空3分.)13.(2022·辽宁葫芦岛·高二阶段练习)已知直线2y x a =+与曲线()ln y x b =+相切,则2-=b a ______. 【答案】1ln2+设切点为()00,P x y ,则002y x a =+,且()00ln y x b =+,因为函数()ln y x b =+的导函数为1y x b '=+,所以012x b =+,则012x b +=,所以()000ln ln 2212y x b x a b a =+=-=+=-+,得21ln 2b a -=+,故答案为:1ln2+.14.(2022·山东泰安·模拟预测)已知函数32()f x x ax =-+,写出一个同时满足下列两个条件的()f x :___________.①在[1,)+∞上单调递减;②曲线()(1)y f x x =≥存在斜率为1-的切线. 【答案】32()f x x x (答案不唯一)若()f x 同时满足所给的两个条件,则2()320f x x ax '=-+≤对[1,)x ∈+∞恒成立,解得:min32a x ⎛⎫≤ ⎪⎝⎭,即32a ≤,且2()321f x x ax '=-+=-在[)1,+∞上有解,即3122x a x =-在[)1,+∞上有解,由函数的单调性可解得:31122x a x=-≥. 所以312a ≤≤.则32()f x x x (答案不唯一,只要()f x 满足32()f x x ax =-+(312a ≤≤即可) 故答案为:32()f x x x15.(2022·四川省成都市新都一中高二期中(理))已知()e xf x k =对任意不相等的两个数1x 、2x 都有()()121212f x f x x x x x ->+-恒成立,则实数k 的取值范围为______.【答案】2,e⎡⎫+∞⎪⎢⎣⎭不妨设12x x >,可得()()221212f x f x x x ->-,则()()221122f x x f x x ->-, 令()()22e x g xf x x k x =-=-,则()()12g x g x >,所以,函数()g x 在R 上为增函数,即对任意的x ∈R ,()e 20xg x k x '=-≥恒成立,所以,2e x x k ≥,令()2e x xh x =,其中x ∈R ,()()21e xx h x -'=. 当1x <时,()0h x '>,此时函数()h x 单调递增,当1x >时,()0h x '<,此时函数()h x 单调递减,所以,()()max 21eh x h ==, 所以,2ek ≥,因此,实数k 的取值范围是2,e ⎡⎫+∞⎪⎢⎣⎭.故答案为:2,e⎡⎫+∞⎪⎢⎣⎭.16.(2022·安徽·芜湖一中高二期中)若函数()()e xf x a x a =-∈R 有两个不同的零点1x 和2x ,则a 的取值范围为________;若2123≤<x x x ,则a 的最小值为__________. 【答案】 10,e ⎛⎫⎪⎝⎭()0e 0e x xx f x a x a =⇒-=⇒=,令()ex x g x =,则()()2e e 1e e x x x x x x g x --==', 当1x <时,()0g x '>,()g x 单调递增;当1x >时,()0g x '<,()g x 单调递减; 故()max 1()1eg x g ==,当x →-∞时,g (x )→-∞,当x →+∞时,g (x )→0,则g (x )如图:故函数()()e xf x a x a =-∈R 有两个不同的零点1x 和2x ,则y =g (x )与y =a 图像有两个交点,则10,e a ⎛⎫∈ ⎪⎝⎭;若2123≤<x x x ,则212031xx x <≤<<,则()()22222122333ln3.3e 2e x x x x x g g xg x x ⎛⎫≤=⇒≤⇒ ⎪⎝⎭故()23ln323ln332ln32e a g x g ⎛⎫===⎪⎝⎭. 故答案为:10,e ⎛⎫ ⎪⎝⎭.四、解答题(本题共6小题,共70分,其中第17题10分,其它每题12分,解答应写出文字说明、证明过程或演算步骤.)17.(2022·河南南阳·高二阶段练习(理))已知函数()xx f x e =,()21x g x e x x =-+-. (1)求证:函数()y g x =有唯一的零点,并求出此零点; (2)求曲线()y f x =过点()1,1A 的切线方程. 【答案】(1)证明见解析,零点为0(2)y x =(1)函数()g x 的定义域为R ,()21xg x e x '=-+, 令()21x h x e x =-+,而()2xh x e '=-,故()h x 在(),ln 2-∞上单调递减,在()ln 2,+∞单调递增. 所以,()()min ln 232ln 20h x h ==->,即()0g x '>. 故()g x 在R 上是单调递增的.又因为()00g =,因此,函数()y g x =有唯一的零点,零点为0.(2)(2)显然,点()1,1A 不在函数()f x 图像上,不妨设切点坐标为()00,x y .又()1x x f x e -'=,即0000000111x x x y e x x y e --⎧=⎪-⎪⎨⎪=⎪⎩,消去0y 得,02001x e x x =-+由(1)知00x =,则00y =,()01001k f e -'===, 故所求的切线方程为:y x =.18.(2022·重庆市永川北山中学校高二期中)已知函数3()f x ax bx =+在1x =处有极值2. (1)求a ,b 的值;(2)求函数()f x 在区间[]22-,上的最大值. 【答案】(1)13a b =-⎧⎨=⎩(2)2 (1)因为函数3()f x ax bx =+在1x =处有极值2,且2()3f x ax b '=+,所以(1)2(1)30f a b f a b =+=⎧⎨=+='⎩,解得13a b =-⎧⎨=⎩. (2)由(1)得:3()3f x x x =-+, 2()333(1)(1)f x x x x '=-+=-+- ,令()0f x '>,得11x -<<, 令()0f x '<,得1x <-或1x >,故()f x 在[2,1)--上单调递减,在(1,1)-上单调递增,在(1,2]上单调递减, 故()f x 的最大值是(2)f -或(1)f , 而(2)862f -=-=(1)2f ==, 故函数()f x 的最大值是2.19.(2022·陕西·泾阳县教育局教学研究室高二期中(理))已知函数()ln f x x mx =+,其中m ∈R . (1)讨论()f x 的单调性;(2)若(0,)∀∈+∞x ,2()2f x x x ≤-,求m 的最大值. 【答案】(1)当0m ≥时,()f x 在(0,)+∞上单调递增;当0m <时,()f x 在10,m ⎛⎫- ⎪⎝⎭上单调递增,在1,m ⎛⎫-+∞ ⎪⎝⎭上单调递减.(2)1-(1)1()(0)mxf x x x+'=>, 当0m ≥时,()0f x '>当0x >恒成立,()f x ∴在(0,)+∞上单调递增; 当0m <时,令()0f x '>,得10x m <<-,令()0f x '<,得1x m>-, ()f x ∴在10,m ⎛⎫- ⎪⎝⎭上单调递增,在1,m ⎛⎫-+∞ ⎪⎝⎭上单调递减,综上所述:当0m ≥时,()f x 在(0,)+∞上单调递增;当0m <时,()f x 在10,m ⎛⎫- ⎪⎝⎭上单调递增,在1,m ⎛⎫-+∞ ⎪⎝⎭上单调递减. (2)依题意得2ln 2x mx x x +≤-对任意,()0x ∈+∞恒成立, 即22ln x x x m x--≤对任意,()0x ∈+∞恒成立, 令22ln ()(0)--=>x x x g x x x ,则22ln 1()x x g x x'+-=, 令2()ln 1h x x x =+-,则()h x 在(0,)+∞上单调递增,(1)0h =,∴当(0,1)x ∈时,()0h x <,即()0g x '<;当(1,)x ∈+∞时,()0h x >,即()0g x '>,()g x ∴在(0,1)上单调递减,在(1,)+∞上单调递增,min ()(1)1g x g ∴==-,1m ∴≤-,故m 的最大值为1-.20.(2022·江西·南城县第二中学高二阶段练习(理))已知函数()()2e e R x f x x ax a =-+∈.(1)若()f x 在()11ln2-+,单调,求a 的取值范围. (2)若()e ln y f x x x =+的图像恒在x 轴上方,求a 的取值范围.【答案】(1)[)12e 22,n ,e l e ⎛⎤-∞--∞+ ⎥⎝⎦;(2)()0,∞+.(1)由题意得R x ∈,()()e 2e R x f x x a a '=-+∈.()f x 在()11ln2-+,上单调,即()()e 2e R x f x x a a '=-+∈在()11ln2-+,上大于等于0或者小于等于0恒成立.令()()e 2e R x g x x a a =-+∈,则()e 2e x g x '=-,当()0g x '=时,ln 2e 1ln 2x ==+.当11ln 2x -<<+时,()0g x '<,∴()g x 在()11ln2-+,上单调递减, ∴由题意得()1ln 20g +≥,或()10g -≤,解得2eln 2a ≥或12e ea ≤--, ∴a 的取值范围是[)12e 22,n ,e l e ⎛⎤-∞--∞+ ⎥⎝⎦.(2)2e e e ln x y x ax x x =-++的图象恒在x 轴上方,也即当()0,x ∈+∞时,0y >恒成立. 也即e e e ln xa x x x>--在()0,x ∈+∞上恒成立. 令()e e eln x h x x x x =--,()()()()222e e e e e 11x x x x x x x x h x x-----==', 令()e e x m x x =-,则()e e x m x '=-,由()0m x '=得1x =,当1x <时()0m x '>,当1x >时,()0m x '<,即1x =时,()m x 有极大值,也是最大值,所以()(1)0m x m ≤=,所以e e x x ≤(当1x =时取等号),再由()0h x '=可得:1x =,列表如下:由上表知10h =为极大值,所以()(1)0h x h ≤=.∴a 的取值范围是()0,∞+.21.(2022·陕西·西北工业大学附属中学模拟预测(理))已知函数()()()21R 2f x x a a =-∈. (1)设()()e xg x f x =,讨论函数()()e x g x f x =的单调性;(2)当0x ≤时,()()211g x x a x ≤--+,求实数a 的取值范围.【答案】(1)()g x 在(),2a -∞-,(),a +∞上单调递增,在(),2a a -上单调递减(2)⎡-⎣(1)()()21e 2x g x x a =-,则()()()12e 2x g x x a x a '=--+令()0g x '>,则x a >或2x a <-()g x 在(),2a -∞-,(),a +∞上单调递增,在(),2a a -上单调递减 (2)()()221e 112x x a x a x -≤--+⇔()()221112e x x a x x a --+-≤构建()()()22111e ,20x x a x a x F x x --+=-≤-,则()()()e 1e x x x a x F x +--'=∵()e 1=x h x x +-在(],0-∞单调递增,则()()00h x h ≤=即e 10x x +-≤当0x ≤时恒成立当0a ≥时,()0F x '≤当0x ≤时恒成立,则()F x 在(],0-∞单调递减∴()()210102F x F a ≥=-≥,则a ≤∴0a ≤当0a <时,令()0F x '>,则x a >()F x 在(),a -∞单调递减,在(],0a 单调递增∴()()10e a a F x F a +≥=≥,则1a ≥-∴10a -≤<综上所述:1a -≤≤22.(2022·云南临沧·高二期中)已知函数()()242ln f x ax x x a =-+∈R .(1)讨论函数()f x 的单调性;(2)若2a =,证明:()()()22ln 2e 2x f x x x x +-⋅≤-.【答案】(1)答案不唯一,具体见解析(2)证明见解析(1)解:由题可知,,()0x ∈+∞,()2224224ax x f x ax x x-+'=-+=. 若0a =,()42x f x x -+'=,所以()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减;若0a <,令()0f x '=,解得10x >或20x =<(舍),所以()f x 在⎛ ⎝⎭上单调递增,在⎫+∞⎪⎪⎝⎭上单调递减; 若0a >,当16160a ∆=-≤,即1a ≥时,()0f x '≥在()0,∞+上恒成立,所以()f x 在()0,∞+上单调递增;当01a <<时,令()0f x '=,解得1x =2x ,所以()f x 在⎛ ⎝⎭上单调递增,在⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增; (2)证明:若2a =,要证()()()22ln 2e 2x f x x x x +-⋅≤-,即证2ln e x x x x +<,即证2ln e 1xx x x+<. 令函数()ln 1x g x x =+,则()21ln x g x x -'=. 令()0g x '>,得()0,e x ∈;令()0g x '<,得()e,x ∈+∞.所以()g x 在()0,e 上单调递增,在()e,+∞上单调递减,所以()()max 1e 1eg x g ==+, 令函数()2e xh x x=,则()()3e 2x x h x x -'=. 当()0,2x ∈时,()0h x '<;当()2,x ∈+∞时,()0h x '>.所以()h x 在()0,2上单调递减,在()2,+∞上单调递增,所以()()2mine 24h x h ==. 因为2e 1104e ⎛⎫-+> ⎪⎝⎭,所以()()min max h x g x >, 即2ln e 1xx x x +<,从而()()()22ln 2e 2x f x x x x +-⋅≤-得证.。

数学选修1-1 第三章__导数及其应用 练习

数学选修1-1 第三章__导数及其应用 练习

3.1 导数的定义基础训练(1):1. 在求平均变化率中,自变量的增量x ∆( )A.0>∆x B.0<∆x C.0=∆x D.0≠∆x 2. 一质点的运动方程是,则在一段时间[]t ∆+1,1内相应得平均速度为:( ) A.63+∆t B.63+∆-t C.63-∆t D.63-∆-t3.在曲线y =x 2+1的图象上取一点(1,2)及邻近一点(1+Δx ,2+Δy ),则yx ∆∆为( )A.Δx +x ∆1+2 B.Δx -x ∆1-2 C.Δx +2 D.2+Δx -x∆1 4.一物体位移s 和时间t 的关系是s=2t-32t ,则物体的初速度是5.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是 巩固训练(1):1.若质点M 按规律3s t =运动,则3t =秒时的瞬时速度为( )A .2 B .9 C .27 D .812.任一做直线运动的物体,其位移s 与时间t 的关系是23t t s -=,则物体的初速度是( ) A 0 B 3 C -2 D t 23-3.设函数()x f y =,当自变量x 由0x 改变到x x ∆+0时,函数的改变量y ∆为( )A ()x x f ∆+0B ()x x f ∆+0C ()x x f ∆⋅0D ()()00x f x x f -∆+ 4.物体的运动方程是=s t t 1642+-,在某一时刻的速度为零,则相应时刻为( ) A .=t 1 B .=t 2 C .=t 3 D . =t 45.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒,那么物体在1秒末的瞬时速度是( ) A .3米/秒 B .2米/秒 C .1米/秒 D .4米/秒6.在曲线223x y =的图象上取一点(1,23)及附近一点⎪⎭⎫⎝⎛∆+∆+y x 23,1,则x y ∆∆为( ) A x x ∆++∆1323 B x x ∆--∆1323 C 323+∆x D x x ∆-+∆1323 7.物体的运动规律是)(t s s =,物体在[]t t t ∆+,时间内的平均速度是( )A.t t s t s v ∆∆=∆∆=)( B.t t s t t s v ∆-∆+=)()(C.t t s v )(= D.当0→∆t 时,0)()(→∆-∆+=tt s t t s v8.将边长为8的正方形的边长增加∆a,则面积的增量∆S 为( )A .16∆a 2 B.64 C.2a +8 D.16∆a+∆a 29.已知一物体的运动方程是=s 7562+-t t ,则其在=t ________时刻的速度为7。

第三章.导数及其应用测试卷(含详细答案)

第三章.导数及其应用测试卷(含详细答案)

单元综合测试三(第三章)时间:90分钟 分值:150分第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.已知f (x )=(x +a )2,且f ′(12)=-3,则a 的值为( ) A .-1 B .-2 C .1D .2解析:f (x )=(x +a )2,∴f ′(x )=2(x +a ). 又f ′(12)=-3,∴1+2a =-3,解得a =-2. 答案:B2.函数y =sin x (cos x +1)的导数是( ) A .y ′=cos2x -cos x B .y ′=cos2x +sin x C .y ′=cos2x +cos xD .y ′=cos 2x +cos x解析:y ′=(sin x )′(cos x +1)+sin x (cos x +1)′=cos 2x +cos x -sin 2x =cos2x +cos x .答案:C3.函数y =3x -x 3的单调递增区间是( ) A .(0,+∞) B .(-∞,-1) C .(-1,1)D .(1,+∞)解析:f ′(x )=3-3x 2>0⇒x ∈(-1,1).答案:C4.某汽车启动阶段的路程函数为s (t )=2t 3-5t 2+2,则t =2秒时,汽车的加速度是( )A .14B .4C .10D .6解析:依题意v (t )=s ′(t )=6t 2-10t ,所以a (t )=v ′(t )=12t -10,故汽车在t =2秒时的加速度为a (2)=24-10=14.答案:A5.若曲线f (x )=x sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a 的值为( )A .-2B .-1C .1D .2解析:f ′(x )=x cos x +sin x ,f ′(π2)=1, ∴k =-a2=-1,a =2. 答案:D6.已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为( )A .1B .3C .-4D .-8解析:如图所示,由已知可设P (4,y 1),Q (-2,y 2), ∵点P ,Q 在抛物线x 2=2y 上,∴⎩⎨⎧42=2y 1, ①(-2)2=2y 2, ②∴⎩⎨⎧y 1=8,y 2=2,∴P (4,8),Q (-2,2).又∵抛物线可化为y =12x 2,∴y ′=x . ∴过点P 的切线斜率为y ′|x =4=4,∴过点P 的切线为y -8=4(x -4),即y =4x -8. 又∵过点Q 的切线斜率为y ′|x =-2=-2.∴过点Q 的切线为y -2=-2(x +2),即y =-2x -2.联立⎩⎨⎧y =4x -8,y =-2x -2,解得x =1,y =-4.∴点A的纵坐标为-4. 答案:C7.若函数y=a(x3-x)的递增区间是(-∞,-33),(33,+∞),则a的取值范围是()A.a>0 B.-1<a<0 C.a>1 D.0<a<1解析:依题意y′=a(3x2-1)>0的解集为(-∞,-33),(33,+∞),故a>0.答案:A8.对任意的x∈R,函数f(x)=x3+ax2+7ax不存在极值点的充要条件是()A.0≤a≤21 B.a=0或a=7C.a<0或a>21 D.a=0或a=21解析:f′(x)=3x2+2ax+7a,当Δ=4a2-84a≤0,即0≤a≤21时,f′(x)≥0恒成立,函数f(x)不存在极值点.故选A.答案:A9.已知函数f(x)=x3-3x,若对于区间[-3,2]上任意的x1,x2,都有|f(x1)-f(x2)|≤t,则实数t的最小值是()A.0 B.10C.18 D.20解析:f′(x)=3x2-3,令f′(x)=0,解得x=±1,所以1,-1为函数f(x)的极值点,因为f(-3)=-18,f(-1)=2,f(1)=-2,f(2)=2,所以在区间[-3,2]上,f(x)max=2,f(x)min=-18,所以对于区间[-3,2]上任意的x1,x2,|f(x1)-f(x2)|≤20,所以t≥20,从而t的最小值为20.答案:D10.设函数f(x)的定义域为R,x0(x0≠0)是f(x)的极大值点,以下结论一定正确的是()A.∀x∈R,f(x)≤f(x0)B.-x0是f(-x)的极小值点C.-x0是-f(x)的极小值点D.-x0是-f(-x)的极小值点解析:取函数f(x)=x3-x,则x=-33为f(x)的极大值点,但f(3)>f(-33),∴排除A.取函数f(x)=-(x-1)2,则x=1是f(x)的极大值点,f(-x)=-(x+1)2,-1不是f(-x)的极小值点,∴排除B;-f(x)=(x-1)2,-1不是-f(x)的极小值点,∴排除C.故选D.答案:D11.若函数y=f(x)满足xf′(x)>-f(x)在R上恒成立,且a>b,则()A.af(b)>bf(a) B.af(a)>bf(b)C.af(a)<bf(b) D.af(b)<bf(a)解析:设g(x)=xf(x),则g′(x)=xf′(x)+f(x)>0,∴g(x)在R上是增函数,又a>b,∴g(a)>g(b)即af(a)>bf(b).答案:B12.设函数f (x )满足x 2f ′(x )+2xf (x )=e x x ,f (2)=e 28,则x >0时,f (x )( )A .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值也无极小值解析:由题意知f ′(x )=e x x 3-2f (x )x =e x -2x 2f (x )x3.令g (x )=e x-2x 2f (x ),则g ′(x )=e x -2x 2f ′(x )-4xf (x )=e x -2(x 2f ′(x )+2xf (x ))=e x -2e xx =e x ⎝ ⎛⎭⎪⎫1-2x .由g ′(x )=0得x =2,当x =2时,g (x )min =e 2-2×22×e 28=0,即g (x )≥0,则当x >0时,f ′(x )=g (x )x 3≥0,故f (x )在(0,+∞)上单调递增,既无极大值也无极小值.答案:D第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.若抛物线y =x 2-x +c 上一点P 的横坐标为-2,抛物线过点P 的切线恰好过坐标原点,则c 的值为________.解析:∵y ′=2x -1,∴y ′|x =-2=-5. 又P (-2,6+c ),∴6+c-2=-5.∴c =4. 答案:414.如果函数f (x )=x 3-6bx +3b 在区间(0,1)内存在与x 轴平行的切线,则实数b 的取值范围是________.解析:存在与x 轴平行的切线,即f ′(x )=3x 2-6b =0有解,∵x ∈(0,1),∴b =x 22∈(0,12).答案:{b |0<b <12}15.已知a ≤4x 3+4x 2+1对任意x ∈[-1,1]都成立,则实数a 的取值范围是________.解析:设f (x )=4x 3+4x 2+1,则f ′(x )=12x 2+8x =4x (3x +2),令f ′(x )=0,解得x 1=0,x 2=-23.又f (-1)=1, f (-23)=4327,f (0)=1,f (1)=9,故f (x )在[-1,1]上的最小值为1,故a ≤1.答案:(-∞,1]16.设二次函数f (x )=ax 2+bx +c (a ≠0)的导数为f ′(x ),f ′(0)>0,若∀x ∈R ,恒有f (x )≥0,则f (1)f ′(0)的最小值是________.解析:二次函数f (x )=ax 2+bx +c (a ≠0)的导数为f ′(x )=2ax +b ,由f ′(0)>0,得b >0,又对∀x ∈R ,恒有f (x )≥0,则a >0, 且Δ=b 2-4ac ≤0,故c >0,所以f (1)f ′(0)=a +b +c b =a b +c b +1≥2acb 2+1≥2ac4ac +1=2,所以f (1)f ′(0)的最小值为2.答案:2三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知函数f (x )=ln(2x +a )+x 2,且f ′(0)=23.(1)求f (x )的解析式;(2)求曲线f (x )在x =-1处的切线方程. 解:(1)∵f (x )=ln(2x +a )+x 2,∴f ′(x )=12x +a ·(2x +a )′+2x =22x +a +2x .又∵f ′(0)=23,∴2a =23,解得a =3. 故f (x )=ln(2x +3)+x 2.(2)由(1)知f ′(x )=22x +3+2x =4x 2+6x +22x +3,且f (-1)=ln(-2+3)+(-1)2=1, f ′(-1)=4×(-1)2+6×(-1)+22(-1)+3=0,因此曲线f (x )在(-1,1)处的切线方程是y -1=0(x +1),即y =1.18.(12分)已知函数f (x )=13x 3+ax +b (a ,b ∈R )在x =2处取得极小值-43.(1)求函数f (x )的增区间;(2)若f (x )≤m 2+m +103对x ∈[-4,3]恒成立,求实数m 的取值范围.解:(1)由已知得f (2)=-43,f ′(2)=0,又f ′(x )=x 2+a ,所以83+2a +b =-43,4+a =0,所以a =-4,b =4,则f (x )=13x 3-4x +4,令f ′(x )=x 2-4>0,得x <-2或x >2,所以增区间为(-∞,-2),(2,+∞).(2)f (-4)=-43,f (-2)=283,f (2)=-43,f (3)=1,则当x ∈[-4,3]时,f (x )的最大值为283,故要使f (x )≤m 2+m +103对∈[-4,3]恒成立,只要283≤m 2+m +103,所以实数m 的取值范围是m ≥2或m ≤-3.19.(12分)已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值. 解:(1)f ′(x )=e x (ax +a +b )-2x -4.由已知得f (0)=4,f ′(0)=4,故b =4,a +b -4=4,所以a =4,b =4.(2)由(1)知,f (x )=4e x (x +1)-x 2-4x , f ′(x )=4e x(x +2)-2x -4=4(x +2)(e x-12).令f ′(x )=0,得x =-ln2或x =-2.从而当x ∈(-∞,-2)∪(-ln2,+∞)时,f ′(x )>0;当x ∈(-2,-ln2)时,f ′(x )<0.故f (x )在(-∞,-2),(-ln2,+∞)上单调递增,在(-2,-ln2)上单调递减.当x =-2时,函数f (x )取得极大值, 极大值为f (-2)=4(1-e -2).20.(12分)已知函数f (x )=x -a ln x (a ∈R ).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程. (2)求函数f (x )的极值.解:函数f (x )的定义域为(0,+∞),f ′(x )=1-ax . (1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x (x >0),所以f (1)=1,f ′(1)=-1,所以y =f (x )在点A (1,f (1))处的切线方程为y -1=-(x -1),即x +y -2=0.(2)由f ′(x )=1-a x =x -ax ,x >0可知:①当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f(x)无极值;②当a>0时,由f′(x)=0,解得x=a;因为x∈(0,a)时,f′(x)<0,x∈(a,+∞)时,f′(x)>0,所以f(x)在x=a处取得极小值,且极小值为f(a)=a-a ln a,无极大值.综上:当a≤0时,函数f(x)无极值,当a>0时,函数f(x)在x=a处取得极小值a-a ln a,无极大值.21.(12分)某地政府鉴于某种日常食品价格增长过快,欲将这种食品价格控制在适当范围内,决定给这种食品生产厂家提供政府补贴,设这种食品的市场价格为x 元/千克,政府补贴为t 元/千克,根据市场调查,当16≤x ≤24时,这种食品日供应量p 万千克,日需量q 万千克近似地满足关系:p =2(x +4t -14)(t >0),q =24+8ln 20x .当p =q 时的市场价格称为市场平衡价格.(1)将政府补贴表示为市场平衡价格的函数,并求出函数的值域;(2)为使市场平衡价格不高于20元/千克,政府补贴至少为多少元/千克?解:(1)由p =q 得2(x +4t -14) =24+8ln 20x (16≤x ≤24,t >0), 即t =132-14x +ln 20x (16≤x ≤24). ∵t ′=-14-1x <0,∴t 是x 的减函数. ∴t min =132-14×24+ln 2024=12+ln 2024=12+ln 56; t max =132-14×16+ln 2016=52+ln 54, ∴值域为⎣⎢⎡⎦⎥⎤12+ln 56,52+ln 54.(2)由(1)知t =132-14x +ln 20x (16≤x ≤24).而当x =20时,t =132-14×20+ln 2020=1.5(元/千克),∵t 是x 的减函数,∴欲使x ≤20,必须t ≥1.5(元/千克). 要使市场平衡价格不高于20元/千克,政府补贴至少为1.5元/千克.22.(12分)已知函数f (x )=ln x -12ax 2-2x .(1)若函数f (x )在x =2处取得极值,求实数a 的值. (2)若函数f (x )在定义域内单调递增,求实数a 的取值范围. (3)当a =-12时,关于x 的方程f (x )=-12x +b 在[1,4]上恰有两个不相等的实数根,求实数b 的取值范围.解:(1)由题意,得f ′(x )=-ax 2+2x -1x(x >0), 因为x =2时,函数f (x )取得极值,所以f ′(2)=0,解得a =-34,经检验,符合题意.(2)函数f (x )的定义域为(0,+∞),依题意,f ′(x )≥0在x >0时恒成立,即ax 2+2x -1≤0在x >0时恒成立,则a ≤1-2x x 2=⎝ ⎛⎭⎪⎫1x -12-1在x >0时恒成立,即a ≤⎝ ⎛⎭⎪⎫⎝⎛⎭⎪⎫1x -12-1min (x >0),当x =1时,⎝⎛⎭⎪⎫1x -12-1取最小值-1,所以a 的取值范围是(-∞,-1].(3)当a =-12时,f (x )=-12x +b , 即14x 2-32x +ln x -b =0.设g (x )=14x 2-32x +ln x -b (x >0), 则g ′(x )=(x -2)(x -1)2x, 当x 变化时,g ′(x ),g (x )的变化情况如下表:x (0,1) 1 (1,2) 2 (2,4) g ′(x ) + 0 - 0 + g (x )极大极小所以g (x )极小值=g (2)=ln2-b -2, g (x )极大值=g (1)=-b -54, 又g (4)=2ln2-b -2,因为方程g (x )=0在[1,4]上恰有两个不相等的实数根, 则⎩⎪⎨⎪⎧g (1)≥0,g (2)<0,g (4)≥0,解得ln2-2<b ≤-54,所以实数b 的取值范围是(ln2-2,-54).。

高考数学一轮复习第三章导数及其应用导数的综合应用对点训练理

高考数学一轮复习第三章导数及其应用导数的综合应用对点训练理

2017高考数学一轮复习 第三章 导数及其应用 3.2.3 导数的综合应用对点训练 理1.设f (x )是定义在R 上的可导函数,当x ≠0时,f ′(x )+f xx>0,则关于x 的函数g (x )=f (x )+1x的零点个数为( )A .1B .2C .0D .0或2 答案 C解析 由f ′(x )+f x x >0,得xf ′x +f xx>0,当x >0时,xf ′(x )+f (x )>0,即[xf (x )]′>0,函数xf (x )单调递增; 当x <0时,xf ′(x )+f (x )<0, 即[xf (x )]′<0,函数xf (x )单调递减. ∴xf (x )>0f (0)=0,又g (x )=f (x )+x -1=xf x +1x ,函数g (x )=xf x +1x的零点个数等价于函数y =xf (x )+1的零点个数.当x >0时,y =xf (x )+1>1,当x <0时,y =xf (x )+1>1,所以函数y =xf (x )+1无零点,所以函数g (x )=f (x )+x -1的零点个数为0.故选C.2.设函数f (x )是定义在(-∞,0)上的可导函数,其导函数为f ′(x ),且有2f (x )+xf ′(x )>x 2,则不等式(x +2014)2f (x +2014)-4f (-2)>0的解集为________.答案 (-∞,-2016)解析 由2f (x )+xf ′(x )>x 2,x <0得2xf (x )+x 2f ′(x )<x 3,∴[x 2f (x )]′<x 3<0.令F (x )=x 2f (x )(x <0),则F ′(x )<0(x <0),即F (x )在(-∞,0)上是减函数,因为F (x +2014)=(x +2014)2f (x +2014),F (-2)=4f (-2),所以不等式(x +2014)2f (x +2014)-4f (-2)>0即为F (x +2014)-F (-2)>0,即F (x +2014)>F (-2),又因为F (x )在(-∞,0)上是减函数,所以x +2014<-2,∴x <-2016.3.已知f (x )=ax -cos x ,x ∈⎣⎢⎡⎦⎥⎤π4,π3.若∀x 1∈⎣⎢⎡⎦⎥⎤π4,π3,∀x 2∈⎣⎢⎡⎦⎥⎤π4,π3,x 1≠x 2,f x 2-f x 1x 2-x 1<0,则实数a 的取值范围为________.答案 a ≤-32解析 f ′(x )=a +sin x .依题意可知f (x )在⎣⎢⎡⎦⎥⎤π4,π3上为减函数,所以f ′(x )≤0对x ∈⎣⎢⎡⎦⎥⎤π4,π3恒成立,可得a ≤-sin x 对x ∈⎣⎢⎡⎦⎥⎤π4,π3恒成立.设g (x )=-sin x ,x ∈⎣⎢⎡⎦⎥⎤π4,π3.易知g (x )为减函数,故g (x )min =-32,所以a ≤-32. 4.设函数f (x )=e mx+x 2-mx .(1)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x 1,x 2∈[-1,1],都有|f (x 1)-f (x 2)|≤e-1,求m 的取值范围. 解 (1)证明:f ′(x )=m (e mx-1)+2x .若m ≥0,则当x ∈(-∞,0)时,e mx-1≤0,f ′(x )<0;当x ∈(0,+∞)时,e mx-1≥0,f ′(x )>0.若m <0,则当x ∈(-∞,0)时,e mx-1>0,f ′(x )<0;当x ∈(0,+∞)时,e mx-1<0,f ′(x )>0.所以,f (x )在(-∞,0)单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m ,f (x )在[-1,0]单调递减,在[0,1]单调递增,故f (x )在x =0处取得最小值.所以对于任意x 1,x 2∈[-1,1],|f (x 1)-f (x 2)|≤e-1的充要条件是⎩⎪⎨⎪⎧f1-f 0≤e-1,f -1-f0≤e-1,即⎩⎪⎨⎪⎧e m-m ≤e-1,e -m+m ≤e-1. ①设函数g (t )=e t-t -e +1,则g ′(t )=e t-1.当t <0时,g ′(t )<0;当t >0时,g ′(t )>0.故g (t )在(-∞,0)单调递减,在(0,+∞)单调递增.又g (1)=0,g (-1)=e -1+2-e<0,故当t ∈[-1,1]时,g (t )≤0. 当m ∈[-1,1]时,g (m )≤0,g (-m )≤0,即①式成立; 当m >1时,由g (t )的单调性,g (m )>0,即e m-m >e -1;当m <-1时,g (-m )>0,即e -m+m >e -1.综上,m 的取值范围是[-1,1]. 5.设a >1,函数f (x )=(1+x 2)e x-a . (1)求f (x )的单调区间;(2)证明:f (x )在(-∞,+∞)上仅有一个零点;(3)若曲线y =f (x )在点P 处的切线与x 轴平行,且在点M (m ,n )处的切线与直线OP 平行(O 是坐标原点),证明:m ≤3a -2e-1.解 (1)f ′(x )=2x e x+(1+x 2)e x=(x 2+2x +1)e x =(x +1)2e x≥0,故f (x )是R 上的单调递增函数,其单调增区间是(-∞,+∞),无单调减区间.(2)证明:因为f (0)=(1+02)e 0-a =1-a <0,且f (ln a )=(1+ln 2a )e ln a-a =(1+ln 2a )a -a =a ln 2a >0,由零点存在性定理知,f (x )在(-∞,+∞)上至少有一个零点. 又由(1)知,函数f (x )是(-∞,+∞)上的单调递增函数, 故函数f (x )在(-∞,+∞)上仅有一个零点.(3)证明:设点P (x 0,y 0),由曲线y =f (x )在点P 处的切线与x 轴平行知,f ′(x 0)=0,即f ′(x 0)=(x 0+1)2e x 0=0,(x 0+1)2=0,x 0=-1,即P (-1,2e -1-a ).由点M (m ,n )处的切线与直线OP 平行知,f ′(m )=k OP , 即(1+m )2e m=2e -1-a -0-1-0=a -2e.由e m ≥1+m 知,(1+m )3≤(1+m )2e m=a -2e,即1+m ≤3a -2e ,即m ≤ 3a -2e-1.6.已知函数f (x )=nx -x n,x ∈R ,其中n ∈N *,且n ≥2. (1)讨论f (x )的单调性;(2)设曲线y =f (x )与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为y =g (x ),求证:对于任意的正实数x ,都有f (x )≤g (x );(3)若关于x 的方程f (x )=a (a 为实数)有两个正实数根x 1,x 2,求证:|x 2-x 1|<a1-n+2.解 (1)由f (x )=nx -x n,可得f ′(x )=n -nx n -1=n (1-xn -1),其中n ∈N *,且n ≥2.下面分两种情况讨论:①当n 为奇数时.令f ′(x )=0,解得x =1,或x =-1.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以, ②当n 为偶数时.当f ′(x )>0,即x <1时,函数f (x )单调递增; 当f ′(x )<0,即x >1时,函数f (x )单调递减.所以,f (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减. (2)证明:设点P 的坐标为(x 0,0),则x 0=n1n -1,f ′(x 0)=n -n 2.曲线y =f (x )在点P 处的切线方程为y =f ′(x 0)(x -x 0),即g (x )=f ′(x 0)(x -x 0).令F (x )=f (x )-g (x ),即F (x )=f (x )-f ′(x 0)(x -x 0),则F ′(x )=f ′(x )-f ′(x 0).由于f ′(x )=-nxn -1+n 在(0,+∞)上单调递减,故F ′(x )在(0,+∞)上单调递减.又因为F ′(x 0)=0,所以当x ∈(0,x 0)时,F ′(x )>0,当x ∈(x 0,+∞)时,F ′(x )<0,所以F (x )在(0,x 0)上单调递增,在(x 0,+∞)上单调递减,所以对于任意的正实数x ,都有F (x )≤F (x 0)=0,即对于任意的正实数x ,都有f (x )≤g (x ).(3)证明:不妨设x 1≤x 2.由(2)知g (x )=(n -n 2)(x -x 0).设方程g (x )=a 的根为x 2′,可得x 2′=an -n 2+x 0.当n ≥2时,g (x )在(-∞,+∞)上单调递减.又由(2)知g (x 2)≥f (x 2)=a =g (x 2′),可得x 2≤x 2′.类似地,设曲线y =f (x )在原点处的切线方程为y =h (x ),可得h (x )=nx .当x ∈(0,+∞),f (x )-h (x )=-x n<0,即对于任意的x ∈(0,+∞),f (x )<h (x ).设方程h (x )=a 的根为x 1′,可得x 1′=a n.因为h (x )=nx 在(-∞,+∞)上单调递增,且h (x 1′)=a =f (x 1)<h (x 1),因此x 1′<x 1.由此可得x 2-x 1<x 2′-x 1′=a1-n +x 0.因为n ≥2, 所以2n -1=(1+1)n -1≥1+C 1n -1=1+n -1=n ,故2≥n1n -1=x 0. 所以|x 2-x 1|<a1-n+2.7.已知函数f (x )=ln (1+x ),g (x )=kx (k ∈R ). (1)证明:当x >0时,f (x )<x ;(2)证明:当k <1时,存在x 0>0,使得对任意的x ∈(0,x 0),恒有f (x )>g (x ); (3)确定k 的所有可能取值,使得存在t >0,对任意的x ∈(0,t ),恒有|f (x )-g (x )|<x 2. 解 (1)证明:令F (x )=f (x )-x =ln (1+x )-x ,x ∈[0,+∞), 则有F ′(x )=11+x -1=-x x +1.当x ∈(0,+∞)时,F ′(x )<0, 所以F (x )在[0,+∞)上单调递减,故当x >0时,F (x )<F (0)=0,即当x >0时,f (x )<x .(2)证明:令G (x )=f (x )-g (x )=ln (1+x )-kx ,x ∈[0,+∞), 则有G ′(x )=1x +1-k =-kx +1-kx +1. 当k ≤0时,G ′(x )>0,故G (x )在[0,+∞)上单调递增,G (x )>G (0)=0,故任意正实数x 0均满足题意.当0<k <1时,令G ′(x )=0,得x =1-k k =1k-1>0,取x 0=1k-1,对任意x ∈(0,x 0),有G ′(x )>0,从而G (x )在[0,x 0)上单调递增, 所以G (x )>G (0)=0,即f (x )>g (x ).综上,当k <1时,总存在x 0>0,使得对任意x ∈(0,x 0),恒有f (x )>g (x ). (3)解法一:当k >1时,由(1)知,∀x ∈(0,+∞),g (x )>x >f (x ),故g (x )>f (x ), |f (x )-g (x )|=g (x )-f (x )=kx -ln (1+x ). 令M (x )=kx -ln (1+x )-x 2,x ∈[0,+∞), 则有M ′(x )=k -11+x-2x =-2x 2+k -2x +k -1x +1.故当x ∈⎝⎛⎭⎪⎫0,k -2+k -22+8k -14时, M ′(x )>0,M (x )在⎣⎢⎡⎭⎪⎫0,k -2+k -22+8k -14上单调递增, 故M (x )>M (0)=0,即|f (x )-g (x )|>x 2.所以满足题意的t 不存在. 当k <1时,由(2)知,存在x 0>0,使得当x ∈(0,x 0)时,f (x )>g (x ), 此时|f (x )-g (x )|=f (x )-g (x )=ln (1+x )-kx . 令N (x )=ln (1+x )-kx -x 2,x ∈[0,+∞), 则有N ′(x )=1x +1-k -2x =-2x 2-k +2x +1-kx +1,当x ∈⎝ ⎛⎭⎪⎫0,-k +2+k +22+81-k 4时,N ′(x )>0,N (x )在⎣⎢⎡⎭⎪⎫0,-k +2+k +22+81-k 4上单调递增, 故N (x )>N (0)=0,即f (x )-g (x )>x 2. 记x 0与-k +2+k +22+81-k4中的较小者为x 1,则当x ∈(0,x 1)时,恒有|f (x )-g (x )|>x 2. 故满足题意的t 不存在.当k =1时,由(1)知,当x >0时,|f (x )-g (x )|=g (x )-f (x )=x -ln (1+x ). 令H (x )=x -ln (1+x )-x 2,x ∈[0,+∞), 则有H ′(x )=1-11+x -2x =-2x 2-xx +1.当x >0时,H ′(x )<0,所以H (x )在[0,+∞)上单调递减,故H (x )<H (0)=0.故当x >0时, 恒有|f (x )-g (x )|<x 2.此时,任意正实数t 均满足题意. 综上,k =1.解法二:当k >1时,由(1)知,∀x ∈(0,+∞),g (x )>x >f (x ), 故|f (x )-g (x )|=g (x )-f (x )=kx -ln (1+x )>kx -x =(k -1)x . 令(k -1)x >x 2,解得0<x <k -1.从而得到,当k >1时,对于x ∈(0,k -1),恒有|f (x )-g (x )|>x 2, 故满足题意的t 不存在. 当k <1时,取k 1=k +12,从而k <k 1<1,由(2)知,存在x 0>0,使得x ∈(0,x 0),f (x )>k 1x >kx =g (x ),此时|f (x )-g (x )|=f (x )-g (x )>(k 1-k )x =1-k2x .令1-k 2x >x 2,解得0<x <1-k 2,此时f (x )-g (x )>x 2. 记x 0与1-k 2中的较小者为x 1,当x ∈(0,x 1)时,恒有|f (x )-g (x )|>x 2.故满足题意的t 不存在.当k =1时,由(1)知,x >0,|f (x )-g (x )|=g (x )-f (x )=x -ln (1+x ), 令M (x )=x -ln (1+x )-x 2,x ∈[0,+∞), 则有M ′(x )=1-11+x -2x =-2x 2-xx +1.当x >0时,M ′(x )<0,所以M (x )在[0,+∞)上单调递减, 故M (x )<M (0)=0.故当x >0时,恒有|f (x )-g (x )|<x 2, 此时,任意正实数t 均满足题意. 综上,k =1.8.已知函数f (x )=ln 1+x1-x.(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)求证:当x ∈(0,1)时,f (x )>2⎝ ⎛⎭⎪⎫x +x 33; (3)设实数k 使得f (x )>k ⎝ ⎛⎭⎪⎫x +x 33对x ∈(0,1)恒成立,求k 的最大值. 解 (1)因为f (x )=ln (1+x )-ln(1-x ),所以f ′(x )=11+x +11-x ,f ′(0)=2.又因为f (0)=0,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =2x . (2)证明:令g (x )=f (x )-2⎝ ⎛⎭⎪⎫x +x 33,则g ′(x )=f ′(x )-2(1+x 2)=2x 41-x 2.因为g ′(x )>0(0<x <1),所以g (x )在区间(0,1)上单调递增. 所以g (x )>g (0)=0,x ∈(0,1),即当x ∈(0,1)时,f (x )>2⎝ ⎛⎭⎪⎫x +x 33.(3)由(2)知,当k ≤2时,f (x )>k ⎝ ⎛⎭⎪⎫x +x 33对x ∈(0,1)恒成立. 当k >2时,令h (x )=f (x )-k ⎝ ⎛⎭⎪⎫x +x 33,则 h ′(x )=f ′(x )-k (1+x 2)=kx 4-k -21-x2. 所以当0<x < 4k -2k时,h ′(x )<0,因此h (x )在区间⎝ ⎛⎭⎪⎫0, 4k -2k 上单调递减.当0<x < 4k -2k 时,h (x )<h (0)=0,即f (x )<k ⎝ ⎛⎭⎪⎫x +x 33.所以当k >2时,f (x )>k ⎝ ⎛⎭⎪⎫x +x 33并非对x ∈(0,1)恒成立.综上可知,k 的最大值为2.9.已知函数f (x )=ln x -12ax 2-2x (a <0).(1)若函数f (x )在定义域内单调递增,求a 的取值范围;(2)若a =-12且关于x 的方程f (x )=-12x +b 在[1,4]上恰有两个不相等的实数根,求实数b 的取值范围.解 (1)f ′(x )=-ax 2+2x -1x(x >0).依题意f ′(x )≥0在x >0时恒成立,即ax 2+2x -1≤0在x >0时恒成立. 则a ≤1-2x x2=⎝ ⎛⎭⎪⎫1x -12-1在x >0时恒成立,即a ≤⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1x-12-1min (x >0),当x =1时,⎝ ⎛⎭⎪⎫1x-12-1取最小值-1.∴a 的取值范围是(-∞,-1].(2)a =-12,f (x )=-12x +b ⇔14x 2-32x +ln x -b =0.设g (x )=14x 2-32x +ln x -b (x >0).则g ′(x )=x -2x -12x .列表:x (0,1) 1 (1,2) 2 (2,4) g ′(x ) +0 -0 +g (x )极大值极小值∴g (x )极小值=g (2)=ln 2-b -2,g (x )极大值=g (1)=-b -4,又g (4)=2ln 2-b -2,∵方程g (x )=0在[1,4]上恰有两个不相等的实数根,则⎩⎪⎨⎪⎧g 1≥0,g 2<0,g 4≥0,得ln 2-2<b ≤-54.10.如图,现要在边长为100 m 的正方形ABCD 内建一个交通“环岛”.以正方形的四个顶点为圆心在四个角分别建半径为x m(x 不小于9)的扇形花坛,以正方形的中心为圆心建一个半径为15x 2m 的圆形草地.为了保证道路畅通,岛口宽不小于60 m ,绕岛行驶的路宽均不小于10 m.(1)求x 的取值范围(运算中2取1.4);(2)若中间草地的造价为a 元/m 2,四个花坛的造价为433ax 元/m 2,其余区域的造价为12a 11元/m 2,当x 取何值时,可使“环岛”的整体造价最低?解 (1)由题意得,⎩⎪⎨⎪⎧x ≥9100-2x ≥601002-2x -2×15x 2≥2×10,解得⎩⎪⎨⎪⎧x ≥9x ≤20-20≤x ≤15,即9≤x ≤15.所以x 的取值范围是[9,15].(2)记“环岛”的整体造价为y 元,则由题意得y =a ×π×⎝ ⎛⎭⎪⎫15x 22+433ax ×πx 2+12a 11×⎣⎢⎡⎦⎥⎤104-π×⎝ ⎛⎭⎪⎫15x 22-πx 2=a 11⎣⎢⎡π⎝ ⎛ -125x4+43x 3-12x 2 ] )+12×104, 令f (x )=-125x 4+43x 3-12x 2,则f ′(x )=-425x 3+4x 2-24x =-4x ⎝ ⎛⎭⎪⎫125x 2-x +6,由f ′(x )=0,解得x =10或x =15或x =0(舍),列表如下:即当x=10时,可使“环岛”的整体造价最低.。

(名师导学)高考数学总复习 第三章 导数及其应用 第15讲 导数的概念及运算练习 理(含解析)新人教

(名师导学)高考数学总复习 第三章 导数及其应用 第15讲 导数的概念及运算练习 理(含解析)新人教

第三章 导数及其应用知识体系 【p 33】第15讲 导数的概念及运算夯实基础 【p 33】【学习目标】1.了解导数概念的实际背景. 2.理解导数的意义及几何意义.3.能根据导数定义求函数y =C(C 为常数),y =x ,y =x 2,y =x 3,y =1x,y =x 的导数.4.能利用基本初等函数的导数公式及导数运算法则进行某些函数的求导. 【基础检测】1.—个物体的运动方程为s =1-t +t 2,其中s 的单位是米,t 的单位是秒,那么物体在5秒末的瞬时速度是( )A .6米/秒B .7米/秒C .8米/秒D .9米/秒【解析】物体的运动方程为s =1-t +t 2, s′=-1+2t ,s′|t =5=9. 【答案】D2.已知函数f(x)=sin x -x ,则f′(0)=( )A .0B .-1C .1D .-2【解析】由函数的解析式可得:f′(x)=cos x -1, 则f ′(0)=cos 0-1=1-1=0. 【答案】A3.已知曲线f(x)=x 2+2x 上一点A(2,8),则lim f (2-Δx )-f (2)2Δx=( )A .3B .-3C .6D .-6【解析】由题得f′(x)=2x +2, ∴f′(2)=6,limf (2-Δx )-f (2)2Δx =-12lim f (2-Δx )-f (2)-Δx =-12×6=-3.【答案】B 4.曲线y =e-5x+2在点(0,3)处的切线方程为________. 【解析】y =e-5x+2的导数y′=-5e-5x,则在x =0处的切线斜率为-5e 0=-5,切点为(0,3), 则在x =0处的切线方程为:y =-5x +3,即为5x +y -3=0. 【答案】5x +y -3=0 5.若函数f(x)=f′(1)e x -1-f(0)x +x 2,则f′(1)=________.【解析】f′(x)=f′(1)e x -1-f(0)+2x ,则f′(1)=f′(1)-f(0)+2,所以f(0)=2,故f(x)=f′(1)ex -1-2x +x 2,则有f(0)=f′(1)e -1,解得f′(1)=2e .【答案】2e 【知识要点】1.平均变化率及瞬时变化率(1)函数y =f(x)从x 1到x 2的平均变化率用__Δy Δx __表示,且Δy Δx =f (x 2)-f (x 1)x 2-x 1. (2)函数y =f(x)在x =x 0处的瞬时变化率是:Δy Δx =f (x 0+Δx )-f (x 0)Δx. 2.导数的概念(1)函数y =f(x)在x =x 0处的导数就是函数y =f(x)在x =x 0处的瞬时变化率,记作f′(x 0)或y′|x=x 0,即f′(x 0)=f (x 0+Δx )-f (x 0)Δx.(2)函数y =f(x)在x =x 0处的导数f′(x 0)是一个确定的数,当x 变化时,f′(x)是x的一个函数,称f′(x)为f(x)的导函数(简称导数),即f′(x)=f (x +Δx )-f (x )Δx.3.导数的几何意义和物理意义几何意义:函数y =f(x)在x =x 0处的导数就是曲线y =f(x)上__点(x 0,f(x 0))处切线__的斜率k ,即k =__f′(x 0)__;切线方程为__y -f(x 0)=f′(x 0)(x -x 0)__.物理意义:若物体位移随时间变化的关系为s =f(t),则f′(t 0)是物体运动在t =t 0时刻的__瞬时速度__.4.基本初等函数的导数公式(1)常用函数的导数①(C)′=__0__(C 为常数); ②(x)′=__1__; ③(x 2)′=__2x__;④⎝ ⎛⎭⎪⎫1x ′=__-1x 2__;⑤(x )′=.(2)初等函数的导数公式 ①(x n)′=__nxn -1__;②(sin x)′=__cos __x__;③(cos x)′=__-sin __x__;④(e x)′=__e x__; ⑤(a x )′=__a xln __a__;⑥(ln x)′=__1x __;⑦(log a x)′=__1x ln a __.5.导数的运算法则(1)[f(x)±g(x)]′=__f′(x)±g′(x)__;(2)[f(x)·g(x)]′=__f′(x)·g(x)+f(x)·g′(x)__;(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=__f′(x )·g(x )-f (x )·g′(x )[g (x )]2(g(x)≠0)__. 6.复合函数的导数(1)对于两个函数y =f(u)和u =g(x),如果通过变量u ,y 可以表示成x 的函数,那么称这两个函数(函数y =f(u)和u =g(x))的复合函数为y =f(g(x)).(2)复合函数y =f(g(x))的导数和函数y =f(u),u =g(x)的导数间的关系为__y′x =y′u ·u′x __,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.典例剖析 【p 34】考点1 导数的运算法则及应用例1求下列函数的导数: (1)y =(3x 2-4x )(2x +1); (2)y =x 2sin x ; (3)y =3x e x-2x+e ; (4)y =ln xx 2+1.【解析】(1)∵y =(3x 2-4x )(2x +1)=6x 3+3x 2-8x 2-4x =6x 3-5x 2-4x , ∴y′=18x 2-10x -4.(2)y′=(x 2)′sin x +x 2(sin x )′=2xsin x +x 2cos x. (3)y′=(3x e x)′-(2x)′+e′=(3x)′e x+3x(e x)′-(2x)′=3x e x ln 3+3x e x -2xln 2 =(ln 3+1)·(3e )x-2xln 2.(4)y′=(ln x )′(x 2+1)-ln x (x 2+1)′(x 2+1)2=1x(x 2+1)-2xln x (x 2+1)2=x 2+1-2x 2ln xx (x 2+1)2.【点评】求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;遇到函数的商的形式时,如能化简则化简,这样可避免使用商的求导法则,减少运算量.考点2 复合函数的导数例2求下列函数的导数: (1)y =(2x +1)5; (2)y =1(1-3x )4;(3)y =sin 2⎝⎛⎭⎪⎫2x +π3; (4)y =xsin ⎝ ⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2; (5)y =x 1+x 2.【解析】(1)设u =2x +1,则y =u 5,∴y′=y′u ·u′x =(u 5)′u ·(2x +1)′x =5u 4·2=5(2x +1)4·2=10(2x +1)4. (2)设u =1-3x ,则y =u -4,∴y′x =y′u ·u′x =(u -4)′u ·(1-3x )′x =-4u -5·(-3)=12u -5=12(1-3x )5.(3)y′=⎣⎢⎡⎦⎥⎤sin 2⎝ ⎛⎭⎪⎫2x +π3′=2sin ⎝ ⎛⎭⎪⎫2x +π3·⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫2x +π3′=2sin ⎝ ⎛⎭⎪⎫2x +π3·cos ⎝⎛⎭⎪⎫2x +π3·⎝ ⎛⎭⎪⎫2x +π3′=2sin ⎝ ⎛⎭⎪⎫2x +π3·cos ⎝ ⎛⎭⎪⎫2x +π3·2=2sin ⎝⎛⎭⎪⎫4x +2π3.(4)∵y =xsin ⎝ ⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2=12xsin (4x +π)=-12xsin 4x ,∴y′=-12sin 4x -12x·4cos 4x =-12sin 4x -2xcos 4x.(5)y′=(x 1+x 2)′=x′·1+x 2+x·(1+x 2)′=1+x 2+x21+x2=1+2x21+x2.【点评】求复合函数的导数,关键在于分析函数的复合关系,适当确定中间变量,然后“由外及内”逐层求导.考点3 导数运算的应用例3(1)若函数f (x )在R 上可导,且f (x )=x 2+2f ′(1)x +3,则( ) A .f (0)<f (4) B .f (0)=f (4) C .f (0)>f (4) D .以上都不对【解析】函数的导数f ′(x )=2x +2f ′(1), 令x =1,得f ′(1)=2+2f ′(1),即f ′(1)=-2,故f (x )=x 2-4x +3=(x -2)2-1,函数的对称轴为x =2,则f (0)=f (4). 【答案】B(2)已知f ′(x )是函数f (x )的导函数,且对任意的实数x 都有f ′(x )=e x(2x -2)+f (x ),f (0)=1,则( )A .f (x )=e x(x +1) B .f (x )=e x(x -1)C .f (x )=e x (x +1)2D .f (x )=e x (x -1)2【解析】令G (x )=f (x )ex,则G ′(x )=f ′(x )-f (x )ex=2x -2,可设G (x )=x 2-2x +c , ∵G (0)=f (0)=1.∴c =1.∴f (x )=(x 2-2x +1)e x =e x (x -1)2. 【答案】D(3)在直角坐标系xOy 中,点A (2,1),B (3,0),E (x ,0)(x ≥0),过点E 作OB 的垂线l .记△AOB 在直线l 左侧部分的面积为S ,则函数S =f (x )的图象为下图中的( )【解析】函数的定义域为[0,+∞),当x ∈[0,2]时,在单位长度变化量Δx 内面积变化量ΔS 大于0且越来越大,即斜率f ′(x )在[0,2]内大于0且越来越大,因此,函数S =f (x )的图象是上升的,且图象是下凸的;当x ∈(2,3)时,在单位长度变化量Δx 内面积变化量ΔS 大于0且越来越小,即斜率f ′(x )在(2,3)内大于0且越来越小,因此,函数S =f (x )的图象是上升的,且图象是上凸的;当x ∈[3,+∞)时,在单位长度变化量Δx 内面积变化量ΔS 为0,即斜率f ′(x )在[3,+∞)内为常数0,此时,函数图象为平行于x 轴的射线.【答案】D【点评】函数图象在每一点处的切线斜率的变化情况反映函数图象在相应点处的变化情况,由切线的倾斜程度可以判断出函数图象升降的快慢.考点4 导数的几何意义例4(1)函数f (x )=ln x +x 2-bx +a (b>0,a∈R )的图象在点(b ,f (b ))处的切线斜率的最小值是( )A .2 2 B. 3 C .1 D .2【解析】∵f ′(x )=1x +2x -b ,∴k =f ′(b )=1b +b ≥21b·b =2,当且仅当b =1时取等号,因此切线斜率的最小值是2.【答案】D(2)设函数f (x )=2x 3+(a +3)x sin x +ax .若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A .y =-xB .y =-2xC .y =-4xD .y =-3x【解析】∵函数f (x )=2x 3+(a +3)x sin x +ax 为奇函数,∴f (-x )=-f (x ),即2(-x )3+(a +3)(-x )sin(-x )+a ·(-x )=-2x 3+(a +3)x sin x -ax .∴a +3=0,即a =-3.∴f (x )=2x 3-3x ,则f ′(x )=6x 2-3.∴曲线y =f (x )在点(0,0)处的切线的斜率为f ′(0)=-3. ∵f (0)=0,∴曲线y=f(x)在点(0,0)处的切线方程为y=-3x.【答案】D(3)过点(e,-e)作曲线y=e x-x的切线,则切线方程为( )A.y=(-1-e)x+e2B.y=(e-1)x-e2C.y=(e e+1-1)x-e e+2D.y=(e e-1)x-e e+1【解析】由y=e x-x,得y′=e x-1,设切点为(x0,e x0-x0),则y′|x=x0=e x0-1,∴切线方程为y-e x0+x0=(e x0-1)(x-x0),∵切线过点(e,-e),∴-e x0=e x0(e-x0),解得:x0=e+1.∴切线方程为y-e e+1+e+1=(e e+1-1)(x-e-1),整理得:y=(e e+1-1)x-e e+2.【答案】C(4)设对函数f(x)=-e x-x图象上任意一点处的切线为l1,若总存在函数g(x)=ax+2cos x图象上一点处的切线l2,使得l1⊥l2,则实数a的取值X围是( ) A.[-1,2] B.(-1,2)C.[-2,1] D.(-2,1)【解析】f (x )=-e x -x ,则f ′(x )=-e x-1, ∵e x+1>1,∴-e x-1<-1,由g (x )=ax +2cos x ,可得g ′(x )=a -2sin x , 又-2sin x ∈[-2,2], ∴a -2sin x ∈[-2+a ,2+a ],要使得过曲线f (x )=-e x-x 上任意一点的切线为l 1,总存在过曲线g (x )=ax +2cos x 上一点处的切线l 2,使得l 1⊥l 2,则⎩⎪⎨⎪⎧-2+a ≤0,2+a ≥1,解得-1≤a ≤2. 即实数a 的取值X 围是[-1,2]. 【答案】A【点评】导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面: (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0). (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k .(3)若求过点P (x 0,y 0)的切线方程,可设切点为(x 1,y 1),由⎩⎪⎨⎪⎧y 1=f (x 1),y 0-y 1=f ′(x 1)(x 0-x 1)求解即可.方法总结 【p 35】1.应用基本初等函数的导数公式进行导数计算时应注意:①公式(x n)′=nx n -1中,n为有理数;②公式(a x)′=a xln a ,(log a x )′=1x ln a 与(e x )′=e x,(ln x )′=1x,清楚地区分和熟记.2.复合函数的导数计算关键是联想基本初等函数,准确地通过中间量对复合函数进行分拆,同时最后结果是关于x 的函数解析式.3.导数的几何意义是高考考查的热点问题,应特别注意“过点P 的切线”与“在点P 处的切线”意义完全不一样,前者点P 不一定是切点,而后者点P 一定是切点,且在曲线上.走进高考 【p 35】1.(2018·全国卷Ⅰ)设函数f (x )=x 3+(a -1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A .y =-2xB .y =-xC .y =2xD .y =x【解析】由f (x )为奇函数易知a =1,所以f (x )=x 3+x ,f ′(x )=3x 2+1,所以f ′(0)=1,所以直线y =f (x )在(0,0)处的切线方程为y =x .【答案】D2.(2018·全国卷Ⅲ)曲线y =(ax +1)e x在点(0,1)处的切线的斜率为-2,则a =________.【解析】y ′=a e x+(ax +1)e x,则f ′(0)=a +1=-2,所以a =-3. 【答案】-3考点集训 【p 192】A 组题1.有一机器人的运动方程为s (t )=t 2+3t(t 是时间,s 是位移),则该机器人在时刻t=2时的瞬时速度为( )A.194 B.174 C.154 D.134【解析】由题意知,机器人的速度方程为v (t )=s ′(t )=2t -3t2,故当t =2时,机器人的瞬时速度为v (2)=2×2-322=134.【答案】D2.设函数f (x )可导,则f (1+Δx )-f (1)3Δx等于( )A .f ′(1) B.3f ′(1) C.13f ′(1) D .f ′(3)【解析】根据函数f (x )在x =x 0处导数定义,f ′(1)=f (1+Δx )-f (1)Δx =3·f (1+Δx )-f (1)3Δx,∴f (1+Δx )-f (1)3Δx =13·f ′(1).【答案】C3.下列求导①(sin x )′=-cos x ;②⎝ ⎛⎭⎪⎫1x ′=1x2;③(e 2x )′=2e 2x;④⎝ ⎛⎭⎪⎫ln x x ′=1+ln x x2,正确的有( )A .0个B .1个C .2个D .3个 【解析】(sin x )′=cos x ,故①错误;⎝ ⎛⎭⎪⎫1x ′=-1x 2,故②错误;(e 2x)′=2e 2x,故③正确;⎝ ⎛⎭⎪⎫ln x x =(ln x )′·x -ln x ·x ′x 2=1-ln x x 2,故④错误. 正确的有一个.【答案】B4.求曲线f (x )=x -2ln x 在点A (1,f (1))处的切线方程( ) A .x +y -2=0 B .x -y -2=0 C .x +y +2=0 D .x -y +2=0【解析】f ′(x )=1-2x,所以f ′(1)=-1,f (1)=1,所以切线方程为y -1=-(x -1),化简得x +y -2=0.【答案】A5.已知函数f (x )=ln(x +1)·cos x -ax 在(0,f (0))处的切线的倾斜角为45°,则a =( )A .-2B .-1C .0D .3【解析】求出导函数f ′(x )=cos x x +1-ln(x +1)·sin x -a ,又函数f (x )=ln(x +1)·cos x -ax 在(0,f (0))处的切线的倾斜角为45°, ∴1-a =1,即a =0. 【答案】C6.若函数f (x )=x e x +f ′(1)x 2,则f ′(1)=________. 【解析】∵函数f (x )=x e x+f ′(1)x 2, ∴f ′(x )=e x+x e x+2f ′(1)x ,∴f ′(1)=e +e +2f ′(1),即f ′(1)=-2e. 【答案】-2e7.设函数f (x )=ex1+ax 2,其中a >0.若对于任意x ∈R ,f ′(x )≥0,则实数a 的取值X围是________.【解析】由题可知,f ′(x )=e x (ax 2-2ax +1)(1+ax 2)2, 令g (x )=ax 2-2ax +1,则g (x )与f ′(x )符号相同, ∵对于任意x ∈R ,f ′(x )≥0, ∴对于任意x ∈R ,g (x )≥0恒成立, 又∵a >0,根据二次函数的图象与性质,得Δ=(-2a )2-4a ≤0,解得0<a ≤1, ∴实数a 的取值X 围是(0,1]. 【答案】(0,1]8.已知函数f (x )=ln x +m x.(1)当函数f (x )在点(1,f (1))处的切线与直线4y -x +1=0垂直时,某某数m 的值; (2)若x ≥1时,f (x )≥1恒成立,某某数m 的取值X 围. 【解析】(1)f ′(x )=1x -mx2,∴函数f (x )在点(1,f (1))处的切线的斜率k =f ′(1)=1-m , 函数f (x )在点(1,f (1))处的切线与直线4y -x +1=0垂直, 又因为直线4y -x +1=0的斜率为14.∴14(1-m )=-1, ∴1-m =-4,∴m =5.(2)依题意可得不等式ln x +m x≥1在x ≥1时恒成立,即m ≥x -x ln x 在x ≥1时恒成立. 设g (x )=x -x ln x (x ≥1).则g ′(x )=1-ln x -1=-ln x ≤0, 所以函数g (x )在[1,+∞)上为减函数, ∴g (x )≤g (1)=1-1·ln 1=1. ∴m ≥1.B 组题1.已知直线l :x -ty -2=0(t ≠0)与函数f (x )=exx(x >0)的图象相切,则切点的横坐标为( )A .2± 2B .2±2 2C .2D .1+ 2【解析】由f (x )=e xx (x >0)可得f ′(x )=e x(x -1)x2, 设切点坐标为(m ,n )(m >0),则⎩⎪⎨⎪⎧m -tn -2=0,e m m =n ,e m(m -1)m 2=1t ,解得m =2±2.【答案】A2.已知函数f (x )及其导数f ′(x ),若存在x 0,使得f (x 0)=f ′(x 0),则称x 0是f (x )的一个“巧值点”,则下列函数中有“巧值点”的是________.①f (x )=x 2;②f (x )=e -x;③f (x )=ln x ;④f (x )=tan x ;⑤f (x )=1x.【解析】①f ′(x )=2x ,x 2=2x 得x =0或x =2,有“巧值点”;②f ′(x )=-e -x,e-x=-e -x无解,无“巧值点”;③f ′(x )=1x ,方程ln x =1x有解,有“巧值点”;④f ′(x )=1cos 2x ,方程tan x =1cos 2x 无解,无“巧值点”;⑤,方程f ′(x )=-1x 2,方程1x =-1x2有解,x =-1,有“巧值点”.【答案】①③⑤3.已知函数f (x ),x ∈(0,+∞)的导函数为f ′()x ,且满足xf ′()x -2f ()x =x 3e x,f (1)=e -1,则f (x )在()2,f ()2处的切线方程为____________.【解析】∵xf ′()x -2f ()x =x 3e x,∴xf ′()x -2f ()x x 3=e x.令g ()x =f ()x x 2,则g ′()x =xf ′()x -2f ()x x 3=e x,∴g ()x =f ()x x 2=e x+c (c 为常数), ∴f ()x =x 2()e x+c ,又f ()1=e +c =e -1,∴c =-1. ∴f ()x =x 2()e x-1,∴f ′()x =2x ()e x-1+x 2e x=()x 2+2x e x-2x ,∴f ′()2=8e 2-4.又f ()2=4()e 2-1,∴所求切线方程为y -4()e 2-1=()8e 2-4()x -2,即y =()8e 2-4x -12e 2+4.【答案】y =()8e 2-4x -12e 2+44.设函数f (x )=x ln x -ax 2+(b -1)x ,g (x )=e x-e x (e 为自然对数的底数). (1)求g (x )在(1,0)处的切线方程;(2)当b =0时,函数f (x )有两个极值点,求a 的取值X 围;(3)若y =f (x )在点(1,f (1))处的切线与x 轴平行,且函数h (x )=f (x )+g (x )在x ∈(1,+∞)时,其图象上每一点处切线的倾斜角均为锐角,求a 的取值X 围.【解析】(1)由题得g ′(x )=e x-e ,∴k =g ′(1)=e -e =0, 所以切线方程为y =0.(2)当b =0时,f (x )=x ln x -ax 2-x ,f ′(x )=ln x -2ax ,所以f (x )=x ln x -ax 2-x 有两个极值点就是方程ln x -2ax =0有两个解, 即y =2a 与m (x )=ln x x的图象的交点有两个.∵m ′(x )=1-ln x x2,当x ∈(0,e)时,m ′(x )>0,m (x )单调递增;当x ∈(e,+∞)时,m ′(x )<0,m (x )单调递减.m (x )有极大值1e,又因为x ∈(0,1]时,m (x )≤0;当x ∈(1,+∞)时,0<m (x )<1e.当a ∈⎝⎛⎭⎪⎫12e ,+∞时,y =2a 与m (x )=ln x x 的图象的交点有0个;当a ∈(-∞,0]或a =12e 时,y =2a 与m (x )=ln xx 的图象的交点有1个;当a ∈⎝ ⎛⎭⎪⎫0,12e 时,y =2a 与m (x )=ln x x 的图象的交点有2个;综上a ∈⎝ ⎛⎭⎪⎫0,12e .(3)函数y =f (x )在点(1,f (1))处的切线与x 轴平行, 所以f ′(1)=0且f (1)≠0,因为f ′(x )=ln x -2ax +b ,所以b =2a 且a ≠1;h (x )=x ln x -ax 2+(b -1)x +e x -e x 在x ∈(1,+∞)时,其图象的每一点处的切线的倾斜角均为锐角,即当x >1时,h ′(x )=f ′(x )+g ′(x )>0恒成立, 即ln x +e x-2ax +2a -e>0,令t (x )=ln x +e x -2ax +2a -e ,∴t ′(x )=1x+e x-2a ,设φ(x )=1x +e x -2a ,φ′(x )=e x-1x2,因为x >1,所以e x>e ,1x2<1,∴φ′(x )>0,∴φ(x )在(1,+∞)单调递增,即t ′(x )在(1,+∞)单调递增, ∴t ′(x )>t ′(1)=1+e -2a , 当a ≤1+e 2且a ≠1时,t ′(x )≥0,所以t (x )=ln x +e x-2ax +2a -e 在(1,+∞)单调递增, ∴t (x )>t (1)=0成立;当a >1+e 2时,因为t ′(x )在(1,+∞)单调递增,所以t ′(1)=1+e -2a <0,t ′(ln 2a )=1ln 2a+2a -2a >0, 所以存在x 0∈(1,ln 2a )有t ′(x 0)=0,当x ∈(1,x 0)时,t ′(x )<0,t (x )单调递减,所以有t (x 0)<t (1)=0,t (x )>0不恒成立;所以实数a 的取值X 围是(-∞,1)∪⎝ ⎛⎦⎥⎤1,1+e 2.。

高中数学选修1_1全册习题(答案详解)

高中数学选修1_1全册习题(答案详解)

目录:数学选修1-1第一章常用逻辑用语 [基础训练A组]第一章常用逻辑用语 [综合训练B组]第一章常用逻辑用语 [提高训练C组]第二章圆锥曲线 [基础训练A组]第二章圆锥曲线 [综合训练B组]第二章圆锥曲线 [提高训练C组]第三章导数及其应用 [基础训练A组]第三章导数及其应用 [综合训练B组]第三章导数及其应用 [提高训练C组](数学选修1-1)第一章 常用逻辑用语[基础训练A 组]一、选择题1.下列语句中是命题的是( )A .周期函数的和是周期函数吗?B .0sin 451=C .2210x x +->D .梯形是不是平面图形呢?2.在命题“若抛物线2y ax bx c =++的开口向下,则{}2|0x ax bx c φ++<≠”的逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真3.有下述说法:①0a b >>是22a b >的充要条件. ②0a b >>是ba 11<的充要条件. ③0ab >>是33a b >的充要条件.则其中正确的说法有( )A .0个B .1个C .2个D .3个 4.下列说法中正确的是( )A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a b >”与“ a c b c +>+”不等价C .“220a b +=,则,a b 全为0”的逆否命题是“若,a b 全不为0, 则220a b +≠”D .一个命题的否命题为真,则它的逆命题一定为真5.若:,1A a R a ∈<, :B x 的二次方程2(1)20x a x a +++-=的一个根大于零,另一根小于零,则A 是B 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知条件:12p x +>,条件2:56q x x ->,则p ⌝是q ⌝的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题1.命题:“若a b ⋅不为零,则,a b 都不为零”的逆否命题是 。

导数及其应用基础训练

导数及其应用基础训练

导数及其应用基础训练一、选择题1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+--的值为( )A .'0()f xB .'02()f xC .'02()f x - D .02.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3.函数3yx x 的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316C .313 D .310 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件6.函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .0二、填空题1.若3'0(),()3f x x f x ==,则0x 的值为_________________;2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________; 3.函数sin xy x=的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________;5.函数5523--+=x x x y 的单调递增区间是___________________________。

三、解答题1.求垂直于直线2610x y -+=同时与曲线3235y x x =+-相切的直线方程。

2.求函数()()()y x a x b x c =---的导数。

2019高考数学一轮复习第三章导数及其应用导数的应用练习文.doc

2019高考数学一轮复习第三章导数及其应用导数的应用练习文.doc

导数的应用考纲解读考点内容解读要求高考示例常考题型预测热度1.利用导数研究函数的单调性1.了解函数单调性和导数的关系2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次)Ⅲ2017课标全国Ⅰ,21;2017课标全国Ⅱ,21;2017课标全国Ⅲ,21;2016课标全国Ⅲ,21选择题解答题★★★[]2.利用导数研究函数的极值与最值1.了解函数在某点取得极值的必要条件和充分条件2.会用导数求函数的极大值、极小值(其中多项式函数不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次)[]Ⅲ2017北京,20;2017江苏,20;2016山东,203.导数的综合应用会利用导数解决实际问题Ⅲ2017天津,19;2016课标全国Ⅰ,21;2015课标Ⅰ,21分析解读函数的单调性是函数的一条重要性质,也是高中阶段研究的重点.一是直接用导数研究函数的单调性、求函数的最值与极值,以及实际问题中的优化问题等,这是新课标的一个新要求.二是把导数与函数、方程、不等式、数列等知识相联系,综合考查函数的最值与参数的取值,常以解答题的形式出现.本节内容在高考中分值为17分左右,属难度较大题.21)函数f(x)的定义域为(-∞,+∞), f '(x)=2e2x-aex-a2=(2ex+a)(ex-a).①若a=0,则f(x)=e2x,在(-∞,+∞)上单调递增. ②若a>0,则由f '(x)=0得x=ln a.当x∈(-∞,ln a)时, f '(x)<0;当x∈(ln a,+∞)时, f '(x)>0.故f(x)在(-∞,ln a)上单调递减,在(ln a,+∞)上单调递增.③若a<0,则由f '(x)=0得x=ln.当x∈时, f '(x)<0;当x∈时, f '(x)>0.故f(x)在上单调递减,在上单调递增.(2)①若a=0,则f(x)=e2x,所以f(x)≥0.②若a>0,则由(1)得,当x=ln a时, f(x)取得最小值,最小值为f(ln a)=-a2ln a,从而当且仅当-a2ln a ≥0,即a≤1时,f(x)≥0.③若a<0,则由(1)得,当x=ln时, f(x)取得最小值,最小值为f=a2. 3 从而当且仅当a2≥0,即a≥-2时, f(x)≥0.综上,a的取值范围是[-2,1].五年高考考点一利用导数研究函数的单调性1.(2017山东,10,5分)若函数exf(x)(e=2.718 28…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中具有M性质的是( )A.f(x)=2-xB.f(x)=x2C.f(x)=3-xD.f(x)=cos x答案A2.(2016课标全国Ⅰ,12,5分)若函数f(x)=x-sin 2x+asin x在(-∞,+∞)单调递增,则a的取值范围是( )A.[-1,1]B.C.D.答案C3.(2015课标Ⅱ,12,5分)设函数f(x)=ln(1+|x|)-,则使得f(x)>f(2x-1)成立的x的取值范围是( )A. B.∪(1,+∞)C.D.∪答案A4.(2014课标Ⅱ,11,5分)若函数f(x)=kx-ln x在区间(1,+∞)单调递增,则k的取值范围是( )A.(-∞,-2]B.(-∞,-1]C.[2,+∞)D.[1,+∞)答案D5.(2017江苏,11,5分)已知函数f(x)=x3-2x+ex-,其中e是自然对数的底数.若f(a-1)+f(2a2)≤0,则实数a的取值范围是 . 4 答案6.(2017课标全国Ⅱ,21,12分)设函数f(x)=(1-x2)ex.(1)讨论f(x)的单调性;(2)当x≥0时, f(x)≤ax+1,求a的取值范围.解析(1)f '(x)=(1-2x-x2)ex.令f '(x)=0,得x=-1-或x=-1+.当x∈(-∞,-1-)时, f '(x)<0;当x∈(-1-,-1+)时, f '(x)>0;当x∈(-1+,+∞)时, f '(x)<0.所以f(x)在(-∞,-1-),(-1+,+∞)上单调递减,在(-1-,-1+)上单调递增.(2)f(x)=(1+x)(1-x)ex.当a≥1时,设函数h(x)=(1-x)ex,h'(x)=-xex<0(x>0),因此h(x)在[0,+∞)上单调递减,而h(0)=1, 故h(x)≤1,所以f(x)=(x+1)h(x)≤x+1≤ax+1.当0<a<1时,设函数g(x)=ex-x-1,g'(x)=ex-1>0(x>0),所以g(x)在[0,+∞)上单调递增,而g(0)=0,故ex≥x+1.当0<x<1时, f(x)>(1-x)(1+x)2,(1-x)(1+x)2-ax-1=x(1-a-x-x2),取x0=,则x0∈(0,1),(1-x0)(1+x0)2-ax0-1=0,故f(x0)>ax0+1.当a≤0时,取x0=,则x0∈(0,1), f(x0)>(1-x0)(1+x0)2=1≥ax0+1.综上,a的取值范围是[1,+∞).7.(2017课标全国Ⅲ,21,12分)已知函数f(x)=ln x+ax2+(2a+1)x.(1)讨论f(x)的单调性;(2)当a<0时,证明f(x)≤--2.解析(1)f(x)的定义域为(0,+∞), f '(x)=+2ax+2a+1=.若a≥0,则当x∈(0,+∞)时, f '(x)>0,故f(x)在(0,+∞)上单调递增.若a<0,则当x∈时, f '(x)>0;当x∈时, f '(x)<0, 5 故f(x)在上单调递增,在上单调递减.(2)由(1)知,当a<0时, f(x)在x=-处取得最大值,最大值为f=ln-1-.所以f(x)≤--2等价于ln-1-≤--2,即ln++1≤0.设g(x)=ln x-x+1,则g'(x)=-1.当x∈(0,1)时,g'(x)>0;当x∈(1,+∞)时,g'(x)<0.所以g(x)在(0,1)上单调递增,在(1,+∞)上单调递减.故当x=1时,g(x)取得最大值,最大值为g(1)=0.所以当x>0时,g(x)≤0.从而当a<0时,ln++1≤0,即f(x)≤--2.8.(2016课标全国Ⅲ,21,12分)设函数f(x)=ln x-x+1.(1)讨论f(x)的单调性;(2)证明当x∈(1,+∞)时,1<<x;(3)设c>1,证明当x∈(0,1)时,1+(c-1)x>cx.解析(1)由题设知, f(x)的定义域为(0,+∞), f '(x)=-1,令f '(x)=0,解得x=1.当0<x<1时, f '(x)>0, f(x)单调递增;当x>1时, f '(x)<0, f(x)单调递减.(4分)(2)证明:由(1)知f(x)在x=1处取得最大值,最大值为f(1)=0.所以当x≠1时,ln x<x-1.故当x∈(1,+∞)时,ln x<x-1,ln<-1,即1<<x.(7分)(3)证明:由题设c>1,设g(x)=1+(c-1)x-cx,则g'(x)=c-1-cxln c,令g'(x)=0,解得x0=.当x<x0时,g'(x)>0,g(x)单调递增;当x>x0时,g'(x)<0,g(x)单调递减.(9分)由(2)知1<<c,故0<x0<1.又g(0)=g(1)=0,故当0<x<1时,g(x)>0.所以当x∈(0,1)时,1+(c-1)x>cx.(12分)教师用书专用(9—24)9.(2013浙江,8,5分)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f '(x)的图象如图所示,则该6 函数的图象是( )答案B10.(2015四川,21,14分)已知函数f(x)=-2xln x+x2-2ax+a2,其中a>0.(1)设g(x)是f(x)的导函数,讨论g(x)的单调性;(2)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.解析(1)由已知,得函数f(x)的定义域为(0,+∞),g(x)=f '(x)=2(x-1-ln x-a),所以g'(x)=2-=.当x∈(0,1)时,g'(x)<0,g(x)单调递减;当x∈(1,+∞)时,g'(x)>0,g(x)单调递增.(2)证明:由f '(x)=2(x-1-ln x-a)=0,解得a=x-1-ln x.令φ(x)=-2xln x+x2-2x(x-1-ln x)+(x-1-ln x)2=(1+ln x)2-2xln x,则φ(1)=1>0,φ(e)=2(2-e)<0.于是,存在x0∈(1,e),使得φ(x0)=0.令a0=x0-1-ln x0=u(x0),其中u(x)=x-1-ln x(x≥1).由u'(x)=1-≥0知,函数u(x)在区间(1,+∞)上单调递增.故0=u(1)<a0=u(x0)<u(e)=e-2<1.即a0∈(0,1).当a=a0时,有f '(x0)=0, f(x0)=φ(x0)=0. 再由(1)知, f '(x)在区间(1,+∞)上单调递增,当x∈(1,x0)时, f '(x)<0,从而f(x)>f(x0)=0;当x∈(x0,+∞)时, f '(x)>0,从而f(x)>f(x0)=0; 又当x∈(0,1]时, f(x)=(x-a0)2-2xln x>0. 故x∈(0,+∞)时, f(x)≥0.综上所述,存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.11.(2015天津,20,14分)已知函数f(x)=4x-x4,x∈R.(1)求f(x)的单调区间;(2)设曲线y=f(x)与x轴正半轴的交点为P,曲线在点P处的切线方程为y=g(x),求证:对于任意的实数x,都有f(x)≤g(x);(3)若方程f(x)=a(a为实数)有两个实数根x1,x2,且x1<x2,求证:x2-x1≤-+.解析(1)由f(x)=4x-x4,可得f '(x)=4-4x3.当f '(x)>0,即x<1时,函数f(x)单调递增;当f '(x)<0,即x>1时,函数f(x)单调递减.所以, f(x)的单调递增区间为(-∞,1), 7 单调递减区间为(1,+∞).(2)证明:设点P的坐标为(x0,0),则x0=, f '(x0)=-12.曲线y=f(x)在点P处的切线方程为y=f '(x0)(x-x0),即g(x)=f '(x0)(x-x0).令函数F(x)=f(x)-g(x),即F(x)=f(x)-f '(x0)(x-x0),则F'(x)=f '(x)-f '(x0).由于f '(x)=-4x3+4在(-∞,+∞)上单调递减,故F'(x)在(-∞,+∞)上单调递减.又因为F'(x0)=0,所以当x∈(-∞,x0)时,F'(x)>0,当x∈(x0,+∞)时,F'(x)<0,所以F(x)在(-∞,x0)上单调递增,在(x0,+∞)上单调递减,所以对于任意的实数x,F(x)≤F(x0)=0,即对于任意的实数x,都有f(x)≤g(x).(3)证明:由(2)知g(x)=-12(x-).设方程g(x)=a的根为x2',可得x2'=-+.因为g(x)在(-∞,+∞)上单调递减,又由(2)知g(x2)≥f(x2)=a=g(x2'),因此x2≤x2'.类似地,设曲线y=f(x)在原点处的切线方程为y=h(x),可得h(x)=4x.对于任意的x∈(-∞,+∞),有f(x)-h(x)=-x4≤0,即f(x)≤h(x).设方程h(x)=a的根为x1',可得x1'=.因为h(x)=4x在(-∞,+∞)上单调递增,且h(x1')=a=f(x1)≤h(x1),因此x1'≤x1.由此可得x2-x1≤x2'-x1'=-+.12.(2015福建,22,14分)已知函数f(x)=ln x-.(1)求函数f(x)的单调递增区间;(2)证明:当x>1时, f(x)<x-1;(3)确定实数k的所有可能取值,使得存在x0>1,当x∈(1,x0)时,恒有f(x)>k(x-1).解析(1)f '(x)=-x+1=,x∈(0,+∞).由f '(x)>0得解得0<x<.故f(x)的单调递增区间是.(2)证明:令F(x)=f(x)-(x-1),x∈(0,+∞).则有F'(x)=.当x∈(1,+∞)时,F'(x)<0,所以F(x)在[1,+∞)上单调递减,故当x>1时,F(x)<F(1)=0,即当x>1时, f(x)<x-1.(3)由(2)知,当k=1时,不存在x0>1满足题意.当k>1时,对于x>1,有f(x)<x-1<k(x-1),则f(x)<k(x-1),从而不存在x0>1满足题意.当k<1时,令G(x)=f(x)-k(x-1),x∈(0,+∞), 8 则有G'(x)=-x+1-k=.由G'(x)=0得,-x2+(1-k)x+1=0.解得x1=<0,x2=>1.当x∈(1,x2)时,G'(x)>0,故G(x)在[1,x2)内单调递增.从而当x∈(1,x2)时,G(x)>G(1)=0,即f(x)>k(x-1), 综上,k的取值范围是(-∞,1).13.(2015重庆,19,12分)已知函数f(x)=ax3+x2(a∈R)在x=-处取得极值.(1)确定a的值;(2)若g(x)=f(x)ex,讨论g(x)的单调性.解析(1)对f(x)求导得f '(x)=3ax2+2x,因为f(x)在x=-处取得极值,所以f '=0,即3a·+2·=-=0,解得a=.(2)由(1)得g(x)=ex,故g'(x)=ex+ex=ex=x(x+1)(x+4)ex.令g'(x)=0,解得x=0,x=-1或x=-4.当x<-4时,g'(x)<0,故g(x)为减函数;当-4<x<-1时,g'(x)>0,故g(x)为增函数;当-1<x<0时,g'(x)<0,故g(x)为减函数;当x>0时,g'(x)>0,故g(x)为增函数.综上,知g(x)在(-∞,-4)和(-1,0)内为减函数,在(-4,-1)和(0,+∞)内为增函数.14.(2014安徽,20,13分)设函数f(x)=1+(1+a)x-x2-x3,其中a>0.(1)讨论f(x)在其定义域上的单调性;(2)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值.解析(1)f(x)的定义域为(-∞,+∞), f '(x)=1+a-2x-3x2.令f '(x)=0,得x1=,x2=,x1<x2,所以f '(x)=-3(x-x1)(x-x2). 9 当x<x1或x>x2时, f '(x)<0;当x1<x<x2时, f '(x)>0.故f(x)在(-∞,x1)和(x2,+∞)内单调递减,在[x1,x2]内单调递增.(2)因为a>0,所以x1<0,x2>0.(i)当a≥4时,x2≥1,由(1)知, f(x)在[0,1]上单调递增,所以f(x)在x=0和x=1处分别取得最小值和最大值.(ii)当0<a<4时,x2<1.由(1)知, f(x)在[0,x2]上单调递增,在[x2,1]上单调递减,因此f(x)在x=x2=处取得最大值.又f(0)=1, f(1)=a,所以当0<a<1时, f(x)在x=1处取得最小值;当a=1时, f(x)在x=0和x=1处同时取得最小值;当1<a<4时, f(x)在x=0处取得最小值.15.(2014重庆,19,12分)已知函数f(x)=+-ln x-,其中a∈R,且曲线y=f(x)在点(1, f(1))处的切线垂直于直线y=x.(1)求a的值;(2)求函数f(x)的单调区间与极值.解析(1)对f(x)求导得f '(x)=--,由f(x)在点(1, f(1))处的切线垂直于直线y=x知f '(1)=--a=-2,解得a=.(2)由(1)知f(x)=+-ln x-,则f '(x)=,令f '(x)=0,解得x=-1或x=5.因x=-1不在f(x)的定义域(0,+∞)内,故舍去.当x∈(0,5)时, f '(x)<0,故f(x)在(0,5)内为减函数;当x∈(5,+∞)时, f '(x)>0,故f(x)在(5,+∞)内为增函数.由此知函数f(x)在x=5时取得极小值f(5)=-ln 5.16.(2014湖北,21,14分)π为圆周率,e=2.718 28…为自然对数的底数.(1)求函数f(x)=的单调区间;(2)求e3,3e,eπ,πe,3π,π3这6个数中的最大数与最小数.解析(1)函数f(x)的定义域为(0,+∞).因为f(x)=,所以f '(x)=.当f '(x)>0,即0<x<e时,函数f(x)单调递增;当f '(x)<0,即x>e时,函数f(x)单调递减.故函数f(x)的单调递增区间为(0,e),单调递减区间为(e,+∞).(2)因为e<3<π,所以eln 3<eln π,πln e<πln 3,即ln 3e<ln πe,ln eπ<ln 3π.于是根据函数y=ln x,y=ex,y=πx在定义域上单调递增,可得3e<πe<π3,e3<eπ<3π. 10 故这6个数的最大数在π3与3π之中,最小数在3e与e3之中.由e<3<π及(1)的结论,得f(π)<f(3)<f(e),即<<.由<,得ln π3<ln 3π,所以3π>π3;由<,得ln 3e<ln e3,所以3e<e3.综上,6个数中的最大数是3π,最小数是3e.17.(2014湖南,21,13分)已知函数f(x)=xcos x-sin x+1(x>0).(1)求f(x)的单调区间;(2)记xi为f(x)的从小到大的第i(i∈N*)个零点,证明:对一切n∈N*,有++…+<.解析(1)f '(x)=cos x-xsin x-cos x=-xsin x.令f '(x)=0,得x=kπ(k∈N*).当x∈(2kπ,(2k+1)π)(k∈N)时,sin x>0,此时f '(x)<0;当x∈((2k+1)π,(2k+2)π)(k∈N)时,sin x<0,此时f '(x)>0,故f(x)的单调递减区间为(2kπ,(2k+1)π)(k∈N),单调递增区间为((2k+1)π,(2k+2)π)(k∈N). (2) 由(1)知, f(x)在区间(0,π)上单调递减,又f=0,故x1=,当n∈N*时,因为f(nπ)f((n+1)π)=[(-1)nnπ+1]·[(-1)n+1(n+1)n+1]<0,且函数f(x)的图象是连续不断的,所以f(x)在区间(nπ,(n+1)π)内至少存在一个零点.又f(x)在区间(nπ,(n+1)π)上是单调的,故nπ<xn+1<(n+1)π.因此当n=1时,=<;当n=2时,+<(4+1)<;当n≥3时,++…+<<==<<.综上所述,对一切n∈N*,++…+<. 11 18.(2014江西,18,12分)已知函数f(x)=(4x2+4ax+a2),其中a<0.(1)当a=-4时,求f(x)的单调递增区间;(2)若f(x)在区间[1,4]上的最小值为8,求a的值.解析(1)f(x)的定义域为[0,+∞).当a=-4时,由f '(x)==0得x=或x=2,由f '(x)>0得x∈或x∈(2,+∞),故函数f(x)的单调递增区间为和(2,+∞).(2)f '(x)=,a<0,由f '(x)=0得x=-或x=-.当x∈时,f(x)单调递增;当x∈时,f(x)单调递减;当x∈时,f(x)单调递增.易知f(x)=(2x+a)2≥0,且f=0.①当-≤1,即-2≤a<0时,f(x)在[1,4]上的最小值为f(1),由f(1)=4+4a+a2=8,得a=±2-2,均不符合题意.②当1<-≤4,即-8≤a<-2时, f(x)在[1,4]上的最小值为f=0,不符合题意.③当->4,即a<-8时,f(x)在[1,4]上的最小值可能在x=1或x=4处取得,而f(1)≠8,由f(4)=2(64+16a+a2)=8得a=-10或a=-6(舍去),当a=-10时,f(x)在(1,4)上单调递减, f(x)在[1,4]上的最小值为f(4)=8,符合题意.综上,a=-10.19.(2013课标全国Ⅰ,20,12分)已知函数f(x)=ex(ax+b)-x2-4x,曲线y=f(x)在点(0, f(0))处的切线方程为y=4x+4.(1)求a,b的值;(2)讨论f(x)的单调性,并求f(x)的极大值.解析(1)f '(x)=ex(ax+a+b)-2x-4.由已知得f(0)=4, f '(0)=4.故b=4,a+b=8.从而a=4,b=4.(2)由(1)知f(x)=4ex(x+1)-x2-4x,f '(x)=4ex(x+2)-2x-4=4(x+2).令f '(x)=0,得x=-ln 2或x=-2.从而当x∈(-∞,-2)∪(-ln 2,+∞)时, f '(x)>0;当x∈(-2,-ln 2)时, f '(x)<0. 12 故f(x)在(-∞,-2),(-ln 2,+∞)上单调递增,在(-2,-ln 2)上单调递减.当x=-2时,函数f(x)取得极大值,极大值为f(-2)=4(1-e-2).20.(2013大纲全国,21,12分)已知函数f(x)=x3+3ax2+3x+1.(1)当a=-时,讨论f(x)的单调性;(2)若x∈[2,+∞)时, f(x)≥0,求a的取值范围.解析(1)当a=-时, f(x)=x3-3x2+3x+1,f '(x)=3x2-6x+3.令f '(x)=0,得x1=-1,x2=+1.(3分)当x∈(-∞,-1)时, f '(x)>0, f(x)在(-∞,-1)上是增函数;当x∈(-1,+1)时, f '(x)<0, f(x)在(-1,+1)上是减函数;当x∈(+1,+∞)时, f '(x)>0, f(x)在(+1,+∞)上是增函数.(6分)(2)由f(2)≥0得a≥-.(8分)当a≥-,x∈(2,+∞)时,f '(x)=3(x2+2ax+1)≥3=3(x-2)>0,所以f(x)在(2,+∞)上是增函数,于是当x∈[2,+∞)时,f(x)≥f(2)≥0.综上,a的取值范围是.(12分)21.(2013山东,21,12分)已知函数f(x)=ax2+bx-ln x(a,b∈R).(1)设a≥0,求f(x)的单调区间;(2)设a>0,且对任意x>0, f(x)≥f(1).试比较ln a与-2b的大小.解析(1)由f(x)=ax2+bx-ln x,x∈(0,+∞),得f '(x)=.①当a=0时, f '(x)=.(i)若b≤0,当x>0时, f '(x)<0恒成立,所以函数f(x)的单调递减区间是(0,+∞).(ii)若b>0,当0<x<时, f '(x)<0,函数f(x)单调递减, 13 当x>时, f '(x)>0,函数f(x)单调递增.所以函数f(x)的单调递减区间是,单调递增区间是.②当a>0时,令f '(x)=0,得2ax2+bx-1=0.由Δ=b2+8a>0得x1=,x2=.显然,x1<0,x2>0.当0<x<x2时, f '(x)<0,函数f(x)单调递减;当x>x2时, f '(x)>0,函数f(x)单调递增.所以函数f(x)的单调递减区间是,单调递增区间是.综上所述,当a=0,b≤0时,函数f(x)的单调递减区间是(0,+∞);当a=0,b>0时,函数f(x)的单调递减区间是,单调递增区间是;当a>0时,函数f(x)的单调递减区间是,单调递增区间是.(2)由题意,函数f(x)在x=1处取得最小值,由(1)知是f(x)的唯一极小值点,故=1,整理得2a+b=1,即b=1-2a.令g(x)=2-4x+ln x.则g'(x)=.令g'(x)=0,得x=.当0<x<时,g'(x)>0,g(x)单调递增; 14 当x>时,g'(x)<0,g(x)单调递减.因此g(x)≤g=1+ln=1-ln 4<0.故g(a)<0,即2-4a+ln a=2b+ln a<0,即ln a<-2b.22.(2013天津,20,14分)设a∈[-2,0],已知函数f(x)=(1)证明f(x)在区间(-1,1)内单调递减,在区间(1,+∞)内单调递增;(2)设曲线y=f(x)在点Pi(xi, f(xi))(i=1,2,3)处的切线相互平行,且x1x2x3≠0.证明x1+x2+x3>-.证明(1)设函数f1(x)=x3-(a+5)x(x≤0),f2(x)=x3-x2+ax(x≥0),①f '1(x)=3x2-(a+5),由a∈[-2,0],从而当-1<x<0时,f '1(x)=3x2-(a+5)<3-a-5≤0,所以函数f1(x)在区间(-1,0]内单调递减.②f '2(x)=3x2-(a+3)x+a=(3x-a)(x-1),由于a∈[-2,0],所以当0<x<1时, f '2(x)<0;当x>1时, f '2(x)>0.即函数f2(x)在区间[0,1)内单调递减,在区间(1,+∞)内单调递增.综合①,②及f1(0)=f2(0),可知函数f(x)在区间(-1,1)内单调递减,在区间(1,+∞)内单调递增.(2)由(1)知f '(x)在区间(-∞,0)内单调递减,在区间内单调递减,在区间内单调递增.因为曲线y=f(x)在点Pi(xi, f(xi))(i=1,2,3)处的切线相互平行,从而x1,x2,x3互不相等,且f '(x1)=f '(x2)=f'(x3).不妨设x1<0<x2<x3,由3-(a+5)=3-(a+3)x2+a=3-(a+3)x3+a,可得3-3-(a+3)(x2-x3)=0,解得x2+x3=,从而0<x2<<x3.设g(x)=3x2-(a+3)x+a,则g<g(x2)<g(0)=a.由3-(a+5)=g(x2)<a,解得-<x1<0,所以x1+x2+x3>-+, 15 设t=,则a=,因为a∈[-2,0],所以t∈,故x1+x2+x3>-t+=(t-1)2-≥-,即x1+x2+x3>-.23.(2013湖北,21,13分)设a>0,b>0,已知函数f(x)=.(1)当a≠b时,讨论函数f(x)的单调性;(2)当x>0时,称f(x)为a、b关于x的加权平均数.(i)判断f(1),f ,f 是否成等比数列,并证明f ≤f ;(ii)a、b的几何平均数记为G.称为a、b的调和平均数,记为H.若H≤f(x)≤G,求x的取值范围.解析(1)f(x)的定义域为(-∞,-1)∪(-1,+∞),f '(x)==.当a>b时, f '(x)>0,函数f(x)在(-∞,-1),(-1,+∞)上单调递增;当a<b时, f '(x)<0,函数f(x)在(-∞,-1),(-1,+∞)上单调递减.(2)(i)计算得f(1)=>0, f=>0,f =>0,故f(1)f=·=ab=,即f(1)f=.①所以f(1),f,f 成等比数列.因为≥,所以f(1)≥f .由①得f ≤f .(ii)由(i)知f =H,f =G.故由H≤f(x)≤G,得f ≤f(x)≤f .②16 当a=b时,f =f(x)=f =a.这时,x的取值范围为(0,+∞);当a>b时,0<<1,从而<,由f(x)在(0,+∞)上单调递增与②式,得≤x≤,即x的取值范围为;当a<b时,>1,从而>,由f(x)在(0,+∞)上单调递减与②式,得≤x≤,即x的取值范围为.24.(2013江苏,20,16分)设函数f(x)=ln x-ax,g(x)=ex-ax,其中a为实数.(1)若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围;(2)若g(x)在(-1,+∞)上是单调增函数,试求f(x)的零点个数,并证明你的结论.解析(1)令f '(x)=-a=<0,考虑到f(x)的定义域为(0,+∞),故a>0,进而解得x>a-1,即f(x)在(a-1,+∞)上是单调减函数.同理, f(x)在(0,a-1)上是单调增函数.由于f(x)在(1,+∞)上是单调减函数,故(1,+∞)⊆(a-1,+∞),从而a-1≤1,即a≥1.令g'(x)=ex-a=0,得x=ln a.当x<ln a时,g'(x)<0;当x>ln a时,g'(x)>0.又g(x)在(1,+∞)上有最小值,所以ln a>1,即a>e.综上,有a∈(e,+∞).(2)当a≤0时,g(x)必为单调增函数;当a>0时,令g'(x)=ex-a>0,解得a<ex,即x>ln a,因为g(x)在(-1,+∞)上是单调增函数,类似(1)有ln a≤-1,即0<a≤e-1.结合上述两种情况,有a≤e-1.(i)当a=0时,由f(1)=0以及f '(x)=>0,得f(x)存在唯一的零点.(ii)当a<0时,由于f(ea)=a-aea=a(1-ea)<0, f(1)=-a>0,且函数f(x)在[ea,1]上的图象不间断,所以f(x)在(ea,1)上存在零点.另外,当x>0时, f '(x)=-a>0,故f(x)在(0,+∞)上是单调增函数,所以f(x)只有一个零点.(iii)当0<a≤e-1时,令f '(x)=-a=0,解得x=a-1.当0<x<a-1时, f '(x)>0,当x>a-1时, f '(x)<0,所以,x=a-1是f(x)的最大值点,且最大值为f(a-1)=-ln a-1.①当-ln a-1=0,即a=e-1时, f(x)有一个零点x=e.②当-ln a-1>0,即0<a<e-1时, f(x)有两个零点. 17 实际上,对于0<a<e-1,由于f(e-1)=-1-ae-1<0, f(a-1)>0,且函数f(x)在[e-1,a-1]上的图象不间断,所以f(x)在(e-1,a-1)上存在零点.另外,当x∈(0,a-1)时, f '(x)=-a>0,故f(x)在(0,a-1)上是单调增函数,所以f(x)在(0,a-1)上只有一个零点.下面考虑f(x)在(a-1,+∞)上的情况.先证f(ea-1)=a(a-2-ea-1)<0.为此,我们要证明:当x>e时,ex>x2.设h(x)=ex-x2,则h'(x)=ex-2x,再设l(x)=h'(x)=ex-2x,则l'(x)=ex-2. 当x>1时,l'(x)=ex-2>e-2>0,所以l(x)=h'(x)在(1,+∞)上是单调增函数.故当x>2时,h'(x)=ex-2x>h'(2)=e2-4>0,从而h(x)在(2,+∞)上是单调增函数,进而当x>e时,h(x)=ex-x2>h(e)=ee-e2>0.即当x>e时,ex>x2.当0<a<e-1,即a-1>e时, f(ea-1)=a-1-aea-1=a(a-2-ea-1)<0,又f(a-1)>0,且函数f(x)在[a-1,ea-1]上的图象不间断,所以f(x)在(a-1,ea-1)上存在零点.又当x>a-1时, f '(x)=-a<0,故f(x)在(a-1,+∞)上是单调减函数,所以f(x)在(a-1,+∞)上只有一个零点.综合(i),(ii),(iii),当a≤0或a=e-1时, f(x)的零点个数为1,当0<a<e-1时,f(x)的零点个数为2.考点二利用导数研究函数的极值与最值1.(2016四川,6,5分)已知a为函数f(x)=x3-12x的极小值点,则a=( )A.-4B.-2C.4D.2答案D2.(2014辽宁,12,5分)当x∈[-2,1]时,不等式ax3-x2+4x+3≥0恒成立,则实数a的取值范围是( )A.[-5,-3]B.C.[-6,-2]D.[-4,-3]答案C3.(2015陕西,15,5分)函数y=xex在其极值点处的切线方程为.答案y=-4.(2017北京,20,13分)已知函数f(x)=excos x-x.(1)求曲线y=f(x)在点(0, f(0))处的切线方程;(2)求函数f(x)在区间上的最大值和最小值.解析(1)因为f(x)=excos x-x,所以f '(x)=ex(cos x-sin x)-1, f '(0)=0.又因为f(0)=1,所以曲线y=f(x)在点(0, f(0))处的切线方程为y=1.(2)设h(x)=ex(cos x-sin x)-1,则h'(x)=ex(cos x-sin x-sin x-cos x)=-2exsin x.当x∈时,h'(x)<0, 18 所以h(x)在区间上单调递减.所以对任意x∈,有h(x)<h(0)=0,即f '(x)<0.所以函数f(x)在区间上单调递减.因此f(x)在区间上的最大值为f(0)=1,最小值为f=-.5.(2017江苏,20,16分)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f '(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:b2>3a;(3)若f(x), f '(x)这两个函数的所有极值之和不小于-,求a的取值范围.解析(1)由f(x)=x3+ax2+bx+1,得f '(x)=3x2+2ax+b=3+b-.当x=-时, f '(x)有极小值b-.因为f '(x)的极值点是f(x)的零点,所以f =-+-+1=0,又a>0,故b=+.因为f(x)有极值,故f '(x)=0有实根,从而b-=(27-a3)≤0,即a≥3.当a=3时, f '(x)>0(x≠-1),故f(x)在R上是增函数, f(x)没有极值;当a>3时, f '(x)=0有两个相异的实根x1=,x2=.列表如下:x(-∞,x1)x1(x1,x2) x2(x2,+∞)f '(x) + 0 - 0 +f(x) ↗极大值↘极小值↗故f(x)的极值点是x1,x2.从而a>3.因此b=+,定义域为(3,+∞). 19 (2)证明:由(1)知,=+.设g(t)=+,则g'(t)=-=.当t∈时,g'(t)>0,从而g(t)在上单调递增.因为a>3,所以a>3,故g(a )>g(3)=,即>.因此b2>3a.(3)由(1)知, f(x)的极值点是x1,x2,且x1+x2=-a,+=.从而f(x1)+f(x2)=+a+bx1+1++a+bx2+1=(3+2ax1+b)+(3+2ax2+b)+a(+)+b(x1+x2)+2=-+2=0.记f(x), f '(x)所有极值之和为h(a),因为f '(x)的极值为b-=-a2+所以h(a)=-a2+,a>3.因为h'(a)=-a-<0,于是h(a)在(3,+∞)上单调递减.因为h(6)=-,于是h(a)≥h(6),故a≤6.因此a的取值范围为(3,6].6.(2015安徽,21,13分)已知函数f(x)=(a>0,r>0).(1)求f(x)的定义域,并讨论f(x)的单调性;(2)若=400,求f(x)在(0,+∞)内的极值. 20 解析(1)由题意知x≠-r,所求的定义域为(-∞,-r)∪(-r,+∞).f(x)==,f '(x)==,所以当x<-r或x>r时,f '(x)<0,当-r<x<r时,f '(x)>0,因此,f(x)的单调递减区间为(-∞,-r),(r,+∞);f(x)的单调递增区间为(-r,r).(2)由(1)的解答可知f '(r)=0,f(x)在(0,r)上单调递增,在(r,+∞)上单调递减.因此,x=r是f(x)的极大值点,所以f(x)在(0,+∞)内的极大值为f(r)====100.教师用书专用(7—15)7.(2013福建,12,5分)设函数f(x)的定义域为R,x0(x0≠0)是f(x)的极大值点,以下结论一定正确的是( )A.∀x∈R, f(x)≤f(x0)B.-x0是f(-x)的极小值点C.-x0是-f(x)的极小值点D.-x0是-f(-x)的极小值点答案D8.(2016天津,20,14分)设函数f(x)=x3-ax-b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[-1,1]上的最大值不小于14.解析(1)由f(x)=x3-ax-b,可得f '(x)=3x2-a.下面分两种情况讨论:①当a≤0时,有f '(x)=3x2-a≥0恒成立,所以f(x)的单调递增区间为(-∞,+∞).②当a>0时,令f '(x)=0,解得x=,或x=-.当x变化时, f '(x), f(x)的变化情况如下表:x-f'(x)+ 0 - 0 +f(x) 单调递增极大值单调递减极小单调递增所以f(x)的单调递减区间为,单调递增区间为,.(2)证明:因为f(x)存在极值点,所以由(1)知a>0,且x0≠0.由题意,得f '(x0)=3-a=0,即=,进而f(x0)=-ax0-b=-x0-b. 21 又f(-2x0)=-8+2ax0-b=-x0+2ax0-b=-x0-b=f(x0),且-2x0≠x0,由题意及(1)知,存在唯一实数x1满足f(x1)=f(x0),且x1≠x0,因此x1=-2x0.所以x1+2x0=0. (3)证明:设g(x)在区间[-1,1]上的最大值为M,max{x,y}表示x,y两数的最大值.下面分三种情况讨论:①当a≥3时,-≤-1<1≤,由(1)知, f(x)在区间[-1,1]上单调递减,所以f(x)在区间[-1,1]上的取值范围为[f(1), f(-1)],因此M=max{|f(1)|,|f(-1)|}=max{|1-a-b|,|-1+a-b|}=max{|a-1+b|,|a-1-b|}=所以M=a-1+|b|≥2.②当≤a<3时,-≤-1<-<<1≤,由(1)和(2)知f(-1)≥f =f , f(1)≤f =f ,所以f(x)在区间[-1,1]上的取值范围为f , f ,因此M=max33af,3-3af=max=max=+|b|≥××=.③当0<a<时,-1<-<<1,由(1)和(2)知f(-1)<f =f , f(1)>f =f ,所以f(x)在区间[-1,1]上的取值范围为[f(-1), f(1)],因此M=max{|f(-1)|,|f(1)|}=max{|-1+a-b|,|1-a-b|}=max{|1-a+b|,|1-a-b|}=1-a+|b|>.综上所述,当a>0时,g(x)在区间[-1,1]上的最大值不小于. 22 9.(2014天津,19,14分)已知函数f(x)=x2-ax3(a>0),x∈R.(1)求f(x)的单调区间和极值;(2)若对于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)·f(x2)=1.求a的取值范围.解析(1)由已知,有f '(x)=2x-2ax2(a>0).令f '(x)=0,解得x=0或x=.当x变化时, f '(x), f(x)的变化情况如下表:x(-∞,0)f '(x) - 0 + 0 -f(x) ↘0 ↗↘所以, f(x)的单调递增区间是;单调递减区间是(-∞,0),.当x=0时, f(x)有极小值,且极小值f(0)=0;当x=时,f(x)有极大值,且极大值f=.(2)由f(0)=f=0及(1)知,当x∈时, f(x)>0;当x∈时, f(x)<0.设集合A={f(x)|x∈(2,+∞)},集合B=.则“对于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)·f(x2)=1”等价于A⊆B.显然,0∉B.下面分三种情况讨论:①当>2,即0<a<时,由f=0可知,0∈A,而0∉B,所以A不是B的子集.②当1≤≤2,即≤a≤时,有f(2)≤0,且此时f(x)在(2,+∞)上单调递减,故A=(-∞, f(2)),因而A⊆(-∞,0);由f(1)≥0,有f(x)在(1,+∞)上的取值范围包含(-∞,0),则(-∞,0)⊆B.所以,A⊆B.③当<1,即a>时,有f(1)<0,且此时f(x)在(1,+∞)上单调递减,故B=,A=(-∞,f(2)),所以A不是B的子集.综上,a的取值范围是.10.(2014浙江,21,15分)已知函数f(x)=x3+3|x-a|(a>0).若f(x)在[-1,1]上的最小值记为g(a).(1)求g(a);(2)证明:当x∈[-1,1]时,恒有f(x)≤g(a)+4.解析(1)因为a>0,-1≤x≤1,所以(i)当0<a<1时, 23 若x∈[-1,a],则f(x)=x3-3x+3a, f '(x)=3x2-3<0,故f(x)在(-1,a)上是减函数;若x∈[a,1],则f(x)=x3+3x-3a, f '(x)=3x2+3>0,故f(x)在(a,1)上是增函数.所以g(a)=f(a)=a3.(ii)当a≥1时,有x≤a,则f(x)=x3-3x+3a, f '(x)=3x2-3<0,故f(x)在(-1,1)上是减函数,所以g(a)=f(1)=-2+3a.综上,g(a)=(2)令h(x)=f(x)-g(a),(i)当0<a<1时,g(a)=a3,若x∈[a,1],h(x)=x3+3x-3a-a3,得h'(x)=3x2+3,则h(x)在(a,1)上是增函数,所以,h(x)在[a,1]上的最大值是h(1)=4-3a-a3,且0<a<1,所以h(1)≤4.故f(x)≤g(a)+4;若x∈[-1,a],h(x)=x3-3x+3a-a3,得h'(x)=3x2-3,则h(x)在(-1,a)上是减函数,所以,h(x)在[-1,a]上的最大值是h(-1)=2+3a-a3.令t(a)=2+3a-a3,则t'(a)=3-3a2>0, 知t(a)在(0,1)上是增函数,所以,t(a)<t(1)=4,即h(-1)<4.故f(x)≤g(a)+4.(ii)当a≥1时,g(a)=-2+3a,故h(x)=x3-3x+2,得h'(x)=3x2-3,此时h(x)在(-1,1)上是减函数,因此h(x)在[-1,1]上的最大值是h(-1)=4.故f(x)≤g(a)+4.综上,当x∈[-1,1]时,恒有f(x)≤g(a)+4.11.(2014四川,21,14分)已知函数f(x)=ex-ax2-bx-1,其中a,b∈R,e=2.718 28…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,证明:e-2<a<1.解析(1)由f(x)=ex-ax2-bx-1,有g(x)=f '(x)=ex-2ax-b,所以g'(x)=ex-2a.当x∈[0,1]时,g'(x)∈[1-2a,e-2a],当a≤时,g'(x)≥0,所以g(x)在[0,1]上单调递增,因此g(x)在[0,1]上的最小值是g(0)=1-b;当a≥时,g'(x)≤0,所以g(x)在[0,1]上单调递减.因此g(x)在[0,1]上的最小值是g(1)=e-2a-b;当<a<时,令g'(x)=0,得x=ln(2a)∈(0,1).所以函数g(x)在区间[0,ln(2a)]上单调递减,在区间(ln(2a),1]上单调递增.于是,g(x)在[0,1]上的最小值是g(ln(2a))=2a-2aln(2a)-b.综上所述,当a≤时,g(x)在[0,1]上的最小值是g(0)=1-b; 24 当<a<时,g(x)在[0,1]上的最小值是g(ln(2a))=2a-2aln(2a)-b;当a≥时,g(x)在[0,1]上的最小值是g(1)=e-2a-b.(2)设x0为f(x)在区间(0,1)内的一个零点,则由f(0)=f(x0)=0可知f(x)在区间(0,x0)上不可能单调递增,也不可能单调递减.则g(x)不可能恒为正,也不可能恒为负.故g(x)在区间(0,x0)内存在零点x1,同理,g(x)在区间(x0,1)内存在零点x2,所以g(x)在区间(0,1)内至少有两个零点.由(1)知,当a≤时,g(x)在[0,1]上单调递增,故g(x)在(0,1)内至多有一个零点.当a≥时,g(x)在[0,1]上单调递减,故g(x)在(0,1)内至多有一个零点,所以<a<.此时g(x)在区间[0,ln(2a)]上单调递减,在区间(ln(2a),1]上单调递增,因此x1∈(0,ln(2a)],x2∈(ln(2a),1),必有g(0)=1-b>0,g(1)=e-2a-b>0.由f(1)=0有a+b=e-1<2,有g(0)=a-e+2>0,g(1)=1-a>0,解得e-2<a<1.所以函数f(x)在区间(0,1)内有零点时,e-2<a<1.12.(2014陕西,21,14分)设函数f(x)=ln x+,m∈R.(1)当m=e(e为自然对数的底数)时,求f(x)的极小值;(2)讨论函数g(x)=f '(x)-零点的个数;(3)若对任意b>a>0,<1恒成立,求m的取值范围.解析(1)当m=e时, f(x)=ln x+,则f '(x)=,∴当x∈(0,e)时, f '(x)<0, f(x)在(0,e)上单调递减;当x∈(e,+∞)时, f '(x)>0, f(x)在(e,+∞)上单调递增.∴当x=e时, f(x)取得极小值f(e)=ln e+=2,∴f(x)的极小值为2.(2)由题设知,g(x)=f '(x)-=--(x>0), 25 令g(x)=0,得m=-x3+x(x>0).设φ(x)=-x3+x(x≥0),则φ'(x)=-x2+1=-(x-1)(x+1),当x∈(0,1)时,φ'(x)>0,∴φ(x)在(0,1)上单调递增;当x∈(1,+∞)时,φ'(x)<0,∴φ(x)在(1,+∞)上单调递减.∴x=1是φ(x)的唯一极值点,且是极大值点,因此x=1也是φ(x)的最大值点,∴φ(x)的最大值为φ(1)=.又φ(0)=0,结合y=φ(x)的图象(如图),可知①当m>时,函数g(x)无零点;②当m=时,函数g(x)有且只有一个零点;③当0<m<时,函数g(x)有两个零点;④当m≤0时,函数g(x)有且只有一个零点.综上所述,当m>时,函数g(x)无零点;当m=或m≤0时,函数g(x)有且只有一个零点;当0<m<时,函数g(x)有两个零点.(3)对任意的b>a>0,<1恒成立,等价于f(b)-b<f(a)-a恒成立.(*)设h(x)=f(x)-x=ln x+-x(x>0),∴(*)等价于h(x)在(0,+∞)上单调递减.由h'(x)=--1≤0在(0,+∞)上恒成立, 26 得m≥-x2+x=-+(x>0)恒成立,∴m≥,∴m的取值范围是.13.(2013广东,21,14分)设函数f(x)=x3-kx2+x(k∈R).(1)当k=1时,求函数f(x)的单调区间;(2)当k<0时,求函数f(x)在[k,-k]上的最小值m和最大值M.解析f '(x)=3x2-2kx+1.(1)当k=1时, f '(x)=3x2-2x+1,Δ=4-12=-8<0,∴f '(x)>0, f(x)在R上单调递增.(2)当k<0时, f '(x)=3x2-2kx+1,其图象开口向上,对称轴为直线x=,且过(0,1).(i)当Δ=4k2-12=4(k+)(k-)≤0,即-≤k<0时, f '(x)≥0, f(x)在[k,-k]上单调递增,从而当x=k时,f(x)取得最小值m=f(k)=k,当x=-k时, f(x)取得最大值M=f(-k)=-k3-k3-k=-2k3-k.(ii)当Δ=4k2-12=4(k+)(k-)>0,即k<-时,令f '(x)=3x2-2kx+1=0,解得x1=,x2=,注意到k<x2<x1<0,∴m=min{f(k), f(x1)},M=max{f(-k), f(x2)}.∵f(x1)-f(k)=-k+x1-k=(x1-k)(+1)>0,∴f(x)的最小值m=f(k)=k.∵f(x2)-f(-k)=-k+x2-(-k3-k·k2-k)=(x2+k)[(x2-k)2+k2+1]<0,∴f(x)的最大值M=f(-k)=-2k3-k.综上所述,当k<0时, f(x)的最小值m=f(k)=k,最大值M=f(-k)=-2k3-k.14.(2013浙江,21,15分)已知a∈R,函数f(x)=2x3-3(a+1)x2+6ax. (1)若a=1,求曲线y=f(x)在点(2, f(2))处的切线方程;(2)若|a|>1,求f(x)在闭区间[0,2|a|]上的最小值.解析(1)当a=1时, f '(x)=6x2-12x+6,所以f '(2)=6.又因为f(2)=4,所以切线方程为y=6x-8.(2)记g(a)为f(x)在闭区间[0,2|a|]上的最小值.f '(x)=6x2-6(a+1)x+6a=6(x-1)(x-a). 27 令f '(x)=0,得到x1=1,x2=a.当a>1时,x 0(0,1)1(1,a)a (a,2a) 2af '(x) + 0 - 0 +f(x) 0单调递增极大值3a-1单调递减极小值a2(3-a)单调递增4a3比较f(0)=0和f(a)=a2(3-a)的大小可得g(a)=当a<-1时,x 0 (0,1) 1 (1,-2a) -2af '(x) - 0 +f(x) 0单调递减极小值3a-1单调递增-28a3-24a2得g(a)=3a-1.综上所述, f(x)在闭区间[0,2|a|]上的最小值为g(a)=15.(2013重庆,20,12分)某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).(1)将V表示成r的函数V(r),并求该函数的定义域;(2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.解析(1)因为蓄水池侧面的建造成本为100·2πrh=200πrh元,底面的建造成本为160πr2元, 所以蓄水池的总建造成本为(200πrh+160πr2)元.所以200πrh+160πr2=12 000π,所以h=(300-4r2),从而V(r)=πr2h=(300r-4r3).因为r>0,h>0,所以0<r<5,故函数V(r)的定义域为(0,5).(2)因为V(r)=(300r-4r3),故V'(r)=(300-12r2).令V'(r)=0,解得r1=5,r2=-5(r2=-5不在定义域内,舍去).当r∈(0,5)时,V'(r)>0,故V(r)在(0,5)上为增函数;当r∈(5,5)时,V'(r)<0,故V(r)在(5,5)上为减函28 数.由此可知,V(r)在r=5处取得最大值,此时h=8.即当r=5,h=8时,该蓄水池的体积最大.考点三导数的综合应用1.(2015安徽,10,5分)函数f(x)=ax3+bx2+cx+d的图象如图所示,则下列结论成立的是( )A.a>0,b<0,c>0,d>0B.a>0,b<0,c<0,d>0C.a<0,b<0,c>0,d>0D.a>0,b>0,c>0,d<0答案A2.(2014课标Ⅰ,12,5分)已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是( )A.(2,+∞)B.(1,+∞)C.(-∞,-2)D.(-∞,-1)答案C3.(2017山东,20,13分)已知函数f(x)=x3-ax2,a∈R.(1)当a=2时,求曲线y=f(x)在点(3, f(3))处的切线方程;(2)设函数g(x)=f(x)+(x-a)cos x-sin x,讨论g(x)的单调性并判断有无极值,有极值时求出极值.解析(1)由题意得f '(x)=x2-ax,所以当a=2时, f(3)=0, f '(x)=x2-2x,所以f '(3)=3,因此,当a=2时,曲线y=f(x)在点(3, f(3))处的切线方程是y=3(x-3),即3x-y-9=0.(2)因为g(x)=f(x)+(x-a)cos x-sin x,所以g'(x)=f '(x)+cos x-(x-a)sin x-cos x=x(x-a)-(x-a)sin x=(x-a)(x-sin x),令h(x)=x-sin x,则h'(x)=1-cos x≥0,所以h(x)在R上单调递增.因为h(0)=0,所以当x>0时,h(x)>0;当x<0时,h(x)<0.①当a<0时,g'(x)=(x-a)(x-sin x),当x∈(-∞,a)时,x-a<0,g'(x)>0,g(x)单调递增;当x∈(a,0)时,x-a>0,g'(x)<0,g(x)单调递减;当x∈(0,+∞)时,x-a>0,g'(x)>0,g(x)单调递增.所以当x=a时g(x)取到极大值,极大值是g(a)=-a3-sin a,当x=0时g(x)取到极小值,极小值是g(0)=-a.②当a=0时,g'(x)=x(x-sin x),当x∈(-∞,+∞)时,g'(x)≥0,g(x)单调递增;所以g(x)在(-∞,+∞)上单调递增,g(x)无极大值也无极小值.③当a>0时,g'(x)=(x-a)(x-sin x),当x∈(-∞,0)时,x-a<0,g'(x)>0,g(x)单调递增;当x∈(0,a)时,x-a<0,g'(x)<0,g(x)单调递减; 29 当x∈(a,+∞)时,x-a>0,g'(x)>0,g(x)单调递增.所以当x=0时g(x)取到极大值,极大值是g(0)=-a;当x=a时g(x)取到极小值,极小值是g(a)=-a3-sin a.综上所述:当a<0时,函数g(x)在(-∞,a)和(0,+∞)上单调递增,在(a,0)上单调递减,函数既有极大值,又有极小值,极大值是g(a)=-a3-sin a,极小值是g(0)=-a;当a=0时,函数g(x)在(-∞,+∞)上单调递增,无极值;当a>0时,函数g(x)在(-∞,0)和(a,+∞)上单调递增,在(0,a)上单调递减,函数既有极大值,又有极小值,极大值是g(0)=-a,极小值是g(a)=-a3-sin a.4.(2017天津,19,14分)设a,b∈R,|a|≤1.已知函数f(x)=x3-6x2-3a(a-4)x+b,g(x)=exf(x).(1)求f(x)的单调区间;(2)已知函数y=g(x)和y=ex的图象在公共点(x0,y0)处有相同的切线,(i)求证:f(x)在x=x0处的导数等于0; (ii)若关于x的不等式g(x)≤ex在区间[x0-1,x0+1]上恒成立,求b的取值范围.解析(1)由f(x)=x3-6x2-3a(a-4)x+b,可得f '(x)=3x2-12x-3a(a-4)=3(x-a)[x-(4-a)].令f '(x)=0,解得x=a,或x=4-a.由|a|≤1,得a<4-a.当x变化时, f '(x), f(x)的变化情况如下表:x (-∞,a) (a,4-a) (4-a,+∞)f '(x) + - +f(x) ↗↘↗所以, f(x)的单调递增区间为(-∞,a),(4-a,+∞),单调递减区间为(a,4-a).(2)(i)证明:因为g'(x)=ex[f(x)+f '(x)],由题意知所以解得所以, f(x)在x=x0处的导数等于0.(ii)因为g(x)≤ex,x∈[x0-1,x0+1],g(x)=exf(x),所以由ex>0,可得f(x)≤1.又因为f(x0)=1, f '(x0)=0,故x0为f(x)的极大值点,由(1)知x0=a.由于|a|≤1,故a+1<4-a,由(1)知f(x)在(a-1,a)内单调递增,在(a,a+1)内单调递减,故当x0=a时, f(x)≤f(a)=1在[a-1,a+1]上恒成立,从而g(x)≤ex在[x0-1,x0+1]上恒成立.由f(a)=a3-6a2-3a(a-4)a+b=1,得b=2a3-6a2+1,-1≤a≤1. 令t(x)=2x3-6x2+1,x∈[-1,1], 所以t'(x)=6x2-12x,令t'(x)=0,解得x=2(舍去),或x=0.因为t(-1)=-7,t(1)=-3,t(0)=1, 30 因此,t(x)的值域为[-7,1].所以,b的取值范围是[-7,1].5.(2015课标Ⅰ,21,12分)设函数f(x)=e2x-aln x.(1)讨论f(x)的导函数f '(x)零点的个数;(2)证明:当a>0时, f(x)≥2a+aln.解析(1)f(x)的定义域为(0,+∞), f '(x)=2e2x-(x>0).当a≤0时, f '(x)>0, f '(x)没有零点;当a>0时,因为y=e2x单调递增,y=-。

近年高考数学一轮总复习第三章导数及应用题组训练19专题研究导数的综合运用理(2021年整理)

近年高考数学一轮总复习第三章导数及应用题组训练19专题研究导数的综合运用理(2021年整理)

2019版高考数学一轮总复习第三章导数及应用题组训练19 专题研究导数的综合运用理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019版高考数学一轮总复习第三章导数及应用题组训练19 专题研究导数的综合运用理)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019版高考数学一轮总复习第三章导数及应用题组训练19 专题研究导数的综合运用理的全部内容。

题组训练19 专题研究导数的综合运用1.(2018·山东师大附中月考)定积分错误!(2x+e x)dx的值为( )A.e+2 B.e+1C.e D.e-1答案 C解析原式=(x2+e x)错误!错误!0=(1+e)-1=e。

2.(2018·辽宁鞍山一模)错误!错误!dx=()A.πB。

错误!C。

错误!D.0答案A解析由定积分的几何意义可知,所求的定积分是以原点为圆心、2为半径的圆在第一象限的面积,即错误!错误!dx=错误!×π×22=π。

3.(2018·河南新乡月考)错误!|sinx-cosx|dx=( )A.2+2错误!B.2-错误!C.2 D.22答案D解析错误!|sinx-cosx|dx=∫错误!0(cosx-sinx)dx+∫π错误!(sinx -cosx)dx=(sinx+cosx)错误!错误!0+(-cosx-sinx)错误!错误!错误!=2错误!。

故选D.4.求曲线y=x2与y=x所围成图形的面积,其中正确的是()A.S=错误!(x2-x)dx B.S=错误!(x-x2)dxC.S=错误!(y2-y)dy D.S=错误!(y-错误!)dy答案B5.若函数f(x)=x2+2x+m(m,x∈R)的最小值为-1,则错误!f(x)dx等于()A.2 B.错误!C.6 D.7答案B解析 f (x)=(x +1)2+m -1,∵f(x )的最小值为-1,∴m -1=-1,即m =0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 导数及其应用基础训练
姓名:___________ 学号:____________ 班次:____________ 成绩:__________ 一、选择题
1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000
()()
lim
h f x h f x h h
→+--
的值为( )
A .'0()f x
B .'02()f x
C .'02()f x -
D .0
2.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3.函数3
y x x =+的递增区间是( )
A .),0(+∞
B .)1,(-∞
C .),(+∞-∞
D .),1(+∞
4.3
2
()32f x ax x =++,若'
(1)4f -=,则a 的值等于( )
A .
319 B .316
C .
313 D .3
10 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )
A .充分条件
B .必要条件
C .充要条件
D .必要非充分条件
6.函数344
+-=x x y 在区间[]2,3-上的最小值为( )
A .72
B .36
C .12
D .0
二、填空题
1.若3'0(),()3f x x f x ==,则0x 的值为_________________; 2.曲线x x y 43
-=在点(1,3)- 处的切线倾斜角为__________; 3.函数sin x
y x
=
的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________;
5.函数5523--+=x x x y 的单调递增区间是___________________________。

三、解答题
1.求垂直于直线2610x y -+=并且与曲线3235y x x =+-相切的直线方程。

2.求函数()()()y x a x b x c =---的导数。

3.求函数543()551f x x x x =+++在区间[]4,1-上的最大值与最小值。

4.已知函数23bx ax y +=,当1x =时,有极大值3; (1)求,a b 的值;(2)求函数y 的极小值。

(数学选修1-1)第一章 导数及其应用基础训练参考答案
一、选择题
1.B 000000()()()()
lim
lim 2[]2h h f x h f x h f x h f x h h h
→→+--+--=
'0000()()
2lim
2()2h f x h f x h f x h
→+--== 2.C ''()21,(3)2315s t t s =-=⨯-= 3.C '2310y x =+>对于任何实数都恒成立
4.D '2'
10()36,(1)364,3
f x ax x f a a =+-=-==
5.D 对于3'2'(),()3,(0)0,f x x f x x f ===不能推出()f x 在0x =取极值,反之成立 6.D '3'3''44,0,440,1,1,0;1,0y x y x x x y x y =-=-==<<>>令当时当时 得1|0,x y y ===极小值而端点的函数值23|27,|72x x y y =-===,得min 0y = 二、填空题
1.1± '2000()33,1f x x x ===± 2.
34
π '2'13
34,|1,t a n 1,4x y x k y α
απ==-==-=-= 3.2cos sin x x x x - '''
22(sin )sin ()cos sin x x x x x x x y x x -⋅-==
4.1,0x ey e
-= '
'1111
,|,1(),x e y k y y x e y x x e e e
==
==-=-= 5.5(,),(1,)3-∞-+∞ '2
53250,,13
y x x x x =+-><->令得或
三、解答题
1.解:设切点为(,)P a b ,函数3
2
35y x x =+-的导数为'
2
36y x x =+
切线的斜率'2|363x a k y a a ===+=-,得1a =-,代入到3
2
35y x x =+- 得3b =-,即(1,3)P --,33(1),360y x x y +=-+++=。

2.解:'
'
'
'
()()()()()()()()()y x a x b x c x a x b x c x a x b x c =---+---+--- ()()()()()()x b x c x a x c x a x b =--+--+--
3.解:)1)(3(515205)(2
2
3
4
++=++='x x x x x x x f ,
当0)(='x f 得0x =,或1x =-,或3x =-,
∵0[1,4]∈-,1[1,4]-∈-,3[1,4]-∉- 列表:
又(0)0,(1)0f f =-=;右端点处(4)2625f =;
∴函数155345+++=x x x y 在区间[1,4]-上的最大值为2625,最小值为0。

4.解:(1)'
2
32,y ax bx =+当1x =时,'11|320,|3x x y a b y a b ===+==+=,
即320
,6,93
a b a b a b +=⎧=-=⎨
+=⎩
(2)32'269,1818y x x y x x =-+=-+,令'0y =,得0,1x x ==或
0|0x y y =∴==极小值。

相关文档
最新文档