2019-2020年高考数学二轮专题复习 专题六 平面向量教案 文
2019-2020学年度高中数学第二章平面向量本章复习教案
——教学资料参考参考范本——2019-2020学年度高中数学第二章平面向量本章复习教案______年______月______日____________________部门本章复习知识网络教学分析向量的重要性可与函数相比,函数思想是整个中学数学的最重要的思想之一,它贯穿于整个中学的每一个学习阶段;而向量可作为一种重要的解题方法,渗透于高中数学的许多章节,它与函数、三角、复数、立体几何、解析几何等知识的联系是显而易见的.因此复习时,要特别重视向量概念、向量运算,并善于与物理中、生活中的模型进行模拟和联想,利用直观的教学手段和方法,帮助学生正确理解、掌握向量的有关概念、运算及几何意义.变抽象为形象,变被动接受为主动运用向量的知识分析问题、解决问题,从而提高本章复习的教学质量.数与形的紧密结合是本章的显著特点,向量与几何之间存在着对应关系;向量又有加减、数乘积及数量积等运算,也有平面向量的坐标运算,因而向量具有几何和代数的双重属性,能沟通几何与代数,从而给了我们一种新的数学方法——向量法.向量方法宜于把几何从思辩数学化成算法数学,将技巧性解题化成算法解题,因此是一种通法.在教学中引导学生搞清向量是怎样用有向线段表示的,掌握向量运算法则的基本依据,搞清向量运算和实数运算的联系和区别,认识向量平移是平面向量坐标运算的基础.将一个实际问题转化为向量之间的关系问题,用向量建立一个数学模型是一个难点问题.在复习课教学中应注意多举例,引导学生思考并及时总结,逐步培养学生用向量工具解题的思维方向.学习本章应注意类比,如向量的运算法则及运算律可与实数相应的运算法则及运算律进行横向类比.而一维情形下向量的共线条件,到二维情形下的平面向量基本定理,进而今后推广到三维情形下的空间向量基本定理,又可进行纵向类比.向量是数形结合的载体,在本章学习中,一方面通过数形结合来研究向量的概念和运算;另一方面,我们又以向量为工具,数形结合地解决数学和物理的有关问题.同时,向量的坐标表示为我们用代数方法研究几何问题提供了可能,丰富了我们研究问题的范围和手段.充分发挥多媒体的作用,向量是建立在平面上的,平移是向量的常见现象,而给学生直观、动态的演示能使学生理解、掌握问题.在复习完本章内容后,还要引导学生反思,重新概括研究思路,这样可以使学生体会数学中研究问题的思想方法,提升学生的数学思维水平.三维目标1.通过展示本章知识网络结构,列出复习提纲,引导学生补充相关内容,加深理解向量概念,平面向量的基本定理,两向量平行与垂直的条件,平面向量的坐标表示及其坐标运算,向量的数量积及其性质,向量的实际应用等知识.提高分析问题、解决问题的能力.2.通过本节对向量有关内容的复习,使学生进一步认识事物之间的相互转化.培养学生的数学应用意识.深刻领悟数形结合思想,转化与化归思想.3.通过一题多解的活动,培养学生的发散性思维能力,同时通过多种方法间的沟通,让学生体验数学的统一美、内在美,逐渐学会用美的心态来看待数学.重点难点教学重点:向量的运算,向量平行、垂直的条件,平面向量的坐标表示及其运算、数量积的理解运用.教学难点:向量的概念、运算法则的理解和利用向量解决物理问题和几何问题.对于本章内容的学习,要注意体会数形结合的数学思想方法的应用.课时安排2课时第1课时导入新课思路 1.(直接导入)前面一段,我们一起探究学习了向量的有关知识,并掌握了一定的分析问题与解决问题的方法,提高了我们的思维能力.这一节,我们一起对本章进行小结与复习,进一步巩固本章所学的知识,强化向量的综合应用.思路 2.(问题导入)由于向量具有几何形式和代数形式的双重身份,与代数、几何都有着密切的关系,因而成为中学数学知识网络的一个交汇点.在中学数学教材中的地位也越来越重要,也成为近几年全国及各省高考命题的重点和热点,根据你所学的本章知识解释一下,它是怎样具有代数、几何双重身份的?向量是怎样进行代数运算的?又是怎样进行几何运算的?你对向量的哪种运算掌握得最好?由此展开全章的复习.推进新课向量的概念、运算及其综合应用.活动:本章概念较多,学生可能不知如何进行复习,从头到尾重新翻看教材,学生兴趣不大,效果也不好.教师要点拨学生不仅要善于学习知识,而且还要善于归纳整理所学的知识.首先教师引导学生回忆从前所学,指导学生归类比较.比较是最好的学习方法,如向量的表示法有:几何表示法为,a(手写时为),坐标表示法为a=xi+yj =(x,y).有哪些特殊的向量:a=0 |a|=0.向量a0为单位向量|a0|=1.相等的向量:大小相等,方向相同.a=b (x1,y1)=(x2,y2) 等等.⇔⇔⇔⇔指导学生从代数运算和几何运算两方面展开思考归纳,引导学生把向量的运算类比数的运算.向量的加减法,数与向量的乘积,向量的数量积及其各运算的坐标表示和性质较杂乱,教师可以利用多媒体课件或投影仪打出下表让学生填写相关内容:运算类型几何方法坐标方法运算性质向量的加法1.平行四边形法则(共起点构造平行四边形)2.三角(多边)形法则(向量首尾相连)a+b=(x1+x2,y1+y2)a+b=b+a(a+b)+c=a+(b+c)AB→+BC→=AC→向量的减法三角形法则(共起点指向被减)a-b=(x1-x2,y1-y2)a-b=a+(-b)AB→=-BA→OB→-OA→=AB→数乘向量1.λa是一个向量,满足|λa|=|λ||a|.2.λ>0时,λa与a同向;λ<0时,λa与a异λa=(λx,λy)λ(μa)=(λμ)a(λ+μ)a=λa+μaλ(a+b)=λa+λba∥b⇔a=λb(b≠0)向;λ=0时,λa=0向量的数量积a·b是一个实数1.a=0或b=0或a⊥b时,a·b=02.a≠0且b≠0时,a·b=|a||b|cos〈a,b〉a·b=x1x2+y1y2a·b=b·a(λa)·b=a·(λb)=λ(a·b)(a+b)·c=a·c+b·ca2=|a2|,|a|=x2+y2|a·b|≤|a||b|本章的重要定理及公式:(1)平面向量基本定理:e1、e2是同一平面内两个不共线的向量,那么,对于这个平面内任一向量,有且仅有一对实数λ1、λ2,使a =λ1e1+λ2e2.(2)两个向量平行的条件:a∥b(b≠0) 存在惟一的实数λ使得a =λb;⇔若a=(x1,y1),b=(x2,y2),则a∥b x1y2-x2y1=0(b可以为0).⇔(3)两个向量垂直的条件当a、b≠0时,a⊥b a·b=0 x1x2+y1y2=0.⇔⇔讨论结果:①~③略.例1已知a=(1,2),b=(-3,2),当k为何值时,(1)ka+b与a-3b垂直?(2)ka+b与a-3b平行?平行时它们是同向还是反向?活动:向量的垂直、平行关系是向量间最基本、最重要的位置关系,是高考考查的重要内容之一.在解决本题时,教师首先引导学生思考回顾,如何用数量积及有关的定理解决有关长度,角度,垂直的问题;共线的向量和平面向量的两条基本定理,揭示了共线向量和平面向量的基本结构,它们是进一步研究向量的基础,那么怎样应用向量共线这个条件呢?让学生通过例题仔细体会,进一步熟练、提高.解:(1)ka +b =k(1,2)+(-3,2)=(k -3,2k +2),a -3b =(1,2)-3(-3,2)=(10,-4).当(ka +b)·(a-3b)=0时,这两个向量垂直. 由(k -3)×10+(2k +2)×(-4)=0,解得k =19, 即当k =19时,ka +b 与a -3b 垂直.(2)当ka +b 与a -3b 平行时,存在惟一实数λ, 使ka +b =λ(a -3b).由(k -3,2k +2)=λ(10,-4),得⎩⎨⎧k -3=10λ,2k +2=-4λ.这是一个以k 、λ为未知数的二元一次方程组.解这个方程组得k =-,λ=-,即当k =-时,ka +b 与a -3b 平行,这时ka +b =-a +b.因为λ=-<0,所以-a +b 与a -3b 反向.点评:向量共线的条件有两种不同的表示形式,但其本质是一样的,在运用中各有特点,解题时可灵活选择.在本例中,也可以根据向量平行条件的坐标形式,从(k -3)×(-4)-10×(2k+2)=0,先解出k =-,然后再求λ.变式训练1.已知向量a 、b 是两非零向量,在下列四个条件中,能使a 、b 共线的条件是( )①2a -3b =4e 且a +2b =-3e②存在相异实数λ、μ,使λa +μb =0 ③x a +y b =0(其中实数x 、y 满足x +y =0) ④已知梯形ABCD 中,AB →=a 、CD →=bA .①②B .①③C .②D .③④解析:A 、B 均含有①,而C 、D 均含有④,所以可先判定①或④.若①能使a 、b 共线,则只有从A 、B 中进一步作出选择,若①不能使a 、b 共线,则应从C 、D 中进一步作出选择.首先判定①能否使a 、b 共线.由向量方程组⎩⎨⎧2a -3b =4e ,a +2b =-3e ,可求得a =-17e ,b =-107e .∴b =10a .∴a 、b 共线,因此可排除C 、D.而由②可得λ、μ是相异实数,所以λ、μ不同时为0,不妨设μ≠0,∴b =-λμa ,故a 、b 共线,∴排除B ,选择A.答案:A2.设坐标平面上有三点A 、B 、C ,i 、j 分别是坐标平面上x 轴、y 轴正方向上的单位向量,若向量AB →=i -2j ,BC →=i +m j ,那么是否存在实数m ,使A 、B 、C 三点共线?解:方法一:假设满足条件的m 存在,由A 、B 、C 三点共线,即AB →∥BC →, ∴存在实数λ,使AB →=λBC →,i -2j =λ(i +m j ),⎩⎨⎧λ=1,λm =-2,∴m=-2,即当m =-2时,A 、B 、C 三点共线.方法二:假设满足条件的m 存在,根据题意可知:i =(1,0),j =(0,1),∴AB→=(1,0)-2(0,1)=(1,-2), BC →=(1,0)+m(0,1)=(1,m). 由A 、B 、C 三点共线,即AB →∥BC →, 故1×m-1×(-2)=0,解得m =-2. ∴当m =-2时,A 、B 、C 三点共线.例2如图1,已知在△ABC 中,=a ,=b ,=c.若a ·b =b ·c =c ·a.求证:△ABC 为正三角形.图1活动:引导学生回顾,向量具有二重性,一方面具有“形”的特点,因此有了几何运算;另一方面又具有一套优良的代数运算性质,因此又有了代数运算.对于这两种运算,前者难度大,灵活多变,对学生来说是个难点,后者学生感到熟悉,易于掌握,但应让学生明了,这两种方法都要掌握好,近几年高考题的解答都是以两种解法给出.本题给出的是三角形,对于某些几何命题的抽象的证明,自然可以转化为向量的几何运算问题来解决,请同学们在探究中要注意仔细体会,领悟其实质.教学中,教师要放手大胆地让学生自己去探究,鼓励学生从不同的角度去观察、去发现.真正做到一题多用,一题多变,串联知识、串联方法,使学生在探究过程中掌握了知识,提高了思维能力和复习效率.证法一:由题意得a +b +c =0,∴c=-(a +b). 又∵b·c=c·a,∴c·(a-b)=0.∴-a2+b2=0.∴|a|2=|b|2,即|a|=|b|. 同理可得|c|=|b|,∴|a|=|b|=|c|. ∴△ABC 为正三角形.证法二:由题意得a+b+c=0,∴a=-b-c,b=-a-c.∴a2=b2+c2+2b·c,b2=a2+c2+2a·c.而b·c=c·a(已知),∴a2-b2=b2-a2.∴a2=b2.∴|a|2=|b|2.∴|a|=|b|.同理可得|c|=|b|,∴|a|=|b|=|c|.∴△ABC为正三角形.证法三:如图2,以AB、BC为邻边作平行四边形ABCD,则=a,=-,图2∴=a-c.又∵a·b=b·c,∴b·(a-c)=0.∴b·=0.∴b⊥.∴平行四边形ABCD为菱形,∴AB=BC.同理可得BC=AC,∴△ABC为正三角形.证法四:取的中点E,连结AE,则→=(+)=(c-b),AE∴·a=(c-b)·a=0.∴⊥a.∴AB=AC.同理可得BC=AC,∴△ABC为正三角形.点评:本题给出了四种证法,教师要善于引导学生进行一题多解,这是一种很有效的办法.数学教学中,一题多解训练是培养学生思维灵活的一种良好手段.通过一题多解的训练能沟通知识之间的内在联系,提高学生应用所学的基础知识与基本技能解决实际问题的能力,逐步学会举一反三的本领,在教材安排的例题中,有相当一部分题目存在一题多解的情况.教师要引导学生善于挖掘.变式训练1.若AB →·BC →+AB →2=0,则△AB C 是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰直角三角形答案:A2.在四边形ABCD 中,AB →·BC →=BC →·CD →=CD →·DA →=DA →·AB →,试证明四边形ABCD 是矩形.证明:设AB →=a ,BC →=b ,CD →=c ,DA →=d ,∵a +b +c +d =0,∴a +b =-(c +d ).两边平方,得|a|2+2a·b +|b|2=|c|2+2c·d +|d|2,又a·b =c·d ,∴|a|2+|b|2=|c|2+|d |2.①同理|a|2+|d|2=|b|2+|c |2.②由①②得|a|2=|c|2,|d|2=|b |2,∴|a|=|c|,|d|=|b|,即AB =CD ,BC =DA.∴四边形ABCD 是平行四边形.于是AB →=-CD →,即a =-c .又a·b =b·c ,故a·b =b·(-a ),∴a·b =0.∴AB →⊥BC →.∴四边形ABCD 为矩形.点评:要证明四边形ABCD 是矩形,可以先证四边形ABCD 为平行四边形,再证明其一组邻边互相垂直.为此我们可以从四边形边的长度和位置两方面的关系来进行思考.例3已知a =(,-1),b =(,),且存在实数k 和t ,使得x =a +(t2-3)b ,y =-ka +tb 且x ⊥y.试求的最小值.活动:本例是一道平面向量综合应用的经典例题,具有一定的综合性,但难度不大,可以先让学生自己探究,独立地去完成.对找不到思路的学生,教师要引导学生注意挖掘题目中的隐含条件,然后根据垂直的条件列出方程,得出k与t之间的关系,再利用二次函数的知识来求最值.根据垂直的条件和坐标运算列方程是解决本例的关键.解:由已知,得|a|==2,|b|==1.∵a·b=×-1×=0,∴a⊥b.∵x⊥y,∴x·y=0,即[a+(t2-3)b]·(-ka+tb)=0.化简,得k=,∴=(t2+4t-3)=(t+2)2-,即t=-2时,有最小值-.点评:本题主要训练学生综合运用所学向量知识解决问题的能力,训练学生利用转化的思想以及建立函数模型的建模能力.变式训练1.如图3,M是△ABC内一点,且满足条件+2+3=0,延长CM交AB于N,令=a,试用a表示.图3解:∵=+,=+,∴由+2+3=0,得(+)+2(+)+3=0.∴+3+2+3=0.又∵A、N、B三点共线,C、M、N三点共线,由平行向量基本定理,设=λ,=μ,∴λ+3+2+3μ=0.∴(λ+2)+(3+3μ)=0.由于和不共线,∴∴⎩⎨⎧ λ=-2,μ=-1.∴=-=.∴=+=2=2a.2.将函数y =2x2进行平移,使得到的图形与抛物线y =-2x2+4x +2的两个交点关于原点对称,求平移后的函数解析式.解法一:设平移向量a =(h ,k),则将y =2x2按a 平移之后得到的图象的解析式为y =2(x -h)2+k.设M(m ,n)和M′(-m ,-n)是y =-2x2+4x +2与y =2(x -h)2+k 的两个交点,则解得或⎩⎨⎧ m =-1,n =-4.∴点(1,4)和点(-1,-4)在函数y =2(x -h)2+k 的图象上. ∴ ⇒⎩⎨⎧ h =-1,k =-4.故所求解析式为y =2(x +1)2-4,即y =2x2+4x -2.解法二:将y =2x2按向量a =(h ,k)平移,设P(x ,y)为y =2x2上任一点,按a 平移之后的对应点为P′(x′,y′),则故⎩⎨⎧ x =x′-h ,y =y′-k.∴y-k =2(x -h)2是平移之后的函数图象解析式.由消去y ,得4x2-4(h +1)x +2h2+k -2=0.又∵两交点关于原点对称,∴x1+x2=0,即=0,h =-1.又y1+y2=0,∴2x-4hx1+2h2+k +2x -4hx2+2h2+k =0.∴2(x+x)+4(x1+x2)=-4-2k.∴2(x1+x2)2+4(x1+x2)-4x1x2=-4-2k.∵x1x2=,x1+x2=0,∴-4×=-4-2k.∴k=-4.∴y=2(x+1)2-4,即y=2x2+4x-2.课本复习题1~6.1.先由学生回顾本节都复习了哪些向量知识,用了哪些方法,在原来的基础上你有哪些提高.对本章的知识网络结构了然于胸了吗?2.教师点拨,通过本节复习,要求大家在了解向量知识网络结构的基础上,进一步熟悉基本概念及运算律,并能熟练运用重要定理、公式解决一些综合问题,加强数学应用意识,提高分析问题、解决问题的能力.1.课本复习题7、8、9、10.2.每人搜集一道向量应用的题目或向量创新题.1.本节复习课的设计容量较大,要求应用多媒体课件.教师在引导学生探究的过程中,始终抓住向量具有几何与代数的双重属性这一特征和向量具有数与形紧密结合的特点.让学生在了解向量知识网络结构的基础上,进一步熟悉基本概念及运算律,并能熟练重要定理、公式的应用,并加强数学应用意识,提高分析问题、解决问题的能力.2.本设计教案中一题多解应用较多.因为在数学知识的学习中,作为扮演教学活动的组织者、引导者和合作者角色的教师,在组织学生学习各数学知识点的同时,如果能善于引导学生沟通各知识点之间的联系,不仅能达到激发学生的发散性思维和多角度的解题思路的目的,而且更重要的是通过注重多种方法间的联系与沟通,学生能深切感受到各种解题方法之间是有联系的,是相通的,而不是孤立的、割裂的,从而体会数学的统一美和简洁美,进一步增强对数学学习的兴趣,这样的美在一题多解中是随处可见的.一、备用习题1.下列四个等式中正确的是( )A.+=0B.=-OB→C.a·b-b·a=0D.(+)+++=AB→2.若直线y=2x按向量a平移得到直线y=2x+6,那么a( ) A.只能是(-3,0) B.只能是(0,6) C.只能是(-3,0)或(0,6) D.有无数个3.已知向量a=(3,4),b=(-3,1),a与b的夹角为θ,则tanθ等于( )A. B.-C.-3 D.34.已知三个点M(-1,0),N(5,6),P(3,4)在一条直线上,P分的比为λ,则λ的值为( )A. B.C.2 D.35.以A(2,7),B(-4,2),C(-1,-3)为顶点的三角形,其内角为钝角的是( )A.∠A B.∠BC.∠C D.不存在6.平面上有三个点C(2,2)、M(1,3)、N(7,k),若∠MCN=90°,那么k的值为…()A.6 B.7C.8 D.97.有下列五个命题:①若a≠0,且a·b=0,则b=0;②若a≠0,且a·b=b·c,则a=c;③若a2=b2,则a=b或a=-b;④(a·b)c=a(b·c);⑤若|a·b|=|a||b|,则a∥b.其中正确命题的序号是________.(请把你认为正确的命题的序号全部填上)8.已知P(1,cosx),Q(cosx,1),x∈[-,].(1)若用f(x)表示向量与的夹角θ的余弦,求f(x);(2)若t=cosx,将f(x)表示成t的函数φ(t),并求φ(t)的定义域.参考答案:1.D 2.D 3.C 4.C 5.B 6.B 7.⑤8.解:(1)∵=(1,cosx),=(cosx,1),与的夹角为θ,∴f(x)=cosθ===.(2)∵t=cosx,∴φ(t)=f(x)=.∵x∈[-,],观察余弦曲线y=cosx在[-,]上的图象可知,t =cosx∈[-,1],∴函数φ(t)的定义域为[-,1].二、关于一题多解培养学生思维的灵活性是数学教学工作者的一个重要教学环节,它主要表现在使学生能根据事物的变化,运用已有的经验灵活地进行思维,及时地改变原定的方案,不局限于过时或不妥的假设之中.因为客观世界时时处处在发展变化,所以它要求学生用变化、发展的眼光去认识、解决问题.数学教学中,一题多解的训练,是培养学生思维灵活的一种良好手段,通过一题多解的训练能沟通知识之间的内在联系,提高学生应用所学的基础知识与基本技能解决实际问题的能力,逐步学会举一反三的本领,在本节安排的例题中,多数采用了一题多解模式.通过一题多解的教学,不仅能使学生掌握新知识,还能起到复习巩固旧知识的作用,使学生对所学的方法有了更进一步的明确,同时能活跃课堂气氛,使学生对数学学习产生浓厚的兴趣,也培养了学生的一种钻研精神,使学生在思考问题上具有灵活性、多变性,避免了学生在公式、定理的应用中钻死胡同的现象.所以教师在教学过程中,要重视一题多解的教学,特别是在备课中要根据教学内容、学生情况适当地进行教材处理和钻研,要对知识进行横向和纵向联系,这样课堂效果才能做到丰富多彩.一题多解也是灵活应用所学知识、培养发散思维的有效途径和方法.充分运用学过的知识,从不同的角度思考问题,采用多种方法解决问题,这有利于学生加深理解各部分知识间的纵、横方向的内在联系,掌握各部分知识之间的相互转化,所以教师在教学过程中要多挖掘一些行之有效的一题多解的例题和习题,使学生的思维应变能力能得到充分的锻炼和提高.使未来多出现具有高思维层次的国际型人才.第2课时导入新课思路 1.(直接导入)请同学们回忆上一节复习的内容,教师点出,上一节我们一起复习了本章向量的基本概念、运算性质及重要定理、公式,这一节我们将通过例题分析,继续探讨向量的有关应用,重点是复习向量的一些独特方法和应用.思路 2.(投影导入)投影展示上节布置的、同学们搜集到的一道向量应用题或创新题,教师选出最有代表性的、最典型的题目引导学生进行探讨,由此展开新课.推进新课向量的坐标运算及其综合应用.通过幻灯出示题目让学生思考讨论:设向量e1、e2满足|e1|=2,|e2|=1,e1、e2的夹角为60°,若向量2te1+7e2与向量e1+te2的夹角为钝角,求实数t的取值范围.解:由题意得e1·e2=|e1||e2|cos60°=1,∴(2te1+7e2)·(e1+te2)=2te+(2t2+7)e1·e2+7te=2t2+15t+7.∵向量2te1+7e2与向量e1+te2的夹角为钝角,∴2t2+15t+7<0,即-7<t<-.活动:引导学生回忆向量的数量积概念,点拨学生结合钝角考虑:向量的数量积是一个数.当两个向量的夹角是锐角时,它们的数量积大于0;当两个向量的夹角是钝角时,它们的数量积小于0;当两个向量的夹角是90°时,它们的数量积等于0.零向量与任何向量的数量积等于0.向量的数量积,可以计算向量的长度、平面内两点间的距离、两个向量的夹角、判断相应的两条直线是否垂直.教师引导学生探究讨论:对于两个非零向量a、b,若a与b的夹角θ为钝角,则a·b<0,反之,却不一定成立.因为当a·b=|a||b|cosθ<0时,a与b的夹角也可能为π,因此,a与b的夹角为钝角a·b<0且a≠λb(λ<0),所以,正确的解答应在上述t的范围中去掉夹角为π的情形,即设2te1+7e2=λ(e1+te2)(λ<0),所以其中λ<0,解得t=-.故所求实数t的取值范围为(-7,-)∪(-,-).⇔比较是最好的老师,反例更能澄清概念的本质,使我们深刻理解概念的内涵和外延,教师应引导学生多做这方面的探讨.如由a·b=0不能推出a=0或b=0,尽管由ab=0 a=0或b=0.又如|a·b|≤|a||b|,尽管|ab|=|a||b|.再如(a·b)c≠a(b·c),尽管(ab)c=a(bc).因此,学习向量的数量积应与代数中实数间的乘积严加区分,切勿混淆.⇒1已知向量a是以点A(3,-1)为起点,且与向量b=(-3,4)垂直的单位向量,求a的终点坐标.活动:关于向量的坐标与表示此有向线段的点的坐标,概念虽小学生却极易混淆.教师引导学生回忆思考:一个向量的坐标与表示此向量的有向线段的点的坐标是什么关系?对此题来说,若要利用两向量垂直的条件,则需设a的终点坐标,然后表示a的坐标,再根据两向量垂直的条件建立方程.解:设a的终点坐标为(m,n),则a=(m-3,n+1),由题意,⎩⎨⎧ --++=0,-++=1, ①②由①得n =(3m -13),代入②得25m2-150m +209=0.解得或∴a 的终点坐标是(,-)或(,-).点评:通过训练要使学生明了,一个向量的坐标等于表示此向量的有向线段的终点坐标减去起点坐标,所以向量的坐标与点的坐标既有联系又有区别,二者不能混淆.向量的概念较多,且容易混淆,在复习中教师要引导学生理清主线,分清、理解各概念的本质属性.变式训练1.已知点A(-3,-4)、B(5,-12),(1)若=+,=-,求及的坐标;(2)求·.解:(1)=(2,-16),=(-8,8).(2)·=33.2.如图4所示,=(6,1),=(x ,y),=(-2,-3).图4(1)若∥,求x 与y 间的关系式;(2)若又有⊥,求x 、y 的值及四边形ABCD 的面积.解:(1)∵=++=(x +4,y -2),=-=(-x -4,2-y), 又∥且=(x ,y),∴x(2-y)-y(-x -4)=0,即x +2y =0.①(2)由于=+=(x +6,y +1),BD →=+=(x -2,y -3),又⊥,∴·=0,即(x +6)(x -2)+(y +1)(y -3)=0.②联立①②化简,得y2-2y -3=0,∴y=3或y =-1.故当y=3时,x=-6,此时=(0,4),=(-8,0),∴S四边形ABCD=||||=16;当y=-1时,x=2,此时=(8,0),=(0,-4),∴S四边形ABCD=||||=16.点评:引入平面向量的坐标可使向量运算完全代数化,平面向量的坐标成了数与形结合的载体.例2设向量a=(cosα,sinα),b=(cosβ,sinβ),且a、b满足|ka+b|=|a-kb|(k为正实数).(1)求证:(a+b)⊥(a-b);(2)把a与b的数量积表示为关于k的函数f(k),求f(k);(3)求函数f(k)的最小值及取得最小值时a与b的夹角.活动:本题是一道向量应用的经典例题,难度不大但综合性较强,体现平面向量与函数、三角函数的交汇,是近几年高考的热点问题.解决这类问题必须熟知平面向量的概念、运算性质、定理、公式等基础知识.教师可以充分让学生自己去探究解决.对有困难的学生教师引导其回忆相关的知识,并适时地点拨学生注意条件地转化及解答的规范.(1)证明:|a|==1,|b|==1,∵(a+b)·(a-b)=|a|2-|b|2=0,∴(a+b)⊥(a-b).(2)解:由|ka+b|=|a-kb|,得(ka+b)2=3(a-kb)2,化简,得a·b=,故f(k)=(k>0).(3)解:由y=(y>0),得k2-4yk+1=0.∵k>0,方程有解,∴Δ=16y2-4≥0,解得y≥,即k=1时,f(k)取最小值为.这时,设a与b的夹角为θ,则cosθ==,又0≤θ≤π,∴a 与b的夹角为.点评:解决本题,我们首先要根据题意画出图形,借助对图形的观察,实现实际问题向数学问题的转化.转化与化归思想是解决数学问题的一种重要的策略和方法.以向量为工具,通过转化,可以为函数中的许多问题提供新颖、简捷的解法,请同学们注意体会.例3有两根柱子相距20 m,分别位于电车的两侧,在两柱之间连结一条水平的绳子,电车的送电线就悬挂在绳子的中点,如果送电线在这点垂直向下的作用力是17.8 N,则这条成水平的绳子的中点下降0.2 m,求此时绳子所受的张力.活动:教师应引导学生回忆向量的应用举例的处理方法:向量起源于物理,是从物理学中抽象出来的数学概念.物理学中的许多问题,如位移、速度、加速度等都可以利用向量来解决.用数学知识解决物理问题,首先要把物理问题转化为数学问题,即根据题目的条件建立数学模型,再转化为数学中的向量运算来完成.本题仍可由学生自己去探究,点拨学生先画出受力分析图,认真分析题意,创建数学模型,对感到困难的学生教师给予指导,帮助其复习相关的知识,逐步提高分析问题及解决问题的能力.解:如图5所示,设重力作用点为C,绳子AC、BC所承受的力分别记、,重力记为.图5由C为绳子的中点知||=||.由+=,知四边形CFGE为菱形.又∵cos∠FCG=cos∠DCB=≈0.02,∴||=||=≈=445,即绳子所受的张力为445 N.点评:本题是向量知识在物理中的应用,培养了学生动手操作绘图能力、分析问题及解决问题的能力.对学生来说这是一个难点,突破这个难点的关键是教师引导学生把物理问题转化为数学问题.课本复习题11、12、13.1.先由学生回顾本节都复习了哪些主要内容,用到了哪些数学思想方法.向量在函数、三角函数中的重要作用,两向量的数量积的应用,向量平行与垂直条件在解题中的重要作用,向量的几何运算在解决平面几何问题和物理问题中的重要作用.2.教师点睛,要注意解题方法的灵活性,尤其是向量的坐标化思路在解题时的应用,将几何与代数知识沟通起来,同时注意向量与其他学科的联系.如图6,已知AC 、BD 是梯形ABCD 的对角线,E 、F 分别为BD 、AC 的中点,求证:EF∥BC.图6证明:设=a ,=b ,∵AD∥BC,∴=λ=λb ,则=-=b -a.∵E 为BD 中点,==(b -a),F 为AC 中点,BF →=+=+12CA → =+(-)=(+)=(-)。
2019-2020年高考数学专题6平面向量教案苏教版
定在一条直线上. ⑤正确.只要大小与方向相同则两向量相等,与其起点位置无关. 综上所述,正确命题的序号是②⑤.
例 2. 在中,,.若点满足,则 _______
rr b c cos120o =0;
rrr
r r 2r
若 ka b c 1 , 则 k a b 1c , 即
r2
r2
r2
k2 a
b 2c
r ur
ur r r
k2 a b 2 k ,a 1c b
k2
化简得
2k
0, k
2或k
0
uur ur uuur r
AB m, AC n, 例 6. 已知的重心为 G,若
与的夹角为钝角,则,且不共
线,又当共线时, ,
因此 λ 的取值范围是
r a 例 5 已 知
3/ 2,且 rr bc
-6 1, 且 两 两 夹 角 a bg) c _ _ _, 若_k a b c 1, 则 的 取 值 范 围 是
___________.
r r r rr rr rr 解 析 : (a b)gc a c b c a c cos120o —
,则 =__________
A
解析: 如图
E G
因为 G是的重心,所以
B
C D
uuur 2 uur 2 uur uuur CG CE ( AE AC ) =
3
3
2
(1
uur AB
uuur AC )
1
uur AB
2
uuur AC
2019-2020年高三数学向量应用专题教案人教版
在立体几何的学习中,求各种“空间角”、和空间“距离”的难点在于作出相应的“角”及作出表示“距离”的线段,并给出相应的证明。
高中新教材对解决这类问题引入了向量这个强大的工具,避开了“作”、“证”这个难点,提供了解决求空间角、距离及证明“垂直”、“平行”的通法。
同时也进一步强化了“坐标法”、“数形结合”和“转化”等数学思想方法。
本文拟就向量在立体几何中的应用作初步的总结和探讨。
专题一空间各种距离的计算一、空间两点间的距离方法:设A、B是空间两点,则A、B两点间的距离 d=||例1:已知二面角α-l-β的大小是120o ,A、C l,Bα,且CD⊥l,AB=CD=a,AC=2a。
求BD的长。
解:∵ CD⊥l,AB⊥l,α-l-β=120o∴<,>=120o⇒<, >=60o∵∴||2=BACDACBA+=++2)(2=a2+4a2+a2+0+0+2a⋅acos60o=7a2 ∴||=例2:正方体正方形ABCD-A1B1C1D1的棱长为1,M、N分别是AA1、D1C1的中点。
求M、N两点间的距离。
解:建立空间直角坐标系D-xyz则M(1,0,),N(0,,1)∴26)21()21()1(222=++-=故M、N两点间的距离为二、两条异面直线间的距离方法:设a、b是两条异面直线,是a、b a,B 则异面直线a、b间的距离d=即方向上的射影长为异面直线a、b间的距离。
例3:如图,正方形ABCD-A1B1C1D1的棱长为1。
1) 求异面直线A1C1与B1C的距离。
2)求异面直线A1A1与BD1的距离解:1)建立空间直角坐标系D-xyz(如图)则A1(1,0,1),C1(0,1,1),B1(1,1,1),C(0,1,0)∴)1,0,1(),0,1,1(111=-=CBCA设111,),,(CAzyx⊥⊥=且则:得:z y x z x y x -==⇒⎩⎨⎧=+=+-00 取又 ∴∴3331==故异面直线。
高三数学复习教案设计: 《平面向量》
人类的心正是凭借着希望而得到宽慰,一直生活到生命的最后时刻。
下面是为您推荐高三数学复习教案设计:《平面向量》。
【知识网络】【学法点拨】向量是沟通代数与几何的重要工具,它在日常生活、生产实践以及其他相关学科中有着广泛的应用.学习和理解向量有关知识时,建议:1. 注意比较与分析.向量的有关概念与我们学习过的有关知识既有联系又有区别,如:平行、相等、乘积等等.留心比较分析,可防止学习过的有关知识对现学知识的负面影响.2. 能画图时尽可能多画草图.数离形时少直观,形离数时欠入微.向量具有数与形的双重特征,加减法以三角形法则、平行四边形法则为背景,平行、垂直都对应着一个方程,数形结合考察问题,常常事半功倍.3. 学会联想与化归.向量知识是从日常生活、生产实践中抽象出来的,求解向量综合题,常需要适当联想,并将应用问题数学化,复杂问题熟悉化、简单化.【考点指津】1. 理解向量的概念,掌握向量的几何表示,了解共线向量、相等向量等概念.2.掌握向量的加法与减法,会正确运用三角形法则、平行四边形法则.3掌握向量加法的交换律、结合律,并会用它们进行向量化简与计算.4.理解向量的减法运算可以转化为向量的加法运算.【知识在线】1.(2a 8b)-(4a-2b)=2.在△ABC中,BC→=a,CA→=b,则AB→=3.设a表示向东3km,b表示向北偏东30o走3km,则a b表示的意义为4.画出不共线的任意三个向量,作图验证a-b-c=a-(b c).5.向量a、b满足|a|=8,|b|=10,求|a b|的最大值、最小值.【讲练平台】例1 化简以下各式:①AB→ BC→ CA→ ;②AB→ -AC→ BD→ -CD→ ;③OA→ -OD→ AD→ ;④NQ→ QP→ MN→ -MP→ .结果为0的个数为()分析题设条件中多处涉及首尾相接的两个向量求和以及同起点的两个向量相减,对此,我们可以运用向量加减的定义进行合并,当最终形式出现两相反向量之和或相等向量之差时,结果为0.答 D.点评本题巩固了向量加减的定义及向量加法的交换律、结合律等基础知识.求解时需将杂乱的向量运算式有序化处理,必要时也可化减为加,减低出错律.注意:AB→=-BA→ ,CB→=AB→ .变题作图验证A1A2→ A2A3→ A3A4→ … An-1An→=A1An→ (n≥2,n∈N).例2 如图,在δABC中,D、E为边AB的两个三等分点,CA→=3a,CB→=2b,求CD→ ,CE→ .分析本题中的已知向量都集中体现在三角形中.为此,可充分利用向量加减法的三角形法则实施求解.如已知CA→ 、CB→ 可求AB→ ,根据AD→ 、AE→ 、AB→ 均为共线向量,故又可求得AD→ 、DE→ 、.由CA→ 、AD→ 又可求CD→ ,由DE→ 、CD→ 又可求CE→ .解AB→=AC→ CB→=-3a 2b,因D、E为AB→ 的两个三等分点,故AD→=AB→=-a b=DE→ ,CD→=CA→ AD→=3a-a b=2a b,CE→=CD→ DE→=2a b-a b=a b.点评三角形中两边对应向量已知,可求第三边所对应的向量.值得注意的是,向量的方向不能搞错.当向量运算转化成基底向量的代数式运算时,其运算过程可仿照多项式的加减运算进行.例3 已知A、B、C、P为平面内四点,求证:A、B、C三点在一条直线上的充要条件是存在一对实数m、n,使PC→=mPA→ nPB→ ,且m n=1.分析 A、B、C 三点共线的一个充要条件是存在实数λ,使得AC→=λAB→ .很显然,题设条件中向量表达式并未涉及AC→ 、AB→ ,对此,我们不妨利用PC→=PA→ AC→ 来转化,以便进一步分析求证.证明充分性,由PC→=mPA→ nPB→ , m n=1,得PA→ AC→=mPA→ n(PA→ AB→ )=(m n)PA→ nAB→=PA→ nAB→ ,∴AC→=nAB→ .∴A、B、C三点共线.必要性:由A、B、C 三点共线知,存在常数λ,使得AC→=λAB→ ,即AP→ PC→=λ(AP→ PB→ ).PC→=(λ-1)AP→ λPB→=(1-λ)PA→ λPB→ ,m=1-λ,n=λ,m n=1,PC→=mPA→ nPB→ .点评逆向应用向量加法运算法则,使得本题的这种证法比其他证法更简便,值得一提的是,一个向量拆成两个向量的和,一定要强化目标意识.变题在δA BC 所在平面上有一点P ,满足PA→ PB→ PC→=AB→ ,试确定点 P的位置.答:P在 AC边上,且 P为 AC的一个三等分点(距 A点较近)例4 (1)若点 O是三角形ABC的重心,求证:OA→ OB→ OC→=0;(2)若 O为正方形ABCD的中心,求证:OA→ OB→ OC→ OD→=0;(3)若O 为正五边形ABCDE 的中心,求证:OA→ OB→ OC→ OD→ OE→=0.若 O为正n边形A1A2A3…A n的中心,OA1→ OA2→ OA3→ …OAn→=0 还成立吗?说明理由.分析本题四问构成一个题链,条件相似,结论相似,求证方法可望相似.正三角形、正方形性质特殊,我们十分熟悉,求证方法多,不容易发现那一种方更有利于推广,我们选定正五边形来研究.看着结论,联想一个相似的并且已经解决的问题,本课例1的变题A1A2→ A2A3→ A3A4→ … An-1An→ AnA1→=0 ,这里的向量首尾相接,我们能不能将OA→ 、OB→ 、OC→ 、OD→ 、OE→ 也转化成首尾相接的形式呢?运用向量相等的定义试试看.解证(3)以 A为起点作AB′→=OB→ ,以B′为起点作B′C′→=OC→ ,以C′为起点作C′D′→=OD→ ,以D′为起点作D′E′→=OE→ .∵∠AOB=72o,∴∠OAB′=108o.同理∠AB′C′=∠B′C′D′=∠C′D′E′=108o,故∠D′E′A=108o.|OA→ |=|AB′→ |=∣B′C′→ |=|C′D′→ |=|D′E′→ |,故E′与 O重合,OAB′C′D′为正五边形.OA→ OB→ OC→OD→ OE→=OA→ AB′→ B′C′→ C′D′→D′E′→=0.正三角形,正方形、正n边形可类似获证.点评本题不仅揭示了正多边形的一类共同性质,而且巩固了“以退为进”的数学思想.面对一般的问题,我们经常先考虑其特殊的情况;面对陌生的问题,经常去联想熟悉的模型.注意退是为了进,退到特殊简单情形后,要在求解中悟出一般的规律.如退到正方形情况,发现OA→ OB→ 与OC→ OD→ 正好互为相反向量,结论成立.这一方法却不具一般性.【知能集成】1. 基础知识:向量加减的代数形式运算与几何形式运算.2. 基本技能:向量运算中的合二为一与拆一为二.3. 基本思想:向量表达式运算与几何式运算的相互结合思想,联想熟悉的类似的模型,化归转化思想.【训练反馈】1.下列各式正确的是:()A.∣a-b∣≤∣a∣ ∣b∣B. a b∣>∣a∣ ∣b∣C.∣a b∣>∣a-b∣D.∣ a-b∣=∣a∣-∣b∣2.下面式子中不能化简成AD→ 的是()A.OC→ -OA→ C D→B.PB→ -DA→ -BP→C.AB→ -DC→ BC→D.(AD→ -BM→ )(BC→ -MC→ )3.正方形ABCD的边长为1,AB→=a,BC→=b,AC→=c,则a b c、a-b c、-a-b c 的摸分别等于 .4.设a、b 为已知向量,若3x 4y=a,2x-3y=b ,则 x=.y=.5. 已知 e1、e2 不共线,AB→=2e1 ke2,CB→=e1 3e2,C D→=2e1-e2,且A、B、D 三点在同一条直线上,求实数k .6.在正六边形ABCDEF中,O 为中心,若OA→=a,OE→=b,用a、b 表示向量OB→ ,OC→ ,OD→ ,结果分别为(),-b-a,-a B. b,-a,b-a,a,,-a,a b7. 试用向量方法证明:对角线互相平分的四边形是平行四边形.8.已知P为△ABO 所在平面内的一点,满足OP→=,则P在()A.∠AOB的平分线所在直线上B. 线段AB的中垂线上C. AB边所在的直线上D. AB边的中线上.9.设O是平面正多边形A1A2A3…A n 的中心,P为任意点,求证:PA1→ PA2→ PA3→ … PAn→=nPO→ .10.如图设O为△ABC内一点,PQ∥BC,且PQ→ ∶BC→=2∶3,OA→=a,OB→=b,OC→=c,则OP→ ,OQ→ .为△ABC所在平面内一点,PA→ PB→ PC→=0 ,则P为△ABC的()A.重心B.垂心C. 内心D.外心12.在四边形ABCD中,E为AD的中点,F为BC的中点.求证:EF→=(AB→DC→ ).第30课向量的坐标运算【考点指津】1. 理解平面向量的坐标表示法,知道平面向量和一对有序实数一一对应.2. 掌握平面向量的和、差、实数与向量积的坐标运算,能利用向量的坐标运算解题.3. 掌握平面向量平行的充要条件的坐标表示,并利用它解决向量平行(共线)的有关问题,弄清向量平行和直线平行的区别.【知识在线】1. 若向量a的起点坐标为(-2,1),终点坐标为(2,-1),则向量a的坐标为2.若O为坐标原点,向量a=(-3,4),则与a共线的单位向量为3.已知a=(-1,2),b=(1,-2),则a b与a-b的坐标分别为()A.(0,0),(-2,4)B.(0,0),(2,-4)C.(-2,4),(2,-4)D.(1,-1),(-3,3)4.若向量a=(x-2,3),与向量b=(1,y 2)相等,则()A. x=I,y=3,B. x=3,y=1C. x=1,y=-5D. x=5,y=-15.已知A(0,0),B(3,1),C(4,3),D(1,2),M、N分别为DC、AB的中点.(1)求证四边形ABCD为平行四边形;(2)试判断AM→ 、CN→ 是否共线?为什么?【讲练平台】例1 已知a=(1,2),b=(-3,2),当k为何值时,ka b与a-3b平行?分析已知a、b的坐标,可求a-3b的坐标,ka b的坐标也可用含k的表达式表示.运用两向量平行的充要条件x1y2-x2y1=0可求k值.解由已知a=(1,2),b=(-3,2),得a-3b=(10,-4), ka b=(k-3,2k 2).因(ka b)∥(a-3b),故10(2k 2) 4(k-3)=0.得k=- .点评坐标形式给出的两个向量,其横坐标之和即为和向量的横坐标;其纵坐标之和即为和向量的纵坐标.实数与向量的积其横、纵坐标分别等于实数与该向量的横、纵坐标的积.向量的平行用坐标形式表达即为一个方程.例2 已知向量a=(,),b=(-1,2),c=(2,-4).求向量d,使2a,-b c及4(c-a)与d四个向量适当平移后,能形成一个顺次首尾相接的封闭向量链.分析四个向量适当平移后,形成一个顺次首尾相接的封闭向量链,说明这四个向量之和为0.即四个向量的纵横坐标之和均为0.据此列出关于向量d (x,y)的方程组,不难求得x、y.简解设向量d的坐标为(x,y),由2a (-b c) 4(c-a) d=0,可解得d=(-9,23).点评数学语言常有多种表达方式,学会转化与变通是求解的关键.本题以几何特征语言形式出现,最终落足点要变式成方程的语言来求解,这一思想方法在求解向量问题时经常用到.例3 已知平面上三点P(2,1),Q(3,-1),R(-1,3).若点S与这三点可以为一个平行四边形的四个顶点,求S的坐标.分析平行四边形对边对应向量相等或相反,由此可求得S点的坐标.但由于题设四点构成四边形的四个顶点,那一组边是对边不明显,需要分类讨论.简解设S的坐标为(x,y).(1)当PQ→ 与RS→ 是一组对边时,若PQ→=RS→ ,则(3,-1)-(2,1)=(x 1,y-3),即(1,-2)=(x 1,y-3),得S点坐标为(0,1).若PQ→=SR→ ,则S点坐标为(-2,5).(2)当PR→ 与SQ→ 是一组对边时,若PR→=SQ→ ,则S点的坐标为(6,-3).若PR→=QS→ ,则S点的坐标为(0,1).(3)当PS→ 与RQ→ 是一组对边时,若PS→=RQ→ ,则S点的坐标为(6,-3).若PS→=QR→ ,则S点的坐标为(-2,5).综上所述,S点坐标可以为(0,1),(6,-3),(-2,5).点评本题求解需运用分类讨论思想.上述解法思路自然、条理清晰,但很显然不是最简方案,如何数形结合,避免重复劳动,读者不妨思考.例4 向量PA→=(k,12),PB→=(4,5),PC→=(10,k),当k为何值时,A、B、C三点共线.分析三点共线问题前一课已涉及,A、B、C三点共线的充要条件是AB→=λBC→ ,本题所不同的是向量用坐标形式给出,对此,我们可以将坐标代入运算.解AB→=PB→ -PA→=(4-k,-7),BC→=PC→ -PB→=(6,k-5).当A、B、C三点共线时,存在实数λ,使得AB→=λBC→ ,将坐标代入,得4-k=6λ,且 -7=λ(k-5),故(4-k)(k-5)=-42.解得k=11,或k=-2.点评向量的几何运算与向量的坐标运算,可以从不同角度去求解(证)同一个问题.只不过两套工具各有适用范围,即便两套工具都适用,也可能繁简不一,应用时要注意前瞻性选择.变题求证:互不重合的三点A(x1,y1),B(x2,y2),C(x3,y3)共线的充要条件是(x2-x1)(y3-y1)=(x3-x1)(y2-y1).证明必要性(略).充分性若(x2-x1)(y3-y1)=(x3-x1)(y2-y1),由A、B、C互不重合,得(x2-x1)、(y3-y1)、(x3-x1)、(y2-y1)中至少有一个不为零,不妨设x3-x1≠0.令x2-x1=λ(x3-x1),若λ=0,则x2-x1=0,此时y2≠y1(否则A、B重合).而已知等式不成立,故λ≠0.于是(x3-x1)(y2-y1)=λ(x3-x1)(y3-y1).因x3-x1≠0 ,故(y2-y1)=λ(y3-y1).于是(x2-x1,y2-y1)=λ(x3-x1,y3-y1),即AB→=λAC→ ,且AC→ ≠0 .又因AB→ 与AC→ 有相同起点,所以A、B、C三点共线.【知能集成】基础知识:坐标形式的向量的加减运算,实数与向量坐标的积.基本技能:向量平行的充要条件及向量相等的充要条件用坐标形式描述和应用.基本思想:将向量等式转化成方程的思想;对几何图形的分类讨论思想.【训练反馈】1.若a=(2,3),b=(4,y-1),且a∥b,则y=()A.6B.5C.7D. 82.已知点B的坐标为(m,n),AB→ 的坐标为(i,j),则点A的坐标为()A.(m-i,n-j)B.(i-m,j-n)C.(m i,n j)D.(m n,i j)3.若A(-1,-1),B(1,3),C(x,5)三点共线,则x=.4.已知a=(5,4),b=(3,2),则与2a-3b平行的单位向量为5.有下列说法① 已知向量PA→=(x,y),则A点坐标为(x,y);② 位置不同的向量,其坐标有可能相同;③ 已知i=(1,0),j=(0,1),a=(3,4),a=3i-4j ;④ 设a=(m,n),b=(p,q),则a=b的充要条件为m=p,且n=q.其中正确的说法是()A.①③B.①④C.②③D.②④6.下列各向量组中,不能作为表示平面内所有向量的基底的一组是()A.a=(-1,2),b=(0,5)B.a=(1,2),b=(2,1)C.a=(2,-1)b=(3,4)D.a=(-2,1),b=(4,-2)7.设a=(-1,2),b=(-1,1),c=(3,-2),用a、b作基底,可将向量c表示为c=pa qb,则()A.p=4, q=1B.p=1, q=-4C.p=0 , q=4D.p=1, q=48.设i=(1,0),j=(0,1),在平行四边形ABCD中,AC→=4i 2j,BD→=2i 6j,则AB→ 的坐标为 .9.已知3s inβ=sin(2α β),α≠kπ ,β≠kπ,k∈z,a=(2,tan (α β)),b=(1,tanα),求证:a∥b.10.已知A(4,0),B(4,4),C(2,6),求AC与OB的交点P的坐标(x,y).11.已知点O(0,0),A(1,2),B(4,5),且OP→=OA→ tAB→ .(1)当t变化时,点P是否在一条定直线上运动?(2)当t取何值时,点P在y轴上?(3) OABP能否成为平行四边形?若能求出相应的t值;若不能,请说明理由.第31课平面向量的数量积【考点指津】1. 掌握平面向量的数量积及其几何意义.2. 了解用平面向量的数量积可以处理有关长度、角度和垂直的问题.3. 掌握向量垂直的条件.【知识在线】1.若∣a∣=4,∣b∣=3,a?b=-6,则a与b的夹角等于()A.150o B 120o C.60o D.30 o2.若a=(-2,1),b=(1,3),则2a2-a?b=()A,3.已知向量 i=(1,0),j=(0,1),则与向量2i j垂直的一个向量为()A. 2i-jB. i-2jC. i jD. i-j4.已知a=(1,2),b=(1,1),c=b-ka,且c⊥a,则C点坐标为5.已知∣a∣=3,∣b∣=4,且a与b夹角为60o,∣ka-2b∣=13,求k的值【讲练平台】例1 (1)在直角三角形ABC中,∠C=90o,AB=5,AC=4,求AB→ ?BC→(2)若a=(3,-4),b=(2,1),试求(a-2b)?(2a 3b)分析(1)中两向量AB→ 、BC→ 的模及夹角容易求得,故可用公式a?b=|a||b|cosθ求解.(2)中向量a、b坐标已知,可求a2、b2、a?b,也可求a-2b与2a 3b 的坐标,进而用(x1,y1)?(x2,y2)=x1x2 y1y2求解.解(1)在△ABC中,∠C=90o,AB=5,AC=4,故BC=3,且cos∠ABC=,AB→ 与BC→ 的夹角θ=π-∠ABC,∴AB→ ?BC→=-∣AB→ ∣∣BC→ ∣cos∠ABC=-5×3×=-9.(2)解法一 a-2b=(3,-4)-2(2,1)=(-1,-6),2a-3b=2(3,-4) 3(2,1)=(12,-5),(a-2b)?(2a 3b)=(-1)×12 (-6)×(-5)=18.解法二(a-2b)?(2a 3b)=2a2-a?b-6b2=2[32 (-4)2]-[3×2 (-4)×1]-6(22 12)=18.点评向量的数量积有两种计算方法,一是依据模与夹角来计算,二是依据坐标来计算.具体应用时可根据已知条件的特征来选择.值得注意的是,向量的夹角与向量的方向相关,(1)中∠ABC并非AB→ 与BC→ 的夹角.从第(2)问的解法二可以看到,向量数量积的运算律,类似于多项式乘法法则,但并不是所有乘法法则都可以推广到向量数量积的运算.如:a?(b c)=a?b b?c,而(a?b)c≠a(b?c).例2.已知O为三角形ABC所在平面内一点,且满足OA2 BC2=OB2 CA2,试用向量方法证明AB⊥OC .分析要证AB→ ⊥OC→ ,即证AB→ ?OC→=0,题设中不涉及AB→ ,我们用AB→=AO→ OB→ 代换,于是只需证AO→ ?OC→=BO→ ?OC→ .至此,我们可以尝试将已知等式转化成只含有OA→ 、OB→ 、OC→ 的形式.证明由已知得OA→ 2 BC→ 2=OB→ 2 CA→ 2,即OA→ 2 (BO→OC→ )2=OB→ 2 (CO→ OA→ )2,整理得AO→ ?OC→=BO→ ?OC→ ,即OC→ ?(BO→ OA→ )=0,故OC→ ?AB→=0.所以AB→ ⊥OC→ .点评用向量方法证明垂直问题,通常转化为证两个向量的数量积为0.本题已知式与求证式中向量的表达形式不统一,针对差异进行有目标的化归,是求解的关键所在.例3.设OA→=a=( 1, -1),OB→=b=(,3),试求∠AOB及δAOB的面积.分析已知a、b可以求|a|、|b|及a?b,进而求得∠AOB(即a与b的夹角),在求到三角形的两边及夹角后,可用公式:S=∣a∣∣b∣sinθ求面积.解设∠AOB=θ,δAOB的面积为S,由已知得:∣OA→ ∣=∣a∣==2 ,∣OB→ ∣=∣b∣=2 ,∴cosθ===.∴θ=.又S=∣a∣∣b∣sinθ=?2=2 ,即∠AOB=,δAOB的面积为2 .点评向量的数量积公式a?b=∣a∣∣b∣cosθ不仅可以用来求数量积,也可以用来求模与夹角.要注意该公式与三角形的面积公式的区别.此外,本题的解题方法可适用于更一般的情况(见变题).变题设δABC的面积为S,AB→=a,AC→=b,求证S=例4.已知a与b都是非零向量,且a 3b与7a-5b垂直,a-4b与7a-2b垂直,求a与b的夹角.分析要求夹角θ,必需求出cosθ;求cosθ需求出a?b与∣a∣∣b∣的比值(不一定要求出∣a∣、∣b∣的具体值).由已知的两个向量的垂直关系,可以得到∣a∣∣b∣与a?b的关系.解∵(a 3b)⊥(7a-5b),(a-4b)⊥(7a-2b),∴ (a 3b)?(7a-5b)=0,(a-4b)?(7a-2b)=0.即 7a2 16a?b-15b2=0,7a2-30a?b 8b2=0.两式相减,得 b2=2a?b.故 a2=b2 ,即∣a∣=∣b∣.∴cosθ==.∴θ=60o , a与b的夹角为60o .点评从基本量思想考虑,似乎没有具体的a与b,无法求出a与b的夹角,其实不然,cosθ是一个a?b与∣a∣∣b∣的比值,并不需要具体分别求出.类似于本题的条件表明,向量的数量积公式、向量的垂直关系都揭示了一种数量积与模的关系,就此意义而言,它们的本质是一致的相通的,可以相互转化和利用.在本题求解过程中注意,b2=2a?b不能得出b=2a,同样a2=b2也不能得到a=±b.【知能集成】基础知识:向量数量积的两种计算公式,向量垂直的充要条件.基本技能:求向量数量积、模及向量的夹角,向量垂直问题的论证与求解.基本思想:向量表达式的数量积与多项式乘法进行类比的思想,将线的垂直这一图形特征转化成方程解决的思想.求向量夹角时的设而不求的思想.【训练反馈】。
高中数学平面向量教案5篇
高中数学平面向量教案5篇作为一位优秀的人民教师,常常要根据教学需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。
那么优秀的教案是什么样的呢?这里给大家分享一些关于高中数学平面向量教案,方便大家学习。
高中数学平面向量教案篇1目的:要求学生掌握向量的意义、表示方法以及有关概念,并能作一个向量与已知向量相等,根据图形判定向量是否平行、共线、相等。
过程:一、开场白:本P93(略)实例:老鼠由A向西北逃窜,猫在B处向东追去,问:猫能否追到老鼠?(画图)结论:猫的速度再快也没用,因为方向错了。
二、提出题:平面向量1.意义:既有大小又有方向的量叫向量。
例:力、速度、加速度、冲量等注意:1数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小。
2从19世纪末到20世纪初,向量就成为一套优良通性的数学体系,用以研究空间性质。
2.向量的表示方法:1几何表示法:点—射线有向线段——具有一定方向的线段有向线段的三要素:起点、方向、长度记作(注意起讫)2字母表示法:可表示为 (印刷时用黑体字)P95 例用1cm表示5n mail(海里)3.模的概念:向量的大小——长度称为向量的模。
记作:模是可以比较大小的4.两个特殊的向量:1零向量——长度(模)为0的向量,记作。
的方向是任意的。
注意与0的区别2单位向量——长度(模)为1个单位长度的向量叫做单位向量。
例:温度有零上零下之分,“温度”是否向量?答:不是。
因为零上零下也只是大小之分。
例:与是否同一向量?答:不是同一向量。
例:有几个单位向量?单位向量的大小是否相等?单位向量是否都相等?答:有无数个单位向量,单位向量大小相等,单位向量不一定相等。
三、向量间的关系:1.平行向量:方向相同或相反的非零向量叫做平行向量。
记作:∥ ∥规定:与任一向量平行2.相等向量:长度相等且方向相同的向量叫做相等向量。
记作: =规定: =任两相等的非零向量都可用一有向线段表示,与起点无关。
2019-2020年高中数学 平面向量复习课精品教案集 新人教A版
2019-2020年高中数学平面向量复习课精品教案集新人教A版一、教学目标1. 理解向量.零向量.向量的模.单位向量.平行向量.反向量.相等向量.两向量的夹角等概念。
2. 了解平面向量基本定理.3. 向量的加法的平行四边形法则(共起点)和三角形法则(首尾相接)。
4. 了解向量形式的三角形不等式:|||-||≤|±|≤||+||(试问:取等号的条件是什么?)和向量形式的平行四边形定理:2(||+||)=|-|+|+|.5. 了解实数与向量的乘法(即数乘的意义):6. 向量的坐标概念和坐标表示法7. 向量的坐标运算(加.减.实数和向量的乘法.数量积)8. 数量积(点乘或内积)的概念,·=||||cos=xx+yy注意区别“实数与向量的乘法;向量与向量的乘法”二、知识与方法向量知识,向量观点在数学.物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点,所以高考中应引起足够的重视. 数量积的主要应用:①求模长;②求夹角;③判垂直三、典型例题例1.对于任意非零向量与,求证:|||-|||≤|±|≤||+||证明:(1)两个非零向量与不共线时,+的方向与,的方向都不同,并且||-||<|±|<||+||(3)两个非零向量与共线时,①与同向,则+的方向与.相同且|+|=||+||.②与异向时,则+的方向与模较大的向量方向相同,设||>||,则|+|=||-||.同理可证另一种情况也成立。
例2 已知O为△ABC内部一点,∠AOB=150°,∠BOC=90°,设=,=,=,且||=2,||=1,| |=3,用与表示解:如图建立平面直角坐标系xoy,其中, 是单位正交基底向量, 则B(0,1),C(-3,0),设A(x,y),则条件知x=2cos(150°-90°),y=-2sin(150°-90°),即A(1,-),也就是= -, =, =-3所以-3=3+|即=3-3例3.下面5个命题:①|·|=||·||②(·)=·③⊥(-),则·=·④·=0,则|+|=|-|⑤·=0,则=或=,其中真命题是()A①②⑤ B ③④C①③D②④⑤三、巩固训练1.下面5个命题中正确的有()①=·=·;②·=·=;③·(+)=·+·;④·(·)=(·)·;⑤.A..①②⑤B.①③⑤C. ②③④D. ①③2.下列命题中,正确命题的个数为(A )①若与是非零向量,且与共线时,则与必与或中之一方向相同;②若为单位向量,且∥则=||③··=|| ④若与共线,与共线,则与共线;⑤若平面内四点A.B.C.D,必有+=+A 1B 2C 3D 43.下列5个命题中正确的是①对于实数p,q和向量,若p=q则p=q②对于向量与,若||=||则=③对于两个单位向量与,若|+|=2则=④对于两个单位向量与,若k=,则=4.已知四边形ABCD的顶点分别为A(2,1),B(5,4),C(2,7),D(-1,4),求证:四边形ABCD为正方形。
平面向量运算复习课教案
平面向量运算复习课教案一、知识概述1.向量的定义平面向量平面向量是有大小和方向的量,通常用有向线段来表示。
2.向量的表示向量有多种表示方法,常用的有以下几种:- 以带箭头的有向线段表示,箭头所指的方向为向量的方向;- 以字母表示;- 以坐标形式表示。
3.向量的运算加法- 几何意义:将两个向量的初点合并,终点相连得到一个新向量;- 可以满足交换律和结合律。
减法- 几何意义:将被减向量平移至与减向量重合,然后连接两个向量的起点和终点来得到一个新向量;- 等价于加上对应的相反向量。
数乘- 几何意义:将向量的长度乘上一个实数得到一个与原向量方向相同或相反的向量,当实数为负时,向量方向相反;- 支持分配律和结合律。
数量积- 几何意义:两个向量的数量积是一个标量,它等于一个向量的模长乘以另一个向量在这个向量上的投影长度;- 支持交换律和分配律。
二、教学目标- 理解向量的定义和表示方法;- 掌握向量的加、减和数乘运算;- 熟悉向量的数量积及其应用。
三、教学重点和难点1.教学重点- 向量的加、减和数乘运算;- 向量的数量积及其应用。
2.教学难点- 向量的数量积的理解和应用。
四、教学方法- 以例题带动思考;- 鼓励学生自主思考,课后布置练。
五、教学过程1.引入- 向学生提出问题:有两个向量 a 和 b,如何求它们的和?- 让学生自由讨论一段时间,然后引出向量的加法运算。
2.讲解向量的加法、减法和数乘运算- 通过几何图形演示,讲解向量加法、减法和数乘的定义、性质和计算方法。
3.讲解向量的数量积- 通过几何图形演示,讲解向量数量积的定义和计算方法;- 通过例题,讲解向量数量积的性质和应用。
六、教学效果评估1.课堂测验- 布置一些选择题和填空题,考察学生对向量的定义、表示、运算和数量积的掌握情况。
2.作业- 布置一些练题和思考题,巩固和拓展学生对向量的理解和应用。
七、板书设计- 向量的定义;- 向量的表示;- 向量的加、减和数乘运算;- 向量的数量积及其应用。
【2019年高考二轮课程】数学 全国通用版 平面向量 教案
2019年高考二轮复习平面向量一、高考回顾向量主要以客观题形式出现,属于基础题,解决此类问题一要准确记忆公式,二要准确计算。
主要考察的内容为向量的数量积运算以及坐标运算,涉及到模长问题牢记先平方后开方的思路,便能直捣黄龙,一举破题。
另外,虽然近几年高考题中平面向量较难知识以及能力考察题型相对较少,但是备考方面还是应当提高训练难度,对如常规的模型化问题,套路化问题要做到考必会,会比拿分的水平。
如建系解决棘手数量积问题,再如解析几何中的夹角问题,垂直(平行问题)等都要做到烂熟于胸。
至于等和线、奔驰定理、“四心”问题、极化恒等式等进阶知识则引人因地因时制宜。
)垂直——夹角公式——二、知识清单1.思维导图2.知识再现一、平面向量的线性运算与有关定理1.向量的线性运算交换律:;与的相反向量的和的运算叫作与与向量的积的运算(1)时,与的方向相同;当与的方向相反;当时,;;特别提醒:1).关于向量的模的两个关系式:对于任意两个向量,都有:①.;②.2).当不共线时:①的几何意义是三角形中任意一边的长小于其他两边长的和且大于其他两边长的差的绝对值;②的几何意义是平行四边形中两邻边的长与两对角线的长之间的关系.2.向量中的有关定理(1)向量共线的判定定理和性质定理①判定定理:是一个非零向量,若存在一个实数使得,则向量与共线.②性质定理:若向量与非零向量共线,则存在唯一一个实数,使得.③是平面上三点,且与不重合,是平面内任意一点,若点在直线上,则存在实数,使得(如图所示).(2)平面向量基本定理如果是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数,使,其中是一组基底.特别提醒:(1).零向量不能作为基底向量,基底不是唯一的,只要是同一个平面内不共线的向量均可作为一组基底.(2).由平面向量基本定理可知,如果对于一组基底,有,则可以得到.3.平面向量的坐标表示与坐标运算(1)平面向量运算的坐标表示已知,已知,其中已知,则(2)平面向量共线的坐标表示:若,则(交叉相乘相等).提醒:当且仅当时,与等价,即两个不平行于坐标轴的共线向量的对应坐标成比例.二、平面向量的数量积及其应用 1.向量的夹角 (1)夹角的定义和范围(2)两向量的夹角分别是锐角与钝角的充要条件: ①.与的夹角是锐角且与不共线. ②.与的夹角是钝角且与不共线.特别提醒:只有两个向量的起点重合时所对应的角才是两向量的夹角,如图所示,不是与的夹角,才是与的夹角.2.平面向量数量积的有关概念(1)数量积的定义:已知两个非零向量和,它们的夹角为,则数量叫作与的数量积,记作,即.规定:.(2)数量积的几何意义:数量积等于的模与在的方向上的投影的乘积. 特别提醒:两个向量的数量积是一个数量,而不是向量,它的值为两个向量的模与两向量夹角的余弦值的乘积,其符号由夹角的余弦值确定.已知两个非零向量和,作,则叫做与的夹角与夹角的范围, 与同向时,,反向时; 当时,两向量垂直,记作:。
2020届高三第二轮数学专题复习教案:平面向量
2020届高三第二轮数学专题复习教案:平面向量一、本章知识结构:二、重点知识回忆1.向量的概念:既有大小又有方向的量叫向量,有二个要素:大小、方向.2.向量的表示方法:①用有向线段表示;②用字母a 、b 等表示;③平面向量的坐标表示:分不取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底。
任作一个向量a ,由平面向量差不多定理知,有且只有一对实数x 、y ,使得a xi yj =+,),(y x 叫做向量a 的〔直角〕坐标,记作(,)a x y =,其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标, 专门地,i (1,0)=,j (0,1)=,0(0,0)=。
22a x y =+;假设),(11y x A ,),(22y x B ,那么()1212,y y x x --=,222121()()AB x x y y =-+- 3.零向量、单位向量:①长度为0的向量叫零向量,记为; ②长度为1个单位长度的向量,叫单位向量.〔注:||a 确实是单位向量〕4.平行向量:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.向量a 、b 、c 平行,记作a ∥b ∥c .共线向量与平行向量关系:平行向量确实是共线向量.5.相等向量:长度相等且方向相同的向量叫相等向量.6.向量的加法、减法:①求两个向量和的运算,叫做向量的加法。
向量加法的三角形法那么和平行四边形法那么。
②向量的减法向量a 加上的b 相反向量,叫做a 与b 的差。
即:a -b = a + (-b );差向量的意义: OA = a , OB =b , 那么BA =a - b③平面向量的坐标运算:假设11(,)a x y =,22(,)b x y =,那么a b +),(2121y y x x ++=,a b -),(2121y y x x --=,(,)a x y λλλ=。
④向量加法的交换律:a +b =b +a ;向量加法的结合律:(a +b ) +c =a + (b +c )7.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa〔1〕|λa |=|λ||a |;〔2〕λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa =0;〔3〕运算定律 λ(μa )=(λμ)a ,(λ+μ)a =λa +μa ,λ(a +b )=λa +λb8. 向量共线定理 向量b 与非零向量a 共线〔也是平行〕的充要条件是:有且只有一个非零实数λ,使b =λa 。
高中数学高考二轮复习平面向量文教案含答案(全国通用)
第三讲 平面向量通过近三年高考真题统计,平面向量都有单独小题,因此认真掌握好平面向量很重要,预测2016年平面向量仍为考查的重点,向量的概念、坐标运算为主要内容.向量的概念与运算1.向量的加法运算符合平行四边形法则和三角形法则;向量的减法运算符合三角形法则.2.用下图中有向线段表示:a +b =OC →,a -b =BA →,b -a =AB →W.3.向量的加、减、数乘运算统称为向量的线性运算,对于任意向量a ,b 以及任意实数λ,μ1,μ2,恒有λ(μ1a ±μ2b )=λμ1a ±λμ2b W.平面向量基本定理与向量的数量积1.如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中不共线向量e 1,e 2叫做基底W.2.平面向量数量积的定义.已知两非零向量a ,b ,则a 与b 的数量积(或内积)为 |a ||b |cos θ,记作a ²b = |a ||b |cos θ,其中θ=〈a ,b 〉,|b |cos θ叫做向量b 在向量a 方向上的投影.3.两非零向量平行、垂直的充要条件.若a =(x 1,y 1),b =(x 2,y 2),则(1)a ∥b ⇔a =λb (λ≠0)⇔x 1y 2-x 2y 1=0W.(2)a ⊥b ⇔a ²b =0⇔x 1x 2+y 1y 2=0W.4.若a =(x 1,y 1),b =(x 2,y 2),a ,b 的夹角为θ,则cos θ=a ²b |a ||b |=W.判断下面结论是否正确(请在括号中打“√”或“³”).(1)向量与有向线段是一样的,因此可以用有向线段来表示向量.(³)(2)|a|与|b|是否相等与a ,b 的方向无关.(√)(3)已知两向量a ,b ,若|a |=1,|b |=1,则|a +b |=2.(³)(4)△ABC 中,D 是BC 中点,则AD →=12(AC →+AB →).(√) (5)向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.(³)(6)当两个非零向量a ,b 共线时,一定有b =λa ,反之成立.(√)1.设P 是△ABC 所在平面内的一点,BC →+BA →=2BP →,则(B )A.PA →+PB →=0 B .PC →+PA →=0C .PB →+PC →=0D .PA →+PB →+PC →=0解析:因为BC →+BA →=2BP →,所以点P 为线段AC 的中点,所以应该选B .2.(2014²新课标Ⅱ卷)设向量a ,b 满足|a +b |=10,|a -b |=6,则a ²b =(A )A.1B.2C.3D.4解析:由已知得,a 2+2a ²b +b 2=10,a 2-2a²b +b 2=6,两式相减得,4a ²b =4,故a²b =1.3.(2015²北京卷)设a ,b 是非零向量,“a ²b =|a ||b |”是“a ∥b ”的(A )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:因为a ²b =|a ||b |cos 〈a ,b 〉,所以当a ²b =|a ||b |时,有cos 〈a ,b 〉=1,即〈a ,b 〉=0°,此时a ,b 同向,所以a ∥b .反过来,当a ∥b 时,若a ,b 反向,则〈a ,b 〉=180°,a ²b =-|a ||b |;若a ,b 同向,则〈a ,b 〉=0°,a ²b =|a ||b |,故“a ²b =|a ||b |”是“a ∥b ”的充分而不必要条件.4.(2015²广东卷)在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,AB →=(1,-2),AD →=(2,1),则AD →²AC →=(D )A.2B.3C.4D.5解析:因为四边形ABCD 是平行四边形,所以AC →=AB →+AD →=(1,-2)+(2,1)=(3,-1)所以AD →²AC →=2³3+1³(-1)=5,故选D.。
平面向量(教学案)-2020年高考文数二轮复习精品资料Word版含解析
高考侧重考查正、余弦定文与其他知识(如三角函数、平面向量等)的综合应用,试题一般为中档题,各种题型均有可能出现.高考仍将以正、余弦定文的综合应用为主要考点,重点考查计算能力及应用数学知识分析、解决问题的能力.1.向量的基本概念(1)既有大小又有方向的量叫做向量. (2)零向量的模为0,方向是任意的,记作0. (3)长度等于1的向量叫单位向量. (4)长度相等且方向相同的向量叫相等向量.(5)方向相同或相反的非零向量叫平行向量,也叫共线向量.零向量和任一向量平行. 2.共线向量定文向量a (a ≠0)与b 共线,当且仅当存在唯一一个实数λ,使b =λa . 3.平面向量基本定文如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使a =λ1e 1+λ2e 2.4.两向量的夹角已知两个非零向量a 和b ,在平面上任取一点O ,作OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫作a 与b 的夹角.5.向量的坐标表示及运算 (1)设a =(x 1,y 1),b =(x 2,y 2),则 a ±b =(x 1±x 2,y 1±y 2),λa =(λx 1,λy 1).(2)若A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1). 6.平面向量共线的坐标表示 已知a =(x 1,y 1),b =(x 2,y 2),当且仅当x 1y 2-x 2y 1=0时,向量a 与b 共线. 7.平面向量的数量积 设θ为a 与b 的夹角. (1)定义:a ·b =|a ||b |cos θ.(2)投影:a ·b|b |=|a |cos θ叫做向量a 在b 方向上的投影.8.数量积的性质 (1)a ⊥b ⇔a ·b =0;(2)当a 与b 同向时,a ·b =|a |·|b |;当a 与b 反向时,a ·b =-|a |·|b |;特别地,a ·a =|a |2; (3)|a ·b |≤|a |·|b |; (4)cos θ=a ·b |a |·|b |.9.数量积的坐标表示、模、夹角 已知非零向量a =(x 1,y 1),b =(x 2,y 2) (1)a ·b =x 1x 2+y 1y 2;(2)|a |=x 21+y 21;(3)a ⊥b ⇔x 1x 2+y 1y 2=0; (4)cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22.【误区警示】1.两向量夹角的范围是[0,π],a ·b >0与〈a ,b 〉为锐角不等价;a ·b <0与〈a ,b 〉为钝角不等价. 2.点共线和向量共线,直线平行与向量平行既有联系又有区别. 3.a 在b 方向上的投影为a ·b |b |,而不是a ·b|a |.【解析】因为, , 因此,【2015高考福建,文9】已知,若P 点是ABC ∆ 所在平面内一点,且,则PB PC ⋅u u u r u u u r的最大值等于( )A .13B .15C .19D .21 【答案】A【解析】以A 为坐标原点,建立平面直角坐标系,如图所示,则1(,0)B t,(0,)C t ,,即1P(,4),所以,,因此PB PC ⋅u u u r u u u r,因为,所以PB PC ⋅u u u r u u u r 的最大值等于13,当14t t =,即12t =时取等号.【2015高考湖北,文11】已知向量OA AB ⊥u u u r u u u r ,||3OA =u u u r,则OA OB •=u u u r u u u r .【答案】9【解析】因为OA AB ⊥u u u r u u u r ,||3OA =u u u r,所以OA OB •=u u u r u u u r .【2015高考山东,文4】已知菱形ABCD 的边长为a , ,则BD CD ⋅=u u u r u u u r( )(A )232a -(B )234a - (C ) 234a (D ) 232a 【答案】D 【解析】因为 故选D.【2015高考陕西,文7】对任意向量,a b r r,下列关系式中不恒成立的是( )A .B .C .D .【答案】B【2015高考四川,文7】设四边形ABCD 为平行四边形,6AB =u u u r ,4AD =u u u r.若点M ,N 满足3BM MC =u u u u r u u u u r ,2DN NC =u u u r u u u r ,则AM NM ⋅=u u u u r u u u u r( )(A )20 (B )15 (C )9 (D )6 【答案】C 【解析】 ,所以,选C.【2015高考安徽,文8】C ∆AB 是边长为2的等边三角形,已知向量a r ,b r满足2a AB =u u u r r ,,则下列结论正确的是( )(A )1b =r (B )a b ⊥r r (C )1a b ⋅=rr (D )【答案】D 【解析】如图,由题意,,则||2b =r ,故A 错误;,所以||1a =r,又,所以1a b ⋅=-r r ,故,B C 错误;设,B C 中点为D ,则,且AD BC ⊥u u u r u u u r,而,所以,故选D.【2015高考福建,文9】已知,若P 点是ABC ∆ 所在平面内一点,且,则PB PC ⋅u u u r u u u r的最大值等于( )A .13B .15C .19D .21 【答案】A【解析】以A 为坐标原点,建立平面直角坐标系,如图所示,则1(,0)B t,(0,)C t ,,即1P (,4),所以,,因此PB PC ⋅u u u r u u u r,因为,所以PB PC ⋅u u u r u u u r 的最大值等于13,当14t t =,即12t =时取等号.【2015高考天津,文14】在等腰梯形ABCD 中,已知,动点E 和F 分别在线段BC 和DC 上,且, 则AE AF ⋅u u u r u u u r的最小值为 .【答案】2918【解析】因为12DC AB =u u u r u u u r,,,,当且仅当2192λλ=即23λ=时AE AF ⋅u u u r u u u r 的最小值为2918.1. 【2014高考福建卷第8题】在下列向量组中,可以把向量()2,3=a 表示出来的是( ) A. B . C. D. 【答案】B【解析】由于平面向量的基本定文可得,不共线的向量都可与作为基底.只有成立.故选B. 【考点定位】平面向量的基本定文.2. 【2014高考广东卷文第5题】已知向量,则下列向量中与a r 成60o的是( )A.()1,1,0-B.()1,1,0-C.()0,1,1-D.()1,0,1- 【答案】B【考点定位】空间向量数量积与空间向量的坐标运算3. 【2014高考湖南卷第16题】在平面直角坐标系中,O 为原点,动点D 满足CD u u u r=1,则的最大值是_________.【答案】17+【解析】因为C 坐标为()3,0且1CD =,所以动点D 的轨迹为以C 为圆心的单位圆,则D 满足参数方程 (θ为参数且[)0,2θπ∈),所以设D 的坐标为为,则,因为的最大值为,所以的最大值为,故填17+. 【考点定位】参数方程、三角函数4. 【2014高考江苏卷第12题】如图在平行四边形ABCD 中,已知,,则AB AD ⋅u u u v u u u v的值是 .【答案】22【考点定位】向量的线性运算与数量积. 5. 【2014陕西高考文第13题】设20πθ<<,向量,若b a ρρ//,则=θtan _______.【答案】12【解析】因为b a ρρ//,所以,即,所以,因为20πθ<<,所以cos 0θ≠,所以,所以,故答案为12【考点定位】共线定文;三角恒等变换.6. 【2014高考安徽卷文第10题】在平面直角坐标系xOy 中,已知向量点Q 满足.曲线,区域.若C ΩI 为两段分离的曲线,则( )A. B. C. D. 【答案】AA D CBP【解析】设,则,,区域Ω表示的是平面上的点到点(2,2)Q 的距离从r 到R 之间,如下图中的阴影部分圆环,要使C ΩI 为两段分离的曲线,则,故选A.【考点定位】平面向量的应用、线性规划.7. 【2014高考北京卷文第10题】已知向量a 、b 满足1||=a ,)1,2(=b ,且0b a =+λ(R λ∈),则||λ= .【答案】5【解析】当0=+b a λ,则a b λ-=,于是,因为)1,2(=b ,所以5||=b , 又因为1||=a ,所以5||=λ. 【考点定位】平面向量的模8. 【2014高考湖北卷文第11题】设向量(3,3)a =r ,(1,1)b =-r,若,则实数λ= .【答案】3± 【解析】 因为,,因为,所以,解得3±=λ.【考点定位】平面向量的坐标运算、数量积10. 【2014江西高考文第15题】已知单位向量1e u r 与2e u u r 的夹角为α,且1cos 3α=,向量与123b e e =-r u r u u r 的夹角为β,则cos β= .【答案】223【解析】因为所以【考点定位】向量数量积及夹角11. 【2014辽宁高考文第5题】设,,a b c r r r是非零向量,已知命题P :若0a b •=r r ,0b c •=r r ,则0a c •=r r ;命题q :若//,//a b b c r r r r,则//a c r r ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .D .()p q ∨⌝【答案】A【解析】由题意可知,命题P 是假命题;命题q 是真命题,故p q ∨为真命题. 【考点定位】命题的真假12. 【2014全国1高考文第15题】已知C B A ,,为圆O 上的三点,若,则AB 与AC 的夹角为_______. 【答案】090.【解析】由,故,,O B C 三点共线,且O 是线段BC 中点,故BC 是圆O 的直径,从而,因此AB 与AC 的夹角为090【考点定位】平面向量基本定文13. 【2014全国2高考文第3题】设向量a,b 满足|a+b |=10,|a-b |=6,则a ⋅b = ( ) A. 1 B. 2 C. 3 D. 5 【答案】A【解析】因为=10,,两式相加得:228a b +=r r ,所以1a b ⋅=r r ,故选A.【考点定位】本小题主要考查平面向量的模、平面向量的数量积等平面向量14. 【2014高考安徽卷文第15题】已知两个不相等的非零向量,,b a 两组向量和均由2个a 和3个b 排列而成.记,min S 表示S 所有可能取值中的最小值.则下列命题的是_________(写出所有正确命题的编号).①S 有5个不同的值. ②若,b a ⊥则min S 与a 无关.③若,b a ∥则min S 与b 无关. ④若a b 4>,则0min >S . ⑤若,则a 与b 的夹角为4π,∴2cos 1θ=,∴3πθ=,故⑤错误.所以正确的编号为②④【考点定位】平面向量的运算、平面向量的数量积.15. 【2014四川高考文第7题】平面向量(1,2)a =r ,(4,2)b =r,c ma b =+r r r (m R ∈),且c r 与a r 的夹角等于c r 与b r的夹角,则m =( )A .2-B .1-C .1D .2 【答案】 D.【解析】 由题意得:,选D.法二、由于OA ,OB 关于直线y x =对称,故点C 必在直线y x =上,由此可得2m = 【考点定位】向量的夹角及向量的坐标运算.16. 【2014浙江高考文第8题】记,,设,a b r r 为平面向量,则( )A. B. C. D. 【答案】D【考点定位】向量运算的几何意义.17. 【2014重庆高考文第4题】已知向量,且,则实数k =( )9.2A - .0B .C 3 D.152【答案】C 【解析】因为所以又因为,所以,,所以,,解得:3k = 故选C.【考点定位】平面向量的坐标运算、平面向量的数量积.19. 【2014大纲高考文第4题】若向量,a b r r 满足:则b =r( )A .2B 2C .1D .22【答案】B .【解析】把①代入②得故选B .【考点定位】1.向量垂直的充要条件;2. 平面向量的数量积运算.20. 【2014高考陕西第18题】在直角坐标系xOy 中,已知点,点),(y x P 在ABC ∆三边围成的区域(含边界)上(1)若,求OP ;(2)设,用y x ,表示n m -,并求n m -的最大值. 【答案】(1)22;(2),1.令y x t -=,由图可知,当直线y x t =+过点(2,3)B 时,t 取得最大值1,故m n -的最大值为1.【考点定位】平面向量的线性运算、线性规划.21.【2014高考上海文科第16题】如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,是上底面上其余的八个点,则的不同值的个数为( )(A )1 (B)2 (C)4 (D)8 【答案】A【解析】如图,AB 与上底面垂直,因此i AB BP ⊥(1,2,)i =L , .【考点定位】数量积的定义与几何意义.22.【2014高考上海文科第14题】已知曲线C :,直线l :x=6.若对于点A (m ,0),存在C 上的点P 和l 上的点Q 使得,则m 的取值范围为 .【答案】[2,3]【解析】由知A 是PQ 的中点,设(,)P x y ,则,由题意20x -≤≤,26m x -=,解得23m ≤≤. 【考点定位】向量的坐标运算.。
2019-2020年高中数学人教A版(2019)必修第二册教案:6.1 平面向量的概念 Word版
姓名,年级:时间:第六章平面向量及其应用6。
1 平面向量的概念教学设计一、教学目标1.通过对生活中力、速度、位移等的分析,了解平面向量的实际背景;2.理解向量的意义及几何表示;3.掌握相等向量与共线向量的意义.二、教学重难点1.教学重点掌握向量、相等向量、共线向量的概念及向量的几何表示。
2.教学难点对共线向量的理解及掌握.三、教学过程(一)新课导入师:我们在学习物理时,学过力、位移、速度,它们有什么共同属性呢?生:既有大小,又有方向.师:下面我们来学习这些量。
(二)探索新知1.问:我们对这些既有大小,又有方向的量给出一个定义,叫做向量,并且把只有大小,没有方向的量叫做数量.同学们来举出你知道的向量与数量的例子。
(学生举手回答)如,向量:作用力、反作用力、加速度等;数量:身高、体重、面积、质量等.2.问:数量可以用数轴上的点来表示吗?答:可以,因为数量可以用实数表示,而实数与数轴上的点一一对应,所以数量可用数轴上的点表示,而且不同的点表示不同的数量。
问:如何表示向量呢?在表示位移的时候,若小船以A为起点,B为终点,我们可以用连接A,B两点的线段长度代表小船行进的距离,在终点B处加上箭头表示小船行驶的方向。
于是,这条“带有方向的线段"就可以用来表示位移.同样,我们可以用带箭头的线段来表示向量,线段的长短表示向量的大小,箭头的指向表示向量的方向。
在线段AB中,假设A为起点,B为终点,我们就说线段AB具有方向,具有方向的线段叫做有向线段。
通常在有向线段的终点处画上箭头表示它的方向.以A为起点、B为终点的有向线段记作,线段AB的长度也叫做有向线段的长度,记作。
问:总结有向线段的几个要素。
有向线段的三要素:起点、方向、长度.向量可以用有向线段来表示,我们把这个向量记作向量.有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.向量的大小称为向量的长度(或称模),记作。
长度为0的向量叫做零向量,记作.长度等于1个单位长度的向量,叫做单位向量.向量也可用字母a b c,,,…表示.例1(课本P3)3.方向相同或相反的非零向量叫做平行向量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高考数学二轮专题复习专题六平面向量教案文
自查网络
核心背记
一、向量的线性运算
(一)向量的概念
1.向量:既有____又有____的量叫做向量,向量的大小叫做向量的长度(或模).
2.零向量:____叫做零向量,其方向是任意的.
3.单位向量:长度等于____的向量.
4.平行向量:方向____或____的非零向量,平行向量又叫共线向量,任意组平行向量都可以移到同一直线上,规定:零向量与任意向量____.
5.裙等向量:长度____且方向____的向量.
6.相反向量:长度____且方向____的向量.
(二)向量的表示方法
1.字母表示法:如a,AB等;
2.几何表示法:用一条有向线段表示向量;
3.代数表示法:在平面直角坐标系中,设向量OA的起点0在坐标原点,终点坐标为(z,3,),则(x,y)称为向量OA的坐标,记为OA=(x,v).
(三)向量的加法与减法
1.向量的加法
则、平行四边形法则,有时也用向量减法的定义.
(2)证明线段的垂直问题,如证明四边形是矩形、正形,判断两直线(或线段)是否垂直等,常运用向量垂直条件albgi____.
(3)求与夹角有关的问题,往往利用向量的夹角公式如判断三角形的形状,求三角形的面积等.
(4)向量的坐标法,对于有些平面几何问题,如长方形、正方形、直角三角形等,建立直角坐标系,把向量用坐标表示,通过代数运算解决几何问题.
(5)用向量方法解决平面几何问题的步骤
首先,建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;其次,通过向量运算,研究几何元素_之间的关系;最后,把运算结果“翻译”成几何关系.
2.向量在解析几何中的应用(
1)直线的倾斜角、斜率与平行于该直线的向量之间的关系:设直线Z的倾斜角为口,斜率为七,向量口一(口,,a。
)平行于2,则k2 tana2导;如果已知直线的斜率k-署,
则向量———一与向量(1,矗)一定都与Z平行.
(2)与a= (ai,口2)平行且过P(xo,yo)的直线方程 ~J-;d点P(.ro,yo)且与向量a-(口,,口:)垂直的直线方程为____...
向量在物理中的应用
(1)力向量:力向量是具有大小、方向和作用点的向量,它与前面学习的自由向量不同,但力是具有大小和方向的量,在不考虑作用点的情况下,可用向量求和的平行四边形法则求两个力的合力.
2)速度向量:是具有大小和方向的向量,可用平行四边形法则求两个速度的合速度.
(3)用向量方法解决物理问题的步骤:一是把物理问题中的相关量用向量表示;
二是转化为向量问题的模型,通过向量运算使问题得以解决;
三是将结果还原为物理问题.
参考答案
一、(一)1.大小方向
2.长度为零的向量
3.1个单位长度
4.相同相反平行
5.相等相同
6.相等相反
(四)1.相同相反0
(五)有且只有一个实数λ.使得b=λ a
规律探究
1.向量是既有大小又有方向的量,从其定义可以看出向量既有代数特征又有几何特征,因此借助于向量,我们可以将某些代数问题转化为几何问题,又可将几何问题转化为代数问题,故向量能起到数形结合的桥梁作用(本节重点突出了数形结合的思想).在一个复杂的几何图形中恰当地选择两个不共线向量来表示其他向量,然后进行运算是解决向量问题的基本方法.
2.对共线向量、相等向量的概念能否正确理解和牢固掌握很重要,它关系到我们今后在解决相关问题时能否灵活应用的问题.
3.两个向量的长度可以比较大小,但方向没有大小,因此“大于”和“小于”的概念对于向量无意义,如“a>b”没有意义,而laj>lbl则有意义.
4.两个向量的加法有三角形法则和平行四边形法则,向量的减法是向量加法的逆运算.5.I lal - lblI≤l口±bl≤la[+lbl,探讨该式中等号成立的条件,可以解决许多相关的问题.
6.要区别两向量平行和两直线平行.两向量平行,即两向量共线,这和两直线平行不同,利用向量平行条件证明两条直线平行往往是通过“点的坐标”来实现的,利用向量运算可以解决平面几何问题,如:三点共线、线共点、两线平行.
7.平面向量的坐标运算法则是运算的关键,平面向量的坐标运算可将几何问题转化为代数问题,运用它可以解决平面几何、解析几何中的一些问题.
9.向量作为一种既有大小又有方向的量,既具有形的特性,又具有数的特性,因而成为联系数和形的有力纽带.由于向量具有数的特性,因而向量容易成为初等数学中的函数、三角、数列、不等式等许多重要内容的交汇点,而且我们也可以通过构造向量来处理许多代数问题,另外,平面向量在平面几何、解析几何中的应用也十分重要,平面向量与几何问题的综合及应用通常涉及长度、角度、平行、垂直、共线等问题的处理,目标是将几何问题坐标化、符号化、数量化,从而将推理转化为运算.一般研究夹角问题总是从数量积人手,研究长度则从模的运算性质入手,而研究共线、共点问题则多从实数与向量的积人手,
实际应用。