2019-2020年高中数学 1.1集合的含义及其表示学案 苏教版必修1
2019-2020年高中数学 1.1 集合的含义及其表示9.教案 苏教版必修1
2019-2020年高中数学 1.1 集合的含义及其表示9.教案苏教版必修1教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。
另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
课型:新授课教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;教学重点:集合的基本概念与表示方法;教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
阅读课本P2-P3内容二、新课教学(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
3.思考1:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。
4.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)集合相等:构成两个集合的元素完全一样5.元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作aA(或a A)(举例)6.常用数集及其记法非负整数集(或自然数集),记作N正整数集,记作N*或N+;整数集,记作Z有理数集,记作Q实数集,记作R(二)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。
2019_2020学年高中数学第1章集合1.1集合的含义及其表示学案苏教版必修1
1.1 集合的含义及其表示1.结合实例,了解集合的含义,元素与集合的关系.2.理解集合元素的特征.3.掌握集合的表示方法.1.集合(1)定义:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合.(2)记法:通常用大写拉丁字母表示.(3)常用数集及表示符号数集自然数集正整数集整数集有理数集实数集记法N N*或N+Z Q R(1)定义:集合中的每一个对象称为该集合的元素,简称元.(2)记法:通常用小写拉丁字母表示.(3)特性:确定性、互异性、无序性.3.元素与集合的关系关系定义记法读法属于a是集合A的元素a∈A a属于A不属于a不是集合A的元素a∉A或a A a不属于A4.表示方法定义一般形式列举法将集合的元素一一列举出来,并置于花括号“{}”内{a1,a2,…,a n,…}描述法将集合的所有元素都具有的性质(满足的条件)表示出来{x|p(x)}Venn图法用一个封闭曲线围成的平面区域的内部表示一个集合如果两个集合所含的元素完全相同(即A中的元素都是B的元素,B中的元素也都是A的元素),则称这两个集合相等.6.集合的分类有限集含有有限个元素的集合无限集含有无限个元素的集合空集不含任何元素的集合,记作∅1.判断(正确的打“√”,错误的打“×”)(1)由1,1,2,3组成的集合可用列举法表示为{1,1,2,3}.( )(2)集合{(1,2)}中的元素是1和2.( )(3)集合A={x|x-1=0}与集合B={1}表示同一个集合.( )答案:(1)×(2)×(3)√2.不等式x-3<2且x∈N*的解集用列举法可表示为( )A.{0,1,2,3,4} B.{1,2,3,4}C.{0,1,2,3,4,5} D.{1,2,3,4,5}答案:B3.方程x2-1=0的解与方程x+1=0的解组成的集合中共有________个元素.答案:24.当{a,0,-1}={4,b,0}时,a=________,b=________.答案:4 -1集合的概念[学生用书P2]判断下列各组对象能否组成一个集合.(1)新华中学高一年级全体学生;(2)我国的大河流;(3)不大于3的所有自然数;(4)在平面直角坐标系中,到原点距离等于1的点.【解】(1)能,所指的对象是确定的;(2)不能,“大”无明确标准;(3)能,不大于3的所有自然数有0、1、2、3,其对象是确定的;(4)能,在平面直角坐标系中任给一点,可明确地判断是不是到原点的距离等于1,故能组成一个集合.判断一组对象组成集合的依据判断一组对象能否构成一个集合,其关键是看该组对象是否满足确定性.如果该组对象满足确定性,就可能组成集合;否则,就不能组成集合.1.判断下列各组对象能否构成一个集合:(1)著名的数学家;(2)不超过20的非负数;(3)方程x2-9=0在实数范围内的解;(4)直角坐标平面内第一象限的一些点.解:(1)“著名的数学家”无明确的标准,对于某个人是否“著名”无法客观地判断,因此“著名的数学家”不能构成一个集合.(2)任给一个实数x ,可以明确地判断它是不是“不超过20的非负数”,即“0≤x ≤20”与“x >20或x <0”两者必居其一,且仅居其一,故“不超过20的非负数”能构成集合.(3)类似于(2),也能构成集合.(4)“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合.元素与集合的关系[学生用书P2](1)下列关系中,正确的有( ) ①12∈R ;②2∉Q ;③|-3|∈N ;④|-3|∈Q . A .1个 B .2个 C .3个D .4个(2)满足“a ∈A 且4-a ∈A ,a ∈N 且4-a ∈N ”,有且只有2个元素的集合A 的个数是( ) A .0 B .1 C .2D .3【解析】 (1)12是实数,2是无理数,|-3|=3是非负整数,|-3|=3是无理数.因此,①②③正确,④错误.(2)因为a ∈A 且4-a ∈A ,a ∈N 且4-a ∈N , 所以若a =0,则4-a =4, 此时A 满足要求; 若a =1,则4-a =3, 此时A 满足要求; 若a =2,则4-a =2,此时A 只含有1个元素,不满足要求. 故有且只有2个元素的集合A 有2个,故选C. 【答案】 (1)C (2)C判断一个元素是否属于某一个集合,就是判断这个元素是否满足该集合元素的条件.若满足,就是“属于”关系;若不满足,就是“不属于”关系.特别注意,符号“∈”与“∉”只表示元素与集合的关系.2.(1)已知集合A 中元素满足2x +a >0,a ∈R ,若1∉A ,2∈A ,则( )A .a >-4B .a ≤-2C .-4<a <-2D .-4<a ≤-2(2)用适当的符号填空:已知集合A 中的元素x 是被3除余2的整数,则有 17________A ;-5________A . 解析:(1)因为1∉A ,2∈A ,所以⎩⎪⎨⎪⎧2×1+a ≤0,2×2+a >0,即-4<a ≤-2.(2)由题意可设x =3k +2,k ∈Z ,令3k +2=17,则k =5∈Z .所以17∈A .令3k +2=-5, 则k =-73∉Z .所以-5∉A .答案:(1)D (2)∈ ∉集合中元素的特性[学生用书P3]已知集合A 含有两个元素a 和a 2,若1∈A ,则实数a 的值为________. 【解析】 若1∈A ,则a =1或a 2=1,即a =±1. 当a =1时,集合A 有重复元素, 所以a ≠1;当a =-1时,集合A 含有两个元素1,-1,符合元素的互异性,所以a =-1. 【答案】 -1若去掉本例中的条件“1∈A ”,则实数a 的取值范围是什么? 解:因为集合A 中含有两个元素a 和a 2,所以a ≠a 2, 即a ≠0且a ≠1.由集合中元素的特性求解字母取值(范围)的步骤3.(1)若集合M 中的三个元素是△ABC 的三边长,则△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形(2)若集合A 中有三个元素x ,x +1,1,集合B 中也有三个元素x ,x +x 2,x 2,且A =B ,求实数x 的值.解:(1)选D.由集合中元素的互异性可知,集合中的任何两个元素都不相同,故选D.(2)因为A =B ,所以⎩⎪⎨⎪⎧x +1=x 2,1=x 2+x 或⎩⎪⎨⎪⎧x +1=x 2+x ,1=x 2. 解得x =±1.经检验,x =1不满足集合元素的互异性,而x =-1满足,所以x =-1.集合中元素的表示[学生用书P3]用适当的方法表示下列集合:(1)由所有小于13的既是奇数又是质数的自然数组成的集合; (2)方程x 2-2x +1=0的实数根组成的集合; (3)平面直角坐标系内所有第二象限的点组成的集合; (4)二次函数y =x 2+2x -10的图象上所有的点组成的集合; (5)二次函数y =x 2+2x -10的图象上所有点的纵坐标组成的集合.【解】 (1)小于13的既是奇数又是质数的自然数有4个,分别为3,5,7,11.故可用列举法表示为{3,5,7,11}.(2)方程x 2-2x +1=0的实数根为1,因此可用列举法表示为{1},也可用描述法表示为{x ∈R |x 2-2x +1=0}.(3)集合的代表元素是点,可用描述法表示为{(x ,y )|x <0且y >0}.(4)二次函数y =x 2+2x -10的图象上所有的点组成的集合中,代表元素为有序实数对(x ,y ),其中x ,y 满足y =x 2+2x -10,由于点有无数个,则用描述法表示为{(x ,y )|y =x 2+2x -10}.(5)二次函数y =x 2+2x -10的图象上所有点的纵坐标组成的集合中,代表元素为y ,是实数,故可用描述法表示为{y |y =x 2+2x -10}.用描述法表示集合时,要认清代表元素的含义,弄清集合的属性,区分是数集、点集还是其他类型的集合.4.设集合B =⎩⎨⎧⎭⎬⎫x ∈N ⎪⎪⎪62+x ∈N .(1)试判断元素1,2与集合B 的关系; (2)用列举法表示集合B . 解:(1)当x =1时,62+1=2∈N . 当x =2时,62+2=32∉N .所以1∈B ,2∉B .(2)因为62+x ∈N ,x ∈N ,所以2+x 只能取2,3,6.所以x 只能取0,1,4.所以B ={0,1,4}.1.集合含义中的“研究对象”的理解集合含义中的“研究对象”指的是集合的元素,研究集合问题的核心即研究集合中的元素,因此在解决集合问题时,首先要明确集合中的元素是什么.集合中的元素可以是点,也可以是一些人或一些物.2.集合中元素的三个特性(1)确定性:是指作为一个集合的元素必须是明确的,不能确定的对象不能构成集合.也就是说,给定一个集合,任何一个对象是不是这个集合的元素是确定的.(2)互异性:对于给定集合,其中的元素一定是不同的,相同的对象归入同一个集合时只能算作集合的一个元素.(3)无序性:对于给定的集合,其中的元素是不考虑顺序的.如1,2,3与3,2,1构成的集合是同一个集合.3.对符号“∈”与“∉”的理解(1)符号“∈”“∉”刻画的是元素与集合之间的关系.对于一个元素a与一个集合A而言,只有“a∈A”与“a∉A”这两种结果.(2)∈和∉具有方向性,左边是元素,右边是集合,形如R∈0是错误的.4.列举法表示集合时应注意的四点(1)集合中的元素可以是任何对象,如数、点、式子或其他的类型等.(2)元素之间没有顺序,但不能重复,也不能遗漏.(3)“{ }”本身带有“所有的…”或“…的全体(全部)”的意思,因此在花括号内表示内容时,应把“所有”“全体”或“全部”等词语删去.(4)用列举法表示有特殊规律的无限集时,必须把元素间的规律表示清楚后才能用省略号.5.描述法表示集合时应注意的三点(1)写清集合中的代表元素,可以是数、点、式子或其他类型.(2)说明该集合中元素具有的性质,如满足方程(组)、不等式(组)、函数或几何图形等.(3)多层描述时,应当准确使用“且”和“或”,所有描述的内容都要写在集合内.下列各组中M,P表示同一集合的序号是________.①M={3,-1},P={(3,-1)};②M={(3,1)},P={(1,3)};③M={y|y=x2-1,x∈R},P={x|x=t2-1,t∈R};④M={y|y=x-1,x∈R},P={(x,y)|y=x-1,x∈R}.[解析] ①中,M是由3,-1两个元素构成的集合,而集合P是由点(3,-1)构成的集合;②中,(3,1)与(1,3)表示不同的点,故M≠P;④中,M是一次函数y=x-1,x∈R的所有因变量组成的集合,而集合P是一次函数y=x-1,x∈R图象上所有点组成的集合.[答案] ③(1)本题易误选①或②,其原因是未理解清楚集合中元素代表什么,只注意形式基本相同,从而导致错误.(2)解答此类问题,要明确集合中的代表元素是数,还是有序实数对(点),还是集合,或是其他形式.1.下列各组对象能构成集合的是( )A.平面直角坐标系内x轴上方的y轴附近的点B.大于-5且小于5的有理数C.新华书店中有意义的小说D.π(π=3.141…)的近似值的全体解析:选B.A、C、D中的对象不具有确定性,故不能构成集合;而B具有确定的标准,即“大于-5且小于5的有理数”.故能构成集合.2.由大于-3且小于11的偶数所组成的集合是( )A.{x|-3<x<11,x∈Z}B.{x|-3<x<11}C.{x|-3<x<11,x=2k}D.{x|-3<x<11,x=2k,k∈Z}解析:选 D.偶数集为{x|x=2k,k∈Z},则大于-3且小于11的偶数所组成的集合为{x|-3<x<11,x=2k,k∈Z}.3.已知集合A是由0,m,m2-3m+2三个元素构成的集合,且2∈A,则实数m=________.解析:由题意知m=2或m2-3m+2=2,解得m=2或m=0或m=3,经验证,当m=0或m=2时,不满足集合中元素的互异性,当m=3时,满足题意,故m=3.答案:34.已知集合{x|x2-2x+a=0}=∅,则实数a的取值范围是________.解析:Δ=4-4a<0得a>1.答案:a>1[学生用书P77(单独成册)])[A 基础达标]1.下列各组对象中能构成集合的是( )A.2019年中央电视台春节联欢晚会中好看的节目B .某学校高一年级高个子的学生 C.2的近似值D .2018年全国经济百强县解析:选D.由于集合中的元素是确定的,所以D 中对象可构成集合.2.给出下列关系:(1)13∈R ;(2)5∈Q ;(3)-3∉Z ;(4)-3∉N ,其中正确的个数为( )A .1B .2C .3D .4解析:选B.13是实数,(1)正确;5是无理数,(2)错误;-3是整数,(3)错误;-3是无理数,(4)正确.故选B.3.若a ,b ,c ,d 为集合A 的四个元素,则以a ,b ,c ,d 为边长构成的四边形可能是( ) A .矩形 B .平行四边形 C .菱形D .梯形解析:选D.因为a ,b ,c ,d 为集合A 中的四个元素,故a ,b ,c ,d 均不相同,故选D. 4.设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则M 中元素的个数为( ) A .3 B .4 C .5D .6解析:选B.因为集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B }, 所以M 中的元素有:5,6,7,8,共4个.故选B.5.已知M ={(x ,y )|2x +3y =10,x ,y ∈N },N ={(x ,y )|4x -3y =1,x ,y ∈R },则( ) A .M 是有限集,N 是有限集 B .M 是有限集,N 是无限集 C .M 是无限集,N 是无限集 D .M 是无限集,N 是有限集解析:选B.因为M ={(x ,y )|2x +3y =10,x ,y ∈N }={(2,2),(5,0)}, 所以M 为有限集.N ={(x ,y )|4x -3y =1,x ,y ∈R }中有无限多个点满足4x -3y =1,故N 为无限集.6.若集合{1,a ,b }与{-1,-b ,1}是同一个集合,则a 与b 分别为________.解析:由题意得⎩⎪⎨⎪⎧a =-1,b =-b 或⎩⎪⎨⎪⎧a =-b ,b =-1. 解得⎩⎪⎨⎪⎧a =-1,b =0或⎩⎪⎨⎪⎧a =1,b =-1.当a =1,b =-1时,集合中有重复元素应舍去.故a =-1,b =0. 答案:-1,07.下列说法中①集合N 与集合N *是同一个集合;②集合N 中的元素都是集合Z 中的元素;③集合Q 中的元素都是集合Z 中的元素;④集合Q 中的元素都是集合R 中的元素.其中正确的有________.解析:因为集合N *表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集,所以①③中的说法不正确,②④中的说法正确.答案:②④8.若a ,b ∈R ,且a ≠0,b ≠0,则|a |a +|b |b的可能取值所组成的集合中元素的个数为________.解析:当a >0且b >0时,|a |a +|b |b=2;当a ·b <0时,|a |a +|b |b=0;当a <0且b <0时,|a |a +|b |b=-2.所以集合中的元素为2,0,-2.即元素的个数为3. 答案:39.判断下列对象能否构成一个集合.如果能,请采用适当的方法表示该集合;如果不能,请说明理由.(1)小于5的整数;(2)高一年级体重超过75 kg 的同学; (3)方程x +y =3的非负整数解; (4)与π非常接近的有理数. 解:(1)能.{x |x <5,x ∈Z }.(2)能.{高一年级体重超过75 kg 的同学}. (3)能.{(0,3),(1,2),(2,1),(3,0)}.(4)不能构成集合.接近π的有理数界限不明确,不符合集合元素确定性的特点. 10.用适当的方法表示下列集合.(1)由x =2n ,0≤n ≤2且n ∈N 组成的集合; (2)抛物线y =x 2-2x 与x 轴的公共点的集合; (3)直线y =x 上去掉原点的点的集合.解:(1)列举法:{0,2,4};或描述法{x |x =2n ,0≤n ≤2且n ∈N }. (2)列举法:{(0,0),(2,0)}. (3)描述法:{(x ,y )|y =x ,x ≠0}.[B 能力提升]1.集合A 的元素y 满足y =x 2+1,集合B 的元素(x ,y )满足y =x 2+1(A ,B 中x ∈R ,y ∈R ).则下列选项中元素与集合的关系都正确的是( )A .2∈A ,且2∈BB .(1,2)∈A ,且(1,2)∈BC .2∈A ,且(3,10)∈BD .(3,10)∈A ,且2∈B解析:选C.集合A 中的元素为y ,是数集,又y =x 2+1≥1,故2∈A ,集合B 中的元素为点(x ,y ),且满足y =x 2+1,经验证,(3,10)∈B ,故选C.2.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ∈N ,126-x ∈N , 则集合A 用列举法表示为________. 解析:因为126-x∈N ,x ∈N ,所以6-x =1,2,3,4,6,得x =5,4,3,2,0.所以集合A ={0,2,3,4,5}.答案:{0,2,3,4,5}3.已知集合A ={x |ax 2+2x +1=0,x ∈R },a 为实数. (1)若A 是空集,求a 的取值范围; (2)若A 是单元素集,求a 的值;(3)若A 中至多只有一个元素,求a 的取值范围.解:(1)若A 是空集,则⎩⎪⎨⎪⎧a ≠0,Δ=22-4a <0,所以a >1. (2)若A 是单元素集,则①当a =0时,此时A ={x |2x +1=0,x ∈R }=⎩⎨⎧⎭⎬⎫-12;②当a ≠0时,有⎩⎪⎨⎪⎧a ≠0,Δ=22-4a =0,即a =1, 此时A ={x |x 2+2x +1=0,x ∈R }={-1}. 所以综合①②得a =0或a =1.(3)若A 中至多只有一个元素,则A 为空集或单元素集,所以a =0或a ≥1. 4.(选做题)设S 是由满足下列条件中的实数所构成的集合: ①1∉S ;②若a ∈S ,则11-a ∈S .请回答下列问题:(1)若2∈S ,则S 中必有另外两个数,求出这两个数; (2)求证:若a ∈S ,则1-1a∈S ;(3)在集合S 中,元素能否只有一个?若能,把它求出来;若不能,请说明理由. 解:(1)因为2∈S ,2≠1,所以11-2=-1∈S .因为-1∈S ,-1≠1,所以11-(-1)=12∈S .11 因为12∈S ,12≠1,所以11-12=2∈S .所以集合S 中有另外两个数为-1和12.(2)证明:因为a ∈S ,所以11-a ∈S ,所以11-11-a ∈S ,即11-11-a=1-a 1-a -1=1-1a∈S (a ≠0). 若a =0,则11-a =1∈S ,不合题意.所以若a ∈S ,则1-1a ∈S .(3)集合S 中的元素不能只有一个.证明如下:假设集合S 中只有一个元素,则根据题意知a =11-a ,即a 2-a +1=0.因为Δ=1-4<0,所以此方程无实数解,所以a ≠11-a .所以集合S 中不能只有一个元素.。
2019-2020学年高中数学 1.1 集合的含义与表示导学案苏教版必修1.doc
(6)不在N中的数不能使方程4x=8成立( )
课时小结:
1.集合的概念中,“某些指定的对象”,可以是任意的具体确定的事物,例 如数、式、点、形、物等.
2.集合元素的三个特征:确定性、互异性、无序性,要能熟练运用之.
备注
课堂检测——集合的含义与表示 姓名:
2019-2020学年高中数学1.1集合的含义与表示导学案苏教版必修1
学习目标:
使学生掌握集合的概念和性质,集合的元素特征,有关数的集合;培养学生的思维能力,提高学生理解掌握概念的能力;培养学生认识事物的能力。
课前预习:
1.集合定义:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合。集合中
(2){平方等于1的数}
(3){15的正约数}
(4)偶数的集合
变1:被3整除的数的集合
变2,用集合表示直线y= 2x+1上所有的点
例2.求不等式2x-3>3的解集
例3.判断正误:
(1)所有在N中的元素都在N*中()
( 2)所有在N中的元素都在Z中()
(3)所有不在N*中的数都不在Z中()
(4)所有不在Q中的实数都在R中()
2.下列条件能形成集合 的是()
A.充分小的负数全体B.爱好飞机的一些人
C.某班本学期视力较差的同学D.某校某班某一天所有课程
3..集合A的元素由kx2-3x+2=0的解构成,其中k∈R,若A中的元素至多有一个,求k值的范围.
4..若x∈R,则{3 ,x,x2-2x}中的元素x应满足什么条件?
5.方程ax2+5x+c=0的解集是{ , }, 则a=_______,c=_______.
的每一个对象称为该集合的元素,简称元。
2019-2020年高中数学1.1集合的概念与表示教学案(无答案)苏教版必修1
2019-2020年高中数学1.1集合的概念与表示教学案(无答案)苏教版必修1二、教学目标1.要求学生初步理解集合的概念;2.知道常用数集及其记法;3.初步了解集合的分类及性质;4.初步掌握集合的三种表示方法。
三、教学重点建立集合的概念,学会集合的表示是本课的重点四、教学难点集合的三种表示方法五、教学过程1、情境设置:(1).教材中的章头引言;(2).集合论的创始人——康托尔(德国数学家);(3).“家庭”“学校”“班级”等概念有什么共同特征?(4).学生讨论:仿照举例。
集合、元素的概念:小结:集合的三要素: 1。
确定性; 2。
互异性; 3。
无序性.2、探索研究:1.集合的表示: { … }如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}用拉丁字母表示集合:A={我校的篮球队员} ,B={1,2,3,4,5}非负整数集(即自然数集)记作:N正整数集N*或 N+整数集 Z有理数集Q 实数集R2.关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a A ,相反,a不属于集A 记作 a∉A (或a A)练习:用符合“∈”或“∉”填空:(1)设A 为所有亚洲国家组成的集合,则:中国 A ;美国 A ;印度 A ;英国 A. (2) 0 N ; Z ; Q ; R .3.集合的表示方法:①列举法:把集合中的元素一一列举出来。
②描述法:用确定的条件表示某些对象是否属于这个集合的方法。
格式:{x ∈A| P (x )} 含义:在集合A 中满足条件P (x )的x 的集合。
③图示法表示(Venn 图)一个集合可以用不同的方法表示。
集合的分类1.有限集:含有有限个元素的集合2.无限集:含有无限个元素的集合3.空集:不含任何元素的集合思考:什么时候两个集合相等?何时用列举法?何时用描述法?3、例题讲解例1:①求不等式的解集;②求方程组的解集.例2:用列举法表示下列集合①{x ∈N | x 是15的约数} ②{(x ,y )| x ∈{1,2},y ∈{1,2}}例3:已知直线y=x+2,用描述法表示下列集合①直线上的点;②直线上的点的横坐标;③直线上的点的纵坐标.4、课堂练习:1.教材P7 1、 2 、3、42.用列举法表示下列集合① ② },,1623|),{(N y N x y x y x ∈∈=+课堂小结 本课大家要理解:集合概念、符号、表示法、分类心得体会5、课后作业1.集合中的元素具有___________,__________,__________三种性质。
2019-2020年高一数学苏教版必修一教学案 1集合的含义及其表示(一)
§1集合的含义及其表示(一)一、教学目标二、教学重、难点三、新课导航1.问题展示(1)集合的含义:一般地,一定范围内某些_________、_________对象的_________构成一个集合。
集合中的称为该集合的元素,简称______。
集合的元素的性质:、和(2)集合、元素的记法集合的记法;元素的记法。
元素与集合的关系有两种:①如果是集合的元素,那么就记作,读作“”②如果不是集合的元素,那么就记作,读作“”(3)常用数集的记法:自然数集记作______,正整数集记作,整数集记作,有理数集记作,实数集记作。
(4)集合的分类:按照集合中元素的个数可分为、、,其中,不含任何元素的集合称为,记作。
2.基础测评(1)下列叙述能否构成集合,是集合说明是有限集还是无限集①黄海中鲜美的鱼;②著名的数学家;③中国的四大河流;④直线上所有点。
(2)由实数、、、组成的集合有几个元素?答:个;(3)对于①;②;③;④,其中正确的个数是________;四、合作探究活动1判断下列叙述能否构成集合(1)高一(1)班个子较高的同学;(2)高二(2)班成绩一般的同学;(3)大于等于的所有自然数;(4)函数图象上所有的点。
活动2求方程所有实数解所组成的集合的元素。
活动3集合中有且仅有个元素,问:字母有什么范围要求。
活动4 关于的方程的解组成的集合中元素有且仅有一个,求实数的取值范围。
变式1:关于的方程的解组成的集合中元素只有一个,求实数的取值范围。
变式2:关于的方程的解组成的集合中元素至少有一个,求实数的取值范围。
五、提高拓展1.用符号或填空:已知集合中有且仅有一个元素,则_________;2.由实数所组成的集合里最多含有________个元素;六、知识网点七、反思2019-2020年高一数学苏教版必修一教学案 1集合的含义及其表示(一)一、填空题1.是中的元素吗?答:____________;是中的元素吗?答:_____________;是中的元素吗?答:_____________;2.下列给出的对象中,表示集合的序号是________________(1)一切很大的数;(2)绝对值等于本身的数;(3)聪明的人;(4)方程的实数解.3.用符号或填空_____;_______;_______;_____ ;____4.已知集合由所有平行四边形组成,表示某个矩形,表示某个梯形,则,(用符号或填空);5.若关于的方程组成的集合中有且仅有一个元素,则的取值范围是_______________;6.设都是非零实数,代数式可能取到的值组成的集合有_______________个元素;二、解答题7.指出下列集合是有限集还是无限集(1)由与的公倍数组成的集合;(2)所有正偶数组成的集合;(3)方程的解的集合。
2019-2020年高中数学 1.1《集合的概念及其表示 2》教案 苏教版必修1
2019-2020年高中数学 1.1《集合的概念及其表示 2》教案苏教版必修1教学目标:使学生了解有限集、无限集概念,掌握表示集合方法,了解空集的概念及其特殊性;通过本节教学,培养学生逻辑思维能力;渗透抽象、概括的思想.教学重点:集合的表示方法,空集.教学难点:正确表示一些简单集合.教学方法:自学辅导法在学生自学基础上,进行概括、总结.教学过程:Ⅰ.复习回顾集合元素的特征有哪些?怎样理解?试举例说明.集合与元素关系是什么?如何表示?Ⅱ.讲授新课1.集合的表示方法通过学习提纲,师生共同归纳集合表示方法,常用表示方法有:(1)列举法:把集合中元素一一列举出来的方法.(2)描述法:用确定条件表示某些对象是否属于这个集合的方法.[师]由方程x2-1=0的所有解组成的集合可以表示为{-1,1},不等式x-3>2的解集可以表示为{x|x-3>2}.下面请同学们思考:[生](1)满足题条件小于5的正奇数有1,3.故用列举法表示为{1,3}(2)能被3整除且大于4小于15的自然数有6,9,12.故用列举法表示为{6,9,12}(3)方程x2-9=0的解为-3,3.故用列举法表示为{-3,3}(4)15以内的质数 2,3,5,7,11,13.故该集合用列举法表示为{2,3,5,7,11,13}(5)满足63-x∈Z的x有:3-x=±1,±2,±3,±6,解之x=2,4,1,5,0,6,-3,9.故用列举法表示为{2,4,1,5,0,6,-3,9}[师]通过我们对上述题目求解,可以看到问题求解的关键应是什么?[生]依题找出集合中的所有元素是问题解决的关键所在.[师]用列举法表示集合时,要注意元素不重不漏,不计次序地用“,”隔开并放在大括号内.除了刚才练习题目中涉及到的问题外,还有如下问题,注意比较各问题的形式,试用描述法表示下列集合.(6)到定点距离等于定长的点让学生充分考虑,相互研讨后师给出结果{(x ,y )|(x -a )2+(y -b )2=r 2}(7)方程组⎩⎨⎧3x + 2y =22x + 3y =27 的解集为{(x ,y )|⎩⎨⎧3x + 2y =22x + 3y =27}(8)由适合x 2-x -2>0的所有解组成集合 {x |x 2-x -2>0}下面给出问题,经学生考虑后回答:[生](1)集合中的元素是点.它是坐标平面内的点,其坐标是一个有序实数.对,可表示为{(x ,y )|x 2=y }(2)集合中的元素是实数.该实数是平面上点的横坐标,用描述法表示即为{x |x 2=y }. (3)集合中的元素是实数.该实数是符合条件的平面上点的纵坐标.用描述法表示即为 {y |x 2=y }.(4)该集合中元素是点.而数轴上的点可以用其坐标表示,其坐标是一个实数,所以可以表示成{x ∈R||x |>6}.(5)平面直角坐标系中点是该集合元素.该点可以用一对有序实数对表示,用描述法即可表示为{(x ,y )|xy >0}.[师]同学们通过对上述问题的解答,解决该类问题的关键是什么? [生](经讨论后得出结论)解决该类问题关键是找出集合中元素的公共属性,确定代表元素.[师]集合中元素的公共属性可以用文字直接表述,也可用数学关系表示,但必须抓住其实质.[师]再看几例1.用列举法表示1到100连续自然数的平方;2.{x },{x ,y },{(x ,y )}的含义是否相同.[生]{x }表示单元素集合;{x ,y }表示两个元素集合;{(x ,y )}表示含一点集合.而对于1题经教师指导给出结论,该集合列举法表示为{1,4,9,25,…,1002}.3. {x |y =x 2+1},{y |y =x 2+1},{(x ,y )|y =x 2+1},的含义是否相同. (3)集合相等两个集合相等、应满足如下关系:A ={2,3,4,5},B ={5,4,3,2},即有集合A 的元素都是集合B 的元素,集合B 的元素都是集合A 的元素.稍微复杂的式子特别是用描述法给出的要认真分辨. 如:A ={x |x =2m +1,m ∈Z },B ={x |x =2n -1,n ∈Z }. 2.集合的分类师指出:(1)有限集——含有有限个元素的集合. (2)无限集——含有无限个元素的集合.那么投影(A)中的集合和(B )中的集合是有限集还是无限集,经重新投影后,学生作答. [生]幻灯片(A )中的五个集合都是有限集;幻灯片(B )中的五个集合都是无限集. 3.空集[师]表示空集,既不含任何元素的集合.例如:{x |x 2+2=0},{x |x 2+1<0} 请学生相互举例、验证,师补充说明:4.[师]集合的表示除了列举法和描述法外,还有恩韦图(文氏图)叙述如下:画一条封闭的曲线,用它的内部来表示一个集合.如图: 表示任意一个集合A边界用直线还是曲线,用实线还是虚线都无关紧要,只要封闭并把有关元素和子集统统包含在里边就行,但不能理解成圈内每个点都是集合的元素.................. Ⅲ.课堂练习1.解:(1)满足题意的集合可用描述法表示 {x ∈N |x >10};它是一个无限集.(2)满足题意的集合可用列举法表示如下: {2,3,6};它是一个有限集.(3)满足题意的集合可用列举法表示如下: {-2,2};它是一个有限集.(4)满足题意的集合可用列举法表示如下: {2,3,5,7};它是一个有限集.2.解:(1)该集合可用描述法表示如下:{x |x 是4与6的公倍数};它是一个无限集. (2)该集合可用描述法表示如下:{x |x =2n ,n ∈N *};它是一个无限集. (3)该集合可用描述法表示如下:{x |x 2-2=0};它是一个有限集.(4)不等式4x -6<5的解集可用描述法表示如下:{x |x <114};它是一个无限集.问题的解决主要靠判断集合中元素的多少,进而确定表示方法. 3.判断正误:表示{3,9,27}表示{4,6,10}(1)x =-1,0,1时,y =x 2+1的值的集合是{2,1,2}(2)方程组⎩⎨⎧x + y =02x -y =3的解集是{1,-1}(3)方程x 2+2x -3=0的解集是{x |1,-3},{x |x =1,x =-3},{ 1或-3},{(1,-3)},{1}或{-3} 4.方程组⎩⎨⎧x + y =2x -y =5的解集用列举法表示为_____________;用描述法表示为_______.解:因⎩⎨⎧x + y =2x -y =5的解集为方程组的解.解该方程组x =72 ,y =-32则用列举法表示为{(72 ,-32 )};用描述法表示为{(x ,y )|⎩⎨⎧x + y =2x -y =5}5.{(x ,y )|x +y =6,x ,y ∈N }用列举法表示为__________.解:因x +y =6,x ,y ∈N 的解有:⎩⎨⎧x =0y =6 ⎩⎨⎧x =1y =5 ⎩⎨⎧x =2y =4 ⎩⎨⎧x =3y =3 ⎩⎨⎧x =4y =2 ⎩⎨⎧x =5y =1 ⎩⎨⎧x =6y =0故列举法表示该集合,就是{(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)} Ⅳ.课时小结1.通过学习,弄清表示集合的方法有几种,并能灵活运用,一个集合并不是只要是有限集就用列举法表示,只要是无限集就用描述法表示,在某种情况下,两种方法都可以.2.注意在解决问题时所起作用,这一小节仅仅是认识,具体性质在下一节将研究. Ⅴ.课后作业预习内容:子集,子集的概念及空集的性质. 2.预习提纲:(1)两个集合A 、B 具有什么条件,就能说明一个集合是另一个集合的子集? (2)一个集合A 是另一个集合B 的真子集,则其应满足条件是什么? (3)空集有哪些性质?2019-2020年高中数学 1.1任意角和弧度制教案1 新人教A 版必修4一、教学目标:1、知识与技能(1)理解并掌握弧度制的定义;(2)领会弧度制定义的合理性;(3)掌握并运用弧度制表示的弧长公式、扇形面积公式;(4)熟练地进行角度制与弧度制的换算;(5)角的集合与实数集之间建立的一一对应关系.(6) 使学生通过弧度制的学习,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.2、过程与方法创设情境,引入弧度制度量角的大小,通过探究理解并掌握弧度制的定义,领会定义的合理性.根据弧度制的定义推导并运用弧长公式和扇形面积公式.以具体的实例学习角度制与弧度制的互化,能正确使用计算器.3、情态与价值通过本节的学习,使同学们掌握另一种度量角的单位制---弧度制,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.角的概念推广以后,在弧度制下,角的集合与实数集之间建立了一一对应关系:即每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应,为下一节学习三角函数做好准备. 二、教学重、难点重点: 理解并掌握弧度制定义;熟练地进行角度制与弧度制地互化换算;弧度制的运用. 难点: 理解弧度制定义,弧度制的运用. 三、学法与教学用具在我们所掌握的知识中,知道角的度量是用角度制,但是为了以后的学习,我们引入了弧度制的概念,我们一定要准确理解弧度制的定义,在理解定义的基础上熟练掌握角度制与弧度制的互化.教学用具:计算器、投影机、三角板 四、教学设想【创设情境】有人问:海口到三亚有多远时,有人回答约250公里,但也有人回答约160英里,请问那一种回答是正确的?(已知1英里=1.6公里)显然,两种回答都是正确的,但为什么会有不同的数值呢?那是因为所采用的度量制不同,一个是公里制,一个是英里制.他们的长度单位是不同的,但是,他们之间可以换算:1英里=1.6公里.在角度的度量里面,也有类似的情况,一个是角度制,我们已经不再陌生,另外一个就是我们这节课要研究的角的另外一种度量制---弧度制.【探究新知】1.角度制规定:将一个圆周分成360份,每一份叫做1度,故一周等于360度,平角等于180度,直角等于90度等等.弧度制是什么呢?1弧度是什么意思?一周是多少弧度?半周呢?直角等于多少弧度?弧度制与角度制之间如何换算?请看课本,自行解决上述问题.2.弧度制的定义[展示投影]长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1,或1弧度,或1(单位可以省略不写).3.探究:如图,半径为的圆的圆心与原点重合,角的终边与轴的正半轴重合,交圆于点,终边与圆交于点.请完成表格.我们知道,角有正负零角之分,它的弧度数也应该有正负零之分,如-π,-2π等等,一般地, 正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定.4.思考:如果一个半径为的圆的圆心角所对的弧长是,那么的弧度数是多少?yxAO B角的弧度数的绝对值是:,其中,l是圆心角所对的弧长,是半径.5.根据探究中填空:,度显然,我们可以由此角度与弧度的换算了.6.例题讲解例1.按照下列要求,把化成弧度:(1)精确值;(2)精确到0.001的近似值.例2.将3.14换算成角度(用度数表示,精确到0.001).注意:角度制与弧度制的换算主要抓住,另外注意计算器计算非特殊角的方法.7. 填写特殊角的度数与弧度数的对应表:角的概念推广以后,在弧度制下,角的集合与实数集之间建立了一一对应关系:即每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.8.例题讲评例3.利用弧度制证明下列关于扇形的公式:(1); (2); (3).其中是半径,是弧长,为圆心角,是扇形的面积.例4.利用计算器比较和的大小.注意:弧度制定义的理解与应用,以及角度与弧度的区别.9.练习教材.9.学习小结(1)你知道角弧度制是怎样规定的吗?(2)弧度制与角度制有何不同,你能熟练做到它们相互间的转化吗?五、评价设计1.作业:习题1.1 A组第7,8,9题.2.要熟练掌握弧度制与角度制间的换算,以及异同.能够使用计算器求某角的各三角函数值.。
2019-2020学年高中数学 第1章 集合 1.1 集合的含义及其表示(第1课时)集合的含义讲义 苏教版必修1
第1课时集合的含义1.元素与集合的概念一般地,一定范围内某些确定的、不同的对象的全体构成一个集合.集合中的每一个对象称为该集合的元素,简称元.2.集合中元素的特性集合中元素的特性:确定性、互异性、无序性.思考:假如在军训时教官喊“全体高个子同学集合”,你去集合吗?[提示]不知道,不清楚自己到底是不是高个子.3.元素与集合的表示(1)元素的表示:通常用小写拉丁字母a,b,c,…表示集合中的元素.(2)集合的表示:通常用大写拉丁字母A,B,C,…表示集合.4.元素与集合的关系(1)属于(符号:∈),a是集合A中的元素,记作a∈A,读作“a属于A”.(2)不属于(符号:∉或∈),a不是集合A中的元素,记作a∉A或a∈A,读作“a不属于A”.5.常用数集及表示符号1.思考辨析(正确的打“√”,错误的打“×”)(1)漂亮的花可以组成集合.( )(2)在一个集合中可以找到两个(或两个以上)相同的元素.( )[答案](1)×(2)×[提示] (1)×.因为“漂亮”没有明确的标准,其不满足集合中元素的确定性. (2)×.因为集合中的元素具有互异性,故在一个集合中一定找不到两个(或两个以上)相同的元素.2.由单词different 中的字母构成的集合是________.{d ,i ,f ,e ,r ,n ,t } [由集合中元素的互异性知,重复的字母只能算一个,故字母有d ,i ,f ,e ,r ,n ,t .]3.用“∈”、“”填空.3.5________N ;-4________Z ;0.5________R ; 2________N *;13________Q .∈ ∈∈ [因为3.5不是自然数,故3.5N ;因为-4是整数,故-4∈Z ; 因为0.5是实数,故0.5∈R ;因为2不是正整数,故2N *; 因为13是有理数,故13∈Q .](1)2016年里约奥运会上中国队获得的金牌; (2)无限接近零的数;(3)方程x 2-2x -3=0的所有解;(4)平面直角坐标系中,第一象限内的所有点.思路点拨:判断一组对象能否构成集合的关键是该组对象是否唯一确定. [解] (1)能.因为2016年里约奥运会上中国队获得的金牌是确定的. (2)不能.因为“无限接近”标准不明确,不具有确定性,不能构成集合.(3)能.因为方程x 2-2x -3=0的解为x 1=3,x 2=-1确定,所以可以组成集合,集合中有两个元素3和-1.(4)能.因为第一象限内的点是确定的点.一般地,确认一组对象a 1,a 2,a 3,…,a n 能否构成集合的过程为:1.判断下列每组对象能否构成一个集合. (1)不超过20的非负数;(2)方程x 2-9=0在实数范围内的解; (3)某校2018年在校的所有高个子同学; (4) 3的近似值的全体.[解] (1)对任意一个实数能判断出是不是“不超过20的非负数”,所以能构成集合. (2)能构成集合.(3)“高个子”无明确的标准,对于某个人算不算高个子无法客观地判断,因此不能构成一个集合.(4)“3的近似值”不明确精确到什么程度,因此很难判断一个数(如“2”)是不是它的近似值,所以不能构成集合.①-12∈R ;②2Q ;③0N *;④|-3|N *.思路点拨:注意各个数集的范围,尤其是其中的特殊数值. ①②③ [-12为实数,2是无理数,0为自然数,但非正整数,3为正整数. 故①②③正确,④错误.]1.由集合中元素的确定性可知,对任意的元素a 与集合A ,在“a ∈A ”与“a A ”这两种情况中必有一种且只有一种成立.2.符号“∈”和“”只表示元素与集合之间的关系,而不能用于表示其他关系. 3.“∈”和“”具有方向性,左边是元素,右边是集合.2.设不等式3-2x <0的解集为M ,下列关系中正确的有________.(填序号) ①0∈M ,2∈M ;②0M ,2∈M ;③0∈M ,2M ;④0M ,2M .② [本题是判断0和2与集合M 间的关系,因此只需判断0和2是否是不等式3-2x <0的解即可,当x =0时,3-2x =3>0,所以0M ;当x =2时,3-2x =-1<0,所以2∈M .]1.某班所有的“帅哥”能否构成一个集合?某班身高高于175厘米的男生能否构成一个集合?集合定义中“某些确定的”含义是什么?[提示] 某班所有的“帅哥”不能构成集合,因“帅哥”无明确的标准,高于175厘米的男生能构成一个集合,因标准确定.“某些确定的”含义是集合中的元素必须是确定的,也就是说,给定一个集合,那么任何一个对象在不在这个集合中就确定了.2.有同学说,在某一个集合中有a ,-a ,|a |三个元素,他说的对吗?[提示] 这种说法是错误的,因|a |=⎩⎪⎨⎪⎧a (a ≥0),-a (a <0),且若a =0,则a ,-a ,|a |均为0,这些均与元素的互异性矛盾.3.“中国的直辖市”构成的集合中,元素包括哪些?甲同学说:北京、上海、天津、重庆;乙同学说:上海、北京、重庆、天津,他们的回答都正确吗?由此说明什么?怎么说明两个集合相等?[提示] 两个同学都说出了中国直辖市的所有城市,因此两个同学的回答都是正确的,由此说明集合中的元素是无先后顺序的,这就是元素的无序性,只要构成两个集合的元素一样,我们就称这两个集合是相等的.【例3】 若集合A 中有三个元素a -3,2a -1,a 2-4,且-3∈A ,求实数a 的值. 思路点拨:按-3=a -3或-3=2a -1或-3=a 2-4分三类分别求解a的值,注意验证集合A 中元素是否满足互异性.[解] (1)若a -3=-3,则a =0,此时满足题意;(2)若2a -1=-3,则a =-1,此时a 2-4=-3,不满足集合中元素的互异性,故舍去. (3)若a 2-4=-3,则a =±1. 当a =1时,满足题意;当a =-1时,由(2)知,不满足题意. 综上可知,a =0或a =1.(变条件)若将本例条件“-3∈A ”改为“a ∈A ”且A 为有理数集,其他条件不变,求a的值.[解]因为a∈A,所以a=a-3或a=2a-1,a2-4=a,又因为A为有理数集,解得a=1.此时集合A含有三个元素-2,1,-3,符合题意,故实数a的值为1.1.集合元素特性中的互异性,指的是一个集合中不能有两个相同的元素,利用其可以解决一些实际问题,如三角形中的边长问题及元素能否组成集合问题.2.求解字母的取值范围:当一个集合中的元素含有字母,求解字母的取值范围时,一般可先利用集合中元素的确定性解出集合中字母的所有可能的值或范围,再根据集合元素的互异性进行检验,防止产生增解.(如本题中的a=-1)集合中元素的三个特征(1)确定性:给定的集合,它的元素必须是确定的,即按照明确的判断标准判断给定的元素,或者在这个集合里,或者不在这个集合里,二者必居其一.(2)互异性:对于给定的一个集合,它的任何两个元素都是不同的.若A是一个集合,a,b是集合A的任意两个元素,则一定有a≠b.(3)无序性:集合中的元素是没有顺序的,集合与其中元素的排列次序无关.如由元素a,b,c与由元素b,a,c组成的集合是相等的集合.1.下列所给关系正确的个数是( )①π∈R;②23Q;③0∈N*;④|-4|N*.A.1 B.2C.3 D.4B[∵π是实数,23是无理数,0不是正整数,|-4|=4是正整数,∴①②正确,③④不正确,正确的个数是2.]2.下列能构成集合的有________.①中央电视台著名节目主持人;②我市跑得快的汽车;③上海市所有的中学生;④香港超过100层的高楼.③④[①②中研究的对象不确定,因此不能构成集合.]3.已知集合S 中三个元素a ,b ,c 是△ABC 的三边长,那么△ABC 一定不是下面给出的________.①锐角三角形;②直角三角形;③钝角三角形;④等腰三角形. ④ [由元素的互异性知a ,b ,c 均不相等.]4.若x ∈N ,求满足2x -5<0的元素组成的集合中所有元素的和. [解] 由2x -5<0,得x <52,又x ∈N ,∴x =0,1,2,故所有元素之和为3.。
2019_2020学年高中数学第1章集合1.1集合的含义及其表示(第2课时)集合的表示讲义苏教版必修1
第2课时集合的表示1.集合的表示方法将集合的元素一一列举出来,并置于花括号“{}”内.用这种方法表示集合,元素之间要用逗号分隔,但列举时与元素的次序无关.4.集合相等如果两个集合所含的元素完全相同(即A中的元素都是B的元素,B中的元素也都是A的元素),那么称这两个集合相等.5.描述法将集合的所有元素都具有的性质(满足的条件)表示出来,写成{x|p(x)}的形式.6.集合的三种表示方法(1)Venn图法表示集合用一条封闭曲线的内部来表示集合的方法叫做Venn图法.(2)三种表示方法的关系一个集合可以采用不同的表示方法表示,即集合的表示方法不唯一.1.思考辨析(正确的打“√”,错误的打“×”)(1)由1,1,2,3组成的集合可用列举法表示为{1,1,2,3}.( )(2)集合{(1,2)}中的元素是1和2. ( )(3)集合A={x|x-1=0}与集合B={1}相等.( )[答案](1)×(2)×(3)√[提示](1)×.由集合元素的互异性知错.(2)×.集合{(1,2)}中的元素为有序实数对(1,2).(3)√.∵A={x|x-1=0}={1}=B,故正确.2.(1)集合{1,2,3}与{3,2,1}________相等集合.(填“是”或“不是”)(2)若集合{1,a}与集合{2,b}相等,则a+b=________.(1)是(2)3 [(1)集合{1,2,3}与{3,2,1}元素完全相同,故两集合是相等集合.(2)由于{1,a}={2,b},故a=2,b=1,∴a+b=3.]3.(1)不等式x-7<3的解集用描述法可表示为________.(2)集合{(x,y)|y=x+1}表示的意义是________.(1){x|x<10}(2)直线y=x+1上的所有点组成的集合[(1)∵x-7<3,∴x<10,故解集可表示为{x|x<10}.(2)集合的代表元素是点(x,y),共同特征是y=x+1,故它表示直线y=x+1上的所有点组成的集合.]4.若方程x2-4=0的解组成的集合记作A;不等式x>3的解组成的集合记作B;方程x2=-1的实数解组成的集合记作C.则集合A,B,C中,________是有限集,________是空集,________是无限集.A C B[∵x2-4=0,∴x=±2,即A中只有2个元素,A为有限集;大于3的实数有无数个,则B为无限集;x2=-1无实根,则C为空集.](1)B={(x,y)|x+y=4,x∈N*,y∈N*};(2)不等式3x-8≥7-2x的解集;(3)坐标平面内抛物线y =x 2-2上的点的集合;(4)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪99-x ∈N ,x ∈N . 思路点拨:(1)(4)中的元素个数很少,用列举法表示;(2)(3)中的元素无法一一列举,用描述法表示.[解] (1)∵x +y =4,x ∈N *,y ∈N *,∴⎩⎪⎨⎪⎧x =1,y =3,或⎩⎪⎨⎪⎧x =2,y =2,或⎩⎪⎨⎪⎧x =3,y =1.∴B ={(1,3),(2,2),(3,1)}. (2)由3x -8≥7-2x ,可得x ≥3,所以不等式3x -8≥7-2x 的解集为{x |x ≥3}. (3){(x ,y )|y =x 2-2}.(4)∵99-x ∈N ,x ∈N ,∴当x =0,6,8这三个自然数时,99-x =1,3,9也是自然数,∴A={0,6,8}.1.集合表示法的选择对于有限集或元素间存在明显规律的无限集,可采用列举法;对于无明显规律的无限集,可采用描述法.2.用列举法时要注意元素的不重不漏,不计次序,且元素与元素之间用“,”隔开. 3.用描述法表示集合时,常用的模式是{x |p (x )},其中x 代表集合中的元素,p (x )为集合中元素所具备的共同特征.要注意竖线不能省略,同时表达要力求简练、明确.1.试分别用列举法和描述法表示下列集合: (1)方程x 2-x -2=0的解集;(2)大于-1且小于7的所有整数组成的集合.[解] (1)方程x 2-x -2=0的根可以用x 表示,它满足的条件是x 2-x -2=0,因此,用描述法表示为{x ∈R |x 2-x -2=0};方程x 2-x -2=0的根是-1,2,因此,用列举法表示为{-1,2}.(2)大于-1且小于7的整数可以用x 表示,它满足的条件是x ∈Z 且-1<x <7,因此,用描述法表示为{x ∈Z |-1<x <7};大于-1且小于7的整数有0,1,2,3,4,5,6,因此,用列举法表示为{0,1,2,3,4,5,6}.“不是”)(2)若集合A ={1,a +b ,a },集合B =⎩⎨⎧⎭⎬⎫0,b a,b 且A =B ,则a =________,b =________.思路点拨:(1)解出集合A ,并判断与B 是否相等;(2)找到相等的对应情况,解方程组即可.(1)是 (2)-1 1 [(1)x 3-x =x (x 2-1)=0, ∴x =±1或x =0. 又x ∈N ,∴A ={0,1}=B .(2)由题干,a ≠0,故a +b =0,∴b =-a . ∴b a=-1,∴a =-1,b =1.]已知集合相等求参数,关键是根据集合相等的定义,建立关于参数的方程(组),求解时还要注意集合中元素的互异性.2.已知集合A ={a ,a +b ,a +2b },B ={a ,ax ,ax 2}.若A =B ,求实数x 的值.[解] 若⎩⎪⎨⎪⎧a +b =ax ,a +2b =ax 2,消去b ,则a +ax 2-2ax =0,∴a (x -1)2=0,即a =0或x =1.当a =0时,集合B 中的元素均为0,故舍去; 当x =1时,集合B 中的元素均为a ,故舍去.若⎩⎪⎨⎪⎧a +b =ax 2,a +2b =ax ,消去b ,则2ax 2-ax -a =0.又∵a ≠0, ∴2x 2-x -1=0, 即(x -1)(2x +1)=0. 又∵x ≠1, ∴x =-12.经检验,当x =-12时,A =B 成立.综上所述,x =-12.1.集合{x |x 2-1=0}的意义是什么?[提示] 表示方程x 2-1=0的根组成的集合,即{1,-1}.2.集合A ={x |ax 2+bx +c =0(a ≠0)}可能含有几个元素,每一种情况对a ,b ,c 的要求是什么?[提示] 因a ≠0,故ax 2+bx +c =0一定是二次方程,其根的情况与Δ的正负有关.若A 中无元素,则Δ=b 2-4ac <0;若A 中只有一个元素,则Δ=b 2-4ac =0;若A 中有两个元素,则Δ=b 2-4ac >0.【例3】 集合A ={x |kx 2-8x +16=0},若集合A 中只有一个元素,试求实数k 的值,并用列举法表示集合A .思路点拨:A 中只有一个元素说明方程kx 2-8x +16=0可能是一次方程,也可能是二次方程,但Δ=0.[解] (1)当k =0时,原方程为16-8x =0.∴x =2,此时A ={2}.(2)当k ≠0时,由集合A 中只有一个元素,∴方程kx 2-8x +16=0有两个相等实根,则Δ=64-64k =0,即k =1,从而x 1=x 2=4,∴集合A ={4}. 综上所述,实数k 的值为0或1. 当k =0时,A ={2}; 当k =1时,A ={4}.1.用列举法表示集合的步骤 (1)求出集合中的元素; (2)把这些元素写在花括号内.2.用列举法表示集合的优点是元素一目了然;缺点是不易看出元素所具有的属性.3.已知函数f (x )=x 2-ax +b (a ,b ∈R ).集合A ={x |f (x )-x =0},B ={x |f (x )+ax =0},若A ={1,-3},试用列举法表示集合B .[解] ∵A ={1,-3},∴⎩⎪⎨⎪⎧f (1)-1=0,f (-3)-(-3)=0⇒⎩⎪⎨⎪⎧1-a +b -1=b -a =0,(9+3a +b )+3=3a +b +12=0⇒⎩⎪⎨⎪⎧a =-3,b =-3,∴f (x )+ax =x 2+3x -3+(-3x )=0=x 2-3, ∴x =±3,∴B ={3,-3}.集合表示的要求:(1)根据要表示的集合元素的特点,选择适当方法表示集合,一般要符合最简原则. (2)一般情况下,元素个数无限的集合不宜用列举法表示,描述法既可以表示元素个数无限的集合,也可以表示元素个数有限的集合.1.方程组⎩⎪⎨⎪⎧x +y =3,x -y =-1的解集不可表示为( )A .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧ x +y =3,x -y =-1 B .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧ x =1,y =2 C .{1,2}D .{(1,2)}C [方程组的解应是有序数对,③是数集,不能作为方程组的解.] 2.集合{x ∈N *|x -3<2}用列举法可表示为________. {1,2,3,4} [∵x -3<2,∴x <5. 又x ∈N *,∴x =1,2,3,4.]3.已知M ={2,a ,b },N ={2a,2,b 2},且M =N ,则a +b =________.1或34 [∵M =N ,则有⎩⎪⎨⎪⎧a =2a ,b =b 2或⎩⎪⎨⎪⎧a =b 2,b =2a ,解得⎩⎪⎨⎪⎧a =0,b =1或⎩⎪⎨⎪⎧a =14,b =12,∴a +b =1或34.]4.已知集合A ={x |y =x 2+3},B ={y |y =x 2+3},C ={(x ,y )|y =x 2+3},它们三个集合相等吗?试说明理由.[解] 三个集合不相等,这三个集合都是描述法给出的,但各自的意义不一样.集合A表示y=x2+3中x的范围,x∈R,∴A=R,集合B表示y=x2+3中y的范围,B ={y|y≥3},集合C表示y=x2+3上的点组成的集合.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高中数学 1.1集合的含义及其表示学案苏教版必修11.一般地,一定范围内某些确定的不同的对象的全体构成一个集合,集合中的每一个对象称为该集合的元素,简称元.2.元素与集合的关系:如果x是集合A中的元素,则说x属于集合A,记作x∈A;若x不是集合A中的元素,就说x不属于集合A,记作x∉A.3.集合中元素的三个特征:(1)确定性:给定集合A,对于某个对象x,“x∈A”或“x∉A”这两者必居其一且仅居其一.(2)互异性:集合中的元素互不相同,不允许重复.(3)无序性:在一个给定的集合中,元素之间无先后次序之分.4.集合的表示.(1)把集合中的元素一一列举出来,写在大括号内元素之间逗号分隔表示集合的方法称为列举法.(2)把集合中的元素的公共属性描述出来,写在大括号内表示集合的方法称为描述法.常用形式是:{x|p},竖线前面的x叫做集合的代表元素,p表示元素x所具有的公共属性.(3)用平面上一段封闭的曲线的内部表示集合,这种图形称为Venn图.用Venn图、数轴上的区间及直角坐标平面中的图形等表示集合的方法称为图示法.0、1、2、3、4.7.含有有限个元素的集合叫有限集,含有无限个元素的集合叫无限集.例如:大于0小于1的实数构成的集合是有限集还是无限集?无限集.例如:小于3的自然数集用列举法表示为{0,1,2}(其他合理皆可);用描述法表示为{x|x<3且x∈N}或{小于3的自然数}.,一、集合的概念及其元素的特征集合,其具有确定性、互异性、无序性特征.特别是互异性特征,既是易出错点,也是高考常考知识点.例如由book中的字母组成的集合是{b,o,k}.方程(x2-4x+4)(x+3)=0的根构成的集合为{2,-3},不能写成{2,2,-3}.无序性就是指集合的元素之间没有顺序关系,只要放在一起,不存在次序问题.二、元素与集合的关系元素a与集合A之间是属于或不属于关系,即要么a∈A,要么a∉A.三、常用数集的符号表示及集合的分类自然数集N,正整数集N*或N+,整数集Z,有理数集Q,实数集R.按照集合所含元素个数的多少分为:有限集、无限集、空集.四、集合的表示方法:列举法、描述法、Venn图用列举法、描述法表示集合时,应注意根据问题的不同情境或形式选择合理的表示方法.列举法不宜表示无限集,用描述法表示集合时,应该注意代表元素的性质.例如表示数集时代表元素可用一个字母x 表示,而表示点集时代表元素则用(x ,y )来表示.此外用Venn 图表示集合的最大优势在于形象直观.总之应根据不同的情况合理地选择应用.五、注重对空集概念的理解一般地,我们把不含任何元素的集合称为空集,记作∅.空集是特殊集合,它不含任何元素,规定它是有限集,特别要注意∅与{0}{∅}的区别.基础巩固1.下列说法正确的是(C )A .我校爱好足球的同学组成一个集合B .{1,2,3}是不大于3的自然数组成的集合C .集合{1,2,3,4,5}和{5,4,3,2,1}表示同一集合D .数1,0,5,12,32,64, 14组成的集合有7个元素 2.若集合A ={-1,1},B ={0,2},则集合{z |z =x +y ,x ∈A ,y ∈B }中的元素个数为(C )A .5个B .4个C .3个D .2个3.下列四个关系中,正确的是(A )A .a ∈{a ,b }B .{a }∈{a ,b }C .a ∉{a }D .a ∉{a ,b }4.集合M ={(x ,y )|xy <0,x ∈R ,y ∈R }是(D )A .第一象限内的点集B .第三象限内的点集C .第四象限内的点集D .第二、四象限内的点集解析:集合M 为点集且横、纵坐标异号,故是第二、四象限内的点集.5.若A ={(2,-2),(2,2)},则集合A 中元素的个数是(B )A .1个B .2个C .3个D .4个6.集合M 中的元素都是正整数,且若a ∈M ,则6-a ∈M ,则所有满足条件的集合M 共有(B )A .6个B .7个C .8个D .9个解析:由题意可知,集合M 中包含的元素可以是3,1和5,2和4中的一组,两组,三组,即M 可为{3},{1,5},{2,4},{3,1,5},{3,2,4},{1,5,2,4},{3,1,5,2,4},共7个.7.下列集合中为空集的是(C )A .{x ∈N |x 2≤0}B .{x ∈R |x 2-1=0}C .{x ∈R |x 2+x +1=0}D .{0}8.设集合A ={2,1-a ,a 2-a +2},若4∈A ,则a =(C )A .-3或-1或2B -3或-1C .-3或2D .-1或2解析:当1-a =4时,a =-3,A ={2,4,14};当a 2-a +2=4时,得a =-1或2,当a =-1时,A ={2,2,4},不满足互异性,当a =2时,A ={2,4,-1}.∴a =-3或2.9.集合P ={x |x =2k ,k ∈Z },Q ={x |x =2k +1,k ∈Z },M ={x |x =4k +1,k ∈Z },若a ∈P ,b ∈Q ,则有(B )A .a +b ∈PB .a +b ∈QC .a +b ∈MD .a +b 不属于P 、Q 、M 中任意一个解析:∵a ∈P ,b ∈Q ,∴a =2k 1,k 1∈Z ,b =2k 2+1,k 2∈Z .∴a +b =2(k 1+k 2)+1,k 1,k 2∈Z .∴a +b ∈Q .10.由下列对象组成的集体,其中为集合的是①④⑤(填序号).①不超过2π的正整数;②高一数学课本中的所有难题;③中国的高山;④平方后等于自身的实数;⑤高一(2)班中考500分以上的学生.11.若a =n 2+1,n ∈N ,A ={x |x =k 2-4k +5,k ∈N },则a 与A 的关系是________.解析:∵a =n 2+1=(n +2)2-4(n +2)+5,且当n ∈N 时,n +2∈N .答案:a ∈A12.集合A ={x |x ∈R 且|x -2|≤5}中最小整数为_______解析:由|x -2|≤5⇒-5≤x -2≤5⇒-3≤x ≤7,∴最小整数为-3.答案:-3.13.一个集合M 中元素m 满足m ∈N *,且8-m ∈N *,则集合M 的元素个数最多为______.答案:7个14.下列各组中的M 、P 表示同一集合的是________(填序号).①M ={3,-1},P ={(3,-1)};②M ={(3,1)},P ={(1,3)};③M ={y |y =x 2-1,x ∈R },P ={a |a =x 2-1,x ∈R };④M ={y |y =x 2-1,x ∈R },P ={(x ,y )|y =x 2-1,x ∈R }.答案:③ 能力提升15.已知集合A ={x |x ∈R |(a 2-1)x 2+(a +1)x +1=0}中有且仅有一个元素,求a 的值.解析:(1)若a 2-1=0,则a =±1.当a =1时,x =-12,此时A =⎩⎨⎧⎭⎬⎫-12,符合题意;当a =-1时,A =∅,不符合题意.(2)若a 2-1≠0,则Δ=0,即(a +1)2-4(a 2-1)=0⇒a =53,此时A =⎩⎨⎧⎭⎬⎫-34,符合题意.综上所述,a =1或53. 16.若集合A =⎩⎨⎧⎭⎬⎫a ,b a ,1又可表示为{a 2,a +b ,0},求a 2 014+b 2 013的值. 解析:由题知a ≠0,故b a=0.∴b =0.∴a 2=1.∴a =±1.又a ≠1,故a =-1.∴a 2 014+b 2 013=(-1)2 014+02 013=1.17.设正整数的集合A 满足:“若x ∈A ,则10-x ∈A ”.(1)试写出只有一个元素的集合A ;(2)试写出只有两个元素的集合A ;(3)这样的集合A 至多有多少个元素?解析:(1)令x =10-x ⇒x =5.故A ={5}.(2)若1∈A ,则10-1=9∈A ;反过来,若9∈A ,则10-9=1∈A .因此1和9要么都在A 中,要么都不在A 中,它们总是成对地出现在A 中.同理,2和8,3和7,4和6成对地出现在A 中,故{1,9}或{2,8}或{3,7}或{4,6}为所求集合.(3)A 中至多有9个元素,A ={1,9,2,8,3,7,4,6,5}.18.若数集M 满足条件:若a ∈M ,则1+a 1-a∈M (a ≠0,a ≠±1),则集合M 中至少有几个元素?解析:∵a ∈M ,1+a 1-a∈M , ∴1+1+a 1-a 1-1+a 1-a=-1a ∈M . ∴1-1a 1+1a =a -1a +1∈M .∴1+a -1a +11-a -1a +1=a ∈M . ∵a ≠0且a ≠±1,∴a ,1+a 1-a ,-1a ,a -1a +1互不相等.∴集合M 中至少有4个元素.2019-2020年高中数学 1.1集合的概念(1)教案 新人教A 版必修1 教学目的:(1)使学生初步理解集合的概念,知道常用数集的概念及记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义教学重点:集合的基本概念及表示方法教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪内容分析:1.集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明教学过程:一、复习引入:1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;2.教材中的章头引言;3.集合论的创始人——康托尔(德国数学家)(见附录);4.“物以类聚”,“人以群分”;5.教材中例子(P4)二、讲解新课:阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.定义:一般地,某些指定的对象集在一起就成为一个集合.1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合记作N,(2)正整数集:非负整数集内排除0的集记作N*或N+(3)整数集:全体整数的集合记作Z ,(4)有理数集:全体有理数的集合记作Q ,(5)实数集:全体实数的集合记作R{}数R=数轴上所有点所对应的注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集记作N*或N+ Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*3、元素对于集合的隶属关系(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A(2)不属于:如果a不是集合A的元素,就说a不属于A,记作4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……⑵“∈”的开口方向,不能把a∈A颠倒过来写三、练习题:1、教材P5练习1、22、下列各组对象能确定一个集合吗?(1)所有很大的实数(不确定)(2)好心的人(不确定)(3)1,2,2,3,4,5.(有重复)3、设a,b是非零实数,那么可能取的值组成集合的元素是_-2,0,2__4、由实数x,-x,|x|,所组成的集合,最多含( A )(A)2个元素(B)3个元素(C)4个元素(D)5个元素5、设集合G中的元素是所有形如a+b(a∈Z, b∈Z)的数,求证:(1) 当x∈N时, x∈G;(2) 若x∈G,y∈G,则x+y∈G,而不一定属于集合G证明(1):在a+b(a∈Z, b∈Z)中,令a=x∈N,b=0,则x= x+0*= a+b∈G,即x∈G证明(2):∵x∈G,y∈G,∴x= a+b(a∈Z, b∈Z),y= c+d(c∈Z, d∈Z)∴x+y=( a+b)+( c+d)=(a+c)+(b+d)∵a∈Z, b∈Z,c∈Z, d∈Z∴(a+c) ∈Z, (b+d) ∈Z∴x+y =(a+c)+(b+d) ∈G,又∵=且不一定都是整数,∴=不一定属于集合G四、小结:本节课学习了以下内容:1.集合的有关概念:(集合、元素、属于、不属于)2.集合元素的性质:确定性,互异性,无序性3.常用数集的定义及记法五、课后作业:六、板书设计(略)七、课后记:八、附录:康托尔简介发疯了的数学家康托尔(Georg Cantor,1845-1918)是德国数学家,集合论的创始者1845年3月3日生于圣彼得堡,1918年1月6日病逝于哈雷康托尔11岁时移居德国,在德国读中学1862年17岁时入瑞士苏黎世大学,翌年入柏林大学,主修数学,1866年曾去格丁根学习一学期1867年以数论方面的论文获博士学位1869年在哈雷大学通过讲师资格考试,后在该大学任讲师,1872年任副教授,1879年任教授由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托尔对这类“无穷集合”问题发表了一系列文章,通过严格证明得出了许多惊人的结论康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂有人说,康托尔的集合论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”来自数学权威们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神分裂症,被送进精神病医院真金不怕火炼,康托尔的思想终于大放光彩1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作”可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦1918年1月6日,康托尔在一家精神病院去世集合论是现代数学的基础,康托尔在研究函数论时产生了探索无穷集和超穷数的兴趣康托尔肯定了无穷数的存在,并对无穷问题进行了哲学的讨论,最终建立了较完善的集合理论,为现代数学的发展打下了坚实的基础康托尔创立了集合论作为实数理论,以至整个微积分理论体系的基础从而解决17世纪牛顿(I.Newton,1642-1727)与莱布尼茨(G.W.Leibniz,1646-1716)创立微积分理论体系之后,在近一二百年时间里,微积分理论所缺乏的逻辑基础和从19世纪开始,柯西(A.L.Cauchy,1789-1857)、魏尔斯特拉斯(K.Weierstrass,1815-1897)等人进行的微积分理论严格化所建立的极限理论克隆尼克(L.Kronecker,1823-1891),康托尔的老师,对康托尔表现了无微不至的关怀他用各种用得上的尖刻语言,粗暴地、连续不断地攻击康托尔达十年之久他甚至在柏林大学的学生面前公开攻击康托尔横加阻挠康托尔在柏林得到一个薪金较高、声望更大的教授职位使得康托尔想在柏林得到职位而改善其地位的任何努力都遭到挫折法国数学家彭加勒(H.Poi-ncare,1854-1912):我个人,而且还不只我一人,认为重要之点在于,切勿引进一些不能用有限个文字去完全定义好的东西集合论是一个有趣的“病理学的情形”,后一代将把(Cantor)集合论当作一种疾病,而人们已经从中恢复过来了德国数学家魏尔(C.H.Her-mann Wey1,1885-1955)认为,康托尔关于基数的等级观点是雾上之雾菲利克斯.克莱因(F.Klein,1849-1925)不赞成集合论的思想数学家H.A.施瓦兹,康托尔的好友,由于反对集合论而同康托尔断交从1884年春天起,康托尔患了严重的忧郁症,极度沮丧,神态不安,精神病时时发作,不得不经常住到精神病院的疗养所去变得很自卑,甚至怀疑自己的工作是否可靠他请求哈勒大学当局把他的数学教授职位改为哲学教授职位健康状况逐渐恶化,1918年,他在哈勒大学附属精神病院去世流星埃.伽罗华(E.Galois,1811-1832),法国数学家伽罗华17岁时,就着手研究数学中最困难的问题之一一般π次方程求解问题许多数学家为之耗去许多精力,但都失败了直到1770年,法国数学家拉格朗日对上述问题的研究才算迈出重要的一步伽罗华在前人研究成果的基础上,利用群论的方法从系统结构的整体上彻底解决了根式解的难题他从拉格朗日那里学习和继承了问题转化的思想,即把预解式的构成同置换群联系起来,并在阿贝尔研究的基础上,进一步发展了他的思想,把全部问题转化成或者归结为置换群及其子群结构的分析上同时创立了具有划时代意义的数学分支——群论,数学发展史上作出了重大贡献1829年,他把关于群论研究所初步结果的第一批论文提交给法国科学院科学院委托当时法国最杰出的数学家柯西作为这些论文的鉴定人在1830年1月18日柯西曾计划对伽罗华的研究成果在科学院举行一次全面的意见听取会然而,第二周当柯西向科学院宣读他自己的一篇论文时,并未介绍伽罗华的著作1830年2月,伽罗华将他的研究成果比较详细地写成论文交上去了以参加科学院的数学大奖评选,论文寄给当时科学院终身秘书J.B.傅立叶,但傅立叶在当年5月就去世了,在他的遗物中未能发现伽罗华的手稿1831年1月伽罗华在寻求确定方程的可解性这个问题上,又得到一个结论,他写成论文提交给法国科学院这篇论文是伽罗华关于群论的重要著作当时的数学家S.K.泊松为了理解这篇论文绞尽了脑汁尽管借助于拉格朗日已证明的一个结果可以表明伽罗华所要证明的论断是正确的,但最后他还是建议科学院否定它1832年5月30日,临死的前一夜,他把他的重大科研成果匆忙写成后,委托他的朋友薛伐里叶保存下来,从而使他的劳动结晶流传后世,造福人类1832年5月31日离开了人间死因参加无意义的决斗受重伤1846年,他死后14年,法国数学家刘维尔着手整理伽罗华的重大创作后,首次发表于刘维尔主编的《数学杂志》上。