LED驱动原理设计及案例
LED驱动电源电路分析
LED驱动电源电路分析今天给大家简单分析一个(LED驱动)电路,供大家学习。
一,先从一个完整的LED驱动(电路原理)图讲起。
本文所用这张图是从网上获取,并不代表具体某个(产品),主要是想从这个图中,跟大家分享目前典型的恒流驱动电源原理,同时跟大家一起分享大牛对它的理解,希望可以帮到大家。
那么本文只做定性分析,只讨论(信号)的过程,对具体电压(电流)的参数量在这里不作讨论。
图1某款LED驱动电路原理图二、原理分析为了方便分析,把图1分成几个部分来讲1:输入过压保护主要是雷击或者市冲击带来的浪涌。
如果是(DC)电压从“+48V、GNG”两端进来通过R1的电阻,此电阻的作用是限流,若后面的线路出现短路时,R1流过的电流就会增大,随之两端压降跟着增大,当超过1W时就会自动断开,阻值增加至无穷大,从而达到保护输入电路+48V不受到负载的影响)限流后进入整流桥。
图2输入过压(保护电路)R1与RV构成了一个简单过压保护电路,RV是一个压敏元件,是利用具有非线性的(半导体)材料制作的而成,其伏安特性与稳压(二极管)差不多,正常情况显高阻抗状态,流过的电流很少,当电压高到一定的时候(主要是指尖峰浪涌,如打雷的时候高脉冲串通过市电串入进来),压敏RV会显现短路状态,直接截取整个输入总电流,使后面的电路停止工作,此时,由于所有电流将流过R1和RV,因R1只有1W的功率,所以瞬间可以开路,从而保护了整个电路不被损坏。
2、整流滤波电路当交流AC输入时,则桥式整流器是利用二极管的单向导通性进行整流的最常用的电路,将交流电转变为直流电。
当直流DC(+48V)电压直接进入整流桥BD时,输出一个上正下负的直流电压,如果+48V(电源)本身也是直流的,那整流桥的作用就是对输入起到的是极性保护作用,无论输入是上正下负还是上负下正都不会损坏驱动电源,通过C1C2L1进行滤波,图3是一个LCΠ型滤波电路,目的是将整流后的电压波形平滑的直流电。
简易的LED照明驱动电路设计
简易的LED照明驱动电路设计简易的LED照明驱动电路设计采用LED照明,首先需要考虑的是其亮度、成本以及寿命。
由于影响LED寿命的主要原因是其频繁启动瞬间的电流冲击,外界的各种浪涌脉冲,以及正常工作时的电流限制等,笔者在本文介绍的电路综合了这些因素,从电路设计上尽量避免大电流对LED照明灯具的冲击,并将其工作电流稳定在某一范围内,解决了目前LED照明灯具的亮度衰减问题,从而有效地延长其使用寿命。
LED均采用直流驱动,因此在市电与LED之间需要加一个电源适配器即LED驱动电源。
它的功能是把交流市电转换成适合LED的直流电。
通常驱动LED采用专用恒流源或者驱动芯片,容易受体积和成本等因素的限制,最经济实用的方法就是采用电容降压式电源。
用它驱动小功率L ED,具有不怕负载短路、电路简单等优点,而且一个电路能驱动1~70个小功率LED(但是,这种电源电路启动时的电流冲击,尤其是频繁启动,会给LED造成破坏。
当然,采取适当的保护便可避免这种冲击)。
电容降压式电源的典型电路如图1所示,C1为降压电容器(采用金属化聚丙烯电容),R1为C1提供放电回路。
电容C1为整个电路提供恒定的工作电流。
电容C2为电解电容,其耐压值取决于所串联的LED的个数(约为其总电压的1.5倍以上),它的主要作用是抑制通电瞬间引起的电压突变,从而降低电压冲击对LED寿命的影响。
R4为电容C2的泄流电阻,其阻值应随着LED个数的增加适当增加。
需要注意的是,该电路必须根据负载的电流大小选取适当的电容,而不是依据负载的电压和功率,通常降压电容C1的容量C与负载电流I o的关系可近似认为:C=14.5Io,其中C的容量单位是uF,Io的单位是A。
限流电容必须采用无极性电容,而且电容的耐压值须在630V以上。
由于电容降压电源是一种非隔离式电源,在通电瞬间会产生很大的电流,也就是所谓的浪涌电流。
此外,由于外界环境的影响(如雷击) 电网系统会侵入各种浪涌信号,有些浪涌会导致LED的损坏。
汽车LED照明驱动电路设计实例
汽车LED照明驱动电路设计实例设计需求:设计一个汽车LED照明驱动电路,该电路输入电压为12V,输出电压为3V,所需的电流为800mA。
设计步骤:1.确定LED参数在设计开始之前,首先需要确认LED的工作电流和电压参数。
假设所使用的LED的额定电流为800mA,额定电压为3V。
2.计算驱动电源参数由于输入电压为12V,输出电压为3V,所以需要设计一个降压电路来将输入电压降低到3V。
根据LED的电流参数,可计算出驱动电源的功率需求:P=V×I=3V×0.8A=2.4W。
3.选择开关电源芯片根据电源的功率需求,我们可以选择适合的开关电源芯片。
一般常用的芯片有LM2596、LM2576等,这些芯片具有高效率和稳定性。
4.组件选型和参数计算根据选择的开关电源芯片,我们还需要确定电感、电容和二极管等组件的参数。
根据芯片的数据手册,通过输入电压、输出电压和输出电流等参数计算得到。
5.进行原理图设计将选择的开关电源芯片和其他电子元件连接起来,形成一个完整的电路。
在原理图设计中,需要考虑到电路的稳定性和可靠性,避免电子元件之间的干扰和短路。
6.PCB布局设计在PCB布局设计中,需要考虑到电子元件的布置和连接,以保证电路的正常运行。
在布局设计中还需注意电路的EMC电磁兼容性,尽量减小电路之间的干扰和电磁辐射。
7.元器件焊接和组装根据PCB布局设计,对电子元件进行焊接和组装。
焊接时需要注意焊接接触的质量,避免冷焊、漏焊等导致电路出现问题。
8.功耗测试和调试完成电路的焊接和组装后,需要进行功耗测试和调试。
测试时需要使用电子负载等设备对电路进行负载测试,以确保电路能够正常工作,并符合设计要求。
总结:上述是一个简单的汽车LED照明驱动电路设计实例。
在实际设计过程中,还需要考虑到汽车电路的稳定性、可靠性和安全性等因素,以确保电路在各种工况下能够正常工作。
此外,还需要根据具体的需求进行电路参数的调整和优化,以实现更好的性能和效果。
低压恒流led驱动电路原理
低压恒流LED驱动电路原理LED(Light Emitting Diode)作为一种半导体光源,广泛应用于照明、显示等领域。
在LED应用中,为了保证LED的工作稳定性和延长其使用寿命,通常需要采用恒流驱动电路来驱动LED。
低压恒流LED驱动电路是一种常见的LED驱动电路,本文将介绍其原理及工作方式。
一、基本原理低压恒流LED驱动电路的基本原理是通过电路控制实现LED工作电流的稳定输出,从而保证LED的亮度和稳定性。
在低压条件下,LED的电压一般在2V左右,因此低压恒流LED驱动电路主要针对这一特点设计,以满足对LED工作电流的精确控制。
二、电路组成1. 电压稳定器:低压恒流LED驱动电路通常采用电压稳定器作为基础,在输入电压变化时能够提供稳定的输出电压。
2. 比较器:比较器用于检测LED工作电流与设定电流之间的差异,并输出相应的控制信号。
3. 驱动器:驱动器接收比较器输出的控制信号,调节输出电流,以实现LED的恒流驱动。
4. 反馈电路:反馈电路用于将LED电流信息反馈给比较器和驱动器,实现闭环控制,使LED工作电流保持稳定。
三、工作原理低压恒流LED驱动电路的工作原理如下:1. 输入电压经过电压稳定器稳压后,作为驱动器的输入电压。
2. 比较器通过检测LED工作电流和设定电流的差异,生成控制信号。
3. 驱动器根据比较器输出的控制信号,调节输出电流,使LED 工作电流保持恒定。
4. 反馈电路将LED电流信息反馈给比较器和驱动器,实现闭环控制,持续调节输出电流,以保持LED工作电流的恒定。
四、特点及优势低压恒流LED驱动电路具有以下特点及优势:1. 稳定性好:通过闭环控制,能够实现LED工作电流的恒定输出,保证LED的稳定亮度。
2. 效率高:采用恒流驱动方式,可以最大程度利用电能,减少能量浪费。
3. LED保护:在电源波动或其他异常情况下,能够有效保护LED,延长LED的使用寿命。
4. 灵活性强:可以根据实际需求进行设计调整,适用于多种LED应用场景。
经典led驱动电源参考设计大集锦(内含设计原理图、实际案例分析)
经典LED驱动电源参考设计大集锦(内含设计原理图、实际案例分析)PI公司的众多LED驱动电源解决方案中,高效率、低功耗,外围简单、可调光、高稳定性是最大的特点,涉及工业、商业、家用等应用领域。
不管是应客户需求设计,还是按相关标准设计,还是基于对行业发展趋势把握所做的前瞻性设计,都同样的出色,其方案、设计、想法具有行业指引性。
其众多的驱动电源参考设计中蕴含很多电源基本理论,就算不用其公司的IC也可以作为设计参考,对工程师有超强的指导意义。
1.开关电源设计软件- PI Expert™ 操作/设计指南PI Expert可提供构建和测试工作原型所需的所有必要信息。
这些信息包括完整的交互式电路原理图、物料清单(BOM)、电路板布局建议以及详细的电气参数表。
PI Expert还可提供完整的变压器设计,包括磁芯尺寸、线圈圈数、适当的线材规格以及每个绕组所用的并绕线数。
此外,还可生成详细的绕组机械装配说明。
该程序可以将设计时间从数天缩短至几分钟。
2.采用LYTSwitch的带功率因数校正(PFC)的23 W T8电源设计适用于430 mA V (50 V) T8灯管的隔离式、低输入电压、超薄驱动器设计(DER-338)现已推出。
这款新设计采用了PI新推出的LYTSwitch™ LED驱动器系列器件LYT4215E。
3.一款高功率因数、可控硅调光的非隔离LED驱动器PI推出了一份新的设计报告((DER-364),介绍的是一款使用广受好评的LYTSwitch IC设计的高功率因数、可控硅调光的非隔离LED驱动器。
其效率额定值高达85%以上,具有无闪烁调光和单向快速启动(<200 ms)的特性。
4.针对T10灯管的最新24 W LED驱动器设计PI的一款效率达92%的24 W T10灯LED驱动器设计(DER-356)。
该设计可极大简化离线式、带功率因数校正的LED电源的生产。
5.适用于可控硅调光A19灯的全新10 W PFC LED驱动器设计PI发布的关于针对可调光A19灯的全新10 W驱动器设计(DER-328)6.元件数最少的T8灯管LED驱动器设计–高效率、低THDPI现已推出DER-345–一款针对T8 LED灯的低输入电压、非隔离、高效率、高功率因数LED驱动器设计。
led灯驱动电源电路图大全(六款模拟电路设计原理图详解)
led灯驱动电源电路图大全(六款模拟电路设计原理图详解)led灯驱动电源电路图(一)电路工作原理LED楼道灯的电路如下图所示。
电路由电容降压电路、整流电路、LED发光电路和光电控制电路等部分组成。
220V交流电经电容C1、R1降压限流后在A、B两点的交流电压约为15V,由VD1~VD4.进行整流,在C2上得到约14V的直流电压作为高亮度发光二极管VD5~VD8的工作电压,发光二极管的工作电流约为14mA。
由于电容C1不消耗有功功率,泄放电阻消耗的功率可忽略不计,因此整个电路的功耗约为15&TImes;0.014≈0-2(W)。
为了进一步节省电能和延长高亮度发光二极管的使用寿命,电路中加入了由光敏电阻R2、电阻R3和三极管VT1等组成的光电控制电路,在夜晚光敏电阻R2的阻值可达100K以上,这时C2两端的电压经R2、R3分压后提供给VT1基极的直流偏置电压很小,VT1截止,对发光二极管的工作没有任何影响;白天时,由于光电效应的作用,R2的阻值可减小到1OK以下,这时VT1导通并接近饱和,由于通过C1的电流最大只能达到15mA,由于VTl的分流,C2上的电压可下降到4V以下。
led灯驱动电源电路图(二)LED驱动电源的具体要求LED是低压发光器件,具有长寿命、高光效、安全环保、方便使用等优点。
对于市电交流输入电源驱动,隔离输出是基于安全规范的要求。
LED驱动电源的效率越高,则越能发挥LED高光效,节能的优势。
同时高开关工作频率,高效率使得整个LED驱动电源容易安装在设计紧凑的LED灯具中。
高恒流精度保证了大批量使用LED照明时的亮度和光色一致性。
10W以下功率LED灯杯应用方案目前10W以下功率LED应用广泛,众多一体式产品面世,即LED 驱动电源与LED灯整合在一个灯具中,方便了用户直接使用。
典型的灯具规格有GU10、E27、PAR30等。
针对这一应用,我们设计了如下方案(见图1)图1:基于AP3766的LED驱动电路原理图该方案特点如下:1.基于最新的LED专用驱动芯片AP3766,采用原边控制方式,无须光耦和副边电流控制电路,实现隔离恒流输出,电路结构简单。
《LED驱动电源》课件
电源效率
选择高效的拓扑结构和元件,提高电源的效率。
温度管理
合理设计散热结构,确保电源在高温环境下的 可靠性。
电磁兼容
采取滤波和屏蔽措施,减小电磁干扰的影响。
过载和短路保护
设计过载和短路保护电路,确保电源的安全可 靠性。
LED驱动电源的参数选择
额定电流 输出功率 输入电压 效率要求
选择适合LED灯工作的电流值。 根据LED灯的功率需求选择合适的电源。 根据应用场景选择合适的输入电压范围。 根据项目需求选择合适的电源效率。
《LED驱动电源》PPT课件
LED驱动电源是现代照明中不可或缺的组件。本课件将介绍LED驱动电源的工 作原理、设计要点以及故障排查方法,帮助您深入了解这一重要领域。
产品概述
型,并了解它们在照明应用 中的作用和优势。
LED驱动电源原理
1 整流和滤波
将交流电转换为直流电, 并滤除杂波。
2 恒流控制
通过恒流源确保LED灯的 稳定亮度。
3 电流输出
将稳定的电流输出给LED 灯进行驱动。
常见的LED驱动电源类型
硬盘型
常用于小功率LED灯,具有小尺 寸和低成本的优势。
批处理型
适用于大规模生产,具有高效 率和稳定性的特点。
调光型
可以根据需求调整亮度,适用 于需要调光的场景。
LED驱动电源的设计要点
常见的LED驱动电源故障及排查方法
1
无输出
检查输入电源、保险丝、连接线路等。
闪烁或不稳定
2
可能是LED灯本身故障或电源输出不稳
定。
3
过热或过载
检查散热系统、输出电流是否超过额定 值。
LED驱动电源的应用案例
办公室照明
led驱动 典型电路
led驱动典型电路
典型的LED驱动电路是使用恒流源或恒压源控制LED的电流和电压的,以下是一些常见的LED驱动电路:
1. 恒流源电路:这是最常见的LED驱动电路,通过控制电流源的输出电流来控制LED的亮度。
恒流源电路通常包括一个恒流源和一个电流限制电阻。
当LED的工作电压在一定范围内变化时,恒流源能够自动调整输出电流以保持恒定的亮度。
2. 恒压源电路:这种电路以恒定的电压驱动LED。
通常使用电流限制电阻来限制电流,以保持LED的亮度稳定。
恒压源电路适用于工作电流相对较高的LED。
3. PWM(脉宽调制)驱动电路:PWM驱动电路通过调制LED的驱动电流的占空比来控制亮度。
这种电路通常使用一个PWM控制器和一个功率放大器。
PWM信号的周期和占空比可根据需要调整,从而实现LED的亮度调节。
4. 高效驱动电路:这种电路通过使用转换器或升压技术来提高能效。
常见的高效驱动电路包括开关电源、升压转换器和Boost/Buck转换器等。
这些是一些常见的LED驱动电路,具体的电路设计会根据应用需求和LED参数进行调整。
LED显示屏的的工作原理及驱动电路
LED显示屏的的工作原理及驱动电路LED显示屏(Light Emitting Diode Display)是一种利用半导体材料发光特性制作的显示装置,其工作原理基于LED的发光作用。
本文将从LED的工作原理及驱动电路两个方面详细介绍LED显示屏的工作原理。
首先,我们来了解LED的工作原理。
LED是一种可以将电能转化为光能的二极管,它由P型半导体和N型半导体组成,两者之间形成一个PN 结。
当正向偏压加到LED上时,电流从P端流向N端,电子与空穴结合,发生复合过程。
在这个过程中,能量以光的形式释放出来,形成发光。
LED的发光颜色由半导体材料的组成决定,常见的有红、绿、蓝和黄等。
了解了LED的工作原理后,接下来我们来介绍LED显示屏的驱动电路。
LED显示屏通常由一组多个LED组成,这些LED被排列成矩阵或行列交叉的方式。
驱动电路主要分为两部分:行驱动电路和列驱动电路。
行驱动电路通过对每一行的LED进行选择性驱动来实现显示功能。
它由多个选择开关和行驱动芯片组成。
在每一行中,选择开关根据需要将行驱动芯片连接到相应的行LED上。
通过控制选择开关的通断,可以选择性地对每一行进行驱动,从而控制LED的亮灭。
列驱动电路则负责对每一列的LED进行驱动。
它通常由列驱动芯片和预处理电路组成。
预处理电路用于处理输入信号,将其转换为适合列驱动芯片的控制信号。
列驱动芯片则根据控制信号对每一列的LED进行驱动,控制LED的亮灭。
在驱动电路中,还需要使用一些辅助电路来提供合适的电源和时钟信号。
电源电路负责提供合适的电压和电流,以保证LED在正常工作范围内。
时钟信号用于同步控制行驱动和列驱动,以确保LED显示屏的稳定性和准确性。
总结起来,LED显示屏的工作原理是基于LED的发光特性,通过驱动电路对LED进行选择性驱动来实现显示功能。
驱动电路由行驱动电路和列驱动电路组成,通过控制信号对LED进行驱动,从而控制LED的亮灭。
辅助电路则提供合适的电源和时钟信号,确保LED显示屏的正常工作。
LED节能灯的工作原理及原理图
LED节能灯的工作原理及原理图LED节能灯是一种高效、节能的照明设备,它通过LED(Light Emitting Diode,发光二极管)发光原理来实现照明。
LED节能灯的工作原理非常简单,主要包括LED发光原理、电路驱动原理和散热原理。
一、LED发光原理LED是一种半导体器件,其发光原理是基于电子与空穴复合释放能量而产生光。
当正向电流通过LED时,电子从N型半导体区域注入到P型半导体区域,与P型区域的空穴发生复合,能量释放为光子,从而产生可见光。
LED的发光颜色取决于所使用的半导体材料。
二、电路驱动原理LED节能灯的电路驱动原理主要分为直流驱动和交流驱动两种。
1. 直流驱动直流驱动是将交流电源转换为恒流电源,通过电流的稳定控制来驱动LED发光。
一般采用恒流驱动电路,其中包括恒流源和电流控制电路。
恒流源可以保证LED在工作过程中电流的稳定,从而保证LED的亮度和寿命。
2. 交流驱动交流驱动是将交流电源直接通过整流电路转换为直流电源,然后通过电路控制LED的亮灭。
交流驱动通常使用电容器和电阻来限制电流,控制LED的亮度。
三、散热原理LED节能灯的散热原理非常重要,因为LED的工作温度会直接影响其亮度和寿命。
散热原理主要包括导热材料的选择和散热结构的设计。
1. 导热材料为了能够有效地散热,LED节能灯通常使用金属基板作为散热材料,如铝基板或铜基板。
金属基板具有良好的导热性能,可以将发光二极管产生的热量迅速传导到散热结构上。
2. 散热结构散热结构的设计也非常重要,通常采用散热片或散热鳍片来增加散热面积,提高散热效果。
同时,还可以使用散热胶或散热膏来提高散热材料与散热结构之间的热传导效率。
LED节能灯的原理图如下:[原理图]在原理图中,我们可以看到LED节能灯的主要组成部分,包括LED发光二极管、电阻、电容、恒流源和开关。
LED发光二极管是LED节能灯的核心组件,通过正向电流驱动来实现发光。
电阻和电容用于限制和稳定电流,保证LED的工作稳定性。
灯光驱动的原理及应用实例
灯光驱动的原理及应用实例1. 灯光驱动的原理灯光驱动是指通过电流或电压来控制灯光的亮度或颜色的技术。
在灯光驱动中,常见的原理包括电流驱动和电压驱动。
1.1 电流驱动电流驱动是指通过控制电流的大小来调控灯光的亮度。
常见的电流驱动方式有直流电流驱动和交流电流驱动。
直流电流驱动直流电流驱动是指通过直流电源提供恒定的电流来驱动灯光。
这种驱动方式具有稳定性高、可靠性好的特点。
常见的直流电流驱动方式有线性驱动和开关驱动。
•线性驱动:通过调节线性变阻器、电流源或电压源的输出来改变灯光的亮度。
这种驱动方式简单可靠,但效率较低,决定约束较大。
•开关驱动:通过开关元件(如MOSFET、晶闸管等)的通断控制来改变灯光的亮度。
这种驱动方式具有高效率、体积小和功耗低的特点,被广泛应用。
交流电流驱动交流电流驱动是指通过交流电源提供变化的电流来驱动灯光。
常见的交流电流驱动方式有脉宽调制(PWM)和脉冲电流驱动。
•脉宽调制(PWM):通过调节脉冲的宽度和周期来控制灯光的亮度。
这种驱动方式通过高频开关,并调整开关的占空比来实现亮度调节。
•脉冲电流驱动:通过将电流分成多个脉冲进行驱动,从而控制灯光的亮度。
这种驱动方式被广泛应用于可调光的灯具中。
1.2 电压驱动电压驱动是指通过控制电压的大小来调控灯光的亮度。
常见的电压驱动方式有恒压驱动和恒流驱动。
恒压驱动恒压驱动是指通过提供恒定的电压来驱动灯光。
这种驱动方式适用于需要调节灯具亮度的场景。
常见的恒压驱动器有线性驱动器和开关驱动器。
•线性驱动器:通过调节线性变阻器、电流源或电压源的输出来改变灯光的亮度。
这种驱动方式简单可靠,但效率较低,决定约束较大。
•开关驱动器:通过开关元件(如MOSFET、晶闸管等)的开关行为来控制灯光的亮度。
这种驱动方式具有高效率、体积小和功耗低的特点,被广泛应用。
恒流驱动恒流驱动是指通过提供恒定的电流来驱动灯光。
这种驱动方式适用于需要保持光源亮度恒定的场景。
常见的恒流驱动方式有线性驱动和开关驱动。
led照明驱动电路设计与实例精选
led照明驱动电路设计与实例精选LED(Light Emitting Diode)是一种半导体光电器件,在现代照明领域得到广泛应用。
要实现LED的照明功能,首先需要设计相应的驱动电路,以保证LED的正常工作。
本文将介绍LED照明驱动电路的设计原理和实例精选。
LED照明驱动电路设计原理LED照明驱动电路的设计原理主要包括功率转换和电流控制两个方面。
1.功率转换:LED照明需要将输入电源的直流电能转换为适合LED的电流和电压。
常见的功率转换方式有线性功率转换和开关功率转换两种。
线性功率转换方式简单,但效率低,常用于小功率LED照明。
其中,电阻器限流电路和电流源限流电路是两种简单的线性驱动电路。
电阻器限流电路通过串联电阻器来限制LED的电流,但有功率损耗大的缺点。
电流源限流电路通过电流源和电阻器来限制LED的电流,有着更好的稳定性和效率,但制作复杂。
开关功率转换方式包括开关转换器和开关稳流源两种。
其中,开关转换器常见的有降压型、升压型和降升压型。
降压型开关转换器是最常用的驱动方式,将输入电源的电压通过开关元件和电感器转换为合适的电流和电压供给LED。
升压型开关转换器将输入电源的电压升高后供给LED,用于高亮度LED或串联LED。
降升压型开关转换器既能将输入电压降低,也能将输入电压升高,被用于某些特殊应用场景。
2.电流控制:为了保证LED的亮度稳定,需要通过电流控制来调节LED的工作电流。
常见的电流控制方式有恒流源控制和PWM(脉宽调制)控制。
恒流源控制通过稳流电源或电流源来提供固定的工作电流,保证LED的亮度稳定。
PWM控制通过调节开关元件的导通时间占空比,控制LED的亮度。
PWM控制有较高的效率,但可能引起视觉疲劳或视觉闪烁。
LED照明驱动电路实例精选以下是几个常见的LED照明驱动电路实例:1.电阻器限流电路电阻器限流电路是最简单的LED驱动电路,将LED直接与电源串联,通过串联电阻器来限制电流。
但由于电阻器会有功率损耗,效率较低,只适用于小功率LED照明。
LED驱动电路原理
市场上浮现一种(yī zhǒnɡ)便宜的LED 手电筒,这种手电前端为5 ~ 8 个高亮度发光管,使用1 ~ 2 节电池。
由于使用超高亮度发光管的原因,发光效率很高,工作电流比较小,实测使用一节五号电池5 头电筒,电流惟独100 mA 摆布。
非常省电。
如果使用大容量充电电池,可以连续使用十几个小时,笔者就买了一个。
从前端拆开后,根据实物绘制了电路图,如图1 所示。
图1 LED 手电驱动(qū dònɡ)电路原理图工作原理:接通电源后,VT1 因R1 接负极,而c1 两端电压不能突变。
VT1(b)极电位低于e 极,VT1 导通,VT2(b)极有电流(diànliú)流入,VT2 也导通,电流从电源正极经L、VT2(c)极到e 极,流回电源负极,电源对L 充电,L 储存能量,L 上的自感电动势为左正右负。
经c1 的反馈作用,VT1 基极电位比发射极电位更低,VT1 进入深度饱和状态,同时VT2 也进入深度饱和状态,即Ib>Ic/β(β 为放大倍数)。
随着电源对c1 的充电,C1 两端电压逐渐升高,即VTI(b)极电位逐渐上升,Ib1 逐渐减小,当Ib1<=Ic1/β时,VT1 退出饱和区,VT2 也退出饱和区,对L 的充电电流减小。
此时.L 上的自感电动势变为左负右正,经c1 反馈作用。
VT1 基极电位进一步上升,VT1 迅速截止,VT2 也截止,L 上储存的能量释放,发光管上的电源电压加到L 上产生了自感电动势,达到升压的目的。
此电压足以使LED 发光。
高亮度白光LED 灯(以下简称白光灯)具有光色好(与日光接近),节能(电光转换效率远高于白炽灯,也高于荧光灯,是一种冷光源),寿命长(寿命是荧光灯的几倍(白炽灯的几十倍),环保无污染的特点成为白炽灯和荧光灯的有力挑战者。
但其不足之处是目前价格较高。
目前,白光灯已发展到第二代;第一代白光灯的价格已大幅下降,Φ5 白光灯的价格已降到0.25/只,拆机Φ5 白光灯的价格为0.2 /只,此价格已经可以接受。
LED驱动芯片工作原理与电路设计
LED驱动芯片工作原理与电路设计LED(Light Emitting Diode,发光二极管)驱动芯片在许多应用中被广泛使用,例如背光源、指示灯、家用照明等。
本文将介绍LED驱动芯片的工作原理和电路设计。
一、LED驱动芯片工作原理1.电源管理:LED驱动芯片需要提供电源管理电路,以保证LED驱动电流的稳定性。
一般情况下,驱动芯片会通过直流-直流(DC-DC)转换器将输入电压调整为合适的电压。
2.电流调节:LED的亮度与电流成正比,因此,LED驱动芯片需要能够调节LED的驱动电流。
一般情况下,驱动芯片会通过反馈电路,实时监测LED电流,以实现恒定电流输出。
3. PWM调光:LED灯的亮度调节通常使用PWM(Pulse Width Modulation,脉宽调制)技术。
驱动芯片需要提供PWM调光功能,通过改变PWM信号的占空比来改变LED的亮度。
二、LED驱动电路设计1.高效率:LED电源的工作效率应尽可能高,以减少能量损耗。
一般情况下,驱动电路采用开关电源设计,可以提高工作效率。
2.稳定性:驱动电路需要具备稳定的驱动电流输出能力,以确保LED 的稳定亮度。
电流反馈和电流保护功能是确保电流稳定性的关键。
3.电流精度:驱动电路应具备高精度的电流输出能力,以满足不同LED的驱动需求。
通常情况下,驱动电路具备可调节电流输出功能。
4.PWM调光:驱动电路需要提供PWM调光功能,以满足亮度调节的需求。
PWM调光电路应具备高精度、低失真的亮度调节能力。
5.过温保护:驱动电路应具备过温保护功能,以防止过热损坏。
过温保护电路可以监测电路温度,当温度超过设定阈值时,即可触发过温保护措施。
以上是LED驱动芯片的工作原理和电路设计的主要内容。
通过合理设计电源管理、电流调节、PWM调光、过温保护等功能模块,可以实现高效、稳定、精确的LED驱动,满足不同应用场景的需求。
LED背光驱动电路原理分析
LED背光驱动电路原理分析1.直流电源:供给整个电路所需的直流电源。
直流电源通常采用稳压电源,可以保证电压稳定,从而提供稳定的工作电压给电路。
2.振荡器:振荡器主要用于产生高频脉冲信号。
脉冲信号的频率可以根据具体的驱动要求来设定,通常为20-100kHz之间。
振荡器通常采用555计时器或者其他集成电路实现。
3.升压变压器:升压变压器是将输入的低压直流电压转换为高压脉冲电压的关键部件。
升压变压器一般由多个线圈和铁芯组成,通过电感耦合和互感耦合实现电压变换。
输入低压电压通过开关元件(如MOSFET)的开启和关闭控制,使得变压器产生相应的高压输出。
4.整流电路:整流电路用于将高压脉冲转换为直流电压。
整流电路一般采用整流二极管组成的桥式整流电路,将高压脉冲经过整流二极管后,得到带有纹波的直流电压。
为了减小纹波幅度,可以在整流电路后面添加电容滤波器。
5.滤波电路:滤波电路用于对整流后的电压进行进一步滤波,消除纹波。
滤波电路一般由电容和电感组成,通过电容的电荷和放电以及电感的电流变化,使得电压的纹波幅度进一步降低。
此外,为了保护LED和提高驱动效果,还可以添加电流反馈控制电路和电压调节电路。
电流反馈控制电路可以通过电流反馈回路来实现对LED 电流的精确控制,以避免过高或过低的电流对LED的损坏。
电压调节电路可以通过反馈电路来实现对输出电压的稳定控制,以确保驱动电压的稳定性。
总结起来,LED背光驱动电路通过将输入的直流电转换为高频脉冲电压,经过升压变压器、整流电路和滤波电路的处理,提供稳定的驱动电压给LED背光。
同时还可以通过电流反馈控制和电压调节等功能增强设计的智能化和稳定性,以提高驱动效果和保护LED的寿命。
LED背光驱动电路原理分析
LED背光驱动电路原理分析-杨在鲁该部分电路主要由集成块IC8101(LD7400)组成,见下图。
LD7400是通嘉公司生产的异步电流模式升压控制器,可以在10.5V~28V电压范围工作。
该器件具有斜率补偿、输入电压欠压锁定、输出电压短路保护、可编程振荡器频率、热关断保护等功能。
1.背光开关控制电路背光开关控制电路较为简单,主要由主板发出的开关控制信号ON/OFF和Q8302、IC8101(LD7400)的③脚构成。
二次开机后,背光开关控制信号ON/OFF由低电平变为高电平,经CN9903的13脚送入到二合一电源板。
该信号经R8304和R8305分压后,加到Q8302的控制极,Q8302饱和导通,相当于把R830 6-端接地,IC8101内电路检测到这一信号后,使IC8101进入正常工作模式。
2.升压电路本机采用自举升压电路结构把+36V电压升高到78V电压,为LED背光灯供电。
它的好处是:当功率转换电路未工作或功率管短路时,输出的电压低,不会使LED过流而损坏,同时可以避免开机瞬间冲击电流对L ED的影响。
二次开机后,+12V电压直接加到LD7400的⑧脚,LD7400启动工作。
当开关控制信号ON/OFF变为高电平使Q8302饱和导通时,LD7400内部控制电路检测到这一情况,从⑦脚输出PWM脉冲。
当⑦脚输出高电平时,该信号经R8104和R8105加到Q8101的栅极,Q8101饱和导通。
+36V电压经L8101、Q8101和R8107到地,电感L8101储能,感应电动势为上正下负。
当⑦脚为低电平时Q8101截止,Q8101的栅极电荷经D8101、R8104回到LD7400的⑦脚内部。
流过L8101两端的电流被截断,L8101感应的电动势变为上负下正。
LED显示屏的的工作原理及驱动电路
LED点阵显示控制1原理与方案1.1原理对于点阵型LED显示可以采用共阴极或共阳极,本系统采用共阳极,其硬件电路如图1所示。
当行上有一正选通信号时,列选端四位数据为0的发光二极管便导通点亮。
这样只需要将图形或文字的显示编码作为列信号跟对应的行信号进行逐次扫描,就可以逐行点亮点阵。
只要扫描速度大于24 Hz,由于扫描时间很快,人眼的视觉有暂留效应,就可以看到显示的是完整的图形或文字。
图1 硬件电路本次设计要完成基于单片机的LED点阵显示控制的设计,总体方案是以单片机为控制核心,通过行列驱动电路,在LED点阵屏上以左移方式显示文字。
在设计过程中驱动电路运用动态扫描显示,动态扫描简单地说就是逐行轮流点亮,这样扫描驱动电路就可以实现多行(比如16行)的同名列共用一套列驱动器。
由于动态扫描显示(并行传输)的局限性,故采用动态扫描显示(串行传输),显示模式用LED点阵屏模块作显示屏。
1.2 总体方案本次设计单片机采用AT89C51,行电路使用逐行扫描的方式,列电路使用串入并出的数据传输方式,显示屏使用由16x16的点阵LED组成的点阵模块。
使用到的芯片有传入并出移位寄存器74LS595、4线-16线译码器74LS154和三极管8550。
总体设计框图如图2所示。
2 系统硬件设计硬件电路大致上可以分成单片机系统及外围电路、列驱动电路和行驱动电路以及LED 点阵阵列3部分,用到的芯片有单片机AT89C51,4线-16线译码器74LS154,带锁存功能的串入并出移位寄存器74LS595。
2.1 单片机系统及外围电路单片机采用AT89C51。
系统采用12 MHz 或更高频率的晶振,以获得较高的刷新频率,使显示更稳定。
单片价的串口与列驱动器相连,用来送显示数据。
P1口低4位与行驱动器相连,送出行选信号,P1.5~P1.7口则用来发送控制信号。
P0和P2口空闲,在必要时可以扩展系统的ROM 和RAM 。
2.2 时钟脉冲电路AT89C51的最高时钟脉冲频率已经达到24 MHz ,它内部已经具备了振荡电路,只要在AT89C51的两个引脚(即19、18脚)连接到简单的石英振荡晶体的2个管脚即可,同时晶体的2个管脚也要用30 pF 的电容耦合到地,如图3所示。
LED驱动原理介绍(精)
LED驱动原理介绍由于LED的光特性通常都描述为电流的函数,而不是电压的函数,光通量(φV)与IF的关系曲线,因此,采用恒流源驱动可以更好地控制亮度。
超高亮LED的特性下图为正向压降(VF)和正向电流的(IF)关系曲线,由曲线可知,当正向电压超过某个阈值(约2V),即通常所说的导通电压之后,可近似认为,IF与VF成正比。
见表是当前主要超高亮LED的电气特性。
由表可知,当前超高亮LED的最高IF 可达1A,而VF通常为2~4V。
由于LED的光特性通常都描述为电流的函数,而不是电压的函数,光通量(φV)与IF的关系曲线,因此,采用恒流源驱动可以更好地控制亮度。
此外,LED的正向压降变化范围比较大(最大可达1V以上),而由上图中的VF-IF曲线可知,VF 的微小变化会引起较大的,IF变化,从而引起亮度的较大变化。
所以,采用恒压源驱动不能保证LED亮度的一致性,并且影响LED的可靠性、寿命和光衰。
因此,超高亮LED通常采用恒流源驱动。
下图是 LED的温度与光通量(φV)关系曲线,由下图可知光通量与温度成反比,85℃时的光通量是25℃时的一半,而一40℃时光输出是25℃时的1.8倍。
温度的变化对LFD的波长也有一定的影响,因此,良好的散热是LED保持恒定亮度的保证。
下图是LED的温度与光通量关系曲线。
一般LED驱动电路介绍由于受到LED功率水平的限制,通常需同时驱动多个LED以满足亮度需求,因此,需要专门的驱动电路来点亮LED。
下面简要介绍LED概念型驱动电路。
阻限流电路如下图所示,电阻限流驱动电路是最简单的驱动电路,限流电阻按下式计算。
式中:Vin为电路的输入电压: VF为IED的正向电流; VF为LED在正向电流为,IF时的压降; VD为防反二极管的压降(可选); y为每串LED的数目; x为并联LED的串数。
由上图可得LED的线性化数学模型为式中:Vo为单个LED的开通压降; Rs为单个LED的线性化等效串联电阻。
LED控制驱动电路原理图
LED 控制驱动电路原理图
LED 控制驱动电路原理图
ET6201 是1/7~1/8 占空比的LED 显示控制驱动电路。
由11 根段输出、6 根栅输出、1 根段/栅输出,1 个显示存储器、控制电路、键扫描电路组成了一个高可靠性的单片机外围LED 驱动电路。
串行数据通过4 线串行接口输入到ET6201,采用SOP32 的封装形式。
ET6201 管脚说明
管脚号管脚名称I/O 功能描述
1 OSC I 振荡输入端口,外接一个电阻以决定振荡频率。
2 DOUT O 数据输出端口(N 沟道开漏),在移位时钟下降沿输出串行
数据。
3 DIN I 数据输入端口,在移位时钟上升沿输入串行数据(由低位数
据开始)。
4 CLK I 时钟输入端口,在上升沿时读入串行数据,而在下降沿时则
输出数据。
5 STB I 串行接口选通端口,在STB 下降后输入的数据被视为一条
命令,当STB 为高时CLK 被忽略。
6,7,8 K1~K3 I 键扫描输入端口,输入到这些端口上的数据被锁存在显示周
期的末端。
(内部下拉电阻)
26,29,32 GND ─接地脚。
10~12
14~20 SG1/KS1~SG10/KS10 O 段输出端口(P 沟道开漏),也可以当作键扫描的输出端口
21 SG11 O 段输出端口(P 沟道开漏)
22 SG12/GR7 O 段/栅输出端口
9,25 VDD ─电源
23,24,27
28,30,31 GR6~GR1 O 栅输出端口
13 NC ─空脚。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LED驱动原理设计及案例本文首先介绍了特种照明的应用环境,然后,详细阐述了利用DC/DC稳压器实现恒压转恒流设计的基本原理和实际案例,并说明了大功率LED驱动器设计与散热部分设计应该注意的事项,最后指出了大功率LED新应用对驱动器设计提出的新要求,给出了国家半导体公司的完整解决方案的指南,它有助于从事LED照明行业的电子设计工程师全面掌握最新的LED驱动器系统设计技术。
虽然大功率LED现在还不能大规模取代传统的白炽灯,但它们在室内外装饰、特种照明方面有着越来越广泛的应用,因此掌握大功率LED恒流驱动器的设计技术,对于开拓大功率LED 的新应用至关重要。
LED按照功率和发光亮度可以划分为大功率LED、高亮度LED及普通LED。
一般来说,大功率LED的功率至少在1W以上,目前比较常见的有1W、3W、5W、8W和10W。
恒流驱动和提高LED的光学效率是LED 应用设计的两个关键问题,本文首先介绍大功率LED 的应用及其恒流驱动方案的选择指南,然后以美国国家半导体(NS)的产品为例,重点讨论如何巧妙应用LED恒流驱动电路的采样电阻提高大功率LED的效率,并给出大功率LED驱动器设计与散热设计的注意事项。
驱动芯片的选择LED驱动只占LED照明系统成本的很小部分,但它关系到整个系统性能的可靠性。
目前,美国国家半导体公司的LED驱动方案主要定位在中高端LED照明和灯饰等市场。
灯饰分为室内和室外两种,由于室内LED灯所应用的电源环境有AC/DC和DC/DC转换器两种方式,所以驱动芯片的选择也要从这两方面考虑。
图1:利用DC/DC稳压器FB反馈端实现从恒压驱动(左图)到恒流驱动(右图)的转换。
1. AC/DC转换器AC/DC分为220V交流输入和12V交流输入。
12V交流电是酒店中广泛应用的卤素灯的电源,现有的LED可以在保留现有交流12V的条件下进行设计。
针对替代卤素灯的设计,美国国家半导体LM2734的主要优势是体积小、可靠性高、输出电流高达1A,恰好适合卤素灯灯口直径小的特点。
取代卤素灯之后,LED灯一般做成1W或3W。
LED灯与卤素灯相比有两大优势:(1)光源比较集中,1W照明所获得的亮度等同于十几瓦卤素灯的亮度,因此比较省电;(2) LED灯的寿命比卤素灯长。
LED灯的主要弱点是灯光的射角太窄,成本相对较高。
但从长远来看,由于LED灯的寿命较长,所以还是具有非常大的成本优势。
220V AC/DC转换器(例如LM5021)主要锁定舞台灯和路灯市场。
图2:在FB反馈端和RFB之间放置一个运算放大器以降低功耗。
2. DC/DC转换器目前,LED手电筒占据了DC/DC转换器的绝大部分需求量。
手电筒采用的LED功率基本上是1W,供电方式包括锂电池和镍锌电池、碱性电池等。
3W 手电筒的应用一直还存在一些难点,因为3W LED灯本身需要散热,散热装置的体积大,从而在一定程度上削弱了LED灯体积小的优势。
此外,由于3W LED灯的电流高达700mA,一次充电后的电池使用时间缩短。
尽管如此,对于上述应用国家半导体提供LM3475、LM2623A和LM3485等方案。
矿灯也是LED灯的主要应用领域之一,它属于特种照明行业,需要专业的认证标准,中国对LED在矿灯领域的应用一直都很重视。
目前,LED设计行业存在对特种行业的需求认识不足的问题,设计中常采用一些不切实际的、新奇的设计方案。
例如,将LED灯和电池一起嵌入头盔,却没有考虑到矿灯特殊使用环境的各种需求,这可能是造成LED在矿灯市场的应用一直没有打开局面的重要原因。
对于矿灯LED应用,美国国家半导体提供了丰富的DC/DC稳压器产品,包括LM3485、LM3478和LM5010。
已经用户采用一颗1W的LED灯,周围再放6颗普通的高亮度LED灯,构成一种具有特殊闪烁功能的矿灯。
总而言之,LED灯在灯饰和特种照明行业有着广泛的发展前景,国家半导体为此提供完整的新型LED驱动解决方案。
图3:基于LM2734的恒流驱动电路。
高效的恒流驱动电路恒压供电的基本电路(图1左)采用反馈电阻RFB1和RFB2,当负载电流发生变化时,VFB也随之变化,DC/DC稳压器通过感知VFB的变化,使输出电压维持在一个固定的电平:V0=(VFB*(RFB1+RFB2))/RFB1 (1)在图1右边电路中,DC/DC稳压器的FB是高阻输入端,流经LED的电流IF为:IF=VFB/RFB (2)为保持IF恒定,DC/DC稳压器感知VFB,然后调整LED正端电压,使流经LED的电流保持恒定。
这就是利用DC/DC稳压器FB反馈端实现恒压到恒流转换的原理。
一般来说,DC/DC稳压器对VFB的变化有一个感知的范围,一旦LED选定,其工作电流IF的大小也就确定了,所选的电阻要保证VFB落在DC/DC稳压器容许的范围内。
以VFB等于1.25V为例,假设IF分别为15mA、350mA和700mA,采样电阻的功耗将分别小于20mW、400mW和800mW。
对于1W的LED来说,采样电阻的功耗分别占到总电源消耗的2%、40%和80%。
因此,采样电阻的设计对提高LED的功效至关重要,它应该选取尽可能小的数值。
图4:从采样电阻直接获取反馈电压的设计。
由于直接将RFB连接FB端会造成RFB的功耗过大,所以在FB端和RFB之间放置一个运算放大器,以放大RFB采集到的电压VTAP(图2)。
IF=VTAP/RFB=(VFB/RFB)*(1+RF/RI) (3)通常,1W大功率LED的典型工作电流为350mA,如果选择RFB等于1欧姆,则RFB的功耗为:PRFB=I2*R=0.352*1=0.12W (4)考虑运算放大器本身的功耗,RFB及其附属电路的功耗大约为1W LED功率的12%。
这样就能在确保LED获得恒流供电的同时,将RFB的功耗降低到可以接受的水平,从而使LED两端的电压尽可能大,流经的电流也尽可能大。
国家半导体按照这个原理工作的稳压器有LM2736和LM2734。
LM2734是1A降压型稳压器。
基于LM2734的恒流驱动电路(图3)利用LM321运算放大器获取采样电阻Rset上的电压,结合其它电阻和电容就可以构成一个完整、高效率的大功率LED 恒流驱动电路。
在实际使用中,有些LED恒流驱动电路可以直接从采样电阻获取反馈电压,。
图3中采样电阻Rset决定了恒流驱动电路的设计,而且对整个系统的效率有重要影响,因此仔细设计Rset对节省能源至关重要。
图3和图4的详细设计文件请向国家半导体当地授权分销商索取。
一般来说,如果要求LED驱动电流的变化不超过标称值的5%至10%,那么采用精度为2%的电阻就足够了。
LED驱动电流的典型波动范围是正负10%。
由于采样电阻消耗的功率较大,应避免使用功率较小的贴片电阻。
此外,LM3478方案适用于多个大功率LED的恒流驱动,而基于LM5021的恒流驱动设计方案则针对220V AC/DC转换器的应用。
恒流驱动与散热的考虑就电子系统设计而言,工程师在设计LED恒流驱动电路时首先要了解LED的恒流参数。
目前LED芯片的制造商很多,国内外LED的差异主要在于相同电参数的情况下,流明数可能不同,因此设计工程师要清楚地认识到LED功率并不是决定发光效率的唯一参数。
例如,同样是1W 的LED,有的LED可以达到40流明的亮度,而有的只能达到20流明的亮度,这是因为LED 光学效率还取决于材料和制作工艺等诸多环节。
有些设计工程师为提高发光效率而采取加大驱动电流的办法,例如,对于同一颗1W LED,加大驱动电流后,亮度可以从20流明提高到40流明,但是LED的工作温度也相应升高了。
一旦温度超过LED的限温点,就会影响LED的寿命和可靠性,这是设计恒流驱动过程中需要注意的重要问题。
此外,LED照明系统的光学效率不仅仅取决于LED恒流驱动方案,还与整个系统的散热设计密切相关。
为缩小体积,某些LED恒流驱动系统将LED驱动电路与散热部分贴近设计,这样容易影响可靠性。
一般来说,LED照明系统的热源基本就是LED灯本身的热源,热源太集中会产生热损耗,因此LED驱动电路不能与散热系统紧贴在一起。
建议采取下列散热措施:LED灯采用铝基板散热;功率器件均匀排布;尽可能避免将LED驱动电路与散热部分贴近设计;抑制封装至印刷电路基板的热阻抗;提高LED芯片的散热顺畅性以降低热阻抗。
表1:大功率LED在寿命上具有很大优势。
新应用对驱动器的要求大功率LED被称为“绿色光源”,它将向大LED电流(300mA 至1.4A)、高效率(60至120 流明/瓦)、亮度可调的方向发展。
由于大功率LED在寿命上具有很大优势(表1),所以发展前景非常广阔,其中最被看好的照明应用是汽车、医疗设备和仪器仪表及其它特种照明环境。
但这些应用对LED驱动系统设计也提出了新的要求,包括:输入电压范围一般要求为6V到24V;具有冲击负载保护、反相和过压保护;待机功耗非常低;低带隙基准以减少电流检测损耗以及具有PWM调整亮度的功能等。
针对这些需求,美国国家半导体公司提供了全系列LED驱动器设计方案(见表2),可以为用户提供全面的LED驱动器解决方案。
LED照明系统需要借助于恒流供电,目前主流的恒流驱动设计方案是利用线性或开关型DC/DC 稳压器结合特定的反馈电路为LED提供恒流供电,根据DC/DC稳压器外围电路设计的差异,又可以分为电感型LED驱动器和开关电容型LED驱动器。
电感型升压驱动器方案其优点是驱动电流较高,LED的端电压较低、功耗较低、效率保持不变,特别适用于驱动多只LED的应用。
在大功率LED驱动器设计中,主要采用开关电容型LED驱动方案,其优点是LED两端的电压较高、流过的电流较大,从而获得较高的功效及光学效率。
先进的开关电容技术还能够提高效率,因而在大功率LED驱动中应用广泛。
表2:美国国家半导体的LED驱动器解决方案一览表。
本文小结大功率LED照明技术有着广阔的发展前景,因而受到普遍的关注和投资者的追捧。
现阶段,由于LED芯片设计和制造技术及材料等诸多因素的限制,它暂时还不能完全取代传统的白炽灯,因而人们更为关注大功率LED在特种照明中的应用。