精密和超精密加工的机床设备技术

合集下载

先进制造技术-3精密与超精密加工技术

先进制造技术-3精密与超精密加工技术
通常,研磨为次终加工工序,将平面度降低至数 微米以下,并去前道工序(通常为磨削)产生的损伤层。 抛光是目前主要的终加工手段,目的是降低表面粗糙 度并去除研磨形成的损伤层,获得光滑、无损伤的加 工表面。抛光过程中材料去除量十分微小,约为几个 微米。
先进制造技术之四
精密与超精密加工技术
6、3、1 研磨加工的机制和特点
超微细加工以电子束、离子束和激光束三束加工 为基础,采用沉积、刻蚀、溅射和蒸镀等加工手段进 行各种处理。
先进制造技术之四
精密与超精密加工技术
4、超精密加工的主要研究领域包括:
超精密加工技术是以高精度为目标的技术, 它必须综合应用各种新技术,在各个方面精益 求精的条件下,才有可能突破常规技术达不到 的程度界限,实现新的高精度指标。
6、2 超精密磨削
加工精度:0.1um,Ra0.002~0.02um的磨削方法 超精密磨削一般采用细粒度(80#-400#)砂轮,经过 精细修整,光磨4-6次,便可获得粗糙度为Ra 0.005 ~ 0.02 um的加工表面。
先进制造技术之四
精密与超精密加工技术
(1)超精密磨削表面的形成机制
超精密磨削获得的极低的表面粗糙度,主要靠砂轮精 细修整得到的大量的、等高性很好的微刃来实现微量切削 作用。
升,以后磨损逐渐减慢。 注:由于积屑瘤的原因,一般将研磨好的锋利刀
尖有意加工成理想的稳定的磨损状态。 2)切削速度和振动
提高切削速度有利于获得良好的加工表面,但注意 以不产生振动为准则。
先进制造技术之四
精密与超精密加工技术
(a) 直线刃刀头 (b) 直线刃刀头
(c) 圆弧刃刀头
先进制造技术之四
精密与超精密加工技术
精密与超精密加工技术

精密和超精密机床精度建模技术

精密和超精密机床精度建模技术

1
几何精度建模
3.几何精度建模理论发展 4.多体误差分析与建模运动学理论概述 多体系统几何结构(描述方法:1.基于图论;2.低序体阵列) 作用:几何描述 (典型体Bj相对于Bi的运动情况—方阵—多体系统坐标系) 转变矩阵(理想运动) 坐标变换,平移,旋转
1
几何精度建模
转变矩阵(实际运动) 函数变分概念 变分阵=应变阵+旋转阵+纯平移阵 静止状态——误差取决于联接精确性和内外因素影响 运动状态——误差取决于运动精确性和运动量 线误差和角误差的变换阵 5.多体系统动力学方程 零级运动方程?(理想和实际) 6.多体系统约束 结构约束(自由度) 相对运动约束(约束方程)
3.精密车削的建模和分析
拓扑结构和特征矩阵 刀具模型方程-车刀轨迹参数方程 仿真
4.非球面面形建模和分析 a.杯形砂轮(加工陡度高);b.平行砂轮;c.球形砂轮(修整) d.离轴非球面的加工方式 误差分析:加工残留误差直接影响工件的面形精度 砂轮形状误差(磨损,安装倾角)
3
5.单点超精密车削
刀具及加工表面形貌建模
误差辨别过程:测量误差——建立方程——求解 3.十二线法(9条边+3条对角线) 4.试验系统 结论:九线法与十二线法的结果比较接近, 只有垂直度误差差距较大。
初始点出发3条边——位移误差 另外6条边——颠摆和偏摆误差 3条对角线——滚摆误差
九线法,十二线法,十四线法,十五线法,二十二线法
5
1.虚拟加工
2.精密机床的发展和误差描述 加工的尺寸、形状精度: 精密加工技术:0.1~1μm,Ra≤30nm 超精密加工技术:0.1~100nm,Ra≤10nm
超精密加工条件 误差分析:外部误差,内部误差。 建模目的:主要建立机床几何误差和刀具成形误差的模型。 机床几何误差项(每个轴有6项基本误差) 精密和超精密机床加工精度要求

常用精密加工和超精密加工方法

常用精密加工和超精密加工方法

常用精密加工和超精密加工方法(1)钻削加工:是将工件上的金属材料在刀具作用下进行来回转动,把车削面旋转出来,是加工圆柱形、锥形、凹形孔和凹陷、螺纹等零部件表面等的单一机床加工方法。

(2)车削加工:是指加工零件时借助车刀切削,用于加工外螺纹、花键、形状方程式曲面及其他复杂曲面等外形精密零部件。

(3)铣削加工:是指利用滚筒式或刀片式的刀具的移动和旋转,把工件表面形成各种曲面的一种机床加工方法,主要用于加工工件体上的平面、槽、沟等工件表面。

(4)磨削加工:是指采用研磨轮加工工件表面,采用悬磨或抛光技术将其加工精度提高,使其表面光洁度、粗糙程度达到要求的一种机床加工方法。

(5)拉铆加工:是指拉铆头将两个工件紧固在一起,从而使两个工件处于相对固定的位置,而不受旋转影响的一种加工方法,是将机械元件拉铆加工的技术。

(1)水切削加工:是将工件表面由削刀削成薄片,然后由水冲刷把薄片去除,达到精密加工表面粗糙度和平整度要求的一种加工方法。

(2)气刀加工:是将刀具用空气喷射动力使得刀具旋转,切削工件的加工方法,可以实现高速、大功率的切削,适用于切削金属界面、铸件、钢材等表面加工。

(3)超声波加工:是指使用超声波让工件表面产生振动,来切削、拉分和焊接工件表面等加工方法,可以达到更高的精度和更小的表面粗糙度,并且可以实现连续加工。

(4)电火花加工:是一种快速高效的切削方法,主要是通过产生火花后,再通过冲击脉冲和热能来融化微小部份表面材料,从而实现准确切削的一种加工方法。

(5)激光加工:是通过产生强大的激光能,对工件表面进行破碎溶解而实现加工的一种加工方法,可以获得极高的切削精度、平整度和极好的加工质量,和小尺寸孔、槽加工。

超精密加工的机床设备

超精密加工的机床设备

超精密加工的机床设备摘要:超精密加工技术的发展直接影响整个国家的制造业发展,影响尖端技术和国防工业的发展。

机床是实现超精密加工的重要载体,机床的制造水平和研究水平便显得非常的重要。

本文在论述目前国内外超精密加工机床的现状的同时,介绍了国内外有代表性的几种超精密加工机床,并介绍分析了超精密机床的精密主轴部件、进给驱动系统、误差建模和补偿技术和数控技术。

关键词:超精密加工机床发展关键技术1.引言制造业是一个国家或地区国民经济的重要支柱,其竞争能力最终体现在新生产的工业产品市场占有率上,而制造技术则是发展制造业并提高其产品竞争力的关键。

精密和超精密加工技术是制造业的前沿和发展方向。

精密和超精密加工技术的发展直接影响到一个国家尖端技术和国防工业的发展,世界各国对此都极为重视,投入很大力量进行研究开发,同时实行技术保密,控制关键加工技术及设备出口。

随着航空航天、高精密仪器仪表、惯导平台、光学和激光等技术的迅猛发展和多领域的广泛应用,对各种高精度复杂零件、光学零件、高精度平面、曲面和复杂形状的加工需求日益迫切。

目前,国外已开发了多种精密和超精密车削、磨削、抛光等机床设备,发展了新的精密加工和精密测量技术。

最近几年,我国的机床制造业虽然发展很快,年产量和出口量都明显增加,成为世界机床最大消费国和第一大进口国,在精密机床设备制造方面取得不小进展,但仍和国外有较大差距。

我国还没有根本扭转大量进口昂贵的数控和精密机床、出口廉价中低档次机床的基本状况。

由于国外对我们封锁禁运一些重要的高精度机床设备和仪器,而这些精密设备仪器正是国防和尖端技术发展所迫切需要的,我们必须投入必要的人力物力,自主发展精密和超精密加工机床,使我国的国防和科技发展不会受制于人。

2.超精密机床的发展现状2.1国外超精密机床发展现状目前在国际上处于领先地位的国家有美国、英国和日本, 这3个国家的超精密加工装备不仅总体成套水平高, 而且商品化的程度也非常高。

精密和超精密加工的机床设备

精密和超精密加工的机床设备
特点
高精度、高效率、高表面质量、 低误差、低能耗等。
应用领域
01
02
03
04
航空航天
制造飞机发动机叶片、涡轮盘 等关键部件。
汽车制造
加工发动机缸体、曲轴等精密 零部件。
能源领域
制造核聚变反应堆中的超导线 圈、太阳能电池板等。
医疗器械
制造人工关节、牙科种植体等 医疗器件。
发展历程与趋势
发展历程
从20世纪50年代开始,精密和超精密加工技术经历了从简单磨削 到复杂切削,再到超精密切削的发展过程。
航空航天领域的应用案例
案例一
某航空发动机制造企业使用超精密加 工机床,对涡轮叶片进行高精度磨削 和抛光,提高了发动机性能和可靠性 。
案例二
某飞机制造企业采用精密加工机床, 对机身结构件进行高精度切割和加工 ,确保飞机整体装配精度和质量。
汽车工业领域的应用案例
案例一
某汽车零部件制造企业使用精密加工 机床,对发动机缸体进行高精度加工, 提高缸体质量和性能,降低发动机故 障率。
柔性化
为了满足多品种、小批量生产的需求,未来精密和超精密加工机床将采用模块化设计、可 重构制造系统等技术,提高机床的加工范围和适应能力。
新材料、新工艺的应用
新材料
随着新材料技术的发展,未来精密和超精密加工机床将采用新型高强度、高硬 度、轻质材料,提高加工效率和加工质量。
ห้องสมุดไป่ตู้新工艺
为了满足复杂形状和特殊材料的加工需求,未来精密和超精密加工机床将采用 新的切削工艺、光整加工工艺和复合加工工艺等,提高加工精度和表面质量。
伺服驱动技术
采用先进的伺服驱动技术, 实现高精度的位置控制和 速度控制。
插补算法

精密和超精密加工技术

精密和超精密加工技术
特种加工
本章内容
I. 特种加工技术概述 II. 电火花加工 III.电解加工 IV. 高能束加工
特种加工技术概述
➢ 非传统加工又称特种加工,通常被理解为别于传统切 削与磨削加工方法的总称。
➢非传统加工方法 产生于二次大战后。两方面问题传统 机械加工方法难于解决:
1)难加工材料的加工问题。宇航工业等对材料高强度、 高硬度、高韧性、耐高温、耐高压、耐低温等的要求,使 新材料不断涌现。
电火花加工工作要素
➢脉冲宽度与间隔——影响加工速度、表面粗糙 度、电极消耗和表面组织等。脉冲频率高、持 续时间短,则每个脉冲去除金属量少,表面粗 糙度值小,但加工速度低。通常放电持续时间 在2μs至2ms范围内,各个脉冲的能量2mJ到20J (电流为400A时)之间。
电火花加工类型
➢电火花成形加工:主要指孔加工,型腔加工等 ➢电火花线切割
➢ 拓宽现有非传统加工方法的应用领域。
➢ 探索新的加工方法,研究和开发新的元器件。
➢ 优化工艺参数,完善现有的加工工艺。
➢ 向微型化、精密化发展。 ➢ 采用数控、自适应控 2084 制、CAD/CAM、专家系统
等 技 术 , 提 高 加 工 过 程1104
70年代 80年代 90年代
自动化、柔性化程度。
232
424 244 142
441 321 214
353 252 316
激光加工 电火花加工 超声加工 电化学加工 EI 收录文章数比较
几种代表性特种加 工方法
电火花加工的原理示意 图
电火花加工
原理:利用工具电极与工件电极之间脉冲性火花放电, 产生瞬时高温,工件材料被熔化和气化。同时,该处绝 缘液体也被局部加热,急速气化,体积发生膨胀,随之 产生很高的压力。在这种高压作用下,已经熔化、气化 的材料就从工件的表面迅速被除去

第七讲精密加工和超精密加工

第七讲精密加工和超精密加工

工艺过程的优化
五、游离磨料的高效加工
(一)超声研磨工艺
• 超声研磨是一种采用游离磨料(研磨膏或研磨液)进 行切削的加工方法。磨料通过研磨工具的振动产生切 削功能,从而把研磨头(工具)的形状传递到工件 上。 • 超声研磨正是利用脆性材料的这一特点。有目的有控 制地促进材料表层的断裂和切屑的形成。
二、金刚石车削技术及其应用
1. 金刚石车床的技术关键
• 除了必须满足很高的运动平稳性外,还必须具有很高 的定位精度和重复精度。镜面铣削平面时,对主轴只 需很高的轴向运动精度,而对径向运动精度要求较 低。金刚石车床则须兼备很高的轴向和径向运动精 度,才能减少对工件的形状精度和表面粗糙度的影 响。 • 目前市场上提供的金刚石车床的主轴大多采用气体静 压轴承,轴向和径向的运动误差在50nm以下,个别主 轴的运动误差已低于25nm。金刚石车床的滑台在90年 代以前绝大部分采用气体静压支承,荷兰的Hembrug 公司则采用液体静压支承。进入90年代以来,美国的 Pneumo公司(现已与Precitech公司合并)的主要产品 Nanoform600和250也采用了具有高刚性、高阻尼和高
(二)超声研磨加工玻璃
• 在玻璃上钻孔时,超声加工已经可以与金刚石钻削竞 争,优化后的超声钻孔已经达到金刚石钻削时的材料 切除速度。根据孔径和孔深的不同,超声钻孔时的进 钻速度可也达到20~40mm/min。 • 用金刚石钻削玻璃上的孔时,需要从两面进刀,以免 钻透时出现玻璃崩裂,采用超声钻孔时,则可从一侧 直接钻通,工具出口时不会出现玻璃的崩裂。从而可 以省去金刚石钻孔时的校正和倒角等加工工序。 • 在玻璃上钻小孔时,超声研磨的作用变得更为重要。 普通的金刚石钻孔,最小孔径大约在2mm左右。超声 钻孔时的最小孔径几乎没有任何限制,目前在实验室 中进行的实验表明,用超声研磨可在3mm厚的玻璃上 钻出直径为0.5~1.0mm的小孔

精密和超精密加工技术

精密和超精密加工技术

1、通常将加工精度在0.1-1um、加工表面粗糙度R在0.02-0.1um之间的加工方法称为精密加工。

而将加工精度高于0.1um、加工表面粗糙度R小于0.01um的加工方法称为超精密加工。

2、提高加工精度的原因:提高制造精度后可提高产品的性能和质量,提高其稳定性和可靠性;促进产品的小型化;增强零件的互换性,提高装配生产率,并促进自动化装配。

3、精密和超精密加工目前包含三个领域:超精密切削;精密和超精密磨削研磨‘精密特种加工。

4、金刚石刀具的超精密切削加工技术,主要应用于两个方面:单件的大型超精密零件的切削加工和大量生产的中小型零件的超精密切削加工技术。

5、金刚石刀具有两个比较重要的问题:晶面的选择;切削刃钝圆半径。

6、超稳定环境条件主要是指恒温、防振、超净和恒湿五个方面的条件。

7、我国应开展超精密加工技术基础的研究,其主要内容包括以下四个方面:1)超精密切削、磨削的基本理论和工艺。

2)超精密设备的关键技术、精度、动特性和热稳定性。

3)超精密加工的精度检测、在线检测和误差补偿。

4)超精密加工的环境条件。

5)超精密加工的材料。

8、超精密切削实际选择的切削速度,经常是根据所使用的超精密机床的动特性和切削系统的动特性选取,即选择振动最小的转速。

9、超精密切削实际能达到的最小切削厚度和金刚石刀具的锋锐度、使用的超精密机床的性能状态、切削时的环境等都直接有关。

10、为实现超精密切削,刀具应具有如下性能:1)极高的硬度、极高的耐磨性和极高的弹性模量,以保证刀具有很长的寿命和很高的尺寸耐用度。

2)切削刃钝圆能磨得极其锋锐,切削刃钝圆半径r值极小,能实现超薄切削厚度。

3)切削刃无缺陷,切削时刃形将复印在加工表面上,能得到超光滑的镜面。

4)和工件材料的抗粘结性好、化学亲和性小、摩擦因素低,能得到极好的加工表面完整性。

11、SPDT——金刚石刀具切削和超精密切削。

12、晶体受到定向的机械力作用时,可以沿平行于某个平面平整地劈开的现象称为解理现象。

超精密加工技术与设备研究

超精密加工技术与设备研究

超精密加工技术与设备研究随着科学技术的发展,各种新兴产业的不断涌现,超精密加工技术的应用越来越广泛。

超精密加工技术是指以nm甚至A级为计量单位的高精度加工技术,这种技术可以加工出极为精细的器件、零部件和微型器械等。

近年来,随着光通信、半导体和微机电系统等高新技术的不断发展,超精密加工技术成为了对这些高科技的支撑和发展起到至关重要的作用。

一、超精密加工技术的研究超精密加工技术不仅是现代制造业的一个重要方向,也是当前世界各国争夺高端装备制造市场的关键技术之一。

超精密加工技术具有下列特点:1. 高精度超精密加工技术的加工精度一般在0.1μm以下,甚至可以达到0.01nm。

这种高精度的加工不仅可以满足现代工业的精密加工要求,而且对于微传感器、微机电系统等新兴工业领域的发展也必不可少。

2. 高成本超精密加工需要使用高端的加工设备和高精度的测量仪器,这些设备通常需要耗费巨大的资金才能购买。

此外,加工过程的高要求和长周期也会带来高成本。

3. 高技术门槛超精密加工技术对操作人员的技术要求非常高,需要具备高度的专业知识和操作经验。

因此,这种技术对人员的培训和技术水平的提高也是非常重要的。

二、超精密加工设备的分类超精密加工设备通常可以分为以下几类:1. 雕刻机雕刻机是一种采用非接触方式加工的机床,可以在非接触情况下对工件表面进行加工。

它的加工精度可以达到大约0.1μm,适用于制造光学玻璃、金属模具等精密零件。

2. 电解加工机电解加工机是一种采用电化学反应进行加工的机床,其加工精度可以达到0.1μm以下。

它适用于制造形状复杂的工件和微加工零部件。

3. 雷射加工机雷射加工机是一种采用激光束进行加工的机床,其加工精度可以达到0.1μm以下。

它适用于制造微电子元件、微机械零件和光学器件等。

雷射加工机还可以利用激光束切割薄片材料,以满足高端装备制造的需要。

三、超精密加工技术的应用超精密加工技术的应用非常广泛,主要包括以下几个方面:1. 半导体加工在半导体加工领域,超精密加工是一个非常重要的领域,它可以制造出一些超细的、数量巨大的半导体芯片。

精密与超精密加工技术

精密与超精密加工技术

精密与超精密加工技术综述0 前言就先进制造技术的技术实质性而论,主要有精密和超精密加工技术和制造自动化两大领域1。

前者包括了精密加工、超精密加工、微细加工,以及广为流传的纳米加工,它追求加工上的精度和表面质量的极限,可统称为精密工程;后者包括了设计、制造和管理的自动化,它不仅是快速响应市场需求、提高生产率、改善劳动条件的重要手段,而且是提高产品质量的有效方式。

两者有密切联系,许多精密和超精密加工要靠自动化技术才能达到预期目标,而不少制造自动化则有赖于精密加工才能达到设计要求。

精密工程和制造自动化具有全局性的、决策性的作用,是先进制造技术的支柱。

精密和超精密加工与国防工业有密切关系。

导弹是现代战争的重要武器,其命中精度由惯性仪表的精度所决定,因而需要高超的精密和超精密加工设备来制造这种仪表。

例如,美国“民兵”型洲际导弹系统的陀螺仪其漂移率为0.03~0.05°/h,加速度计敏感元件不允许有0.05μm的尘粒,它的命中精度的圆概率误差为500m;MX战略导弹(可装载10个核弹头),由于其制导系统陀螺仪精度比“民兵—Ⅲ”型导弹要高出一个数量级,因而其命中精度的圆概率误差仅为50~150m。

对射程4000km的潜射弹道导弹,当潜艇的位置误差对射程偏差的影响为400m、潜艇速度误差对射程偏差的影响为800m、惯性平台的垂直对准精度对射程偏差的影响为400m时,要求惯性导航的陀螺仪的漂移精度为0.001°/h、航向精度在1′以上、10小时运行的定位精度为0.4~0.7海里,因此,陀螺元件的加工精度必须达到亚微米级,表面粗糙度达到Ra0.012~0.008μm。

由此可知,惯性仪表的制造精度十分关键。

如1kg重的陀螺转子,其质量中心偏离其对称轴为0.5nm时,就会造成100m的射程误差和50m的轨道误差;激光陀螺的平面反射镜的平面度为0.03~0.06μm,表面粗糙度要求为Ra0.012μm以上;红外制导的导弹,其红外探测器中接受红外线的反射镜,其表面粗糙度要求达到Ra0.015~0.01μm[2]。

精密和超精密加工的机床设备技术(PPT 88页)

精密和超精密加工的机床设备技术(PPT 88页)
Precision and ultraprecision machining
精密和超精密加工技术
第4章 精密和超精密加工的机床设备
2019/12/12
3.1 精密和超精密机床发展概况及典型机床 简介
3.2 精密主轴部件 3.3 床身和精密导轨部件 3.4 进给驱动系统 3.5 微量进给装置 3.6 机床运动部件位移的激光在线检测系 3.7 机床的稳定性和减振隔振 3.8 减少变形和恒温控制
2019/12/12
2019/12/12
第1节 精密和超精密机床发展概况 及典型机床简介
二、典型机床简介
Union Carbide 公司 的半球机床
能加工直径100mm的半球,达到尺寸精
度正负0.6μm,表面粗糙度0.025μm。
精密空气轴承主轴采用多孔石墨制成 轴衬,径向空气轴承的外套可以调整 自动定心,可提高前后轴承的同心度, 以提高主轴的回转精度。
第2节 精密主轴部件
一、主轴轴承 主轴回转精度
回转精度——在主轴空载手动或机动低速旋转情况下, 在主轴前端安装工件或刀具的基面上所测得的径向跳动、 端面跳动和轴向窜动的大小。
影响回转精度的因素 (1)轴承精度和间隙的影响。 (2)主轴、支承座等零件中精度的影响。
关键在于精密轴承。
2019/12/12
类型:普通(各种精密超精密车、铣等)、专 用(磁盘超精密车床) 按工艺方法:超精密车床、超精密铣床、超精 密磨床、超精密研磨机、超精密抛光机床、超 精密特种加工机床、精密和超精密加工中心等
精度指标:目前,主轴回转精度为0.025um, 导轨直线度为1000000:0.025,定位精度为 0.013um/1000um,进给分辨率为0.005um,加

第5章 精密、超精密加工技术

第5章 精密、超精密加工技术

• 和表面粗糙度的检验,而且要测量加工设备 的精度和基础零部件的精度。 • 高精度的尺寸和几何形状可采用分辨率为 0.1~0.01µ m,的电子测微计、分辨率为 0.01~0.001µ m的电感测微仪或电容测微仪来 测量。圆度还可以用精度为0.01µ m的圆度仪 来测量。
加工设备必须具有高精度的主轴系统、进给 系统(包括微位移装臵),现在的超精密车 床,其主轴回转精度可达0.02µ m,导轨直线 度可达1000000:0.025,定位精度可达 0.013µ m,进给分辨率可达0.005µ m。其回转 零件应进行精密的动平衡。
• 2)高刚度
• 包括静刚度和动刚度,不仅要注意零件本身
• 精密和超精密磨料加工是利用细粒度的磨粒 和微粉主要对黑色金属、硬脆材料等进行加 工,按具体地加工方法分为精密和超精密磨 削,加工精度可达5~0.5µ m,表面粗糙度 Ra0.05~0.008µ m);精密和超精密研磨(加 工精度可达10~0.1µ m,表面粗糙度 Ra0.01~0.008µ m);
合金等刀具进行精密和超精密切削,这些刀
具材料的切削效果不如金刚石,但能加工黑
色金属。对黑色金属等硬脆材料的精密加工
和超精密加工,一般多采用磨削、研磨、抛
光等方法。
• 精密和超精密磨削时,通常采用粒度240#~W7
或更细的白刚玉或铬刚玉磨料和树脂结合剂
制成的紧密组织砂轮,经金刚石精细修整后
• 进行加工。
• 出现了精密电火花加工、精密电解加工、精
密超声波加工、分子束加工、电子束加工、
离子束加工、原子束加工、激光加工、微波
加工、等离子体加工、光刻、电铸及变形加
工等。
• 4.复合加工
• 复合加工是将几种加工方法叠合在一起,发 挥各种加工方法的长处,达到高质量(加工

精密和超精密加工技术的发展

精密和超精密加工技术的发展

精密和超精密加工技术的发展我国目前已是一个“制造大国”,制造业规模名列世界第四位,仅次于美国、日本和德国,近年来在精密加工技术和精密机床设备制造方面也取得了不小进展。

但我国还不是一个“制造强国”,与发达国外相比仍有较大差距。

目前国外已开发了多种精密和超精密车削、磨削、抛光等机床设备,发展了新的精密加工和精密测量技术。

为了使我国的国防和科技发展不受制于人,我们必须投入必要的人力物力,自主发展精密和超精密加工技术,争取尽快将我国的精密和超精密加工技术水平提升到世界先进水平。

下面对国内外精密和超精密加工技术的最新发展情况介绍如下。

精密机床技术的发展精密机床是精密加工的基础。

当今精密机床技术的发展方向是:在继续提高精度的基础上,采用高速切削以提高加工效率,同时采用先进数控技术提高其自动化水平。

瑞士DIXI公司以生产卧式坐标镗床闻名于世,该公司生产的DHP40高精度卧式高速镗床已增加了多轴数控系统,成为一台加工中心;同时为实现高速切削,已将机床主轴的最高转速提高到24000r/min。

瑞士MIKROM公司的高速精密五轴加工中心的主轴最高转速为42000r/min,定位精度达5μm,已达到过去坐标镗床的精度。

从这两台机床的性能可以看出,现在的加工中心与高速切削机床之间已不再有严格的界限划分。

使用金刚石刀具的超精密切削技术超精密切削技术的进展金刚石刀具超精密切削技术是超精密加工技术的一个重要组成部份,不少国防尖端产品零件:如陀螺仪、各种平面及曲面反射镜和透镜、精密仪器仪表和大功率激光系统中的多种零件等:都需要利用金刚石超精密切削来加工。

使用单晶金刚石刀具在超精密机床上进行超精密切削,可以加工出光洁度极高的镜面。

超精密切削的切削厚度可极小,最小切削厚度可至1nm。

超精密切削使用的单晶金刚石刀具要求刃口极为锋锐,刃口半径在0.5,0.01μm。

因刃口半径甚小,过去对刃口的测量极为困难,现在已可用原子力显微镜:AFM:方便地进行测量。

精密和超精密加工

精密和超精密加工

精密和超精密加工一、精密和超精密加工的概念与范畴通常,按加工精度划分,机械加工可分为一般加工、精密加工、超精密加工三个阶段。

目前,精密加工是指加工精度为1~0.1μm,表面粗糙度为Ra0.1~0.01μm的加工技术,但这个界限是随着加工技术的进步不断变化的,今天的精密加工可能就是明天的一般加工。

精密加工所要解决的问题,一是加工精度,包括形位公差、尺寸精度及表面状况;二是加工效率,有些加工可以取得较好的加工精度,却难以取得高的加工效率。

精密加工包括微细加工和超微细加工、光整加工等加工技术。

传统的精密加工方法有砂带磨削、精密切削、珩磨、精密研磨与抛光等,具体如下:a.砂带磨削是用粘有磨料的混纺布为磨具对工件进行加工,属于涂附磨具磨削加工的范畴,有生产率高、表面质量好、使用范围广等特点。

b.精密切削,也称金刚石刀具切削(SPDT),用高精密的机床和单晶金刚石刀具进行切削加工,主要用于铜、铝等不宜磨削加工的软金属的精密加工,如计算机用的磁鼓、磁盘及大功率激光用的金属反光镜等,比一般切削加工精度要高1~2个等级。

c. 珩磨,用油石砂条组成的珩磨头,在一定压力下沿工件表面往复运动,加工后的表面粗糙度可达Ra0.4~0.1μm,最好可到Ra0.025μm,主要用来加工铸铁及钢,不宜用来加工硬度小、韧性好的有色金属。

d.精密研磨与抛光是通过介于工件和工具间的磨料及加工液,工件及研具作相互机械摩擦,使工件达到所要求的尺寸与精度的加工方法。

精密研磨与抛光对于金属和非金属工件都可以达到其他加工方法所不能达到的精度和表面粗糙度,被研磨表面的粗糙度Ra≤0.025μm加工变质层很小,表面质量高,精密研磨的设备简单,主要用于平面、圆柱面、齿轮齿面及有密封要求的配偶件的加工,也可用于量规、量块、喷油嘴、阀体与阀芯的光整加工。

e.抛光是利用机械、化学、电化学的方法对工件表面进行的一种微细加工,主要用来降低工件表面粗糙度,常用的方法有手工或机械抛光、超声波抛光、化学抛光、电化学抛光及电化学机械复合加工等。

2.3精密和超精密加工技术

2.3精密和超精密加工技术

现代制造技术
2. 非机械超精密加工技术——特种精密加工方法
包括精密电火花加工、精密电解加工、精密超声加工、
电子束加工、离子束加工、激光束加工等一些非传统加工方 法;
3. 复合超精密加工方法
传统加工方法的复合 特种加工方法的复合 传统加工方法和特种加工方法的复合
(例如机械化学抛光、精密电解磨削、精密超声珩磨等)。
1~0.1 0.1~ 0.001 0.1~ 0.01 1~0.1 1~0.1 5 5 1~0.1
0.025~ 0.008 0.025~ 0.008 0.025~ 0.008 0.01 0.01 0.01 0.01~ 0.02 0.01~ 0.008
黑色金属、铝合金 黑色金属、非金属 材料 黑色金属、非金属 材料、有色金属 黑色金属、非金属 材料 黑色金属、非金 属材料、有色金属 黑色金属等 黑色金属等 黑色金属、非金属 材料、有色金属
发展:超精密磨削应用比较成熟的首推金刚石微粉砂轮 超精密磨削。
现代制造技术 1)金刚石微粉砂轮 采用粒度为F240~F1000的金刚石微粉作为磨料,树脂、 陶瓷、金属为结合剂烧结而成;也可采用电铸法和气相沉积 法制作。 用筛选法分级,粒度号以磨粒通过的筛网上每英寸长度 内的孔眼数来表示。如60 # 的磨粒表示其大小刚好能通过每 英寸长度上有60孔眼的筛网。对于颗粒尺寸小于40 μ m的磨 料,称为微粉。 • 用显微测量法分级,用W和后面的数字表示粒度号,其W后 的数值代表微粉的实际尺寸。如W20表示微粉的实际尺寸为 20 μ m
• 精密加工是指加工精度达到1~0.1μm,表面粗
糙度Ra在0.1~0.01μm的加工工艺。
• 超精加工则是指加工尺寸精度高于0.1μm,表 面粗糙度Ra小于0.025μm的精密加工方法。

精密和超精密加工技术的新进展

精密和超精密加工技术的新进展

精密和超精密加工技术的新进展精密和超精密加工技术是指不断追求更高精度、更细粒度、更小误差和更高效率的加工方法和技术。

这些技术广泛应用于航空航天、医疗器械、微电子、光学仪器等领域,对于产品的性能和质量有着至关重要的影响。

近年来,精密和超精密加工技术取得了许多突破性进展,本文将就此展开讨论。

精密加工技术是在传统机械加工的基础上发展起来的,通过精细的切削、研磨和抛光等手段,实现高精度、高光洁度的加工目标。

近年来,精密加工技术的发展取得了长足的进步,主要表现在以下几个方面:新型加工设备的研发和应用不断取得突破。

例如,五轴联动数控机床、激光加工机、电子束加工机等新型设备的出现,使得复杂零件的精密加工变得更加高效和准确。

新型加工材料的应用也取得了重要进展。

例如,工程塑料、陶瓷、复合材料等高性能非金属材料的广泛应用,使得精密加工的领域得以进一步拓展。

精密加工技术的智能化和自动化水平不断提升。

智能化加工设备能够实现自适应加工、无人值守加工等功能,提高加工效率和质量稳定性。

超精密加工技术是指比精密加工技术更为精细、精确的加工方法和技术。

随着科技的不断进步,超精密加工技术的应用越来越广泛,主要包括以下几个方面:超精密加工技术广泛应用于微电子领域。

微电子产业对于芯片的精度和光洁度要求极高,超精密加工技术能够实现高精度、高效率的微米级加工,对于提升微电子产业的发展水平和竞争力具有重要意义。

超精密加工技术在光学仪器领域也有着广泛的应用。

光学仪器对于透镜、反射镜等光学元件的精度和表面质量要求极高,超精密加工技术能够实现高精度、高稳定性的光学元件加工,对于提高光学仪器的性能和精度具有重要作用。

再次,超精密加工技术在航空航天领域也有着重要的应用。

航空航天领域对于零件的精度和可靠性要求极为严格,超精密加工技术能够实现高精度、高稳定性的零件加工,对于提升航空航天领域的产品质量和性能具有重要意义。

近年来,精密和超精密加工技术的研究和应用不断取得新的进展,在新型加工设备、新型加工材料和智能化加工等方面都取得了重要突破。

精密和超精密加工技术

精密和超精密加工技术

《精密和超精密加工技术》学习总结11机械1班 2011411011070. 引言精密和超精密加工技术不仅直接影响尖端技术和国防工业的发展,还影响着国家的机械制造业的国际竞争力,因此,全球各国对此十分重视!本文就从超精密切削、精密和超精密磨削、精密研磨与抛光、精密加工的机床设备和外部支撑环境、微纳加工技术等相关的超精密加工技术进行研究与总结。

1. 超精密切削超精密切削是国防和尖端技术中的重要部分,受到了各国的重视和发展。

一、超精密切削的切削速度选择超精密切削所使用的刀具是天然单晶金刚石刀具,它是目前自然界硬度最高的物质,具有耐磨性好、热传导系数高和有色金属间摩擦系数小。

因此,在加工有色金属时,切削温度低,刀具寿命很高,亦可使用1000-2000m/min的高速切削。

而这一点(切削速度并不受刀具寿命的制约)是和普通切削规律不同的。

超精密切削的速度选择是根据所使用的超精密机床的动特性和切削系统的动特性所决定的,即选择振动最小的转速。

换而言之,要高效地切削出高质量的加工表面,就应该选择动特性好,振动小条件下最高转速的超精密机床。

例如沈阳第一机厂圣工场的SI-255液体静压主轴的超精密车床在700-800r/min时振动最大,故要避开该转速范围,选择低于或者高于该速度范围进行切削,则可得到较好的加工表面。

二、超精密切削时刀具的磨损和寿命天然单晶金刚石刀具超精密切削应用于加工铝合金、无氧铜、黄铜、非电解镍等有色金属和某些非金属材料,比如激光反射镜、雷达的波导管内腔、计算机磁盘等。

判断金刚石刀具是否破损或磨损而不能继续使用的标准是根据工件加工的表面粗糙度有无超过规定值。

而金刚石刀具的切削路程的长度则是其寿命长短的标志。

倘若切削条件正常,刀具的耐用度可达数百千米。

但是在实际使用中,金刚石刀具常是达不到这个耐用度,因为加工过程中切削刃会产生微小崩刃而不能继续使用,而这主要是由于切削时的振动或切削刃的碰撞引起的。

因此,金刚石刀具只能使用在机床主轴转动非常平稳的高精度机床上,而刀具的维护对机床的要求亦是如此。

超精密加工制造技术

超精密加工制造技术

超精密加工制造技术
超精密加工制造技术
超精密加工技术是指采用高精度机床加工超精密零件的技术,其中包括超精密磨削、超精密磨珩、超精密切削和超精密冲压等技术。

超精密加工技术可以减少零件的误差,使零件具有较小的尺寸和高精度的表面粗糙度,以及较大的精度和可靠性。

超精密加工技术的主要应用领域包括机械制造、电子信息、航天航空、船舶制造、汽车制造等,其主要用于生产超小型、精密度高的微型零件。

超精密加工技术的应用需要具备一定的技术要求,例如,机床要具有良好的稳定性、精度和加工速度;刀具要经过特殊处理,以提高切削效率和精度;切削液要经过特殊处理,以提高切削效果,减少加工时间;加工过程中要进行完善的程控制和检测,以保证加工的精度和可靠性等。

此外,在超精密加工技术中,还需要采用计算机支持的精密测量、数控技术以及激光切削、电子束加工技术等新技术来提高精密零件的加工精度和可靠性。

- 1 -。

精密与超精密加工技术

精密与超精密加工技术
大于工件加工精 度,且厚度极薄的金属层或非金属层
刀具种类:金刚石刀具; 超精密磨削砂轮
金刚石刀具
1、金刚石刀头的特性: 颜色:有红色和绿色等多种颜色,其硬
度随颜色而不同; 硬度:显微硬度值比其他物质高许多; 热传导率:在矿物中最大。
金刚石刀具
2、金刚石刀头的制造: 成形:采用研磨加工方法; 研磨方法:用空气轴承的研磨机; 特殊刀头的形状
第三章 先进制造工艺技术
第一节 精密与超精密加工技术
一、 精密与超精密加工技术概述
1、精密加工与超精密加工定义
精密加工是指加工精度在0.1~lμm之间, 表面粗糙度Ra在0.lμm以下(称微米加工)
超精密加工的加工精度在0.lμm以下,表面 粗糙度在0.02μm以下(称为亚微米加工)
2、精密加工与超精密加工的特点
光纤测微仪 更小测量范围的测量仪器:扫描隧道显微
镜 、扫描电子显微镜、原子力显微镜
激光干涉仪
SPA-400 多功能扫描探针显微镜
回顾
一、 精密与超精密加工技术概述 二、 超精密加工方法 三、 超精密加工刀具 四、 超精密加工设备 五、 精密加工环境 六、 超精密加工精度的在线检测及计量测试
五、精密加工环境
超精密加工必须在超稳定的环境下进 行。
超稳定环境:恒温、超净和防振。
六、超精密加工精度的在线检测及计量测试
对加工误差进行在线检测,实时建模与 动态分析预报,再根据预报数据对误差 源进行补偿,从而消除或减少加工误差。
六、超精密加工精度的在线检测及计量测试
大距离的测量仪器:双频激光干涉仪 小距离的测量仪器:电容式、电感式测微仪、
超精密磨削砂轮
超精密磨削质量控制方面的首要因素: 砂轮磨料:应与工件材料选配适当; 磨料粒度:具备形成微刃的粒度; 砂轮硬度:硬度中软。

精密和超精密加工的机床设备

精密和超精密加工的机床设备

精密和超精密加工的机床设备简介精密加工和超精密加工是现代制造业中非常重要的工艺,为了实现高精度和高质量的产品制造,需要使用精密和超精密加工的机床设备。

本文将介绍精密和超精密加工的定义、应用领域、常见机床设备及其特点。

精密加工与超精密加工的定义精密加工是指在小尺寸范围内实现高精度、高表面质量的加工过程。

超精密加工则是在精密加工的基础上,进一步提高加工精度和表面质量,通常使用的是非常细小的工具进行加工。

精密加工与超精密加工的应用领域精密加工和超精密加工广泛应用于各个领域,特别是需要高精度和高质量的产品制造领域。

以下是一些典型的应用领域:1.光学器件加工:如镜片、棱镜、透镜等光学组件的加工需要极高的精度和表面质量。

2.高精密模具加工:精密模具通常用于制造电子产品、汽车零部件等需要高精度的零件。

3.精密五金零部件加工:如手表零部件、医疗设备零部件等,需要高精度和高质量的加工。

4.微电子器件加工:微电子器件通常要求极高的精度和表面质量,用于生产集成电路、传感器等。

常见的精密和超精密加工机床设备下面介绍一些常见的精密和超精密加工机床设备及其特点:CNC铣床CNC铣床是一种通过计算机控制的自动化机床,能够在三个轴向上进行加工。

精密加工中常用的是数控铣床,而超精密加工则需要使用高速铣床。

CNC铣床具有高精度、高刚性、高自动化程度等特点。

高精度车床高精度车床是一种用来加工圆柱形工件的机床。

它能够在工件上进行精确的车削、镗削、钻削等操作。

高精度车床具有高工作精度、高生产效率和良好的刚性。

光学加工机光学加工机是用激光或电子束等光学器件进行加工的机床设备。

它能够实现非常高的加工精度和表面质量,常用于光学器件加工和微电子器件加工。

超精密磨床超精密磨床是一种用磨粒对工件进行加工的机床设备。

它能够实现非常高的加工精度和表面质量,常用于精密模具加工和高精度五金零部件加工。

EDM电火花机床EDM电火花机床是一种利用电火花腐蚀的原理进行加工的机床设备,能够实现非常高的加工精度和表面质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
影响回转精度的因素 (1)轴承精度和间隙的影响。 (2)主轴、支承座等零件中精度的影响。 关键在于精密轴承。
2020/5/16
主轴轴承
➢ 高精度滚动轴承 ➢ 液体滑动轴承 ➢ 空气滑动轴承 ➢ 陶瓷轴承 ➢ 磁悬浮轴承
(一)、滑动轴承的分类
• 按滑动轴承工作时轴瓦和轴颈表面间呈现的摩擦 状态,滑动轴承可分为:
静压轴承组成:供油系统、节流器、轴承
2020/5/16
(1)轴承内圆柱面上,等间隙地开有几个 油腔(通常为4个)。
(2)各油腔之间开有回油槽。 (3)用过的油一部分从这些回油槽流回油 箱(径向回油),另一部分则由两端流回油 箱(轴向回油)。 (4)油腔四周形成适当宽度的轴向封油面和 周向封油面,它们和轴颈之间的间隙一般 为 0.02~0.04mm。 (5)油泵供油压力为ps ,油液经节流器T进入各油腔,将 轴颈推向中央,油液最后经封油面流回油箱,压力降低为零。 (6)当主轴不受载荷且忽略自重时,则各油腔的油压相同, 保持平衡,轴在轴承正中心,这时轴颈表面与各腔封油面之 间的间隙相等,均为h0。 (7)当主轴受径向载荷(包括自重)F作用后,轴颈向下 移动产生偏心量e。
精密空气轴承主轴采用多孔石墨制成 轴衬,径向空气轴承的外套可以调整 自动定心,可提高前后轴承的同心度, 以提高主轴的回转精度。
2020/5/16
二、典型机床简介
Moore 车床
由Moore 3型坐标测量机改 造而成。采用卧式主轴, 三坐标精密数控,消振和 防振措施,加强恒温控制等。 M-18AG型超精密非球面车床, 基本结构同Moore 3,采用空 气静压轴承主轴、气浮导轨、 双坐标双频激光测量系统、 优质铸铁床身,有恒温油浇 淋机和空气隔振垫支承。
Precision and ultraprecision machining
精密和超精密加工技术
第4章 精密和超精密加工的机床设备
2020/5/16
3.1 精密和超精密机床发展概况及典型机床 简介
3.2 精密主轴部件 3.3 床身和精密导轨部件 3.4 进给驱动系统 3.5 微量进给装置 3.6 机床运动部件位移的激光在线检测系 3.7 机床的稳定性和减振隔振 3.8 减少变形和恒温控制
作台、床身等基础零件,液体淋浴或空气淋浴控 制温度 ➢ 抗振性:材料,隔离振源,缩短传动链或改用柔 性连接 ➢ 控制性能好:数控 ➢ 模块化设计
第2节 精密主轴部件
一、主轴轴承 主轴回转精度
回转精度——在主轴空载手动或机动低速旋转情况下, 在主轴前端安装工件或刀具的基面上所测得的径向跳动、 端面跳动和轴向窜动的大小。
有一个x和y向调整的刀 架及作B轴转动的高精度 转台,借助三轴精密数 控,加工平面、球面和 非球曲面。 采用空气轴承,刀架设 计滑板结构,直线移动 分辨力0.01μm,激光测 量反馈,定位精度全行 程0.03μm。 加工模具形状精度0.05 μm,表面粗糙度0.025μm
2020/5/16
三、精密超精密机床类型和精度指标
2020/5/16
在滑动轴承与轴颈表面之间输入 高压润滑剂以承受外载荷,使运动副 表面分离的润滑方法成为流体静压润 滑。
止推轴承(推力轴承)
轴承座
Fa
径向轴瓦 止推轴瓦
径向轴承(向心轴承) Fr
止推轴承受力Fa与 轴的中心线平行
2020/5/16
径向轴承的受力Fr 与轴的中心线垂直
(二)、液体静压轴承工作原理
液体摩擦轴承
液体动压润滑轴承 液体静压润滑轴承
非液体摩擦轴承
• 按滑动轴承承受载荷的方向可分为:
径向滑动轴承(向心) 推力滑动轴承(止推)
2020/5/16
根据润滑膜的形成原理不同分为:
动压润滑轴承
静压润滑轴承
利用相对运动副表面的相对运动 和几何形状,借助流体粘性,把润滑 剂带进摩擦面之间,依靠自然建立的 流体压力膜,将运动副表面分开的润 滑方法为流体动压润滑。
0.005umBiblioteka 加工表面粗糙度Ra0.003um,温 控精度为20± 0.0005℃。
四、精密超精密机床结构特点
➢ 高精度:静态和动态精度,主要部件的材料,轴 承,工作台和刀架,微进给(电致伸缩、磁致伸 缩,弹性元件等),闭环控制系统
➢ 高刚度:受力变形对加工精度影响 ➢ 高稳定性:热导率低,热膨胀系数小的材料做工
2020/5/16
第1节 精密和超精密机床发展概况 及典型机床简介
一、发展概况
2020/5/16
2020/5/16
第1节 精密和超精密机床发展概况 及典型机床简介
二、典型机床简介
Union Carbide 公司 的半球机床
能加工直径100mm的半球,达到尺寸精
度正负0.6μm,表面粗糙度0.025μm。
2020/5/16
二、典型机床简介
DTM-3大型超精密车床 采用精密数控伺服方
式,控制部分为内装式 CNC装置和激光干涉测长 仪,精确测量定位,在 DC伺服机构内装有压电 微位移机构,实现纳米 级微位移。
2020/5/16
2020/5/16
二、典型机床简介
大型光学金刚石车床LODTM
机床采用立式结构,采用止 推轴承,7路高分辨力双频激光 测量系统,4路激光检测横梁上 溜板的运动,3路激光检测刀架 上下运动位置,使用在线测量 和误差补偿,各发热部件用大 量恒温水冷却,用大的地基, 地基周围有防振沟,且整个机 床用4个大空气弹簧支承。
类型:普通(各种精密超精密车、铣等)、专 用(磁盘超精密车床) 按工艺方法:超精密车床、超精密铣床、超精 密磨床、超精密研磨机、超精密抛光机床、超 精密特种加工机床、精密和超精密加工中心等
精度指标:目前,主轴回转精度为0.025um, 导轨直线度为1000000:0.025,定位精度为 0.013um/1000um,进给分辨率为
2020/5/16
2020/5/16
二、典型机床简介
OAGM 2500大型超精密机床 机床的x和y向导轨采用液 体静压,z向的磨轴头和 测量头采用空气轴承。床 身采用型钢焊接结构,用 精密数控驱动,双频激光 测量系统检测运动位置。
2020/5/16
二、典型机床简介
AHNIO型高效专用车削、磨削超精密机床
2020/5/16
二、典型机床简介
Pneumo 公司的MSG-325超精密车床 采用T形布局,机床空气主轴的径向圆跳动和轴向
跳动均小于等于0.05μm。床身溜板用花岗岩制造,导 轨为气浮导轨;机床用滚珠丝杠和分辨率为0.01μm的 双坐标精密数控系统驱动,用HP5501A双频激光干涉仪 精密检测位移。
相关文档
最新文档