变压器的工作原理分类及结构
变压器结构简介与工作原理
变压器结构简介与工作原理一、变压器结构简介变压器是一种用来改变交流电压的电气设备,由于其结构简单、使用方便以及功率传输效率高等优点,被广泛应用于电力系统、工业生产和家庭用电等领域。
下面将详细介绍变压器的结构。
1. 主要构件(1) 铁心:变压器的铁心是由硅钢片叠压而成,用于提供磁路,减小磁阻,提高磁通的传导效率。
(2) 绕组:变压器的绕组是由导线绕制而成,分为高压绕组和低压绕组。
高压绕组用于接收高电压输入,低压绕组用于输出降压后的电压。
(3) 绝缘材料:绝缘材料用于隔离绕组和铁心,防止电流短路和漏电。
(4) 冷却系统:变压器中会产生一定的热量,为了保证变压器的正常运行,需要采用冷却系统进行散热,常见的冷却方式有自然冷却和强制冷却。
2. 结构类型根据变压器的用途和结构特点,可以分为多种类型,常见的有:(1) 功率变压器:用于电力系统中的电压变换和功率传输。
(2) 隔离变压器:用于隔离高压和低压电路,保护人身安全。
(3) 自耦变压器:通过共享一部份绕组来实现电压变换。
(4) 调压变压器:用于调节电压,保持输出电压的稳定性。
二、变压器工作原理变压器的工作原理是基于电磁感应的原理,通过变换磁场的方式来改变电压。
下面将详细介绍变压器的工作原理。
1. 电磁感应根据法拉第电磁感应定律,当磁通量发生变化时,会在导体中产生感应电动势。
变压器利用这一原理,通过交变电流在绕组中产生交变磁场,从而在另一绕组中诱导出相应的电动势。
2. 工作过程(1) 高压绕组:当高压绕组接通交流电源时,高压绕组中的电流会产生交变磁场,磁场的变化会通过铁心传导到低压绕组。
(2) 磁感应耦合:由于铁心的导磁性,磁场会在铁心中形成闭合磁路,从而将磁感应耦合到低压绕组。
(3) 低压绕组:低压绕组中的电流受到磁感应的影响,产生相应的感应电动势,输出降压后的电压。
3. 变压比变压器的变压比是指高压绕组与低压绕组的匝数之比。
根据电磁感应定律,变压比等于高压绕组与低压绕组的电压之比,即:变压比 = 高压绕组匝数 / 低压绕组匝数通过调整绕组的匝数比例,可以实现不同的电压变换。
变压器的基本工作原理和结构PPT课件
次端电压。 对三相变压器,铭牌上的额定电压指线电压 额定电流(IN)——指变压器在额定容量下,允许长期通
过的电流,三相变压器指的是线电流值。单位用A或kA。 额定频率〔HZ)—电力变压器的额定频率是50Hz 效率、温升
图3.1.8 壳式变压器的结构示意图
※ 芯式变压器绕组和铁芯的装配示意图
绕组同芯套装在变压器铁心柱上,低 压绕组在内层,高压绕组套装在低压 绕组外层,以便于绝缘。
图3.1.9 芯式变压器的铁芯和绕组的装配示意图
● 绕组的根本型式——同心式
※ 同芯式——铁芯式变压 器常用。高压绕组和低压 绕组均做成圆筒形,然后 同芯地套在铁芯柱上 ,为
平安气道——〔防爆筒〕如果是严重事故,变压器油大量 汽化,油气冲破平安气道管口的密封玻璃,冲出变压器油 箱,防止油箱爆裂。
吸湿器—— 〔呼吸器〕内装硅胶〔活性氧休铝〕,用以吸 收进入储油柜中空气的水分
净油器——过滤油中杂质,改善变压器油的性能
3.1.3 变压器的型号与额定值
一、变压器型号
型号——可反映出变压器的结构、额定容量、电压等级、冷却方 式等内容
变压器运行时产生热量,使变 压器油膨胀,储油柜中变压器 油上升,温度低时下降。
储油柜使变压器油与空气接触 面较少, 减缓了变压器油的氧
当变压器出现故障时,产生的 热量使变压器油汽化,气体继 电器动作,发出报警信号或切 断图电源。
气 体 继 电 器
化过程及吸收空气中的水分的 如果事故严重,变压器油大量
〔一〕电力变压器
配电变压器
升压变压器
降压变压器
电力变压器的类别——用途分
(二) 特种变压器
变压器结构简介与工作原理
变压器结构简介与工作原理引言:变压器是电力系统中常见的重要设备,它通过改变交流电的电压大小,实现电能的传输和分配。
本文将介绍变压器的结构和工作原理。
一、变压器的结构1.1 主要组成部分- 核心:变压器的核心由铁芯和绕组构成。
铁芯通常由硅钢片叠压而成,以减小磁滞损耗和铁损耗。
绕组则由两个或多个绕组线圈组成,分别称为初级绕组和次级绕组。
- 外壳:变压器的外壳通常由绝缘材料制成,用于保护内部的绕组和核心,同时也提供绝缘和安全防护。
- 冷却系统:变压器通常需要冷却系统来控制温度,以确保其正常运行。
常见的冷却系统包括自然冷却和强制冷却。
1.2 结构类型- 干式变压器:干式变压器的绕组和铁芯都是在干燥的环境中运行,不需要油作为绝缘介质。
它具有结构简单、维护方便等优点,广泛应用于城市建筑、商业中心等场所。
- 油浸式变压器:油浸式变压器的绕组和铁芯都被浸泡在绝缘油中,以提供更好的绝缘性能和散热效果。
它通常用于大型电力系统和工业领域。
二、变压器的工作原理2.1 电磁感应原理- 变压器的工作基于电磁感应原理。
当交流电通过初级绕组时,产生的磁场会穿过铁芯并感应次级绕组中的电流,从而实现能量的传输。
2.2 变压器的变比- 变压器的变比是指初级绕组和次级绕组的匝数比。
根据变比的不同,变压器可以实现升压、降压或维持电压不变。
2.3 能量传输和损耗- 变压器通过电磁感应将电能从初级绕组传输到次级绕组,实现电压的变换。
在能量传输过程中,会有一定的电阻损耗和磁滞损耗,需要通过冷却系统来控制温度并确保变压器的安全运行。
三、变压器的应用领域3.1 电力系统- 变压器在电力系统中起到关键作用,用于输电和配电。
它将发电厂产生的高电压电能升压后输送到输电线路,再经过变电站降压分配给用户。
3.2 工业领域- 变压器在工业领域中广泛应用,用于供电、电机启动、电炉加热等。
它可以根据不同设备的电压要求,提供合适的电能供应。
3.3 交通运输- 变压器也被用于交通运输领域,如电动列车、电动汽车等,用于变换电能的电压和频率,以满足不同设备的需求。
变压器的基本原理和结构
8 油箱
油箱用于存放绝缘油,起 到绝缘和冷却的作用。
9 绝缘材料
绝缘材料用于隔离和保护 绕组和其他元素。
变压器的分类
按用途分类
电力变压器、工业变 压器
按环境分类
户内变压器、户外变 压器
按冷却方式分类
干式变压器、油浸变 压器
按频率分类
低频变压器、高频变 压器
变压器的特点
1 低损耗
变压器具有较低的电能转换损耗,高能量利 用效率。
变压器的基本原理和结构
变压器是一种电力设备,基于电磁感应定律和互感现象工作。它由磁芯、一 次线圈、二次线圈等组件构成,具有高效率、安全可靠和低成本等特点。
变压器的基本原理
1 电磁感应定律
2 互感现象
根据法拉第电磁感应定律, 当磁通量发生变化时,会 在相邻的线圈中引发感应 电动势。
互感现象是指一次线圈中 的变化电流引起二次线圈 中感应电压的现象。
2 一次线圈
3 二次线圈
一次线圈是输入侧的线圈, 通过电流的变化产生磁场。
二次线圈是输出侧的线圈, 通过磁感应产生感应电动 势。
4 绕组
绕组是指一次线圈和二次 线圈的线圈绕制。
5 端子
端子用于连接变压器的输 入和输出电路。
6 冷却系统
冷却系统可以有效散热, 保证变压器正常工作。
7 外部壳体
外部壳体保护内部元件, 并提供绝缘和安全性能。
2 绝缘材料耐用
选用耐高温、耐电压波动的绝缘材料,保证 变压器长期稳定工作。
3 效率高
变压器的能量转换效率高,能够大幅减பைடு நூலகம்能 源浪费。
4 维护方便
变压器结构简单,易于检修和维护。
5 安全可靠
变压器具备过流、过压等保护措施,减少事 故的发生。
变压器工作原理、结构,变压器分类、变压器主要特征、变压器用途
变压器详解一、变压器的结构及相关原理1.变压器的结构:变压器由线圈绕组(浸漆铜线),铁芯(硅钢片),阻燃骨架等组成。
一般而言,变压器还有一个壳,主要用来起屏蔽和固定作用。
一般的变压器具有一个初级绕组,一个或多个次级绕组,线圈绕在铁芯上,给初级绕组加上交流电,由于电磁感应的原理,在次级绕组上则有电压输出。
2.变压器的相关原理:给变压器初级绕组加上交流电后,在次级绕组周围则产生交变的磁场。
初级绕组通电后产生的磁力线绝大部分由铁芯构成回路(铁芯的磁阻远小于空气的磁阻)。
次级绕组绕在铁芯上,这样它的线圈切割磁力线而产生感应电动势,结果在次级绕组两端有电压输出。
无论在铁芯上绕几个次级绕组,次级绕组上都会切割磁力线而产生感应电动势。
二.变压器的类别1.按功能分:包括开关变压器,升压变压器,降压变压器和隔离变压器等。
2.按装配方式分:包括插针式变压器,嵌入式变压器,有外壳固定式变压器等。
三 .变压器常用参数及表示方法n--------变压器的匝比N2------次级绕组的匝数(匝数:绕组的圈数)N1------初级绕组的匝数U2------次级绕组的输出电压U1-----初级绕组的输入电压I2------次级绕组的输出电流I1------初级绕组的输入电流P1-----初级输入功率P2-----次级输出功率Z2-----变压器的负载阻抗Z1-----变压器的初级输入阻抗τ-----放电时间常数T------电源周期 T=1/ff-----电源频率f=1/TR-----从电流流入的方向看进去的等价负载阻抗UR----等价于负载阻抗的IR-----等价负载阻抗R的输入电流Ui-----稳压器的输入电压Uo----稳压器的输出电压四、变压器的用途变压器是用在连接外接电源及用电器之间的一种电器,做电源使用。
一般的电子电路及电子设备都要用到变压器。
我们美的通过降压变压器提供的交流电源;经过整流—>滤波—>稳压的后滤去其不稳定的脉冲干扰成分,提供一种稳定的直流电压,使电子电路与设备之间保持正常的工作和运行。
变压器的工作原理
变压器的工作原理一、引言变压器是电力系统中常见的电气设备,用于改变交流电的电压和电流。
本文将详细介绍变压器的工作原理,包括基本原理、结构和工作过程。
二、基本原理1. 电磁感应定律根据法拉第电磁感应定律,当一个导体在磁场中运动或者磁场变化时,会在导体中产生感应电动势。
变压器利用这一原理实现电压的转换。
2. 互感现象互感现象是指两个或者多个线圈通过磁场相互耦合时,其中一个线圈中的电流变化会在其他线圈中产生感应电动势。
变压器中的两个线圈分别称为主线圈和副线圈。
三、变压器的结构1. 铁心变压器的铁心是由硅钢片叠压而成,主要作用是提高磁通的传导性能,并减少铁损耗。
2. 主线圈主线圈是变压器的输入线圈,通常由较粗的导线绕制而成。
当主线圈中通过交流电流时,会在铁心中产生磁场。
3. 副线圈副线圈是变压器的输出线圈,通常由较细的导线绕制而成。
副线圈通过互感现象与主线圈相连,将主线圈中的磁场转换为感应电动势。
四、变压器的工作过程1. 变压器的工作原理可以分为两个阶段:磁场建立和磁场消失。
2. 磁场建立阶段当交流电通过主线圈时,产生的交变电流会在主线圈中产生交变磁场。
由于主线圈和副线圈之间的互感作用,副线圈中也会产生交变电动势。
3. 磁场消失阶段当交流电的方向改变时,主线圈中的交变磁场也会改变方向。
这个变化的磁场会在副线圈中产生感应电动势,导致副线圈中的电流方向发生变化。
4. 变压器的电压转换根据互感现象,变压器中主线圈和副线圈的匝数比可以决定输出电压与输入电压的比例关系。
当主线圈匝数较大时,输出电压相对较低;当主线圈匝数较小时,输出电压相对较高。
五、总结变压器是一种基于电磁感应和互感现象的电气设备,用于改变交流电的电压和电流。
它由铁心、主线圈和副线圈组成。
变压器的工作过程包括磁场建立和磁场消失两个阶段,通过互感现象实现电压的转换。
变压器在电力系统中起到了重要的作用,广泛应用于输电、配电和电子设备中。
变压器的工作原理、结构和常见故障
变压器的结构、组成和维护保养一、变压器的主要类型⑴按绕组分为:ϕ双绕组变压器κ三绕组变压器λ自耦变压器⑵按相数分为:ϕ单相变压器κ三相变压器λ多相变压器(3)按用途分为:ϕ升压变压器κ降压变压器λ隔离变压器(4)按冷却方式ϕ油浸自冷变压器κ干式空气自冷变压器λ油浸风冷变压器μ油浸水冷变压器二、工作原理利用电磁感应的原理来改变交流电压的装臵,从一个电路向另一个电路传递电能或传输信号的一种电器是电能传递或作为信号传输的重要元件。
三、变压器的结构1、一次绕组(原绕组)-电源侧2、二次绕组(副绕组)-负载侧3、变压器铁心-磁路部分四、变压器组成部分1.铁心铁心由心柱和铁轭两部分组成。
心柱用来套装绕组,铁轭将心柱连接起来,使之形成闭合磁路。
为减少铁心损耗,铁心用厚0.30-0.35mm的硅钢片叠成,片上涂以绝缘漆,以避免片间短路。
按照铁心的结构,变压器可分为心式和壳式两种。
2.绕组定义:变压器的电路部分,用纸包或纱包的绝缘扁线或圆线(铜或铝)绕成。
一次绕组:输入电能的绕组。
二次绕组:输出电能的绕组。
高压绕组的匝数多,导线细;低压绕组的匝数少,导线粗。
从高,低压绕组的相对位臵来看,变压器的绕组可分为同心式和交迭式。
同心式结构:同心式绕组的高、低压绕组同心地套装在心柱上。
特点:同心式绕组结构简单、制造方便,国产电力变压器均采用这种结构。
交迭式结构:交迭式绕组的高、低压绕组沿心柱高度方向互相交迭地放臵。
特点:交迭式绕组用于特种变压器中。
3.油/油箱/冷却/安全装臵器身装在油箱内,油箱内充满变压器油。
变压器油是一种矿物油,具有很好的绝缘性能。
变压器油起两个作用:①在变压器绕组与绕组、绕组与铁心及油箱之间起绝缘作用。
②变压器油受热后产生对流,对变压器铁心和绕组起散热作用。
油箱有许多散热油管,以增大散热面积。
为了加快散热,有的大型变压器采用内部油泵强迫油循环,外部用变压器风扇吹风或用自来水冲淋变压器油箱。
这些都是变压器的冷却装臵。
变压器的工作原理
变压器的工作原理概述:变压器是一种通过电磁感应原理来改变交流电压的设备。
它由两个或者更多的线圈组成,通过电磁感应的作用,将输入线圈的电压转换为输出线圈的电压。
变压器广泛应用于电力系统、电子设备、通信系统等领域。
一、基本原理:变压器的工作原理基于电磁感应现象。
当通过输入线圈(称为初级线圈)的交流电流发生变化时,会产生一个交变磁场。
这个交变磁场穿过输出线圈(称为次级线圈),在次级线圈中产生感应电动势,从而产生输出电压。
二、主要构成:1. 线圈:变压器由两个或者多个线圈组成,分别称为初级线圈和次级线圈。
初级线圈通常与电源相连,次级线圈通常与负载相连。
线圈通常由绝缘导线绕制而成。
2. 铁芯:铁芯是变压器的磁路部份,用于增强磁场的传导。
铁芯通常由铁矽合金制成,具有较高的磁导率和低的磁阻。
三、工作过程:1. 变压器的工作基于法拉第电磁感应定律。
当交流电通过初级线圈时,产生的交变磁场会穿过次级线圈,从而在次级线圈中产生感应电动势。
2. 感应电动势的大小与初级线圈和次级线圈的匝数之比成正比。
如果次级线圈的匝数大于初级线圈的匝数,输出电压将高于输入电压;反之,输出电压将低于输入电压。
3. 变压器的工作过程中,会有一定的能量损耗。
这些损耗主要包括铁芯损耗和线圈损耗。
铁芯损耗是由于铁芯中的涡流和磁滞现象引起的,线圈损耗是由于线圈中的电阻产生的。
四、变压器的类型:1. 根据用途分类:- 电力变压器:用于电力系统中的电能传输和分配。
- 隔离变压器:用于隔离电源和负载,提供额外的安全保护。
- 自耦变压器:次级线圈与初级线圈共享部份匝数,适合于一些特殊应用。
2. 根据结构分类:- 贴片变压器:线圈和铁芯密切结合在一起,适合于小型电子设备。
- 箱式变压器:线圈和铁芯封装在一个箱体中,适合于工业和商业应用。
- 油浸式变压器:线圈和铁芯浸泡在绝缘油中,提供更好的散热和绝缘性能。
五、应用领域:1. 电力系统:变压器在电力系统中起到电能传输和分配的关键作用。
第三章 变压器
Zk
Uk Ik
Rk
pk
I
2 k
Xk
Z
2 k
Rk2
绕组的电阻时随温度而变的,故经过计算的到的短路参数应 根据国家标准规定折算到参考温度。
三 、相量图
根据T形等效电 路,可以画出相应 的相量图。
四 、近似等效电路图
RK、XK和ZK分别称为短路电阻、短路电抗和短路阻抗。
单相变压器基本方法总结
分析计算变压器运行的方法:
基本方程式:变压器电磁关系的数学表达式。 等效电路:基本方程式的模拟电路。 相量图:基本方程式的图示表示。
三者是统一的,一般定量计算用等效电路,讨论各 物理量之间的相位关系用相量图。
E2 KE2
E2 KE2
U 2 KU 2
(二)电流的归算 电流归算的原则:归算前后二次侧磁动势保持不变。
N2'I2' N2I2
(三)阻抗的归算
I 2
I2 K
阻抗归算的原则:归算前后电阻铜耗及漏感中无功功率不变。
I 22 R2
I
2 2
R2
I22 X 2
I
2 2
X
2
R2
I
2 2
I22
R2
K 2R2
S7-315/10 三相(S)铜芯10KV变压器,容量315KVA,设计序号7为节 能型.
SJL-1000/10 三相油浸自冷式铝线、双线圈电力变压器,额定容量为 1000千伏安、高压侧额定电压为10千伏。
我国生产的各种变压器主要系列产品有:S7、SL7、S9、 SC8等。其中SC8型为环氧树脂浇注干式变压器。
同心式绕组 1—铁心柱 2—铁轭 3—高压线圈 4—低压线圈
交叠式绕组 1—低压绕组 2—高压绕组
变压器的工作原理、分类及结构相关知识讲解
(4)铁心所用材料的导磁性能越好,则励磁电抗越大,空载电 流越小。因此变压器的铁心均用高导磁的材料硅钢片叠成。
(5)气隙对空载电流影响很大,气隙越大,空载电流越大。因 此要严格控制铁心叠片接缝之间的气隙。
(5) U 1
E 2 I0r E 1
2、等效电路
•
•
•
•
U I I E 由公式:
•
1 E1
0 R1 j
0 x1
1 I0Z1 可知
空载变压器可以看作是两个电抗线圈串联的电路。
其中一个是没有铁 心的线圈,其阻抗
为Z 1=R1+jX 1;
另一个是带有铁心 的线圈,其阻抗为
Zm=Rm+jXm
即
在三相变压器中额定电压为线电压。
额定电流 I1N / I2 N ( A )
指在额定容量下,变压器在连续运行时允许通过的 最大电流有效值。在三相变压器中指的是线电流。
单位:A
三者关系: 单相:SN U1N I1N U2 N I2 N 三相:SN 3 U1N I1N 3 U2 N I2 N
额定频率fN
同心式绕组
交迭式绕组
根据绕组和铁心的相对位置,变压器有壳式结构和心式结构 两种,如以下两图所示。
(三)其它结构部件 如下图所示,油浸式电力变压器的结构中还包括油箱、绝缘套
管、储油柜、安全气道等。
二、变压器的分类
按用途分:电力变压器和特种变压器。 按绕组数目分:单绕组(自耦)变压器、双绕组变压器、三 绕组变压器和多绕组变压器。
变压器的工作原理分类及结构
变压器的工作原理分类及结构变压器是一种用于改变交流电压的装置,其工作原理基于电磁感应现象。
通常由一个或多个线圈和一个铁芯构成。
变压器可以分为两种类型:升压变压器和降压变压器。
升压变压器使得输出电压大于输入电压,而降压变压器则使得输出电压小于输入电压。
变压器可用于输电线路中提高或降低电压,以及将交流电压从一种电压级别变成另一种电压级别。
变压器一般由两个线圈组成:主线圈(也称为初级线圈或输入线圈)和副线圈(也称为次级线圈或输出线圈)。
主线圈与电源连接,而副线圈连接到负载。
两个线圈之间通过磁场耦合进行能量传输。
变压器的工作原理基于电磁感应。
当交流电通过主线圈时,电流会产生交变的磁场。
这个交变磁场刺激了副线圈中的电荷并导致电流流过它。
根据法拉第定律,磁通量的变化将在两个线圈中产生感应电动势。
根据楞次定律,感应电动势的方向会阻碍磁通量的变化。
这就导致了一个交变电压被“传送”到副线圈。
为了提高变压器的效率,变压器通常由一个铁芯包含在两个线圈的周围。
铁芯是由高导磁率材料制成的,如硅钢板。
铁芯的作用是集中和增强磁场,从而提高磁耦合和能量传输的效率。
变压器的输出电压和输入电压之间的比率称为变压器的变比。
变比可以通过改变主线圈和副线圈的匝数比例来改变。
例如,如果副线圈匝数比主线圈少一半,那么变压器的变比就是2:1,即输出电压将是输入电压的一半。
总之,变压器是一种基于电磁感应原理的装置,用于改变交流电压。
它由主线圈、副线圈和铁芯组成,利用磁耦合实现能量传输。
变压器可分为升压变压器和降压变压器,其工作原理通过改变线圈的匝数比例来改变输出电压和输入电压之间的比率。
变压器的工作原理
2020/6/9
二、互感器
• 互感器是电流互感器和电压互感器的合称。 • 互感器的主要功能是: (1)可使仪表和继电器标准化。如电流互感器
副绕组的额定电流都是5A;电压互感器副绕 组的电压通常都规定为100V。 (2)可使测量仪表、继电器等二次设备与一次 主电路隔离。降低仪表及继电器的绝缘水平, 简化仪表构造,同时保证工作人员的安全。
相同 储油柜内油面高度随变压器的热胀冷缩而变动 储油柜限制了油 与空气接触的面积 从而减少了水分的侵入与油的氧化。 • 气体继电器 气体继电器是变压器的主要安全保护装置 当变压器内部 发生故障时 变压器油气话产生的气体使继电器动作 发出信号 示意工 作人员及时处理或令其开关跳闸 • 绝缘套管 变压器绕组的引线是通过箱盖上的陶瓷绝缘套管引出的 作 用是使高低压绕组引线与变压器箱体绝缘 10到35KV采用空心气式 或充油式套箱 110KV 及以上的采用电容式套箱。
绕 组 名 称 首 端
高 压 绕 组 ABC 低 压 绕 组 a bc
末 端
中 点
XYZ O
xyz o
2020/6/9
1.星形联结用符号“Y(或 y)”表示 • 三个首端 A、B、C(或 a、b、c)向外引出 • 末端 X、Y、Z(或 x、y、z)连接在一起成为中性点 2.三角形联结用符号“D(或d)”表示 • 各相间联结次序为 A - X - C - Z - B - Y(或 a- x
2020/6/9
变压器并联运行的条件
• 2、负载时各变压器所分担的负载量,应该按各自额定容 量的大小成比例分配,防止其中某台过载或欠载。 3、负载时各变压器所分担的电流,应该与总的负载电流 同相位。这样当总的负载电流一定时,各变压器所分担的 电流最小;如果各变压器所分但的电流一定时,则总的负 载电流最大。 要达到上述理想的并联状态,并联运行的变压器必须具备 以下三个条件: 1、各变压器的原边额定电压要相等,各副边额定电压也 要相等,即变比要相等; 2、各变压器副边线电势对原边线电势的相位差应相等, 即连接组要相同; 3、各变压器的阻抗电压标么值应相等,短路阻抗角应相 等。
变压器的主要结构和工作原理
变压器的主要结构和工作原理引言概述:变压器是电力系统中常见的电力设备之一,它在电能传输和分配中起着重要的作用。
本文将详细介绍变压器的主要结构和工作原理,以帮助读者更好地理解和应用变压器。
正文内容:一、变压器的主要结构1.1 主要结构组成- 主要由铁芯、一次绕组和二次绕组组成。
- 铁芯是变压器的主要磁路部分,通常由硅钢片叠压而成,以减小磁导率和磁阻。
- 一次绕组是输入侧的绕组,通常由导电材料绕制而成。
- 二次绕组是输出侧的绕组,也由导电材料绕制而成。
1.2 绝缘和冷却系统- 变压器的绝缘系统是保证安全运行的关键,通常使用绝缘材料将绕组和铁芯分隔开。
- 冷却系统对于变压器的正常运行至关重要,常见的冷却方式有自然冷却和强制冷却。
1.3 外壳和配电设备- 变压器通常有一个外壳,用于保护内部部件免受外界环境的影响。
- 配电设备包括开关、熔断器和保护装置等,用于控制和保护变压器的正常运行。
二、变压器的工作原理2.1 电磁感应原理- 变压器的工作基于电磁感应原理,当一次绕组通入交流电时,会在铁芯中产生交变磁场。
- 交变磁场会感应二次绕组中的电动势,从而使电能从一次绕组传递到二次绕组。
2.2 变压器的变压比- 变压器的变压比是指输入电压与输出电压之间的比值,可以通过绕组的匝数比来确定。
- 变压器可以实现电压的升高或降低,根据需要选择合适的变压比。
2.3 损耗和效率- 变压器在工作过程中会产生一定的损耗,包括铁损耗和铜损耗。
- 效率是衡量变压器性能的重要指标,可以通过输出功率与输入功率的比值来计算。
三、变压器的应用领域3.1 电力系统- 变压器在电力系统中用于电能传输和分配,将发电厂产生的高压电能转换为适用于用户的低压电能。
- 在输电过程中,变压器可以实现电压的升高,减少输电损耗。
3.2 工业领域- 变压器在工业领域中广泛应用于电力设备、机械设备和照明系统等。
- 它可以为各种设备提供合适的电压和电流,满足工业生产的需求。
变压器结构、工作原理和功能
变压器结构、工作原理和功能引言概述:变压器是电力系统中常见的电气设备,用于改变交流电的电压。
它由两个或更多的线圈组成,通过电磁感应将电能从一个线圈传输到另一个线圈。
本文将详细介绍变压器的结构、工作原理和功能。
一、变压器结构1.1 主要组成部分- 磁芯:变压器的磁芯通常由铁芯或硅钢片制成,用于提供磁通路径。
- 一次线圈(原边线圈):位于输入侧的线圈,接收来自电源的电能。
- 二次线圈(副边线圈):位于输出侧的线圈,将电能传输到负载。
1.2 绝缘材料- 绝缘材料用于隔离线圈和磁芯,以防止电流短路和能量损失。
- 常见的绝缘材料包括绝缘纸、绝缘漆和绝缘胶带。
1.3 冷却系统- 变压器在工作过程中会产生热量,需要通过冷却系统来散热。
- 常见的冷却系统包括油冷却和风冷却。
二、变压器工作原理2.1 电磁感应- 当一次线圈中的电流变化时,会在磁芯中产生磁场。
- 这个磁场会感应到二次线圈中,从而在二次线圈中产生感应电动势。
2.2 变压器方程- 变压器方程描述了变压器中输入电压、输出电压和线圈匝数之间的关系。
- 根据变压器方程,输入电压与输出电压的比例等于一次线圈匝数与二次线圈匝数的比例。
2.3 理想变压器- 理想变压器是指在没有能量损耗和磁通泄漏的情况下运行的变压器。
- 理想变压器的输出功率等于输入功率,电压和电流的比例保持不变。
三、变压器功能3.1 电压变换- 变压器可以将输入电压转换为所需的输出电压,以满足负载的要求。
- 通过改变一次线圈和二次线圈的匝数比例,可以实现电压的升高或降低。
3.2 电流变换- 变压器能够改变电流的大小,使其适应负载的需求。
- 通过改变一次线圈和二次线圈的匝数比例,可以实现电流的升高或降低。
3.3 绝缘和隔离- 变压器可以提供电气隔离,将输入侧和输出侧完全隔离开来。
- 这种隔离可以防止电流的短路和保护负载设备。
四、变压器的应用领域4.1 电力传输和配电系统- 变压器广泛应用于电力传输和配电系统,将发电厂产生的高电压转换为适用于家庭和工业用电的低电压。
变压器的基本结构及其工作原理
变压器的基本结构及其工作原理变压器是电力系统中常见的一种电气设备,用于改变交流电的电压。
它是由两个或多个密封绕组组成的,通常由铁芯包围着。
这些绕组可分别接通电源和负载。
1.铁芯:变压器的铁芯一般由硅钢片制成。
它的主要作用是提供一个低磁阻的磁通路径,使磁通能够有效地通过绕组。
2.一次绕组:一次绕组通常连接到电源,并产生一个交变电场。
它的作用是将电能传输到二次绕组。
3.二次绕组:二次绕组通常与负载相连,产生一个交变电场。
它的作用是将一次绕组输入的电能转化为不同电压级别的输出。
4.绝缘材料:绝缘材料用来隔离绕组,以防止电流短路和漏电。
常见的绝缘材料包括绝缘纸、绝缘油和绝缘胶。
变压器的工作原理如下:当一次绕组上加上交流电源时,由于交变电流的存在,磁场也会随之变化。
这个变化的磁场会在铁芯中产生磁通,然后穿过二次绕组。
由于电磁感应的原理,通过二次绕组的磁通会在其中产生交变电压。
这样,输入到一次绕组的电能就被传输到二次绕组,并以不同的电压形式输出。
根据电磁感应定律,变压器的输出电压与输入电压的比值取决于两个绕组的绕组比。
例如,如果二次绕组的绕组比为1:2,那么输出电压就是输入电压的两倍。
而如果绕组比为2:1,输出电压就是输入电压的一半。
变压器的工作原理可以通过以下两个重要的物理规律解释:1.法拉第电磁感应定律:它表明当一个导体中的磁通发生变化时,会在该导体上产生感应电动势。
在变压器中,一次绕组的交变电流产生的磁场变化会导致二次绕组中的感应电动势。
2.洛伦兹力定律:它表明当电流通过导体时,会在导体周围产生磁场。
在变压器中,一次绕组中的交变电流会产生磁场,这个磁场通过铁芯和二次绕组,最终产生感应电动势。
总的来说,变压器通过电磁感应的原理将输入电能转化为不同电压级别的输出。
它在电力系统中起到了重要的作用,使电能的输送和分配更加高效和安全。
变压器的结构及工作原理
变压器的结构及工作原理
1. 变压器的结构
变压器是一种用于升降电压的电器设备,由变压器铁芯、绕组、油箱、散热系统、绝
缘系统等部分组成。
(1) 变压器铁芯
变压器铁芯是由硅钢片按照一定的规则叠压而成的,主要作用是集中磁通并将其导入
绕组,同时减少磁通漏损和铁损。
变压器铁芯的构造形式有C、I、U、EI等。
(2) 绕组
变压器绕组是由铜或铝线缠绕在铁芯上的导线。
绕组包括高压绕组、低压绕组和中性
点绕组。
绕组的质量和结构影响变压器的电性能和使用寿命。
(3) 油箱
变压器油箱是装在变压器铁芯和绕组周围的容器,主要作用是冷却和绝缘,同时也用
于存储变压器油。
(4) 散热系统
变压器的散热系统通常包括风扇、散热片等,用于降低变压器的温度,保证变压器运
行的稳定性和可靠性。
变压器的绝缘系统包括绝缘材料、绝缘结构和绝缘电气测试等,用于保证变压器的安
全可靠性和使用寿命。
变压器的工作原理是基于电磁感应的原理。
当电压在变压器的高压绕组中产生变化时,导致高压绕组中的磁通量随之变化,磁通量的变化产生电磁感应力,导致低压绕组中的电
压也产生变化,从而达到升压或降压的作用。
在变压器中,电压的变化与磁通量的变化成正比。
由此可知,当发生输入电压变化时,变压器的磁通量也会随之变化,影响到输出电压,导致电压的升降。
变压器工作的效率很高,而且体积小,因此广泛应用于各个领域,如电力系统、工厂、家庭等。
变压器结构、工作原理和功能
变压器结构、工作原理和功能引言概述:变压器是一种常见的电力设备,它在电力系统中起着至关重要的作用。
本文将详细介绍变压器的结构、工作原理和功能,以匡助读者更好地理解这一电力设备。
一、变压器的结构1.1 主要部件- 磁芯:变压器的磁芯由硅钢片叠压而成,用于导磁和减小磁损耗。
- 一次绕组:也称为输入绕组,由多圈的导线绕制而成,用于接收电源的电能。
- 二次绕组:也称为输出绕组,同样由多圈的导线绕制而成,用于输出变压后的电能。
- 绝缘材料:用于隔离绕组和磁芯之间,防止电流短路和电弧放电。
1.2 冷却系统- 油冷变压器:通过油冷却系统,将变压器内部产生的热量传导到变压器外部,以保持变压器的正常工作温度。
- 干式变压器:采用风冷却系统,通过风扇将变压器内部的热量带走,使变压器保持正常工作温度。
1.3 外壳和附件- 外壳:变压器的外壳通常由金属材料制成,用于保护内部部件并提供机械强度。
- 附件:包括油位计、温度计、保护装置等,用于监测和保护变压器的正常运行。
二、变压器的工作原理2.1 电磁感应- 一次绕组接入交流电源后,电流在绕组中产生磁场。
- 磁场穿过磁芯,感应到二次绕组,从而在二次绕组中产生电动势。
2.2 变压器的变比- 变压器的变比由一次绕组和二次绕组的匝数比决定。
- 如果一次绕组匝数大于二次绕组匝数,变压器为升压变压器;反之,为降压变压器。
2.3 理想变压器的功率传递- 在理想情况下,变压器的功率传递是无损耗的。
- 一次绕组输入的功率等于二次绕组输出的功率。
三、变压器的功能3.1 电压变换- 变压器可以将高电压变为低电压,或者将低电压变为高电压,以适应不同的电力系统需求。
3.2 电流变换- 变压器可以根据需要将大电流变为小电流,或者将小电流变为大电流,以满足电力传输和分配的要求。
3.3 绝缘和隔离- 变压器的绝缘和隔离功能可以防止电流短路和电弧放电,确保电力系统的安全运行。
四、总结变压器是一种重要的电力设备,它的结构包括主要部件、冷却系统、外壳和附件等。
变压器结构简介与工作原理
变压器结构简介与工作原理一、变压器结构简介变压器是一种电气设备,用于改变交流电的电压。
它由两个或多个线圈组成,这些线圈通过磁场耦合在一起。
变压器的结构主要包括铁芯、一次线圈(也称为原边线圈)、二次线圈(也称为副边线圈)和绝缘材料。
1. 铁芯:铁芯是变压器的主要构成部分,通常由硅钢片叠压而成。
它的作用是提供一个低磁阻路径,以便磁场能够有效地传导。
2. 一次线圈:一次线圈是连接到电源的线圈,也称为原边线圈。
当电流通过一次线圈时,它会在铁芯中产生一个磁场。
3. 二次线圈:二次线圈是输出电压的线圈,也称为副边线圈。
当磁场通过二次线圈时,它会诱导出一个电压。
4. 绝缘材料:绝缘材料用于隔离和保护线圈,以防止电流泄漏和短路。
二、变压器工作原理变压器的工作原理基于法拉第电磁感应定律。
当一次线圈中的电流变化时,它会在铁芯中产生一个磁场。
这个磁场通过铁芯传导到二次线圈中,诱导出一个电压。
变压器的工作可以分为两个阶段:磁场建立阶段和磁场崩溃阶段。
1. 磁场建立阶段:当交流电通过一次线圈时,它会产生一个变化的磁场。
这个磁场在铁芯中建立,并通过铁芯传导到二次线圈中。
根据法拉第电磁感应定律,磁场的变化会诱导出一个电压。
2. 磁场崩溃阶段:当交流电的方向改变时,一次线圈中的电流也会改变。
这样,铁芯中的磁场也会崩溃,并诱导出一个反向的电压。
这个反向的电压可以通过适当的连接方式用于其他应用,例如降低电压或提高电压。
变压器的工作原理可以用下面的公式表示:V1/N1 = V2/N2其中,V1和V2分别表示一次线圈和二次线圈的电压,N1和N2表示一次线圈和二次线圈的匝数。
根据这个公式,可以通过改变线圈的匝数比例来改变输出电压。
总结:变压器是一种用于改变交流电压的重要电气设备。
它的结构包括铁芯、一次线圈、二次线圈和绝缘材料。
变压器的工作原理基于法拉第电磁感应定律,通过在铁芯中产生和传导磁场来诱导出电压。
通过改变线圈的匝数比例,可以实现对输出电压的调节。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.铁心 • 铁心是变压器中主要的磁路部分。通常由含硅量较高
,厚度为 0.35 或 0.5 mm,表面涂有绝缘漆的热轧或 冷轧硅钢片叠装而成 • 铁心分为铁心柱和铁轭俩部分,铁心柱套有绕组;铁 轭闭合磁路之用 • 铁心结构的基本形式有心式和壳式两种
2020/5/5
心式变压器结构示意图
2020/5/5
第一节 变压器的工作原理 分类及结构
• 与电源相连的线圈,接收交流电能,称为一次 绕组 用U1 ,I1,E1,N1表示,
• 与负载相连的线圈,送出交流电能,称为二次 绕组 用U2,I2,E2 ,N2表示。
• 同时交链一次,二次绕组的磁通量的相量为 Fm ,该磁通量称为主磁通
• 请注意 图3-1 各物理量的参考方向确定。
第三章 变压器
• 第一节 变压器的工作原理 分类及结构
2020/5/5
第一节 变压器的工作原理 分 类及结构
一.变压器的工作原理 • 变压器---利用电磁感应原理,从一个电路向
另一个电路传递电能或传输信号的一种电器 • 是电力系统中生产,输送,分配和使用电能的
重要装置。 • 也是电力拖动系统和自动控制系统中 ,电能传
2020/5/5
第一节 变压器的工作原理 分类及结构
2.绕组 • 绕组是变压器的电路部分
,它是用纸包的绝缘扁线 或圆线绕成。 右图为交叠 式绕组 3.其他结构部件 • 以典型的油侵式电力变压 器为例,其他结构部件有: • 油箱、储油柜、散热器、 高压绝缘管套以及继电保 护装置等外形如下图
2020/5/5
• È1 = È2'
2020/5/5
二.变压器等效电路
单相变压器负载运行时各物理量的关系如图所示
2020/5/5
第四节 变压器的等效电路及向量图
• 由于 N2′= N1,这
是电压比等于 1 的
变压器,因此,E2′=
E1,图中 a-b 和 cd 是等电位点 • 用导线把它们联接 起来,考虑到
Ì1 + Ì2′= Ìm
• 由:I2'2 x2' = I22 x2 得 x2'= I22/I2'2 x2 = k2x2
2020/5/5
第四节 变压器的等效电路及向量图
归算后变压器负载运行时的基本方程式将变为如下形 式
• Ì1 + Ì2'= Ìm
• Ù1= -È1+ Ì1Z1
• Ù2'= È2'- Ì2′Z2′ • -È1 = ÌmZm
È1 = -ÌmZm 则得等值电路如图:
2020/5/5
第一节 变压器的工作原理 分类及结构
• 2.理想变压器 • 不计一次、二次绕组的电阻和铁耗,其间耦合系数 K=1 的变
压器称之为理想变压器 • 描述理想变压器的电动势平衡方程式为
2020/5/5
第一节 变压器的工作原理 分类及结构
• 若一次、二次绕组的电压、电动势的瞬时值均按正弦 规律变化,则有
2020/5/5
第四节 变压器的等效电路及向量图
1.问题? 是否可找到一个便于工程计算的单纯电路,以 代替无电路联系、但有磁路耦合作用的实际变 压器。 但这个电路必须能正确反映变压器内部电磁过 程
2.答案:有! • 这种电路称为变压器的等效电路 • 前提条件是必须进行绕组归算
2020/5/5
第四节 变压器的等效电路及向量图
2020/5/5
(二) 电动势和电压的归算
• 因为 N2‘= N1 (三) 电流的归算
所以: E2'= k E2
• 保持磁通势在归算前后不变,N2'I2'= N2I2 ,则 • I2'= (N2/N2')I2 = (N2/N1)I2 = I2/k
(四) 阻抗的归算
• 保持归算前后铜耗及漏感中无功功率不变的原则 由:I2'2 r2' = I22 r2 得 r2'= I22/I2'2 r2 = k2r2
2. 由于电源电压恒定 U1 = 常数,则 E1 常数,Øm 常 数
所以,产生主磁通的磁势也不会改变,因此, 达到新的平衡的条件是:
• 绕组的电流增量 DI1 所产生的磁通势,与二 次绕组电流 I2 所产生的磁通势相抵消,以维 持主磁通基本不变。即
• 2020/5/5
DÌ1N1 + Ì2 N2 = 0
第二节 单相变压器的空载运行
2.变压器变比 • 当一次绕组上加上额定电压 U1N 时,一般规定此时二
次绕组开路电压将是额定电压 U2N ,因此可以认为, 变压器的电压比就是匝数比 • 在三相变压器中,电压比规定为高压绕组的线电压与 低压绕组的线电压之比
2020/5/5
第二节 单相变压器的空载运行
列出一次、二次绕组的电动势平衡方程式
u1 u20
= =
ie02r1=+(--eN1s2)d+F(-me/1d)t
=
i0r1+
N1dF1s/dt
+
N1dFm/dt
2020/5/5
(一) 感应电动势与主磁通
1.变压器感应电势 1)主磁通 • 若 u1 随时间按正弦规律变化,则 Øm 也按正弦规律
变化,设 则对 e1 有: • e1(t) = -N1 dFm/dt = -wN1Fm cos wt
• 变压器的额定容量除以各绕组的额定电压所计算出来的线 电流值,以A表示
• 单相变压器的一次、二次绕组的额定电流为
I1N = S N/ U1N
I2N = S N/ U2N
• 三相变压器的一次、二次绕组的额定电流为
I1N = S N/ 3 U1N (4).额定频率
I2N = S N/ 3 U2N
• 我2020国/5/5工业用电频率为 50 HZ
一、绕组归算 • 绕组归算就是把二次绕组的匝数变换成一次绕组的
匝数 • 或者将一次绕组的匝数变换成二次绕组的匝数来进
行运算, • 但不改变其电磁效应的一种分析方法 (一) 归算原则: 1、归算前后的磁通势平衡关系不变 2、各种能量关系保持不变 • 归算值用原来的符号加 ' 表示 • 下面以二次侧归算到一次侧为例
2020/5/5
第一节 变压器的工作原理 分类及结构
4.变压器的额定值
(1).额定容量 S
• 变压器视在功率的惯用数值,以 VA,KVA,MVA 表示
(2).额定电压 U
• 变压器各绕组在空载额定分接下端子间电压的保证值,对 于三相变压器额定电压系指线电压,以 V 或 KV 表示
(3).额定电流 I
第二节 单相变压器的空载运行
• 什么是空载运行? • 变压器一次绕组加上交流电
压,二次绕组开路的运行情 况
一.空载时的物理情况
1.空载磁场 • 空载电流 i0 产生一个交变磁
通势 i0N1 ,并建立交变磁场
• 主磁通 Øm通过铁心闭合的磁 通量(占绝大部分)
• 漏磁通Ø1ó通过油和空气闭合 的磁通量(占少量)
磁滞作用导致励磁电流有功无功分量出现示意图(图3-6)
2020/5/5
第二节 单相变压器的空载运行
• 空载电流可认为是励磁电流,用 Im 表示, • 空载运行时从电源输入少量电功率 p0 ,主要用来补
偿铁心中的铁损耗 pFe, • Im 中含有有功 IFe(损耗电流)和用以建立磁场的无
功 Iu (磁化电流) • Im2 = Im2 + IFe2 • IFe = pFe/E1 pFe/U1 •2020/通5/5 常,Iu >> IFe ,U1 与 Im 之间相位角 ø0 接近
• 不计铁心损失,根据能量守恒原理可得 • 由此得出一次、二次绕组电压和电流有效值的关系 • 令 K=N1/N2,称为匝比(亦称电压比),则
•
2020/5/5
第一节 变压器的工作原理 分类及结构
二.变压器的分类 1.变压器按用途一般分为电
力变压器和特种变压器 两大类 • 电力变压器可分为: 升压 变压器、降压变压器、配 电变压器、联络变压器等
二.变压器负载运行时的基本方程式
(一)磁通势平衡方程式 Ì1N1 + Ì2N2= ÌmN1
(二)电动势平衡方程式 变压器负载运行时磁通与各感应电动势的关系图
2020/5/5
第三节 单相变压器的基本方程式
电动势平衡方程式 • Ù1 = -È1+ Ì1r1+jÌ1x1= -È1+ Ì1Z1 • Ù2 = È2- Ì2r2-jÌ2x2 = È2- Ì2Z2 归纳出变压器负载运行时的基本方程式为 • Ì1N1 + Ì2N2 = ÌmN1 • Ù1= - È1+ Ì1Z1 • Ù2= È2- Ì2Z2 • -È1 = ÌmZm • È1/È2 = N1/N2 =k
递或作为信号传输的重要元件
2020/5/5
2020/5/5
2020/5/5
控制变压器
第一节 变压器的工作原理 分类及结构
• 1.变压器 ---- 静止 的电磁装置
• 变压器可将一种电压 的交流电能变换为同 频率的另一种电压的 交流电能
• 电压器的主要部件是 一个铁心和套在铁心 上的两个绕组。
•变压器原理图(图3-1)
• 变压器空载运行时原边电动势平衡方程式如下 其中 2020/5/5 Z1 = r1 + jx1
2.空载运行时等值电路
3.空载运行时相量图
2020/5/5
第二节 单相变压器的空载运行
4.应注意的问题 • 注意 r1、x1 是常量 • 而励磁阻抗的大小和变压器工作点有关 • 因铁心中存在饱和现象,rm、xm 随着饱和程度
2020/5/5
磁通与电势的关系(图3-3)