货币的时间价值
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
You might be able to put $1200 in the bank, a second deposit of $1400 in 1 year in 2 years. 两年内存了三笔,第一笔$1200,第二笔$1400,第三笔$1000,假 设都是年初存入。
If you earn an 8% rate of interest. How much be available to spend 2 years from now? 若年利率为8%,复利计算,那么三年后可用资金额是多少?
期初年金:指在一定时期内,以相同的时间间隔在各期期初收入或支出的 等额的款项。
COPYRIGHT©ZHULI
4.4.1 HOW TO VALUE PERPETUITIES如何计算永 续年金
Suppose that you could invest $100 at an interest rate of 10%. You would earn annual interest of .10 × $100 = $10 per year and could withdraw this amount from your investment account each year without ever running down your balance. 初始投资为$100年利率为10%的 投资可使投资者每年支取$10的利息而不会减少账户资金。
Present value (PV): value today of a future cash flow
现值:未来一定时间特定资金的现在价值。(P95.)
To calculate present value, we discounted the future value at the interest rate r. 为了计算现值,我们按利率r将未来价值贴现。
货币的时间价值就是指当前所持有的一定 量货币比未来获得的等量货币具有更高的 价值。从经济学的角度而言,现在的一单 位货币与未来的一单位货币的购买力之所 以不同,是因为要节省现在的一单位货币 不消费而改在未来消费,则在未来消费时 必须有大于一单位的货币可供消费,作为 弥补延迟消费的贴水。
COPYRIGHT©ZHULI
The calculation is therefore termed a discounted cash flow (DCF贴现现金流) calculation, an the interest rate r is known as the discounted rate。利率r即是贴现率。 (P96.)
行投资的资金如何在投资期内增值,并给出了计算多 笔现金流价值的一些公式,然后分析了通货膨胀 (inflation)对财务计算的影响。
1-3
CONTENT
1. Future values and compound interest终值与复利
2. Present values现值
3. Multiple cash flows多重现金流
COPYRIGHT©ZHULI
16
The present value of a stream of future cash flows is the amount you need to invest today to generate that stream. To find the PV, you just calculate the PV of each flow and then add them. 计算多笔未来现金流量的现值,只需分别计算出每笔现金流的现 值,然后加总即可。
4. Level cash flows: perpetuities and annuities 水平现金流:永续年金和年金 5. Inflation and the time value of money通胀与资金的时间价 值 6. Effective annual interest rates有效年利率
2
本章导读
• 公司需要筹集资金(raise funds)以支付投资,并因 此承担了在未来时点还款的责任;个人也可能通过借 贷(student loan)获得大学教育所需资金,并计划 在未来用工资收入偿债。
• 因此所有的财务决策(financial decision)都必须对 不同时点的现金流量(cash flows)进行比较。 • 本章首先分析了按特定利率(given interest rate)进
For an interest rate of r and a horizon of t years, 一笔时限为t年利率为r的初始金额为$100的投资的终值:
Future value of $100 = $100×(1+r)t
COPYRIGHT©ZHULI
6
Compound interest: interest earned on interest 复利:利滚利(将所生利息计 入本金再计利息)( P92).
利率为r时,初始投资一年以后的价值等于初始金额乘以 (1+r)
Interest in year 2 = .06 ×$106 = $6.36 Value of investment after 1 year = $106+$6.36 = $112.36
COPYRIGHT©ZHULI
5
Future value: amount to which an investment will grow after earning interest 终值:投资的未来价值,即一定 量的资金在将来某一时点的价值, 表现为本利和. (P92.)
FV factor终值系数 = (1+r)t
COPYRIGHT©ZHULI
9
4.2 PV现值
$100 invested for 1 year at 6% will grow to 本金$100,投资期1年,利息6%,终值(FV)为 $106= (100×1.06) How much we need to invest now in order to produce $106 at the end of the year? 反之,若想在一年后获得$106,那么初始投资金额 应为多少呢?
COPYRIGHT©ZHULI
7
Simple interest单利:the interest only on your original investment. 在贷款期间只就本金计算利息,利息不再加入 本金计算利息。(P92.)
How an investment of $100 grows with compound interest at different interest rate 本金为$100的投资不同利率水平下的复利增长
Discount factor贴现系数 = 1/(1+r)t
COPYRIGHT©ZHULI
13
4.3.1 FUTURE VALUE OF MULTIPLE CASH FLOWS 多笔现金流的终值
Suppose you plan to save some amount of money each year to purchase a computer. 假设你想每年存一点钱来买一台电脑。
COPYRIGHT©ZHULI
4
4.1 终值FV与复利 COMPOUND INTEREST
Suppose you have $100 invested in a bank account, interest rate of 6% per year 假设银行账户中有100刀,年利率为6%
Interest in year 1 = .06 ×$100 = $6 Value of investment after 1 year = $100+$6 = $106
COPYRIGHT©ZHULI
11
Present value of a future cash flow of $100
The longer, the less it is worth today 支付期限越长,现在所需的 初始投资额越少。
COPYRIGHT©ZHULI
12
An example of present value table, showing the value today of $1 received in the future. 未来特定时间的1美元的现值:
COPYRIGHT©ZHULI
Hale Waihona Puke Baidu14
To find the value at some future date of a stream of cash flows, calculate what each flow will be worth at that future date, and then add up these future values. 计算多笔现金流的终值,只需分别计算单笔现金流的终 值,然后加总即可。
COPYRIGHT©ZHULI
15
4.3.2 PRESENT VALUE OF MULTIPLE CASH FLOWS 多笔现金流的现值
Suppose your auto dealer gives you a choice between paying $15500 for a new car or entering into an installment plan where you pay $8000 down today and make payments of $4000 in each of the next 2 years. Assume that the interest rate you can earn on safe investments is 8%. 假设你有一个购车计划,可以选择一次性支付$15500,或者 分期付款——首付$8000,之后的两年每年支付$4000,无风 险投资收益率为8%。你会如何选择? Which is the better deal?
Obviously, the higher the rate of interest, the faster your savings will grow with years.
COPYRIGHT©ZHULI
8
An example of a future value table, showing how an investment of $1 grows with compound interest
年金:在相等的间隔期,连续地分批支付或收入相等金额的款项。(P105.)
•Perpetuity: stream of level cash payments that never ends
永续年金:无限期定额支付的年金。 (P105.)
•Annuity due: level stream of cash flows starting immediately 18
COPYRIGHT©ZHULI
$15133.06 < 15500 The installment plan is preferable
17
4.4 level cash flows水平现金流
•Annuity: equally spaced level stream of cash flows, with a finite maturity
Present value = future value/l.06 = $100
COPYRIGHT©ZHULI
10
In general, for a future value or payment t periods away 公式化之后:现值即等于终值除以终值系数 Present value = future value after t periods/(1+r)t
CHAPTER 4
THE TIME VALUE OF MONEY 资金的时间价值
COPYRIGHT©ZHULI McGraw-Hill/Irwin Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved.
1
定义: