2015-2016年安徽省合肥八中高二上学期期中数学试卷及答案(文科)

合集下载

2015-2016学年安徽省合肥八中高三(上)第一次段考数学试卷(文科)

2015-2016学年安徽省合肥八中高三(上)第一次段考数学试卷(文科)

2015-2016学年安徽省合肥八中高三(上)第一次段考数学试卷(文科)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共12小题,共60.0分)1.在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】解:==-i+2所对应的点为(2,-1),该点位于第四象限故选D.根据1=-i2将复数进行化简成复数的标准形式,得到复数所对应的点,从而得到该点所在的位置.本题主要考查了复数代数形式的运算,复数和复平面内的点的对应关系,属于基础题.2.设全集U=R,集合A={x|1<x<4},B={1,2,3,4,5},则(C U A)∩B=()A.{2,3}B.{1,2,3,4}C.{5}D.{1,4,5}【答案】D【解析】解:∵全集U=R,集合A={x|1<x<4},∴C U A={x|x≤1或x≥4},∵B={1,2,3,4,5},则(C U A)∩B={1,4,5}.故选D找出全集R中不属于A的部分,求出A的补集,找出A补集与B的公共部分,即可确定出所求的集合.此题考查了交、并、补集的混合运算,熟练掌握交、并、补集的定义是解本题的关键.3.若等差数列{a n}的前三项和S3=9且a1=1,则a2等于()A.3B.4C.5D.6【答案】A【解析】解:∵S3=9且a1=1,∴S3=3a1+3d=3+3d=9,解得d=2.∴a2=a1+d=3.故选A.根据等差数列的前n项和公式,结合已知条件,先求出d,再代入通项公式即可求解.本题主要考查了等差数列的通项公式与前n项和公式,注意方程思想的应用.4.阅读右面的程序框图,则输出的S等于()A.40B.20C.32D.38【答案】D【解析】解:根据程序框图,运行结果如下:S i第一次循环203第二次循环322第三次循环381此时退出循环故选D.结合流程图写出前几次循环的结果,经过每一次循环判断是否满足判断框中的条件,直到不满足条件输出s结束循环,得到所求.本题为程序框图题,考查对循环结构的理解和认识,按照循环结构运算后得出结果.属于基础题5.已知x>0,y>0,若>恒成立,则实数m的取值范围是()A.m≥4或m≤-2B.m≥2或m≤-4C.-2<m<4D.-4<m<2【答案】D【解析】解:≥2=8若>恒成立,则使8>m2+2m恒成立,∴m2+2m<8,求得-4<m<2故选D先利用基本不等式求得的最小值,然后根据>恒成立,求得m2+2m<8,进而求得m的范围.本题主要考查了基本不等式在最值问题中的应用.考查了学生分析问题和解决问题的能力,属于基础题.6.若变量x,y满足约束条件,则z=x-2y的最大值为()A.4B.3C.2D.1【答案】B【解析】解:画出可行域(如图),z=x-2y⇒y=x-z,由图可知,当直线l经过点A(1,-1)时,z最大,且最大值为z max=1-2×(-1)=3.故选:B.先根据约束条件画出可行域,再利用几何意义求最值,z=x-2y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最小值即可.本小题主要考查线性规划知识、作图、识图能力及计算能力,以及利用几何意义求最值,属于基础题.7.函数f(x)=2x-1+log2x的零点所在的一个区间是()A.(,)B.(,)C.(,1)D.(1,2)【答案】C【解析】解:∵函数f(x)=2x-1+log2x,在(0,+∞)单调递增.∴f(1)=1,f()=-1,∴根据函数的零点的判断方法得出:零点所在的一个区间是(,),故选:C.根据函数f(x)=2x-1+log2x,在(0,+∞)单调递增,f(1)=1,f()=-1,可判断分析.本题考查了函数的性质,函数的零点的判断方法,属于容易题.8.在△ABC中,AC=,BC=2,B=60°则BC边上的高等于()A. B. C. D.【答案】B【解析】解:在△ABC中,由余弦定理可得,AC2=AB2+BC2-2AB•BC cos B把已知AC=,BC=2B=60°代入可得,7=AB2+4-4AB×整理可得,AB2-2AB-3=0∴AB=3作AD⊥BC垂足为DR t△ABD中,AD=AB×sin60°=,即BC边上的高为故选B在△ABC中,由余弦定理可得,AC2=AB2+BC2-2AB•BC cos B可求AB=3,作AD⊥BC,则在R t△ABD中,AD=AB×sin B本题主要考查了余弦定理在解三角形中的应用,解答本题的关键是求出AB,属于基础试题9.已知c>0,设p:函数y=c x在R上单调递减;q:函数g(x)=lg(2cx2+2x+1)的值域为R,如果“p且q”为假命题,“p或q为真命题,则c的取值范围是()A.,B.,∞C.,,∞D.(-∞,+∞)【答案】A【解析】解:∵如果p∧q为假命题,p∨q为真命题,∴p、q中一个为真命题、一个为假命题①若p为真命题,q为假命题则0<c<1且c>,即<c<1②若p为假命题,q为真命题则c>1且c≤,这样的c不存在综上,<c<1故选A.如果p∧q为假命题,p∨q为真命题,则“p”、“q”中一个为真命题、一个为假命题.然后再分类讨论即可求解.由简单命题和逻辑连接词构成的复合命题的真假可以用真值表来判断,反之根据复合命题的真假也可以判断简单命题的真假.假若p且q真,则p真,q也真;若p或q真,则p,q至少有一个真;若p且q假,则p,q至少有一个假.可把“p或q”为真命题转化为并集的运算;把“p且q”为真命题转化为交集的运算.10.给定条件p:|x+1|>2,条件q:>1,则¬q是¬p的()A.充要条件B.必要而不充分条件C.充分而不必要条件D.既不充分也不必要条件【答案】B【解析】解:由|x+1|>2得x>1或x<-3,¬p:-3≤x≤1,由>1,得-1==>0,解得2<x <3,即¬q :x ≥3或x ≤2, 则¬q 是¬p 的必要不充分条件, 故选:B根据充分条件和必要条件的定义结合不等式的解法进行判断即可. 本题主要考查充分条件和必要条件的判断,根据不等式的性质求出等价条件是解决本题的关键.11.已知函数f (x +1)是偶函数,当1<x 1<x 2时,[f (x 2)-f (x 1)](x 2-x 1)>0恒成立,设a =f (-),b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A.b <a <c B.c <b <a C.b <c <a D.a <b <c 【答案】 A【解析】解:解:∵当1<x 1<x 2时,[f (x 2)-f (x 1)](x 2-x 1)>0恒成立, ∴当1<x 1<x 2时,f (x 2)-f (x 1)>0, 即f (x 2)>f (x 1),∴函数f (x )在(1,+∞)上为单调增函数, ∵f (1+x )=f (1-x ),∴函数f (x )关于x =1对称, ∴a =f (-)=f ( ),又函数f (x )在(1,+∞)上为单调增函数, ∴f (2)<f ()<f (3), 即f (2)<f (- )=<f (3),∴a ,b ,c 的大小关系为b <a <c . 故选:A .根据条件求出函数f (x )在(1,+∞)上的单调性,然后根据函数f (x +1)是偶函数,利用单调性即可判定出a 、b 、c 的大小. 本题考查了函数性质的应用,主要考查了函数单调性的判断以及运用单调性比较函数值的大小,同时考查了函数的对称性的应用,是函数性质的一个综合考查.属于基础题.12.已知log (x +y +4)<log (3x +y -2),若x -y <λ恒成立,则λ的取值范围是( ) A.(-∞,10] B.(-∞,10) C.[10,+∞) D.(10,+∞)【答案】 C【解析】解:由题意得 >>>,即> > <.画出不等式组>><表示的可行域如下图示:在可行域内平移直线z=x-y,当直线经过3x+y-2=0与x=3的交点A(3,-7)时,目标函数z=x-y有极大值z=3+7=10.z=x-y的取值范围是(-∞,10).若x-y<λ恒成立,则λ≥10,∴λ的取值范围是[10,+∞).故选C.根据已知得出x,y的约束条件>>>,画出满足约束条件的可行域,再用角点法,求出目标函数z=x-y的范围,再根据最值给出λ的最大值.用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.二、填空题(本大题共5小题,共25.0分)13.若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则a,b的值分别为______ .【答案】1,1【解析】解:y=x2+ax+b的导数为y′=2x+a,即曲线y=x2+ax+b在点(0,b)处的切线斜率为a,由于在点(0,b)处的切线方程是x-y+1=0,则a=1,b=1,故答案为:1,1.求出函数的导数,求得切线的斜率,由已知切线方程,可得切线的斜率和切点,进而得到a,b的值.本题考查导数的运用:求切线方程,主要考查导数的几何意义:函数在某点处的导数即为曲线在该点处切线的斜率,注意切点在切线上,也在曲线上,属于基础题.14.在等差数列{a n}中,a5=3,a6=-2,则a3+a4+…+a8= ______ .【答案】3【解析】解:∵{a n}为等差数列,a5=3,a6=-2,∵m+n=p+q(m、n、p、q∈N*),a m+a n=a p+a q,∴a3+a4+…+a8=(a3+a8)+(a4+a7)+(a5+a6)=3(a5+a6)=3.故答案为:3.利用等差数列的性质:下标之和相等的两项的和相等及等差中项的性质即可解决.本题考查等差数列的性质,考查学生理解应用等差数列性质的能力,属于基础题.15.三角形△ABC的外接圆半径为1,圆心O,已知3+4+5=,则•= ______ .【答案】【解析】解:∵3+4+5=,∴5=-(3+4),∴,即25=25+24,∴,则•==-(3+4)•()=.故答案为:-.把已知的向量等式变形,两边平方后得到,把代入•后展开得答案.本题考查平面向量的数量积运算,解答此题的关键是把已知的向量等式变形,是中档题.16.若△ABC的面积为,BC=2,C=60°,则边AB的长度等于______ .【答案】2【解析】解:∵△ABC的面积为,BC=a=2,C=60°,∴absin C=,即b=2,由余弦定理得:c2=a2+b2-2abcos C=4+4-4=4,则AB=c=2,故答案为:2利用三角形面积公式列出关系式,把已知面积,a,sin C的值代入求出b 的值,再利用余弦定理求出c的值即可.此题考查了余弦定理,三角形面积公式,熟练掌握余弦定理是解本题的关键.17.已知,各项均为正数的数列{a n}满足a1=1,a n+2=f(a n),若a2010=a2012,则a20+a11的值是______ .【答案】【解析】解:∵,各项均为正数的数列{a n}满足a1=1,a n+2=f(a n),∴a1=1,,,a7=,,∵a2010=a2012,∴∴a2010=(负值舍去),由a2010=得a2008=…依次往前推得到a20=∴a20+a11=故答案为:根据,各项均为正数的数列{a n}满足a1=1,a n+2=f(a n),可确定a1=1,,,a7=,,,利用a2010=a2012,可得a2010=(负值舍去),依次往前推得到a20=,由此可得结论.本题主要考查数列的概念、组成和性质、同时考查函数的概念.理解条件a n+2=f(a n),是解决问题的关键,本题综合性强,运算量较大,属于中高档试题.三、解答题(本大题共5小题,共65.0分)18.已知函数f(x)=2sin(x-),x∈R(1)求f()的值;(2)设α,β∈[0,],f(3α+)=,f(3β+2π)=,求cos(α+β)的值.【答案】解:(1)把x=代入函数解析式得:f()=2sin(×-)=2sin=;(2)由f(3α+)=,f(3β+2π)=,代入得:2sin[(3α+)-]=2sinα=,2sin[(3β+2π)-]=2sin(β+)=2cosβ=sinα=,cosβ=,又α,β∈[0,],所以cosα=,sinβ=,则cos(α+β)=cosαcosβ-sinαsinβ=×-×=.【解析】(1)把x=代入函数f(x)的解析式中,化简后利用特殊角的三角函数值即可求出对应的函数值;(2)分别把x=3α+和x=3β+2π代入f(x)的解析式中,化简后利用诱导公式即可求出sinα和cosβ的值,然后根据α和β的范围,利用同角三角函数间的基本关系求出cosα和sinβ的值,然后把所求的式子利用两角和的余弦函数公式化简后,将各自的值代入即可求出值.此题考查学生掌握函数值的求法,灵活运用诱导公式及同角三角函数间的基本关系化简求值,是一道中档题.19.已知函数y=的定义域为R.(1)求a的取值范围.(2)若函数的最小值为,解关于x的不等式x2-x-a2-a<0.【答案】解:(1)函数y=的定义域为R,∴ax2+2ax+1≥0恒成立,当a=0时,1>0恒成立,满足题意;当a≠0时,须>,即>,解得0<a≤1;综上,a的取值范围是{a|0≤a≤1};(2)∵函数y的最小值为,∴≥,a∈[0,1];∴ax2+2ax+1≥;当a=0时,不满足条件;当1≥a>0时,ax2+2ax+1的最小值是=,∴a=;∴不等式x2-x-a2-a<0可化为x2-x-<0,解得-<x<;∴不等式的解集是{x|-<x<}.【解析】(1)由函数y=的定义域是R,得出ax2+2ax+1≥0恒成立,求出a的取值范围;(2)由题意得ax2+2ax+1的最小值是,求出a的值,代入不等式x2-x-a2-a<0,求解集即可.本题考查了函数的性质与应用以及不等式的解法与应用问题,解题时应根据题意,适当地转化条件,从而获得解答问题的途径,是综合性题目.20.设函数f(x)=x3-3ax+b(a≠0).(Ⅰ)若曲线y=f(x)在点(2,f(2))处与直线y=8相切,求a,b的值;(Ⅱ)求函数f(x)的单调区间与极值点.【答案】解:(Ⅰ)f′(x)=3x2-3a,∵曲线y=f(x)在点(2,f(2))处与直线y=8相切,∴′⇒⇒(Ⅱ)∵f′(x)=3(x2-a)(a≠0),当a<0时,f′(x)>0,函数f(x)在(-∞,+∞)上单调递增,此时函数f(x)没有极值点.当a>0时,由′⇒,当∞,时,f′(x)>0,函数f(x)单调递增,当,时,f′(x)<0,函数f(x)单调递减,当,∞时,f′(x)>0,函数f(x)单调递增,∴此时是f(x)的极大值点,是f(x)的极小值点.【解析】(1)已知函数的解析式f(x)=x3-3ax+b,把点(2,f(2))代入,再根据f(x)在点(2,f(2))处与直线y=8相切,求出a,b的值;(2)由题意先对函数y进行求导,解出极值点,然后再根据极值点的值讨论函数的增减性及其增减区间;本题主要考查利用导数研究函数的单调性和极值、解不等式等基础知识,考查综合分析和解决问题的能力.21.已知等差数列{a n}满足a2=0,a6+a8=-10.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{}的前n项和S n.【答案】解:(I)设等差数列{a n}的公差为d,由已知条件可得,解得:,故数列{a n}的通项公式为a n=2-n;(II)设数列{}的前n项和为S n,即S n=a1++…+①,故S1=1,=++…+②,当n>1时,①-②得:=a1++…+-=1-(++…+)-=1-(1-)-=,所以S n=,综上,数列{}的前n项和S n=.【解析】(I)根据等差数列的通项公式化简a2=0和a6+a8=-10,得到关于首项和公差的方程组,求出方程组的解即可得到数列的首项和公差,根据首项和公差写出数列的通项公式即可;(II)把(I)求出通项公式代入已知数列,列举出各项记作①,然后给两边都除以2得另一个关系式记作②,①-②后,利用a n的通项公式及等比数列的前n项和的公式化简后,即可得到数列{}的前n项和的通项公式.此题考查学生灵活运用等差数列的通项公式化简求值,会利用错位相减法求数列的和,是一道中档题.22.已知函数f(x)=ax2-(a+2)x+lnx(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当a>0时,若f(x)在区间[1,e]上的最小值为-2,求a的取值范围;(3)若对任意x1,x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,求a的取值范围.【答案】解:(1)当a=1时,f(x)=x2-3x+lnx,f′(x)=2x-3+,y=-2;(2)函数f(x)=ax2-(a+2)x+lnx的定义域为(0,+∞),当a>0时,f′(x)=2ax-(a+2)+(x>0),令f'(x)=0,即f′(x)=,所以x=或x=.当0<≤1,即a≥1时,f(x)在[1,e]上单调递增,所以f(x)在[1,e]上的最小值是f(1)=-2;当1<<e,即<a<1时,f(x)在[1,e]上的最小值是f()<f(1)=-2,不合题意;当≥e,即0≤a≤时,f(x)在(1,e)上单调递减,所以f(x)在[1,e]上的最小值是f(e)<f(1)=-2,不合题意.综上可得a≥1;(3)设g(x)=f(x)+2x,则g(x)=ax2-ax+lnx,对任意x1,x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,等价于g(x)在(0,+∞)上单调递增.而g′(x)=2ax-a+=,当a=0时,g′(x)=,此时g(x)在(0,+∞)单调递增;当a≠0时,只需g'(x)≥0在(0,+∞)恒成立,因为x∈(0,+∞),只要2ax2-ax+1≥0,则需要a≥0,对于函数y=2ax2-ax+1,过定点(0,1),对称轴x=,只需△=a2-8a≤0,即0<a≤8.综上可得0≤a≤8.【解析】(1)求出导数,求出f(1)及f′(1)的值,代入点斜式方程即可得到答案;(2)确定函数的定义域,求导函数,分类讨论,确定函数的单调性,利用函数f(x)在区间[1,e]上的最小值为-2,即可求a的取值范围;(3)设g(x)=f(x)+2x,则g(x)=ax2-ax+lnx,对任意x1,x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,等价于g(x)在(0,+∞)上单调递增,由此可求a的取值范围.本题考查导数知识的运用,考查函数的单调性与最值,考查导数的几何意义,考查恒成立问题,正确求导是关键.。

安徽省合肥八中届高三数学上学期第一次段考试卷文(含解析)【含答案】

安徽省合肥八中届高三数学上学期第一次段考试卷文(含解析)【含答案】

2015-2016学年安徽省合肥八中高三(上)第一次段考数学试卷(文科)一、选择题:本题共12小题,每小题5分,共60分.在每小题的四个选项中,只有一项是符合题目要求的.答案填涂到答题卡上.1.在复平面内,复数对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.设全集U=R,集合A={x|1<x<4},B={1,2,3,4,5},则(C U A)∩B=()A.{2,3} B.{1,2,3,4} C.{5} D.{1,4,5}3.若等差数列{a n}的前三项和S3=9且a1=1,则a2等于()A.3 B.4 C.5 D.64.阅读右面的程序框图,则输出的S等于()A.40 B.20 C.32 D.385.已知x>0,y>0,若恒成立,则实数m的取值范围是()A.m≥4或m≤﹣2 B.m≥2或m≤﹣4 C.﹣2<m<4 D.﹣4<m<26.若变量x,y满足约束条件,则z=x﹣2y的最大值为()A.4 B.3 C.2 D.17.函数f(x)=2x﹣1+log2x的零点所在的一个区间是()A.(,)B.(,)C.(,1)D.(1,2)8.在△ABC中,AC=,BC=2,B=60°则BC边上的高等于()A.B. C.D.9.已知c>0,设p:函数y=c x在R上单调递减;q:函数g(x)=lg(2cx2+2x+1)的值域为R,如果“p且q”为假命题,“p或q为真命题,则c的取值范围是()A.B.C.D.(﹣∞,+∞)10.给定条件p:|x+1|>2,条件q:>1,则¬q是¬p的()A.充要条件 B.必要而不充分条件C.充分而不必要条件 D.既不充分也不必要条件11.已知函数f(x+1)是偶函数,当1<x1<x2时,[f(x2)﹣f(x1)](x2﹣x1)>0恒成立,设a=f(﹣),b=f(2),c=f(3),则a,b,c的大小关系为()A.b<a<c B.c<b<a C.b<c<a D.a<b<c12.已知log(x+y+4)<log(3x+y﹣2),若x﹣y<λ恒成立,则λ的取值范围是()A.(﹣∞,10] B.(﹣∞,10) C.[10,+∞)D.(10,+∞)二、填空题:本大题共5小题,每小题5分,共25分13.若曲线y=x2+ax+b在点(0,b)处的切线方程是x﹣y+1=0,则a,b的值分别为.14.在等差数列{a n}中,a5=3,a6=﹣2,则a3+a4+…+a8= .15.三角形△ABC的外接圆半径为1,圆心O,已知3+4+5=,则•= .16.若△ABC的面积为,BC=2,C=60°,则边AB的长度等于.17.已知,各项均为正数的数列{a n}满足a1=1,a n+2=f(a n),若a2010=a2012,则a20+a11的值是.三、解答题:解答应写出文字说明,证明过程或演算步骤.本大题共5小题,共65分18.已知函数f(x)=2sin(x﹣),x∈R(1)求f()的值;(2)设α,β∈[0,],f(3α+)=,f(3β+2π)=,求cos(α+β)的值.19.已知函数y=的定义域为R.(1)求a的取值范围.(2)若函数的最小值为,解关于x的不等式x2﹣x﹣a2﹣a<0.20.设函数f(x)=x3﹣3ax+b(a≠0).(Ⅰ)若曲线y=f(x)在点(2,f(2))处与直线y=8相切,求a,b的值;(Ⅱ)求函数f(x)的单调区间与极值点.21.已知等差数列{a n}满足a2=0,a6+a8=﹣10(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{}的前n项和.22.已知函数f(x)=ax2﹣(a+2)x+lnx(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当a>0时,若f(x)在区间[1,e]上的最小值为﹣2,求a的取值范围;(3)若对任意x1,x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,求a的取值范围.2015-2016学年安徽省合肥八中高三(上)第一次段考数学试卷(文科)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题的四个选项中,只有一项是符合题目要求的.答案填涂到答题卡上.1.在复平面内,复数对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数代数形式的乘除运算.【专题】计算题.【分析】根据1=﹣i2将复数进行化简成复数的标准形式,得到复数所对应的点,从而得到该点所在的位置.【解答】解: ==﹣i+2所对应的点为(2,﹣1),该点位于第四象限故选D.【点评】本题主要考查了复数代数形式的运算,复数和复平面内的点的对应关系,属于基础题.2.设全集U=R,集合A={x|1<x<4},B={1,2,3,4,5},则(C U A)∩B=()A.{2,3} B.{1,2,3,4} C.{5} D.{1,4,5}【考点】交、并、补集的混合运算.【专题】计算题.【分析】找出全集R中不属于A的部分,求出A的补集,找出A补集与B的公共部分,即可确定出所求的集合.【解答】解:∵全集U=R,集合A={x|1<x<4},∴C U A={x|x≤1或x≥4},∵B={1,2,3,4,5},则(C U A)∩B={1,4,5}.故选D【点评】此题考查了交、并、补集的混合运算,熟练掌握交、并、补集的定义是解本题的关键.3.若等差数列{a n}的前三项和S3=9且a1=1,则a2等于()A.3 B.4 C.5 D.6【考点】等差数列的前n项和;等差数列的通项公式.【专题】计算题;方程思想.【分析】根据等差数列的前n项和公式,结合已知条件,先求出d,再代入通项公式即可求解.【解答】解:∵S3=9且a1=1,∴S3=3a1+3d=3+3d=9,解得d=2.∴a2=a1+d=3.故选A.【点评】本题主要考查了等差数列的通项公式与前n项和公式,注意方程思想的应用.4.阅读右面的程序框图,则输出的S等于()A.40 B.20 C.32 D.38【考点】程序框图.【专题】计算题;等差数列与等比数列.【分析】结合流程图写出前几次循环的结果,经过每一次循环判断是否满足判断框中的条件,直到不满足条件输出s结束循环,得到所求.【解答】解:根据程序框图,运行结果如下:S i第一次循环 20 3第二次循环 32 2第三次循环 38 1此时退出循环故选D.【点评】本题为程序框图题,考查对循环结构的理解和认识,按照循环结构运算后得出结果.属于基础题5.已知x>0,y>0,若恒成立,则实数m的取值范围是()A.m≥4或m≤﹣2 B.m≥2或m≤﹣4 C.﹣2<m<4 D.﹣4<m<2【考点】基本不等式.【专题】计算题;压轴题.【分析】先利用基本不等式求得的最小值,然后根据恒成立,求得m2+2m<8,进而求得m的范围.【解答】解:≥2=8若恒成立,则使8>m2+2m恒成立,∴m2+2m<8,求得﹣4<m<2故选D【点评】本题主要考查了基本不等式在最值问题中的应用.考查了学生分析问题和解决问题的能力,属于基础题.6.若变量x,y满足约束条件,则z=x﹣2y的最大值为()A.4 B.3 C.2 D.1【考点】简单线性规划的应用.【专题】计算题;数形结合.【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=x﹣2y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最小值即可.【解答】解:画出可行域(如图),z=x﹣2y⇒y=x﹣z,由图可知,当直线l经过点A(1,﹣1)时,z最大,且最大值为z max=1﹣2×(﹣1)=3.故选:B.【点评】本小题主要考查线性规划知识、作图、识图能力及计算能力,以及利用几何意义求最值,属于基础题.7.函数f(x)=2x﹣1+log2x的零点所在的一个区间是()A.(,)B.(,)C.(,1)D.(1,2)【考点】函数零点的判定定理.【专题】函数的性质及应用.【分析】根据函数f(x)=2x﹣1+log2x,在(0,+∞)单调递增,f(1)=1,f()=﹣1,可判断分析.【解答】解:∵函数f(x)=2x﹣1+log2x,在(0,+∞)单调递增.∴f(1)=1,f()=﹣1,∴根据函数的零点的判断方法得出:零点所在的一个区间是(),故选:C.【点评】本题考查了函数的性质,函数的零点的判断方法,属于容易题.8.在△ABC中,AC=,BC=2,B=60°则BC边上的高等于()A.B. C.D.【考点】解三角形.【专题】计算题;压轴题.【分析】在△ABC中,由余弦定理可得,AC2=AB2+BC2﹣2AB•BCcosB可求AB=3,作AD⊥BC,则在Rt△ABD中,AD=AB×sinB【解答】解:在△ABC中,由余弦定理可得,AC2=AB2+BC2﹣2AB•BCcosB把已知AC=,BC=2 B=60°代入可得,7=AB2+4﹣4AB×整理可得,AB2﹣2AB﹣3=0∴AB=3作AD⊥BC垂足为DRt△ABD中,AD=AB×sin60°=,即BC边上的高为故选B【点评】本题主要考查了余弦定理在解三角形中的应用,解答本题的关键是求出AB,属于基础试题9.已知c>0,设p:函数y=c x在R上单调递减;q:函数g(x)=lg(2cx2+2x+1)的值域为R,如果“p且q”为假命题,“p或q为真命题,则c的取值范围是()A.B.C.D.(﹣∞,+∞)【考点】复合命题的真假;指数函数的单调性与特殊点;对数函数的值域与最值.【专题】计算题;压轴题.【分析】如果P∧Q为假命题,P∨Q为真命题,则“p”、“q”中一个为真命题、一个为假命题.然后再分类讨论即可求解.【解答】解:∵如果P∧Q为假命题,P∨Q为真命题,∴p、q中一个为真命题、一个为假命题①若p为真命题,q为假命题则0<c<1且 c>,即<c<1②若p为假命题,q为真命题则c>1且c≤,这样的c不存在综上,<c<1故选A.【点评】由简单命题和逻辑连接词构成的复合命题的真假可以用真值表来判断,反之根据复合命题的真假也可以判断简单命题的真假.假若p且q真,则p 真,q也真;若p或q真,则p,q至少有一个真;若p且q假,则p,q至少有一个假.可把“p或q”为真命题转化为并集的运算;把“p且q”为真命题转化为交集的运算.10.给定条件p:|x+1|>2,条件q:>1,则¬q是¬p的()A.充要条件 B.必要而不充分条件C.充分而不必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】简易逻辑.【分析】根据充分条件和必要条件的定义结合不等式的解法进行判断即可.【解答】解:由|x+1|>2得x>1或x<﹣3,¬p:﹣3≤x≤1,由>1,得﹣1==>0,解得2<x<3,即¬q:x≥3或x≤2,则¬q是¬p的必要不充分条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,根据不等式的性质求出等价条件是解决本题的关键.11.已知函数f(x+1)是偶函数,当1<x1<x2时,[f(x2)﹣f(x1)](x2﹣x1)>0恒成立,设a=f(﹣),b=f(2),c=f(3),则a,b,c的大小关系为()A.b<a<c B.c<b<a C.b<c<a D.a<b<c【考点】函数奇偶性的性质;函数恒成立问题.【专题】函数的性质及应用.【分析】根据条件求出函数f(x)在(1,+∞)上的单调性,然后根据函数f(x+1)是偶函数,利用单调性即可判定出a、b、c的大小.【解答】解:解:∵当1<x1<x2时,[f(x2)﹣f(x1)](x2﹣x1)>0恒成立,∴当1<x1<x2时,f (x2)﹣f (x1)>0,即f (x2)>f (x1),∴函数f(x)在(1,+∞)上为单调增函数,∵f(1+x)=f(1﹣x),∴函数f(x)关于x=1对称,∴a=f(﹣)=f(),又函数f(x)在(1,+∞)上为单调增函数,∴f(2)<f()<f(3),即f(2)<f(﹣)=<f(3),∴a,b,c的大小关系为b<a<c.故选:A.【点评】本题考查了函数性质的应用,主要考查了函数单调性的判断以及运用单调性比较函数值的大小,同时考查了函数的对称性的应用,是函数性质的一个综合考查.属于基础题.12.已知log(x+y+4)<log(3x+y﹣2),若x﹣y<λ恒成立,则λ的取值范围是()A.(﹣∞,10] B.(﹣∞,10) C.[10,+∞)D.(10,+∞)【考点】简单线性规划.【分析】根据已知得出x,y的约束条件,画出满足约束条件的可行域,再用角点法,求出目标函数z=x﹣y的范围,再根据最值给出λ的最大值.【解答】解:由题意得,即.画出不等式组表示的可行域如下图示:在可行域内平移直线z=x﹣y,当直线经过3x+y﹣2=0与x=3的交点A(3,﹣7)时,目标函数z=x﹣y有极大值z=3+7=10.z=x﹣y的取值范围是(﹣∞,10).若x﹣y<λ恒成立,则λ≥10,∴λ的取值范围是[10,+∞).故选C.【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.二、填空题:本大题共5小题,每小题5分,共25分13.若曲线y=x2+ax+b在点(0,b)处的切线方程是x﹣y+1=0,则a,b的值分别为1,1 .【考点】利用导数研究曲线上某点切线方程.【专题】导数的概念及应用;直线与圆.【分析】求出函数的导数,求得切线的斜率,由已知切线方程,可得切线的斜率和切点,进而得到a,b的值.【解答】解:y=x2+ax+b的导数为y′=2x+a,即曲线y=x2+ax+b在点(0,b)处的切线斜率为a,由于在点(0,b)处的切线方程是x﹣y+1=0,则a=1,b=1,故答案为:1,1.【点评】本题考查导数的运用:求切线方程,主要考查导数的几何意义:函数在某点处的导数即为曲线在该点处切线的斜率,注意切点在切线上,也在曲线上,属于基础题.14.在等差数列{a n}中,a5=3,a6=﹣2,则a3+a4+…+a8= 3 .【考点】等差数列的性质.【专题】计算题.【分析】利用等差数列的性质:下标之和相等的两项的和相等及等差中项的性质即可解决.【解答】解:∵{a n}为等差数列,a5=3,a6=﹣2,∵m+n=p+q(m、n、p、q∈N*),a m+a n=a p+a q,∴a3+a4+…+a8=(a3+a8)+(a4+a7)+(a5+a6)=3(a5+a6)=3.故答案为:3.【点评】本题考查等差数列的性质,考查学生理解应用等差数列性质的能力,属于基础题.15.三角形△ABC的外接圆半径为1,圆心O,已知3+4+5=,则•= .【考点】平面向量数量积的运算.【专题】平面向量及应用.【分析】把已知的向量等式变形,两边平方后得到,把代入•后展开得答案.【解答】解:∵3+4+5=,∴5=﹣(3+4),∴,即25=25+24,∴,则•==﹣(3+4)•()=.故答案为:﹣.【点评】本题考查平面向量的数量积运算,解答此题的关键是把已知的向量等式变形,是中档题.16.若△ABC的面积为,BC=2,C=60°,则边AB的长度等于 2 .【考点】正弦定理.【专题】解三角形.【分析】利用三角形面积公式列出关系式,把已知面积,a,sinC的值代入求出b的值,再利用余弦定理求出c的值即可.【解答】解:∵△ABC的面积为,BC=a=2,C=60°,∴absinC=,即b=2,由余弦定理得:c2=a2+b2﹣2abcosC=4+4﹣4=4,则AB=c=2,故答案为:2【点评】此题考查了余弦定理,三角形面积公式,熟练掌握余弦定理是解本题的关键.17.已知,各项均为正数的数列{a n}满足a1=1,a n+2=f(a n),若a2010=a2012,则a20+a11的值是.【考点】数列与函数的综合.【专题】综合题;压轴题.【分析】根据,各项均为正数的数列{a n}满足a1=1,a n+2=f(a n),可确定a1=1,,,a7=,,,利用a2010=a2012,可得a2010=(负值舍去),依次往前推得到a20=,由此可得结论.【解答】解:∵,各项均为正数的数列{a n}满足a1=1,a n+2=f(a n),∴a1=1,,,a7=,,∵a2010=a2012,∴∴a2010=(负值舍去),由a2010=得a2008=…依次往前推得到a20=∴a20+a11=故答案为:【点评】本题主要考查数列的概念、组成和性质、同时考查函数的概念.理解条件a n+2=f(a n),是解决问题的关键,本题综合性强,运算量较大,属于中高档试题.三、解答题:解答应写出文字说明,证明过程或演算步骤.本大题共5小题,共65分18.已知函数f(x)=2sin(x﹣),x∈R(1)求f()的值;(2)设α,β∈[0,],f(3α+)=,f(3β+2π)=,求cos(α+β)的值.【考点】两角和与差的余弦函数;两角和与差的正弦函数.【专题】三角函数的求值;三角函数的图像与性质.【分析】(1)把x=代入函数f(x)的解析式中,化简后利用特殊角的三角函数值即可求出对应的函数值;(2)分别把x=3α+和x=3β+2π代入f(x)的解析式中,化简后利用诱导公式即可求出sinα和cosβ的值,然后根据α和β的范围,利用同角三角函数间的基本关系求出cosα和sinβ的值,然后把所求的式子利用两角和的余弦函数公式化简后,将各自的值代入即可求出值.【解答】解:(1)把x=代入函数解析式得:f()=2sin(×﹣)=2sin=;(2)由f(3α+)=,f(3β+2π)=,代入得:2sin[(3α+)﹣]=2sinα=,2sin[(3β+2π)﹣]=2sin(β+)=2cosβ=sinα=,cosβ=,又α,β∈[0,],所以cosα=,sinβ=,则cos(α+β)=cosαcosβ﹣sinαsinβ=×﹣×=.【点评】此题考查学生掌握函数值的求法,灵活运用诱导公式及同角三角函数间的基本关系化简求值,是一道中档题.19.已知函数y=的定义域为R.(1)求a的取值范围.(2)若函数的最小值为,解关于x的不等式x2﹣x﹣a2﹣a<0.【考点】一元二次不等式的解法;函数的定义域及其求法.【专题】函数的性质及应用;不等式的解法及应用.【分析】(1)由函数y=的定义域是R,得出ax2+2ax+1≥0恒成立,求出a 的取值范围;(2)由题意得ax2+2ax+1的最小值是,求出a的值,代入不等式x2﹣x﹣a2﹣a<0,求解集即可.【解答】解:(1)函数y=的定义域为R,∴ax2+2ax+1≥0恒成立,当a=0时,1>0恒成立,满足题意;当a≠0时,须,即,解得0<a≤1;综上,a的取值范围是{a|0≤a≤1};(2)∵函数y的最小值为,∴≥,a∈[0,1];∴ax2+2ax+1≥;当a=0时,不满足条件;当1≥a>0时,ax2+2ax+1的最小值是=,∴a=;∴不等式x2﹣x﹣a2﹣a<0可化为x2﹣x﹣<0,解得﹣<x<;∴不等式的解集是{x|﹣<x<}.【点评】本题考查了函数的性质与应用以及不等式的解法与应用问题,解题时应根据题意,适当地转化条件,从而获得解答问题的途径,是综合性题目.20.设函数f(x)=x3﹣3ax+b(a≠0).(Ⅰ)若曲线y=f(x)在点(2,f(2))处与直线y=8相切,求a,b的值;(Ⅱ)求函数f(x)的单调区间与极值点.【考点】利用导数求闭区间上函数的最值;导数的几何意义;利用导数研究函数的单调性.【分析】(1)已知函数的解析式f(x)=x3﹣3ax+b,把点(2,f(2))代入,再根据f(x)在点(2,f(2))处与直线y=8相切,求出a,b的值;(2)由题意先对函数y进行求导,解出极值点,然后再根据极值点的值讨论函数的增减性及其增减区间;【解答】解:(Ⅰ)f′(x)=3x2﹣3a,∵曲线y=f(x)在点(2,f(2))处与直线y=8相切,∴(Ⅱ)∵f′(x)=3(x2﹣a)(a≠0),当a<0时,f′(x)>0,函数f(x)在(﹣∞,+∞)上单调递增,此时函数f(x)没有极值点.当a>0时,由,当时,f′(x)>0,函数f(x)单调递增,当时,f′(x)<0,函数f(x)单调递减,当时,f′(x)>0,函数f(x)单调递增,∴此时是f(x)的极大值点,是f(x)的极小值点.【点评】本题主要考查利用导数研究函数的单调性和极值、解不等式等基础知识,考查综合分析和解决问题的能力.21.已知等差数列{a n}满足a2=0,a6+a8=﹣10(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{}的前n项和.【考点】等差数列的通项公式;数列的求和.【专题】综合题.【分析】(I)根据等差数列的通项公式化简a2=0和a6+a8=﹣10,得到关于首项和公差的方程组,求出方程组的解即可得到数列的首项和公差,根据首项和公差写出数列的通项公式即可;(II)把(I)求出通项公式代入已知数列,列举出各项记作①,然后给两边都除以2得另一个关系式记作②,①﹣②后,利用a n的通项公式及等比数列的前n项和的公式化简后,即可得到数列{}的前n项和的通项公式.【解答】解:(I)设等差数列{a n}的公差为d,由已知条件可得,解得:,故数列{a n}的通项公式为a n=2﹣n;(II)设数列{}的前n项和为S n,即S n=a1++…+①,故S1=1,=++…+②,当n>1时,①﹣②得:=a1++…+﹣=1﹣(++…+)﹣=1﹣(1﹣)﹣=,所以S n=,综上,数列{}的前n项和S n=.【点评】此题考查学生灵活运用等差数列的通项公式化简求值,会利用错位相减法求数列的和,是一道中档题.22.已知函数f(x)=ax2﹣(a+2)x+lnx(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当a>0时,若f(x)在区间[1,e]上的最小值为﹣2,求a的取值范围;(3)若对任意x1,x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,求a的取值范围.【考点】导数在最大值、最小值问题中的应用;利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【专题】计算题;函数的性质及应用;导数的概念及应用;导数的综合应用.【分析】(1)求出导数,求出f(1)及f′(1)的值,代入点斜式方程即可得到答案;(2)确定函数的定义域,求导函数,分类讨论,确定函数的单调性,利用函数f(x)在区间[1,e]上的最小值为﹣2,即可求a的取值范围;(3)设g(x)=f(x)+2x,则g(x)=ax2﹣ax+lnx,对任意x1,x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,等价于g(x)在(0,+∞)上单调递增,由此可求a 的取值范围.【解答】解:(1)当a=1时,f(x)=x2﹣3x+lnx,f′(x)=2x﹣3+,因为f'(1)=0,f(1)=﹣2,所以切线方程为y=﹣2;(2)函数f(x)=ax2﹣(a+2)x+lnx的定义域为(0,+∞),当a>0时,f′(x)=2ax﹣(a+2)+(x>0),令f'(x)=0,即f′(x)=,所以x=或x=.当0<≤1,即a≥1时,f(x)在[1,e]上单调递增,所以f(x)在[1,e]上的最小值是f(1)=﹣2;当1<<e,即<a<1时,f(x)在[1,e]上的最小值是f()<f(1)=﹣2,不合题意;当≥e,即0≤a≤时,f(x)在(1,e)上单调递减,所以f(x)在[1,e]上的最小值是f(e)<f(1)=﹣2,不合题意.综上可得a≥1;(3)设g(x)=f(x)+2x,则g(x)=ax2﹣ax+lnx,对任意x1,x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,等价于g(x)在(0,+∞)上单调递增.而g′(x)=2ax﹣a+=,当a=0时,g′(x)=,此时g(x)在(0,+∞)单调递增;当a≠0时,只需g'(x)≥0在(0,+∞)恒成立,因为x∈(0,+∞),只要2ax2﹣ax+1≥0,则需要a≥0,对于函数y=2ax2﹣ax+1,过定点(0,1),对称轴x=,只需△=a2﹣8a≤0,即0<a≤8.综上可得0≤a≤8.【点评】本题考查导数知识的运用,考查函数的单调性与最值,考查导数的几何意义,考查恒成立问题,正确求导是关键.21。

【数学】2015-2016年安徽省合肥八中高一(上)数学期中试卷带答案

【数学】2015-2016年安徽省合肥八中高一(上)数学期中试卷带答案

2015-2016学年安徽省合肥八中高一(上)期中数学试卷一、选择题(本题包括10小题,每小题4分,每小题只有一个选项符合题意.)1.(4分)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁A)∪B为()UA.{1,2,4}B.{2,3,4}C.{0,2,3,4}D.{0,2,4}2.(4分)已知,则f[f(1)]=()A.e B.C.e2D.3.(4分)设f(x)=3x+3x﹣8,用二分法求方程3x+3x﹣8=0在x∈(1,2)内近似解的过程中得f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根落在区间()A.(1,1.25)B.(1.25,1.5)C.(1.5,2)D.不能确定4.(4分)函数f(x)=+的定义域为()A.(﹣3,0]B.(﹣3,1]C.(﹣∞,﹣3)∪(﹣3,0]D.(﹣∞,﹣3)∪(﹣3,1]5.(4分)如果函数f(x)=x2+2(a﹣1)x+2在区间(﹣∞,4]上单调递减,那么实数a的取值范围是()A.a≥5 B.a≤5 C.a≥﹣3 D.a≤﹣36.(4分)函数y=1+的图象是()A.B.C.D.7.(4分)下列函数中,在各自定义域上既为增函数又为奇函数的是()A.f(x)=x|x| B.f(x)=x2+2 C.f(x)=2x﹣1 D.f(x)=﹣x38.(4分)若a=()0.3,b=0.3﹣2,c=log3,则a、b、c的大小关系是()A.b>a>c B.c>b>a C.a>c>b D.a>b>C9.(4分)函数的最大值为()A.2 B.1 C.D.410.(4分)已知lg2=0.3010,由此可以推断22015是()位整数.A.605 B.606 C.607 D.608二、填空题(每小题4分,满分16分.)11.(4分)已知实数x满足x+x﹣1=3,则=.12.(4分)函数的单调增区间是.13.(4分)若偶函数f(x)=e(e是自然对数的底数)的最大值为n,则f(n m+m n)=.14.(4分)已知k>0,若函数f(x)=a x﹣kx﹣a,(a>0,a≠1)有且只有一个零点,则实数a的取值范围是.三、解答题(满分44分)15.(8分)(1)80.25×+(×)6+log32×log2(log327);(2).16.(8分)设全集U=R,A={x∈R|a≤x≤3a﹣1},B={x∈R|3x2﹣8x+4≤0}.(1)若a=1,求(∁U A)∩B;(2)若A⊆B,求实数a的取值范围.17.(8分)已知二次函数f(x)满足f(x+1)﹣f(x)=2x,且0是函数y=f(x)﹣1的一个零点.(1)求f(x)的解析式;(2)当x∈[﹣2,1]时,不等式f(x)>2x+m恒成立,求实数m的取值范围.18.(10分)若函数f(x)不是常函数,且对任意的a,b∈R,有f(a+b)+f(a ﹣b)=2f(a)f(b)成立.(1)求f(0)的值;(2)求证:f(x)为偶函数;(3)求证:若f(2)=1,f(1)≠1,则对任意的x∈R有f(x+1)=﹣f(x)19.(10分)已知函数为偶函数,且f(3)<f(5).(1)求m的值,并确定f(x)的解析式;(2)若g(x)=log a[f(x)﹣ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2,3]上的最大值为2,若存在,请求出a的值,若不存在,请说明理由.2015-2016学年安徽省合肥八中高一(上)期中数学试卷参考答案与试题解析一、选择题(本题包括10小题,每小题4分,每小题只有一个选项符合题意.)1.(4分)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁A)∪B为()UA.{1,2,4}B.{2,3,4}C.{0,2,3,4}D.{0,2,4}【解答】解:∵∁U A={0,4},∴(∁U A)∪B={0,2,4};故选:D.2.(4分)已知,则f[f(1)]=()A.e B.C.e2D.【解答】解:,则f[f(1)]=f(2﹣3)=f(﹣1)=.故选:B.3.(4分)设f(x)=3x+3x﹣8,用二分法求方程3x+3x﹣8=0在x∈(1,2)内近似解的过程中得f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根落在区间()A.(1,1.25)B.(1.25,1.5)C.(1.5,2)D.不能确定【解答】解析:∵f(1.5)•f(1.25)<0,由零点存在定理,得,∴方程的根落在区间(1.25,1.5).故选:B.4.(4分)函数f(x)=+的定义域为()A.(﹣3,0]B.(﹣3,1]C.(﹣∞,﹣3)∪(﹣3,0]D.(﹣∞,﹣3)∪(﹣3,1]【解答】解:根据题意:,解得:﹣3<x≤0∴定义域为(﹣3,0]故选:A.5.(4分)如果函数f(x)=x2+2(a﹣1)x+2在区间(﹣∞,4]上单调递减,那么实数a的取值范围是()A.a≥5 B.a≤5 C.a≥﹣3 D.a≤﹣3【解答】解:∵二次函数的对称轴为x=,抛物线开口向上,∴函数在(﹣∞,1﹣a]上单调递减,要使f(x)在区间(﹣∞,4]上单调递减,则对称轴1﹣a≥4,解得a≤﹣3.故选:D.6.(4分)函数y=1+的图象是()A.B.C.D.【解答】解:将函数y=的图象向右平移1个单位,得到y=的图象,再把y=的图象向上平移一个单位,即得到y=+1的图象,故选:A.7.(4分)下列函数中,在各自定义域上既为增函数又为奇函数的是()A.f(x)=x|x| B.f(x)=x2+2 C.f(x)=2x﹣1 D.f(x)=﹣x3【解答】解:f(x)=x|x|是奇函数,在定义域范围内是增函数,满足题意;f(x)=x2+2是偶函数,不满足题意;f(x)=2x﹣1是非奇非偶函数,不满足题意;是减函数f(x)=﹣x3不满足题意;故选:A.8.(4分)若a=()0.3,b=0.3﹣2,c=log3,则a、b、c的大小关系是()A.b>a>c B.c>b>a C.a>c>b D.a>b>C【解答】解:∵0<a=()0.3<1,b=0.3﹣2>1,c=log3<0,∴b>a>c,故选:A.9.(4分)函数的最大值为()A.2 B.1 C.D.4【解答】解:根据题意,有x≥0,当x>0时则f(x)=,而≥2则f(x)≤1,故选:B.10.(4分)已知lg2=0.3010,由此可以推断22015是()位整数.A.605 B.606 C.607 D.608【解答】解:∵lg2=0.3010,令22015=t,∴2015×lg2=lgt,则lgt=2015×0.3010=606.515,∴22015是607位整数.故选:C.二、填空题(每小题4分,满分16分.)11.(4分)已知实数x满足x+x﹣1=3,则=.【解答】解:设=t>0,则t2=x+x﹣1+2=5,∴.故答案为.12.(4分)函数的单调增区间是.【解答】解:由﹣x2﹣x+2>0,得﹣2<x<1,即函数f(x)的定义域为(﹣2,1).函数f(x)可看作由函数y=和t=﹣x2﹣x+2复合而成的,函数y=单调递减,由复合函数单调性的判定方法知,要求f(x)的增区间只需求出t=﹣x2﹣x+2的减区间.而t=﹣x2﹣x+2=﹣+的减区间是(﹣,1).所以函数f(x)的单调增区间是(﹣,1).故答案为:(﹣,1).13.(4分)若偶函数f(x)=e(e是自然对数的底数)的最大值为n,则f(n m+m n)=.【解答】解:令t=﹣(x﹣m)2,则原函数化为g(t)=e t,内函数t=﹣(x﹣m)2在(﹣∞,m)上为增函数,在(m,+∞)上为减函数,又外函数g(t)=e t为增函数,∴原函数的增区间为(﹣∞,m),减区间为(m,+∞),∴当x=m时函数有最大值n=e0=1.∵f(x)=e是偶函数,∴m=0,∴f(n m+m n)=f(1)=.故答案为:.14.(4分)已知k>0,若函数f(x)=a x﹣kx﹣a,(a>0,a≠1)有且只有一个零点,则实数a的取值范围是(0,1).【解答】解:∵f(x)有且只有一个零点,∴a x﹣kx﹣a=0只有一解.即y=a x与y=kx+a只有一个交点.(1)当0<a<1时,作出函数图象如图:显然y=a x与y=kx+a只有一个交点,符合题意.(2)当a>1时,作出函数图象如图:显然y=a x与y=kx+a有两个交点,不符合题意.综上,实数a的取值范围是(0,1).故答案是(0,1).三、解答题(满分44分)15.(8分)(1)80.25×+(×)6+log32×log2(log327);(2).【解答】解:(1)80.25×+(×)6+log32×log2(log327)===2+108+1=111;(2)=.16.(8分)设全集U=R,A={x∈R|a≤x≤3a﹣1},B={x∈R|3x2﹣8x+4≤0}.(1)若a=1,求(∁U A)∩B;(2)若A⊆B,求实数a的取值范围.【解答】解:(1)若a=1,则A={x|1≤x≤2},B={x|≤x≤2},由∁U A={x|x<1,或x>2},∴(∁U A)∩B={x|x<1,或x>2}∩{x|≤x≤2}={x|≤x<1};(2)∵A={x∈R|a≤x≤3a﹣1},A⊆B,∴①a>3a﹣1,即a<,A=∅成立;②a≤3a﹣1,即a≥时,A=(a,3a﹣1)⊆(,2),∴,解得≤a≤1,综上实数a的取值范围为:(﹣∞,)∪[,1].17.(8分)已知二次函数f(x)满足f(x+1)﹣f(x)=2x,且0是函数y=f(x)﹣1的一个零点.(1)求f(x)的解析式;(2)当x∈[﹣2,1]时,不等式f(x)>2x+m恒成立,求实数m的取值范围.【解答】解:(1)因为f(x)是二次函数,所以设f(x)=ax2+bx+c(a≠0),因为0是y=f(x)﹣1的一个零点,所以f(0)﹣1=0,所以c=1,又因为f(x+1)﹣f(x)=2x,即a(x+1)2+b(x+1)+c﹣ax2﹣bx﹣c=2x,所以2(a﹣1)x+(a+b)=0,所以2(a﹣1)=a+b=0,所以a=1,b=﹣1所以f(x)=x2﹣x+1;(2)不等式x2﹣x+1>2x+m可化为x2﹣3x+1>m,令g(x)=x2﹣3x+1 x∈[﹣2,1],因为g(x)的对称轴为,所以g(x)在[﹣2,1]上是单调递减的,所以g(x)min=g(1)=﹣1,所以m<﹣1.18.(10分)若函数f(x)不是常函数,且对任意的a,b∈R,有f(a+b)+f(a ﹣b)=2f(a)f(b)成立.(1)求f(0)的值;(2)求证:f(x)为偶函数;(3)求证:若f(2)=1,f(1)≠1,则对任意的x∈R有f(x+1)=﹣f(x)【解答】解:(1)令a=b=0,则f(0)+f(0)=2f(0)f(0),解得f(O)=0,或f(0)=1,当f(0)=0时,令a=x,b=0,则f(x)+f(x)=2f(x)f(0)=0,∴f(x)=0,这与函数f(x)不是常函数相矛盾,故f(0)≠0,∴f(0)=1,(2)令a=0,b=x,则f(x)+f(﹣x)=2f(0)f(x)=2f(x),∴f(﹣x)=f(x),∴f(x)为偶函数,(3)令a=b=1,则f(2)+f(0)=2f(1)f(1),∴f2(1)=1,∵f(1)≠1,∴f(1)=﹣1,再令a=x,b=1,则f(1+x)+f(1﹣x)=2f(1)f(x)=﹣2f(x)=2f(x),若f(x+1)=f(x)成立,则f(x﹣1+1)=f(x﹣1),即f(x)=f(x﹣1),∴f(1+x)+f(1﹣x)=2f(x),∴f(x+1)=f(x),∴f(x+1)=﹣f(x).19.(10分)已知函数为偶函数,且f(3)<f(5).(1)求m的值,并确定f(x)的解析式;(2)若g(x)=log a[f(x)﹣ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2,3]上的最大值为2,若存在,请求出a的值,若不存在,请说明理由.【解答】解:(1)由条件知幂函数在(0,+∞)上为增函数,则﹣2m2+m+3>0∴,又m∈Z,∴m=0或1.当m=0时,f(x)=x3,不满足f(x)为偶函数;当m=1时,f(x)=x2,满足f(x)为偶函数;∴f(x)=x2.(2),令h(x)=x2﹣ax,由h(x)>0得:x∈(﹣∞,0)∪(a,+∞)∵g(x)在[2,3]上有定义,∴0<a<2且a≠1,∴h(x)=x2﹣ax在[2,3]上为增函数.当1<a<2时,g max=g(3)=log a(9﹣3a)=2,∴,又1<a<2,∴当0<a<1时,g max=g(2)=log a(4﹣2a)=2,∴,又0<a<1,∴此种情况不存在.综上,存在实数,使g(x)在区间[2,3]上的最大值为2.。

合肥市高二上学期期中数学试卷(8、9、11、12、13、14班)(II)卷

合肥市高二上学期期中数学试卷(8、9、11、12、13、14班)(II)卷

合肥市高二上学期期中数学试卷(8、9、11、12、13、14班)(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)在△ABC中,已知b=, c=,∠A=120°,则a等于()A .B . 6C . 或6D .2. (2分) (2016高一下·赣州期中) 在△ABC中,A=45°,B=60°,a=2,则b等于()A .B .C .D . 23. (2分)在△ABC中,若b,a,c成等差数列,且sin2A=sinBsinC,则△ABC的形状为()A . 等腰三角形B . 直角三角形C . 等边三角形D . 等腰直角三角形4. (2分)已知角满足,且,则角的终边在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限5. (2分) (2016高一下·水富期中) 已知{an}为等差数列,且a4+a7+a10=30,则a1﹣a3﹣a6﹣a8﹣a11+a13的值为()A . 10B . ﹣10C . 20D . ﹣206. (2分) (2016高二上·集宁期中) 已知等差数列{an}的公差为正数,且a3a7=﹣12,a4+a6=﹣4,则S20为()A . 180B . ﹣180C . 90D . ﹣907. (2分)已知数列{an}的通项公式为an=,则数列{an}是()A . 递减数列B . 递增数列C . 常数列D . 摆动数列8. (2分) (2016高一下·芦溪期末) 在R上定义运算⊗:a⊗b=ab+2a+b,则满足x⊗(x﹣2)<0的实数x的取值范围为()A . (0,2)B . (﹣2,1)C . (﹣∞,﹣2)∪(1,+∞)D . (﹣1,2)9. (2分) (2016高三上·辽宁期中) 已知等差数列{an}满足a3+a13﹣a8=2,则{an}的前15项和S15=()A . 10B . 15C . 30D . 6010. (2分) (2016高二上·大连期中) 已知数列{an}的前n项和为Sn=1﹣5+9﹣13+17﹣21+…+(﹣1)n+1(4n﹣3),则S15+S22﹣S31的值是()A . ﹣76B . 76C . 46D . 1311. (2分)已知,则2a+3b的取值范围是()A .B .C .D .12. (2分)已知函数,若f(m+1)<﹣f(﹣1),则实数m的取值范围是()A . (0,+∞)B . (﹣1,0)C . (0,1)D . (﹣1,2)二、填空题 (共4题;共4分)13. (1分)(2018·榆社模拟) 在等差数列中,,则 ________.14. (1分)(2018高二上·嘉兴期中) ,动直线过定点,动直线过定点,若直线l与相交于点(异于点),则周长的最大值为________15. (1分)(2017·辽宁模拟) 在△ABC中,内角A,B,C的对边为a,b,c,已知c=5,B= ,△ABC的面积为,则cos2A=________.16. (1分) (2019高二上·怀仁期中) 在底面是正方形的长方体中,,则异面直线与所成角的余弦值为________.三、解答题 (共6题;共50分)17. (5分)已知函数.(1)指出的基本性质(结论不要求证明)并作出函数f(x)的图象;(2)关于x的不等式kf2(x)﹣2kf(x)+6(k﹣7)>0恒成立,求实数k的取值范围;(3)关于x的方程f2(x)+m|f(x)|+n=0(m,n∈R)恰有6个不同的实数解,求n的取值范围.18. (10分) (2016高二下·新乡期末) 已知等差数列{an}满足a3=7,a5+a7=26,数列{an}的前n项和Sn .(1)求an及Sn;(2)令bn= (n∈N*),求数列{bn}的前n项和Tn.19. (10分)(2017·泸州模拟) 如图,在△ABC中,,点D在线段BC上.(1)当BD=AD时,求的值;(2)若AD是∠A的平分线,,求△ADC的面积.20. (10分) (2018高二上·舒兰月考) 在中,角的对边分别为,设为的面积,满足 .(1)求的大小;(2)若,且,求的值.21. (5分) (2018高三上·邹城期中) 山东省于2015年设立了水下考古研究中心,以此推动全省的水下考古、水下文化遗产保护等工作;水下考古研究中心工作站,分别设在位于刘公岛的中国甲午战争博物院和威海市博物馆。

安徽省合肥一六八中高二数学上学期期中试卷 文(含解析)

安徽省合肥一六八中高二数学上学期期中试卷 文(含解析)

2015-2016学年安徽省合肥一六八中高二(上)期中数学试卷(文科)一、选择题(共60题,每题5分.每题仅有一个正确选项.)1.下列说法中正确的是( )A.棱柱的面中,至少有两个面互相平行B.棱柱中两个互相平行的平面一定是棱柱的底面C.棱柱中一条侧棱就是棱柱的高D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形2.已知圆锥的全面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为( ) A.120°B.150°C.180°D.240°3.一个多面体的三视图如图所示,则该多面体的表面积为( )A.21+B.18+C.21 D.184.如果一个水平放置的图形的斜二测直观图是一个底面为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )A.2+B.C.D.1+5.已知三条不重合的直线m,n,l和两个不重合的平面α、β,下列命题中正确命题个数为( )①若m∥n,n⊂α,则m∥α;②若l⊥α,m⊥β且l⊥m则α⊥β③若l⊥n,m⊥n,则l∥m④若α⊥β,α∩β=m,n⊂β,n⊥m,则n⊥αA.1 B.2 C.3 D.46.设四面体ABCD各棱长均相等,S为AD的中点,Q为BC上异于中点和端点的任一点,则△SQD 在四面体的面BCD上的射影可能是( )A.B.C.D.7.设a,b,c分别是△ABC中,∠A,∠B,∠C所对边的边长,则直线sinA•x+ay+c=0与bx ﹣sinB•y+sinC=0的位置关系是( )A.平行 B.重合 C.垂直 D.相交但不垂直8.直线x+(a2+1)y+1=0(a∈R)的倾斜角的取值范围是( )A. B.∪(,π)D.15.三棱锥P﹣ABC中,D,E分别为PB,PC的中点,记三棱锥D﹣ABE的体积为V1,P﹣ABC 的体积为V2,则=__________.16.光线由点A(﹣1,4)射出,遇到直线l:2x﹣3y﹣6=0后被反射,已知点在反射光线上,则反射光线所在的直线方程为__________.三、解答题(共70分,每题需有必要的解答过程)17.四面体ABCD及其三视图如图所示,平行于棱AD,BC的平面分别交四面体的棱AB、BD、DC、CA于点E、F、G、H.(Ⅰ)求四面体ABCD的体积;(Ⅱ)证明:四边形EFGH是矩形.18.已知直线l:kx﹣y+1+2k=0.(1)证明:直线l过定点;(2)若直线l交x负半轴于A,交y正半轴于B,△AOB的面积为S,试求S的最小值并求出此时直线l的方程.19.已知点P到两定点M(﹣1,0)、N(1,0)距离的比为,点N到直线PM的距离为1,求直线PN的方程.20.如图,在四棱锥P﹣ABCD中,ABCD是矩形,PA⊥平面ABCD,,点F 是PD的中点,点E在CD上移动.(1)求三棱锥E﹣PAB体积;(2)当点E为CD的中点时,试判断EF与平面PAC的关系,并说明理由;(3)求证:PE⊥AF.21.(13分)如图1,直角梯形ABCD中,AD∥BC,∠ABC=90°,E,F分别为边AD和BC上的点,且EF∥AB,AD=2AE=2AB=4FC=4.将四边形EFCD沿EF折起成如图2的位置,使AD=AE.(Ⅰ)求证:BC∥平面DAE;(Ⅱ)求四棱锥D﹣AEFB的体积.22.(13分)如图,ABCD是边长为2的正方形,ED⊥平面ABCD,ED=1,EF∥BD.(1)设EF=λBD,是否存在实数λ,使B F∥平面ACE;(2)求证:平面EAC⊥平面BDEF(3)当EF=BD时,求几何体ABCDEF的体积.2015-2016学年安徽省合肥一六八中高二(上)期中数学试卷(文科)一、选择题(共60题,每题5分.每题仅有一个正确选项.)1.下列说法中正确的是( )A.棱柱的面中,至少有两个面互相平行B.棱柱中两个互相平行的平面一定是棱柱的底面C.棱柱中一条侧棱就是棱柱的高D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形【考点】棱柱的结构特征.【专题】综合题.【分析】通过棱柱的定义以及棱柱的基本性质,判断四个选项的正误,A满足定义,B、C、D 可以找出反例.【解答】解:棱柱的定义是,有两个面互相平行,其余各面都是四边形,相邻的公共边互相平行,有这些面围成的几何体是棱柱;可以判断A正确;B不正确,例如正六棱柱的相对侧面;C不正确,只有直棱柱满足C的条件;D不正确,例如长方体.故选A【点评】本题是基础题,考查棱柱的定义,棱柱的基本性质,考查基本知识掌握的情况.2.已知圆锥的全面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为( ) A.120°B.150°C.180°D.240°【考点】扇形面积公式;旋转体(圆柱、圆锥、圆台).【专题】计算题.【分析】圆锥的全面积是底面积的3倍,那么母线和底面半径的比为2,求出侧面展开图扇形的弧长,可求其圆心角.【解答】解:圆锥的全面积是底面积的3倍,那么母线和底面半径的比为2,设圆锥底面半径为1,则圆锥母线长为2,圆锥的侧面展开图扇形的弧长是圆锥底面周长为2π,该圆锥的侧面展开图扇形的圆心角:π,即180°故选C.【点评】本题考查圆锥的侧面展开图,及其面积等知识,考查空间想象能力,是基础题.3.一个多面体的三视图如图所示,则该多面体的表面积为( )A.21+B.18+C.21 D.18【考点】由三视图求面积、体积.【专题】空间位置关系与距离.【分析】判断几何体的形状,结合三视图的数据,求出几何体的表面积.【解答】解:由三视图可知,几何体是正方体的棱长为2,截去两个正三棱锥,侧棱互相垂直,侧棱长为1,几何体的表面积为:S正方体﹣2S棱锥侧+2S棱锥底==21+.故选:A.【点评】本题考查三视图求解几何体的表面积,解题的关键是判断几何体的形状.4.如果一个水平放置的图形的斜二测直观图是一个底面为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )A.2+B.C.D.1+【考点】斜二测法画直观图.【专题】计算题;作图题.【分析】原图为直角梯形,上底为1,高为2,下底为1+,利用梯形面积公式求解即可.也可利用原图和直观图的面积关系求解.【解答】解:恢复后的原图形为一直角梯形,上底为1,高为2,下底为1+,S=(1++1)×2=2+.故选A【点评】本题考查水平放置的平面图形的直观图斜二测画法,属基础知识的考查.5.已知三条不重合的直线m,n,l和两个不重合的平面α、β,下列命题中正确命题个数为( )①若m∥n,n⊂α,则m∥α;②若l⊥α,m⊥β且l⊥m则α⊥β③若l⊥n,m⊥n,则l∥m④若α⊥β,α∩β=m,n⊂β,n⊥m,则n⊥αA.1 B.2 C.3 D.4【考点】平面与平面之间的位置关系;命题的真假判断与应用;空间中直线与平面之间的位置关系.【专题】空间位置关系与距离;简易逻辑.【分析】①利用线面平行的判定定理即可得出;②利用面面垂直的判定定理即可判断出;③利用线线的位置关系即可得出;④利用面面垂直的性质定理即可得出.【解答】解:①若m∥n,n⊂α,则m∥α或m⊂α,因此不正确;②若l⊥α,m⊥β且l⊥m,利用面面垂直的判定定理可得:α⊥β,正确;③若l⊥n,m⊥n,则l∥m、相交或为异面直线,因此不正确;④若α⊥β,α∩β=m,n⊂β,n⊥m,利用面面垂直的性质定理即可得出:n⊥α,因此正确.综上可知:只有②④正确.故选:B.【点评】本题综合考查了空间中线线、线面、面面的位置关系,熟练掌握判定定理及其性质定理是解决问题的关键,属于基础题.6.设四面体ABCD各棱长均相等,S为AD的中点,Q为BC上异于中点和端点的任一点,则△SQD 在四面体的面BCD上的射影可能是( )A.B.C.D.【考点】平行投影及平行投影作图法.【专题】探究型;空间位置关系与距离.【分析】确定S在面BDC上的射影在平面ADC内部,即可判断正确选项.【解答】解:因为Q为BC上异于中点和端点的任一点,所以S在面BDC上的射影在平面ADC内部,Q在BC上,D为顶点,所以△SDQ在面BDC上的射影为图C,故选:C.【点评】本题考查平行投影以及平行投影的作图方法,考查空间想象能力.7.设a,b,c分别是△ABC中,∠A,∠B,∠C所对边的边长,则直线sinA•x+ay+c=0与bx ﹣sinB•y+sinC=0的位置关系是( )A.平行 B.重合 C.垂直 D.相交但不垂直【考点】正弦定理的应用;直线的一般式方程与直线的平行关系;直线的一般式方程与直线的垂直关系.【专题】计算题.【分析】要寻求直线sinA•x+ay+c=0与bx﹣sinB•y+sinC=0的位置关系,只要先求两直线的斜率,然后由斜率的关系判断直线的位置即可.【解答】解:由题意可得直线sinA•x+ay+c=0的斜率,bx﹣sinB•y+sinC=0的斜率∵k1k2===﹣1则直线sinA•x+ay+c=0与bx﹣sinB•y+sinC=0垂直故选C.【点评】本题主要考察了两直线的位置关系中的垂直关系的判断,主要是通过直线的斜率关系进行判断,解题中要注意正弦定理的应用.8.直线x+(a2+1)y+1=0(a∈R)的倾斜角的取值范围是( )A. B.∪(,π)D.故E是BC的中点,所以PA与底面ABC所成角为∠PAE,等边三角形PBC中,PE=,直角三角形ABC中,AE=BC=,又PA=1,∴三角形PAE中,tan∠PAE==∴∠PAE=,则PA与底面ABC所成角为.【点评】本题考查直线与平面成的角的求法.15.三棱锥P﹣ABC中,D,E分别为PB,PC的中点,记三棱锥D﹣ABE的体积为V1,P﹣ABC 的体积为V2,则=.【考点】棱柱、棱锥、棱台的体积.【专题】空间位置关系与距离;立体几何.【分析】画出图形,通过底面面积的比求解棱锥的体积的比.【解答】解:如图,三棱锥P﹣ABC中,D,E分别为PB,PC的中点,三棱锥D﹣ABE的体积为V1,P﹣ABC的体积为V2,∴A到底面PBC的距离不变,底面BDE底面积是PBC面积的=,∴==.故答案为:.【点评】本题考查三棱锥的体积,着重考查了棱锥的底面面积与体积的关系,属于基础题.16.光线由点A(﹣1,4)射出,遇到直线l:2x﹣3y﹣6=0后被反射,已知点在反射光线上,则反射光线所在的直线方程为13x﹣26y+85=0.【考点】与直线关于点、直线对称的直线方程.【专题】方程思想;待定系数法;直线与圆.【分析】求出点(﹣1,4)关于直线l1:2x+3y﹣6=0的对称点的坐标,利用两点式方程求出入射光线所在的直线方程.【解答】解:设点(﹣1,4)关于直线l1:2x﹣3y﹣6=0的对称点的坐标为(a,b),则,解得:a=,b=﹣,又由反射光线经过点B(3,),故反射光线的方程为:=﹣,即:13x﹣26y+85=0,故答案为:13x﹣26y+85=0.【点评】对称点的坐标的求法:利用垂直平分解答,本题是通过特殊直线特殊点处理,比较简洁,考查计算能力.三、解答题(共70分,每题需有必要的解答过程)17.四面体ABCD及其三视图如图所示,平行于棱AD,BC的平面分别交四面体的棱AB、BD、DC、CA于点E、F、G、H.(Ⅰ)求四面体ABCD的体积;(Ⅱ)证明:四边形EFGH是矩形.【考点】直线与平面垂直的性质;棱柱、棱锥、棱台的体积.【专题】综合题;空间位置关系与距离.【分析】(Ⅰ)证明AD⊥平面BDC,即可求四面体ABCD的体积;(Ⅱ)证明四边形EFGH是平行四边形,EF⊥HG,即可证明四边形EFGH是矩形.【解答】(Ⅰ)解:由题意,BD⊥DC,BD⊥AD,AD⊥DC,BD=DC=2,AD=1,∴AD⊥平面BDC,∴四面体ABCD的体积V==;(Ⅱ)证明:∵BC∥平面EFGH,平面EFGH∩平面BDC=FG,平面EFGH∩平面ABC=EH,∴BC∥FG,BC∥EH,∴FG∥EH.同理EF∥AD,HG∥AD,∴EF∥HG,∴四边形EFGH是平行四边形,∵AD⊥平面BDC,∴AD⊥BC,∴EF⊥FG,∴四边形EFGH是矩形.【点评】本题考查线面垂直,考查线面平行性质的运用,考查学生分析解决问题的能力,属于中档题.18.已知直线l:kx﹣y+1+2k=0.(1)证明:直线l过定点;(2)若直线l交x负半轴于A,交y正半轴于B,△AOB的面积为S,试求S的最小值并求出此时直线l的方程.【考点】过两条直线交点的直线系方程.【专题】计算题;证明题.【分析】(1)直线l过定点,说明定点的坐标与参数k无关,故让k的系数为0 可得定点坐标.(2)求出A、B的坐标,代入三角形的面积公式化简,再使用基本不等式求出面积的最小值,注意等号成立条件要检验,求出面积最小时的k值,从而得到直线方程.【解答】解:(1)证明:由已知得k(x+2)+(1﹣y)=0,∴无论k取何值,直线过定点(﹣2,1).(2)令y=0得A点坐标为(﹣2﹣,0),令x=0得B点坐标为(0,2k+1)(k>0),∴S△AOB=|﹣2﹣||2k+1|=(2+)(2k+1)=(4k++4)≥(4+4)=4.当且仅当4k=,即k=时取等号.即△AOB的面积的最小值为4,此时直线l的方程为x﹣y+1+1=0.即x﹣2y+4=0【点评】本题考查过定点的直线系方程特征,以及利用基本不等式求式子的最小值.19.已知点P到两定点M(﹣1,0)、N(1,0)距离的比为,点N到直线PM的距离为1,求直线PN的方程.【考点】直线的一般式方程.【专题】计算题;压轴题.【分析】设P的坐标为(x,y),由题意点P到两定点M(﹣1,0)、N(1,0)距离的比为,可得,结合两点间的距离,化简整理得x2+y2﹣6x+1=0,又由点N到PM的距离为1,即|MN|=2,可得直线PM的斜率,进而可得直线PM的方程,并将方程代入x2+y2﹣6x+1=0整理得x2﹣4x+1=0,解可得x的值,进而得P的坐标,由直线的方程代入点的坐标可得答案.【解答】解:设P的坐标为(x,y),由题意有,即,整理得x2+y2﹣6x+1=0,因为点N到PM的距离为1,|MN|=2所以PMN=30°,直线PM的斜率为直线PM的方程为将代入x2+y2﹣6x+1=0整理得x2﹣4x+1=0解得,则点P坐标为或或直线PN的方程为y=x﹣1或y=﹣x+1.【点评】本题考查直线的方程,注意结合题意,选择直线方程的合适的形式,进行整理变形、求解.20.如图,在四棱锥P﹣ABCD中,ABCD是矩形,PA⊥平面ABCD,,点F是PD的中点,点E在CD上移动.(1)求三棱锥E﹣PAB体积;(2)当点E为CD的中点时,试判断EF与平面PAC的关系,并说明理由;(3)求证:PE⊥AF.【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定.【专题】计算题;证明题.【分析】(1)求出底面ABE的面积,求出高PA,即可求三棱锥E﹣PAB体积;(2)点E为CD的中点,推出EF||PC,证明EF∥平面PAC即可;(3)证明AF垂直平面PDC内的两条相交直线CD,PD,即可证明AF⊥平面PDC,从而证明PE⊥AF.【解答】解:(1)∵PA⊥平面ABCD,∴.(2)当点E为BC的中点时,EF||平面PAC.理由如下:∵点E,F分别为CD、PD的中点,∴EF||PC.∵PC⊂平面PAC,EF⊂平面PAC∴EF||平面PAC(3)∵PA⊥平面ABCD,CD⊂平面ABCD∴CD⊥PA∵ABCD是矩形,∴CD⊥AD∵PA∩AD=A,∴CD⊥平面PAD∵AF⊂平面PAD∴AF⊥DC∵PA=AD,点F是PD的中点∴AF⊥PD,又CD∩PD=D∴AF⊥平面PDC∵PE⊂平面PDC,∴PE⊥AF.【点评】本题考查棱柱、棱锥、棱台的体积,直线与平面平行的判定,考查空间想象能力,逻辑思维能力,是中档题.21.(13分)如图1,直角梯形ABCD中,AD∥BC,∠ABC=90°,E,F分别为边AD和BC上的点,且EF∥AB,AD=2AE=2AB=4FC=4.将四边形EFCD沿EF折起成如图2的位置,使AD=AE.(Ⅰ)求证:BC∥平面DAE;(Ⅱ)求四棱锥D﹣AEFB的体积.【考点】直线与平面平行的判定;棱柱、棱锥、棱台的体积.【专题】计算题;证明题.【分析】(Ⅰ)先根据面面平行的判定定理,证得面CBF∥面DAE,又BC⊂面CBF,根据面面平行的性质可知BC∥平面DAE;(Ⅱ)取AE的中点H,连接DH,根据线面垂直的判定定理可得EF⊥平面DAE,根据线面垂直的性质可知EF⊥DH,再根据,则DH⊥面AEFB,根据体积公式即可求出四棱锥D﹣AEFB的体积.【解答】解:(Ⅰ)∵CF∥DE,FB∥AE,BF∩CF=F,AE∩DE=E∴面CBF∥面DAE,又BC⊂面CBF,所以BC∥平面DAE(Ⅱ)取AE的中点H,连接DH,∵EF⊥ED,EF⊥EA∴EF⊥平面DAE又DH⊂平面DAE∴EF⊥DH,∵∴DH⊥面AEFB,所以四棱锥D﹣AEFB的体积【点评】本题主要考查棱锥的体积公式和线面平行的判定定理的应用.考查对定理的掌握情况和对基础知识的综合运用.22.(13分)如图,ABCD是边长为2的正方形,ED⊥平面ABCD,ED=1,EF∥BD.(1)设EF=λBD,是否存在实数λ,使BF∥平面ACE;(2)求证:平面EAC⊥平面BDEF(3)当EF=BD时,求几何体ABCDEF的体积.【考点】棱柱、棱锥、棱台的体积;平面与平面垂直的判定.【专题】综合题;转化思想;综合法.【分析】(1)存在.证明四边形EFBO是平行四边形,可得BF∥EO,使BF∥平面ACE;(2)利用面面垂直的判定定理证明平面EAC⊥平面BDEF;(3)几何体的体积V ABCDEF=2V A﹣BDEF=2×S BDEF•AO【解答】(1)解:存在.证明:记AC与BD的交点为O,则DO=BO=BD,连接EO,∵EF∥BD,当时,即EF=BD,∴EF∥BO且EF=BO,则四边形EFBO是平行四边形,∴BF∥EO,又∵EO⊂面ACE,BF⊄面ACE,∴BF∥平面ACE;…4’(2)证明:∵ED⊥平面ABCD,AC⊂平面ABCD,∴ED⊥AC.∵ABCD为正方形,∴BD⊥AC,又ED∩BD=D,∴AC⊥平面BDEF,又AC⊂平面EAC,∴平面EAC⊥平面BDEF;…8’(3)解:∵ED⊥平面ABCD,∴ED⊥BD,又∵EF∥BD且EF=BD,∴BDEF是直角梯形,又∵ABCD是边长为2的正方形,BD=2,EF=,∴梯形BDEF的面积为=,由(1)知AC⊥平面BDEF,∴几何体的体积V ABCDEF=2V A﹣BDEF=2×S BDEF•AO=2×=2.…13’【点评】本题主要考查空间直线与平面,面面垂直的判定以及空间几何体的体积,要求熟练掌握相应的判定定理.。

合肥一六八中学学年高二上学期数中(文科)(宏志班).

合肥一六八中学学年高二上学期数中(文科)(宏志班).

合肥一六八中学第一学期期中考试高二数学试题(宏志班)一、选择题(共60题,每题5分。

每题仅有一个正确选项。

)1.下列说法正确的是 ( )A.有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱B.四棱锥的四个侧面都可以是直角三角形C.有两个平面互相平行,其余各面都是梯形的多面体是棱台D.棱台的各侧棱延长后不一定交于一点2.如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6 cm ,O ′C ′=2 cm ,则原图形是( )A.正方形B.矩形C.菱形D.一般的平行四边形 3.已知直线a b 、是异面直线,直线c d 、分别与a b 、都相交,则直线c d 、的位置关系A.可能是平行直线B.一定是异面直线C.可能是相交直线D.平行、相交、异面直线都有可能4.在正四面体的6条棱中随机抽取2条,则其2条棱互相垂直的概率为 ( )A .34B .23C .15D .135.已知互相垂直的平面错误!未找到引用源。

交于直线l .若直线m ,n 满足m ∥α,n ⊥错误!未找到引用源。

,则( )A.m ∥lB.m ∥nC.n ⊥lD.m ⊥n6.直线cos sin 0x y a θθ++=与sin cos 0x y b θθ-+=的位置关系是( )A .平行B .垂直C .斜交D .与,,a b θ的值有关7.设△ABC 的一个顶点是A(3,-1),∠B ,∠C 的平分线方程分别为x =0,y =x ,则直线BC 的方程为( )A .y =2x +5B .y =2x +3C .y =3x +5D .y =-12x +528.βα,是两个不重合的平面,在下列条件中,可判断平面βα,平行的是 ( )A.n m ,是平面α内两条直线,且ββ//,//n mB.α内不共线的三点到β的距离相等C.βα,都垂直于平面γD.n m ,是两条异面直线,βα⊂⊂n m ,,且αβ//,//n m 9.某工作的三视图如图3所示,现将该工作通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工作的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积/原工件的体积)()A、错误!未找到引用源。

2015-2016八中高二(文科)上学期期末试卷

2015-2016八中高二(文科)上学期期末试卷

合肥八中2015-2016学年度期末考试高二数学(文科)试题卷说明:1.本试卷分第I 卷(选择题)和第II 卷(非选择题),试卷分值150,考试时间:120分钟。

2.所有答案均要填涂在答题卡上或答在答题卷上,否则无效,考试结束 后只交答题卡和答题卷。

第I 卷 选择题(60分)一、选择题(本题包括12个小题,每小题5分,每小题只有一个选项符合提议) 1. "3"a =-是“直线30ax y +=与直线223x y +=垂直”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 2.抛物线24y x =的准线方程为( ) A. 1y =- B. 116x =-C. 1x =-D. 116y =- 3.若直线y kx =与圆22430x y x +-+=的两个交点关于直线0x y b ++=对称,则( ) A. 1,2k b =-= B. 1,2k b == C. 1,2k b ==- D. 1,2k b =-=- 4.设函数()sin x f x x =,则2f ⎛⎫'= ⎪⎝⎭π( ) A. 2π-B.2πC. 1D. 1- 5.曲线xy e =在点A 处的切线与直线30x y -+=平行,则点A 的坐标为( )A. ()11,e -- B. ()0,1 C. ()1,e D. ()0,26.已知函数()f x 是在R 上的可导函数,()f x 的导数()'f x 的图像如图,则下列结论正确的是( )A. ()f x 在区间(),b c 上是减函数B. ()f x 在区间(),a c 上是增函数C. ,a c 分别是极大值点和极小值点D. ,b c 分别是极大值点和极小值点 7.三棱锥D ABC -及其三视图中的正视图和侧视图如下图所示,2DCA π∠=,则棱BD的长为( )A. 4 C. 2 8.设,,a b c 是空间三条直线,,αβ是空间两个平面,则下列命题中,逆命题不正确的是( )A.当c α⊥时,若c β⊥,则//αβB.当b α⊂,a α⊄且c 是a 在α内的射影时,若b c ⊥,则a b ⊥C.当b α⊂时,若b β⊥,则αβ⊥D.当b α⊂且c α⊄时,若//c α,则//b c9.一束光线从点()1,1A -出发,经x 轴反射到圆()()22:231C x y -+-=上的最短路径是( )A. 4B. 5C. 1D. 10.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为12,F F ,过2F 作平行于C 的渐近线的直线交C 于点P ,若12PF PF ⊥,则C 的离心率为( )211.已知函数()3227f x x ax bx a a =++--在1x =处取得极大值10,则ab的值为( ) A. 23-B. 2-C. 2-或23- D.不存在 12.已知F 是抛物线24x y =的焦点,直线1y kx =-与该抛物线交于第一象限内的点,A B ,若3AF FB =,则k 的值是( )第II 卷 非选择题(60分)二、填空题(本题包括4个小题,每小题5分,共20分)13.命题()","n N f n n *∀∈<的否定形式是________.14.已知双曲线2222:1x y C a b -=与椭圆22194x y +=又相同的焦点且双曲线C 的渐近线方 程为2y x =±,则双曲线C 的方程为_________.15.正三棱锥S ABC -中,2,,SA SC BC =的中点分别为,M N ,且MN AM ⊥,则正 三棱锥S ABC -外接球的表面积为___________.16.已知经过点()3,0的直线l 与抛物线22x y =交于不同两点,抛物线在这两点处的切线互相垂直,则直线l 的斜率k 等于__________.三、解答题(本题包括6个小题,共分70)17.已知命题p :“直线0x y m +-=与圆()2211x y -+=命题q :“方程222123x y m m +=+表示焦点在x 轴上的椭圆”.若p q ∨为真,p ⌝为真,求实数m 的取值范围.18.求下列曲线的标准方程:(1)已知圆C 经过点A ()2,1,和直线1x y +=相切,且圆心在直线2y x =-,求圆C 的方程.(2)抛物线22(0)y px p =>有一内接直角三角形,直角的顶点在原点,一直角边的方程是2y x =,斜边长是.19.已知1x =是()2ln bf x x x x=++的一个极值点. (1)求函数()f x 的单调区间 (2)设函数()()3ag x f x x+=-,若函数()g x 在区间[]1,2内单调递增,求a 得取值 范围.20.已知四边形ABCD 满足//AD BC ,12BA AD DC BC a ====,E 是BC 的中点, 将BAE 沿着AE 翻折成1B AE ,是平面1B AE ⊥平面AECD ,,F G 分别为1,B D AE 的中点.(1)求三棱锥1E ACB -的体积; (2)证明:1//B E 平面ACF ; (3)证明:平面1B GD ⊥平面1B DC .21.已知函数()32f x x bx cx d =+++的图像过点P ()0,2,且在点()()1,1M f --处的 切线方程为670x y -+=. (1)求函数()y f x =的解析式;(2)求函数()23922g x x x a =-++与()y f x =的图像有三个交点,求a 得取值范围.22.已知椭圆()2222:10x y C a b a b +=>>⎛ ⎝⎭. (1)求椭圆C 的方程; (2)设与圆223:4O x y +=相切的直线l 交椭圆C 于,A B 两点,求OAB 面积的最大 值,及取得最大值时直线l 的方程.参考答案与解析一、选择题1-5 CDCCB 6-10 BACAD 11-12 AD二、填空题13. ()00,o n N f n n *∃∈≥ 14. 2214y x -= 15. 12π 16. 16-三、解答题17.18.19.20.21.22.。

2015-2016年安徽省合肥一中高二上学期期中数学试卷及答案(文科)

2015-2016年安徽省合肥一中高二上学期期中数学试卷及答案(文科)

2015-2016学年安徽省合肥一中高二(上)期中数学试卷(文科)一、选择题(本题共12小题,每小题5分,共60分.每小题所给的四个选项中只有一个选项正确,请将正确的选项填入答题卡中,答错或不答不得分)1.(5分)下列结论中正确的是()A.各个面都是三角形的几何体是三棱锥B.以三角形的一边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C.当正棱锥的侧棱长与底面多边形的边长相等时该棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任一点的连线都是母线2.(5分)已知A(1,0,2),B(1,﹣3,1),点M在z轴上且到A、B两点的距离相等,则M点坐标为()A.(﹣3,0,0)B.(0,﹣3,0)C.(0,0,﹣3)D.(0,0,3)3.(5分)直线2x﹣y+k=0与4x﹣2y+1=0的位置关系是()A.平行B.不平行C.平行或重合D.既不平行也不重合4.(5分)一个正方体内接于半径为R的球,则该正方体的体积是()A.2R3B.πR3C.R3D.R35.(5分)圆心为C(6,5),且过点B(3,6)的圆的方程为()A.(x﹣6)2+(y﹣5)2=10 B.(x﹣6)2+(y+5)2=10 C.(x﹣5)2+(y﹣6)2=10 D.(x﹣5)2+(y+6)2=106.(5分)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l ⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于l D.α与β相交,且交线平行于l7.(5分)已知圆的方程为x2+y2﹣6x﹣8y=0,设圆中过点(2,5)的最长弦与最短弦为分别为AB、CD,则直线AB与CD的斜率之和为()A.0 B.﹣1 C.1 D.﹣28.(5分)已知不等式组表示的平面区域恰好被面积最小的圆C:(x﹣a)2+(y﹣b)2=r2及其内部所覆盖,则圆C的方程为()A.(x﹣1)2+(y﹣2)2=5 B.(x﹣2)2+(y﹣1)2=8 C.(x﹣4)2+(y﹣1)2=6 D.(x﹣2)2+(y﹣1)2=59.(5分)如图是一个几何体的三视图(侧试图中的弧线是半圆),则该几何体的体积是()A.8+2πB.8+πC.8+πD.8+π10.(5分)如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ADB沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A﹣BCD.则在三棱锥A ﹣BCD中,下列命题正确的是()A.平面ABD⊥平面ABC B.平面ADC⊥平面BDCC.平面ABC⊥平面BDC D.平面ADC⊥平面ABC11.(5分)若直线y=kx+4+2k与曲线有两个交点,则k的取值范围是()A.[1,+∞)B.[﹣1,﹣)C.(,1]D.(﹣∞,﹣1]12.(5分)点P(x0,y0)在圆x2+y2=r2内,则直线和已知圆的公共点的个数为()A.0 B.1 C.2 D.不能确定二、填空题(本题共4小题,每小题5分,共20分.请将每小题对的答案填在答题卡中,答错或不答不得分)13.(5分)设直线3x﹣4y+5=0的倾斜角为α,则sinα=.14.(5分)若直线2ax﹣by+2=0(a>0,b>0)经过圆x2+y2+2x﹣4y+1=0的圆心,则+的最小值是.15.(5分)在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2.将梯形ABCD 绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为.16.(5分)已知正四面体ABCD的棱长为9,点P是三角形ABC内(含边界)的一个动点满足P到面DAB、面DBC、面DCA的距离成等差数列,则点P到面DCA 的距离最大值为.三、解答题(本大题共6小题,第17题10分,18-22,每题12分,共70分.请写出详细地解答步骤或证明过程)17.(12分)已知两直线x﹣2y+4=0和x+y﹣2=0的交点为P,直线l过点P且与直线5x+3y﹣6=0垂直.(Ⅰ)求直线l的方程;(Ⅱ)求直线l关于原点对称的直线方程.18.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点.(1)求证:直线BD1∥平面PAC;(2)求证:平面PAC⊥平面BDD1;(3)求三棱锥D﹣PAC的体积.19.(12分)如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB=AC=2AA1=2,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,P是线段AD上异于端点的点.(Ⅰ)在平面ABC内,试作出过点P与平面A1BC平行的直线l,说明理由,并证明直线l⊥平面ADD1A1;(Ⅱ)设(Ⅰ)中的直线l交AC于点Q,求三棱锥A1﹣QC1D的体积.(锥体体积公式:,其中S为底面面积,h为高)20.(12分)已知⊙O:x2+y2=1和定点A(2,1),由⊙O外一点P(a,b)向⊙O引切线PQ,切点为Q,且满足|PQ|=|PA|.(1)求实数a,b间满足的等量关系;(2)求线段PQ长的最小值;(3)若以P为圆心所作的⊙P与⊙O有公共点,试求半径最小值时⊙P的方程.21.(12分)已知曲线C的方程为x2+y2﹣3x=0(<x≤3).(1)曲线C所在圆的圆心坐标;(2)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.2015-2016学年安徽省合肥一中高二(上)期中数学试卷(文科)参考答案与试题解析一、选择题(本题共12小题,每小题5分,共60分.每小题所给的四个选项中只有一个选项正确,请将正确的选项填入答题卡中,答错或不答不得分)1.(5分)下列结论中正确的是()A.各个面都是三角形的几何体是三棱锥B.以三角形的一边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C.当正棱锥的侧棱长与底面多边形的边长相等时该棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任一点的连线都是母线【解答】解:正八面体的各个面都是三角形,但不是三棱锥,故A错误;以锐角三角形的一边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体是两个圆锥形成的组合体,故B错误;正六棱锥圆锥的顶点与底面圆周上的任一点的连线都是母棱锥的侧棱长一定大于底面多边形的边长,故C错误;圆锥的顶点与底面圆周上的任一点的连线都是母线,故D正确;故选:D.2.(5分)已知A(1,0,2),B(1,﹣3,1),点M在z轴上且到A、B两点的距离相等,则M点坐标为()A.(﹣3,0,0)B.(0,﹣3,0)C.(0,0,﹣3)D.(0,0,3)【解答】解:设点M(0,0,z),则∵A(1,0,2),B(1,﹣3,1),点M到A、B两点的距离相等,∴∴z=﹣3∴M点坐标为(0,0,﹣3)故选:C.3.(5分)直线2x﹣y+k=0与4x﹣2y+1=0的位置关系是()A.平行B.不平行C.平行或重合D.既不平行也不重合【解答】解:∵由方程组,得2k﹣1=0,当k=时,方程组由无穷多个解,两条直线重合,当k≠时,方程组无解,两条直线平行,综上,两条直线平行或重合,故选:C.4.(5分)一个正方体内接于半径为R的球,则该正方体的体积是()A.2R3B.πR3C.R3D.R3【解答】解:一个正方体内接于半径为R的球,可知正方体的对角线的长度就是球的直径,设正方体的棱长为:a,可得=2R,解得a=.该正方体的体积是:a3=.故选:C.5.(5分)圆心为C(6,5),且过点B(3,6)的圆的方程为()A.(x﹣6)2+(y﹣5)2=10 B.(x﹣6)2+(y+5)2=10 C.(x﹣5)2+(y﹣6)2=10 D.(x﹣5)2+(y+6)2=10【解答】解:因为|BC|==,所以圆的半径r=,又圆心C(6,5),则圆C的标准方程为(x﹣6)2+(y﹣5)2=10.故选:A.6.(5分)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l ⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于l D.α与β相交,且交线平行于l【解答】解:由m⊥平面α,直线l满足l⊥m,且l⊄α,所以l∥α,又n⊥平面β,l⊥n,l⊄β,所以l∥β.由直线m,n为异面直线,且m⊥平面α,n⊥平面β,则α与β相交,否则,若α∥β则推出m∥n,与m,n异面矛盾.故α与β相交,且交线平行于l.故选:D.7.(5分)已知圆的方程为x2+y2﹣6x﹣8y=0,设圆中过点(2,5)的最长弦与最短弦为分别为AB、CD,则直线AB与CD的斜率之和为()A.0 B.﹣1 C.1 D.﹣2【解答】解:把圆的方程化为标准方程得:(x﹣3)2+(y﹣4)2=25,∴圆心坐标为(3,4),∴过(2,5)的最长弦AB所在直线的斜率为=﹣1,又最长弦所在的直线与最短弦所在的直线垂直,∴过(2,5)最短弦CD所在的直线斜率为1,则直线AB与CD的斜率之和为﹣1+1=0.故选:A.8.(5分)已知不等式组表示的平面区域恰好被面积最小的圆C:(x﹣a)2+(y﹣b)2=r2及其内部所覆盖,则圆C的方程为()A.(x﹣1)2+(y﹣2)2=5 B.(x﹣2)2+(y﹣1)2=8 C.(x﹣4)2+(y﹣1)2=6 D.(x﹣2)2+(y﹣1)2=5【解答】解:由题意知此平面区域表示的是以O(0,0),P(4,0),Q(0,2)构成的三角形及其内部,且△OPQ是直角三角形,所以覆盖它的且面积最小的圆是其外接圆,故圆心是(2,1),半径是,所以圆C的方程是(x﹣2)2+(y﹣1)2=5.故选:D.9.(5分)如图是一个几何体的三视图(侧试图中的弧线是半圆),则该几何体的体积是()A.8+2πB.8+πC.8+πD.8+π【解答】解:根据几何体的三视图得,该几何体的上半部分是棱长为2的正方体,下半部分是半径为1,高为2的圆柱的一半,∴该几何体的体积为V=23+×π×12×2=8+π.故选:B.10.(5分)如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ADB沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A﹣BCD.则在三棱锥A ﹣BCD中,下列命题正确的是()A.平面ABD⊥平面ABC B.平面ADC⊥平面BDCC.平面ABC⊥平面BDC D.平面ADC⊥平面ABC【解答】解:∵在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°∴BD⊥CD又平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD故CD⊥平面ABD,则CD⊥AB,又AD⊥AB故AB⊥平面ADC,所以平面ABC⊥平面ADC.故选:D.11.(5分)若直线y=kx+4+2k与曲线有两个交点,则k的取值范围是()A.[1,+∞)B.[﹣1,﹣)C.(,1]D.(﹣∞,﹣1]【解答】解:曲线即x2+y2=4,(y≥0)表示一个以(0,0)为圆心,以2为半径的位于x轴上方的半圆,如图所示:直线y=kx+4+2k即y=k(x+2)+4表示恒过点(﹣2,4)斜率为k的直线结合图形可得,∵解得∴要使直线与半圆有两个不同的交点,k的取值范围是故选:B.12.(5分)点P(x0,y0)在圆x2+y2=r2内,则直线和已知圆的公共点的个数为()A.0 B.1 C.2 D.不能确定【解答】解:圆心O(0,0)到直线x 0x+y0y=r2的距离为d=∵点M(x0,y0)在圆内,∴x02+y02<r2,则有d>r,故直线和圆相离,直线与圆的公共点为0个故选:A.二、填空题(本题共4小题,每小题5分,共20分.请将每小题对的答案填在答题卡中,答错或不答不得分)13.(5分)设直线3x﹣4y+5=0的倾斜角为α,则sinα=.【解答】解:直线3x﹣4y+5=0的倾斜角为α,可得tanα=,α是锐角.即:=,又sin2α+cos2α=1,解得sinα=.故答案为:.14.(5分)若直线2ax﹣by+2=0(a>0,b>0)经过圆x2+y2+2x﹣4y+1=0的圆心,则+的最小值是4.【解答】解:x2+y2+2x﹣4y+1=0的圆心(﹣1,2),所以直线2ax﹣by+2=0(a>0,b>0)经过圆心,可得:a+b=1,+=(+)(a+b)=2+≥4,当且仅当a=b=.+的最小值是:4.故答案为:4.15.(5分)在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为.【解答】解:由题意可知几何体的直观图如图:旋转体是底面半径为1,高为2的圆锥,挖去一个相同底面高为1的倒圆锥,几何体的体积为:=.故答案为:.16.(5分)已知正四面体ABCD的棱长为9,点P是三角形ABC内(含边界)的一个动点满足P到面DAB、面DBC、面DCA的距离成等差数列,则点P到面DCA 的距离最大值为2.【解答】解:设动点P到面DAB、面DBC、面DCA的距离分别为h1,h2,h3,∵正四面体ABCD的棱长为9,每个面面积为S==,取BC中点E,连结AE.过S作SO⊥面ABC,垂足为O,则AO==3,∴高h=SO==3,∴正四面体ABCD的体积V==S(h1+h2+h3),∴h1+h2+h3=3,∵满足P到面DAB、面DBC、面DCA的距离成等差数列,∴h 1+h2+h3=3h2=3,∴,h2+h3=2,∴点P到面DCA的距离最大值为2.故答案为:2.三、解答题(本大题共6小题,第17题10分,18-22,每题12分,共70分.请写出详细地解答步骤或证明过程)17.(12分)已知两直线x﹣2y+4=0和x+y﹣2=0的交点为P,直线l过点P且与直线5x+3y﹣6=0垂直.(Ⅰ)求直线l的方程;(Ⅱ)求直线l关于原点对称的直线方程.【解答】解:(Ⅰ)联立方程组,解得,∴直线x﹣2y+4=0和x+y﹣2=0的交点P(0,2),又∵直线5x+3y﹣6=0的斜率为,∴直线l的斜率为,∴直线l的方程为y﹣2=(x﹣0),化为一般式可得3x﹣5y+10=0;(Ⅱ)由题意和对称性可得直线l上的点P(0,2)关于原点的对称点(0,﹣2)在要求的直线上,由对称可得要求的直线与l平行,故斜率也为,∴直线l关于原点对称的直线方程为y+2=x,化为一般式可得3x﹣5y﹣10=018.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点.(1)求证:直线BD1∥平面PAC;(2)求证:平面PAC⊥平面BDD1;(3)求三棱锥D﹣PAC的体积.【解答】解:(1)设AC∩BD=O,连接OP,∵O,P分别为BD,D1D中点,∴BD1∥OP…3′∵OP⊂平面PAC,BD1⊄平面PAC,∴BD1∥平面PAC…5′(2)∵D1D⊥平面ABCD,AC⊂平面ABCD,∴D1D⊥AC…7′又AC⊥BD,D1D∩BD=D,∴AC⊥平面BDD1…9′∵AC⊂平面PAC,∴平面PAC⊥平面BDD1…10′(3)∵PD⊥平面ADC,(12分)=…14′∴V D﹣PAC19.(12分)如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB=AC=2AA1=2,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,P是线段AD上异于端点的点.(Ⅰ)在平面ABC内,试作出过点P与平面A1BC平行的直线l,说明理由,并证明直线l⊥平面ADD1A1;(Ⅱ)设(Ⅰ)中的直线l交AC于点Q,求三棱锥A1﹣QC1D的体积.(锥体体积公式:,其中S为底面面积,h为高)【解答】解:(Ⅰ)在平面ABC内,过点P作直线l和BC平行,由于直线l不在平面A1BC内,而BC在平面A1BC内,故直线l与平面A1BC平行.三角形ABC中,∵AB=AC=2AA1=2,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,∴AD⊥BC,∴l⊥AD.再由AA1⊥底面ABC,可得AA1⊥l.而AA1∩AD=A,∴直线l⊥平面ADD1A1 .(Ⅱ)设(Ⅰ)中的直线l交AC于点Q,过点D作DE⊥AC,∵侧棱AA1⊥底面ABC,故三棱柱ABC﹣A1B1C为直三棱柱,故DE⊥平面AA1C1C.直角三角形ACD中,∵AC=2,∠CAD=60°,∴AD=AC•cos60°=1,∴DE=AD•sin60°=.∵===1,﹣QC1D的体积==••DE=×1×∴三棱锥A=.20.(12分)已知⊙O:x2+y2=1和定点A(2,1),由⊙O外一点P(a,b)向⊙O引切线PQ,切点为Q,且满足|PQ|=|PA|.(1)求实数a,b间满足的等量关系;(2)求线段PQ长的最小值;(3)若以P为圆心所作的⊙P与⊙O有公共点,试求半径最小值时⊙P的方程.【解答】解:(1)连接OQ,∵切点为Q,PQ⊥OQ,由勾股定理可得PQ2=OP2﹣OQ2.由已知PQ=PA,可得PQ2=PA2,即(a2+b2)﹣1=(a﹣2)2+(b﹣1)2.化简可得2a+b﹣3=0.(2)∵PQ====,故当a=时,线段PQ取得最小值为.(3)若以P为圆心所作的⊙P 的半径为R,由于⊙O的半径为1,∴|R﹣1|≤PO ≤R+1.而OP===,故当a=时,PO取得最小值为,此时,b=﹣2a+3=,R取得最小值为﹣1.故半径最小时⊙P 的方程为+=.21.(12分)已知曲线C的方程为x2+y2﹣3x=0(<x≤3).(1)曲线C所在圆的圆心坐标;(2)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.【解答】解:(1)∵曲线C的方程为x2+y2﹣3x=0,整理得其标准方程为:(x﹣)2+y2=,∴圆C的圆心坐标为(,0).(2)结论:当k∈[﹣,]∪{﹣,}时,直线L:y=k(x﹣4)与曲线C只有一个交点.理由如下:直线代入圆的方程,消去y,可得:(1+k2)x2﹣(3+8k2)x+16k2=0,令△=(3+8k2)2﹣4(1+k2)•16k2=0,解得k=±,又∵轨迹C的端点(,±)与点(4,0)决定的直线斜率为±,∴当直线L :y=k (x ﹣4)与曲线C 只有一个交点时,k 的取值范围为[﹣,]∪{﹣,}.赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;xyB CAO2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC上运动(不与点B,C重合),过D作∠ADE=45°,DE交AC于E.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式,并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.EB4.如图,已知直线112y x=+与y轴交于点A,与x轴交于点D,抛物线212y x bx c=++与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0)。

安徽省2015-2016学年高二数学(文)上学期期中试题word版

安徽省2015-2016学年高二数学(文)上学期期中试题word版

安徽师大附中2015~2016学年第一学期期中考查高 二 数 学(文)一、选择题:本大题共10小题,每小题3分,共30分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.直线l 过点A (1,2),且不经过第四象限,那么直线l 的斜率的取值范围是( ) A. B. C. D. (0,21) 2.直线06:1=++ay x l 与023)2(:2=++-a y x a l 平行,则1l 与2l 间的距离为( ) A. 2 B.328 C. 3 D. 338 3.已知圆C 与直线0=-y x 及04=--y x 都相切,圆心在直线0=+y x 上,则圆C 的方程为( )A. 2)1()1(22=-++y xB. 2)1()1(22=++-y xC. 2)1()1(22=-+-y xD. 2)1()1(22=+++y x4.已知椭圆的焦点在y 轴上,若椭圆1222=+my x 的离心率为21,则m =( ) A.23 B. 38 C. 32或83 D. 23或385.双曲线)0(132222≠=-a ay a x 的渐近线与虚轴所在的直线所成的锐角为( )A. ︒30B. ︒45C. ︒60D. ︒756.已知F 是抛物线x y =2的焦点,A 、B 是该抛物线上的两点,3=+BF AF ,则线段AB 的中点到y 轴的距离为 ( )A.43 B.1 C. 45 D. 47 7.已知点集}0222|),{(22≤---+=y x y x y x M ,}022|),{(22≥+--=y x y x y x N , 则N M 所构成平面区域的面积为( )A. πB. π2C. π3D. π48.已知),(y x P 是直线)0(04>=++k y kx 上一动点,PA 是圆02:22=-+y y x C 的一条切线,A 是切点,若PA 长度最小值为2,则k 的值为 ( )A. 3B. 221 C. 22 D. 29.过双曲线)0,0(12222>>=-b a by a x 的右焦点F 作一条直线,当直线斜率为2时,直线与双曲线左、右两支各有一个交点;当直线斜率为3时,直线与双曲线右支有两个不同的交点,则双曲线离心率的取值范围为( )A. B. (11) C. 1 D. )10,5(10.1F 、2F 分别是椭圆)0(12222>>=+b a by a x 的左、右焦点,过2F 作直线交椭圆于A 、B两点,已知11BF AF ⊥,︒=∠301ABF ,则椭圆的离心率为( ) A. 226- B. 236- C. 26- D. 36-二、填空题:本大题共5小题,每小题4分,共20分。

安徽省合肥市第一六八中学2015-2016学年第一学期高二期末考试文科数学试卷

安徽省合肥市第一六八中学2015-2016学年第一学期高二期末考试文科数学试卷

合肥一六八中学2015—2016学年第一学期期中考试高二数学(文科)试题(考试时间:120分钟 满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

2.选择题和非选择题答案必须填写在答题卷上相应位置,否则不得分。

3.考试结束后,请将答题卡和答题卷一并交回。

第Ⅰ卷一、选择题(共60题,每题5分。

每题仅有一个正确选项).1.设02x π<<,则“2sin 1x x <”是“sin 1x x <”的( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 1.B2. 如果命题“曲线C 上的点的坐标都是方程(,)0f x y =的解”是正确的,则下列命题中正确的是( )A.曲线C 是方程(,)0f x y =的曲线;B.方程(,)0f x y =的每一组解对应的点都在曲线C 上;C.不满足方程(,)0f x y =的点(,)x y 不在曲线C 上;D.方程(,)0f x y =是曲线C 的方程.2【答案】C3. 若椭圆)0(12222>>=+b a b y a x 的离心率为21,则双曲线12222=-by a x 的渐近线方程为( ) A .x y 23±= B .x y 3±= C .x y 21±= D .x y ±= 3.【解析】椭圆22221(0)x y a b a b +=>>的离心率为12,可得2214c a=,可得22214a b a -=,解得b a =,∴双曲线22221x y a b -=的渐近线方程为:y x =,故选A .4. 已知命题:p x R ∃∈,使sin x = 命题:q x R ∀∈,都有210.x x ++> 给出下列结论:①命题“q p ∧”是真命题 ;②命题“q p ⌝∧”是假命题;③命题“q p ∨⌝”是真命题 ;④命题“q p ⌝∨⌝”是假命题 .其中正确的是( ) A.①②③ B.③④ C.②④ D.②③ 4D【解析】由sin 1x =>,知命题p 是假命题,由22131()024x x x ++=++>,知命题q 是真命题,可判断②、③正确.5. 以双曲线2214x y -=的中心为顶点,右焦点为焦点的抛物线方程是( )A .24y x = B.2y = C.2y = D.2y =5【解析】双曲线2214x y -=的右焦点为F,2p=2p =,则所求抛物线的方程为2y =;故选B .6. 在四面体ABCD 中,AB AD ⊥,1AB AD BC CD ====,且ABD BCD ⊥平面平面,M 为AB 中点,则CM 与平面ABD 所成角的正弦值为( ) ABC6【解析】如图所示,取BD 中点O ,连接CO 、MO ,由已知条件1==CD BC ,所以CO BD ⊥,由平面ABD ⊥平面BCD ,且平面ABD ⋂平面BCD =BD ,所以⊥CO 平面ABD ,则CMO ∠即为直线CM 与平面ABD 所成的角,由AD AB ⊥,所以2=BD ,则得到:CD BC ⊥,所以2221==BD CO ,2121==AD MO ,所以在COM Rt ∆中,tan CO CMO MO∠==,所以sin CMO ∠=OM DC BA7. 若双曲线22221x y a b-=)0(>>b a 的渐近线和圆08622=+-+x y x 相切,则该双曲线的离心率等于( )A B .2 C .3 D7【解析】根据圆方程,得到圆心坐标03C (,),圆22680x y y +-+=与渐近线相切,说明圆C 到渐近线的距离等于半径1,再根据双曲线的渐近线方程和点到直线的距离公式,算出c=3a ,即可得出该双曲线的离心率.圆22680x y y +-+=可化为2231y x -+=()∴圆心坐标03C (,),∵双曲线22221x y a b -=的渐近线为0ay bx ±=,圆22680x y y +-+=与渐近线相切,∴C 到渐近线的距离为1,3,3c a e =∴=∴=,8. 过抛物线22y px =(0p >)的焦点F 作倾斜角为60的直线l ,若直线l 与抛物线在第一象限的交点为A 并且点A 也在双曲线22221x y a b-=(0a >,0b >)的一条渐近线上,则双曲线的离心率为( )A B C D 8【解析】过抛物线:22(0)y px p =>的焦点02pF ⎛⎫ ⎪⎝⎭,,且倾斜角为60︒的直线l 的方程为2p y x ⎫=-⎪⎭,联立直线方程与抛物线方程可得直线l 与抛物线在第一象限的交点为A 32p ⎛⎫⎪⎝⎭, 点A 也在双曲线:22221(00)x y a b a b -=>>,的一条渐近线上,应在by x a =上,则32b p a =⨯,则有2243b b a a =⇒=,222222247133b c a e e e a a -==-=⇒=⇒=,故选A .9. 已知如图所示的三棱锥ABC D -的四个顶点均在球O 的球面上,ABC ∆和DBC ∆所在的平面互相垂直,3=AB ,3=AC ,32===BD CD BC ,则球O 的表面积为( )A .π4B .π12C .π16D .π369【解析】如图所示,∵222AB AC BC +=,∴CAB ∠为直角,即过△ABC 的小圆面的圆心为BC 的中点O ',ABC △和DBC △所在的平面互相垂直,则圆心在过DBC △的圆面上,即DBC △的外接圆为球的大圆,由等边三角形的重心和外心重合易得球半径为2R =,球的表面积为24π16πS R ==,故选C .10. 某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的四个面中面积最大的为( )A .B .4C .D .【答案】C【解析】由三视图知该几何体为棱锥S ABD -,如图2,其中SC ⊥平面ABCD .四面体S ABD -的四个面中面SBD 的面积最大,三角形SBD是边长为8=,故选C .11. (文科)若曲线1,11,11x e x y x x ⎧-≤⎪=⎨>⎪-⎩,与直线1y kx =+有两个不同的交点,则实数kB ACD的取值范围是( )A .(33---+B .(3(0,)-++∞C .(,3(0,)-∞--+∞UD .()()0+∞,【答案】B.11【解析】根据题意,将()f x 的图象画出,从而可知当直线1y kx =+与曲线11y x =-相切时,联立方程,消去y 可得,2211(1)20(1)8031kx kx k x k k k x +=⇒+--=⇒∆=-+=⇒=-±-,又∵切于第一象限,∴3k =-+k 的取值范围是(3(0,)-++∞.11.(理科)已知椭圆221169x y +=的左、右焦点分别为1F ,2F ,点P 在椭圆上,若1F ,2F ,P 是一个直角三角形的三个顶点,则点P 到x 轴的距离为( )A .95 B .3 C .9411【解析】可以证明,焦点三角形中,当点P 在椭圆短轴端点时,21PF F ∠最大.在该椭圆中,可计算最大时仍为锐角,即直角三角形的顶点只可能是焦点,所以点P 到x 轴的距离为点P 的纵坐标y 的绝对值y .将)(c c x -=或代入椭圆方程得,49±=y ,所以49=y .故选D . 12. 如图,已知直线a ∥平面α,在平面α内有一动点P ,点A 是定直线a 上定点,且AP 与a 所成角为θ(θ为锐角),点A 到平面α距离为d ,则动点P 的轨迹方程为( ).2222tan x y d θ+=.2222tan x y dθ-=.22()tan d y d x θ=-.22()tan d y d x θ=--12【答案】B【解析】解决本题的关键是正确理解题意并正确的表示出tan θ,对于tan θ的表示将影响着整个题目的解决,至于如何想到表示tan θ,可以考虑选项里面的暗示,解题时需要先设动点坐标,然后表示tan θ找到关系.设(,)P x y,则tan θ=2222tan x y d θ-=.二、填空题(共20分,每题5分) 13. 在ABC ∆中,“>6A π”是“1sin >2A ”的 条件.(填“充分不必要”、“必要不充分”、“充分必要”、“既不充分也不必要”之一) 13【答案】必要不充分14. 直线y=x+m 与圆x 2+y 2=4交于不同的两点M 、N ,且,其中O 为坐标原点,则实数m 的取值范围是 . 14. 【答案】试题分析:MN 的中点为A ,则2=+,利用||≥|+|,可得||≥2||,从而可得||≤1,利用点到直线的距离公式,可得≤1,即可求出实数m 的取值范围.试题解析:解:设MN 的中点为A ,则OA⊥MN,并且2=+,∵||≥|+|,∴||≥2||,即为2≥2||,解得||≤1,∴O 到直线MN 的距离≤1,解得﹣≤m .故答案为:.15. 在平面直角坐标系中,已知点A 在椭圆221259x y +=上,()1,AP OA R λλ=-∈,且72OA OP ⋅=,则OP 在x 轴上的投影线段长的最大值是 .【答案】15【解析】因为点A 在椭圆221259x y +=上,所以可设(5cos ,3sin )A θθ,(1)AP OA λ=-,所以(5c o s ,O P O A λλθλθ==,22225cos 9sin 16cos 972OA OP λθλθλθλ⋅=+=+=,所以有27216cos 924|cos |λθλλθ=+≥=,即|cos |3λθ≤,又向量OP 在x 轴上投影为向量OP 的横坐标,所以OP 在x 轴上的投影线段长为5|cos |λθ,其最大值为5315⨯=16.(文科)如图所示,正方体''''ABCD A B C D -的棱长为1,,E F 分别是棱'AA ,'CC 的中点,过直线EF 的平面分别与棱'BB 、'DD 分别交于,M N 两点,设BM x =,[0,1]x ∈,给出以下四个结论:①平面MENF ⊥平面BDD B '';②直线AC ∥平面MENF 始终成立; ③四边形MENF 周长()L f x =,[0,1]x ∈是单调函数;④四棱锥C MENF '-的体积()V h x =为常数;以上结论正确的是___________. 16【答案】①②④【解析】①因为',EF BB EF BD ⊥⊥,所以''EF BDD B ⊥平面,所以平面MENF ⊥平面BDD B ''成立;②因为//AC EF ,所以直线AC ∥平面MENF 始终成立;③因为()MF f x ==,所以()f x 在[]01,上不是单调函数;④'''1111134346C MENF F MC E F C NE V V V --=+=⋅+⋅=,故()h x 为常数. 16.(理科)已知正四棱锥V ABCD -可绕着AB 任意旋转,//平面CD α.若2AB =,VA =,则正四棱锥V ABCD -在面α内的投影面积的取值范围是 .16.【解析】由题意可得正四棱锥的侧面与底面所成角为3π,侧面上的高为2,设正四棱锥的底面与平面α所成角为θ,当06πθ≤≤时投影为矩形,其面积为2×2cos θ=4cosθ4⎡⎤∈⎣⎦,当26ππθ≥>时,投影为一个矩形和一个三角形,此时VAB 与平面α所成角为23πθ-,正四棱锥在平面α上的投影面积为4cos θ+1222cos 3cos 233ππθθθθ⎛⎫⎛⎫⨯⨯-=+=+∈ ⎪ ⎪⎝⎭⎝⎭,当232ππθ≥≥时投影面积为12222cos 2cos 2233ππθθ⎛⎫⎛⎫⎤⨯⨯-=-∈ ⎪ ⎪⎦⎝⎭⎝⎭,综上,正四棱锥V ABCD -在面α内的投影面积的取值范围是4⎤⎦.三、解答题(共70分,每题需有必要的解答过程)17.(本题满分10分) 设命题p :“若0a ≥,则20x x a +-=有实根”.(1)试写出命题p 的逆否命题;(2)判断命题p 的逆否命题的真假,并写出判断过程.解:(1)掌握四种命题的构成关系就不难写出p 的逆否命题;原结论否定作条件,原条件否定作结论;(2)从条件出发能推出结论,则为真命题,否则为假命题,本题从条件能推出结论,故为真命题.(1)p 的逆否命题:若20x x a +-=无实根,则0a <. (2)∵20x x a +-=无实根,∴140a ∆=+<∴104a <-< ∴“若20x x a +-=无实根,则0a <”为真命题. 18. (本题满分10分) 已知四边形ABCD 满足AD ∥BC ,BA=AD=DC=21BC=a ,E 是BC 的中点,将△BAE 沿着AE 翻折成△B 1AE ,使面B 1AE ⊥面AECD ,F ,G 分别为B 1D ,AE 的中点. (Ⅰ)求三棱锥E ﹣ACB 1的体积; (Ⅱ)(文科)证明:B 1E ∥平面ACF ; (Ⅲ)(理科)证明:平面B 1GD ⊥平面B 1DC .18.解:(Ⅰ)由题意知,AD ∥EC 且AD=EC ,所以四边形ADCE 为平行四边形, ∴AE=DC=a ,∴△ABE 为等边三角形, ∴∠AEC=120°, ∴连结B 1G ,则B 1G ⊥AE ,又平面B 1AE ⊥平面AECD 交线AE , ∴B 1G ⊥平面AECD 且∴(Ⅱ)(文科)证明:连接ED 交AC 于O ,连接OF , ∵AEDC 为菱形,且F 为B 1D 的中点, ∴FO ∥B 1E ,又B 1E ⊄面ACF ,FO ⊂平面ACF , ∴B 1E ∥平面ACF(Ⅲ)(理科)证明:连结GD ,则DG ⊥AE ,又B 1G ⊥AE ,B 1G ∩GD=G , ∴AE ⊥平面B 1GD .又AE ∥DC ,∴DC ⊥平面B 1GD ,又DC ⊂平面B 1DC ∴平面B 1GD ⊥平面B 1DC . 19. 已知圆C :(x -1)2+(y -2)2=2,点P 坐标为(2,-1),过点P 作圆C 的切线,切点为A 、B .(1)求直线PA ,PB 的方程; (2)求切线长PA 的值; (3)求直线AB 的方程.【答案】(1)7x―y―15=0,或x +y -1=0;(2);(3)x -3y +3=0. 试题解析:(1)易知切线斜率存在,设过P 点圆的切线方程为y +1=k (x -2), 即kx―y―2k―1=0.因为圆心(1,2)到直线的距离为2,13 2+--k k =2,解得k =7,或k =-1故所求的切线方程为7x―y―15=0,或x +y -1=0(2)在Rt △PCA 中,因为|PC|=222 - 1 -+ 1 - 2)()(=10,|CA|=2, 所以|PA|2=|PC|2-|CA|2=8.所以过点P 的圆的切线长为22 (3)容易求出k PC =-3,所以k AB =31如图,由CA 2=CD·PC,可求出CD =PC CA 2=102设直线AB 的方程为y =31x +b ,即x -3y +3b =0由102=23 + 1 3 + 6 - 1 b 解得b =1或b =37(舍)所以直线AB 的方程为x -3y +3=0.19(本题满分12分) 如图,直三棱柱111ABC A B C 中,D 是AB 的中点.(1)证明:1//BC 平面1ACD ;(2)设12AA AC CB AB ====,1BC 与D A 1所成角的大小. 19试题解析:(1)证明:连结1AC ,交1AC 于点O ,连结OD ,因为D 是AB 的中点,所以1//BC OD ,因为1BC ⊄平面1ACD ,OD ⊂平面1ACD ,所以1//BC 平面1ACD . (2)解:结合(1)易知1A DO ∠即为异面直线1BC 与D A 1所成角, 因为AC BC D =,为AB 的中点,所以CD AB ⊥,又因为该三棱柱是直三棱柱,所以CD ⊥平面11ABB A ,即CD ⊥平面1A DE ,1111122AA AC CB AB A D DO A O A C ====∴====,11cos 6A DO A DO π∴∠=∴∠=. 20.(本题满分12分) 在四棱锥ABCD P -中,底面ABCD 为直角梯形,AD ∥BC ,︒=∠90BAD ,PA ⊥底面ABCD ,且22====BC AB AD PA ,M 、N 分别为PC 、PB 的中点.(1)求证:PB ADMN ⊥平面; (2)(文科)求BD 与平面ADMN 所成的角; (3)(理科)点E 在线段PA 上,试确定点E 的位置,使二面角E CD A --为︒45. 试题解析:(1)∵M 、N 分别为PC 、PB 的中点,AD ∥BC ∴AD ∥MN ,即,,,A D M N 四点共面∵N 是PB 的中点,PA=AB,∴AN ⊥PB .∵AD ⊥面PAB,∴AD ⊥PB . 又∵AD AN N ⋂= ∴PB ⊥平面ADMN . (2)连结DN ,∵PB ⊥平面ADMN ,∴∠BDN 是BD 与平面ADMN 所成的角. 在Rt BDN ∆中,1sin ,2BN BDN BD ∠== ∴BD 与平面ADMN 所成的角是6π.(3)作AF CD ⊥于点F ,连结EF ∵PA ⊥底面ABCD ∴CD PA ⊥ ∴CD PAF ⊥平面∴CD EF ⊥ ∴AFE ∠就是二面角A CD E --的平面角若45AFE ∠=︒,则AE AF =由AF CD AB AD ⋅=⋅可解得AF =∴当AE =时,二面角A CD E --的平面角为45°21(本题满分13分) 抛物线24y x =的焦点为F ,过点F 的直线交抛物线于A ,B 两点.(1)若2AF FB =,求直线AB 的斜率;(2)设点M 在线段AB 上运动,原点O 关于点M 的对称点为C ,求四边形OACB 面积的最小值.试题解析:(1)依题意知F (1,0),设直线AB 的方程为1x my =+.将直线AB 的方程与抛物线的方程联立,消去x 得2440y my --=.设11(,)A x y ,22(,)B x y ,所以124y y m +=,124y y =-.①因为2AF FB =,所以122y y =-.②联立①和②,消去12,y y,得m =. 所以直线AB的斜率是±.(2)由点C 与原点O 关于点M 对称,得M 是线段OC 的中点,从而点O 与点C 到直线AB 的距离相等,所以四边形OACB 的面积等于2AOB S ∆.因为12122||||2AOB S OF y y ∆=⨯⋅⋅-==, 所以当m =0时,四边形OACB 的面积最小,最小值是4.22.(文科,本题满分13分)如图,在平面直角坐标系xOy 中,椭圆:E 22221(0)x y a b a b+=>>的左顶点为A ,与x 轴平行的直线与椭圆E 交于B 、C 两点,过B 、C 两点且分别与直线AB 、AC 垂直的直线相交于点D .已知椭圆E的离心率为(1)求椭圆E 的标准方程;(2)证明点D 在一条定直线上运动,并求出该直线的方程; (3)求BCD ∆面积的最大值.【答案】(1)22194x y +=;(2)详见解析,3x =;(3)274; 试题分析:(1)利用离心率和焦准距建立,,a b c 的关系式求解;(2)顺着题意,设点,B C的坐标,表示出,BD CD 的方程,利用方程组得到D 点坐标满足的关系式,若关系式为二元一次方程,则该方程表示直线;(3)用(2)中所设坐标作为目标函数的变量,可以发现容易消去横坐标,从而得到一个关于0y 的目标式,利用基本不等式或二次函数可以求得最大值;试题解析:(1)由题意得c a =2a c c -=,解得3,a c ==,所以4b ==,所以椭圆E 的标准方程为22194x y +=.(2)设0000(,),(,)B x y C x y -,显然直线,,,AB AC BD CD 的斜率都存在,设为1234,,,k k k k ,则001200,33y y k k x x ==+-+,00340033,x x k k y y +-=-=, 所以直线,BD CD 的方程为:0000000033(),()x x y x x y y x x y y y +-=--+=++, 消去y 得0000000033()()x x x x y x x y y y +---+=++,化简得3x =, 故点D 在定直线3x =上运动.(3)由(2)得点D 的纵坐标为2000000039(3)D x x y x y y y y --=++=+,又2200194x y +=,所以220994y x -=-,则200000009354(3)4D y x y x y y y y y --=++=+=-,所以点D 到直线BC 的距离h 为00005944D y y y y y -=--=, 将0y y =代入22194x y +=得x =±,所以BCD ∆面积0119224ABCS BC h y ∆=⋅=⨯22000112727442224y y y -+=⋅≤⋅=,当且仅当2200144y y -=,即0y =时等号成立,故0y =BCD ∆面积的最大值为274. 22.(理科,本题满分13分)(本题满分13分)如图,已知椭圆C :22221x y a b+=(0a b >>)经过点31,2⎛⎫P ⎪⎝⎭,离心率12e =,直线l 的方程为4x =.(1)求椭圆C 的标准方程;(2)AB 是经过椭圆右焦点F 的任一弦(不经过点P ),设直线AB 与l 相交于点M ,记PA ,PB ,PM 的斜率分别为1k ,2k ,3k ,问:是否存在常数λ,使得123k k k λ+=?若存在,求出λ的值;若不存在,说明理由.【答案】(1)22143x y +=;(2)存在常数2λ=符合题意. 试题分析:(1)根据点31,2P ⎛⎫⎪⎝⎭在椭圆上,可将其代入椭圆方程,又12c e a ==且222a b c =+解方程组可得,,a b c 的值.(2)设直线AB 的方程为(1)y k x =-,与椭圆方程联立消去y 可得关于x 的一元二次方程,从而可得两根之和,两根之积.根据斜率公式可用k 表示出123,,k k k .从而可得λ的值.试题解析:解:(Ⅰ)由点312P ⎛⎫⎪⎝⎭,在椭圆上得,221914a b +=,①又12e =,所以12c a =,② 由①②得222143c a b ===,,,故椭圆C 的方程为22143x y +=.(Ⅱ)假设存在常数λ,使得123k k k λ+=, 由题意可设AB k 的斜率为, 则直线AB 的方程为(1)y k x =-,③代入椭圆方程22143x y +=, 并整理得2222(43)84(3)0k x k x k +-+-=,设1122()()A x y B x y ,,,,则有2212122284(3)4343k k x x x x k k -+==++,,④ 在方程③中,令4x =得,(43)M k ,,从而121212332211y y k k x x --==--,,33312412k k k -==--. 又因为A F B ,,共线,则有AF BF k k k ==, 即有121211y yk x x ==--, 所以12k k +=1212332211y y x x --+=--12121231111211y y x x x x ⎛⎫+-+ ⎪----⎝⎭=322k -1212122()1x x x x x x +--++,⑤将④代入⑤得12k k +=322k -2222228243214(3)814343k k k k k k k -+=---+++,又312k k =-, 所以12k k +=32k ,故存在常数2λ=符合题意.。

2015-2016学年安徽省合肥八中高二上学期期中数学试卷与解析(文科)

2015-2016学年安徽省合肥八中高二上学期期中数学试卷与解析(文科)

2015-2016学年安徽省合肥八中高二(上)期中数学试卷(文科)一、选择题(本题包括12小题,每小题5分.每小题只有一个选项符合题意.)1.(5分)直线x+y﹣1=0的倾斜角为()A.B.C. D.2.(5分)圆心为(1,1)且过原点的圆的标准方程是()A.(x﹣1)2+(y﹣1)2=1 B.(x+1)2+(y+1)2=1 C.(x+1)2+(y+1)2=2 D.(x﹣1)2+(y﹣1)2=23.(5分)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A.B.C.2πD.4π4.(5分)直线y=kx+1与圆x2+y2﹣2y=0的位置关系是()A.相交B.相切C.相离D.取决于k的值5.(5分)某三棱锥的三视图如图所示,则该三棱锥的各个面中,最大的面积是()A.B.1 C.D.6.(5分)已知圆x2+y2﹣2x+my=0上任意一点M关于直线x+y=0的对称点N也在圆上,则m的值为()A.﹣1 B.1 C.﹣2 D.27.(5分)在正方体ABCD﹣A1B1C1D1中,下列几种说法不正确的是()A.A1C1⊥BDB.D1C1∥ABC.二面角A1﹣BC﹣D的平面角为45°D.AC1与平面ABCD所成的角为45°8.(5分)在正方体ABCD﹣A1B1C1D1中与AD1成60°角的面对角线的条数是()A.4条 B.6条 C.8条 D.10条9.(5分)已知两个平面垂直,下列命题中:①一个平面内已知直线必垂直于另一个平面内的任意一条直线;②一个平面内已知直线必垂直于另一个平面内的无数条直线;③一个平面内的任意一条直线必垂直于另一个平面;④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面.其中正确命题的个数有()A.1 B.2 C.3 D.410.(5分)在四棱锥E﹣ABCD中,底面ABCD为梯形,AB∥CD,AB=2CD,M为AE的中点,设E﹣ABCD的体积为V,那么三棱锥M﹣EBC的体积为()A.B.C.D.11.(5分)点A、B、C、D在同一个球的球面上,,AC=2,若四面体ABCD体积的最大值为,则这个球的表面积为()A.8πB.C.D.12.(5分)在等腰直角三角形ABC中,AB=AC=4,点P是边AB边上异于AB的一点,光线从点P出发,经BC,CA反射后又回到点P(如图),若光线QR经过△ABC的重心,则AP等于()A.2 B.1 C.D.二、填空题(每小题4分,满分16分.)13.(4分)设圆x2+y2﹣4x﹣5=0的弦AB的中点为P(3,1),则直线AB的方程是14.(4分)如图,在正方体ABCD﹣A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P﹣ABC的主视图与左视图的面积的比值为.15.(4分)若直线3x﹣4y+5=0与圆x2+y2=r2(r>0)相交于A,B两点,且∠AOB=120°,(O为坐标原点),则r=.16.(4分)底面是正三角形且侧棱和底面垂直的三棱柱ABC﹣A 1B1C1的侧棱长为3,底面边长为1,沿侧面从A点经过棱BB1上的M点再经过棱CC1上的N点到A1点.当所经路径AM﹣MN﹣NA1最短时,AM与A1N所成的角的余弦值为.三、解答题(满分36分.)17.(12分)如图,矩形OABC的顶点O为原点,AB边所在直线的方程为3x+4y ﹣25=0,顶点B的纵坐标为10.(Ⅰ)求OA,OC边所在直线的方程;(Ⅱ)求矩形OABC的面积.18.(12分)如图,圆柱OO1的底面圆半径为2,ABCD为经过圆柱轴OO1的截面,点P在上且,Q为PD上任意一点.(Ⅰ)求证:AQ⊥PB;(Ⅱ)若线段PD的长为,求圆柱OO1的体积.19.(12分)已知圆C与y轴相切,圆心在x轴下方并且与x轴交于A(1,0),B(9,0)两点.(Ⅰ)求圆C的方程;(Ⅱ)若直线l过点A(1,0)且被圆C所截弦长为6,求直线l的方程.2015-2016学年安徽省合肥八中高二(上)期中数学试卷(文科)参考答案与试题解析一、选择题(本题包括12小题,每小题5分.每小题只有一个选项符合题意.)1.(5分)直线x+y﹣1=0的倾斜角为()A.B.C. D.【解答】解:设直线x+y﹣1=0的倾斜角为θ.由直线x+y﹣1=0化为y=﹣x+1,∴tanθ=﹣,∵θ∈[0,π),∴θ=.故选:C.2.(5分)圆心为(1,1)且过原点的圆的标准方程是()A.(x﹣1)2+(y﹣1)2=1 B.(x+1)2+(y+1)2=1 C.(x+1)2+(y+1)2=2 D.(x﹣1)2+(y﹣1)2=2【解答】解:由题意知圆半径r=,∴圆的方程为(x﹣1)2+(y﹣1)2=2.故选:D.3.(5分)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A.B.C.2πD.4π【解答】解:如图为等腰直角三角形旋转而成的旋转体.V=2×S•h=2×πR2•h=2×π×()2×=.故选:B.4.(5分)直线y=kx+1与圆x2+y2﹣2y=0的位置关系是()A.相交B.相切C.相离D.取决于k的值【解答】解:圆x2+y2﹣2y=0 即x2+(y﹣1)2=1,表示以(0,1)为圆心,半径等于1的圆.圆心到直线y=kx+1的距离为=0,故圆心(0,1)在直线上,故直线和圆相交,故选:A.5.(5分)某三棱锥的三视图如图所示,则该三棱锥的各个面中,最大的面积是()A.B.1 C.D.【解答】解:根据几何体的三视图,得;该几何体是如图所示的直三棱锥,且侧棱PA⊥底面ABC,PA=1,AC=2,点B到AC的距离为1;∴底面△ABC的面积为S1=×2×1=1,侧面△PAB的面积为S2=××1=,侧面△PAC的面积为S3=×2×1=1,在侧面△PBC中,BC=,PB==,PC==,∴△PBC是Rt△,∴△PBC的面积为S4=××=;∴三棱锥P﹣ABC的所有面中,面积最大的是△PBC,为.故选:A.6.(5分)已知圆x2+y2﹣2x+my=0上任意一点M关于直线x+y=0的对称点N也在圆上,则m的值为()A.﹣1 B.1 C.﹣2 D.2【解答】解:∵圆x2+y2﹣2x+my=0上任意一点M关于直线x+y=0的对称点N也在圆上,∴直线x+y=0经过圆心C(1,﹣),故有1﹣=0,解得m=2,故选:D.7.(5分)在正方体ABCD﹣A1B1C1D1中,下列几种说法不正确的是()A.A1C1⊥BDB.D1C1∥ABC.二面角A1﹣BC﹣D的平面角为45°D.AC1与平面ABCD所成的角为45°【解答】解:对于A,连接AC,则AC⊥BD,A1C1∥AC,∴A1C1⊥BD,故A正确;对于B,∵D1C1∥DC,DC∥AB,∴D1C1∥AB,故B正确;对于C,∵BC⊥平面A1ABB1,A1B⊂平面A1ABB1,∴BC⊥A1B,∵AB⊥BC,平面A1BC∩平面BCD=BC,A1B⊂平面A1BC,AB⊂平面BCD,∴∠ABA1是二面角A1﹣BC﹣D的平面角,∵△A1AB是等腰直角三角形,∴∠ABA1=45°,故C正确;对于D,∵C1C⊥平面ABCD,AC1∩平面ABCD=A,∴∠C1AC是AC1与平面ABCD所成的角,∵AC≠C1C,∴∠C1AC≠45°,故D错误.故选:D.8.(5分)在正方体ABCD﹣A1B1C1D1中与AD1成60°角的面对角线的条数是()A.4条 B.6条 C.8条 D.10条【解答】解:在几何体中,根据正方体的性质知所有过A和D1点的正方体面的对角线与它组成的角都是60°,这样就有4条,根据正方体的性质,在正方体的各侧面上的对角线平行的也满足条件,故一共有8条,故选:C.9.(5分)已知两个平面垂直,下列命题中:①一个平面内已知直线必垂直于另一个平面内的任意一条直线;②一个平面内已知直线必垂直于另一个平面内的无数条直线;③一个平面内的任意一条直线必垂直于另一个平面;④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面.其中正确命题的个数有( )A .1B .2C .3D .4【解答】解:对于①,当两个平面垂直时,一个平面内的不垂直于交线的直线不垂直于另一个平面内的任意一条直线,故①错误;对于②,设平面α∩平面β=m ,n ⊂α,l ⊂β,∵平面α⊥平面β,∴当l ⊥m 时,必有l ⊥α,而n ⊂α,∴l ⊥n ,而在平面β内与l 平行的直线有无数条,这些直线均与n 垂直,故一个平面内的已知直线必垂直于另一个平面内的无数条直线,即②正确;对于③,当两个平面垂直时,•一个平面内的任一条直线不垂直于另一个平面,故③错误;对于④,当两个平面垂直时,•过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面,这是面面垂直的性质定理,故④正确;故选:B .10.(5分)在四棱锥E ﹣ABCD 中,底面ABCD 为梯形,AB ∥CD ,AB=2CD ,M 为AE 的中点,设E ﹣ABCD 的体积为V ,那么三棱锥M ﹣EBC 的体积为( )A .B .C .D .【解答】解:∵AB ∥CD ,AB=2CD ,∴V 三棱锥B ﹣ACE =2V 三棱锥D ﹣ACE .∵M 为AE 的中点,∴S △MCE =S △ACM ,∴V 三棱锥B ﹣ACM =V 三棱锥B ﹣MCE ,∵V 三棱锥B ﹣ACE =V 三棱锥B ﹣ACM +V 三棱锥B ﹣MCE ,∴V 三棱锥B ﹣ACM =V 三棱锥B ﹣MCE =V 三棱锥D ﹣ACE ,∵V=V 三棱锥B ﹣ACM +V 三棱锥B ﹣MCE +V 三棱锥D ﹣ACE ,∴V 三棱锥M ﹣EBC =V 三棱锥B ﹣MCE =V .故选:C .11.(5分)点A、B、C、D在同一个球的球面上,,AC=2,若四面体ABCD体积的最大值为,则这个球的表面积为()A.8πB.C.D.【解答】解:根据题意知,△ABC是一个直角三角形,其面积为1.其所在球的小圆的圆心在斜边AC的中点上,设小圆的圆心为Q,不变,高最大时体积最大,若四面体ABCD的体积的最大值,由于底面积S△ABC×DQ=,所以,DQ与面ABC垂直时体积最大,最大值为S△ABC即×1×DQ=,∴DQ=2,如图.设球心为O,半径为R,则在直角△AQO中,OA2=AQ2+OQ2,即R2=12+(2﹣R)2,∴R=则这个球的表面积为:S=4π()2=故选:B.12.(5分)在等腰直角三角形ABC中,AB=AC=4,点P是边AB边上异于AB的一点,光线从点P出发,经BC,CA反射后又回到点P(如图),若光线QR经过△ABC的重心,则AP等于()A.2 B.1 C.D.【解答】解:建立如图所示的坐标系:可得B(4,0),C(0,4),故直线BC的方程为x+y=4,△ABC的重心为(,),设P(a,0),其中0<a<4,则点P关于直线BC的对称点P1(x,y),满足,解得,即P1(4,4﹣a),易得P关于y轴的对称点P2(﹣a,0),由光的反射原理可知P1,Q,R,P2四点共线,直线QR的斜率为k==,故直线QR的方程为y=(x+a),由于直线QR过△ABC的重心(,),代入化简可得3a2﹣4a=0,解得a=,或a=0(舍去),故P(,0),故AP=故选:D.二、填空题(每小题4分,满分16分.)13.(4分)设圆x2+y2﹣4x﹣5=0的弦AB的中点为P(3,1),则直线AB的方程是x+y﹣4=0【解答】解:由x2+y2﹣4x﹣5=0得:(x﹣2)2+y2=9,得到圆心O(2,0),所以求出直线OP的斜率为=1,根据垂径定理可知OP⊥AB所以直线AB的斜率为﹣1,过P(3,1),所以直线AB的方程为y﹣1=﹣1(x﹣3)即x+y﹣4=0故答案为x+y﹣4=014.(4分)如图,在正方体ABCD﹣A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P﹣ABC的主视图与左视图的面积的比值为1.【解答】解:三棱锥P﹣ABC的主视图与左视图都是三角形,底面ABC的射影都是正方体的棱长,P到底边的距离(三角形的高)都是正方体的棱长,所以,三棱锥P﹣ABC的主视图与左视图的面积的比值为:1.故答案为:1.15.(4分)若直线3x﹣4y+5=0与圆x2+y2=r2(r>0)相交于A,B两点,且∠AOB=120°,(O为坐标原点),则r=2.【解答】解:若直线3x﹣4y+5=0与圆x2+y2=r2(r>0)交于A、B两点,O为坐标原点,且∠AOB=120°,则圆心(0,0)到直线3x﹣4y+5=0的距离d=rcos=r,即=r,解得r=2,故答案为:2.16.(4分)底面是正三角形且侧棱和底面垂直的三棱柱ABC﹣A1B1C1的侧棱长为3,底面边长为1,沿侧面从A点经过棱BB1上的M点再经过棱CC1上的N点到A1点.当所经路径AM﹣MN﹣NA1最短时,AM与A1N所成的角的余弦值为.【解答】解:如图5(甲),过A作AP∥A1N交C1C于P,则AM与AP所夹锐角(或直角),就是所求的角,沿侧棱AA1把三棱柱ABC﹣A1B1C1剪开展开,如图5(乙),当路径AM﹣MN﹣NA1最短时,M、N在线段AA1上,最短路径是AA1,由此可知,BM=1,CN=2,故AM=AP=,MP==.∴()2=()2+()2﹣=﹣,故AM与A1N所成的角的余弦值为.故答案为:.三、解答题(满分36分.)17.(12分)如图,矩形OABC的顶点O为原点,AB边所在直线的方程为3x+4y ﹣25=0,顶点B的纵坐标为10.(Ⅰ)求OA,OC边所在直线的方程;(Ⅱ)求矩形OABC的面积.【解答】解:(Ⅰ)∵OABC是矩形,∴OA⊥AB,OC∥AB.由直线AB的方程3x+4y﹣25=0可知,∴,∴OA边所在直线的方程为,即4x﹣3y=0,OC边所在直线的方程为,即3x+4y=0.(Ⅱ)∵点B在直线AB上,且纵坐标为10,∴点B的横坐标由3x+4×10﹣25=0解得x为﹣5,即B(﹣5,10).∴,∴,(11分)∴矩形OABC的面积S=|OA||AB|=5018.(12分)如图,圆柱OO1的底面圆半径为2,ABCD为经过圆柱轴OO1的截面,点P在上且,Q为PD上任意一点.(Ⅰ)求证:AQ⊥PB;(Ⅱ)若线段PD的长为,求圆柱OO1的体积.【解答】解:(1)∵AB是⊙O 1直径,∴AP⊥BP,∵AD⊥平面ABP,BP⊂平面ABP,∴AD⊥BP,又∵AD∩AP=A,AD⊂平面ADP,AP⊂平面ADP,∴BP⊥平面ADP,∵AQ⊂平面ADP,∴BP⊥AQ.(2)∵,∴∠AO1P=60°,又∵O1A=O1P,∴△AO1P是等边三角形,∴AP=O1A=2,∵AD⊥平面ABP,AP⊂平面ABPAD⊥AP,∴AD═=2,A2•AD=8π.∴V=πO19.(12分)已知圆C与y轴相切,圆心在x轴下方并且与x轴交于A(1,0),B(9,0)两点.(Ⅰ)求圆C的方程;(Ⅱ)若直线l过点A(1,0)且被圆C所截弦长为6,求直线l的方程.【解答】解:(1)由题意,r=5,设圆心坐标为(5,b)(b<0),则9﹣1=2,∵b<0,∴b=﹣3,∴圆C的方程(x﹣5)2+(y+3)2=25;(Ⅱ)直线l过点A(1,0)且被圆C所截弦长为6,圆心到直线的距离等于4.当斜率不存在时,x=1,符合题意;当斜率存在时,设直线l:y=k(x﹣1),即kx﹣y﹣k=0,∵圆心到直线距离为4,∴=4,∴k=﹣∴直线l的方程为7x+24y﹣7=0故所求直线l为x=1,或7x+24y﹣7=0.。

安徽省合肥八中2015届高三上学期第二次段考数学文试题

安徽省合肥八中2015届高三上学期第二次段考数学文试题

合肥八中2014~2015学年高三第二次段考数学(文科)试卷考试说明:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),试题分值:150分,考试时间:120分钟。

2、所有答案均要答在答题卷上............,否则无效....。

考试结束后只交答题卷..........。

第Ⅰ卷 选择题 (共50分)一、选择题(本题包括10小题,每小题5分,共50分。

每小题只有一个选项符合题意。

请把正确答案填涂在答题卡的相应位置。

)1.设全集U 是实数集R ,{}2|1M x x =>,{}|02N x x =<<,则集合U N M ð等于( )A .{}|21x x -≤<B .{}|01x x <≤C .{}|11x x -≤≤D .{}|1x x <2. 已知命题:p “[]0,1,x x a e ∀∈≥”,命题:q “2,40x R x x a ∃∈-+=”,若命题,p q 均是真命题,则实数a 的取值范围是 ( )A .[4,)+∞B .[1,4]C .[,4]eD .(,1]-∞3.已知}{n a 是等差数列,其前n 项和为n S ,若235a a -=,则4S = ( ) A .9 B .10 C .11 D .124.设,αβ是两个不同的平面,l 是一条直线,以下命题正确的是 ( )A .若,l ααβ⊥⊥,则l β⊂B .若//,//l ααβ,则l β⊂C .若,//l ααβ⊥,则l β⊥D .若//,l ααβ⊥,则l β⊥5.设()f x 为定义在R 上的奇函数,当0x ≤时,2()2log (1)(x f x x a a =+-+为常数),则(3)f = ( ) A .98-B .98C .-6D .66.当函数2x y x =⋅取极小值时,x = ( ) A .1ln 2B .1ln 2-C .ln 2-D .ln 27.在直角梯形ABCD 中,//AB CD ,AD AB ⊥,45B ∠=,22AB CD ==,M 为腰BC 的中点,则MA MD =( )A .1B .2C .3D .48.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于( )A .13B .3C .6D .9 9.已知函数2()1,()43,x f x e g x x x =-=-+-若有()(),f a g b =则b 的取值范围为( ) A.[2 B.(2 C .[1,3] D .(1,3)10.()f x 是偶函数,且()f x 在[0,)+∞上是增函数,不等式2(1)(1)f ax x f ++≤对1[,1]2x ∈恒成立,则实数a 的取值范围是 ( )A .[2,1]-B .[3,0]-C .[2,1]--D .[3,2]--第II 卷 非选择题 (共100分)二、填空题 (本题5小题,每小题5分,共25分。

高二上学期期中考试数学试卷含答案(共5套)

高二上学期期中考试数学试卷含答案(共5套)

高二上学期期中考试数学试题本卷分Ⅰ(选择题)、Ⅱ卷(非选择题)两部分,其中Ⅰ卷1至2页,第二卷2至4页,共150分,考试时间120分钟。

第Ⅰ卷(选择题,共60分)一、单选题:本题共12个小题,每小题5分1.“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.有下列四个命题:(1)“若,则,互为倒数”的逆命题;(2)“面积相等的三角形全等”的否命题;(3)“若,则有实数解”的逆否命题;(4)“若,则”的逆否命题.其中真命题为()A.(1)(2)B.(2)(3)C.(4)D.(1)(2)(3)3.若则为()A.等边三角形 B.等腰直角三角形C.有一个内角为30°的直角三角形 D.有一个内角为30°的等腰三角形4.已知.若“”是真命题,则实数a的取值范围是A.(1,+∞)B.(-∞,3)C.(1,3)D.5.的内角,,的对边分别为,,,若,,,则的面积为A.B.C.D.6.已知中,,则等于()A.B.或C.D.或7.等差数列的前项和为,若,则等于()A.58B.54C.56D.528.已知等比数列中,,,则()A.2B.C.D.49.已知,则z=22x+y的最小值是A.1 B.16 C.8 D.410.若关于的不等式的解集为,则的取值范围是()A.B.C.D.11.当a>0,关于代数式,下列说法正确的是()A.有最小值无最大值B.有最大值无最小值C.有最小值也有最大值D.无最小值也无最大值12.在△ABC中,AB=2,C=,则AC+BC的最大值为A.B.3C.4D.2第Ⅱ卷(非选择题,共90分)二、填空题:共4个小题,每小题5分,共20分13.命题的否定是______________.14.已知的三边长构成公差为2的等差数列,且最大角的正弦值为,则这个三角形的周长为________.15.已知数列{a n}的前n项和为S n,a1=1,当n≥2时,a n+2S n-1=n,则S2 017的值____ ___ 16.已知变量满足约束条件若目标函数的最小值为2,则的最小值为__________.三、解答题:共6题,共70分,解答应写出必要的文字说明、证明过程或演算步骤。

2015-2016学年度合肥八中高二上期中考试数学试题(理)

2015-2016学年度合肥八中高二上期中考试数学试题(理)

A B CDA 1B 1C 1D 1俯视图主视图 左视图合肥八中2015~2016学年度第一学期期中考试高二数学试卷(理)说明:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),试题分值:150分,考试时间:120分钟。

2.所有答案均要填涂在答题卡上或答在答题卷上,否则无效。

考试结束后只交答题卡和答题卷。

第Ⅰ卷 选择题(共60分)一、选择题(本题包括12小题,每小题5分。

每小题只有一个选项符合题意。

)1. 设a ∈R ,则a >1是a1<1 的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2. 与直线l : y =2x +3平行,且与圆x 2+y 2-2x -4y +4=0相切的直线方程是( ) A .x -y ±5=0 B .2x -y +5=0C .2x -y -5=0D .2x -y ±5=03.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( )A. 122ππ+B. 144ππ+C. 12ππ+D. 142ππ+4. 圆C 1 : x 2+y 2+2x +8y -8=0与圆C 2 : x 2+y 2-4x +4y -2=0的位置关系是( ) A .相离 B .外切C .相交D .内切5. 如图长方体中,AB=AD=23,CC 1=2,则二面角 C 1—BD —C 的大小为( ) A .30B .45C .60D .906.如图,一个简单空间几何体的三视图其主视图与左视图是边长为2的正三角形、俯视图轮廓为正方形,则其体积是( )A 42B. 43C. 3 D . 837. 设l n m ,,为空间不重合的直线,,,αβγ是空间不重合的平面,则下列说法准确的个数是( )①m //l ,n //l ,则m //n ;②m ⊥l ,n ⊥l ,则m //n ;③若//,//,//m l m l αα则; ④若l ∥m ,l α⊂,m β⊂,则α∥β; ⑤若,//,,//,//m m l l αββααβ⊂⊂则⑥//,//αγβγ,则//αβA .0B .1C .2D .3DCB A8. 已知正四棱锥的侧棱与底面的边长都为23,则这个四棱锥的外接球的表面积为( ) A .12π B .36π C .72πD .108π9. 已知点()2,1-和⎪⎪⎭⎫⎝⎛0,33在直线()001:≠=--a y ax l 的两侧,则直线l 倾斜角的取值范围是 ( )A .⎪⎭⎫ ⎝⎛3,4ππB .⎪⎭⎫ ⎝⎛65,32ππC .⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛πππ,433,0 D .⎪⎭⎫⎝⎛32,3ππ 10. 如图,已知直三棱柱ABC —A 1B 1C 1,点P 、Q 分别在侧棱AA 1和 CC 1上,AP=C 1Q ,则平面BPQ 把三棱柱分成两部分的体积比为( ) A .2:1 B .3:1 C .3:2 D .4:311. 已知点P 在直线012=-+y x 上,点Q 在直线032=++y x 上, PQ 的中点为)M 00y x ,(,且200+>x y ,则x y 的取值范围是( ) A .),(51-21- B .⎦⎤⎝⎛5121-, C .⎥⎦⎤⎢⎣⎡5121-, D .⎦⎤⎢⎣⎡51-21-,12. 在直角梯形ABCD 中,//,AD BC AB BC ⊥,1AB AD ==,2BC =,现将ABD ∆沿BD 折起,折起后...使3AC =ABCD 中,四个面两两构成的二面角中,为直二面角的个数为( )A .2B .3C .4D .5第Ⅱ卷 (非选择题 共90分)二、填空题(每小题4分,满分16分)13. 命题“存在00,20x x R ∈≤”的否定是14. 已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的表面积为15. 经过点(1,1)P 的直线在两坐标轴上的截距都是正数,若使截距之和最小,则该直线的方程是 16. 若直线y x b =+与曲线21x y =-,则实数b 的取值范围是三、解答题(满分74分)17.(满分12分)已知命题:p 函数)2(log 221a x x y ++=的定义域为R ,命题q :函数xa y )25(--=是R 上的减函数,若p 或q 为真命题,p 且q 为假命题,求a 的取值范围.AB C P Q A 1 C 1B 118.(满分12分)在平面直角坐标系xOy 中,点(0,3)A ,直线24l y x =-:,设圆C 的半径为1,圆心在l 上 (Ⅰ)若圆心C 也在直线1y x =-上,求圆C 的方程;(Ⅱ)若圆C 上存在点M ,使||2||MA MO =,求圆心C 的横坐标a 的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年安徽省合肥八中高二(上)期中数学试卷(文科)一、选择题(本题包括12小题,每小题5分.每小题只有一个选项符合题意.)1.(5分)直线x+y﹣1=0的倾斜角为()A.B.C. D.2.(5分)圆心为(1,1)且过原点的圆的标准方程是()A.(x﹣1)2+(y﹣1)2=1 B.(x+1)2+(y+1)2=1 C.(x+1)2+(y+1)2=2 D.(x﹣1)2+(y﹣1)2=23.(5分)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A.B.C.2πD.4π4.(5分)直线y=kx+1与圆x2+y2﹣2y=0的位置关系是()A.相交B.相切C.相离D.取决于k的值5.(5分)某三棱锥的三视图如图所示,则该三棱锥的各个面中,最大的面积是()A.B.1 C.D.6.(5分)已知圆x2+y2﹣2x+my=0上任意一点M关于直线x+y=0的对称点N也在圆上,则m的值为()A.﹣1 B.1 C.﹣2 D.27.(5分)在正方体ABCD﹣A1B1C1D1中,下列几种说法不正确的是()A.A1C1⊥BDB.D1C1∥ABC.二面角A1﹣BC﹣D的平面角为45°D.AC1与平面ABCD所成的角为45°8.(5分)在正方体ABCD﹣A1B1C1D1中与AD1成60°角的面对角线的条数是()A.4条 B.6条 C.8条 D.10条9.(5分)已知两个平面垂直,下列命题中:①一个平面内已知直线必垂直于另一个平面内的任意一条直线;②一个平面内已知直线必垂直于另一个平面内的无数条直线;③一个平面内的任意一条直线必垂直于另一个平面;④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面.其中正确命题的个数有()A.1 B.2 C.3 D.410.(5分)在四棱锥E﹣ABCD中,底面ABCD为梯形,AB∥CD,AB=2CD,M为AE的中点,设E﹣ABCD的体积为V,那么三棱锥M﹣EBC的体积为()A.B.C.D.11.(5分)点A、B、C、D在同一个球的球面上,,AC=2,若四面体ABCD体积的最大值为,则这个球的表面积为()A.8πB.C.D.12.(5分)在等腰直角三角形ABC中,AB=AC=4,点P是边AB边上异于AB的一点,光线从点P出发,经BC,CA反射后又回到点P(如图),若光线QR经过△ABC的重心,则AP等于()A.2 B.1 C.D.二、填空题(每小题4分,满分16分.)13.(4分)设圆x2+y2﹣4x﹣5=0的弦AB的中点为P(3,1),则直线AB的方程是14.(4分)如图,在正方体ABCD﹣A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P﹣ABC的主视图与左视图的面积的比值为.15.(4分)若直线3x﹣4y+5=0与圆x2+y2=r2(r>0)相交于A,B两点,且∠AOB=120°,(O为坐标原点),则r=.16.(4分)底面是正三角形且侧棱和底面垂直的三棱柱ABC﹣A1B1C1的侧棱长为3,底面边长为1,沿侧面从A点经过棱BB1上的M点再经过棱CC1上的N点到A1点.当所经路径AM﹣MN﹣NA1最短时,AM与A1N所成的角的余弦值为.三、解答题(满分36分.)17.(12分)如图,矩形OABC的顶点O为原点,AB边所在直线的方程为3x+4y ﹣25=0,顶点B的纵坐标为10.(Ⅰ)求OA,OC边所在直线的方程;(Ⅱ)求矩形OABC的面积.18.(12分)如图,圆柱OO1的底面圆半径为2,ABCD为经过圆柱轴OO1的截面,点P在上且,Q为PD上任意一点.(Ⅰ)求证:AQ⊥PB;(Ⅱ)若线段PD的长为,求圆柱OO1的体积.19.(12分)已知圆C与y轴相切,圆心在x轴下方并且与x轴交于A(1,0),B(9,0)两点.(Ⅰ)求圆C的方程;(Ⅱ)若直线l过点A(1,0)且被圆C所截弦长为6,求直线l的方程.2015-2016学年安徽省合肥八中高二(上)期中数学试卷(文科)参考答案与试题解析一、选择题(本题包括12小题,每小题5分.每小题只有一个选项符合题意.)1.(5分)直线x+y﹣1=0的倾斜角为()A.B.C. D.【解答】解:设直线x+y﹣1=0的倾斜角为θ.由直线x+y﹣1=0化为y=﹣x+1,∴tanθ=﹣,∵θ∈[0,π),∴θ=.故选:C.2.(5分)圆心为(1,1)且过原点的圆的标准方程是()A.(x﹣1)2+(y﹣1)2=1 B.(x+1)2+(y+1)2=1 C.(x+1)2+(y+1)2=2 D.(x﹣1)2+(y﹣1)2=2【解答】解:由题意知圆半径r=,∴圆的方程为(x﹣1)2+(y﹣1)2=2.故选:D.3.(5分)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A.B.C.2πD.4π【解答】解:如图为等腰直角三角形旋转而成的旋转体.V=2×S•h=2×πR2•h=2×π×()2×=.故选:B.4.(5分)直线y=kx+1与圆x2+y2﹣2y=0的位置关系是()A.相交B.相切C.相离D.取决于k的值【解答】解:圆x2+y2﹣2y=0 即x2+(y﹣1)2=1,表示以(0,1)为圆心,半径等于1的圆.圆心到直线y=kx+1的距离为=0,故圆心(0,1)在直线上,故直线和圆相交,故选:A.5.(5分)某三棱锥的三视图如图所示,则该三棱锥的各个面中,最大的面积是()A.B.1 C.D.【解答】解:根据几何体的三视图,得;该几何体是如图所示的直三棱锥,且侧棱PA⊥底面ABC,PA=1,AC=2,点B到AC的距离为1;∴底面△ABC的面积为S1=×2×1=1,侧面△PAB的面积为S2=××1=,侧面△PAC的面积为S3=×2×1=1,在侧面△PBC中,BC=,PB==,PC==,∴△PBC是Rt△,∴△PBC的面积为S4=××=;∴三棱锥P﹣ABC的所有面中,面积最大的是△PBC,为.故选:A.6.(5分)已知圆x2+y2﹣2x+my=0上任意一点M关于直线x+y=0的对称点N也在圆上,则m的值为()A.﹣1 B.1 C.﹣2 D.2【解答】解:∵圆x2+y2﹣2x+my=0上任意一点M关于直线x+y=0的对称点N也在圆上,∴直线x+y=0经过圆心C(1,﹣),故有1﹣=0,解得m=2,故选:D.7.(5分)在正方体ABCD﹣A1B1C1D1中,下列几种说法不正确的是()A.A1C1⊥BDB.D1C1∥ABC.二面角A1﹣BC﹣D的平面角为45°D.AC1与平面ABCD所成的角为45°【解答】解:对于A,连接AC,则AC⊥BD,A1C1∥AC,∴A1C1⊥BD,故A正确;对于B,∵D1C1∥DC,DC∥AB,∴D1C1∥AB,故B正确;对于C,∵BC⊥平面A1ABB1,A1B⊂平面A1ABB1,∴BC⊥A1B,∵AB⊥BC,平面A1BC∩平面BCD=BC,A1B⊂平面A1BC,AB⊂平面BCD,∴∠ABA1是二面角A1﹣BC﹣D的平面角,∵△A1AB是等腰直角三角形,∴∠ABA1=45°,故C正确;对于D,∵C1C⊥平面ABCD,AC1∩平面ABCD=A,∴∠C1AC是AC1与平面ABCD所成的角,∵AC≠C1C,∴∠C1AC≠45°,故D错误.故选:D.8.(5分)在正方体ABCD﹣A1B1C1D1中与AD1成60°角的面对角线的条数是()A.4条 B.6条 C.8条 D.10条【解答】解:在几何体中,根据正方体的性质知所有过A和D1点的正方体面的对角线与它组成的角都是60°,这样就有4条,根据正方体的性质,在正方体的各侧面上的对角线平行的也满足条件,故一共有8条,故选:C.9.(5分)已知两个平面垂直,下列命题中:①一个平面内已知直线必垂直于另一个平面内的任意一条直线;②一个平面内已知直线必垂直于另一个平面内的无数条直线;③一个平面内的任意一条直线必垂直于另一个平面;④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面.其中正确命题的个数有( )A .1B .2C .3D .4【解答】解:对于①,当两个平面垂直时,一个平面内的不垂直于交线的直线不垂直于另一个平面内的任意一条直线,故①错误;对于②,设平面α∩平面β=m ,n ⊂α,l ⊂β,∵平面α⊥平面β,∴当l ⊥m 时,必有l ⊥α,而n ⊂α,∴l ⊥n ,而在平面β内与l 平行的直线有无数条,这些直线均与n 垂直,故一个平面内的已知直线必垂直于另一个平面内的无数条直线,即②正确;对于③,当两个平面垂直时,•一个平面内的任一条直线不垂直于另一个平面,故③错误;对于④,当两个平面垂直时,•过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面,这是面面垂直的性质定理,故④正确;故选:B .10.(5分)在四棱锥E ﹣ABCD 中,底面ABCD 为梯形,AB ∥CD ,AB=2CD ,M 为AE 的中点,设E ﹣ABCD 的体积为V ,那么三棱锥M ﹣EBC 的体积为( )A .B .C .D .【解答】解:∵AB ∥CD ,AB=2CD ,∴V 三棱锥B ﹣ACE =2V 三棱锥D ﹣ACE .∵M 为AE 的中点,∴S △MCE =S △ACM ,∴V 三棱锥B ﹣ACM =V 三棱锥B ﹣MCE ,∵V 三棱锥B ﹣ACE =V 三棱锥B ﹣ACM +V 三棱锥B ﹣MCE ,∴V 三棱锥B ﹣ACM =V 三棱锥B ﹣MCE =V 三棱锥D ﹣ACE ,∵V=V 三棱锥B ﹣ACM +V 三棱锥B ﹣MCE +V 三棱锥D ﹣ACE ,∴V 三棱锥M ﹣EBC =V 三棱锥B ﹣MCE =V .故选:C .11.(5分)点A、B、C、D在同一个球的球面上,,AC=2,若四面体ABCD体积的最大值为,则这个球的表面积为()A.8πB.C.D.【解答】解:根据题意知,△ABC是一个直角三角形,其面积为1.其所在球的小圆的圆心在斜边AC的中点上,设小圆的圆心为Q,不变,高最大时体积最大,若四面体ABCD的体积的最大值,由于底面积S△ABC×DQ=,所以,DQ与面ABC垂直时体积最大,最大值为S△ABC即×1×DQ=,∴DQ=2,如图.设球心为O,半径为R,则在直角△AQO中,OA2=AQ2+OQ2,即R2=12+(2﹣R)2,∴R=则这个球的表面积为:S=4π()2=故选:B.12.(5分)在等腰直角三角形ABC中,AB=AC=4,点P是边AB边上异于AB的一点,光线从点P出发,经BC,CA反射后又回到点P(如图),若光线QR经过△ABC的重心,则AP等于()A.2 B.1 C.D.【解答】解:建立如图所示的坐标系:可得B(4,0),C(0,4),故直线BC的方程为x+y=4,△ABC的重心为(,),设P(a,0),其中0<a<4,则点P关于直线BC的对称点P1(x,y),满足,解得,即P1(4,4﹣a),易得P关于y轴的对称点P2(﹣a,0),由光的反射原理可知P1,Q,R,P2四点共线,直线QR的斜率为k==,故直线QR的方程为y=(x+a),由于直线QR过△ABC的重心(,),代入化简可得3a2﹣4a=0,解得a=,或a=0(舍去),故P(,0),故AP=故选:D.二、填空题(每小题4分,满分16分.)13.(4分)设圆x2+y2﹣4x﹣5=0的弦AB的中点为P(3,1),则直线AB的方程是x+y﹣4=0【解答】解:由x2+y2﹣4x﹣5=0得:(x﹣2)2+y2=9,得到圆心O(2,0),所以求出直线OP的斜率为=1,根据垂径定理可知OP⊥AB所以直线AB的斜率为﹣1,过P(3,1),所以直线AB的方程为y﹣1=﹣1(x﹣3)即x+y﹣4=0故答案为x+y﹣4=014.(4分)如图,在正方体ABCD﹣A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P﹣ABC的主视图与左视图的面积的比值为1.【解答】解:三棱锥P﹣ABC的主视图与左视图都是三角形,底面ABC的射影都是正方体的棱长,P到底边的距离(三角形的高)都是正方体的棱长,所以,三棱锥P﹣ABC的主视图与左视图的面积的比值为:1.故答案为:1.15.(4分)若直线3x﹣4y+5=0与圆x2+y2=r2(r>0)相交于A,B两点,且∠AOB=120°,(O为坐标原点),则r=2.【解答】解:若直线3x﹣4y+5=0与圆x2+y2=r2(r>0)交于A、B两点,O为坐标原点,且∠AOB=120°,则圆心(0,0)到直线3x﹣4y+5=0的距离d=rcos=r,即=r,解得r=2,故答案为:2.16.(4分)底面是正三角形且侧棱和底面垂直的三棱柱ABC﹣A1B1C1的侧棱长为3,底面边长为1,沿侧面从A点经过棱BB1上的M点再经过棱CC1上的N点到A1点.当所经路径AM﹣MN﹣NA1最短时,AM与A1N所成的角的余弦值为.【解答】解:如图5(甲),过A作AP∥A1N交C1C于P,则AM与AP所夹锐角(或直角),就是所求的角,沿侧棱AA1把三棱柱ABC﹣A1B1C1剪开展开,如图5(乙),当路径AM﹣MN﹣NA1最短时,M、N在线段AA1上,最短路径是AA1,由此可知,BM=1,CN=2,故AM=AP=,MP==.∴()2=()2+()2﹣=﹣,故AM与A1N所成的角的余弦值为.故答案为:.三、解答题(满分36分.)17.(12分)如图,矩形OABC的顶点O为原点,AB边所在直线的方程为3x+4y ﹣25=0,顶点B的纵坐标为10.(Ⅰ)求OA,OC边所在直线的方程;(Ⅱ)求矩形OABC的面积.【解答】解:(Ⅰ)∵OABC是矩形,∴OA⊥AB,OC∥AB.由直线AB的方程3x+4y﹣25=0可知,∴,∴OA边所在直线的方程为,即4x﹣3y=0,OC边所在直线的方程为,即3x+4y=0.(Ⅱ)∵点B在直线AB上,且纵坐标为10,∴点B的横坐标由3x+4×10﹣25=0解得x为﹣5,即B(﹣5,10).∴,∴,(11分)∴矩形OABC的面积S=|OA||AB|=5018.(12分)如图,圆柱OO1的底面圆半径为2,ABCD为经过圆柱轴OO1的截面,点P在上且,Q为PD上任意一点.(Ⅰ)求证:AQ⊥PB;(Ⅱ)若线段PD的长为,求圆柱OO1的体积.【解答】解:(1)∵AB是⊙O1直径,∴AP⊥BP,∵AD⊥平面ABP,BP⊂平面ABP,∴AD⊥BP,又∵AD∩AP=A,AD⊂平面ADP,AP⊂平面ADP,∴BP⊥平面ADP,∵AQ⊂平面ADP,∴BP⊥AQ.(2)∵,∴∠AO1P=60°,又∵O1A=O1P,∴△AO1P是等边三角形,∴AP=O1A=2,∵AD⊥平面ABP,AP⊂平面ABPAD⊥AP,∴AD═=2,A2•AD=8π.∴V=πO19.(12分)已知圆C与y轴相切,圆心在x轴下方并且与x轴交于A(1,0),B(9,0)两点.(Ⅰ)求圆C的方程;(Ⅱ)若直线l过点A(1,0)且被圆C所截弦长为6,求直线l的方程.【解答】解:(1)由题意,r=5,设圆心坐标为(5,b)(b<0),则9﹣1=2,∵b<0,∴b=﹣3,∴圆C的方程(x﹣5)2+(y+3)2=25;(Ⅱ)直线l过点A(1,0)且被圆C所截弦长为6,圆心到直线的距离等于4.当斜率不存在时,x=1,符合题意; 当斜率存在时,设直线l :y=k (x ﹣1), 即kx ﹣y ﹣k=0,∵圆心到直线距离为4, ∴=4,∴k=﹣∴直线l 的方程为7x +24y ﹣7=0故所求直线l 为x=1,或7x +24y ﹣7=0.赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;xyB CAO2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

相关文档
最新文档