集成电路复习总结

合集下载

集成电路复习知识点

集成电路复习知识点

填空题:1.集成电路的加工过程主要是三个基本操作,分别是:形成某种材料的薄膜薄层在各种薄膜材料上形成需要的图形,通过掺杂改变材料的电阻率或-杂质类型。

2.M0晶体管的工作原理是利栅极与衬底之间形成的电场,在半导体表面形成_ 反形层使源、漏之间形成导电沟道。

3.用CMO电路设计静态数字逻辑电路,如果设计与非逻辑下拉支路应该是串联,如果设计或非逻辑下拉支路应该是并联。

4. M0存储器主要分为两大类,分别是:ROM和RAM。

5. CMO集成电路是利用NMO和PMO 的互补性来改善电路性能的,因此叫做CMO集成电路。

在P型衬底上用N阱工艺制作CMO 集成电路。

6.等比例缩小理论包括恒定电场等比例缩小定律、恒定电压等比例缩小定律、准恒定电场等比例缩小定律。

7. 1947年巴丁、肖克莱、布拉顿发明了半导体晶体管,并因此获得了1956年的诺贝尔物理学奖,1958年美国德州仪器公司的基尔比发明了第一块集成电路,并获得2000年诺贝尔物理学奖。

8.静态CMO逻辑电路中,一般PMO管的衬底接电源电压,NOM管的衬底接地电压;NMO下拉网络的构成规律是:NMO管串联实现与操作;NMO管并联实现一或操作;PMO 上拉网络则是按对偶原则构成,即PMO管串联实现或操作;PMO管并联实现与操作。

9.集成电路中非易失存储器包括三种,即:不可擦除ROM EPROM E2PROM 10.集成电路产业按照职能划分为设计、制造、封装三业。

11. CMOS-- ----------------------------------------------- ------逻辑电路的功耗由三部分组成:动态功耗Pd开关过程中的短路功耗PSC静态功耗Pso 12.时序电路的输出不仅与当前的输入有关,还与系统原来的状态有关。

13.集成电路的设计方法可分为三种,即:基于PLD的设计方法、半定制设计方法、定制设计方法。

判断题:1. N阱CMO工艺是指在N阱中加工NMO的工艺。

集成电路分析期末复习总结要点

集成电路分析期末复习总结要点

集成电路分析集成工业的前后道技术:半导体(wafer)制造企业里面,前道主要是把mos管,三极管作到硅片上,后道主要是做金属互联。

集成电路发展:按规模划分,集成电路的发展已经历了哪几代?参考答案:按规模,集成电路的发展已经经历了:SSI、MSI、LSI、VLSI、ULSI及GSI。

它的发展遵循摩尔定律解释欧姆型接触和肖特基型接触。

参考答案:半导体表面制作了金属层后,根据金属的种类及半导体掺杂浓度的不同,可形成欧姆型接触或肖特基型接触。

如果掺杂浓度比较低,金属和半导体结合面形成肖特基型接触。

如果掺杂浓度足够高,金属和半导体结合面形成欧姆型接触。

、集成电路主要有哪些基本制造工艺。

参考答案:集成电路基本制造工艺包括:外延生长,掩模制造,光刻,刻蚀,掺杂,绝缘层形成,金属层形成等。

光刻工艺:光刻的作用是什么?列举两种常用曝光方式。

参考答案:光刻是集成电路加工过程中的重要工序,作用是把掩模版上的图形转换成晶圆上的器件结构。

曝光方式:接触式和非接触式25、简述光刻工艺步骤。

参考答案:涂光刻胶,曝光,显影,腐蚀,去光刻胶。

26、光刻胶正胶和负胶的区别是什么?参考答案:正性光刻胶受光或紫外线照射后感光的部分发生光分解反应,可溶于显影液,未感光的部分显影后仍然留在晶圆的表面,它一般适合做长条形状;负性光刻胶的未感光部分溶于显影液中,而感光部分显影后仍然留在基片表面,它一般适合做窗口结构,如接触孔、焊盘等。

常规双极型工艺需要几次光刻?每次光刻分别有什么作用?参考答案:需要六次光刻。

第一次光刻--N+隐埋层扩散孔光刻;第二次光刻--P+隔离扩散孔光刻第三次光刻--P型基区扩散孔光刻;第四次光刻--N+发射区扩散孔光刻;第五次光刻--引线接触孔光刻;第六次光刻--金属化内连线光刻掺杂工艺:掺杂的目的是什么?举出两种掺杂方法并比较其优缺点。

参考答案:掺杂的目的是形成特定导电能力的材料区域,包括N型或P型半导体区域和绝缘层,以构成各种器件结构。

集成电路考前必备复习考点

集成电路考前必备复习考点

集成电路考前必备复习考点集成电路设计考点填空题1.NM L和NM H的概念,热电势,D触发器,D锁存器,施密特触发器。

低电平噪声容限:VIL-VOL高电平噪声容限:VOH-VIH这一容限值应该大于零热电势:两种不同的金属相互接触时,其接触端与非接触端的温度若不相等,则在两种金属之间产生电位差称为热电势。

2.MOS晶体管动态响应与什么有关?(本征电容P77)MOS晶体管的动态响应值取决于它充放电这个期间的本征寄生电容和由互连线及负载引起的额外电容所需要的时间。

本征电容的来源:基本的MOS结构、沟道电荷以及漏和源反向偏置PN结的耗尽区。

3.设计技术(其他考点与这种知识点类似)P147怎样减小一个门的传播延时:减小CL:负载电容主要由以下三个主要部分组成:门本身的内部扩散电容、互连线电容和扇出电容。

增加晶体管的宽长比提高VDD4.有比逻辑和无比逻辑。

有比逻辑:有比逻辑试图减少实现有一个给定逻辑功能所需要的晶体管数目,但它经常以降低稳定性和付出额外功耗为代价。

这样的门不是采用有源的下拉和上拉网络的组合,而是由一个实现逻辑功能的NMOS 下拉网络和一个简单的负载器件组成。

无比逻辑:逻辑电平与器件的相对尺寸无关的门叫做无比逻辑。

有比逻辑:逻辑电平是由组成逻辑的晶体管的相对尺寸决定的。

5.时序电路的特点:记忆功能的原理:(a)基本反馈;(b)电容存储电荷。

6.信号完整性。

(电荷分享,泄露)信号完整性问题:电荷泄露电荷分享电容耦合时钟馈通7.存储器与存储的分类按存储方式分随机存储器:任何存储单元的内容都能被随机存取,且存取时间和存储单元的物理位置无关。

顺序存储器:只能按某种顺序来存取,存取时间和存储单元的物理位置有关。

按存储器的读写功能分只读存储器(ROM):存储的内容是固定不变的,只能读出而不能写入的半导体存储器。

随机读写存储器(RAM):既能读出又能写入的半导体存储器。

按信息的可保存性分非永久记忆的存储器:断电后信息即消失的存储器。

集成电路原理与应用复习总结

集成电路原理与应用复习总结

Ui Ui I i I1 I

U U Ui U o 和 o 3 得 U 3 2U i R2 2 R1 R1 R2 Ui Ui R1 R
所以 I i
因此 Ri
Ui RR1 I i R R1
当 R R1 时, Ri , I I1 4. 几中常见的积分电路 ①反相积分器 ②同相积分器
第一章 集成运放的基础知识 1. 集成运放是一种高增益直接耦合放大器。 2. 跨导的计算 ①晶体管:������������ = ������������ ������ =
������������
������������
������������������ ������������
������ (
������������ ������������ ) ������������
2
解法一:用两级反相求和电路 ������ ������ = −5(������������2 + ������ ������4 ) − 5(−(������ ������1 + ������ ������3 )) ∴������1 = ������2 = ������3 = ������4 = 20������������ ������������1 = ������������2 = ������5 = 100������������ ������������1 = ������1 ∕∕ ������3 ∕∕ ������������1 ≈ 333.3������������ ������������2 = ������2 ∕∕ ������4 ∕∕ ������5 ∕∕ ������������2 ≈ 6.25������������ 接法二:两个同相求和电路和一个差动放大器 ������ ������ = 5[(������������1 + ������ ������3) − (������ ������2 + ������ ������4 )] ∴������1 = ������2 = ������3 = ������4 = ������������1 = ������������2 = ������6 = 100������������ ������5 = 20������Ω ������������ = 100������Ω, ������������ = 50������Ω 【例 2-3】试分析图 1 所示电路是什么电路,有何

郑州大学半导体集成电路复习总结.doc

郑州大学半导体集成电路复习总结.doc

郑州大学半导体集成电路复习总结1.基本概念:集成电路:是经过氧化、光刻、扩散、外延、蒸铝等半导体制造工艺,把构成具有一定功能的电路所需的半导体有源器件、电阻、电容等元件及它们之间的连接导线全部“集成”在一块半导体单晶片上,封装在一个外壳内,执行特定电路或系统功能的电路。

集成度:每块集成电路芯片中包含的元器件数目。

多项目晶圆技术:多项目晶圆就是将多个使用相同工艺的集成电路设计放在同一晶圆片上流片,制造完成后,每个设计可以得到数十片芯片样品,这一数量对于原型设计阶段的实验、测试已经足够。

而该次制造费用就由所有参加MPW的项目按照芯片面积分摊,成本仅为单独进行原型制造成本的5%-10%,极大地降低了产品开发风险、培养集成电路设计人才的门槛和中小集成电路设计企业在起步时的门槛。

无生产线集成电路设计:代工厂:加工厂的铸造车间,无自己产品。

优良的加工技术(包括设计和制造)及优质的服务为客户提供加工服务。

2.微电子的战略地位:对人类社会的巨大作用3.集成电路分类:按器件结构类型分类:①双极集成电路②金属-氧化物-半导体(MOS)集成电路③双极-MOS(BiMOS)集成电路按集成度分类:①小规模集成电路②中规模集成电路③大规模集成电路④超大规模集成电路⑤特大规模集成电路⑥巨大规模集成电路按使用的基片材料分类:①单片集成电路②混合集成电路按电路的功能结构分类:①数字集成电路②模拟集成电路③数模混合集成电路按应用领域分类:①标准通用集成电路②专用集成电路 4.集成电路按规模划分经历了哪几代?遵循什么定律?小规模集成(SSI)→中规模集成(MSI)→大规模集成(LSI)→超大规模集成电路(VLSI)→特大规模集成电路(ULSI)→GSI(巨大规模集成)→SoC(系统芯片)。

摩尔定律:集成电路芯片的集成度每三年提高4倍,而加工特征尺寸缩小根号2倍。

5.IC(集成电路)、VLSI(超大规模集成电路)、ULSI(特大规模集成电路)6.高K介质:问题:90nm工艺之前,晶体管之间的电流泄露问题并不是很严重,因为晶体管之间有较长的间距。

数字集成电路复习必备知识点总结

数字集成电路复习必备知识点总结

1. 集成电路是指通过一系列特定的加工工艺,将晶体管、二极管、MOS管等有源器件和阻、电容、电感等无源器件,按一定电路互连,“集成”在一块半导体晶片(硅或砷化镓)上,封装在一个外壳内,执行特定电路或系统功能的一种器件。

2.集成电路的规模大小是以它所包含的晶体管数目或等效的逻辑门数目来衡量。

等效逻辑门通常是指两输入与非门,对于CMOS集成电路来说,一个两输入与非门由四个晶体管组成,因此一个CMOS电路的晶体管数除以四,就可以得到该电路的等效逻辑门的数目,以此确定一个集成电路的集成度。

3.摩尔定律”其主要内容如下:集成电路的集成度每18个月翻一番/每三年翻两番。

摩尔分析了集成电路迅速发展的原因,他指出集成度的提高主要是三方面的贡献:(1)特征尺寸不断缩小,大约每3年缩小 1.41倍;(2)芯片面积不断增大,大约每3年增大 1.5倍;(3)器件和电路结构的改进。

4.反标注是指将版图参数提取得到的分布电阻和分布电容迭加到相对应节点的参数上去,实际上是修改了对应节点的参数值。

5.CMOS反相器的直流噪声容限:为了反映逻辑电路的抗干扰能力,引入了直流噪声容限作为电路性能参数。

直流噪声容限反映了电流能承受的实际输入电平与理想逻辑电平的偏离范围。

6. 根据实际工作确定所允许的最低输出高电平,它所对应的输入电平定义为关门电平;给定允许的最高输出低电平,它所对应的输入电平为开门电平7. 单位增益点.在增益为0和增益很大的输入电平的区域之间必然存在单位增益点,即dVout/dVin=1的点8. “闩锁”现象在正常工作状态下,PNPN四层结构之间的电压不会超过Vtg,因此它处于截止状态。

但在一定的外界因素触发下,例如由电源或输出端引入一个大的脉冲干扰,或受r射线的瞬态辐照,使PNPN四层结构之间的电压瞬间超过Vtg,这时,该寄生结构中就会出现很大的导通电流。

只要外部信号源或者Vdd和Vss能够提供大于维持电流Ih的输出,即使外界干扰信号已经消失,在PNPN四层结构之间的导通电流仍然会维持,这就是所谓的“闩锁”现象9. 延迟时间:T pdo ——晶体管本征延迟时间;UL ——最大逻辑摆幅,即最大电源电压;Cg ——扇出栅电容(负载电容);Cw ——内连线电容;Ip ——晶体管峰值电流。

集成电路专业课课程习题重点总结概括归纳O( )O

集成电路专业课课程习题重点总结概括归纳O(   )O

集成电路专业课课程习题重点总结概括归纳O( )O 集成电路专业课课程习题重点总结概括归纳o(-)o1、集成电路的发展遵循了什么定律?简述集成电路设计流程。

说明版图设计在整个集成电路设计中所起的作用。

请问:摩尔定律:集成电路的集成度,即为芯片上晶体管的数目,内要18个月增加一倍或者每3年翻两番。

版图设计的作用:1、满足电路功能性能指标质量要求2、尽可能节省面积以提高集成度,降低成本3、尽可能缩短连线,以减少复杂度,缩短时间,改善可靠性;2、(1)集成电路设计方法的种类主要有哪些?(2)名词解释:asic、soc、dsp、hdl等常用简写请问:(1)全系列制订设计方法,半制订设计方法,标准单元设计方法,通用型单元设计方法,可编程逻辑电路设计方法。

(2)asic(applicationspecificintergratedcircuits)专用集成电路:指特定用户建议和特定电子系统的须要而设计、生产的集成电路soc(systemonchip)系统及芯片、片上系统:指它是一个产品、是一个有专用目标的集成电路,其中包括完整系统并有嵌入软件的全部内容dsp(digitalsignalprocessing)数字信号处理:就是一门牵涉许多学科而又广为应用于许多领域的新兴学科hdl(hardwaredescriptionlanguage)硬件描述语言:指对硬件电路进行行为描述、寄存器传输描述或者结构化描述的一种新兴语言3、(1)叙述多晶硅在cmos工艺中所起至的基本促进作用。

(2)假设某材料的方块电阻值为10ω,电阻的长度为30μm,宽度为10μm,该电阻阻值为多少?如果其他条件维持不变,长度变成25μm,则该电阻的阻值又就是多少?答:(1)多晶硅有着与单晶硅相似的特性,并且其特性可随结晶度与杂质原子的改变而改变。

在mos及双极型器件中,多晶硅可用来制作栅极、源极与漏极的欧姆接触、基本连线、薄pn结的扩散源、高值电阻等。

集成电路总结(附重点知识点参考答案)

集成电路总结(附重点知识点参考答案)

1.集成电路重点知识复习点1.芯片制作过程中主要的工艺有哪些?主要的三项工艺:薄膜制备工艺、光刻/图形转移工艺、掺杂工艺薄膜制备工艺:在晶圆表面生长或淀积数层材质不同,厚度不同的膜层,如器件工作区的外延层,绝缘介质层,金属层等。

该工艺通过常用方法有:外延生长,氧化,淀积。

图形转移工艺:包括掩膜版的制作,涂光刻胶,曝光(光刻),显影,烘干,刻蚀。

电路结构以图形的形式制作在光刻掩膜版上。

然后通过图形转换工艺转移精确转移到硅晶片上。

掺杂工艺:包括扩散工艺和离子注入工艺。

各种杂质按照设计要求掺杂到晶圆上,形成晶体管的源漏端以及欧姆接触等。

2.PN结形成的过程是什么?在纯净的本增半导体中少量掺杂施主杂质,如磷,取代硅原子,就形成了N型半导体。

参与导电的主要是带负电的电子,电子为多数载流子,又称多子。

空穴为少数载流子,又称少子。

在纯净的本增半导体中少量掺杂受主杂质,如硼,取代硅原子,就形成了P型半导体。

因为参与导电的主要是带正电的空穴,空穴为多子。

当P型半导体和N型半导体放在一起之后,多子和少子从浓度高的区域向浓度低的区域扩散,P区留下的不能移动的负离子和N区留下的不能移动的正离子在半导体交界面形成了一个很薄的空间电荷区,又称耗尽层。

这就是PN结。

PN结有内电场,由N区指向P区,内电场阻止多子的扩散运动,促使少子的漂移运动。

最终PN结达到动态平衡。

PN结具有单向导电性,当外加正向电压(P区接正电压)时,PN结处于导通状态,结电阻很小。

当外加负向电压(N区接正电压)时,PN结处于截止状态,结电阻很大。

当反向电压加到一定程度,PN结会击穿二损坏。

3.典型的N阱CMOS的剖面图是什么?4.MOS器件的工作区域有哪些?每个区域中的载流子是如何运作的?以NMOS为例:截止区:Vgate加较小的正电压,外加电场使得正电荷积聚在栅极,同时,空穴被排斥到更为底层的主体的衬底区;当空穴被排斥,在栅极下端的主体的P区表面,只留下带负电的不可移动的离子,耗尽区在栅极下方形成;Vgate进一步加大,更多衬底的少子被吸引到表面,当Vgs=VT时,表面将产生足够的电子,使得主体表面形成一层很薄的N型区,此N型区域中,电子的浓度大于空穴的浓度。

《集成电路原理与设计》重点内容总结

《集成电路原理与设计》重点内容总结

《集成电路原理与设计》重点内容总结引言集成电路(Integrated Circuit, IC)作为现代电子工程的核心,其设计和制造技术的发展极大地推动了信息技术的进步。

《集成电路原理与设计》课程涵盖了IC设计的基础理论、工艺技术、设计流程和应用实例,对于电子工程领域的学生和专业人士具有重要意义。

第一部分:集成电路基础1.1 集成电路概述集成电路是将大量电子元件(如晶体管、电阻、电容等)集成在一块半导体材料(通常是硅)上的微型电子器件。

IC的出现极大地减小了电子设备的体积,提高了性能,降低了成本。

1.2 半导体物理基础半导体物理是IC设计的基础。

重点内容包括:半导体材料的特性,如硅和锗的电子结构。

PN结的形成和特性。

载流子(电子和空穴)的行为。

半导体中的扩散和漂移现象。

1.3 晶体管原理晶体管是IC中最基本的放大和开关元件。

重点内容包括:双极型晶体管(BJT)和金属氧化物半导体场效应晶体管(MOSFET)的工作原理。

晶体管的电流-电压特性。

晶体管的开关时间和速度。

第二部分:集成电路设计2.1 设计流程IC设计包括前端设计和后端设计两个主要阶段。

重点内容包括:系统规格定义和功能模块划分。

逻辑设计和电路设计。

物理设计,包括布局、布线和验证。

2.2 设计工具和方法IC设计涉及多种计算机辅助设计(CAD)工具和方法。

重点内容包括:硬件描述语言(如VHDL和Verilog)的使用。

逻辑综合和优化技术。

时序分析和仿真。

2.3 工艺技术IC的制造工艺对设计有重要影响。

重点内容包括:CMOS工艺流程。

工艺参数对IC性能的影响。

新型工艺技术,如FinFET和SOI。

第三部分:集成电路应用3.1 数字集成电路数字IC是实现数字逻辑功能的核心。

重点内容包括:门电路和触发器的设计。

算术逻辑单元(ALU)和微处理器的设计。

存储器的设计,如SRAM、DRAM和Flash。

3.2 模拟集成电路模拟IC用于处理模拟信号。

重点内容包括:放大器、滤波器和振荡器的设计。

集成电路设计基础复习要点

集成电路设计基础复习要点

集成电路设计基础复习要点第一章集成电路设计概述1、哪一年在哪儿发明了晶体管?发明人哪一年获得了诺贝尔奖?2、世界上第一片集成电路是哪一年在哪儿制造出来的?发明人哪一年为此获得诺贝尔奖?3、什么是晶圆?晶圆的材料是什么?4、晶圆的度量单位是什么?当前主流晶圆尺寸是多少?目前最大晶圆尺寸是多少?5、摩尔是哪个公司的创始人?什么是摩尔定律?6、什么是SoC?英文全拼是什么?7、说出Foundry、Fabless和Chipless的中文含义。

8、什么是集成电路的一体化(IDM)实现模式?9、什么是集成电路的无生产线(Fabless)设计模式?10、目前集成电路技术发展的一个重要特征是什么?11、一个工艺设计文件(PDK)包含哪些内容?12、什么叫“流片”?13、什么叫多项目晶圆(MPW) ?MPW英文全拼是什么?14、集成电路设计需要哪些知识范围?15、著名的集成电路分析程序是什么?有哪些著名公司开发了集成电路设计工具?16、SSI、MSI、LSI、VLSI、ULDI的中文含义是什么?英文全拼是什么?每个对应产品芯片上大约有多少晶体管数目?17、国内近几年成立的集成电路代工厂家或转向为代工的厂家主要有哪些?18、境外主要代工厂家和主导工艺有哪些?第二章集成电路材料、结构与理论1、电子系统特别是微电子系统应用的材料有哪些?2、常用的半导体材料有哪些?3、半导体材料得到广泛应用的原因是什么?4、为什么市场上90%的IC产品都是基于Si工艺的?5、砷化镓(GaAs) 和其它III/V族化合物器件的主要特点是什么?6、GaAs晶体管最高工作频率f T可达多少?最快的Si晶体管能达到多少?7、GaAs集成电路主要有几种有源器件?8、为什么说InP适合做发光器件和OEIC?9、IC系统中常用的几种绝缘材料是什么?10、什么是欧姆接触和肖特基接触?11、多晶硅有什么特点?12、什么是材料系统?13、什么是半导体材料系统?14、异质半导体材料的主要应用有哪些?15、晶体和非晶体的区别是什么?16、本征半导体有何特点?17、什么是扩散运动?什么是漂移运动?18、PN结的主要特点是什么?19、双极型三极管三个区有什么不同?20、简述双极型三极管发射结,集电结在不同偏置时的工作状态。

集成电路考点总结

集成电路考点总结

填空1、 集成电路的加工过程主要是三种基本操作: 形成某种材料的薄膜;在薄膜材料上形成所需要的图形;通过掺杂改变材料的电阻率或杂质类型。

2、 晶体管有源区、沟道区、漏区统称为 有源区,有源区以外的统称 场区。

3、 当MOS 晶体管加有衬底偏压时,其阈值电压将发生变化,衬底偏压对阈值电压的影响叫 衬偏效应(或体效应)。

P914、 MOS 存储器分为随机存储器(RAM )只读存储器(ROM )。

MOS 管的RAM 存储器分为动态随机存储器(DRAM ),静态随机存储器(SRAM )。

5、 MOS 晶体管分为 n 沟道MOS 晶体管、 p 沟道MOS 晶体管 两类。

6、 富NMOS 电路与 富NMOS 电路 不能直接级联,但可采取 富NMOS 与富PMOS 交替级联的方式(多米诺电路)。

7、 CMOS 集成电路是利用 NMOS 和PMOS 互补性 改善电路性能的集成电路。

在 P 型衬底 上用n 阱工艺制作CMOS 集成电路。

8、 等比例缩小理论包含 恒定电场等比例缩小理论(CE )、恒定电压等比例缩小理论(CV )、准恒定电场等比例缩小理论(QCE )。

名词解释1、 短沟道效应:MOS 晶体管沟道越短,源漏区PN 结耗尽层电荷在总的沟道耗尽层电荷中占的比例越大,使实际由栅压控制的耗尽层电荷减少,造成阈值电压随沟道长度减小而下降。

2、 多米诺CMOS 电路:为避免预充---求值动态电路在预充期间的不真实输出影响下一级电路的逻辑操作,富NMOS 与富NMOS 电路不能直接级联,而是采用富NMOS 与富PMOS 交替级联的方式,或用静态反相器器隔离。

3、 MOS 晶体管阈值电压:沟道区源端半导体表面达到强反型所需要的栅压,假定源和衬底共同接地(对NMOS )。

4、 亚阈值电流:在理想的电流---电压特性中,当GS T V V 时,D I =0,而实际情况是当GS T V <V 时,MOS 晶体管表面处于弱反型状态,此时D I 很小但不为零,此电流称为亚阈值电流。

集成电路复习重点

集成电路复习重点

集成电路复习重点摩尔定律:集成度大约是每18个月翻一番的增长规律。

CE定律要求所有几何尺寸,包括横向和纵向尺寸,都缩小K倍;衬底掺杂浓度增大K倍;电源电压下降K倍。

CV定律要求所有几何尺寸都缩小K倍,衬底浓度增大K2倍;电源电压保持不变;以便使内部的耗尽层宽度和外部尺寸一起缩小。

QCE定律要求器件尺寸K倍缩小,衬底浓度增大αK倍,电源电压α/K倍(1﹤α﹤K)减小,使耗尽层宽度和器件尺寸一样缩小,同时维持器件内部电场分布不变,但是电场强度增大倍。

集成电路加工的三种操作:1、形成薄膜2、形成图形3、掺杂光刻步骤:1、气相成底膜2、旋转涂胶3、软烘4、对准和曝光5、曝光后烘焙6、显影7、坚膜烘焙8、显影检查N阱:在P型衬底上扩散N型区P阱:在N型衬底上扩散P型区闩锁效应:由NMOS的有源区、P衬底、N阱、PMOS的有源区构成的N-P-N-P结构,当其中一个三极管正偏时,就会构成正反馈形成闩锁。

防止闩锁效应的措施:1、减小阱区与衬底的寄生电阻2、降低寄生双极晶体管的增益3、使衬底反向偏压4、加保护环5、用外延衬底6、采用SOI工艺版图设计规则:1、微米规则:直接以微米为单位给出各种图形尺寸的要求优点:灵活性大,更能针对实际工艺水平缺点:通用性差2、λ规则:以λ为单位给出各种图形尺寸的相对值,λ是工艺中能实现的最小尺寸,一般用套刻间距作为λ值,可取栅长的一半优点:通用性强,适合CMOS按比例缩小的发展规律缺点:对深亚微米CMOS工艺不能简单套用λ规则SOI材料的三种技术:1、注氧隔离技术2、键合减薄技术3、智能剥离技术SOICMOS的优越性:1、每个器件都被氧化层包围,完全与周围的器件隔离,从根本上消除了闩锁效应2、减小了pn结电容和互连线的寄生电容3、不用做阱,简化工艺,极小面积4、极大的减小了源、漏区pn结面积,从而减小了pn结泄漏电流5、有很好的抗辐照功能6、实现三维立体集成阈值电压:沟道区源端半导体表面达到强反型所需的栅压,它是MOS 晶体管导通和截止的分界点。

集成电路复习总结

集成电路复习总结

集成电路复习总结第一篇:集成电路复习总结1、中英名词解释(1)IC(Integrated Circuit):集成电路,是指通过一系列特定的加工工艺,将晶体管、二极管等有源器件和电阻、电容、电感等无源器件,按照一定的电路互联,“集成”在一块半导体晶片(如硅或砷化镓)上,封装在一个外壳内,执行特定电路或系统功能的一种器件。

(2)摩尔定律(Moore's Law):芯片上晶体管数目每隔18个月翻一番或每三年翻两番,性能也会增加一倍。

(3)SOC(system on chip):在一个微电子芯片上将信息的采集、传输、存储、处理等功能集成在一起而构成系统芯片。

(4)EDA(Electronic-System Design Automation):电子设计自动化(5)能带:能量越高的能级,分裂的能级越多,分裂的能级也就相邻越近,这些邻近的能级看起来就像连续分布,这样的多条相邻近的能级被称为能带(6)本征半导体:是一种完全纯净的、结构完整的半导体晶体。

(经过一定的工艺过程将纯净的半导体制成的单晶体称为本征半导体。

导带中的自由电子与价带中的空穴都能参与导电。

)(7)肖特基接触:金属与半导体接触并且金属的费米能级低于N 型半导体或高于P型半导体的费米能级,这种接触为肖特基接触。

(8)MESFET:(Metal-Semiconductor Filed Effect Transistor),即金属-半导体场效应晶体管(9)Spice(Simulation Program with Integrated Circuit Emphasis):集成电路仿真程序,主要用来在电路硬件实现之前读电路进行仿真分析。

(10)FPGA(Filed Programmable Gate Array):现场可编程门阵列。

(又称逻辑单元阵列,Logic Cell A)(11)IP(Intellectual Property):知识产权。

集成电路复习资料

集成电路复习资料

集成电路复习资料(大国际二班出品)一、名词解释:微电子学:微电子学(Microelectronics)是电子学的一门分支学科,主要是研究电子或离子在固体材料中的运动规律及其应用,并利用它实现信号处理功能的学科。

它以实现电路和系统的集成为目的的。

摩尔定律:摩尔定律是由英特尔(Intel)创始人之一戈登·摩尔(Gordon Moore)提出来的。

其内容为:当价格不变时,集成电路上可容纳的晶体管数目,约每隔18个月便会增加一倍,性能也将提升一倍。

特征尺寸:在集成电路领域,特征尺寸是指半导体器件中的最小尺寸。

在CMOS 工艺中,特征尺寸典型代表为“栅”的宽度,也即MOS器件的沟道长度。

N型半导体:也称为电子型半导体。

N型半导体即自由电子浓度远大于空穴浓度的杂质半导体。

IC(Integrated Circuit):集成电路,缩写为IC;顾名思义,就是把一定数量的常用电子元件,如电阻、电容、晶体管等,以及这些元件之间的连线,通过半导体工艺集成在一起的具有特定功能的电路。

BJT(Bipolar Junction Transistor—BJT):双极结型晶体管的缩写,又常称为双载子晶体管。

它是通过一定的工艺将两个PN结结合在一起的器件,有PNP和NPN 两种组合结构。

MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET):金属-氧化物半导体场效应晶体管,简称金氧半场效晶体管,是一种可以广泛使用在模拟电路与数字电路的场效晶体管。

CMOS(Complementary Metal Oxide Semiconductor):互补金属氧化物半导体,电压控制的一种放大器件。

是组成CMOS数字集成电路的基本单元。

More than Moore:超越摩尔定律也称超摩尔,在无线通信等应用的拉动下,微电子技术不仅按摩尔定律指引的按比例缩小方向发展,逐渐形成了“超摩尔定律”的发展趋势。

集成电路总结

集成电路总结

集成电路总结集成电路(Integrated Circuit,简称IC)是现代电子技术的重要组成部分,它是将大量的电子元器件(如晶体管、电阻、电容等)集中在一块半导体材料上制成的微型芯片。

集成电路的发展极大地推动了电子技术的进步,广泛应用于计算机、通信、汽车、医疗等领域。

本文将对集成电路的原理、分类、发展历程以及未来趋势进行总结。

一、集成电路的原理集成电路的原理是基于半导体材料的特性,通过电子器件的布局和相互连接实现功能。

半导体材料是一种介于导体和绝缘体之间的材料,其电子流动特性可以被控制。

通过控制半导体材料上的电子流动,可以实现逻辑运算、信号放大等功能。

二、集成电路的分类根据集成电路中电子器件的连接方式和布局等因素,集成电路可分为多种类型,常见的有模拟集成电路、数字集成电路和混合集成电路。

1. 模拟集成电路模拟集成电路是利用半导体器件(如晶体管、二极管等)来实现对连续信号的处理和控制。

它可以放大、滤波、调节和混合各种模拟信号。

2. 数字集成电路数字集成电路是利用半导体器件(如逻辑门、触发器等)来实现对离散信号的处理和控制。

它可以进行逻辑运算、存储数据和控制信号的流动。

3. 混合集成电路混合集成电路是模拟和数字集成电路的结合体,通过将模拟电路和数字电路相互组合,实现更复杂的功能,如模数转换、数模转换等。

三、集成电路的发展历程集成电路的发展经历了几个重要的阶段。

1. 小规模集成电路20世纪60年代,人们开始实现数十个电子器件的集成,将它们封装在一个芯片中。

这些小规模的集成电路主要应用于军事和航空领域。

2. 中规模集成电路20世纪70年代,随着技术的发展,集成度逐渐提高,人们能够在一个芯片上集成数百个电子器件。

中规模集成电路的应用范围逐渐扩大,开始进入家电、通信等领域。

3. 大规模集成电路20世纪80年代后期,随着制造工艺的进一步改进,集成电路的规模进一步扩大,数千个乃至数万个晶体管可以集成在一个芯片中。

集成电路原理与设计重点内容总结

集成电路原理与设计重点内容总结

集成电路原理与设计重点内容总结第一章 绪论摩尔定律:(P4)集成度大约是每18个月翻一番或者集成度每三年4倍的增长规律就是世界上公认的摩尔定律。

集成度提高原因:倍;二是芯片面积不断增大,大约每三年增大1.5倍;三是器件和电路结构的不断改进。

等比例缩小定律:(种类 优缺点)(P7-8)1.恒定电场等比例缩小规律(简称CE 定律)a.器件的所有尺寸都等比例缩小K 倍,电源电压也要缩小K 倍,衬底掺杂浓度增大K 倍,保证器件内部的电场不变。

b.集成度提高K 2倍,速度提高K 倍,功耗降低K 2倍。

c.改变电源电压标准,使用不方便。

阈值电压降低,增加了泄漏功耗。

2.恒定电压等比例缩小规律(简称CV 定律)a.保持电源电压和阈值电压不变,器件的所有几何尺寸都缩小K 倍,衬底掺杂浓度增加K 2倍。

b.集成度提高K 2倍,速度提高K 2倍。

c.功耗增大K 倍。

内部电场强度增大,载流子漂移速度饱和,限制器件驱动电流的增加。

3.准恒定电场等比例缩小规则(QCE)器件尺寸将缩小K 倍,衬底掺杂浓度增加λK (1<λ<K )倍,而电源电压则只变为原来的λ/K 倍。

是CV 和CE 的折中。

需要高性能取λ接近于K ,需要低功耗取λ接近于1。

写出电路的网表:A BJT AMPVCC 1 0 6 Q1 2 3 0 MQRC 1 2 680 RB 2 3 20K RL 5 0 1K C1 4 3 10U C2 2 5 10U VI 4 0 AC 1 .MODEL MQ NPN IS=1E-14+BF=80 RB=50 VAF=100.OP.END其中.MODEL 为模型语句,用来定义BJT 晶体管Q1的类型和参数。

C i v O -4电路分析类型.OP 直流工作点分析 .TRAN 瞬态分析.DC 直流扫描分析 .FOUR 傅里叶分析.TF 传输函数计算 .MC 蒙特卡罗分析.SENS 灵敏度分析 .STEP 参数扫描分析.AC 交流小信号分析 .WCASE 最坏情况分析.NOISE 噪声分析 .TEMP 温度设置第二章集成电路制作工艺集成电路加工过程中的薄膜:(P15)热氧化膜、电介质层、外延层、多晶硅、金属薄膜。

集成电路原理及设计复习资料

集成电路原理及设计复习资料

集成电路原理及设计复习资料一、基础知识第二章集成电路中的寄生一、关于寄生1、通过隔离把硅片分成一定数目的相互绝缘的隔离区2、在各个隔离区制作晶体管,电阻等元件3、制作互连线,把各个元件按照一定功能连接起来答:在通常情况下,V DD与V SS之间有一个反偏的阱——衬底结隔离,只有一个很小的二极管漏电流在其间流过。

但在一定的外界因素触发下(如大的电源脉冲干扰或输入脉冲干扰,特别是在γ射线瞬时辐照下),V DD和V SS之间会感生一个横向电流I RS,而使P沟MOSFET 源区P+周围的N衬底电位低于P+源区,当这个电位差达到一定程度后(>0.7V),会导致P +——衬底结正偏,少数载流子空穴从P+源区注入衬底。

如果P+源区接近P-阱,则一部分空穴被衬底反偏结收集,寄生的横向PNP管导通,同样,阱内的横向电流I RW会使寄生的纵向NPN管导通。

这两个寄生三极管都导通时,就形成一个正反馈闭合回路,此时即使外界的触发因素消失,在V DD和V SS之间也有电流流动,这就是所谓的“自锁现象”。

如果电源能提供足够大的电流,则由于自锁效应,电路将最终因电流过大而烧毁。

(4分)l产生自锁的基本条件有三个:(1)外界因素使两个寄生三极管的EB结处于正向偏置;(2)两个寄生三极管的电流放大倍数(3)电源所提供的最大电流大于寄生可控硅导通所需要的维持电流I H(7分)消除自锁的方法(1)在版图设计时采用隔离环、伪收集极,加多电源接触孔和地接触孔的数目,加粗电源线和地线,对电源接触孔和地接触孔进行合理的布局等,以减小有害的电位梯度。

(2)工艺上对于横向寄生PNP管,保护环是其基区的一部分,施以重掺杂可降低PNP管的βPNP;对于纵向寄生NPN管,工艺上降低其βNPN有效的办法是采用深阱扩散,来增加基区宽度;为了降低Rw,可采用倒转阱结构,即阱的纵向杂质分布与一般扩散法相反,高浓度区在阱底;为了降低Rs,可采用N+—Si上外延N-作为衬底。

集成电路计算机知识点总结

集成电路计算机知识点总结

集成电路计算机知识点总结一、集成电路概述集成电路是指将多种电子器件、电路和元器件集成在一个芯片上的电子器件。

它的存在完全改变了传统电子器件设计中的离散元器件法,将许多晶体管、电阻、电容和电感等元器件集成在同一块硅片或其他介质上,并在其上形成所需的功能电路。

集成电路的优点在于小体积、轻质量、高可靠性和功耗低等。

集成电路计算机是指使用集成电路技术制造的计算机。

它是以微处理器为核心,结合存储器、输入输出设备和系统控制逻辑等电路,构成一种高度集成的电子计算系统。

二、集成电路计算机结构1. CPUCPU(Central Processing Unit,中央处理器)是集成电路计算机的核心,负责执行程序和进行数据处理。

CPU包括运算器、控制器和寄存器等部分。

运算器负责执行算术运算和逻辑运算,控制器负责控制程序的执行流程,寄存器则用于暂存指令和数据。

2. 存储器存储器用于存储计算机程序和数据,主要包括随机存储器(RAM)、只读存储器(ROM)和辅助存储器(硬盘、光盘等)。

RAM用于临时存储程序和数据,ROM用于存储不易改变的程序和数据,辅助存储器则用于长期存储大量数据。

3. 输入输出设备输入输出设备用于计算机与外部环境进行交互,主要包括键盘、鼠标、显示器、打印机、网络接口等。

输入输出设备通过接口与计算机连接,实现输入数据和输出结果的传输。

4. 系统总线系统总线用于连接CPU、存储器和输入输出设备,实现它们之间的数据传输和控制信号传递。

系统总线分为地址总线、数据总线和控制总线,分别用于传输地址信息、数据信息和控制信号。

5. 时钟时钟是计算机中的一个重要部件,用于产生计算机系统中各器件的同步时序信号,保证系统的稳定运行。

时钟信号的频率称为时钟频率,通常以赫兹(Hz)为单位。

三、集成电路计算机工作原理集成电路计算机的工作原理是通过CPU执行指令,控制存储器和输入输出设备进行数据传输和处理。

当计算机启动时,CPU从存储器中读取操作系统程序,并执行相应的初始化工作。

总结集成电路培训内容,重点描述最感兴趣、对自身工作指导性最强

总结集成电路培训内容,重点描述最感兴趣、对自身工作指导性最强

总结集成电路培训内容,重点描述最感兴趣、对自身工作指导性最强
1. 基础知识:集成电路的定义、历史、发展进程、基本构成单元、常用工艺、材料及其特性、尺寸、制造流程
2. 设计流程:设计前的准备工作、电路设计原理、模拟/数字设计的基本流程、验证与仿真、版图设计、电性能分析等。

3. 工具使用:常见EDA工具的使用、设计规范、模拟与验证工具的使用、版图设计工具的使用、检查与修复工具的使用等。

4. 应用案例分析:将所学的知识应用到实际的集成电路设计中,分析不同应用场景下的实际设计案例,掌握实践经验和技巧。

对于自身工作指导性最强的内容,一般建议关注以下几个方面:
1. 设计流程和工具使用:集成电路设计需要遵循一定的流程,并使用专业的EDA工具进行设计、验证和仿真。

了解这些步骤和工具的使用,可以有效提高设计效率,降低出错率,并使自身工作更加规范和系统化。

2. 版图设计:版图设计是实现电路设计的最后一步,也是最为关键的一步。

需要注意的是,版图设计中一些微小的错误可能会导致整个电路失效,因此应重视版图设计中的各项规格和流程,以确保电路可以正常工作。

3. 应用案例分析:集成电路设计的应用场景非常广泛,因此了解不同应用场景的需求和设计要求,对于自身的工作指导性也是非常有帮助的。

通过分析实际的设计案例,可以更好地掌握设计技能和经验,提高自身的工作质量和效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、中英名词解释(1)IC(Integrated Circuit):集成电路,是指通过一系列特定的加工工艺,将晶体管、二极管等有源器件和电阻、电容、电感等无源器件,按照一定的电路互联,“集成”在一块半导体晶片(如硅或砷化镓)上,封装在一个外壳内,执行特定电路或系统功能的一种器件。

(2)摩尔定律(Moore's Law):芯片上晶体管数目每隔18个月翻一番或每三年翻两番,性能也会增加一倍。

(3)SOC(system on chip):在一个微电子芯片上将信息的采集、传输、存储、处理等功能集成在一起而构成系统芯片。

(4)EDA(Electronic-System Design Automation):电子设计自动化(5)能带:能量越高的能级,分裂的能级越多,分裂的能级也就相邻越近,这些邻近的能级看起来就像连续分布,这样的多条相邻近的能级被称为能带(6)本征半导体:是一种完全纯净的、结构完整的半导体晶体。

(经过一定的工艺过程将纯净的半导体制成的单晶体称为本征半导体。

导带中的自由电子与价带中的空穴都能参与导电。

)(7)肖特基接触:金属与半导体接触并且金属的费米能级低于N型半导体或高于P型半导体的费米能级,这种接触为肖特基接触。

(8)MESFET:(Metal-Semiconductor Filed Effect Transistor),即金属-半导体场效应晶体管(9)Spice(Simulation Program with Integrated Circuit Emphasis):集成电路仿真程序,主要用来在电路硬件实现之前读电路进行仿真分析。

(10)FPGA(Filed Programmable Gate Array):现场可编程门阵列。

(又称逻辑单元阵列,Logic Cell A)(11)IP(Intellectual Property):知识产权。

通常讲的IP核是指已经设计优化好。

经过验证、功能复杂、可以嵌入到其他电路中重复使用的集成电路模块。

(12)HBT(Hetro-junction Bipolar Transistor):异质结双极晶体管(13)短沟道效应:短沟道效应主要是指阈值电压与沟道相关到非常严重的程度。

随着沟道长度变的越来越短,阈值电压与沟长及漏电压有着明显的关系。

而随着沟长的变短,阈值电压与衬底偏压的关系变弱。

P-125 (14)沟通长度调制效应:MOS晶体管中,栅下沟道预夹断后、若继续增大Vds,夹断点会略向源极方向移动导致夹断点到源极之间的沟道长度略有减小,有效沟道电阻也就略有减小,从而使更多电子自源极漂移到夹断点,导致在耗尽区漂移电子增多是Id增大,这种效应称为沟道长度调制效应。

(15)电路仿真:将要分析的电路问题列出数学形式的电路方程,然后对电路方程求解。

就是设计好的电路图通过仿真软件进行实时模拟,模拟出实际功能,然后通过其分析改进,从而实现电路的优化设计。

P-132 (16)电路综合:synthesis 实现在满足设计电路的功能、速度及面积等限制条件下,将行为级描述转化为指定的技术库中单元电路的连接。

(17)ASIC(Application Specific Integrated Circuit):专用集成电路(18)VDSM(Very Deep Sub-micron):超深亚微米(19)VLSI(Very Large Scale Integration):超大规模集成电路(20)DRC:design rule check 设计规则检查,最小线宽、最小图形间距、最小接触孔尺寸、栅和源漏区的最小交叠等。

ERC:Electrical Rules Check 电气规则检查,检测有没有电路意义的连接错误,如短路、开路、孤立布线、非法器件等,介于设计规则与行为级分析之间,不涉及电路行为。

LVS:Layout Versus Schematic 电路与版图一致性验证,从版图提取出的电路网表与从原理图得到的网表进行比较,检查两者是否一致。

主要用于保证进行电路功能和性能验证之前避免物理设计错误。

(21)GDSII:Graphic Data System是一种时序提供格式,用于设计工具、计算机和掩膜制造商之间进行半导体物理制板的数据传输。

tape –out:提交最终GDSII文件加工Foundry:芯片代工厂(22)RTL:Register Transfer Level 寄存器传输级,用于描述同步数字电路操作的抽象级。

DC:Desing Compiler 设计编译器(用于综合)FM:Form Test 形式验证APR: Auto Place and Route 自动布局布线(23)STA:Static Timing Analysis静态时序分析SDF:Standard Delay Format 标准延时格式文件,数字电路后端设计中的一种文件SDC:Synopsys Design Constraints 时序约束简答(40分)(1)集成电路分类按器件结构类型分为双极集成电路、金属-氧化物-半导体集成电路、双极MOS集成电路;按集成度分为小规模集成电路(SSI)、中规模集成电路(MSI)、大规模集成电路(LSI)、超大规模集成电路(VLSI)、特大规模集成电路(ULSI)、巨大规模集成电路(GSI);按使用的基片材料分为单片集成电路与混合集成电路;按电路功能分为数字集成电路、模拟集成电路、数模混合集成电路;按应用领域分为标准通用集成电路、专用集成电路。

(2)集成电路材料有哪些?分别适合什么样的集成电路1导体,铝、金、钨、铜等金属和镍铬等合金,用于构成低值电阻、构成电容元件的极板、构成电感元件的绕线、构成传输线的导体结构、与轻掺杂半导体构成肖特基结接触、与重掺杂半导体构成半导体器件的电极的欧姆接触、构成元件之间的互连、构成与外界焊接用的焊盘。

2绝缘体,二氧化硅、氮氧化硅、氮化硅等硅的氧化物与氮化物,构成电容的绝缘介质、构成金属-氧化物-半导体器件(MOS)的栅绝缘层、构成元件和互连线之间的横向隔离、构成工艺层面之间的垂直隔离、构成防止表面机械损伤和化学污染的钝化层。

3半导体,利用半导体掺杂以后形成P型和N型半导体,在导体和绝缘体材料的连接或阻隔下组成各种集成电路的元件—-半导体器件。

(3)能带概念,PN节在正反向偏置下能带解释能量越高的能级。

分裂的能级越多,分裂的能级也就相邻越近,这些邻近的能级看起来就像连续分布,这样的多条相邻近的能级被称为能带。

P-18PN节正反偏置P-26零偏压时,P区和N区费米能级持平,电子占据水平相当,没有载流子流动,处于平衡状态。

正向偏压,从能带角度来说阻挡层势垒被削弱,阻挡层的总电场强度降低,PN结两端的能带弯曲变小。

N区的费米能级高于P区的费米能级,电子和空穴容易获得足够的能量越过势垒区到达对方区域。

从而有电流流过势垒区。

反向偏压,从能带角度来说阻挡层势垒被加强,阻挡层的总电场强度增大,PN结两端的能带弯曲变大。

P区的费米能级高于N区的费米能级,电子和空穴不能越过势垒区到达对方区域。

只有漏电流流过势垒区。

(4)MOS管工作原理P-32以NMOS晶体管为例,如果没有任何外加偏置电压,从漏到源是两个背对背的二极管结构。

它们之间所能流过的电流就是二极管的反向漏电流。

如果把源漏和衬底接地,在栅上加一足够高的正电压,正的栅压将要排斥栅下的P型衬底中的空穴而吸引电子。

电子在表面聚集到一定浓度时,栅下的P型层将变成N型层,即呈现反型。

N反型层与源漏两端的N型扩散层连通,就形成以电子为载流子的导电沟道。

如果漏源之间有电位差,将有电流流过。

如果加在栅上的正电压比较小,不足以引起沟道区反型,器件仍处在不导通状态。

引起沟道区产生强表面反型的最小栅电压,称为阈值电压VT。

(5)简述集成电路制造工艺流程。

包括外延生长、掩膜制版、光刻、掺杂、绝缘层形成、金属层形成。

外延层具有很多优良性能。

掺杂、隔离、串通等等。

目前常见的外延技术有:化学汽相沉积(化学汽相沉积生长法是通过汽体化合物之间的化学反应而形成的一种生长外延层的工艺。

通过晶圆表面吸附反应物,在高温下发生反应,生成外延层),金属有机物汽相沉积(由于许多III族元素有机化合物和V族元素氢化物在较低温度下即可成为气态,因此在金属有机物化学沉积过程中反应物不需要高温,只需要在衬底附近存在高温区使得几种反应物能够在衬底附近发生化学沉积反应即可),分子束外延生长(分子束外延是在超高真空下(~10-8 Pa)加热一种或多种原子或分子,这些原子分子束与衬底晶体表面反应从而形成半导体薄膜的技术)。

掩膜制造,掩膜版可分成:整版及单片版。

整版是指晶圆上所有的集成电路芯片的版图都是有该掩膜一次投影制作出来的,各个单元的集成电路可以不同。

单片版是指版图只对应晶圆上的一个单元,其他单元是该单元的重复投影,晶圆上各个芯片是相同的。

早期掩膜制造是通过画图照相微缩形成的。

光学掩膜版是用石英玻璃做成的均匀平坦的薄片,表面上涂一层60~80nm厚的铬,使其表面光洁度更高,这称之为铬版(Crmask),通常也称为光学(掩膜)版。

新的光刻技术的掩膜版与光刻技术有关。

光刻的作用是把掩膜版上的图形映射到晶圆上,并在晶圆上形成器件结构的过程。

对光刻的基本要求有:高分辨率、高灵敏度、精密的套刻对准、大尺寸硅片上的加工、低缺陷。

曝光是在光刻胶上形成预定图案,有光学光刻和非光学光刻。

刻蚀是将图形转移到晶圆上有湿法刻蚀、等离子体刻蚀、反应离子刻蚀等。

光刻基本步骤:涂光刻胶→曝光→显影与后烘→刻蚀→去除光刻胶摻杂的目的是制作N型或P型半导体区域,以构成各种器件结构。

主要方法有:热扩散法掺杂,离子注入法掺杂。

绝缘层形成的方式:热氧化、CVD。

绝缘层的作用:栅极隔离层,局部氧化隔离法隔离(LOCOS),浅沟槽隔离(STI)集成电路工艺中的金属层有三个主要功能:1)形成器件本身的接触线;2)形成器件间的互连线;3)形成焊盘。

金属层的形成主要采用物理汽相沉积(PVD:Pysical Vapor Deposition)技术。

PVD技术有蒸镀和溅镀两种。

金属CVD技术,正在逐渐发展过程中(6)简述以N+硅为衬底的工艺步骤。

双阱CMOS工艺采用的原始材料是在N+或P+衬底上外延一层轻掺杂的外延层,然后用离子注入的方法同时制作N阱和P阱。

使用双阱工艺不但可以提高器件密度,还可以有效的控制寄生晶体管的影响,抑制闩锁现象。

1衬底准备:衬底氧化后,在二氧化硅上生长氮化硅2光刻P阱,形成阱版,在P 阱区腐蚀氮化硅,P阱注入3去光刻胶,P阱扩散并生长二氧化硅4腐蚀氮化硅,N阱注入并扩散5形成场隔离区(场氧化层)6NMOS管场注入光刻7场区氧化,栅氧化,沟道掺杂(阈值电压调节注入)8多晶硅淀积、掺杂、光刻和腐蚀,形成栅区的多晶硅版9P阱中的NMOS管光刻和注入硼并扩散,形成N+版10PMOS管光刻和注入磷并扩散,形成P+版11硅片表面沉积二氧化硅薄膜12接触孔光刻,接触孔腐蚀13淀积铝,反刻铝,形成铝连线最后做栅极金属引线后得到双阱CMOS工艺的CMOS晶体管(7)简述某一规则的目的与作用。

相关文档
最新文档