一次函数与一元一次方程不等式
八年级下册数学 一次函数与不等式练习题
八年级下册数学一次函数与不等式练习题1.一次函数与一元一次方程、一元一次不等式1.1 一次函数与一元一次方程1) 一次函数与一元一次方程的关系:① (从数值上看) 方程 $ax+b=(a\neq0)$ 的解$\Leftrightarrow$ 函数 $y=kx+b(a\neq0)$ 中,$y$ 等于时,$x$ 的值。
② (从形式上看) 方程 $ax+b=(a\neq0)$ 的解$\Leftrightarrow$ 函数 $y=kx+b(a\neq0)$ 的图像与 $x$ 轴交点的横坐标。
2) 利用一次函数的图像解一元一次方程的步骤:转化→画图像→ 找交点。
1.2 一次函数与一元一次不等式1) 一次函数与一元一次不等式的关系:① (从数值上看) $ax+b>0$ 的解集 $\Leftrightarrow$ 函数$y=kx+b$ 中 $y>0$ 时 $x$ 的取值范围;$ax+b<0$ 的解集$\Leftrightarrow$ 函数$y=kx+b$ 中$y<0$ 时$x$ 的取值范围。
② (从形式上看) $ax+b>0$ 的解集 $\Leftrightarrow$ 直线位于 $x$ 轴上方的部分对应的 $x$ 的取值范围;$ax+b<0$ 的解集 $\Leftrightarrow$ 直线位于 $x$ 轴下方的部分对应的$x$ 的取值范围。
2) 应用:在同一直角坐标系中,比较两直线上函数值大小的方法:当自变量取同一个值时,对应图像上的点在上方的函数值就大。
例1:已知方程 $x+b=-2$ 的解是 $x=-2$,下列可能为直线 $y=x+b$ 的图象是()。
例2:直线 $y=kx+3$ 经过点 $A(2,1)$,则不等式$kx+3\geq0$ 的解集是()。
针对训练1、一次函数 $y=kx+b$ 的图象如图所示,则方程$kx+b=0$ 的解为()。
2、如图,一次函数 $y=kx+b$ 的图象经过 $A$、$B$ 两点,则不等式 $kx+b<0$ 的解集是()。
一次函数与一元一次方程、不等式
16.如图,在平面直角坐标系 xOy 中,一次函数 y=kx+b 的图象与 x 轴 4 交于点 A(-3,0),与 y 轴交于点 B,且与正比例函数 y=3x 的图象的交 点为 C(m,4). (1)求一次函数 y=kx+b 的解析式; (2)若点 D 在第二象限,△DAB 是以 AB 为直角边的等腰直角三角形,求 点 D 的坐标.
21 解: 图略. (1)当 x>9 时, y1>0 (2)当 x≥-1 时, y2≤3 (3)当 x≥ 8 时, y1≥y2
10.已知一次函数y=-x+3,当0≤x≤3时,函数y的最大值是(
) B
A.0 B.3
C.-3 D.无法确定 11.(2015· 荆州)如图,直线y1=x+b与y2=kx-1相交于点P,点P的横 坐标为-1,则关于x的不等式x+b>kx-1的解集在数轴上表示正确 的是( ) A
8.如图,已知函数y=x+b和y=ax+3的图象交点为P,则不等式x+ b>ax+3的解集为_______ x >1 .
2 9.已知函数 y1=3x-6,y2=-2x+1.利用函数图象解答下列问题: (1)当自变量 x 取何值时,y1>0? (2)当 x 取何值时,y2≤3? (3)当 x 取何值时,y1≥y2?
1 解:直线 AB 为:y=2x+1.由 y=2x+1=0 得 x=-2,∴kx+b>0, 1 故解集为 x>-2
15.如图,直线l是一次函数y=kx+b的图象,点A,B在直线l上.根据
图象回答下列问题:
(1)写出方程kx+b=0的解; (2)写出不等式kx+b>1的解集;
(3)若直线l上的点P(m,n)在线段AB上移动,则m,n应如何取值.
3.下列说法错误的是( D ) A.方程 7x+ 3=0 的解,就是直线 y=7x+ 3与 x 轴交点的横坐标 B. 方程 2x+3=4x+7 的解, 就是直线 y=2x+3 与直线 y=4x+7 交点的 横坐标 C.方程 7x+ 3=0 的解,就是一次函数 y=7x+ 3当函数值为 0 时自变 量的值 D.方程 7x+ 3=0 的解,就是直线 y=7x+ 3与 y 轴交点的纵坐标 4.已知关于 x 的方程 mx+n=0 的解为 x=-3,则直线 y=mx+n 与 x (-3,0) . 轴的交点坐标是_____________
一次函数与一元一次方程、不等式
19.2.3 一次函数与方程、不等式第1课时一次函数与一元一次方程、不等式基础题知识点1 一次函数与一元一次方程1.(1)一元一次方程-2x+4=0的解是;(2)函数y=-2x+4,当x=时,函数值y=0;(3)直线y=-2x+4与x轴的交点坐标是;(4)由上述问题可知,一元一次方程ax+b=0的解就是一次函数y=ax+b当y=0时所对应的的值;从图象上看,就是一次函数y=ax+b的图象与轴交点的.2.已知关于x的方程mx+n=0的解为x=-3,则直线y=mx+n与x轴的交点坐标是.3.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是.4.如图所示,已知直线y=ax-b,则关于x的方程ax-b=1的解是.5.若一次函数y=ax+b(a,b为常数且a≠0)中x 与y的部分对应值如下表,则方程ax+b=0的解是( )x -2 -1 0 1 2 3y 6 4 2 0 -2 -4C.x=2 D.x=36.已知方程kx+b=0的解是x=3,则函数y=kx +b的图象可能是( )A B C D7.已知关于x的方程kx+b=3的解为x=7,则直线y=kx+b的图象一定过点( )A.(3,0) B.(7,0)C.(3,7) D.(7,3)知识点2 一次函数与一元一次不等式(组)8.如图,直线y=kx+3经过点(2,0),(0,3),则关于x的不等式kx+3>0的解集是( ) A.x>2B.x<2C.x≥2D.x≤29.(2019·遵义)如图所示,直线l1:y=32x+6与直线l2:y=-52x-2交于点P(-2,3),则不等式32x+6>-52x-2的解集是( )A.x>-2B.x≥-2C.x<-2D.x≤-210.如图,已知一次函数y=kx+b的图象分别与x 轴、y轴交于点(2,0)、点(0,3).有下列结论:①关于x的方程kx+b=0的解为x=2;②当x>2时,y<0;③当x<0时,y<3.其中正确的是( )A.①②B.①③C.②③D.①②③11.(2020·遵义)如图,直线y=kx+b(k,b是常数,k≠0)与直线y=2交于点A(4,2),则关于x的不等式kx+b<2的解集为.12.已知函数y =kx +b 的图象如图所示,利用函数图象回答:(1)当x 取何值时,kx +b =0? (2)当x 取何值时,kx +b =1.5? (3)当x 取何值时,kx +b <0? (4)当x 取何值时,0.5<kx +b <2.5?中档题13.如图是直线y =x -5的图象,点P(2,m)在该直线的下方,则m 的取值范围是( )A .m >-3B .m >-1C .m >0D .m <-314.(2020·湘潭)如图,直线y =kx +b(k <0)经过点P(1,1),当kx +b ≥x 时,则x 的取值范围为( )A .x ≤1B .x ≥1C .x <1D .x >115.(2019·娄底)如图,直线y =x +b 和y =kx +2与x 轴分别交于点A(-2,0)、点B(3,0),则⎩⎪⎨⎪⎧x +b >0,kx +2>0的解集为( )A .x <-2B .x >3C .x <-2或x >3D .-2<x <316.已知一次函数y =-2x +4,完成下列问题: (1)在所给的平面直角坐标系中画出此函数的图象. (2)根据函数图象回答:①方程-2x +4=0的解是 .②当x 时,y >2.③当-4≤y ≤0时,相应x 的取值范围是 .17.在学习一元一次不等式与一次函数中,小明在同一个坐标系中分别作出了一次函数y =k 1x +b 1和y =kx +b 的图象,分别与x 轴交于点A ,B ,两直线交于点C.已知点A(-1,0),B(2,0),观察图象并回答下列问题:(1)关于x 的方程k 1x +b 1=0的解是 ,关于x 的不等式kx +b <0的解集是 .(2)直接写出关于x 的不等式组⎩⎪⎨⎪⎧kx +b >0,k 1x +b 1>0的解集.(3)若点C(1,3),求关于x 的不等式k 1x +b 1>kx +b 的解集和△ABC 的面积.答案1.(1)x=2;(2)2;(3)(2,0);(4)x;x 横坐标.2.(-3,0).3.x=2.4.x=4.5.A6.C7.D8.B9.A10.A11.x<4.12.解:(1)x=-0.5.(2)x=1.(3)x<-0.5.(4)0<x<2. 13.D14.A15.D16.(1)(2)①x=2.②x<1.③2≤x≤4.17.解:(1)x=-1,x>2.(2)-1<x<2.(3)∵点C(1,3),∴由图象可知,不等式k1x+b1>kx+b的解集是x >1.∵AB=3,∴S△ABC=12AB·y C=12×3×3=92.。
一次函数与一元一次方程,不等式
19.2.3 一次函数与方程、不等式龙湖中学郭燕一、教学目标1.知识与技能:①使学生理解并掌握一次函数与一元一次方程,一元一次不等式的相互联系。
②是学生能初步运用函数的图像来解释一元一次方程、一元一次不等式的解集,并通过函数图像来回答一元一次方程、一元一次不等式的解集。
2.过程与方法:通过对一次函数与一元一次方程,一元一次不等式关系的探究,引导学生认识事物部分与整体的辩证统一关系,发展学生的辩证思维能力。
3.情感态度与价值观:探究活动中,让学生体会数学知识的融会贯通,发现数学的美,以激发学生学习数学的兴趣和克服困难的信心。
二.教学重难点:1.重点:①理解一次方程,一元一次不等式与一次函数的转化关系及本质联系。
②掌握用图像求解方程不等式的方法。
2.难点:根据一次函数的图像求解方程和不等式三.教学过程:1.探究一次函数与方程的关系问题1(1)解方程2x-4=0(2)当自变量x取何值时,函数y=2x-4的值为0?(3)画出函数y=2x-4的图像,并确定它与x轴的交点坐标。
(4)第(1)(2)问题有何关系?(1)(3)呢?[从上述问题中,你能发现一次函数与一元一次方程的关系吗?]问题(2)(3)可以看作是同一个问题的两种形式,问题(1)(2)是从数的角度看,问题(3)是从形的角度看。
学生按要求探究,并总结结论从数的角度看,一元一次方程2x-4=0的解是一次函数y=2x-4的y为0时x 的值。
从形的角度看,一元一次方程2x-4=0的解是一次函数y=2x-4的图像与x轴交点的横坐标。
2.新知构建①填写表格,使得以下的一元一次方程问题与一次函数问题是同一问题。
你能从函数的角度解方程2x+1=3吗?学生独立思考后,画出一次函数y=2x+1的图像,从数的角度,y=2x+1的函数值为3时,自变量x 的值是这个方程的解;从图像上可以看出,直线y=2x+1上纵坐标为3的点的横坐标为1,是这个方程的解。
任何以x 为未知数的一元一次方程,都可以化成ax+b=0(a,b 为常数,a ≠0)的形式,因此,方程2x+1=3的解,也可以看成直线y=2x-2与x 轴交点的横坐标。
一次函数与一元一次方程、不等式
8、人们常用“心有余而力不足”来为自 己不愿 努力而 开脱, 其实, 世上无 难事, 只怕有 心人, 积极的 思想几 乎能够 战胜世 间的一 切障碍 。 9、如果你希望成功,当以恒心为良友, 以经验 为参谋 ,以当 心为兄 弟,以 希望为 哨兵。 ——爱 迪生
1 知识小结
任何一元一次方程都可以转化为ax+b=0(a,b为常 数,a≠0)的形式,所以解一元一次方程可以转化为当某 个一次函数的函数值为0时,求相应的自变量的值.从图 象上看,相当于已知直线y=ax+b,确定它与x轴的交点 的横坐标.即“形”题用“数”解,“数”题用“形”解, 充分体现了数形结合的思想.
1 【2016·桂林】如图,直线y=ax+b过点A(0,2) 和点B(-3,0),则方程ax+b=0的解是( D ) A.x=2 B.x=0 C.x=-1 D.x=-3
2 【中考·合肥】已知方程 1 x+b=0的解是x=
2 -2,下列可能为直线y=
1 2
x+b的图象的是
( C)
3 如图,若一次函数y=-2x+b的图象交y轴于点
因为任何一个以x为未知数的一 元一次方程都可以变形为ax+b=0(a≠0)的形式,所以解 一元一次方程相当于在某个一次函数y=ax+b的函数值为 0时,求自变量x的值.
一次函数与一元一次方程的联系: 任何一个以x为未知数的一元一次方程都可以变
形为ax+b=0(a≠0,a,b为常数)的形式,所以解一 元一次方程可以转化为:求一次函数y=ax+b(a≠0, a,b为常数)的函数值为0时,自变量x的取值;反映 在图象上,就是直线y=ax+b与x轴的交点的横坐标.
一次函数与一元一次方程、不等式
2
易错小结
-1<x<2
易错点:利用函数图象解不等式时,对函数值和点的坐 标的关系不理解导致出错(数形结合思想).
例1
利用函数图象解出x:3x-2=x+4.
先将方程化为ax+b=0的形式, 再在坐标系中画出函数y=ax+ b的图象,然后观察出直线y= ax+b与x轴的交点坐标,从而 取定所求x的值.
导引:
由3x-2=x+4得2x-6=0画函 数y=2x-6的图象,如图所示, 由图可知,直线y=2x-6与x轴的交点为(3,0), 所以x=3.
3
C
已知一次函数y=2x+n的图象如图所示,则方程2x+n=0的解可能是( ) A.x=1 B.x= C.x=- D.x=-1
4
C
【2017·湘潭】一次函数y=ax+b的图象如图所示,则不等式ax+b≥0的解集是( ) A.x≥2 B.x≤2 C.x≥4 D.x≤4
5
B
【2017·菏泽】如图,函数y1=-2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式-2x>ax+3的解集是( ) A.x>2 B.x<2 C.x>-1 D.x<-1
D
【中考·合肥】已知方程 x+b=0的解是x= -2,下列可能为直线y= x+b的图象的是 ( )
2
C
如图,若一次函数y=-2x+b的图象交y轴于点A(0,3),则不等式-2x+b>0的解集为( ) A.x> B.x>3 C.x< D.x<3
2
已知小刚从家出发7分钟时与家的距离是1 200米, 从上公交车到他到达学校共用10分钟.下列说法: ①公交车的速度为400米/分钟; ②小刚从家出发5分钟时乘上公交车; ③小刚下公交车后跑向学校的速度是100米/分钟; ④小刚上课迟到了1分钟.其中正确的有( ) A.4个 B.3个 C.2个 D.1个
一次函数与一元一次方程和不等式同步辅导(含答案)--绝对经典
11.3.1 -11.3.2 一次函数与一元一次方程和不等式重点知识讲解1.一元一次方程ax+b=0(a≠0)与一次函数y=ax+b(a≠0)的关系(1)一元一次方程ax+b=0(a≠0)是一次函数y=ax+b(a≠0)的函数值为0时的特殊情形.(2)直线y=ax+b与x轴交点的横坐标就是一元一次方程ax+b=0的解x=-ba。
2.一元一次不等式与一次函数的关系(1)一元一次不等式ax+b>0或ax+b<0(a≠0)是一次函数y=ax+b(a≠0)•的函数值不等于0的情形.(2)直线y=ax+b上使函数值y>0(x轴上方的图像)的x的取值范围是ax+b>0的解集;使函数值y<0(x轴下方的图像)的x的取值范围是ax+b<0的解集.经验与方法技巧1.利用一次函数求一元一次方程的解题步骤(1)将一元一次方程化成ax+b=0的形式.(2)画出y=ax+b的图像,确定其与x轴交点的横坐标.2.利用一次函数求一元一次不等式的解集的技巧根据不等式的特点,灵活采用求解方法:(1)利用一个一次函数;(2)•利用两个一次函数.典型例题例1画出y=-3x+5的图象,利用图像求方程-3x+5=0的解.解析取点(0,5),(53,0),图像如图所示.∵直线y=-3x+5与x轴交点的横坐标为53,∴方程-3x+5=0的解为x=53。
评注画函数图像时要准确,求出直线y=-3x+5与x•轴交点的横坐标即为方程的解.例2画出函数y=-3x+12的图像,利用图像求:(1)不等式-3x+12>0的解集.(2)不等式-3x+12≤0的解集.(3)如果y的值在-6≤y≤6的范围内,那么相应的x的值在什么范围内?解析取点(0,12),(4,0),作出函数图像,如图所示,由图像可以看出:(1)当y>0时,x的取值范围为x<4,∴不等式-3x+12>0的解集为x<4.(2)当y≤0时,x的取值范围为x≥4.∴不等式-3x+12≤0的解集为x≥4.(3)当-6≤y≤6时,x的取值范围为2≤x≤6.评注借助图像求不等式的解集,关键是要清楚以下几点:①y>0时,x•的取值范围就是x轴上方的图像所对应的x的取值范围.②y<0时,x的取值范围就是x•轴下方的图像所对应的x的取值范围.③y=0时,x的值就是图像与x轴交点的横坐标.④当y>a或y<a(a≠0)时,应先确定当y=a时对应的x值,然后再进一步确定x的取值范围.例3若y1=-x+3,y2=3x-4,当x取何值时,y1<y2?解析∵y1<y2,∴-x+3<3x-4,解得x>74,∴当x>74时,y1<y2.评注此题是两个一次函数之间的关系,可以直接借助一元一次不等式求出x的取值范围.教材例题习题的变形题例(P41例2)用画图像的方法解下列各题:(1)解不等式:5x+4>2x+10.(2)解方程:5x+4=2x+10.解析(1)如图,原不等式可化为3x-6>0,画出直线y=3x-6,由图像可以看出,当x>2时,这条直线上的点在x轴的上方,即这时y=3x-6>0,所以不等式的解集为x>2.(2)原方程可化为3x-6=0.由图像可以看出,y=3x-6与x轴交点的横坐标为2,所以原方程的解为x=2.评注①从函数的角度看问题,能发现一次函数与一元一次不等式、•一元一次方程之间的联系,体现了数形结合的思想.②本题求不等式的解集时,还可将不等式的两边分别看作两个一次函数,画出两条直线,比较直线上点的位置的高度,也可求得不等式的解集.学科内综合题例1甲、乙两辆摩托车分别从相距20km的A,B两地出发,相向而行,图中的L1,L2分别表示甲、乙两辆摩托车离开A地的距离s(km)与行驶时间t(h)•之间的函数关系.(1)哪辆摩托车的速度较快?(2)经过多长时间,甲摩托车行驶到A,B两地的中点?解析(1)由图像可以看出,甲摩托用了0.6h行驶了20km,而乙摩托车用了0.•5h 行驶了20km,所以乙摩托车的速度较快.(2)设L1的关系式为y=kx,把x=0.6,y=20代入,得20=0.6k,解得k=1003,∴y=1003x.当y=10时,10=1003x.所以经过0.3h,甲摩托车行驶到A,B两地的中点.评注本题第(1)题是比较速度的大小,这一点可以通过图像提供的数量直接分析出来.第(2)题的关键是要分析出甲摩托车行驶到中点时所行驶的路程为10km.例2已知y=12x-2.(1)x取何值时,y>0?(2)x取何值时,y<0?(3)当x>4时,求y的取值范围.解析作出y=12x-2的图像,如图所示.(1)当x>4时,y>0.(2)当x<4时,y<0.(3)当x>4时,y的取值范围是y>0.评注本题可以通过图像直观地得出结论.综合应用题例1某单位计划在新年期间组织员工到某地旅游,参加旅游的人数估计为10~20人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元.经过协商,•甲旅行社表示可给予每位游客七五折优惠;乙旅行社表示可先免去一位游客的旅游费用,再给其余游客八折优惠.该单位选择哪一家旅行社支付的旅游费用较少?解析设该单位参加这次旅游的人数是x人,选择甲旅行社时所需的费用为y1元,选择乙旅行社时所需的费用为y2元,则y1=200×0.75x,即y1=150x;y2=200×0.8(x-1),即y2=160x-160.由y1=y2,得150x=160x-160,解得x=16;由y1>y2,得150x>160x-160,解得x<16;由y1<y2,得150x<160x-160,解得x>16.因为参加旅游的人数估计为10~20人,所以,当x=16时,甲、•乙两家旅行社的收费相同;当17≤x≤20时,选择甲旅行社费用较少;当10≤x≤15时,选择乙旅行社费用较少.评注已知前提条件,设计方案是解决实际问题的一种常见形式.明确每一种收费方式占优势时对应的自变量的取值范围是解决此类问题的关键,•借助不等式就可确定自变量的取值范围.例2兄弟俩赛距,哥哥先让弟弟跑9m,然后自己才开始跑.已知弟弟每秒跑3m,•哥哥每秒跑4m.列出函数关系式,作出函数图像,观察图像回答下列问题:(1)何时弟弟跑在哥哥前面?(2)何时哥哥跑在弟弟前面?(3)谁先跑过20m?谁先跑过100m?解析设哥哥跑了ts,则哥哥所跑的路程与时间的关系式为s1=4t;弟弟所跑的路程与时间的关系为s2=3t+9.图像如图所示.当s1=s2时,4t=3t+9,t=9.(1)当0≤t<9时,弟弟跑在哥哥的前面.(2)当t>9时,哥哥跑在弟弟的前面.(3)∵20<36,∴弟弟先跑过20m.∵100>36,∴哥哥先跑过100m.评注本题可以从时间或路程两个角度进行分析.在同一时间内,谁跑的路程远,谁就在前面,谁就先跑过20m,100m.也可比较他们各自所用的时间,谁用的时间短,•谁就先跑过.本题既可以通过计算来进行比较,也可通过图像直观地进行判断.创新题例(探究题)我边防局接到情报,在离海岸5海里处有一可疑船只A•正向公海方向行驶,边防局迅速派出快艇B追赶.图中L1,L2分别表示两船相对于海岸的距离s(海里)与追赶时间t(min)之间的关系.(1)A,B哪一个的速度快?(2)至少要用多长时间才能追上可疑船只A?解析由图像可确定L表示快艇B的图像,L表示可疑船只A的图像.(1)快艇10min行驶了5海里,所以其速度为5÷10=0.5(海里/min).可疑船只10min行驶了7-5=2(海里),所以其速度为2÷10=0.2(海里/min).所以快艇B的速度快.(2)设L1的关系式为y1=kx,把(10,5)代入,得5=10k,解得k=0.5,∴y1=0.5x.设L2的关系式为y2=kx+5,把(10,7)代入,得7=10k+5,解得k=0.2,∴y2=0.2x+5.当y1≥y2,即0.5x≥0.2x+5时,0.3x≥5,x≥503.所以至少需要503min,快艇才能追上可疑船只.中考题例(2004年苏州卷)如图,平面直角坐标系中画出了函数y=kx+b的图像.(1)根据图像,求k和b的值.(2)在图中画出函数y=-2x+2的图像.(3)求x的取值范围,使函数y=kx+b的函数值大于函数y=-2x+2的函数值.解析(1)∵直线y=kx+b经过点(-2,0),(0,2).∴02,20,k bb=-+⎧⎨=+⎩解得1,2,kb=⎧⎨=⎩∴y=x+2.(2)y=-2x+2经过(0,2),(1,0),图像如图所示.(3)当y=kx+b 的函数值大于y=-2x+2的函数值时,也就是x+2>-2x+2,解得x>0,•即x 的取值范围为x>0.11.3.1 一次函数与一元一次方程同步练习[要点再现]1.由于任何一元一次方程都可以转化为 的形式,所以解一元一次方程可以转化为:当 时,求 的值。
【学案】 一次函数与一元一次方程、不等式
一次函数与一元一次方程、不等式一、知识点导学:1.画出函数y =x +2的图像,观察图像回答问题 ①方程 20x +=的解为 ②不等式20x +>的解集为 ③不等式20x +<的解集为3.由于任何一个一元一次方程都可以转化为 的形式,所以解一元一次方程可以转化为一次函数y =ax +b (a ≠0)。
当 时,求 的值。
从图象上看,相当于已知 ,确定 的值4.解一元一次不等式可以看作:当一次函数的值大(小)于0时,求5.一次函数y=ax+b (a ≠0)的图像与x 轴交点的 就是一元一次方程ax+b=0(a ≠0)的解6.一次函数y=ax+b (a ≠0)位于x 轴 方的图像对应的x 的 就是一元一次不等式ax+b>0(a ≠0)的解集7.一次函数y=ax+b (a ≠0)位于x 轴 方的图像对应的 的取值范围就是一元一次不等式ax+b<0(a ≠0)的解集二、范例点睛:例1.如图是一个一次函数的图像,请根据图像回答问题(1)当x =0时,y = ,当y =0时,x =(2)写出直线对应的一次函数的表达式 (3)一元一次方程1202x +=和一次函数122y x =+的联系(4)一元一次不等式1202x +>和一次函数122y x =+的联系(5)一元一次不等式1202x +<和一次函数122y x =+的联系例2.画出y=-3x+3的图象,利用图像求①方程-3x+3=0的解是 ②不等式-3x+3>0的解集是 ③不等式-3x+3<0的解集是三、思考与感悟:1.在一次函数35-=x y 中,若0=x ,则=y ;若2=y ,则=x2.若点P (a ,4)在函数3+=x y 的图象上,则=a3.利用函数图象解一元一次方程:412+-=+x x4.如图所示,是某学校一电热淋浴器水箱的水量y (升)与供水时间x (分)的函数关系。
(1)求y 与x 的函数解析式(2)在(1)的条件下,经过 分钟水箱有水70升 5.一水池现有水20米3,进水管以5米3/时的速度向水池中注水 同时另一排水管以6米3/时的速度向水池外排水(1)写出水池的蓄水量V (米3)与时间t (时)之间的函数解析式 (2)经过 小时水池的水被排空6.如图,是一次函数312y x =-+的图像,观察图像思考:当0=y 时,=x 方程3120x -+=的解为 不等式3120x -+>解集为 不等式3120x -+<解集为四、练习与测试:1.在一次函数23y x =-中,若0=x ,则=y 若2=y ,则=x2.当自变量x 时,函数32y x =+的值大于0;当x 时,函数32y x =+的值小于3.已知函数36y x =-+,当x 时,4>y ;当x 时,2-≤y4.如图,直线l 是一次函数b kx y +=的图象,观察图象,可知(1)=b =k (2)当2>y 时,x 5.已知函数y 1=2x-4与y 2=-2x+2,画出图像并观察图象回答问题 (1)x 时,2x-4>0 (2)x 时,-2x+2>0 (3)x 时,2x-4<0与-2x+2<0同时成立(4)函数y 1=2x-4与y 2 =-2x+2的图象与X 轴所围成的三角形的面积为 6.某用煤单位有煤m 吨,每天烧煤n 吨,已知烧煤3天后余煤102吨,烧煤8天后余煤72吨。
一次函数一元一次方程和一元一次不等式讲解
一次函数一元一次方程和一元一次不等式讲解1.什么是一次函数一次函数,也称为一次多项式函数或线性函数,是指形如$y=a x+b$的函数,其中$a$和$b$是常数,$x$是自变量,$y$是因变量。
一次函数的图像为一条直线,具有特定的斜率和截距。
一次函数的基本形式为$y=ax+b$,其中$a$表示斜率,决定了函数图像的倾斜程度,$b$表示截距,决定了函数图像与$y$轴的交点。
2.一元一次方程的求解等式性质一元一次方程是指只含有一个变量的一次方程。
解一元一次方程的核心思想是通过运用和**方程统一变形原则**,将方程逐步化简,最终得到变量的解。
求解一元一次方程的一般步骤如下:1.对方程中的项进行整理和合并,使得方程成为$a x+b=0$的形式;2.根据方程统一变形原则,将方程中的常数项移至方程的右侧,得到$a x=-b$;3.利用解方程的等式性质,将方程两边同时乘以$\fr ac{1}{a}$,得到$x=\f ra c{-b}{a}$;4.化简得到最终解,即$x$的值。
通过以上步骤,可以求得一元一次方程的解。
3.一元一次不等式的求解等式性质一元一次不等式是指只含有一个变量的一次不等式。
求解一元一次不等式的方法与求解一元一次方程类似,同样可以运用和**不等式统一变形原则**。
求解一元一次不等式的一般步骤如下:1.对不等式中的项进行整理和合并,使得不等式成为$a x+b<c$或$a x+b>c$的形式;2.根据不等式的性质,将常数项移至不等式的右侧;3.根据不等式统一变形原则,将不等式两边同时乘以正数或除以负数,注意在乘或除的过程中要考虑到反号问题;4.根据不等式的性质,得到不等式的最终解。
需要注意的是,在进行不等式符号的翻转时,需要根据乘或除的正负进行对应,以确保不等式符号的方向正确。
4.总结一次函数、一元一次方程和一元一次不等式在数学中起着重要的作用。
掌握了一次函数的概念和性质,以及求解一元一次方程和不等式的方法,能帮助我们更好地理解和解决数学问题。
【教学设计】 一次函数与一元一次方程、不等式
一次函数与一元一次方程、不等式一、教材分析(一)教材背景、地位和作用本节课是人教版八年级下第19章第2节《一次函数与一元一次方程、不等式》,是研究一次函数在数学内部的应用,通过研究,引导学生建立一次函数与一元一次方程、一元一次不等式的内在联系,主动构建认知结构,从中感受数形结合的思想,感悟引入并研究一次函数是数学知识和方法的自然延伸。
(二)教学目标【知识技能目标】(1)通过具体实例,初步体会一次函数与一元一次方程、一元一次不等式的内在联系。
(2)了解一次函数、一元一次方程、一元一次不等式在解决问题过程中的作用和联系。
【过程性目标】通过例题的学习,让学生拥有辨别一元一次不等式与一元一次方程、一次函数关系的能力,使得学生的知识能够形成网状结构,使知识能互相交融,培养触类旁通的能力,培养孩子们的发散思维。
【情感和价值观目标】三个知识在这里融合在一起了,培养学生的观察能力,同时适当地增加学生合作学习交流的机会,尽量让学生参与到小组当中,感受与他人合作的重要性以及初步形成实事求是地科学态度和锲而不舍的求学精神。
另外,孩子们会发现不同的知识其实也可以联系起来,培养孩子们辨证唯物看问题的观点,培养孩子们喜欢数学的情感,促进孩子们心理的成长。
教学重难点重点:初步体会一次函数与一元一次方程、一元一次不等式的内在联系。
难点:掌握一次函数、一元一次方程、一元一次不等式在解决问题过程中的作用和联系。
二、教学过程教学内容教师导拨与学生活动教具(一)情境设置1.填空:(1)方程2x+4=0解是_______ ;(2)不等式2x+4>0的解集为________;不等式2x+4<0的解集为________.2.一次函数y=2x+4的图像是一条经过点(,),点(,)的直线.3.试根据一次函数y=2x+4的图像说出方程2x+4=0的解和不等式2x+4>0 、2x+4<0的解.归纳:一次函数、一元一次方程、一元一次不等式有着紧密的联系.已知一次函数的表达式,当其中一个变量的值确定时,可以由相应的一元一次方程确定另一个变量的值;当其中一个变量的取值范围确定时,可以由相应的一元一次不等式确定另一个变量的取值范围.学生探讨交流,初步感受一次函数、一元一次方程、一元一次不等式有着紧密的联系.电脑显示通过解决关于习题,从而引出本节课要讨论的问题,过度自然.在所允许的限度内所挂物体的最大质量。
一次函数与一元一次方程,一元一次不等式的关系
详细描述
解一元一次不等式的步骤包括:去分、去括号、移项、合 并同类项和化简。在解不等式时,需要注意不等号的方向在 不等式两边同时除以或乘以负数时需要改变。
一元一次不等式的应用
总结词
一元一次不等式在日常生活和科学研究中有着广泛的应用,如比较大小、解决优化问题 等。
详细描述
一元一次不等式可以用来解决各种实际问题,如比较大小、解决优化问题、确定范围等。 例如,在购物时比较不同商品的价格和优惠条件,或者在生产中优化资源分配和成本效
总结词
求解一元一次方程通常涉及移项 、合并同类项和系数化为1等步骤 。
详细描述
对于 ax + b = 0,解得 x = -b/a。 如果 a = 0 且 b ≠ 0,则方程无解。 如果 a = 0 且 b = 0,则方程有无 数多个解。
一元一次方程的应用
总结词
一元一次方程在日常生活和科学研究中有着广泛的应用,如购物时计算找零、 物理中的简单运动问题等。
一次函数与一元一次方程、一元一 次不等式的关系
目录
• 一次函数 • 一元一次方程 • 一元一次不等式 • 一次函数与一元一次方程、一元一次
不等式的关系
01 一次函数
一次函数的定义
01
一次函数的一般形式为 y = ax + b, 其中 a 和 b 是常数,a ≠ 0。
02
一次函数是函数的一种,自变量 x 和因变量 y 之间存在线性关系 。
一元一次不等式通常表示为 ax + b > c、ax + b < c 或 ax + b ≥ c 的形式,其中 a、 b、c 是常数,且 a ≠ 0。这个不等式只含有一个未知数 x,且 x 的最高次数为1。
一次函数与一元一次方程、不等式
(1)X取何值时,2x-5=0
y=0
分析:
1 2 3 4 5
x
(2.5 , 0)
∴
x=2.5, 2x-5=0
观察图象回答下列问题: (2)X取哪些值时,2x-5>0 分析: ∴ x>2.5,
y
4 3 2 1 0 -2 -1 -1 -2 -3 -4 -5
y=2x-5
y>0
2x-5>0
1 2 3 4 5
y =x+3
−3
O
x
解一元一次方程ax+b=0 (a ,b为常数)可以 转化为:当某个一次函数的值为0时,求相应的 自变量的值.从图象上看,这相当于已知直线 y=ax+b,确定它与x轴交点的横坐标的值.
观察图象回答下列问题:
y
4 3 2 1 0 -2 -1 -1 -2 -3 -4 -5
y=2x-5
4 3 2 1 0 -2 -1 -1
y=2x-5
1 2 3 4 5
x
分析: ∴ x>4,
y=3 2x-5>3
-2 -3 -4 -5
名校练习
课堂反思 本节课你学会了什么? 1. 一元一次不等式与一次函数的关系. 2. 运用一次函数图象求解不等式.
(3)从函数图象上看,直线y=2x+20与x轴交 y 点的横坐标是 10
20
10
O
y 2 x 20
x
说明了方程2x+20=0的解是直线 y=2x+20与x轴交点的横坐标。
从“形”上看
由上面两个问题的关系,能进一步得到
“解方程ax+b=0(a,b为常数, a≠0)”与“求自变 量 x 为何值时,一次函数y=ax+b的值为0”有什么 关系?
中考数学总复习一次函数与方程、不等式的关系
一次函数与方程、不等式的关系考点·方法·破译 1. 一次函数与一元一次方程的关系:任何一元一次方程都可以转化成kx +b =0(k 、b 为常数,k ≠0)的形式,可见一元一次方程是一次函数的一个特例.即在y =kx +b 中,当y =0时则为一元一次方程.2. 一次函数与二元一次方程(组)的关系:⑴任何二元一次方程ax +by =c (a 、b 、c 为常数,且a ≠0,b ≠0)都可以化为y =a c x b b-+的形式,因而每个二元一次方程都对应一个一次函数;⑵从“数”的角度看,解方程组相当于求两个函数的函数值相等时自变量的取值,以及这个函数值是什么;从“形”的角度看,解方程组相当于确定两个函数图像交点的坐标.3. 一次函数与一元一次不等式的关系:由于任何一元一次不等式都可以转化成ax +b >0或ax +b <0(a 、b 为常数,a ≠0)的形式,所以解一元一次不等式可以看成是当一次函数的函数值大于或小于0时,求相应自变量的取值范围.经典·考题·赏析【例1】直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b >k 2x 的解为( )A .x >-1B .x <-1C .x <-2D .无法确定 【解法指导】由图象可知l 1与l 2的交点坐标为(-1,-2),即当x =-1时,两函数的函数值相等;当x >-1时,l 2的位置比l 1高,因而k 2x >k 1x +b ;当当x <-1时,l 1的位置比l 2高,因而k 2x <k 1x +b .因此选A .【变式题组】01.(浙江金华)一次函数y 1=kx +b 与y 2=x +a 的图象如图,则下列结论:①k <0;②a >0;③当x <3时,y 1<y 2中,正确的个数是( ) A .0 B .1 C .2 D .302.如图,已知一次函数y =2x +b 和y =ax -3的图象交于点P (-2,-5),则根据图像可得不等式2x +b >ax -3的解集是________. 03. (武汉)如图,直线y =kx +b 经过A (2,1),B (-1,-2)两点,则不等式12x >kx +b >-2的解集为_________.第1题图 第2题图 第3题图【例2】若直线l 1:y =x -2与直线l 2:y =3-mx 在同一平面直角坐标系的交点在第一象限,求m 的取值范围. 【解法指导】直线交点坐标在第一象限,即对应方程组的解满足00x y >⎧⎨>⎩,从而求出m 的取值范围.解:23y x y mn =-⎧⎨=-⎩,∴51321x mm y m ⎧=⎪⎪+⎨-⎪=⎪+⎩,∴00x y >⎧⎨>⎩,∴5013201m m m⎧>⎪⎪+⎨-⎪>⎪+⎩,即10320m m +>⎧⎨->⎩,∴-1<m <32.【变式题组】01. 如果直线y =kx +3与y =3x -2b 的交点在x 轴上,当k =2时,b 等于( )A .9B .-3C .32-D .94-02. 若直线122y x =-与直线14y x a =-+相较于x 轴上一点,则直线14y x a =-+不经过( ) A .第四象限 B .第三象限 C .第二象限 D .第一象限03. 两条直线y 1=ax +b ,y 2=cx +5,学生甲解出它们的交点坐标为(3,-2),学生乙因抄错了c 而解出它们的交点坐标为(34,14),则这两条直线的解析式为____________.04. 已知直线y =3x 和y =2x +k 的交点在第三象限,则k 的取值范围是________.【例3】已知直线l 1经过点(2,5)和(-1,-1)两点,与x 轴的交点是点A ,将直线y =-6x +5的图象向上平移4个单位后得到l 2,l 2与l 1的交点是点C ,l 2与x 轴的交点是点B ,求∴ABC 的面积.【解法指导】设直线l 1的解析式为y =kx +b ,∴l 1经过(2,5),(-1,-1)两点, ∴251k b k b +=⎧⎨-+=-⎩,解得21k b =⎧⎨=⎩,∴y =2x +1,∴当y =0时,2x +1=0,x =12-,∴A (12-,0).又∴y =-6x +5的图象向上平移4个单位后得l 2,∴l 2的解析式为y =-6x +9, ∴当y =0时,-6x +9=0,x =32,∴B (32,0). ∴2169y x y x =+⎧⎨=-+⎩,∴13x y =⎧⎨=⎩,∴C (1,3),∴AB =32-(12-)=2,∴S ∴ABC =12×2×3=3.【变式题组】01. 已知一次函数y =ax +b 与y =bx +a 的图象相交于A (m ,4),且这两个函数的图象分别与y 轴交于B 、C 两点(B 上C 下),∴ABC 的面积为1,求这两个一次函数的解析式. 02. 如图,直线OC 、BC 的函数关系式为y =x 与y =-2x +6.点P (t ,0)是线段OB 上一动点,过P 作直线l 与x 轴垂直.⑴求点C 坐标; ⑵设∴BOC 中位于直线l 左侧部分面积为S ,求S 与t 之间的函数关系式;⑶当t 为何值时,直线l 平分∴COB 面积. 演练巩固·反馈提高 01. 已知一次函数y =32x +m ,和y =12-x +n 的图象交点A (-2,0),且与y 轴分别交于B 、C 两点,那么∴ABC 的面积是( ) A .2 B .3 C .4 D .602. 已知关于x 的不等式ax +1>0(a ≠0)的解集是x <1,则直线y =ax +1与x 轴的交点是( )A .(0,1)B .(-1,0)C .(0,-1)D .(1,0)第3题图 第6题图03. 如图,直线y =kx +b 与x 轴交于点A (-4,0),则y >0时,x 的取值范围是( )A .x >-4B .x >0C .x <-4D .x <0 04. 直线kx -3y =8,2x +5y =-4交点的纵坐标为0,则k 的值为( )A .4B .-4C .2D .-205. 直线y =kx +b 与坐标轴的两个交点分别为A (2,0)和B (0,-3).则不等式kx +b +3≥0的解集为( ) A .x ≥0 B .x ≤0 C .x ≥2 D .x ≤206. 如图是在同一坐标系内作出的一次函数y 1、y 2的图象l 1、l 2,设y 1=k 1x +b 1,y 2=k 2x +b 2,则方程组111222y k x b y k x b ⎧⎨⎩=+,=+的解是( )A .22x y =-⎧⎨=⎩B .23x y =-⎧⎨=⎩C .33x y =-⎧⎨=⎩D .34x y =-⎧⎨=⎩07. 若直线y =ax +7经过一次函数y =4-3x 和y =2x -1的交点,则a =_________.08. 已知一次函数y =2x +a 与y =-x +b 的图象都经过A (-2,0),且与y 轴分别交于B 、C 两点,则S ∴ABC =_________.09. 已知直线y =2x +b 和y =3bx -4相交于点(5,a ),则a =___________.10.已知函数y =-x +m 与y =mx -4的图象交点在x 轴的负半轴上,则m 的值为__________. 11.直线y =-2x -1与直线y =3x +m 相交于第三象限内一点,则m 的取值范围是___________. 12.若直线122a y x =-+与直线31544y x =-+的交点在第一象限,且a 为整数,则a =_________. 13.直线l 1经过点(2,3)和(-1,-3),直线l 2与l 1交于点(-2,a ),且与y 轴的交点的纵坐标为7.⑴求直线l 2、l 1的解析式;⑵求l 2、l 1与x 轴围成的三角形的面积; ⑶x 取何值时l 1的函数值大于l 2的函数值?14.(河北)如图,直线l 1的解析式为y =-3x +3,l 1与x 轴交于点D ,直线l 2经过点A (4,0),B (3,32-). ⑴求直线l 2的解析式; ⑵求S ∴ADC ;⑶在直线l 2上存在异于点C 的另一点P ,使得S ∴ADP =S ∴ADC ,求P 点坐标.第14题图15.已知一次函数图象过点(4,1)和点(-2,4).求函数的关系式并画出图象.⑴当x 为何值时,y <0,y =0,y >0? ⑵当-1<x ≤4时,求y 的取值范围; ⑶当-1≤y <4时,求x 的取值范围.16.某医药研究所开发了一种新药,在实验药效时发现,如果成人按规定剂量服用,那么服药后2h时血液中含药量最高,达每毫升6μg (1μg =10-3mg ),接着就逐步衰减,10h 后血液中含药量为每毫升3μg ,每毫升血液中含药量y (μg )随时间x (h )的变化如图所示,当成人按规定剂量服药后, ⑴分别求x ≤2和x ≥2时,y 与x 之间的函数关系式;⑵如果每毫升血液中含药量在4μg 或4μg 以上时,治疗疾病才是有效的,那么这个有效时间是多长?第16题图l 2。
2023人教版一次函数与方程、不等式的关系【十大题型】(举一反三)(人教版)(原卷版)
专题19.4 一次函数与方程、不等式的关系【十大题型】【人教版】【题型1 一次函数与一元一次方程的解】 (1)【题型2 两个一次函数与一元一次方程】 (2)【题型3 利用一次函数的变换求一元一次方程的解】 (3)【题型4 一次函数与二元一次方程(组)的解】 (3)【题型5 不解方程组判断方程组解的情况】 (4)【题型6 一次函数与一元一次不等式的解集】 (4)【题型7 两个一次函数与一元一次不等式】 (5)【题型8 绝对值函数与不等式】 (6)【题型9 一次函数与一元一次不等式组的解集】 (8)【题型10 一次函数与不等式组中的阴影区域问题】 (10)【知识点1 一次函数与一元一次方程、不等式的关系】1. 任何一个一元一次方程都可转化为:kx+b=0(k、b为常数,k≠0)的形式.而一次函数解析式形式正是y=kx+b(k、b为常数,k≠0).当函数值为0时, 即kx+b=0就与一元一次方程完全相同.结论:由于任何一元一次方程都可转化为kx+b=0(k、b为常数,k≠0)的形式.所以解一元一次方程可以转化为:当一次函数值为0时,求相应的自变量的值.从图象上看,这相当于已知直线y=kx+b确定它与x轴交点的横坐标值.2.解一元一次不等式可以看作:当一次函数的函数值大(小)于0时,求自变量相应的取值范围.【题型1 一次函数与一元一次方程的解】【例1】(2022秋•白塔区校级月考)直线y=3x﹣m﹣4经过点A(m,0),则关于x的方程3x﹣m﹣4=0的解是.【变式1-1】(2022春•安阳县期末)一次函数y=kx+b的图象如图所示,则关于x的方程kx+b=0的解为.【变式1-2】(2022春•雷州市校级期末)一次函数y=kx+b(k≠0,k,b是常数)的图象如图所示,则关于x的方程kx+b=4的解是()A.x=3B.x=4C.x=0D.x=b【变式1-3】(2022秋•招远市期末)已知关于x的一次函数y=3x+n的图象如图,则关于x的一次方程3x+n =0的解是()A.x=﹣2B.x=﹣3C.D.【题型2 两个一次函数与一元一次方程】【例2】(2022秋•双流区期末)已知一次函数y=5x+m的图象与正比例函数y=kx的图象交于点(﹣2,4)(k,m是常数),则关于x的方程5x=kx﹣m的解是.【变式2-1】(2022秋•龙岗区期末)如图,函数y=2x+b与函数y=kx﹣1的图象交于点P,则关于x的方程kx﹣1=2x+b的解是.【变式2-2】(2022秋•苏州期末)已知一次函数y=kx+1与的图象相交于点(2,5),求关于x的方程kx +b =0的解.【变式2-3】(2022秋•包河区期末)已知直线y =x +b 和y =ax +2交于点P (3,﹣1),则关于x 的方程(a ﹣1)x =b ﹣2的解为 .【题型3 利用一次函数的变换求一元一次方程的解】【例3】(2022春•江都区校级月考)若一次函数y =kx +b (k 为常数且k ≠0)的图象经过点(﹣2,0),则关于x 的方程k (x ﹣5)+b =0的解为 .【变式3-1】(2022•姜堰区一模)若一次函数y =ax +b (a 、b 为常数,且a ≠0)的图象过点(2,0),则关于x 的方程a (x +1)+b =0的解是 .【变式3-2】(2022秋•庐阳区校级期中)若关于x 的一次函数y =kx +b 的图象经过点A (﹣1,0),则方程k (x +2)+b =0的解为 .【变式3-3】(2022秋•庐阳区校级期中)将直线y =kx ﹣2向下平移4个单位长度得直线y =kx +m ,已知方程kx +m =0的解为x =3,则k = ,m = . 【题型4 一次函数与二元一次方程(组)的解】【例4】(2022春•夏津县期末)如图,根据函数图象回答问题:方程组{y =kx +3y =ax +b的解为 .【变式4-1】(2022•贵阳)在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y 的方程组{y −k 1x =b 1y −k 2x =b2的解是 .【变式4-2】(2022秋•西乡县期末)已知二元一次方程组{x −y =−5x +2y =−2的解为{x =−4y =1,则在同一平面直角坐标系中,直线l 1:y =x +5与直线l 2:y =−12x ﹣1的交点坐标为( )A .(4,1)B .(1,﹣4)C .(﹣1,﹣4)D .(﹣4,1)【变式4-3】(2022•德城区二模)若以关于x 、y 的二元一次方程x +2y ﹣b =0的解为坐标的点(x ,y )都在直线y =−12x +b ﹣1上,则常数b 的值为( )A .12B .1C .﹣1D .2【题型5 不解方程组判断方程组解的情况】【例5】(2022秋•泰兴市校级期末)已知关于x ,y 的方程组{y =kx +by =(3k −1)x +2(1)当k ,b 为何值时,方程组有唯一一组解; (2)当k ,b 为何值时,方程组有无数组解; (3)当k ,b 为何值时,方程组无解.【变式5-1】(2022秋•苏州期末)若二元一次方程组{3x +y =−12x +my =−8有唯一的一组解,那么应满足的条件是( ) A .m =23B .m ≠23C .m =−23D .m ≠−23【变式5-2】(2022春•覃塘区期中)如果关于x ,y 的方程组{x +y =1ax +by =c 有唯一的一组解,那么a ,b ,c的值应满足的条件是( ) A .a ≠bB .b ≠cC .a ≠cD .a ≠c 且c ≠1【变式5-3】(2022春•高明区期末)k 为何值时,方程组{kx −y =−133y =1−6x 有唯一一组解;无解;无穷多解?【题型6 一次函数与一元一次不等式的解集】【例6】(2022•海淀区校级自主招生)已知一次函数y =kx +b 中x 取不同值时,y 对应的值列表如下:x … ﹣m 2﹣1 1 2 … y…﹣2n 2+1…则不等式kx +b >0(其中k ,b ,m ,n 为常数)的解集为( ) A .x >1B .x >2C .x <1D .无法确定【变式6-1】(2022春•龙岗区期末)如图,已知一次函数y =kx +b 的图象经过点A (﹣3,2),B (1,0),则关于x 的不等式kx +b <2解集为 .【变式6-2】(2022春•湖南期中)已知关于x 的不等式ax +1>0(a ≠0)的解集是x <1,则直线y =ax +1与x 轴的交点是( ) A .(0,1)B .(﹣1,0)C .(0,﹣1)D .(1,0)【变式6-3】(2022春•高明区校级期末)如图,直线y =kx +b 与直线y =−12x +52交于点A (m ,2),则关于x 的不等式kx +b ≤−12x +52的解集是( )A .x ≤2B .x ≥1C .x ≤1D .x ≥2【题型7 两个一次函数与一元一次不等式】【例7】(2022•钟山县校级模拟)直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 2x >k 1x +b 的解集为( )A .x >3B .x <3C .x >﹣1D .x <﹣1【变式7-1】(2022•烟台)如图,直线y =x +2与直线y =ax +c 相交于点P (m ,3),则关于x 的不等式x +2≤ax +c 的解集为 .【变式7-2】(2022春•楚雄州期末)已知关于x的一次函数y=kx+b(k≠0)的图象过点A(2,4)、B(0,3).(1)求一次函数y=kx+b的解析式;(2)若关于x的一次函数y=mx+n(m<0)的图象也经过点A,则关于x的不等式mx+n≥kx+b的解集为.【变式7-3】(2022春•潮安区期末)已知直线y=kx+5交x轴于A,交y轴于B且A坐标为(5,0),直线y=2x﹣4与x轴于D,与直线AB相交于点C.(1)求点C的坐标;(2)根据图象,写出关于x的不等式2x﹣4>kx+5的解集;(3)求△ADC的面积.【题型8 绝对值函数与不等式】【例8】(2022秋•临海市校级月考)小敏学习了一次函数后,尝试着用相同的方法研究函数y=a|x﹣b|+c 的图象和性质.(1)在给出的平面直角坐标系中画出函数y=|x﹣2|和y=|x﹣2|+1的图象;(2)猜想函数y=﹣|x+1|和y=﹣|x+1|﹣3的图象关系;(3)尝试归纳函数y=a|x﹣b|+c的图象和性质;(4)当﹣2≤x≤5时,求y=﹣2|x﹣3|+4的函数值范围.【变式8-1】(2022秋•玄武区期末)请你用学习“一次函数”时积累的经验和方法研究函数y =|x |的图象和性质,并解决问题.(1)完成下列步骤,画出函数y =|x |的图象; ①列表、填空;x … ﹣3 ﹣2 ﹣1 0 1 2 3 … y …31123…②描点; ③连线.(2)观察图象,当x 时,y 随x 的增大而增大; (3)根据图象,不等式|x |<12x +32的解集为 .【变式8-2】(2022春•确山县期末)画出函数y =|x |﹣2的图象,利用图象回答下列问题: (1)写出函数图象上最低点的坐标,并求出函数y 的最小值; (2)利用图象直接写出不等式|x |﹣2>0的解集;(3)若直线y =kx +b (k ,b 为常数,且k ≠0)与y =|x |﹣2的图象有两个交点A (m ,1),B (12,−32),直接写出关于x 的方程|x |﹣2=kx +b 的解.【变式8-3】(2022春•重庆期末)在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数y=|2x+4|+x+m性质及其应用的部分过程,请按要求完成下列各小题.(1)如表是部分x,y的对应值:x…﹣6﹣5﹣4﹣3﹣2﹣1012…y…0n﹣2﹣3﹣4﹣1258…根据表中的数据可以求得m=,n=;(2)请在给出的平面直角坐标系中,描出以如表中各组对应值为坐标的点,再根据描出的点画出该函数的图象;(3)结合你所画的函数图象,写出该函数的一条性质;(4)若一次函数y=kx+b(k≠0)的图象经过点(﹣4,﹣2)和点(1,5),结合你所画的函数图象,直接写出不等式kx+b<|2x+4|+x+m的解集.【题型9 一次函数与一元一次不等式组的解集】【例9】(2022秋•青田县月考)如图,可以得出不等式组{ax+b<0cx+d>0的解集是()A .x <﹣1B .﹣1<x <0C .﹣1<x <4D .x >4【变式9-1】(2022春•南康区期末)如图,直线y =﹣x +m 与直线y =12x +3交点的横坐标为﹣2.则关于x 的不等式组{−x +m >12x +312x +3>0的解集为 .【变式9-2】(2022•富阳区二模)如图,直线y =kx +b 经过点A (﹣1,3),B (−52,0)两点,则不等式组0<kx +b <﹣3x 的解集为 .【变式9-3】(2022•青羊区校级自主招生)如图,直线y 1=ax +2与y 2=bx +4交于点N (1,a +2),将直线y 1=ax +2向下平移后得到y 3=ax ﹣5,则能使得y 3<y 2<y 1的x 的所有整数值分别为( )A .1,2,3B .2,3C .2,3,4D .3,4,5【题型10 一次函数与不等式组中的阴影区域问题】【例10】(2022•黄冈中学自主招生)如图,表示阴影区域的不等式组为( )A .{2x +y ≥53x +4y ≥9y ≥0B .{2x +y ≤53x +4y ≤9y ≥0C .{2x +y ≥53x +4y ≥9x ≥0D .{2x +y ≤53x +4y ≥9x ≥0【变式10-1】(2022秋•包河区期中)图中所示的阴影部分为哪一个不等式的解集( )A .x ﹣y ≤﹣5B .x +y ≥﹣5C .x +y ≤5D .x ﹣y ≤5【变式10-2】(2012春•南岸区期末)如图,用不等式表示阴影区域为( )A .x +y ≤0,且x ﹣y ≥0B .x +y ≥0,且x ﹣y ≥0C .x +y ≥0,且x ﹣y ≤0D .x +y ≤0,且x ﹣y ≤0【变式10-3】(2022春•广水市期末)阅读材料:在平面直角坐标系中,二元一次方程x ﹣y =0的一个解{x =1y =1可以用一个点(1,1)表示,二元一次方程有无数个解,以方程x ﹣y =0的解为坐标的点的全体叫作方程x ﹣y =0的图象.一般地,在平面直角坐标系中,任何一个二元一次方程的图象都是一条直线,我们可以把方程x ﹣y =0的图象称为直线x ﹣y =0.直线x ﹣y =0把坐标平面分成直线上方区域,直线上,直线下方区域三部分,如果点M (x 0,y 0)的坐标满足不等式x ﹣y ≤0,那么点M (x 0,y 0)就在直线x ﹣y =0的上方区域内.特别地,x =k (k 常数)表示横坐标为k 的点的全体组成的一条直线,y =m (m 为常数)表示纵坐标为m 的点的全体组成的一条直线.请根据以上材料,探索完成以下问题:(1)已知点A (2,1)、B (83,32)、C (136,54)、D (4,92),其中在直线3x ﹣2y =4上的点有 (只填字母);请再写出直线3x ﹣2y =4上一个点的坐标 ;(2)已知点P (x ,y )的坐标满足不等式组{0≤x ≤40≤y ≤3则所有的点P 组成的图形的面积是 ; (3)已知点P (x ,y )的坐标满足不等式组{0≤x ≤10≤y ≤2x −y ≥0,请在平面直角坐标系中画出所有的点P 组成的图形(涂上阴影),并求出上述图形的面积.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学集体备课教案
不等式ax+b>c的解集就是使函数y =ax+b 的函数值大于c的对应的自变量取值范围;
不等式ax+b<c的解集就是使函数y =ax+b 的函数值小于c的对应的自变量取值范围.
三、互学展示
例2 画出函数y=-3x+6的图象,结合图象求:
(1)不等式-3x+6>0 和-3x+6<0的解集;
(2)当x取何值时,y<3?
做一做
如图,已知直线y=kx+b与x轴交于点(- 4,0),则当y>0时,x的取值范围是()
归纳总结
求kx+b>0(或<0)(k≠0)的解集,从“函数值”看y=kx+b的值大于(或小于)0时,x的取值范围
求kx+b>0(或<0)(k≠0)的解集, 从“函数图象”看确定直线y=kx+b在x轴上方(或下方)的图象所对应的x 取值范围
四、帮学提升
1.一次函数y=kx+3的图象如图所示,则方程kx+3=0的解为 .
2.学习之友p60第2题学生自行回答
组内练习,组长帮助组员解决问题
x −3
y。