电子信息专业英语翻译
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Silicon microprocessors have been the heart of the computing world for more than 40 years. In that time,microprocessor manufacturers have crammed more and more electronic devices onto microprocessors. In accordance with Moore’s Law, the number of electronic devices put on a microprocessor has doubled every 18 months .Moore’s Law is named after Intel founder Gordon Moore ,who predicted in 1965 that microprocessors would double in complexity every two years. Many have predicted that Moore’s Law will soon reach its end because of the physical limitations of silicon microprocessors.
The current process used to pack more and more transistors onto a chip is called deep-ultraviolet lithography ( DUVL), which is a photography-like technique that focuses light through lenses to carve circuit patterns on silicon wafers. DUVL will begin to reach its limit around 2005,At that time, chipmakers will have to look to other technologies to cram more transistors onto silicon to create more powerful chips.Many are already looking at extreme-ultraviolet lithography(EUVL) as a way to extend the life of silicon at least until the end of the decade. EUVL uses mirrors instead of lenses to focus the light, which allows light with shorter wavelengths to accurately focus on the silicon wafer.
Beyond EUVL, researchers have been looking at alternatives to the traditional microprocessor design. Two of the more interesting emerging technologies are DNA computers and quantum computers.
DNA computers have the potential to take computing to new levels, picking up where Moore’s Law leaves off. There are several advantages to using DNA instead of silicon:
As long as there are cellular organisms, there will be a supply of DNA makes it a cheap resource.
Unlike traditional microprocessors, which are made using toxic materials, DNA biochips can be made cleanly.
DNA computers are many times smaller than today’s computers.
DNA’s key advantage is that it will make computers smaller, while at the same time increasing storage capacity,than computer that has come before. One pound of DNA has the capacity to store more information than all the electronic computers ever built. The computing power if a teardrop-sized DNA computer, using the DNA logic gates, will be more powerful than the world’s most powerful supercomputer. More than 10-trillion DNA molecules can fit into an area no larger than 1 cubic centimeter (.06 inch3). With this small amount of
DNA ,a computer would be able to hold 10 terabytes(TB) of data and perform 10-trillion calculations at a time. By adding more DNA, more calculations could be performed .
Unlike conventional computers could perform calculations simultaneously. Conventional computers operate linearly, taking on tasks one at a time. It is parallel computing that will allow DNA to solve complex mathematical problems in hours-problems that might take electrical computers hundreds of years to complete.
Today’s computers work by manipulating bits that exist in one of two states: 0 or 1. Quantum computers aren’t limited to two states; they encode information as quantum bits, or qubits. A qubit can be a 1or a 0, or it can exist in a superposition that is simultaneously 1 and 0 or somewhere in between. Qubits represent atoms that are working together to serve as computer memory and a microprocessor. Because a quantum computer can contain these multiple states simultaneously, it has the potential to be millions of times more powerful than today’s most powerful supercomputers. A 30-qubit quantum computer would equal the processing power of a conventional computer capable of running at 10 teraops, or trillions of operations per second. Today’s fastest supercomputers have achieved speeds of
about 2 teraops.
Already we are seeing powerful computers in non-desktop roles. Laptop computers and personal digital assistants(PDAs) have taken computing out of the office. Wearable computers built into our clothing and jewelry will be with us everywhere we go. Out files will follow us while out computer provides constant feedback about our environment. V oice- and handwriting-recognition software will allow us to interface with out computers without using a mouse or keyboard . Magnetic RAM and other innovations will soon provide our PC with the same instant-on accessibility that our TV and radio have.
One thing is an absolute certainty: The PC will evolve. Ti will get faster. It will have more capacity. And it will continue to be an integral part of our lives.
硅微处理器成为计算世界的中心已经超过40年。
在这段时间内,微处理器制造商把更多的微处理器塞进电子设备。
按照摩尔定律,每18个月微处理器的电子设备数量将增加一倍。
摩尔定律是以英特尔创始人戈登摩尔命名的,戈登摩尔在1965年预言,微处理器的复杂度将每两年翻一番。
许多人预测,由于微处理器芯片的物理限制摩尔定律即将结束。
目前在一枚芯片上安装更多晶体管被称为深紫外线光刻技术(DUVL),一个喜欢摄影的技术,侧重于通过镜头的光雕刻硅片的电路模式。
深紫外线光刻技术将开始2005年左右达到极限,到那时,芯片制造商将不得不寻找其它的技术,使更多的晶体管刻入到硅中来制造更强大的集成电路片。
许多人已经在找一种超紫外线光刻技术(EUVL)使其至少延长到21世纪末。
EUVL使用镜子而不是把重点放在镜头的光线,使光线波长较短的准确把握硅晶片。
除了极紫外光刻,研究人员一直在寻找相比于传统的微处理器设计的另一种方法。
更吸引人的两个新兴技术是DNA 计算机和量子计算机。
DNA计算机有可能把计算提高到新的水平,延续摩尔定律。
用DNA芯片而不用硅芯片的几个好处:
只要有细胞生物,就将有DNA提供。
大量的提供DNA使它变为廉价的资源。
与使用了有毒物质的传统的微处理器不同,DNA生物芯片使用的是无毒的物质。
DNA计算机比今天的计算机小许多倍
DNA的主要优点是,它将使计算机变得更小,并且同时增加以前的计算机没有过的存储容量。
一英镑的DNA比有史以来的电子计算机有能力储存更多的信息。
一滴水滴大小的利用DNA逻辑门的DNA计算机的计算能力,比世界上最强大
的超级计算机更加强大。
超过1000万的DNA分子能够适用于一个面积不超过1立方厘米的地方(0.06 inch3)。
这少量的DNA能够使电脑将保持10兆兆字节的数据(TB)并一次执行10万亿时间计算。
增加更多的DNA,可完成更多的计算方法。
与传统的计算机不同,DNA计算机可以同时进行计算。
传统的电脑的操作使线性的,一次只可执行一个任务。
DNA计算机的并行计算,使DNA可以用几个小时解决电气电脑可能花费数百年时间才能完成的复杂的数学问题。
今天的电脑操作的工作位有两种状态:0或1。
量子计算机并不限于两种状态,它们编码的量子位。
一个比特可以是1或0,也可以存在于同时叠加的1和0,或介于两者之间。
量子位可以描绘成为支持计算机的内存和微处理器而一起
工作的原子。
因为量子计算机可以同时包含这多个状态,它有可能成为比目前最强大的超级计算机更强大数百万倍的
计算机。
一个30量子位的量子计算机将等于一个传统的计算机运行10 teraops的运行能力,或每秒数万亿次运算处理能力。
今天的最快的超级计算机已经达到了约2 teraops的速度。
我们已经看到功能强大的计算机在非桌面上的作用。
笔记本电脑和掌上电脑(PDA)已经能够将数字计算搬出办公室。
可带的电脑如同我们的服装和饰品可以到我们到的任何地
方。
当我们的电脑提供对我们的环境不断的反馈使我们的文件可随身携带。
语音和手写识别软件将允许我们连接计算机时无需使用鼠标或键盘。
磁性RAM和其他方面的创新将提供我们电脑与电视和无线电一样及时的无障碍的连接。
有一件事是绝对肯定:电脑将进化。
它将变得更快。
它将有更多的能力。
并且它将继续成为我们生活不可分割的一部分。