金属学滑移线的名词解释
第八章-滑移线
第8章 滑移线理论及应用§8. 1 平面应变问题和滑移线场滑移线理论是二十世纪20年代至40年代间,人们对金属塑性变形过程中,光滑试样表面出现 “滑移带”现象经过力学分析,而逐步形成的一种图形绘制与数值计算相结合的求解平面塑性流动问题变形力学问题的理论方法。
这里所谓“滑移线”是一个纯力学概念,它是塑性变形区内,最大剪切应力max (τ)等于材料屈服切应力(k )的轨迹线。
对于平面塑性流动问题,由于某一方向上的位移分量为零(设du Z =0),故只有三个应变分量(x d ε、y d ε、xy d γ),也称平面应变问题。
根据塑性流动法则,可知p m y x Z -==+==σσσσσ2/)(2 (8-1)式中,m σ为平均应力;p 称为静水压力。
根据塑性变形增量理论,平面塑性流动问题独立的应力分量也只有三个(x σ、y σ、xy τ)(见图8-1a ),于是平面应变问题的最大切应力为:2231max ]2/)[(2/)(xy y x τσσσστ+-=-= (8-2)可见,这是一个以max τ为半径的圆方程,这个圆便称为一点的应力状态的莫尔圆(见图8-1c )。
图中设x σ<y σ<0(即均为压应力,因塑性加工中多半以压应力为主)。
值得注意的是绘制莫尔圆时,习惯上规定:使体素顺时针旋转的切应力为正,反之为负。
因此图8-1c 中的yx τ为正值;而xy τ取负值。
根据平面流动的塑性条件,k =max τ(对Tresca 塑性条件2/T k σ=;对Mises 塑性条件3/T k σ=.于是,由图8-1(C)的几何关系可知,有 Φ--=2sin k p x σΦ+-=2sin k p y σ (8-3)Φ=2cos k xy τ式中,)2/)((y x m p σσσ+-=-=——静水压力Φ——定义为最大切应力)(max k =τ方向与坐标轴Ox 的夹角。
通常规定为Ox 轴正向为起始轴逆时针旋转构成的倾角Φ为正,顺时针旋转构成的倾角Φ为负(图8-1中所示Φ均为正)。
金属塑性加工原理:第七章 滑移线场理论简介
正交对数螺线
正交圆摆线
等半径圆弧
3.滑移线场的建立
特殊滑移线场
直线滑移线场:由两族正交的直线构成的滑移线场。
简单滑移线场:一组为直线,另一组为曲线的滑滑移线场。
金属塑性加工中,许多平面应 变问题的滑移线场是由三角均 匀场和简单扇形场组合而成的, 称为简单滑移线场问题,如平 冲头压入半无限体、平冲头压 入、某些特定挤压比下的挤压、 剪切乃至切削加工。
1、亨盖应力方程(沿线特性)
亨盖应力方程给出了滑移线场内质点平均应力 的变化与滑移线转角 ω 的关系式。
m 2k 沿线 m 2k 沿线
, 在同一条滑移线上为常数
ma mb 2k(a b )
正号用于 线,负号用于 线
ma mb 2k(a b )
重要推论:
若滑移线场已经确定,且已知一条滑移线上任一点 的平均应力,则可确定该滑移线上各点的应力状态
第二节 滑移线与滑移线场的基本概念
塑性区内每点的应力状态可用平均应力 m 和最大切应力 K 表示,每点的切应力都是成双存在、互等且互相垂直的。
将塑性区内每点的最大切应力方向连接起来,得到两族相 互正交的曲线,称为滑移线,滑移线所遍及的整个塑性区构成 的场,称为滑移线场。
第一主方向顺时针转 / 4
第七章 滑移线场理论简介
主要内容
塑性平面应变状态下的应力莫尔圆与物理 平面
滑移线与滑移线场的基本概念 滑移线场的应力场理论 滑移线场在塑性成形中应用举列
重点:滑移线的基本概念;亨盖(H.Hencky)应 力方程、亨盖(H.Hencky)第一定理;应力边界条件; 常见的滑移线场;光滑平面冲头压入半无限体问题, 平面变形挤压问题。
滑移线场的建立
滑移线场的建立
第4章 滑移线场理论
点起、始位置的另一族两条滑移线的曲率变化量 (如dRβ)等于该点所移动的路程(如dSα)。
11
4.3 塑性区应力边界条件:
自由表面
Principle of Metal Forming
12ቤተ መጻሕፍቲ ባይዱ
接触表面之:
摩擦切应力为零
摩擦切应力为某中间值
Principle of Metal Forming
13
摩擦切应力为最大值
7
由称Saint-Venant塑性流动方程
Principle of Metal Forming
8
4.2 滑移线的性质
4.2.1 H.Hencky方程 也称沿线特性,描述滑移线上各点的平均应力变化规律。
Principle of Metal Forming
由上式知,任一族中任一条滑移线上 两点的平均应力符合下列关系式:
一条滑移线(如β1或β2 )相交两点的倾角差和静水压力变化量均保
Principle of Metal Forming
持不变。
若单元三个节点角ω、σm知,则第四点知。 推论: 异族截区内,一直皆直。
10
4.2.3 H.Hencky第二定理
一动点沿某族任意一条滑移线移动时,过该动
Principle of Metal Forming
Principle of Metal Forming
14
4.2 常见的滑移线场类型
正交直线 1 ) 直 线 型
Principle of Metal Forming
2 ) 简 单 型
奇点
有心扇形:直线+圆弧 无心扇形:包络+渐开
15
3 ) 直 简 组 合 型
Principle of Metal Forming
百科知识精选滑移线
基本信息英文名:slip line中文名:滑移线隶属:塑性力学定义:试样表面出现的线纹时间:二十世纪20年代至40年代间简介材料在屈服时,试样表面出现的线纹称为滑移线。
滑移线理论是二十世纪20年代至40年代间,人们对金属塑性变形过程中,光滑试样表面出现"滑移带"现象经过力学分析,而逐步形成的一种图形绘制与数值计算相结合的求解平面塑性流动问题变形力学问题的理论方法.这里所谓"滑移线"是一个纯力学概念,它是塑性变形区内,最大剪切应力)等于材料屈服切应力(k)的轨迹线。
解释1、2节点相对位置判断构件接触碰撞点的轨迹称为滑移线.主节点所在的一侧称为主线主线上相邻节点之间的线段称为主段。
2、在塑性状态平面应变问题中,平面上每一点都存在两个相交的剪切破坏面,把各点的剪切破坏面连接起来,就可以得到两族相互正交曲线α和β,即称为滑移线。
3、0前言在塑性状态平面应变问题中,平面上每一点都存在两个相交的剪切破坏面,把各点的剪切破坏面连接起来,就可以得到两族相互正交曲线α和β,即称为滑移线.滑移线法按照其性质和边界条件,求出塑性区的应力和位移速度的分布,最后求出极限荷载。
4、滑移带晶体材料的滑移面与晶体表面的交线称为滑移线,滑移部分的晶体与晶体表面形成的台阶称为滑移台阶.由这些数目不等的滑移线或滑移台阶组成的条带称为滑移带。
5、塑料变形体内各点最大剪应力的轨迹称为滑移线.由于最大剪应力成对正交因此滑移线在变形体内成两族互相正交的线网组成所谓滑移线场。
6、这样的两组曲线在X、Y平面上形成一个曲线网称为滑移线.当物体处于屈服状态时,各点的最大剪应力达到K值,塑性变形就沿着这些曲线进行滑移。
金属学原理重点名词解释
金属键:金属中的自有电子与金属正离子相互作用所构成的键合。
空间点阵:把原子(或原子集团)抽象成纯粹的几何点,而完全忽略它的物理性质,这种抽象的几何点在晶体所在空间作周期性规则排列的阵列称为空间点阵。
晶向族:晶体中原子排列结构相同的一族晶向。
晶面族:晶体中,有些晶面的原子排列情况相同,面间距完全相等,其性质完全相同,只是空间位向不同,这样一族晶面称为晶面族。
配位数:晶体结构中,与任一原子最近邻并且等距的原子数。
致密度:若把金属晶体中的原子视为直径相等的钢球,原子排列的紧密程度可以用钢球所占空间的体积百分数来表示,称为致密度。
即:致密度=单位晶包中原子所占体积/单位晶包体积同素异构转变:当外界条件(主要指温度和压力)改变时,元素的晶体结构可以发生转变,这种转变称为同素异构转变。
晶胚:当温度降到熔点以下时,在液态金属中存在结构起伏,即有瞬时存在的有序原子集团,这种近程有序的原子集团就是晶胚。
形核功:形成临界晶核要有的自由能增加。
动态过冷度:能保证凝固速度大于融化速度的过冷度称为动态过冷度。
光滑界面:光滑界面以上为液相,一下为固相,液固两相截然分开,固相的表面为基本完整的原子密排面,所以,从微观上看界面是光滑的,从宏观上看,它往往由不同位向的小平面所组成,故呈折线状。
这类界面也称小平面界面。
粗糙界面:液固两相之间的界面从微观上来看是高低不平的,存在几个原子层厚度的过渡层,在过渡层中约有半数的位置为固相原子所占据,由于过渡层很薄,所以,从宏观上来看,界面反而显得平直,不出现曲折小平面,这类界面又称非小平面界面。
伪共晶:在非平衡凝固条件下,某些亚共晶或过共晶成分的合金也能得到全部的共晶组织,这种由非共晶成分的合金所得到的共晶组织称为伪共晶。
离异共晶:在先共晶相数量多,而共晶体数量甚少的情况下,共晶体与先共晶相相同的那一相将依附于已有的粗大先共晶相长大,并把共晶体中的另一相推向最后凝固的边界处,从而使共晶组织特征消失。
滑移线名词解释
滑移线名词解释滑移线是指在流体力学中,流体流动时,流体中的某一点随着时间的推移而发生位置变化的线。
这个概念在飞行器设计中非常重要,因为滑移线可以用来描述飞行器的稳定性和控制性能。
在本文中,我们将详细解释滑移线的概念、特性和应用。
一、滑移线的概念滑移线是在流体力学中用来描述流体流动的一种线。
在飞行器设计中,滑移线通常指飞行器中心重心和气动中心之间的一条线。
当飞行器受到外界扰动时,它会发生滑移和偏航运动,滑移线的位置和方向可以用来描述飞行器的运动状态。
二、滑移线的特性1. 滑移线的位置滑移线的位置取决于飞行器的气动特性和重心位置。
在大多数情况下,滑移线位于飞行器的重心前方,因为气动中心通常在重心前面。
滑移线的位置可以通过实验和计算得出,对于不同的飞行器来说,滑移线的位置也不同。
2. 滑移线的方向滑移线的方向取决于飞行器的气动特性和机翼的布局。
在大多数情况下,滑移线与机翼的平面垂直,因为机翼产生的升力和阻力一般都在机翼平面内。
然而,对于某些机翼布局不规则的飞行器,滑移线的方向可能会产生变化。
3. 滑移线的稳定性滑移线的稳定性是指飞行器在受到外界扰动时,滑移线的位置和方向是否会发生变化。
在理想情况下,飞行器应该具有稳定的滑移线,即受到扰动时滑移线的位置和方向不会发生明显变化。
如果滑移线不稳定,飞行器就会变得难以控制,甚至容易失控。
三、滑移线的应用1. 飞行器稳定性分析滑移线可以用来分析飞行器的稳定性和控制性能。
通过测量飞行器的滑移线位置和方向,可以判断飞行器的稳定性是否良好,以及是否需要进行调整。
2. 飞行器控制设计滑移线还可以用来设计飞行器的控制系统。
通过控制飞行器的滑移线位置和方向,可以使飞行器保持稳定,避免发生滑移和偏航运动,从而提高飞行器的控制性能。
3. 飞行器改进设计滑移线还可以用来指导飞行器的改进设计。
通过分析飞行器的滑移线位置和方向,可以发现飞行器存在的问题和缺陷,从而提出改进措施,使飞行器更加稳定和安全。
金属材料基础名词解释
名词解释金属键:由金属中自由电子和金属正离子相互作用所构成的键合离子键:失去电子的正离子与得到电子的负离子,依靠静电引力而形成的键合合称为离子键共价键:由两个或多个电负性相差不大的原子间通过公用电子对而形成的键合空间点阵:由构成晶体的质点(原子,分子,离子和原子团)在三维空间规则排列说的阵列称为空间点阵晶格:用来描述晶体中原子排列规则的空间格架晶胞:空间点阵中取出一个具有代表性说明点阵排列规律和特点的基本单元配位数:晶体结构中任一原子周围最临近且等距离的原子数致密度:晶体结构中原子体积与总体积的百分比晶面:晶体中原子构成的平面称为晶面晶向:晶体中原子的位置原子列的方向称为晶向晶面间距:一晶面与相邻晶面之间的距离同素异构体的转变(多晶型的转变):有些固态金属在不同温度和压力下具有不同的晶体结构,即具有多晶型性,在转变的产物为同属•素异构体组织:材料外在表现的直观形貌称组织合金:指由两种或两种以上的金属或非金属经熔炼,烧结活其他方法结合而成,并且有金属特性的固溶体:以某一组元素为溶剂,在晶体点阵中溶入其他组原子(溶质原子)所形成的均匀混合的固态熔体置换固溶体:当溶质原子溶入溶剂形成固态溶体时,溶质原子占据溶剂点阵的阵点,或者说溶质原子置换溶剂点阵的部分溶剂原子,这种固溶剂成为置换固溶体间隙固溶体:溶质原子分布于溶剂晶格间隙而形成的固溶体中间相:两组元A和B组成合金时,除了可形成以A为基体或以B为基体的固溶体外(端际固溶体)外,还可能形成晶体结构与A,B两组元均不相同的新相。
由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相位错:晶体中的一类典型的线缺陷,沿位错线近旁甚小的区域内发生了严重的原子错排。
其基本类型为刃型位错和螺型位错滑移系:晶体通过滑移产生塑性变形时,由滑移面和其上的滑移方向所组成的系统孪晶是指两个晶体(或一个晶体的两部分)沿一个公共晶面(即特定取向关系)构成镜面对称的位向关系,这两个晶体就称为"孪晶",此公共晶面就称孪晶面。
7-1 滑移线概念及应力场理论
1 m K 2 m 3 m K
x m K sin 2 y m K sin 2 xy K cos 2
τ
σy
+K
O σ3
σ2
2ω x σx
-K σ2=σm
tan 2 x y 2 xy
其中:ω为最大切应力τmax方向与坐标ox轴的夹角。
y
σ1
σ
金属塑性成形原理
过点P并标注其应力分量的微分面称为物理平面。 ➢应力莫尔圆上一点对应一个物理平面; ➢应力莫尔圆上两点之间的夹角为相应物理平面间 夹角的两倍。
将一点的代数值最大的主应力的指向称为第一主 方向( σ1作用线)。由第一主方向顺时针转π/4所确定 的最大切应力,符号为正,其指向称为第一剪切方 向。另一最大切应力方向的指向称为第二剪切方向, 两者相互正交。
由坐标轴ox正向转向第一剪切方向的角度ω称为 第一剪切方向的方向角(也就是以后提到的滑移线的 方向角),由ox轴正向逆时针转得ω为正。
当相邻点无限接近时,这两条折线就成了相互正 交的光滑曲线,这就是滑移线。它连续,并一直延伸 到塑性变形区边界。通过塑性变形区内的每一点都可 得到这样两条正交的滑移线,在整个变形区域可得到 有两族互相正交的滑移线组成的网络,即滑移线场。
滑移线与滑移线场
金属塑性成形原理
两族滑移线: 一族称为 α 滑移线,另一族称为 β 滑移线。
塑性区内各点的最大切应力K为材料常数,而
应力状态的区别在于σm不同。
O
b d
a c
ωb
ωa
x
金属塑性成形原理
亨盖( Hencky )应力方程是滑移线场理论中很重要的公式,根据亨盖应 力方程可推导出滑移线场的一些主要特性。
沿α线 m 2K 沿β线 m 2K
材料科学基础必考名词解释(一)
材料科学基础必考名词解释(一)过冷:结晶只有在T0 以下的实际结晶温度下才能进行,这种现象称为过冷。
过冷度:相变过程中冷却到相变点以下某个温度后发生转变,平衡相变温度与该实际转变温度之差称过冷度。
光滑界面:界面的平衡结构应是只有少数几个原子位置被占据,或者极大部分原子位置都被固相原子占据,即界面基本上为完整的平面,这时界面呈光滑界面。
共晶转变:合金系中某一定化学成分的合金在一定温度下,同时由液相中结晶出两种不同成分和不同晶体结构的固相的过程称为共晶转变。
共析转变:由一种固相分解得到其他两个不同固相的转变。
共析反应:是指在一定温度下,由一定成分的固相同时析出两个成分和结构完全不同的新固相的过程。
共析转变也是固态相变共格相界:如果两相界面上的所有原子均成一一对应的完全匹配关系,即界面上的原子同时处于两相晶格的结点上,为相邻两晶体所共有,这种相界就称为共格相界。
滑移线:材料在屈服时,试样表面出现的线纹称为滑移线。
滑移带:滑移线的集合构成滑移带,滑移带是由更细的滑移线所组成滑移:在外加切应力的作用下,通过位错中心附近的原子沿柏氏矢量方向在滑移面上不断地作少量的位移而逐步实现的。
位错滑移的特点:1) 刃型位错滑移的切应力方向与位错线垂直,而螺型位错滑移的切应力方向与位错线平行;2) 无论刃型位错还是螺型位错,位错的运动方向总是与位错线垂直的;(伯氏矢量方向代表晶体的滑移方向)3) 刃型位错引起的晶体的滑移方向与位错运动方向一致,而螺型位错引起的晶体的滑移方向与位错运动方向垂直;4) 位错滑移的切应力方向与柏氏矢量一致;位错滑移后,滑移面两侧晶体的相对位移与柏氏矢量一致。
5) 对螺型位错,如果在原滑移面上运动受阻时,有可能转移到与之相交的另一滑移面上继续滑移,这称为交滑移(双交滑移)滑移系:晶体中一个滑移面及该面上一个滑移方向的组合称一个滑移系。
回复:指新的无畸变晶粒出现之前所产生的亚结构和性能变化的阶段。
滑移线名词解释
滑移线名词解释
滑移线,是指在流体力学中,流体在经过物体表面时,流体粘性作用使得流体相对于物体表面发生滑移现象的那条分界线。
在滑移线之内,流体与物体表面有着高度的粘附性,而在滑移线之外,流体则呈现出无黏性的流动状态。
滑移线是流体力学中一个非常重要的概念,它的存在会对流体在物体表面的流动行为产生重要影响。
滑移线的位置是由流体粘性和物体表面的特性共同决定的。
在一些情况下,滑移线可能会出现在物体表面的外部,而在另一些情况下,则会出现在物体表面的内部。
对于具有不同表面特性的物体,它们的滑移线位置也会有所不同。
对于流体在滑移线内的行为,通常可以采用黏性流体模型进行描述。
在这种模型中,流体与物体表面的粘附作用被视为一个重要的力,而流体的粘性则被认为是流体速度梯度的函数。
在滑移线之外,流体则可以被视为一种无黏性流体,其流动状态可以用欧拉方程进行描述。
滑移线的存在会对流体在物体表面的流动行为产生重要影响。
对于一些具有微纳米表面结构的物体,由于其表面的特殊性质,流体的滑移线位置可能会发生变化,从而对流体流动的行为产生重要影响。
此外,在一些流体力学问题中,滑移线的位置也是一个非常重要的参数,例如在微管道中的流动问题中,滑移线位置的大小会对微管道中流体的流动行为产生重要影响。
总之,滑移线是流体力学中一个非常重要的概念,它的存在会对流体在物体表面的流动行为产生重要影响。
对于研究滑移线的位置和
大小,可以帮助我们更好地理解流体在物体表面的流动行为,并为设计一些新型的流体力学装置提供有力支持。
《金属学与热处理》名词解释
1、滑移:晶体的一部分沿一定的晶面和晶向相对于另一部分发生滑动位移的现象。
2、位错:它是晶体的一种线缺陷,是指在晶体中某处有一列或若干列原子发生了有规律的错排现象。
3、固溶体:是溶质原子溶入溶剂中所形成的的均一的结晶相。
4、过冷度:理论结晶温度与实际结晶温度之差。
5、强度:材料抵抗变形或破坏的能力。
6、淬透性:钢的热处理工艺特性,表示钢在热处理时获得淬透层深度的能力。
7、珠光体:奥氏体通过共析反应产生的,由铁素体和渗碳体组成的机械混合物。
8、形变织构:随着变形量的增加,由于晶粒的转动而引起的各个晶粒在空间取向上呈现一定程度的规律性。
9、偏析:合金中成分的不均匀分布。
10、奥氏体:碳溶解于γ-铁中形成的间隙固溶体。
11、再结晶:冷变形金属加热到一定温度以后,在原来的变形组织中重新产生了无畸变的新晶粒,而性能也发生了明显的变化,并恢复到完全软化状态。
12、晶体:材料在固态下原子或分子在空间呈有序排列,称为晶体。
13、合金:由两种或两种以上金属元素,或金属与非金属元素熔炼、烧结或通过其他方法由化学键组合而成的具有金属特性的物质。
14、加工硬化:随着变形的进行,材料的强度、硬度上升,而塑性、韧性下降的现象。
15、同素异构转变:在固态下,同一种元素由一种晶体结构转变为另一种晶体结构的转变。
16、晶向族:晶体中原子排列情况相同的晶向的集合。
17、匀晶转变:一定温度范围内不断由液相中凝固出固溶体,液相、固相成分都不断随温度的下降而分别沿液相线和固相线变化的过程。
18、相:是合金中具有同一聚集状态、同一结构和性质的均匀组成部分。
19、Ac3:加热时铁素体转变为奥氏体的终了温度。
金属学及热处理 名词解释
1滑移系---一个滑移面和此方向的一个滑移方向结合起来,称为一个滑移系。
2反应扩散---指通过扩散使固溶体的溶质组元浓度超过固溶体极限而形成新相的过程3淬硬性---指钢在淬火时的硬化能力,用淬火后马氏体所能达到的最高硬度表示,它主要取决于马氏体中的含碳量。
4钢的化学热处理---化学热处理是将工件置于特定介质中加热和保温,使介质中的活性原子渗入工件表层,改变表层的化学成分和组织,从而达到改进表层性能的一种热处理工艺5 C曲线---将奥氏体化后的共析钢快冷至临界点以下的某一温度等温停留,并测定奥氏体转变量与时间的关系,即可得到过冷奥氏体等温转变动力学曲线。
将各个温度下转变开始和终了时间标注在温度——时间坐标中,并连成曲线,即得到共析钢的过冷奥氏体等温转变曲线,这种曲线形状类似字母“C”,故称为C曲线,亦称TTT图。
6再结晶—将冷变形后的金属加热到一定温度之后,在原变形组织中重新产生了无畸变的新晶粒,而性能也发生了明显的变化并恢复到变形前的状况,这个过程称为再结晶7超塑性--材料在一定条件进行热变形,可获得延伸率达500%---2000%的均匀塑性变形,且不发生缩颈现象,材料的这种特性称为超塑性8加工硬化--随着塑性变形量增加,金属的流变强度也增加,这种现象称为形变强化或加工硬化。
9韧性断裂10马氏体--钢中加热至奥氏体后快速淬火,所形成的高硬度的针片状组织。
11固溶体--由两种或两种以上组元在固态下相互溶解,而形成得具有溶剂晶格结构的单一的、均匀的物质。
12偏析----是指化学成分的不均匀性。
13相变—通过14固溶强化--通过合金化(加入合金元素)组成固溶体,使金属材料得到强化15原子配位数—晶体中任一原子周围最邻近且等距离的原子数16超点阵17非均匀形核—由于外界因素,如杂质颗粒或铸型内壁等,促进结晶晶核的形成。
18结构起伏—由于液相中原子运动强烈,在其平衡位置停留时间甚短,这种局部有序排列的原子团此消彼长的现象19堆垛层错--实际晶体结构中,密排面的正常堆垛顺序可能遭到破坏和错排,称为。
第四章滑移线理论
β
α
(σy,τxy)
σ
2θ
β
π/4 α σ3
σ1
第一主应力与x轴的夹角为θ: tan 2 2 xy
y x
剪切破坏面(α面和β面)与第一主应力方向的夹角为π/4。要 注意的是,剪切破坏面与第一主应力方向的夹角、剪切破坏面 与第一主应力面的夹角是不相等的,两者相差π/2,在莫尔圆中 则相差π。
y'
x
x'
xy dA yx
根据 2 sincos sin2 cos2 1 cos 2
2
sin2 1 cos 2
2
y
x cos2 y sin2 xy sin cos yx sin cos
x
y
2
x
y
2
cos 2
xy
sin 2
x sin cos y sin cos xy cos2 yx sin2
xy
x y
2
4
2 xy
x
2
y
sin
2
xy
cos
2
max
min
x y
2
2
2 xy
x y
2
2
2 xy
tan
2
1
4
tan
21
2
cot
21
cot
21
xy x y
2
0
1
4
即极值剪应力面与主面成45°夹角
4.2 滑移线的概念
(1) Tresca材料 τ p=(σx+σy)/2
O
应力分量 x , y , xy 可表示为:
x
p
R cos 2
金属学原理名词解释
名词解释1.间隙相:当非金属原子半径与金属原子半径的比值小于0.59时,形成具有简单晶体结构的间隙型化合物2.间隙化合物:当非金属原子半径与金属原子半径的比值大于0.59时,形成复杂晶体结构的间隙型化合物3.固溶体:在固态下合金中组元相互溶解而形成的均匀固相4.配位数:晶体结构中,与任一原子最近邻并且等距的原子数5.致密度:致密度=单位晶胞中原子所占有的体积/单位晶胞体积6.金属键:金属中的自由电子与金属正离子相互作用所构成的键合7.空间点阵:抽象的几何点在三维空间规则排列的队列8.多晶型性:当外界条件(主要指温度和压力)改变时,元素的晶体结构可以发生转变,把金属的这种性质称为多晶型性9.形核功:形成临界晶核必须获得的能量10.晶胚:在温度降到熔点以下时,在液态金属中存在结构起伏,瞬时存在的有序原子集团11.临界晶核:半径为r*的晶核12.动态过冷度:能保证凝固速度大于熔化速度的过冷度13.粗糙界面:从微观上高低不平,有几个原子厚的过渡层,过渡层中约50%的位置占有原子的界面称为粗糙界面14.光滑界面:液固界面处截然分开,固相表面为基本完整的原子密排面,所以从微观上看是光滑的界面称为光滑界面15.伪共晶:不平衡的结晶条件下,成分在共晶点附近的合金全部转变成共晶组织,这种非共晶成分的共晶组织称为伪共晶16.不平衡共晶:由于固相线偏离平衡位置,不但冷到固相线上凝固不能结束,甚至冷到共晶温度以下还有少量液相残留,最后这些液相转变为共晶体,形成所谓的不平衡共晶组织17.离异共晶:有共晶反应的合金中,如果成分离共晶点较远,由于初晶相数量较多,共晶相数量很少,共晶中与初晶相同的那一相会依附初晶长大,另外一个相单独分布于晶界处,使得共晶组织的特征消失,这种两相分离的共晶称为离异共晶18.上坡扩散:原子由低浓度向高浓度出扩散的现象19.均匀化退火:将钢加热到略低于固相线温度,长时间保温(10-15h),然后随炉冷却,以使钢的化学成分和组织均匀化20.反应扩散:通过扩散而形成新相的现象21.柯肯达尔效应:扩散偶中由于扩散系数不同而引起对接面移动的现象22.自扩散:不伴随浓度变化,与浓度梯度无关的只发生在纯金属和均匀固溶体中的扩散23.互扩散:伴随有浓度变化,与异类原子浓度差有关的发生在异类原子之间的相互扩散24.成分过冷:由于液相成分改变而形成的过冷25.平衡分配系数:在一定温度下,固—液两平衡相中溶质浓度的比值ko称为溶质的平衡分配系数,ko=Cs/C L26.区域熔炼:利用正常凝固的原理将棒料从一端顺序地进行局部熔化,使溶质杂质富集到右端,反复进行这样的操作以达到使金属棒一端提纯的技术27.有效分配系数:ke=结晶过程中固体在相界处的浓度/此时余下液体的平均浓度28.直线法则:在一定温度下,当某三元系合金处于两相平衡时,合金的成分点与平衡相的成分点必定在同一直线上,且合金的成分点位于两平衡相的成分点之间,该规律称为直线法则29.重心法则:如果合金在某一温度处于三相平衡,合金成分点位于由三个平衡相成分点组成共轭三角形的重心位置,这就是重心法则30.连接线:三元系截面图中液相线上液相成分点和其对应的固相线上固相成分点的连线31.单变量线:三元系空间模型中随着温度的变化三个平衡相的成分点形成三条空间曲线,称为单变量线32.滑移系:一个滑移面和此面上的一个滑移方向的组合33.临界分切应力:能引起滑移或孪生所需要的最小分切应力34.复滑移:由于晶体的转动,使另一个滑移系参加滑移,从而形成双滑移﹑多组滑移系参加滑移的过程35.交滑移:两个或两个以上的滑移面沿同一滑移方向进行交替滑移的过程36.双交滑移:如果交滑移后的位错再转回与原滑移面平行的滑移面上继续运动,则称为双交滑移37.孪生:晶体的一部分沿一定晶面(孪晶面)和晶向发生切变38.加工硬化:随着变形程度的增加,强度和硬度升高,塑性和韧性下降的现象39.变形织构:多晶材料因塑性变形后的晶粒取向偏离非随机分布状态所形成的组织40.位错点阵阻力:位错移动受到的阻力41.回复:冷变形金属在加热温度较低时,金属中的一些点缺陷和位错的迁移,使晶格畸变逐渐减小,内应力逐渐降低的过程42.再结晶:冷变形金属的加热温度高于回复阶段以后,当温度继续升高时,由于原子活动能力增大,金属的显微组织发生明显的变化,由破碎拉长或压扁的晶粒变为均匀细小的等轴晶粒的过程43.动态回复:热加工过程中,由于变形温度高于再结晶温度,因而在变形的同时伴随着回复的过程44.动态再结晶:热加工过程中,由于变形温度高于再结晶温度,因而在变形的同时伴随着再结晶的过程45.二次再结晶:再结晶完成后晶粒长大随温度的升高或时间的增长而不连续不均匀地长大,称为二次再结晶46.多边化:指由于冷变形后,同号刃型位错在滑移面上塞积而引起点阵轻微弯曲,在退火过程中,通过刃型位错的攀移与滑移,使同号刃型位错沿着垂直于滑移面的方向排列成小角度亚晶界的过程47.储存能:冷塑变时,外力所作的功尚有一小部分储存在形变金属内部,这部分能量称为储存能48.退火孪晶:某些面心立方金属和合金﹑如铜及铜合金,镍及镍合金和奥氏体不锈钢等,冷变形后再结晶退火,其晶粒中会产生的一种孪晶49.流线:在热加工过程中铸态金属的偏析,夹杂物,第二相等逐渐沿变形方向延伸,这种组织称为流线50.全位错:柏氏矢量等于(或整数倍)点阵矢量的位错51.不全位错:柏氏矢量小于点阵矢量的位错52.单位位错:柏氏矢量为一个点阵矢量的位错53.固定位错:将面心立方完整晶体沿{1 1 1}原子层间剖开,抽去半原子平面或插入半原子平面就形成了层错,这样形成的层错就是固定层错54.面角位错:形成于两个{1 1 1}面之间的面角上,由三个不全位错和两片层错所构成的位错组态55.扩展位错:两个不全位错和中间的层错带所组成的位错组态56.柯氏气团:金属内部存在的大量位错线,在刃型位错线附近经常会吸附大量的异类溶质原子(大小不同吸附的位置有差别),形成柯氏气团57.铃木气团:当溶质原子偏聚在层错附近,使其浓度大于基体中浓度时,即形成铃木气团58.应变时效:在塑性变形时或变形后,在室温或适当加热时,导致间隙固溶原子在位错线上的偏聚使合金的强度和硬度升高并往往导致不连续屈服重新出现的现象59.位错密度:单位体积中所包含位错线的总长度60.层错:由于某种原因,原子排列不按正常次序生长,这样使原子层产生了错排。
金属热处理名词解释
结构起伏:短程有序的原子集团瞬间出现瞬间消失,这样不断变化着的短程有序的原子集团能量起伏:各微观区域内的自由能并不相同有的高有的低各微观的能量处于的起伏状的状态正温度梯度:是指液相中的温度随与界面的距离的增加而提高的温度分布状况变质处理:是在浇注前往液态金属中加入形核剂促成形成大量的非均匀晶核来细化晶粒。
固溶强化:在固溶体中,随着溶质浓度的增加,固溶体的强度,硬度提高,而塑性韧性有所下降的现象扩散退火:也叫均与化退火,是指将铸件加热至低于固相线100-200的温度,进行较长时间保温,使偏元素充分进行扩散,达到成分均匀选择结晶:也叫异分结晶,是指固溶体合金结晶时所结晶出的的固相成分和液相成分不同,这种结晶出的晶体与母相化学成分不同的结晶成分称为离异共晶:在先共晶相数量较多而共晶组织甚少的情况下,有时共晶组织中与先共晶相相同的那一相,会依附于先共晶相生长,剩下的另一相则单独存在于晶界处,从而使共晶组织的特征消失,这种两相分离的共晶称为滑移:晶体的塑性变形是晶体的的一部分相对于另一部分沿某些晶面和晶向发生滑移的结果滑移带:如果将表面抛光的单晶体金属试样进行拉伸,当试样经适量的塑性变形后,在金相显微镜下可以观察到,在抛光的表面上出现许多相互平行的线条,这些线条成为滑移带滑移系:一个滑移面和此面上的一个滑移方向结合起来组成一个滑移系多系滑移:两个或更多的滑移系上进行的滑移称为多系滑移,简称多滑移交滑移:由于晶体取向的改变可能使两个或多个相交的滑移面沿一个滑移方向进行滑移,因而使加工硬化效果逐渐下降,这个过程成为交滑移加工硬化:在塑性变形过程中,随着金属内部组织的变化,金属的力学性能也产生明显的变化,即随着变形程度的增加,金属的强度,硬度增加,而塑性韧性下降多变形化:是冷变形金属加热时,原来处在滑移面的位错,通过滑移和攀移,形成与滑移面垂直的亚晶界的过程再结晶:冷变形后的金属加热到一定温度或保温足够时间后,在原来的变形组织中产生于畸变的新晶粒,性能也发生显著变化,并恢复到冷变形前的水平,临界变形度:通常把对应于得到特别粗大的晶粒的变形称为热处理:是将钢在固态下加热到预定的温度,并在该温度下保持一段时间,然后以一定速度冷却到室温的一种热加工工艺马氏体的正方度:体心正方的马氏体,c轴伸长,而另外两个a轴稍有缩短,轴比c/a称为马氏体转变:钢从奥氏体状态快速冷却抑制其扩散性分解在较低温度下发生的无扩散型相变奥氏体的热稳定化:因冷却缓慢或冷却过程停留引起奥氏体稳定性提高而使马氏体转变滞后的现象叫奥氏体的机械稳定化:由于奥氏体在淬火过程中受到较大塑性变形或受到压应力而造成的稳定化现象临界冷却速度:表示过冷奥氏体在连续冷却过程中全部转变为珠光体的最大冷却速度回火:是将淬火钢加热到低于临界点A1的某一温度保温一段时间,使淬火组织转变为稳定的回火组织,然后以适当方式冷却到室温的一种热处理工艺回火脆性:有些钢在一定的范围内回火时,其冲击韧度显著下降,这种催化现象叫钢的退火:是将钢加热到临界点Ac1以上或一下温度,保温后随炉缓慢冷却以获得近于平衡状态的热处理工艺正火:是将钢加热到Ac3或Acm以上适当温度,保温以后在空气中冷却得到珠光体类组织淬火:将钢加热到临界点Ac3或Ac1以上一定温度,保温后以大于临界冷却速度冷却得到马氏体或下贝氏体等温淬火:是将奥氏体化后的工件淬入Ms点以上某温度盐浴中,等温保持足够长时间,使之转变为下贝氏体组织,然后取出在空气中冷却的淬火方法调质处理:将淬火和随后回火相结合的热处理工艺成为调质处理淬透性:是指奥氏体化后的钢在淬火时获得马氏体的能力淬硬性:表示钢淬火时的硬化能力形变热处理:是将塑性变形和热处理有机结合在一起的一种复合工艺自扩散:是不伴有浓度变化的扩散,它与浓度梯度无关,只发生在纯金属和均匀固溶体中互扩散:是伴有浓度变化的扩散,它与异类原子的浓度差有关,如在不均匀固溶体中,不同相之间或不同材料制成的扩散偶之间的扩散过程中,异类原子相对扩散,相互渗透,所以又称为异扩散下坡扩散:是沿着浓度降低的方向进行的扩散,使浓度趋于均匀化上坡扩散:是沿着浓度升高的方向进行的扩散,即由低浓度向高浓度方向扩散原子扩散:在扩散过程中晶格类型始终不变,没有新相产生,这种扩散就成为原子扩散反应扩散:通过扩散使固溶体的溶质组元浓度超过固溶度极限而形成新相过程称为反应扩散。
第30讲 滑移线的基本概念
21:05
9
Lesson 30
3
3
σ3 σ13 τ13 σ1
1
σ13=-p
τ13=k
1
21:05
2
σ 13 =
σ1 + σ 3
2
τ 13 = ±
σ1 − σ 3
2
10
Lesson 30
13.1.1 基本概念与基本假定
基本假定
变形体材料为各向同性、连续、均质的材料; 变形体材料为各向同性、连续、均质的材料; 变形体为理想的刚—塑性材料 塑性材料; 变形体为理想的刚 塑性材料; 不考虑变形温度、 不考虑变形温度、变形程度和变形速度对变形 抗力的影响; 抗力的影响; 变形图示为平面变形。 变形图示为平面变形。
21:05 7
Lesson 30
{ ……… } 下限解
{ ……… } 上限解 精确解
塑性加工解的范围
21:05
8
Lesson 30
13.1 滑移线的基本概念
滑移线理论是一种图解法。 滑移线理论是一种图解法。所谓滑移线这里是 指在平面塑性流动区内, 指在平面塑性流动区内,通过各点其值等于屈 服剪切应力的最大切应力k平面与流动平面的 服剪切应力的最大切应力 平面与流动平面的 交线。 交线。 按该理论可在塑性流动区域内作出滑移线场, 按该理论可在塑性流动区域内作出滑移线场, 并容易求出滑移线上的正应力和切应力, 并容易求出滑移线上的正应力和切应力,从而 可求出流动区域内各点的应力分布, 可求出流动区域内各点的应力分布,特别是工 件与工具接触表面上的应力。 件与工具接触表面上的应力。
21:05 2
Lesson 30
塑性加工问题的解
塑性加工过程的解所包含的内容
关于滑移线及冲击线的一些观点
滑移线---板料与凸模棱线接触时,当板料棱线处开始塑性变形,并开始随进料的不均匀而移动时,就会在棱线一侧产生划痕。
这个划痕就是滑移线。
翼子板棱线,引擎盖棱线,侧围棱线,行李箱棱线及车门外板棱线都需要判断。
冲击线---板料与凹模入模角接触处会产生硬化,若进料量很大,硬化处板料会滑入产品,而产生冲击线。
这些都会影响产品质量。
翼子板侧壁,侧围侧壁及门槛处,都需要判断冲击线。
解决措施:
滑移线--调节拉延筋,使两侧进料均匀,保证棱线处半径移动距离一个R之内。
冲击线--在侧壁处做台阶,使冲击线消失在台阶上(废料区)
模上的高位棱线(High line)将最先接触坯料而使板料变形,产生冲击线,由于拉延的进行,这些冲击线,会因棱线两侧凸模区的材料分配及材料进料的不均衡而有移动。
在拉延后的制件上,就是棱线一侧附近,有一条初始冲击线。
这种现象称之为棱线滑移。
在Autoform里面称为Skid/impact line,即滑移/冲击线,是指材料在成形的过程中越过棱线/型线(style line)的距离,这个在外覆盖件的分析中比较重要,因为这个滑移距离关系到外覆盖件的表面质量。
一般要求棱线的R角大于10~15倍的料厚,即R>10t~15t
解决滑移线作根本的方法应该是在工艺设计阶段使棱线位于凸模的最高点,然后调整制品的旋转角度,使两侧平衡。
通过调整拉延筋抑制滑移我觉得是调试阶段不得已而为之,这样会使制件拉伸率不足,会影响制件刚度。
冲击线的问题也应该尽量在工艺设计阶段解决掉,调整工艺补充形状,压料面深度,分模线位置都可起到作用,前提是在可调的情况下。
滑移和孪晶
滑移面 {110}
滑移 方向
{111} {110}
{111}
滑移系
密排六方晶格
(四)引起滑移的临界切应力
1)滑移面内的切应力分解到滑移方向上的 分 切应力是晶体产生滑移的动力。
2)分切应力:τ=σcosφcosλ ( φ为滑移面与 外力的夹角;λ为滑移方向与外力的夹角)
3) cosφcosλ 被称为取向因子,分切应力大的 位向称为软位向,反之
1、滑移系 1)滑移面:晶体中能够发生滑移的晶面 2)滑移方向:晶体中能够发生滑移的晶向 3) 滑移系 :晶体中每个滑移面和该面上的一个
滑移方向组成一个滑移系。 滑移面和滑移方向往往是金属晶体中原子排 列最密的晶面和晶向。
三种典型金属晶格的滑移系
晶格
体心立方晶格
面心立方晶格
生孪生变形。 ? 面心立方晶格金属,一般不发生孪生变形,但常
发现有孪晶存在,这是由于相变过程中原子重新 排列时发生错排而产生的,称退火孪晶。
钛合金六方相中的形变孪晶
奥氏体不锈钢中退火孪晶
黄铜中的孪晶
锌中的孪晶
四、滑移和孪生的区别
? 孪生通过切变使晶格位向发生了改变,造成变 形部分与未变形部分形成对称。而滑移变形后, 晶体各部分的相对位向不发生改变。
刃位错的运动
1、滑移的机理
多 脚虫 的 爬 行
2、位错的易动性
晶体通过位错运动 产生滑移时,只在位 错中心的少数原子发 生移动,它们移动的 距离远小于一个原子 间距,因而所需临界 切应力小,这种现象 称作位错的易动性。
(六)滑移的类型
根据位错运动方式的不同,会出现不同类 型的滑移:单滑移、多滑移、交滑移。
(七)滑移的特点
? 滑移只能在切应力的作用下发生 ? 滑移常沿晶体中原子密度最大的晶面和晶向发生
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属学滑移线的名词解释
引言:
金属学是研究金属及其合金行为和性质的科学领域,其中滑移线是一个重要的
概念。
滑移线是指金属在外加应力作用下,开始发生塑性变形的应力值或应变值。
1. 金属的塑性变形和滑移机制
金属因为其晶体的特性,在受到外界力的作用下能够发生塑性变形。
金属中的
晶粒间存在较高密度的变形界面,这些界面称为滑移面。
滑移面上的原子会发生位错,从而导致塑性变形。
2. 滑移线的定义和意义
滑移线是指金属在不同温度和应变率条件下,开始发生滑移的临界应力或应变。
它是描述金属的塑性变形能力的重要参数,具有很大的研究价值。
了解滑移线可以帮助工程师和科学家设计材料和结构,以提高金属的力学性能和可塑性。
3. 滑移线的确定方法
确定滑移线的方法有多种,但最常用的是实验测定和理论模拟。
实验测定通过
应力-应变曲线或载荷-位移曲线来确定滑移线的位置。
理论模拟则利用计算机模型
和金属的物理特性来预测滑移线的位置。
4. 受影响滑移线的因素
滑移线的位置可以受到多种因素的影响,包括应变率、温度、晶粒尺寸和杂质等。
快速应变率和低温有助于提高滑移线的应力值,而大尺寸的晶粒和高温则会降低滑移线的应力值。
5. 滑移线的应用
滑移线的研究对于金属加工、材料设计和结构优化等方面具有重要意义。
通过
控制滑移线的位置,可以改善金属的力学性能和可塑性,提高材料的强度和耐久性,从而推动工业和科学技术的发展。
6. 应对滑移线挑战的新方法
近年来,随着科技的进步,研究者们提出了一些新的方法来克服滑移线的限制。
例如,引入奇异点和界面工程等技术,可以显著改变滑移线的位置和形态,以提高金属的性能和可控性。
结论:
滑移线是金属学中一个重要的概念,它描述了金属在塑性变形过程中的关键参数。
了解滑移线的位置和影响因素,对于金属材料和结构的设计和优化具有重要意义。
我们希望未来能够通过进一步的研究和创新,提高金属的塑性变形能力,促进科学技术的发展与进步。