矩阵的运算
矩阵的基本概念与运算
矩阵的基本概念与运算矩阵是线性代数中的重要概念之一,在数学和计算机科学中广泛运用。
它是由数个数按矩形排列而成的矩形阵列,可以表示向量、方程组以及线性变换等。
一、矩阵的基本概念矩阵由m行n列的数按一定顺序排列而成,通常用大写字母表示。
例如,一个3行2列的矩阵可以表示为:A = [a11, a12;a21, a22;a31, a32]其中的aij表示矩阵A中第i行第j列的元素。
矩阵的行数m和列数n分别称为其维度,m×n为矩阵的规模。
二、矩阵的运算1. 矩阵的加法若矩阵A和B的维度相等(均为m行n列),则它们可以相加。
矩阵相加的结果为一个新的维度相同的矩阵C,其元素由对应位置的矩阵A和B的元素相加得到。
即:C = A + B = [a11 + b11, a12 + b12;a21 + b21, a22 + b22;a31 + b31, a32 + b32]2. 矩阵的减法矩阵的减法与加法类似,只需将相应位置上的元素相减即可。
例如:C = A - B = [a11 - b11, a12 - b12;a21 - b21, a22 - b22;a31 - b31, a32 - b32]3. 矩阵的数乘矩阵的数乘指的是将矩阵的每个元素乘以一个常数k。
结果仍为同一维度的矩阵。
记为:C = kA = [ka11, ka12;ka21, ka22;ka31, ka32]4. 矩阵的乘法矩阵的乘法是指将一个m行n列的矩阵A与一个n行p列的矩阵B相乘得到一个m行p列的矩阵C。
矩阵乘法的运算规则如下:C = AB = [c11, c12, ..., c1p;c21, c22, ..., c2p;...cm1, cm2, ..., cmp]其中,cij表示矩阵C中第i行第j列的元素,计算公式为:cij = a1i * b1j + a2i * b2j + ... + ani * bnj5. 矩阵的转置矩阵的转置是指将矩阵的行与列对调。
2.2矩阵的运算及其性质
2.2矩阵的运算及其性质1. 矩阵的加法矩阵的加法是指对应位置上的元素相加,即对两个相同大小的矩阵进行加法运算。
对于两个矩阵A和B,它们的加法运算可以表示为A + B,结果矩阵C的每个元素是A和B对应位置上元素的和。
矩阵的加法满足以下性质: - 交换律:A + B = B + A - 结合律:(A + B) + C = A + (B + C) - 零元素:存在一个零元素0,满足A + 0 = A - 负元素:对于任意矩阵A,存在一个负元素-A,满足A + (-A) = 02. 矩阵的减法矩阵的减法是指对应位置上的元素相减,即对两个相同大小的矩阵进行减法运算。
对于两个矩阵A和B,它们的减法运算可以表示为A - B,结果矩阵C的每个元素是A和B对应位置上元素的差。
矩阵的减法满足以下性质: - A - B = A + (-B)3. 矩阵的数乘矩阵的数乘是指将矩阵的每个元素都乘以一个数。
对于一个矩阵A和一个数k,它们的数乘运算可以表示为k * A,结果矩阵B的每个元素都是A对应位置上的元素乘以k。
矩阵的数乘满足以下性质: - 结合律:(k1 * k2) * A = k1 * (k2 * A) - 分配律:(k1 + k2) * A = k1 * A + k2 * A - 分配律:k * (A + B) = k * A + k * B - 1 * A = A4. 矩阵的乘法矩阵的乘法是指矩阵和矩阵之间的一种运算。
对于两个矩阵A和B,它们的乘法运算可以表示为A * B,结果矩阵C的元素是A的行向量与B的列向量进行内积后得到的。
矩阵的乘法满足以下性质: - 结合律:(A * B) * C = A * (B * C) - 分配律:A * (B + C) = A * B + A * C - 分配律:(B + C) * A = B * A + C * A - 乘法不满足交换律,即A *B ≠ B * A5. 矩阵的转置矩阵的转置是指将矩阵的行和列互换得到的新矩阵。
矩阵的运算
§2 矩阵的运算一、矩阵的相等、加、减、数乘、乘法、转置与共轭(A +B )=A +B (kA )=kA (k 为任意复数) (AB )τ=BA (反序定律)(A 1A 2...A s )=τττ12...A A A s(A k )=(A )k (k 为整数)二、 矩阵的初等变换与初等矩阵设I =⎥⎥⎥⎥⎤⎢⎢⎢⎢⎡10101,称为单位矩阵.用数k(0)乘矩阵的第i 列(或行)初等变换具有性质:1° 任何矩阵(a ij )都可经过有限次初等变换化为对角矩阵(a ij )⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡0001012° 初等变换不改变矩阵的秩.三、 矩阵的微积分假设矩阵A 的元素a ij 都是参数t 的函数,那末1° 矩阵A 的导数定义为⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡==t a t a ta t a t a tat a t a t a A tA mn m m n n d d ...d d d d ............d d ...d d d d d d ...d d d d d d 212222111211同样可定义矩阵的高阶导数. 2° 矩阵A 的积分定义为⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰t a t a ta t at at a t a t a ta t A mn m m n nd ...d d ............d ...d d d ...d d d 212222111211同样可定义矩阵的多重积分.四、 特殊矩阵[零矩阵与零因子] 元素a ij 全为零的矩阵称为零矩阵,记作O =(0)=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0...00............0 (00)0 (00)零矩阵具有性质:O +A =A +O =A OA =AO =OA +(-A )=O ,-A 称为A 的负矩阵若A ,B 为非零矩阵,即A ≠O ,B ≠O ,而AB =O ,则称矩阵A 为矩阵B 的左零因子,矩阵B 为矩阵A 的右零因子,例如A =⎥⎦⎤⎢⎣⎡--1111,B =⎥⎦⎤⎢⎣⎡--1111 AB =⎥⎦⎤⎢⎣⎡--1111⎥⎦⎤⎢⎣⎡--1111=⎥⎦⎤⎢⎣⎡0000=O[对角矩阵] 主对角线以外的元素都是零(d ij =0,i ≠j )的方阵称为对角矩阵,记作D =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n d d d 0...021=diag(d 1,d 2,...,d n )=[ d 1 d 2 ... d n ] 对角矩阵具有性质: 1° 左乘BDB =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n d d d 0021⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n b b b b b b b b b .....................212222111211=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n n n n b d b d b d b d b d b d b d b d b d ............... (2)12222221211121111 =)(ij i b d 2° 右乘BBD =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n b b b b b b b b b (2)12112111211⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n d d d 0021=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n n n n b d bd b d b d b d bd b d b d b d (2211222)22111122111 3° 两个对角矩阵的和、差、积仍为对角矩阵.[数量矩阵] d i =d (i =1,2,...,n )的对角矩阵称为数量矩阵,记作D =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡d d d00 =[d d... d ]显然DB =BD =dB .[单位矩阵] d =1的数量矩阵称为单位矩阵,记作 I =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡10101 =「1 1 ... 1」显然IB =BI =B .[对称矩阵] 满足条件a ij =a ji (i ,j =1,2,...,n )的方阵A =(a ij )称为对称矩阵.例如A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--423261315 是对称矩阵.对称矩阵具有性质: 若A ,B 都是对称矩阵,则A A=τ,且A -1(使A -1=A -1A =I 的矩阵.详见本节,六),A m (m 为正整数),A +B 仍是对称矩阵.[实对称矩阵]实对称矩阵按其特征值(本节,七)可分为正定矩阵,半正定矩阵、负定矩阵、半负定矩阵和不定矩阵,它们的定义与充分必要条件如下[反对称矩阵] 满足条件⎩⎨⎧-=jiij a a 0 )()(j i j i ≠= (i ,j =1,2,...,n )的方阵A =(a ij )称为反对称矩阵.例如A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---023201310 是反对称矩阵.反对称矩阵具有性质:1° 若A ,B 都是反对称矩阵,则A τ=-A ,且A -1, A +B 仍是反对称矩阵,A m 为⎩⎨⎧反对称矩阵对称矩阵)()(为奇数为偶数m m2° 任意方阵A 都可分解为一个对称矩阵B =(b ij )与一个反对称矩阵C =(c ij )之和,即A =B +C只需取b ij =21 (a ij +a ji ),c ij =21(a ij -a ji )(i ,j =1,2,...n )[埃尔米特矩阵] 满足条件A τ=A的方阵A 称为埃尔米特矩阵.例如A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--++-4232231212215i i i i i i 是埃尔米特矩阵.埃尔米特矩阵具有性质:若A ,B 都是埃尔米特矩阵,则1-A ,A +B 仍是埃尔米特矩阵.若A 又是实方阵(即a ij 全为实数),则A 就是对称矩阵.[反埃尔米特矩阵] 满足条件A τ=A -的方阵A 称为反埃尔米特矩阵.例如A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+--+-05250212210i i i i i i 是反埃尔米特矩阵.反埃尔米特矩阵具有性质: 若A ,B 都是反埃尔米特矩阵,则1-A , A +B 仍是反埃尔米特矩阵.若A 又是实方阵,则A 就是反对称矩阵.[正交矩阵] 满足条件A τ=1-A的方阵A 称为正交矩阵.例如 A =⎥⎦⎤⎢⎣⎡-θθθθcos sin sin cos 是正交矩阵.正交矩阵具有性质:若A =(a ij )和B 都是正交矩阵,则 1° 1-A , AB 仍是正交矩阵. 2° det A =±1.3° ⎩⎨⎧=∑=011n k jk ik a a )()(j i j i ≠=⎩⎨⎧=∑=011n k kj ki a a )()(j i j i ≠=[酉(U )矩阵] 满足条件1-=A A τ的方阵A 称为酉(U )矩阵.例如:A =⎥⎦⎤⎢⎣⎡00i i 是酉矩阵.酉矩阵具有性质:若A =(a ij )和B 都是酉矩阵,则 1° A -1,AB 仍是酉矩阵. 2° det A ∙det A =1.3° 若A 又是实方阵,则A 是正交矩阵.[带型矩阵] 满足条件a ij =0 )(m j i >-的方阵A =(a ij )称为带型矩阵.2m +1称为带宽.一般形式为A =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--++++nn mn n n m n n n n m a a a a a a a,,1,11,11,11100[三角矩阵] 满足条件a ij =0 (i >j )的方阵A =(a ij )称为上三角形矩阵,一般形式为A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n a a a a a a 022211211 满足条件()j i b ij <=0的方阵()ij b B =称为下三角形矩阵,一般形式为B =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n b b b b b b 212221110 三角形矩阵具有性质:1° 任何秩为r 的方阵C 的前r 个顺序的主子式不为0时,C 可表为一个上三角形矩阵A与一个下三角形矩阵B 的乘积,即C =AB2° 上(或下)三角形矩阵的和、差、积及数乘仍是上(或下)三角形矩阵.[分块矩阵] 用水平和垂直虚线将矩阵A 中的元素的阵列分成小块(称为子阵),A 就成为分块矩阵.例如A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡333231232221131211a a a a a a a a a =⎥⎦⎤⎢⎣⎡22211211B B B B 式中B 11=⎥⎦⎤⎢⎣⎡22211211a a a a,B 12=⎥⎦⎤⎢⎣⎡2313a a B 21=[]3231a a , B 22=[]33a 它们都是A 的子阵. 进行分块矩阵的运算时,可将子阵当作通常矩阵的元素看待.这些运算指加、减、乘法、数乘、转置与共轭等.[分块对角矩阵] 主对角线上的子阵都是方阵,其余子阵都是零矩阵的分块矩阵称为分块对角矩阵.一般形式为A =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡kkB O B O O O B 2211 分块对角矩阵A 的逆矩阵A -1和A 的行列式可以用下面简单公式求出A -1=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---1122111KK B OB O Bdet A =det B 11·det B 22·...·det B kk注意,一般分块矩阵的行列式不能用把子阵当作通常矩阵的元素的方法来计算,例如把四阶方阵化为分块矩阵A =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡44434241343332312423222114131211...........................a a a a a a a a a a a a a a a a =⎥⎦⎤⎢⎣⎡22211211B B B B 一般det A =det B 11·det B 22-det B 21·det B 12不成立(参见§1,二,3中的四阶行列式).五、 相似变换[相似变换] 如果有一非奇异矩阵X (即det X ≠0)使得B =1-X AX那末称矩阵A 与矩阵B 相似,也称A 经相似变换化为B ,记作A ~B .它具有下列性质: 1° A ~A ,AA .2° 若A ~B ,则BA .3° 若A ~C ,B ~C ,则A ~B .4° 1-X (A 1+ A 2+...+ A m )X =1-X A 1X + 1-X A 2X + ...+ 1-X A m X 5° 1-X (A 1 A 2 ...A m )X =1-X A 1 X ·1-X A 2 X ·... ·1-X A m X 6° 1-X A m X =( 1-X AX )m7° 若)(A f 为矩阵A 的多项式,则1-X )(A f X =)(1AX X f -8° 若A ~B ,则A 与B 的秩相同,即rank A =rank B . A 与B 的行列式相同,即det A =det B .A 与B 的迹(定义见本节,七)相同,即tr A =tr B . A 与B 具有相同的特征多项式和特征值(本节,七).[正交变换] 若Q 为正交矩阵(即1-Q =Q τ),则称Q τAQ 为矩阵A 的正交变换,其性质与相似变换类似.特别还有性质: 对称矩阵A 经正交变换后仍是对称矩阵.[旋转变换] 取正交矩阵U 为)(p)(qU pq =(u ij )=)()(11cos sin 11sin cos 11q p ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡θθ-θθ 即u pp =u qq =θcosu pq =-u qp =θsin u ii =1 (i ≠p,q )u ij =0 (i,j ≠p,q;i ≠j ) 这时称B =pq pq AU U τ为A 的旋转变换,称为旋转角,如果A 是对称矩阵,那末B 的元素b ij 与A 的元素a ij 有 如下对应关系:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=θ+θ=θ-θ=θ-θ+θθ-==θ+θθ+θ=θ+θθ-θ=ijijqj pj qj qj pj pj pq qq pp qp pqqq pq pp qq qq pq pp pp a b a a b a a b a a a b b a a a b a a a b cos sin sin cos )sin (cos cos sin )(cos cos sin 2sin sin cos sin 2cos 222222)其他元素(),(),(q p j q p j ≠≠同时有性质:∑=nj i ija1,2=∑=nj i ij b 1,2∑=ni iia 12∑=≤ni ii b 12 若取旋转角pqpp qq a a a 2cot arc 21-=θ则旋转变换使0==qp pq b b六、 逆矩阵[逆矩阵及其性质] 若方阵A ,B 满足等式AB=BA=I (I 为单位矩阵)则称A 为B 的逆矩阵,或称B 为A 的逆矩阵,记作A=1-B 或B=1-A这时A,B 都称为可逆矩阵(或非奇异矩阵,或满秩矩阵).否则称为不可逆矩阵(或奇异矩阵,或降秩矩阵).可逆矩阵具有性质:1° 若A,B 为可逆矩阵,则AB 仍为可逆矩阵,且111)(---=A B AB (反序定律)一般地,若A 1 ,A 2 ,…,A s 为可逆矩阵,则=-121)(s A A A 11121---A A A s2° 矩阵A 可逆的充分必要条件是:det A ≠0.3° 若矩阵A 可逆,则det 1-A ≠0 且 det 1-A =(det 1)-A11)(--A =A , 111)(---=A a aA (a ≠0)1)(-τA =(1-A )τ,()()11--=A A4° 矩阵A 可逆的充分必要条件是:矩阵A 的特征值全不为零.[伴随矩阵与逆矩阵表达式] 设A ij 为矩阵A =(a ij )的第i 行第j 列元素a ij 的代数余子式,则矩阵A *=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A (2122212)12111称为矩阵A 的伴随矩阵.若A 为非奇异矩阵,即det A ≠0,则A 的逆矩阵表达式为AA A det *1=-注意,A *的第i 行第j 列元素是A 的第j 行第i 列元素的代数余子式.[对角矩阵的逆矩阵] 对角矩阵D =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n d d d 0...021, d i ≠0 (i =1,2,...,n )的逆矩阵为D -1=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---112110...0n d d d 显然对角矩阵的逆矩阵仍是对角矩阵.[三角形矩阵的逆矩阵] 三角形矩阵L =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n l l l l l l ...............0...0...21222111, 00=≠ij ii l l )(),...,2,1(i j n i >= 的逆矩阵为1-L =P =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n p p p p pp ...............0...0 (02)1222111 式中iiii l p 1=(i =1,2,...,n )∑-=-=11i jk kj ikiiij p ll p⎪⎪⎭⎫ ⎝⎛+=-=n j i n j ,...,11,...,2,1 0=ij p)(i j >显然非奇异下(上)三角形矩阵的逆矩阵仍是下(上)三角形矩阵.[正定矩阵的逆矩阵] 1° 高斯—若当法正定矩阵A =(a ij )的逆A -1=(b ij )可由下列递推公式求出:)1(11)(1-=k k nnaa, )1(11)1(1)(1,----=k k jk j n aa a, )1(11)1(1)(,1---=k k i k ni a a a)1(11)1(1)1(1)1()(1,1-------=k k jk i k ij k j i aa a a a )2,...,1,,(-=n n j i ij n ij a a =)((k=1,2,...,n )最后得到)(n ijij a b = 式中n 为该正定矩阵A 的阶. 2° 三角阵法 其步骤如下:(1) 把正定矩阵A =(a ij )表示为A =ΛD Λτ式中D 为实的非奇异对角矩阵D =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n d d d 0021为实的非奇异下三角矩阵.Λ=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡λλλλ-1111,2121n n n n是的转置矩阵.d i (i =1,2,...,n )与λij (i =2,...,n;j=1,…,n )由下面递推公式算出:0=ij λ)(i j > 1=λii ),...,2,1(n i =∑-=-=11j k jk ik ij ij x a x λ)1,...,2,1;,...,2(-==i j n ijij ij d x =λ)1,...,2,1;,...,2(-==i j n i∑-=-=11i k ik ik ii i x a d λ),...,2,1(n i =(2)求出D 的逆矩阵1-D =⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡n d d d 11121(3)求出Λ的逆矩阵1-Λ=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1112121 n n ρρρ 式中⎪⎩⎪⎨⎧=-=∑-=11ii i jk kjik ij ρρλρ ),...,2,1(),...,2,1;1,...,2,1(n i n j j i n j =++=-=(4)求出A 的逆矩阵1-A =(ΛD 1)-τΛ=(1-Λ)τ1-D 1-Λ =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n βββββββββ212222112111式中∑==nik kkjki ij d ρρβ ),,2,1;,,2,1(n i i j ==注意,这种方法的好处是避免了求平方根的运算.[分块矩阵的逆矩阵] 设非奇异矩阵A 的分块矩阵为A =⎥⎦⎤⎢⎣⎡22211211B B B B 式中B 11,B 22为方子阵,那末A 的逆矩阵A -1=⎥⎦⎤⎢⎣⎡22211211C C C C由下面公式求出111211211111111212221221211112112111212222)(-------=-=-=-=B B C B C B B C C C B B C B B B B C[初等变换法求逆矩阵] 设1-A =1212222111211...........................-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n b b b b b b b b b 212222111211=B 对矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡100010001212222111211 nn n n n n a a a a a a a a a 作一系列行的初等变换,使虚线左边一块矩阵化为单位矩阵,而右边一块单位矩阵就变为A 的逆矩阵B =A -1,即⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n b b b b b b b b b212222111211100010001[逆矩阵的近似求法] 设10-A 为矩阵A 的初始近似逆矩阵,可由下列迭代公式求出更精确的逆矩阵:)2(1111---+-=n n n AA I A A (n=0,1,2,...)式中I 为与A 同阶的单位矩阵.[计算机求逆程序的检验矩阵] 用下列n 阶非奇异矩阵及其逆矩阵,来检验大矩阵求逆的计算程序.A =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡++-+------+-++222210221211210002112100002112122100021222n n n n n n1-A =⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--------n n n n n n n n n n n n n13211432341223111221七、 特征值与特征矢量[特征值与特征矢量] 对n 阶方阵A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a 212222111211 和n 维非零列矢量α=(a 1,a 2,...,a n )τ如果有一个数λ,使得A α=λα则称λ为矩阵A 的特征值(特征根),α为矩阵A 的特征值λ所对应的特征矢量. 矩阵A 的所有特征值中绝对值最大的一个称为A 的第一特征值.[特征矩阵特征多项式特征方程] n 阶方阵A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a 212222111211 的特征矩阵定义为=-I A λ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---λλλnn n n n n a a a a a aa a a212222111211 式中I 为n 阶单位矩阵.行列式|A -λI |称为矩阵A 的特征多项式,记作()=|-A λI |方程()=0称为矩阵A 的特征方程.[矩阵的迹与谱] n 阶方阵A 的主对角线上各元素之和称为A 的迹,记作∑==ni ii a A 1tr特征方程()=0的n 个根1,2,...,n 就是矩阵A 的n 个特征值.集合{1,2,...,n }称为矩阵A 的谱,记作ch A .线性齐次方程组0)(=-αλI A i的非零解便是矩阵A 的特征值i 所对应的特征矢量.[特征值与特征矢量的性质]1° 设1,2,...,n 为n 阶方阵A 的n 个特征值,则A k 的特征值为k n k k λλλ,,,21 (k 为正整数). A 的逆矩阵A -1的特征值为11211,,,---n λλλ .A 的伴随矩阵A *的特征值为A A A n 11211,,,---λλλ .2° n 阶方阵A 的n 个特征值之和等于A 的迹,矩阵A 的n 个特征值之积等于A 的行列式,即1+2+...+n =a 11+a 22+...+a nn12...n =A由此可以推出矩阵可逆的另一充分必要条件是:A 的所有特征值都不为零. 3° 若i 是特征方程的k 重根,则对应于i 的线性无关的特征矢量的个数不大于k .当i 为单根时,对应于i 的线性无关特征矢量只有一个.4° 矩阵A 的不同特征值所对应的特征矢量线性无关.若n 阶方阵A 对应于特征值1,2,...,s 的线性无关的特征矢量分别有k 1,k 2,...,k s个,则这∑=s i i k 1个特征矢量线性无关,且n k si i ≤∑=1.5° 实对称矩阵的特征值都是实数,并且有 n 个线性无关(而且是正交)的特征矢量. 6° 矩阵的特征值在相似变换下保持不变,特别,A τ与A 具有相同的特征值.[求第一特征值的迭代法] 在实际问题中,往往不要求算出矩阵A 的全部特征值,只需算出第一特征值,用迭代法计算如下:⎩⎨⎧=λ=α++b αα)0()1()1(1)(k k k A )2,1,0( =k 假定当ε<-+)1()(m m αα时,可以认为(k ) ≈(m +1),那末迭代到m k =即可.这时)1(1+m λ为矩阵A 的第一特征值的近似值,(m +1)为所对应的特征矢量.[求实对称矩阵的雅可比法] 设n 阶实对称矩阵A =(a ij )的特征值是1,2,...,n ,则必存在一正交矩阵Q ,使得Q τAQ =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡λλλn 0021为对角矩阵.正交矩阵Q 可用一系列旋转矩阵的积来逼近:Q =∏pq U式中)()(11cos sin 11sin cos 11)()()(q p u U q p ij pq⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-==θθθθ取pqpp qq a a a 2cot arc 21-=θ因为在这种旋转变换下,消去了矩阵中位于第p 行第q 列(p ≠q )交点上的元素(见本节,五),而矩阵所有元素的平方和保持不变,而且对角线上的元素的平方和增大,因而非对角线元素的平方和随之减小,因此,当旋转次数足够大时,可使非对角线元素的绝对值足够小.对于预先给定的精度>0,如果|a ij |<(i ≠j ),则可认为a ij ≈0.于是得到求矩阵A 的特征值与特征矢量的具体迭代方法.1° 按以下递推公式求特征值1,2,...,n :⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧+=θ=⎪⎪⎩⎪⎪⎨⎧<+->-+=θ=⎪⎩⎪⎨⎧<ςς++ς-≥ςς++ς=θ=-=θ=ς--2221212)()()(1sin )0(11)0(112tan )0()1()0()1(tan 22cot k k k k k k k k k kk k k k k k k k pq k pp k qq k t t s t t t t t t v t a a a⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧===≠≠=≠-+=≠+-=+=-=+++++),2,1(),,2,1,(),,,()()()()()1()1()()()()1()()()()1()()()1()()()1( k n j i a a q p j q p i a a q j a a s a a p j a a s a a a t a a a t a a ij ij kijk ijk qj k k pj k k qj k qj k pj k k qj k k pj k pj k pqk k qq k qq k pqk k pp k pp υυ假定当)()(j i a m ij ≠<ε时,可以认为0)(≈m ij a ,则迭代到1-=m k 即可.而取)(m iia 作为i的近似值:),,2,1(n i a miii =≈λ2° 求特征矢量 从1°有m m m m U U AU U U U 1111-- τττ=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n λλλ0021记P m =U 1…U m-1U m则AP m = P m ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n λλλ0021所以P m 为特征矢量矩阵.P m 由下列递推公式算出:)1,,2,1(),,2,1,(),,2,1(),()()()1()()1()()()()1()()()()1(-=⎪⎪⎪⎩⎪⎪⎪⎨⎧===≠=-+=+-=+++m k n j i u u n i q p j u u u u s u u u u s u u ijij k ijk ij k iq k k ip k k iq k iq k ip k k iq k k ip k ip υυ最后得到 )()(m ij m u P =即 τ),,,()()(2)(1)(m ni m i m i m i u u u u =为对应于特征值i 的特征矢量的近似值.[求对称三对角矩阵特征值的方法]1° 相似变换法 设A 为n 阶对称三对角矩阵:A =⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--n n n d e e d e e d e e d 113222111(1)经过相似变换1211211)(U U U I t A U U U A n k k n k --+-=τττ式中I 为单位矩阵,t k 为适当选定的常数,U i 为雅可比旋转矩阵:)1()(1111)1()(+⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-=+i i c s s c U i i ii i iiτi U 为U i 的转置矩阵.又A 1=A ,A k +1与k k t A -I 相似,且A m 与∑-=-111m j j I t A 相似.因此,若A m 的特征值为),,2,1()(n i m i =λ,则A 1的特征值i (i=1,2,...,n )为∑-=+=11)(m j j m ii t λλ(i =1,2,…,n )假定当),,2,1()(n i e m i =<ε时,可认为0)(≈m i e ,那末可适当选择s i ,c i ,使得当m 充分大时,A m 在该精度下化为对角线矩阵;其特征值),,2,1()()(n i d m i m i =≈λ.)(m i d (i=1,2,...,n )可由下列递推公式算出:()())1,,2,1;1,2,,2,1(,)]([)(//g ])()[(0,,)(1)(1)1(1)(1)(1)1(1)(1)(1)1(1)()()(1)()()(1)1(1)(1)()()()()(1)()()(1)(1)()(1)(1(k)1)()(1(k)1212)(2)(1)(1)()(-=--=⎪⎩⎪⎨⎧===-++=--=====+==-=+++++++++++++++++++++m k n n i q s e q c d r s e t d s g c s h d g s t d c q r e s r q c q c h e c c q rs c t d q k k k k k k k i k i k i k k i k i k i k i k i k i k i k i k i k k i k i k i k i k i k i k i k i k i k i k i i k i k i i k ik i k i k nk n k k n k nt k 的选择对收敛速度影响较大,取t k 为二阶矩阵⎥⎦⎤⎢⎣⎡)(2)(1)(1)(1k k k k d e e d 的接近于)(1k d 的那个特征值,即t k =⎪⎩⎪⎨⎧≥ββ++β-<ββ+-β-)0()1/()0()1/(2)(1)(12)(1)(1k k k k e d e d式中 )(1)(1)(22k k k e d d -=β 2° 二分法 设A 为n 阶对称三对角矩阵(如(1)式),对任意,设序列q 1()=d 1-q i ()=),,2()()(121n i q e d i i i =----λλ中q i ()<0的个数为N ()(在这些关系式中,对于某些i ,如果q i -1()=0,则只需用适当小的数代替即可),则N ()等于矩阵A 的小于的特征值的个数.假定矩阵A 的第k 个特征值k (1≤2≤… ≤k ≤…≤n )在区间[u ,υ]中,令21υ+=u r ,当N (r 1)≥k 时,则k ∈[u , r 1];当N (r 1)<k 时,则k ∈[ r 1,v ];…依此类推,m步之后,k 包含在宽度为mu2-υ的区间中.m 充分大时,便可得到所求的特征值.八、 矩阵多项式与最小多项式[矩阵多项式] 设i a (i=1,2,...,n )为某一数域(实数域或复数域)中的数,A 为这个数域上的n 阶方阵,则表示式f (A )=a 0I+a 1A+...+a n A n称为矩阵A 的多项式,式中I 为n 阶单位矩阵.如果矩阵A 使得f (A )=O那末称A为多项式f(λ)=a0λ+ a1λ+ ...+a nλn的根.[哈密顿-凯莱定理] 任一方阵都是它的特征多项式的根.[最小多项式及其性质] 以矩阵A为根的非零多项式f(λ)中,存在首项系数为1次数最低的多项式(λ),它就称为矩阵A的最小多项式.最小多项式具有性质:1°任一方阵仅有一个最小多项式;2°任一以A为根的多项式f(λ)都可被A的最小多项式(λ)所整除.特别,任一方阵的最小多项式可整除其特征多项式;3°方阵A的特征多项式的根都是A的最小多项式的根:4°相似矩阵具有相同的特征多项式和最小多项式.。
矩阵的运算知识点总结
矩阵的运算知识点总结一、矩阵的定义在开始讨论矩阵的运算知识点之前,首先需要了解矩阵的定义。
矩阵是由数个数按矩形排列组成的数组。
一般地,我们定义一个m×n矩阵A为一个m行n列的数组,其中每个元素aij(i行j列的元素)都是一个实数。
数学上通常用大写字母A、B、C、...表示矩阵。
例如,一个3×2矩阵可以表示为:A = [a11 a12a21 a22a31 a32]其中,a11、a12、a21、a22、a31、a32是矩阵的元素。
二、矩阵的基本运算1. 矩阵的加法当两个矩阵具有相同的行数和列数时,它们可以相加。
矩阵相加是将对应位置的元素相加得到新的矩阵。
例如,对于矩阵A和矩阵B相加,结果矩阵C的第i行第j列元素为:cij = aij + bij。
2. 矩阵的减法矩阵的减法定义与加法类似,对应位置的元素相减得到新的矩阵。
例如,对于矩阵A和矩阵B相减,结果矩阵C的第i行第j列元素为:cij = aij - bij。
3. 矩阵的数量乘法矩阵与一个实数相乘,是将矩阵的每个元素都乘以该实数。
例如,对于矩阵A和实数k相乘,结果矩阵B的元素为:bij = k * aij。
4. 矩阵的转置矩阵的转置是将矩阵的行列互换得到新的矩阵。
例如,对于矩阵A的转置矩阵AT,有AT 的第i行第j列元素为A的第j行第i列元素。
5. 矩阵的乘法矩阵的乘法是矩阵运算中最重要的部分。
两个矩阵的乘法只有在满足第一个矩阵的列数等于第二个矩阵的行数时才能进行。
如果A是一个m×p的矩阵,B是一个p×n的矩阵,它们的乘积为一个m×n的矩阵C。
矩阵的乘法运算过程中,结果矩阵C的第i行第j列元素为:cij = a(i,1)b(1,j) + a(i,2)b(2,j) + ... + a(i,p)b(p,j)。
以上就是矩阵的基本运算,矩阵运算的内容很广泛,包括了基本运算,特殊矩阵运算和矩阵运算的性质定理等。
矩阵的四则运算
矩阵的四则运算
矩阵的四则运算指的是矩阵之间的加法、减法、乘法和除法运算。
1. 加法:两个矩阵的加法定义为将对应元素相加。
要求两个矩阵的行数和列数相等。
例如:
A = [1 2
3 4]
B = [5 6
7 8]
A +
B = [1+5 2+6
3+7 4+8]
= [6 8
10 12]
2. 减法:两个矩阵的减法定义为将对应元素相减。
同样要求两个矩阵的行数和列数相等。
例如:
A = [1 2
3 4]
B = [5 6
7 8]
A -
B = [1-5 2-6
3-7 4-8]
= [-4 -4
-4 -4]
3. 乘法:两个矩阵的乘法定义为将第一个矩阵的每一行与第二个矩阵的每一列进行内积运算。
要求第一个矩阵的列数等于第二个矩阵的行数。
例如:
A = [1 2
3 4]
B = [5 6
7 8]
A *
B = [1*5+2*7 1*6+2*8
3*5+4*7 3*6+4*8]
= [19 22
43 50]
4. 除法:矩阵的除法没有直接定义,但可以通过矩阵的乘法和逆矩阵来实现。
要求被除矩阵的逆矩阵存在且除数矩阵的行数等于被除矩阵的列数。
例如:
A = [1 2
3 4]
B = [5 6
7 8]
A /
B = A * B^(-1)
其中 B^(-1) 是矩阵 B 的逆矩阵。
这些运算规定了矩阵之间的加减乘除运算法则,能够在很多领域中被广泛应用,如线性代数、图像处理、机器学习等。
矩阵的运算规则
矩阵的运算规则矩阵是数学中重要的概念之一,在各个学科领域都有广泛的应用。
矩阵的运算规则是研究和操作矩阵的基础,它们被广泛用于解决线性方程组、矩阵计算和数据处理等问题。
本文将详细介绍矩阵的基本运算规则,包括矩阵的加法、乘法以及转置等操作。
一、矩阵的加法矩阵的加法是指将两个具有相同行数和列数的矩阵相加的操作规则。
假设有两个矩阵A和B,它们的行数和列数相等,则可以将它们对应位置的元素相加,得到一个新的矩阵C。
例如,有两个2×2的矩阵A和B:A = [a11, a12][a21, a22]B = [b11, b12][b21, b22]则矩阵A与B的加法运算可表示为:C = A + B = [a11+b11, a12+b12][a21+b21, a22+b22]二、矩阵的乘法矩阵的乘法是指将两个矩阵相乘的操作规则。
要使两个矩阵能够相乘,第一个矩阵的列数必须等于第二个矩阵的行数。
例如,有两个m×n的矩阵A和n×p的矩阵B:A = [a11, a12, ..., a1n][a21, a22, ..., a2n][..., ..., ..., ...][am1, am2, ..., amn]B = [b11, b12, ..., b1p][b21, b22, ..., b2p][..., ..., ..., ...][bn1, bn2, ..., bnp]则矩阵A与B的乘法运算可表示为:C = A × B = [c11, c12, ..., c1p][c21, c22, ..., c2p][..., ..., ..., ...][cm1, cm2, ..., cmp]其中,矩阵C的元素cij的计算方式为:cij = a(i1)b(1j) + a(i2)b(2j) + ... + a(in)b(nj)三、矩阵的转置矩阵的转置是指将矩阵的行和列进行交换得到的新矩阵。
假设有一个m×n的矩阵A,则它的转置矩阵记为A^T,具有n×m的行列数。
矩阵常见运算
矩阵的基本运算公式加法,减法,数乘,转置,共轭和共轭转置。
1、矩阵的加法满足A+B=B+A;(A+B)+C=A+(B+C)。
在两个数的加法运算中,在从左往右计算的顺序,两个加数相加,交换加数的位置,和不变。
A+B+C=A+C+B。
加法定理一个是指概率的加法定理,讲的是互不相容事件或对立事件甚至任意事件的概率计算方面的公式;另一个是指三角函数的加法定理。
2、把矩阵A的行和列互相交换所产生的矩阵称为A的转置矩阵,这一过程称为矩阵的转置。
设A为m×n阶矩阵(即m行n列),第i 行j 列的元素是a(i,j),即:A=a(i,j)定义A的转置为这样一个n×m阶矩阵B,满足B=b(j,i),即a(i,j)=b (j,i)(B的第i行第j列元素是A的第j 行第i列元素),记A'=B。
3、矩阵乘法是一种根据两个矩阵得到第三个矩阵的二元运算。
二元运算属于数学运算的一种。
二元运算需要三个元素:二元运算符以及该运算符作用的两个变量。
如四则运算的加、减、乘、除均属于二元运算。
如在运算1 + 2之中,二元运算符为“+”,而该运算符作用的操作数分别为1与2。
二元运算只是二元函数的一种,由于它被广泛应用于各个领域,因此受到比其它函数更高的重视。
矩阵的运算
解: ||A|A|= |2A| =(2)3|A| =(2)3(2) =16
1 1 3
例:已知f(A)= A 2E
(A) = A + 5E
(A) f (A) = f (A)(A)?
4、方阵的多项式:
设 f (x) = am xm +L + a1x + a0
为x的m次多项式,则称
f ( A) = am Am +L a1A + a0E
为方阵A的m次多项式。
若A为n阶方
阵,则 f ( A)
2、A是对称阵 AT = A
例如
12 A= 6
6 8
1 0
为对称阵.
1 0 6
说明: 对称阵的元素以主对角线为对称轴对应相等
例 设A,B为对称阵,判断下列矩阵是否为对称阵?
A+B,A-B ,AB, kA
例2 设列矩阵 X = x1, x2 , , xn T满足 X T X = 1,
E为n阶单位矩阵, H = E 2XX T ,证明H是对称矩
(只要有意义)结果不变
类似于数1在数的乘法中的作用。
3、方阵的幂:
对于方阵A及自然数k
只有方阵 才能自乘
记 Ak=AA A (k个A相乘)
规定 ( Ann )0 = En
性质:(1) ArAs=Ar+s (2) (Ar)s=Ars
思考:下列等式在什么时候成立?
( AB)k = Ak Bk ( A + B)2 = A2 + 2AB + B2 ( A + B)( A B) = A2 B2
也为n阶方阵
性质:
矩阵的运算的所有公式
矩阵的运算的所有公式矩阵是数学中一个重要的概念,研究矩阵的运算公式对于理解线性代数和计算机图形学等领域都至关重要。
以下是矩阵的运算公式的详细介绍:1.矩阵的加法:对于两个相同大小的矩阵A和B,它们的加法定义为:C=A+B,其中C的元素等于A和B对应元素的和。
2.矩阵的减法:对于两个相同大小的矩阵A和B,它们的减法定义为:C=A-B,其中C的元素等于A和B对应元素的差。
3.矩阵的数乘:对于一个矩阵A和一个标量k,它们的数乘定义为:B=k*A,其中B的元素等于A的对应元素乘以k。
4.矩阵的乘法:对于两个矩阵A和B,它们的乘法定义为:C=A*B,其中C的元素等于A的行向量与B的列向量的内积。
5.矩阵的转置:对于一个矩阵A,它的转置定义为:B=A^T,其中B的行等于A的列,B的列等于A的行,且B的元素和A的对应元素相同。
6.矩阵的逆:对于一个可逆矩阵A,它的逆定义为:A^{-1},使得A*A^{-1}=I,其中I是单位矩阵。
7.矩阵的行列式:对于一个方阵A,它的行列式定义为:,A,是A的元素的代数余子式之和。
8.矩阵的迹:对于一个方阵A,它的迹定义为:tr(A),是A的主对角线上元素之和。
9.矩阵的转置乘法:对于两个矩阵A和B,它们的转置乘法定义为:C=A^T*B,其中C的元素等于A的列向量与B的列向量的内积。
10.矩阵的伴随矩阵:对于一个方阵A,它的伴随矩阵定义为:adj(A),是A的代数余子式构成的矩阵的转置。
11.矩阵的秩:对于一个矩阵A,它的秩定义为:rank(A),是A的线性无关的行或列的最大数量。
12.矩阵的特征值和特征向量:对于一个方阵A,它的特征值是满足方程det(A - λI) = 0的λ值,特征向量是对应于特征值的非零向量。
13.矩阵的奇异值分解(SVD):对于一个矩阵A,它的奇异值分解定义为:A=U*Σ*V^T,其中U和V 是正交矩阵,Σ是一个对角线上元素非负的矩阵。
14.矩阵的广义逆矩阵:对于一个矩阵A,它的广义逆矩阵定义为:A^+,使得A*A^+*A=A,其中A*A^+和A^+*A均为投影矩阵。
矩阵的基本运算
矩阵的基本运算矩阵是数学中非常重要的一个概念,它在各个领域都有着广泛的应用。
矩阵的基本运算包括矩阵的加法、减法、数乘和矩阵的乘法等。
本文将围绕这些基本运算展开讨论。
首先,我们来讲解矩阵的加法。
如果两个矩阵A和B的维数相同,即都是m行n列的矩阵,那么它们可以相加。
矩阵的加法运算是将对应位置的元素相加得到新的矩阵。
即若A=(a_{ij}),B=(b_{ij}),则A+B=(a_{ij}+b_{ij})。
例如,给定两个矩阵A和B如下:A = [1 2 3][4 5 6]B = [7 8 9][10 11 12]则A与B的和C为:C = [1+7 2+8 3+9][4+10 5+11 6+12]简化运算后,C的结果为:C = [8 10 12][14 16 18]接下来我们讨论矩阵的减法。
矩阵的减法运算与加法类似,也是将对应位置的元素相减得到新的矩阵,即若A=(a_{ij}),B=(b_{ij}),则A-B=(a_{ij}-b_{ij})。
例如,给定两个矩阵A和B如下:A = [1 2 3][4 5 6]B = [7 8 9][10 11 12]则A与B的差D为:D = [1-7 2-8 3-9][4-10 5-11 6-12]简化运算后,D的结果为:D = [-6 -6 -6][-6 -6 -6]矩阵的数乘是指将一个矩阵的每个元素都乘以一个实数。
即若A=(a_{ij})是一个m行n列的矩阵,k是一个实数,那么kA=(ka_{ij})。
例如,给定一个矩阵A和一个实数k如下:A = [1 2 3][4 5 6]k = 2则kA的结果为:kA = [2*1 2*2 2*3][2*4 2*5 2*6]简化运算后,kA的结果为:kA = [2 4 6][8 10 12]最后我们来讨论矩阵的乘法。
矩阵的乘法运算是指矩阵与矩阵之间进行乘法运算,得到一个新的矩阵。
矩阵的乘法有一定的规则,即若A是一个m行n列的矩阵,B是一个n行p列的矩阵,那么它们可以相乘,得到一个m行p列的矩阵C。
矩阵的基本运算与性质
矩阵的基本运算与性质一、矩阵的定义与表示矩阵是由若干数字按照行和列排列成的矩形阵列,通常用方括号表示。
例如,一个m行n列的矩阵可以表示为[A]m×n,其中每个元素a_ij表示矩阵A中第i行第j列的数字。
二、矩阵的基本运算1. 矩阵的加法:若A和B是同阶矩阵,即行数和列数相等,那么A 和B的和C=A+B是一个同阶矩阵,其中C的任意元素c_ij等于A和B对应元素的和。
示例:[A]m×n + [B]m×n = [C]m×n,其中c_ij = a_ij + b_ij。
2. 矩阵的数乘:若A是一个矩阵,k是一个常数,那么kA就是将A的每个元素乘以k得到的矩阵。
示例:k[A]m×n = [B]m×n,其中b_ij = k * a_ij。
3. 矩阵的乘法:若A是一个m行n列的矩阵,B是一个n行p列的矩阵,那么它们的乘积C=AB是一个m行p列的矩阵,其中C的任意元素c_ij等于A的第i行与B的第j列对应元素的乘积之和。
示例:[A]m×n × [B]n×p = [C]m×p,其中c_ij = Σk=1^n (a_ik *b_kj)。
三、矩阵的运算法则1. 加法的交换律:矩阵的加法满足交换律,即A+B=B+A。
2. 加法的结合律:矩阵的加法满足结合律,即(A+B)+C=A+(B+C)。
3. 数乘的结合律:数乘与矩阵的乘法满足结合律,即k(A+B)=kA+kB。
4. 数乘的分配律:数乘与矩阵的乘法满足分配律,即(k+m)A=kA+mA,k(A+B)=kA+kB。
5. 乘法的结合律:矩阵的乘法满足结合律,即(A*B)*C=A*(B*C)。
6. 乘法的分配律:矩阵的乘法满足分配律,即(A+B)*C=AC+BC。
四、矩阵的性质1. 矩阵的转置:若A是一个m行n列的矩阵,在A的上方写A的名字的转置符号T,表示A的转置矩阵。
A的转置矩阵是一个n行m 列的矩阵,其中A的第i行被用作A的转置矩阵的第i列。
矩阵的运算
例如
1 0 − 1 0 4 0 1 −1 0 3
0 0
0 0
0 0
1 0
−3 0
6 矩阵的标准形
对行阶梯形矩阵再进行初等列变换,可得到 矩阵的标准形,其特点是:左上角是一个单位矩 阵,其余元素都为0.
例如
1 0
0 0
0 1 0 0
−1 −1 0 0
0 0 1 0
~ 4
3
cc4+3↔c1+cc4 2
− 1 − 1 − 1 0 0 1 − 1 − 1 − 1 0 0 1
r3+r1 1 1
2
0
1
0
r
+
2
r
3
1
1
2
0
1
0
~ 0 2 −1 1 0 0 ~ 0 2 0 1 1 1
0 0 1 0 1 1 0 0 1 0 1 1
r1+(−2)×r3 1 1 0 0 − 1 − 2
~ 0 2 0 1 1 1
0 0 0
1 0 0
0 1 0
0 0 0
1 0 0 1 − 2 0
6
−5
1
0 0 0
0 0 0
− 5 6 1 6 7 6 1 6 − 5 6 1 6 0 0 0 0
由此可知R( A) = R(B) = 3 ,而方程组(1)中未知 量的个数是n = 4,故有一个自由未知量.
令自由未知量 x4 = k,可得方程组(1)的通解是
以 E m (ij(k))左乘矩阵A,相当于把A的第j行乘 以k加到第i行上(r i + k r j);
以 E n (ij(k))右乘矩阵A,相当于把A的第i列乘 以k加到第j列上(c j + k ci).
矩阵的概念和运算
矩阵的概念和运算矩阵是线性代数中的重要概念,广泛应用于数学、物理、经济学等各个领域中。
本文将介绍矩阵的基本概念和运算,以及其在实际问题中的应用。
一、矩阵的定义和表示矩阵是由m行n列的数量排列在一个矩形阵列中的数或者符号所组成的矩形数表。
一般用大写字母表示矩阵,例如A、B、C等。
矩阵可以表示为:A = [a_ij],其中1 ≤ i ≤ m,1 ≤ j ≤ n其中a_ij表示矩阵A中第i行第j列的元素。
二、矩阵的基本运算1. 矩阵的加法矩阵的加法满足相同位置元素相加的规则,即相同位置的元素相加得到新矩阵的对应位置元素。
例如:A = [a_ij],B = [b_ij],C = [c_ij]A +B = [a_ij + b_ij] = C2. 矩阵的数乘矩阵的数乘指将一个数与矩阵中的每个元素相乘,得到新矩阵。
例如:A = [a_ij],k为实数kA = [ka_ij]3. 矩阵的乘法矩阵的乘法是指两个矩阵相乘得到新矩阵的运算。
矩阵的乘法满足“行乘列”规则,即第一个矩阵的行元素与第二个矩阵的列元素相乘并求和得到新矩阵的对应位置元素。
例如:A = [a_ij],B = [b_ij],C = [c_ij]AB = C,其中c_ij = ∑(a_ik * b_kj)4. 矩阵的转置矩阵的转置是指将矩阵的行和列互换得到新矩阵。
若A为m行n 列的矩阵,其转置矩阵记作A^T,则A^T为n行m列的矩阵,且A的第i行第j列的元素等于A^T的第j行第i列的元素。
三、矩阵的应用1. 线性方程组矩阵可以用来表示线性方程组,通过矩阵的运算可以更方便地求解线性方程组的解。
例如:Ax = b其中A为系数矩阵,x为未知数向量,b为常数向量。
通过矩阵的运算,可以求解出未知数向量x。
2. 矩阵的特征值和特征向量矩阵的特征值和特征向量是线性代数中的重要概念,用于描述矩阵在向量空间中的变换性质。
特征向量是指在矩阵变换下保持方向不变的非零向量,特征值是指对应于特征向量的标量。
矩阵的运算
§2.2 矩阵的运算一、矩阵的加法定义1⎪⎪⎪⎪⎪⎭⎫⎝⎛+++++++++=+mn mn m m m m n n n n b a b a b a b a b a b a b a b a b a B A 221122222221211112121111设有两个矩阵那么矩阵与的和记作,规定为n m ⨯()(),,ij ij b B a A ==A B B A +说明:只有当两个矩阵是同型矩阵时,才能进行加法运算.把矩阵中各元素变号得到的矩阵,称为A 的负矩阵,记作–A ,即n m ij )(a A ⨯=nm ij )a (A ⨯−=−矩阵加法的运算规律()A;B B A 1+=+()()().C B A C B A 2++=++()0.A A (4)=−+矩阵的减法可定义为A−B =A+ (−B )A 0A (3)=+矩阵0在矩阵加法运算中与数0在数的加法运算中有同样的性质。
定义2.ka ka ka ka ka ka ka ka ka kA mn m1m12n 22211n 1211⎪⎪⎪⎪⎪⎭⎫⎝⎛= 规定为的乘积记作与矩阵数,kA A k nm ij n m ij n m )(ka )k(a kA ⨯⨯⨯==二、数与矩阵相乘()()();1A A μλλμ=()();2A A A μλμλ+=+()().3B A B A λλλ+=+数乘矩阵的运算规律矩阵加法与数乘矩阵合起来,统称为矩阵的线性运算.(设为矩阵,为数)μλ,n m ⨯B A 、数乘关于数因子的结合律数乘关于数的加法的分配律数乘关于矩阵加法的分配律A1A =(4)三、矩阵与矩阵相乘例 根据下面的学生成绩表计算每个同学的总评成绩。
姓 名 平时(占35%) 期中测验(占25%) 期末考试(占40%) 总评刘 涛 79 85 88李 红 91 87 90叶 军 93 95 97计算总评成绩的公式是:总评成绩 = 平时35.0⨯+期中25.0⨯+期末40.0⨯.根据成绩表填写下面括号中的数字,计算以后就可 以得到:刘涛的总评成绩= ( 79 )×0.35 + ( 85 )×0.25 + ( 88 )×0.40 = 84.1 .( 79 )×0.35 + ( 85 )×0.25 + ( 88 )×0.40 ( 91 )×0.35 + ( 87 )×0.25 + ( 90 )×0.40( 93 )×0.35 + ( 95 )×0.25 + ( 97 )×0.40能不能用矩阵把它们表示出来?怎样表示?以上各式中的数,一部分是同学们的成绩,取出来可以得到矩阵A ,⎪⎪⎪⎭⎫⎝⎛=979593908791888579A另一部分是各种成绩所占百分比,取出来可以得到矩⎪⎪⎪⎭⎫⎝⎛=0.400.250.35B .例题中总评成绩算法格式相同,算式如下:以上算法可以总结为:用矩阵A 每一行的各个数分别和矩阵B 的各个数对应相乘再相加。
矩阵运算公式
矩阵运算公式矩阵运算是线性代数的重要组成部分。
矩阵运算的核心是矩阵乘法,矩阵乘法可以描述线性变换和线性方程组。
矩阵乘法的定义是:设矩阵A为m×n的矩阵,矩阵B为n×p的矩阵,求得矩阵C为m×p的矩阵。
矩阵C的第i行第j列元素为矩阵A的第i行和矩阵B的第j列的元素对应相乘的和。
我们可以用数学公式表示为:C_ij=sum(A_ik*B_kj) (k从1到n)其中,sum代表求和,A_ik表示矩阵A第i行第k列的元素,B_kj表示矩阵B第k行第j列的元素。
矩阵乘法是一种不满足交换律的运算,即A×B不等于B×A,但是满足结合律,即A×(B×C)=(A×B)×C。
除了矩阵乘法,还有几种常见的矩阵运算:1. 矩阵加法矩阵加法是指将同阶矩阵中对应元素相加,得到一个新矩阵。
例如,对于两个2×2的矩阵A和B:A=[1 2;3 4] B=[5 6;7 8]它们的和C为:C=A+B=[6 8;10 12]2. 矩阵数乘矩阵数乘是指将一个元素与矩阵中的所有元素相乘,得到一个新矩阵。
例如,对于一个2×2的矩阵A和数k:A=[1 2;3 4] k=2它们的积C为:C=kA=[2 4;6 8]3. 转置矩阵的转置是指将矩阵的行和列互换,得到一个新矩阵。
例如,对于一个2×3的矩阵A:A=[1 2 3;4 5 6]它的转置矩阵B为:B=[1 4;2 5;3 6]矩阵运算在数学和工程领域有广泛的应用,如图像处理、信号处理、控制理论等。
矩阵运算的复杂度取决于矩阵的大小和计算机的性能,因此在实际应用中需要谨慎选择算法和优化矩阵计算过程以提高效率。
矩阵运算法则
矩阵运算法则
在今天的矩阵运算课程中,我们简单介绍了矩阵的运算法则,主要包含如下5个方面:
1. 矩阵加法:两个矩阵A和B,如果它们的行数和列数相同,则可以相加,即A+B=C,其中C的元素Cij=Aij+Bij,i和j分别表示行和列的索引。
2. 矩阵减法:两个矩阵A和B,如果它们的行数和列数相同,则可以相减,即A-B=C,其中C的元素Cij=Aij-Bij,i和j分别表示行和列的索引。
3. 矩阵乘法:两个矩阵A和B,如果A的列数等于B的行数,则可以相乘,即A×B=C,其中C的元素Cij=Σk=1nAik Bkj,i 和j分别表示行和列的索引,n表示A的列数,也是B的行数。
4. 矩阵转置:矩阵A的转置矩阵A',其元素A'ij=Aji,i和j 分别表示行和列的索引。
5. 矩阵乘以标量:矩阵A乘以标量k,即Ak,其元素Aij=kAij,i和j分别表示行和列的索引。
第二节矩阵的运算
z2
,它们之间的关系分别为 设某地区有甲、乙、丙三个工厂,
每个工厂都
生产Ⅰ、 Ⅱx1 、Ⅲa1、1 yⅣ1 4a1种2 y产2 品 a.已13知y3每, 个工厂的年
产量(单位x:2 个)a如21下y1表所a2示2 y:2 a23 y3 ,
(1)
2. 定义
定义 4 设矩阵 A = (aij)m×p , B = (bij)p×n ,
一、矩阵的加法
1. 定义 定义 2 设 A = (aij)m×n 与 B = (bij)m×n 是两 个同型矩阵,称 m×n 矩阵 C = (aij + bij)m×n 为矩 阵 A 与矩阵 B 的和,记为 A+B. 若记 - A = ( -aij) , 则称 -A 为矩阵 A 的负矩 阵. 显然有 A + (-A) = O. 由此可定义矩阵的差为
左乘 B”或“B 右乘 A”.
“A解的乘因积为ABA 及是
(2) 两个非零矩阵的乘积可能是零矩阵.
例如, 本节 例 5 求中矩A阵 O, B O, 但 BA = O.
AB
(3) = CB,
B矩阵O的, 不乘一法A定不能满推1足2出消去A42=律 C,,即. B如果23
4
例如
的乘积 AB 及 BA.
(1) (AT)T = A ; (2) (B + C)T = BT + CT ; (3) (kA)T = kAT; (4) (AB)T = BTAT ;
(A1A2 ···Ak)T = AkT ···A2TA1T ;
(5) 若 A 为 n 阶方阵, 则 (Am)T = (AT)m , m 为正整数;
也有意义, 因此有下述定义:
定义 设 A 是 n 阶方阵, m 是正整数, m 个
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩阵的运算
矩阵的运算是线性代数中的基本概念之一,广泛应用于各个领域,例如物理学、工程学和计算机科学等。
矩阵是一个二维的数学对象,由行和列组成。
矩阵运算包括加法、减法、乘法和转置等常见操作。
一、矩阵的定义
矩阵是由m行n列元素排列而成的一个矩形数组。
记作
A=[a_ij],其中a_ij表示矩阵A的第i行第j列的元素。
行数m表示矩阵的行数,列数n表示矩阵的列数。
例如,一个3行2列的矩阵可以表示为:
A = |a_11 a_12|
|a_21 a_22|
|a_31 a_32|
二、矩阵的加法
矩阵的加法是指对应位置元素相加的操作。
两个相同大小的矩阵A和B可以相加得到一个新的矩阵C,记作C=A+B。
具体操作为将A和B对应位置的元素相加得到C的对应位置元素。
例如:
A = |a_11 a_12|
B = |b_11 b_12|
|a_21 a_22| |b_21 b_22|
|a_31 a_32| |b_31 b_32|
C = A + B = |a_11+b_11 a_12+b_12|
|a_21+b_21 a_22+b_22|
|a_31+b_31 a_32+b_32|
三、矩阵的减法
矩阵的减法是指对应位置元素相减的操作。
两个相同大小的矩阵A和B可以相减得到一个新的矩阵C,记作C=A-B。
具体操作为将A和B对应位置的元素相减得到C的对应位置元素。
例如:
A = |a_11 a_12|
B = |b_11 b_12|
|a_21 a_22| |b_21 b_22|
|a_31 a_32| |b_31 b_32|
C = A - B = |a_11-b_11 a_12-b_12|
|a_21-b_21 a_22-b_22|
|a_31-b_31 a_32-b_32|
四、矩阵的乘法
矩阵的乘法是指根据一定的规则将两个矩阵相乘得到一个新的矩阵。
矩阵乘法的规则是:若矩阵A为m行n列,矩阵B为n 行p列,则A和B的乘积矩阵C为m行p列,其中C的第i行第j列元素为矩阵A第i行与矩阵B第j列对应元素的乘积之和。
具体计算如下:
A = |a_11 a_12|
B = |b_11 b_12 b_13|
|a_21 a_22| |b_21 b_22 b_23|
C = A * B = |a_11*b_11+a_12*b_21
a_11*b_12+a_12*b_22 a_11*b_13+a_12*b_23|
|a_21*b_11+a_22*b_21
a_21*b_12+a_22*b_22 a_21*b_13+a_22*b_23|
五、矩阵的转置
矩阵的转置是将矩阵的行和列对调得到的一个新矩阵。
表示为A^T,其中A为原矩阵。
具体操作为将原矩阵A的第i行第j 列元素移到新矩阵的第j行第i列。
例如:
A = |a_11 a_12 a_13|
|a_21 a_22 a_23|
A^T = |a_11 a_21|
|a_12 a_22|
|a_13 a_23|
六、矩阵的逆
矩阵的逆是指对于一个可逆矩阵A,存在一个矩阵B,使得A 与B的乘积为单位矩阵I。
记作A^-1。
一个矩阵的逆矩阵存在的条件是该矩阵的行列式不为0。
具体计算逆矩阵的方法有多种,其中最常用的是伴随矩阵法和高斯-约当法。
以上是矩阵的基本运算,矩阵还有很多其他的运算,例如矩阵的迹、矩阵的行列式、矩阵的特征值和特征向量等。
通过对矩阵的运算,我们可以解决一些实际问题,例如求解线性方程组、求解最优化问题等。
因此,矩阵的运算在现代数学和科学领域中具有重要的地位和应用价值。