2021年全国各地高考数学真题汇编(Word档含答案解析)
2021年全国高考数学真题试卷全集(文理共10套)(学生版+解析版)
2021年全国统一高考数学试卷(理科)(甲卷)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设集合M ={x |0<x <4},N ={x |13≤x ≤5},则M ∩N =( )A .{x |0<x ≤13}B .{x |13≤x <4}C .{x |4≤x <5}D .{x |0<x ≤5}2.(5分)为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是( ) A .该地农户家庭年收入低于4.5万元的农户比率估计为6% B .该地农户家庭年收入不低于10.5万元的农户比率估计为10% C .估计该地农户家庭年收入的平均值不超过6.5万元D .估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间 3.(5分)已知(1﹣i )2z =3+2i ,则z =( ) A .﹣1−32iB .﹣1+32iC .−32+iD .−32−i4.(5分)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录法的数据V 满足L =5+lgV .已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为( )(√1010≈1.259) A .1.5B .1.2C .0.8D .0.65.(5分)已知F 1,F 2是双曲线C 的两个焦点,P 为C 上一点,且∠F 1PF 2=60°,|PF 1|=3|PF 2|,则C 的离心率为( )A .√72B .√132C .√7D .√136.(5分)在一个正方体中,过顶点A 的三条棱的中点分别为E ,F ,G .该正方体截去三棱锥A ﹣EFG 后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是( )A .B .C .D .7.(5分)等比数列{a n }的公比为q ,前n 项和为S n .设甲:q >0,乙:{S n }是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件8.(5分)2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m ),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A ,B ,C 三点,且A ,B ,C 在同一水平面上的投影A ',B ',C '满足∠A 'C 'B '=45°,∠A 'B 'C '=60°.由C 点测得B 点的仰角为15°,BB '与CC '的差为100;由B 点测得A 点的仰角为45°,则A ,C 两点到水平面A 'B 'C '的高度差AA '﹣CC '约为( )(√3≈1.732)A .346B .373C .446D .4739.(5分)若α∈(0,π2),tan2α=cosα2−sinα,则tan α=( )A .√1515B .√55C .√53D .√15310.(5分)将4个1和2个0随机排成一行,则2个0不相邻的概率为( ) A .13B .25C .23D .4511.(5分)已知A ,B ,C 是半径为1的球O 的球面上的三个点,且AC ⊥BC ,AC =BC =1,则三棱锥O ﹣ABC 的体积为( ) A .√212B .√312C .√24D .√3412.(5分)设函数f (x )的定义域为R ,f (x +1)为奇函数,f (x +2)为偶函数,当x ∈[1,2]时,f (x )=ax 2+b .若f (0)+f (3)=6,则f (92)=( )A .−94B .−32C .74D .52二、填空题:本题共4小题,每小题5分,共20分。
2021年高考真题汇编——理科数学(解析版)1:集合与简易逻辑
2021高|考真题分类汇编:集合与简易逻辑1.【2021高|考真题浙江理1】设集合A ={x|1<x <4} ,集合B ={x|2x -2x -3≤0}, 那么A ∩ (C R B ) =A .(1,4)B .(3,4) C.(1,3) D .(1,2)∪ (3,4 ) 【答案】B【解析】B ={x|2x -2x -3≤0} =}31|{≤≤-x x ,A ∩ (C R B ) ={x|1<x <4} }3,1|{>-<x x x 或 =}43|{<<x x .应选B.2.【2021高|考真题新课标理1】集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,那么B 中所含元素的个数为 ( )()A 3 ()B 6 ()C 8 ()D 10【答案】D【解析】要使A y x ∈-,当5=x 时 ,y 可是1 ,2 ,3 ,4.当4=x 时 ,y 可是 1 ,2 ,3.当3=x 时 ,y 可是1 ,2.当2=x 时 ,y 可是1 ,综上共有10个 ,选D.3.【2021高|考真题陕西理1】集合{|lg 0}M x x => ,2{|4}N x x =≤ ,那么M N =( ) A. (1,2) B. [1,2) C. (1,2] D. [1,2] 【答案】C.【解析】}22|{}4|{},1|{}0lg |{2≤≤-=≤=>=>=x x x x N x x x x M ,]2,1(=∴N M ,应选C.4.【2021高|考真题山东理2】全集{}0,1,2,3,4U = ,集合{}{}1,2,3,2,4A B == ,那么U C A B 为(A ){}1,2,4 (B ){}2,3,4 (C ){}0,2,4 (D ){}0,2,3,4 【答案】C【解析】}4,0{=A C U ,所以}42,0{,)(=B A C U ,选C.5.【2021高|考真题辽宁理1】全集U ={0,1,2,3,4,5,6,7,8,9} ,集合A ={0,1,3,5,8} ,集合B ={2,4,5,6,8} ,那么)()(B C A C U U 为(A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6} 【答案】B【解析】1.因为全集U ={0,1,2,3,4,5,6,7,8,9} ,集合A ={0,1,3,5,8} ,集合B ={2,4,5,6,8} ,所以{}{}9,7,3,1,0,9,7,6,4,2==B C A C U U ,所以)()(B C A C U U 为{7,9} .应选B2. 集合)()(B C A C U U 为即为在全集U 中去掉集合A 和集合B 中的元素 ,所剩的元素形成的集合 ,由此可快速得到答案 ,选B【点评】此题主要考查集合的交集、补集运算 ,属于容易题 .采用解析二能够更快地得到答案 . 6.【2021高|考真题辽宁理4】命题p :∀x 1 ,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0 ,那么⌝p 是 (A) ∃x 1 ,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 (B) ∀x 1 ,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 (C) ∃x 1 ,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 (D) ∀x 1 ,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 【答案】C【解析】命题p 为全称命题 ,所以其否认⌝p 应是特称命题 ,又(f (x 2)-f (x 1))(x 2-x 1)≥0否认为(f (x 2)-f (x 1))(x 2-x 1)<0 ,应选C【点评】此题主要考查含有量词的命题的否认 ,属于容易题 .7.【2021高|考真题江西理1】假设集合A ={ -1 ,1} ,B ={0 ,2} ,那么集合{z ︱z =x +y,x ∈A,y ∈B }中的元素的个数为 A .5 B.4 C 【答案】C【命题立意】此题考查集合的概念和表示 .【解析】因为B y A x ∈∈, ,所以当1-=x 时 ,2,0=y ,此时1,1-=+=y x z .当1=x 时 ,2,0=y ,此时3,1=+=y x z ,所以集合}2,1,1{}2,1,1{-=-=z z 共三个元素 ,选C. 8.【2021高|考真题江西理5】以下命题中 ,假命题为 A .存在四边相等的四边形不.是正方形 B .1212,,z z C z z ∈+为实数的充分必要条件是12,z z 为共轭复数C .假设,x y ∈R ,且2,x y +>那么,x y 至|少有一个大于1D .对于任意01,nn n nn N C C C ∈+++都是偶数 【答案】B【命题立意】此题考查命题的真假判断 .【解析】对于B,假设21,z z 为共轭复数 ,不妨设bi a z bi a z -=+=21, ,那么a z z 221=+ ,为实数 .设di c z bi a z +=+=21, ,那么i d b c a z z )()(21+++=+ ,假设21z z +为实数 ,那么有0=+d b ,当c a ,没有关系 ,所以B 为假命题 ,选B.9.【2021高|考真题湖南理1】设集合M ={ -1,0,1} ,N ={x|x 2≤x} ,那么M ∩N = A.{0} B.{0,1} C.{ -1,1} D.{ -1,0,0} 【答案】B 【解析】{}0,1N = M ={ -1,0,1} ∴M ∩N ={0,1}.【点评】此题考查了{}0,1N =,再利用交集定义得出M ∩N. 10.【2021高|考真题湖南理2】命题 "假设α =4π,那么tan α =1”的逆否命题是 α≠4π ,那么tan α≠1 B. 假设α =4π,那么tan α≠1 C. 假设tan α≠1 ,那么α≠4π D. 假设tan α≠1 ,那么α =4π【答案】C【解析】因为 "假设p ,那么q 〞的逆否命题为 "假设p ⌝ ,那么q ⌝〞 ,所以 "假设α =4π ,那么tan α =1”的逆否命题是 "假设tan α≠1 ,那么α≠4π〞. 【点评】此题考查了 "假设p ,那么q 〞形式的命题的逆命题、否命题与逆否命题 ,考查分析问题的能力.11.【2021高|考真题湖北理2】命题 "0x ∃∈R Q ,30x ∈Q 〞的否认是A .0x ∃∉R Q ,30x ∈QB .0x ∃∈R Q ,30x ∉QC .x ∀∉R Q ,3x ∈QD .x ∀∈R Q ,3x ∉Q【答案】D【解析】根据对命题的否认知 ,是把谓词取否认 ,然后把结论否认 .因此选D 12.【2021高|考真题广东理2】设集合U ={1,2,3,4,5,6} , M ={1,2,4 } ,那么CuM = A .U B . {1,3,5} C .{3,5,6} D . {2,4,6}【答案】C【解析】}6,5,3{=M C U ,应选C.13.【2021高|考真题福建理3】以下命题中 ,真命题是 A. 0,00≤∈∃x eR xB. 22,x R x x >∈∀C.a +b =0的充要条件是ab= -1 D.a>1,b>1是ab>1的充分条件 【答案】D.【解析】此类题目多项选择用筛选法 ,因为0>xe 对任意R x ∈恒成立 ,所以A 选项错误;因为当3=x 时93,8223==且8<9,所以选项B 错误;因为当0==b a 时,0=+b a 而ab无意义 ,所以选项C 错误;应选D.14.【2021高|考真题北京理1】集合A ={x ∈R|3x +2>0} B ={x ∈R| (x +1 )(x -3)>0} 那么A ∩B = A ( -∞ , -1 )B ( -1 , -23 ) C ( -23,3 )D (3, +∞)【答案】D【解析】因为32}023|{->⇒>+∈=x x R x A ,利用二次不等式可得1|{-<=x x B 或}3>x 画出数轴易得:}3|{>=x x B A .应选D .15.【2021高|考真题安徽理6】设平面α与平面β相交于直线m ,直线a 在平面α内 ,直线b 在平面β内 ,且b m ⊥ ,那么 "αβ⊥〞是 "a b ⊥〞的 ( )()A 充分不必要条件 ()B 必要不充分条件 ()C 充要条件 ()D 即不充分不必要条件【答案】A【命题立意】此题借助线面位置关系考查条件的判断【解析】①,b m b b a αβα⊥⊥⇒⊥⇒⊥ ,②如果//a m ,那么a b ⊥与b m ⊥条件相同.16.【2021高|考真题全国卷理2】集合A ={1.3.} ,B ={1 ,m} ,A B =A, 那么m =A 0B 0或3C 1D 1或3 【答案】B【解析】因为A B A = ,所以A B ⊆,所以3=m 或m m =.假设3=m ,那么}3,1{},3,3,1{==B A ,满足A B A = .假设m m = ,解得0=m 或1=m .假设0=m ,那么}0,3,1{},0,3,1{==B A ,满足A B A = .假设1=m ,}1,1{},1,3,1{==B A 显然不成立 ,综上0=m 或3=m ,选B..17【2021高|考真题四川理13】设全集{,,,}U a b c d = ,集合{,}A a b = ,{,,}B b c d = ,那么B C A C U U ___________ .【答案】{},,a c d【命题立意】此题考查集合的根本运算法那么 ,难度较小. 【解析】},{d c A C U = ,}{a B C U = ,},,{d c a B C A C U U =∴18.【2021高|考真题上海理2】假设集合}012|{>+=x x A ,}2|1||{<-=x x B ,那么=B A .【答案】)3,21(-【解析】集合}21{}012{->=>+=x x x x A ,}31{}21{<<-=<-=x x x x B ,所以}321{<<-=x x B A ,即)3,21(- .19.【2021高|考真题天津理11】集合},32|{<+∈=x R x A 集合},0)2)((|{<--∈=x m x R x B 且),,1(n B A -= 那么m =__________ ,n =__________. 【答案】1,1-【解析】由32<+x ,得323<+<-x ,即15<<-x ,所以集合}15{<<-=x x A ,因为)1(n B A ,-= ,所以1-是方程0)2)((=--x m x 的根 ,所以代入得0)1(3=+m ,所以1-=m ,此时不等式0)2)(1(<-+x x 的解为21<<-x ,所以)11(,-=B A ,即1=n .20.【2021高|考江苏1】 (5分 )集合{124}A =,, ,{246}B =,, ,那么A B = ▲ .【答案】{}1,2,4,6 . 【考点】集合的概念和运算 . 【分析】由集合的并集意义得{}1,2,4,6AB = .21.【2021高|考江苏26】 (10分 )设集合{12}n P n =,,,… ,*N n ∈.记()f n 为同时满足以下条件的集合A 的个数:①n A P ⊆;②假设x A ∈ ,那么2x A ∉;③假设A C x n p ∈ ,那么A C x np ∉2 .(1 )求(4)f ;(2 )求()f n 的解析式 (用n 表示 ).【答案】解: (1 )当=4n 时 ,符合条件的集合A 为:{}{}{}{}21,42,31,3,4,,, , ∴ (4)f =4 .( 2 )任取偶数n x P ∈ ,将x 除以2 ,假设商仍为偶数.再除以2 ,··· 经过k 次以后.商必为奇数.此时记商为m .于是=2k x m ,其中m 为奇数*k N ∈ .由条件知.假设m A ∈那么x A k ∈⇔为偶数;假设m A ∉ ,那么x A k ∈⇔为奇数 .于是x 是否属于A ,由m 是否属于A 确定 .设n Q 是n P 中所有奇数的集合.因此()f n 等于n Q 的子集个数 . 当n 为偶数〔 或奇数 )时 ,n P 中奇数的个数是2n (12n + ) . ∴()()2122()=2nn n f n n +⎧⎪⎨⎪⎩为偶数为奇数. 【考点】集合的概念和运算 ,计数原理 .【解析】 (1 )找出=4n 时 ,符合条件的集合个数即可 . (2 )由题设 ,根据计数原理进行求解 .22.【2021高|考真题陕西理18】 (本小题总分值12分 )(1 )如图 ,证明命题 "a 是平面π内的一条直线 ,b 是π外的一条直线 (b 不垂直于π ) ,c 是直线b 在π上的投影 ,假设a b ⊥ ,那么a c ⊥〞为真 . (2 )写出上述命题的逆命题 ,并判断其真假 (不需要证明 )【答案】分析: (1 )证法一:做出辅助线 ,在直线上构造对应的方向向量 ,要证两条直线垂直 ,只要证明两条直线对应的向量的数量积等于0 ,根据向量的运算法那么得到结果.证法二:做出辅助线 ,根据线面垂直的性质 ,得到线线垂直 ,根据线面垂直的判定定理 ,得到线面垂直 ,再根据性质得到结论.(2 )把所给的命题的题设和结论交换位置,得到原命题的逆命题,判断出你命题的正确性.。
2021年高考数学真题试题(北京卷)(word版,含答案与解析)
2021年高考数学真题试卷(北京卷)一、选择题共10小题,每小题4分,共40分,在每小题列出的四个选项中,选出符合题目要求的一项.(共10题;共40分)1.已知集合A={x|−1<x<1},B={x|0≤x≤2},则A∪B=()A. (−1,2)B. (−1,2]C. [0,1)D. [0,1]【答案】B【考点】并集及其运算【解析】【解答】解:根据并集的定义易得A∪B={x|−1<x≤2},故答案为:B【分析】根据并集的定义直接求解即可.2.在复平面内,复数z满足(1−i)z=2,则z=()A. 2+iB. 2−iC. 1−iD. 1+i【答案】 D【考点】复数代数形式的混合运算【解析】【解答】解:z=21−i =2(1+i)(1−i)(1+i)=1+i,故答案为:D【分析】根据复数的运算法则直接求解即可.3.已知f(x)是定义在上[0,1]的函数,那么“函数f(x)在[0,1]上单调递增”是“函数f(x)在[0,1]上的最大值为f(1)”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【考点】必要条件、充分条件与充要条件的判断【解析】【解答】解:①【充分性】若函数f(x)在[0, 1]上单调递增,根据函数的单调性可知:函数f(x)在[0, 1]的最大值为f(1),所以“函数f(x)在[0, 1].上单调递增”为“函数f(x)在[0, 1]的最大值为f(1)“的充分条件;②【必要性】若函数f(x)在[0, 1]的最大值为f(1),函数f(x)在[0, 1]上可能先递减再递增,且最大值为f(1),所以“函数f(x)在[0, 1].上单调递增”不是“函数f(x)在[0, 1]的最大值为f(1)“的必要条件,所以“函数f(x)在[0, 1]上单调递增”是“函数f(x)在[0, 1]的最大值为f(1)“的充分而不必要条件.故答案为:A【分析】根据充分条件与必要条件的判定直接求解即可.4.某四面体的三视图如图所示,该四面体的表面积为()A. 3+√32B. 4C. 3+√3D. 2【答案】A【考点】由三视图求面积、体积,由三视图还原实物图,棱柱、棱锥、棱台的侧面积和表面积【解析】【解答】解:由三视图可知该四面体如下图所示:该四面体为直三棱锥,其中SA⊥平面ABC,SA=AB=AC=1,则SB=SC=BC=√2,则所求表面积为S=3×(12×1×1)+12×√2×√2×sin60°=3+√32故答案为:A【分析】根据三视图还原几何体,结合棱锥的表面积公式求解即可.5.双曲线C:x2a2−y2b2=1过点(√2,√3),且离心率为2,则该双曲线的标准方程为()A. x 2−y 23=1 B. x 23−y 2=1 C. x 2−√3y 23=1 D.√3x 23−y 2=1【答案】 A【考点】双曲线的标准方程,双曲线的简单性质 【解析】【解答】解:由e =ca =2得c=2a ,则b 2=c 2-a 2=3a 2 则可设双曲线方程为:x 2a 2−y 23a 2=1 ,将点(√2,√3) 代入上式,得(√2)2a 2−(√3)23a 2=1解得a 2=1,b 2=3 故所求方程为: x 2−y 23=1故答案为:A【分析】根据双曲线的离心率的定义,结合双曲线的几何性质和标准方程求解即可.6.{a n } 和 {b n } 是两个等差数列,其中 akb k(1≤k ≤5) 为常值, a 1=288 , a 5=96 , b 1=192 ,则b 3= ( )A. 64B. 128C. 256D. 512 【答案】 B【考点】等差数列的性质【解析】【解答】解:由题意得a k b k=a 1b 1=288192=32 , 则a 5b 5=32 , 则b 5=23a 5=64 , 所以b 3=b 1+b 52=192+642=128.故答案为:B【分析】根据题设条件,结合等差数列的性质求解即可.7.函数 f(x)=cosx −cos2x ,试判断函数的奇偶性及最大值( ) A. 奇函数,最大值为2 B. 偶函数,最大值为2 C. 奇函数,最大值为 98 D. 偶函数,最大值为 98 【答案】 D【考点】偶函数,二次函数在闭区间上的最值【解析】【解答】解:∵f(-x)=cos(-x)-cos(-2x)=cosx-cos2x=f(x) ∴f(x)为偶函数又f(x)=cosx-cos2x=-2cos 2x+cosx+1 令t=cosx ,则y=-2t 2+t+1,t ∈[-1,1],则当t =−12×(−2)=14时,y 取得最大值y max =(−2)×(14)2+14+1=98.故答案为:D【分析】根据偶函数的定义,利用换元法,结合二次函数的最值求解即可.8.定义:24小时内降水在平地上积水厚度(mm)来判断降雨程度.其中小雨(<10mm),中雨(10mm−25mm),大雨(25mm−50mm),暴雨(50mm−100mm),小明用一个圆锥形容器接了24小时的雨水,如图,则这天降雨属于哪个等级()A. 小雨B. 中雨C. 大雨D. 暴雨【答案】B【考点】旋转体(圆柱、圆锥、圆台)【解析】【解答】解:如图所示,由题意得r100=150300,则r=50则雨水的体积为V=13πr2h=13π×502×150,则降雨的厚度(高度)为H=Vπ×1002=13π×502×150π×1002=12.5(mm)故答案为:B【分析】根据圆锥的体积公式,及圆柱的体积公式求解即可.9.已知圆C:x2+y2=4,直线l:y=kx+m,当k变化时,l截得圆C弦长的最小值为2,则m=()A. ±2B. ±√2C. ±√3D. ±√5【答案】C【考点】点到直线的距离公式,直线与圆的位置关系【解析】【解答】解:由题意可设弦长为n,圆心到直线l的距离为d,则d2=r2−(n2)2=4−n24,则当n取最小值2时,d取得最大值为√3,则d=√1+k2≤√3当k=0时,d取得最大值为√3,则|m|=√3解得m=±√3故答案为:C【分析】根据直线与圆的位置,以及相交弦的性质,结合点到直线的距离公式求解即可.10.数列{a n}是递增的整数数列,且a1≥3,a1+a2+⋅⋅⋅+a n=100,则n的最大值为()A. 9B. 10C. 11D. 12【答案】C【考点】等差数列的通项公式,等差数列的前n项和【解析】【解答】解:∵数列{a n}是递增的整数数列,∴n要取最大,d尽可能为小的整数,故可假设d=1∵a1=3,d=1∴a n=n+2∴S n=(3+n+2)n2=n2+5n2则S11=88<100,S12=102>100,故n的最大值为11.故答案为:C【分析】根据等差数列的通项公式及前n项和公式求解即可.二、填空题5小题,每小题5分,共25分.(共5题;共25分)11.(x3−1x)4展开式中常数项为________.【答案】-4【考点】二项式定理,二项式系数的性质,二项式定理的应用【解析】【解答】解:由题意得二项展开式的通项公式为T k+1=C4k(x3)4−k(−1x )k=C4k(−1)k x12−4k令12-4k=0,得k=3故常数项为T4=T3+1=C43(−1)3=−4故答案为:-4【分析】根据二项展开式的通项公式直接求解即可.12.已知抛物线C:y2=4x,焦点为F,点M为抛物线C上的点,且|FM|=6,则M的横坐标是________;作MN⊥x轴于N,则S△FMN=________.【答案】5;4√5【考点】抛物线的简单性质,抛物线的应用【解析】【解答】解:由题意知焦点F为(1,0),准线为x=-1,设点M为(x0,y0),则有|FM|=x0+1=6,解得x0=5,则y0=2√5,不妨取点M为(5,2√5)则点N为(5,0)则|FN|=5-1=4则S△FMN=12×|FN|×|MN|=12×4×2√5=4√5故答案为:5,4√5【分析】根据抛物线的几何性质,结合三角形的面积公式求解即可.13.若点P(cosθ,sinθ)与点Q(cos(θ+π6),sin(θ+π6))关于y轴对称,写出一个符合题意的θ=________.【答案】5π12(满足θ=5π12+kπ,k∈Z即可)【考点】诱导公式【解析】【解答】解:由题意得{sinθ=sin(θ+π6)cosθ=−cos(θ+π6)),对比诱导公式sinα=sin(π-α),cosα=-cos(π-α)得θ+π6=π−θ+2kπ,解得θ=5π12+kπ,k∈Z当k=0时,θ=5π12故答案为:5π12【分析】根据点的对称性,结合诱导公式求解即可.14.已知函数f(x)=|lgx|−kx−2,给出下列四个结论:①若k=0,则f(x)有两个零点;② ∃k<0,使得f(x)有一个零点;③ ∃k<0,使得f(x)有三个零点;④ ∃k>0,使得f(x)有三个零点.以上正确结论得序号是________.【答案】①②④【考点】函数的零点【解析】【解答】解:令|lgx|- kx-2=0,即y= |lgx|与y= kx+ 2有几个交点,原函数就有几个零点, ①当k= 0时,如图1画出函数图像,f(x)=|lgx|-2,解得x=100或x =1100 , 所以有两个零点,故①项正确;②当k<0时,y= kx+2过点(0,2),如图2画出两个函数的图像,∃k <0 , 使得两函数存在两个交点,故②项正确;③当k<0时,y= kx+2过点(0,2),如图3画出两个函数的图像,不存在k<0时,使得两函数存在三个交点,故③项错误;④当k>0时,y= kx+2过点(0,2),如图4画出两个函数的图像,∃k >0 , 使得两函数存在三个交点,故④项正确. 故答案为:①②④【分析】根据函数的零点的几何性质,运用数形结合思想求解即可.15.a ⃗=(2,1) , b ⃗⃗=(2,−1) , c ⃗=(0,1) ,则 (a ⃗+b ⃗⃗)⋅c ⃗= ________; a ⃗⋅b ⃗⃗= ________. 【答案】 0;3【考点】平面向量的坐标运算,平面向量数量积的坐标表示、模、夹角【解析】【解答】解:由题意得a →+b →=(4,0) , 则(a →+b →)·c →=4×0+0×1=0 , a →·b →=2×2+1×(−1)=3 故答案为:0,3【分析】根据向量的坐标运算,及向量的数量积运算求解即可.三、解答题共6小题,共85分,解答应写出文字说明,演算步骤或证明过程.(共6题;共85分)16.已知在 △ABC 中, c =2bcosB , C =2π3.(1)求 B 的大小;(2)在下列三个条件中选择一个作为已知,使 △ABC 存在且唯一确定,并求出 BC 边上的中线的长度. ① c =√2b ;②周长为 4+2√3 ;③面积为 S ΔABC =3√34;【答案】 (1)∵c =2bcosB ,则由正弦定理可得 sinC =2sinBcosB , ∴sin2B =sin2π3=√32, ∵C =2π3, ∴B ∈(0,π3) , 2B ∈(0,2π3) ,∴2B =π3 ,解得 B =π6 ;(2)若选择①:由正弦定理结合(1)可得 cb =sinCsinB =√3212=√3 ,与 c =√2b 矛盾,故这样的 △ABC 不存在; 若选择②:由(1)可得 A =π6 , 设 △ABC 的外接圆半径为 R ,则由正弦定理可得a=b=2Rsinπ6=R,c=2Rsin2π3=√3R,则周长a+b+c=2R+√3R=4+2√3,解得R=2,则a=2,c=2√3,由余弦定理可得BC边上的中线的长度为:√(2√3)2+12−2×2√3×1×cosπ6=√7;若选择③:由(1)可得A=π6,即a=b,则S△ABC=12absinC=12a2×√32=3√34,解得a=√3,则由余弦定理可得BC边上的中线的长度为:√b2+(a2)2−2×b×a2×cos2π3=√3+34+√3×√32=√212.【考点】正弦定理,余弦定理,正弦定理的应用,余弦定理的应用,三角形中的几何计算【解析】【分析】(1)根据正弦定理,结合三角形内角和的性质求解即可;(2)选择①:根据正弦定理,结合(1)进行判断即可;选择②:根据正弦定理,及余弦定理求解即可;选择③:根据三角形的面积公式,结合余弦定理求解即可.17.已知正方体ABCD−A1B1C1D1,点E为A1D1中点,直线B1C1交平面CDE于点F.(1)证明:点F为B1C1的中点;(2)若点M为棱A1B1上一点,且二面角M−CF−E的余弦值为√53,求A1MA1B1的值.【答案】(1)如图所示,取B1C1的中点F′,连结DE,EF′,F′C,由于 ABCD −A 1B 1C 1D 1 为正方体, E,F ′ 为中点,故 EF ′∥CD , 从而 E,F ′,C,D 四点共面,即平面CDE 即平面 CDEF ′ , 据此可得:直线 B 1C 1 交平面 CDE 于点 F ′ ,当直线与平面相交时只有唯一的交点,故点 F 与点 F ′ 重合, 即点 F 为 B 1C 1 中点.(2)以点 D 为坐标原点, DA,DC,DD 1 方向分别为 x 轴, y 轴, z 轴正方形,建立空间直角坐标系 D −xyz ,不妨设正方体的棱长为2,设 A 1MA1B 1=λ(0≤λ≤1) ,则: M(2,2λ,2),C(0,2,0),F(1,2,2),E(1,0,2) ,从而: MC ⃗⃗⃗⃗⃗⃗⃗=(−2,2−2λ,−2),CF ⃗⃗⃗⃗⃗⃗=(1,0,2),FE ⃗⃗⃗⃗⃗⃗=(0,−2,0) , 设平面 MCF 的法向量为: m⃗⃗⃗=(x 1,y 1,z 1) ,则: {m ⇀⋅MC⇀=−2x 1+(2−2λ)y 1−2z 1=0m ⇀⋅CF ⇀=x 1+2z 1=0 , 令 z 1=−1 可得: m ⃗⃗⃗=(2,11−λ,−1) , 设平面 CFE 的法向量为: n⃗⃗=(x 2,y 2,z 2) ,则: {n ⇀⋅FE⇀=−2y 2=0n ⇀⋅CF ⇀=x 2+2z 2=0, 令 z 1=−1 可得: n⃗⃗=(2,0,−1) , 从而: m ⃗⃗⃗⋅n ⃗⃗=5,|m ⃗⃗⃗|=√5+(11−λ)2,|n ⃗⃗|=√5 ,则:cos〈m⃗⃗⃗,n⃗⃗〉=m⃗⃗⃗⃗⋅n⃗⃗|m⃗⃗⃗⃗|×|n⃗⃗|=√5+(11−λ)2×√5=√53,整理可得:(λ−1)2=14,故λ=12(λ=32舍去).【考点】空间中直线与平面之间的位置关系,与二面角有关的立体几何综合题,用空间向量求平面间的夹角【解析】【分析】(1)根据正方体的性质,结合直线与平面相交的性质定理求证即可;(2)根据向量法求二面角,结合方程的思想求解即可.18.为加快新冠肺炎检测效率,某检测机构采取“k合1检测法”,即将k个人的拭子样本合并检测,若为阴性,则可以确定所有样本都是阴性的;若为阳性,则还需要对本组的每个人再做检测.现有100人,已知其中2人感染病毒.(1)①若采用“10合1检测法”,且两名患者在同一组,求总检测次数;②已知10人分成一组,分10组,两名感染患者在同一组的概率为111,定义随机变量X为总检测次数,求检测次数X的分布列和数学期望E(X);(2)若采用“5合1检测法”,检测次数Y的期望为E(Y),试比较E(X)和E(Y)的大小(直接写出结果).【答案】(1)①对每组进行检测,需要10次;再对结果为阳性的组每个人进行检测,需要10次;所以总检测次数为20次;②由题意,X可以取20,30,P(X=20)=111,P(X=30)=1−111=1011,则X的分布列:所以E(X)=20×111+30×1011=32011;(2)由题意,Y可以取25,30,设两名感染者在同一组的概率为p,P(Y=25)=p,P(Y=30)=1−p,则E(Y)=25p+30(1−p)=30−5p,若p=211时,E(X)=E(Y);若p>211时,E(X)>E(Y);若p<211时,E(X)<E(Y).【考点】简单随机抽样,互斥事件与对立事件,离散型随机变量及其分布列,离散型随机变量的期望与方差【解析】【分析】(1)①根据“k合1检测法”,结合随机抽样的定义求解即可;②根据“k合1检测法”,以及对立事件的概率,结合离散型随机变量的分布列和期望求解即可;(2)根据“k合1检测法”,以及对立事件的概率,结合离散型随机变量的期望求解即可.19.已知函数f(x)=3−2xx2+a.(1)若a=0,求y=f(x)在(1,f(1))处切线方程;(2)若函数f(x)在x=−1处取得极值,求f(x)的单调区间,以及最大值和最小值.【答案】(1)当a=0时,f(x)=3−2xx2,则f′(x)=2(x−3)x3,∴f(1)=1,f′(1)=−4,此时,曲线y=f(x)在点(1,f(1))处的切线方程为y−1=−4(x−1),即4x+y−5=0;(2)因为f(x)=3−2xx2+a ,则f′(x)=−2(x2+a)−2x(3−2x)(x2+a)2=2(x2−3x−a)(x2+a)2,由题意可得f′(−1)=2(4−a)(a+1)2=0,解得a=4,故f(x)=3−2xx2+4,f′(x)=2(x+1)(x−4)(x2+4)2,列表如下:所以,函数f(x)的增区间为(−∞,−1)、(4,+∞),单调递减区间为(−1,4).当x<32时,f(x)>0;当x>32时,f(x)<0.所以,f(x)max=f(−1)=1,f(x)min=f(4)=−14.【考点】导数的几何意义,利用导数研究函数的单调性,利用导数研究函数的极值,利用导数求闭区间上函数的最值【解析】【分析】(1)根据导数的几何意义求解即可;(2)根据导数研究函数的极值求得a值,再利用导数研究函数的单调性以及最值即可.20.已知椭圆E:x2a2+y2b2=1(a>b>0)过点A(0,−2),以四个顶点围成的四边形面积为4√5.(1)求椭圆E的标准方程;(2)过点P(0,-3)的直线l斜率为k,交椭圆E于不同的两点B,C,直线AB,AC交y=-3于点M、N,直线AC交y=-3于点N,若|PM|+|PN|≤15,求k的取值范围.【答案】(1)因为椭圆过A(0,−2),故b=2,因为四个顶点围成的四边形的面积为4√5,故12×2a×2b=4√5,即a=√5,故椭圆的标准方程为:x25+y24=1.(2)设B(x1,y1),C(x2,y2),因为直线BC的斜率存在,故x1x2≠0,故直线AB:y=y1+2x1x−2,令y=−3,则x M=−x1y1+2,同理x N=−x2y2+2.直线BC:y=kx−3,由{y=kx−34x2+5y2=20可得(4+5k2)x2−30kx+25=0,故Δ=900k2−100(4+5k2)>0,解得k<−1或k>1.又x1+x2=30k4+5k2,x1x2=254+5k2,故x1x2>0,所以x M x N>0又|PM|+|PN|=|x M+x N|=|x1y1+2+x2y2+2|=|x1kx1−1+x2kx2−1|=|2kx1x2−(x1+x2)k2x1x2−k(x1+x2)+1|=|50k4+5k2−30k4+5k225k24+5k2−30k24+5k2+1|=5|k|故5|k|≤15即|k|≤3,综上,−3≤k<−1或1<k≤3.【考点】椭圆的标准方程,椭圆的简单性质,直线与圆锥曲线的关系,直线与圆锥曲线的综合问题【解析】【分析】(1)根据椭圆的几何性质求解即可;(2)根据直线与椭圆的位置关系,利用根与系数的关系,结合弦长公式求解即可.21.定义R p数列{a n}:对实数p,满足:① a1+p≥0,a2+p=0;② ∀n∈N∗,a4n−1<a4n;③ a m+n∈{a m+a n+p,a m+a n+p+1},m,n∈N∗.(1)对于前4项2,-2,0,1的数列,可以是R2数列吗?说明理由;(2)若{a n}是R0数列,求a5的值;(3)是否存在p,使得存在R p数列{a n},对∀n∈N∗,S n≥S10?若存在,求出所有这样的p;若不存在,说明理由.【答案】(1)由性质③结合题意可知0=a3∈{a1+a2+2,a1+a2+2+1}={2,3},矛盾,故前4项2,−2,0,1的数列,不可能是R2数列.(2)性质① a1≥0,a2=0,由性质③ a m+2∈{a m,a m+1},因此a3=a1或a3=a1+1,a4=0或a4=1,若a4=0,由性质②可知a3<a4,即a1<0或a1+1<0,矛盾;若a4=1,a3=a1+1,由a3<a4有a1+1<1,矛盾.因此只能是a4=1,a3=a1.或a1=0.又因为a4=a1+a3或a4=a1+a3+1,所以a1=12若a1=1,则a2=a1+1∈{a1+a1+0,a1+a1+0+1}={2a1,2a1+1}={1,2},2不满足a2=0,舍去.当a1=0,则{a n}前四项为:0,0,0,1,下面用纳法证明a4n+i=n(i=1,2,3),a4n+4=n+1(n∈N):当n=0时,经验证命题成立,假设当n≤k(k≥0)时命题成立,当n=k+1时:若i=1,则a4(k+1)+1=a4k+5=a j+(4k+5−j),利用性质③:{a j+a4k+5−j∣j∈N∗,1≤j≤4k+4}={k,k+1},此时可得:a4k+5=k+1;否则,若a4k+5=k,取k=0可得:a5=0,而由性质②可得:a5=a1+a4∈{1,2},与a5=0矛盾.同理可得:{a j+a4k+6−j∣j∈N∗,1≤j≤4k+5}={k,k+1},有a4k+6=k+1;{a j+a4k+8−j∣j∈N∗,2≤j≤4k+6}={k+1,k+2},有a4k+8=k+2;{a j+a4k+7−j∣j∈N∗,1≤j≤4k+6}={k+1},又因为a4k+7<a4k+8,有a4k+7=k+1.即当n=k+1时命题成立,证毕.综上可得:a1=0,a5=a4×1+1=1.(3)令b n=a n+p,由性质③可知:∀m,n∈N∗,b m+n=a m+n+p∈{a m+p+a n+p,a m+p+a n+p+1}={b m+b n,b m+b n+1},由于b1=a1+p≥0,b2=a2+p=0,b4n−1=a4n−1+p<a4n+p=b4n,因此数列{b n}为R0数列.由(2)可知:若∀n∈N,a4n+i=n−p(i=1,2,3),a4n+4=n+1−p;S11−S10=a11=a4×2+3=2−p≥0,S9−S10=−a10=−a4×2+2=−(2−p)≥0,因此p=2,此时a1,a2,…,a10≤0,a j≥0(j≥11),满足题意.【考点】数列的概念及简单表示法,数学归纳法,数学归纳法的证明步骤【解析】【分析】(1)根据新数列R p数列的定义进行判断即可;(2)根据新数列R p数列的定义,结合数学归纳法求解即可;(3)根据新数列R p数列的定义,结合a n与s n的关系进行判断即可.。
2021年全国新高考卷数学试题含答案
2021年全国新高考卷数学试题含答案一、选择题(每题1分,共5分)1. 下列函数中,奇函数的是()A. y = x^2B. y = |x|C. y = x^3D. y = x^2 + 12. 已知集合A={x|0<x<3},B={x|x≤2},则A∩B等于()A. {x|0<x<2}B. {x|0<x≤2}C. {x|0≤x<3}D. {x|0≤x≤2}3. 在等差数列{an}中,若a1=1,a3=3,则公差d等于()A. 1B. 2C. 3D. 44. 若复数z满足|z|=1,则z的共轭复数z的模等于()A. 0B. 1C. 2D. z5. 下列函数中,在区间(0,+∞)上单调递减的是()A. y = e^xB. y = ln(x)C. y = x^2D. y = 1/x二、判断题(每题1分,共5分)1. 两个平行线的斜率相等。
()2. 若矩阵A可逆,则其行列式值不为0。
()3. 任何两个实数的和都是实数。
()4. 二项式展开式中,各项系数的和等于2的n次方。
()5. 函数y = x^3在区间(∞,+∞)上单调递增。
()三、填空题(每题1分,共5分)1. 若向量a=(1,2),b=(1,3),则向量a与向量b的夹角余弦值为______。
2. 在等比数列{bn}中,若b1=2,公比q=3,则b6=______。
3. 若函数f(x)=3x^24x+1,则f'(x)=______。
4. 三角形内角和为______。
5. 圆的标准方程为(xa)^2+(yb)^2=r^2,其中圆心坐标为______。
四、简答题(每题2分,共10分)1. 简述函数的极值的定义。
2. 什么是排列组合?请举例说明。
3. 请写出余弦定理的公式。
4. 简述概率的基本性质。
5. 举例说明平面向量的线性运算。
五、应用题(每题2分,共10分)1. 已知函数f(x)=x^22x+1,求f(x)的最小值。
2. 设有4个红球,3个蓝球,求从中任取3个球,恰有2个红球的概率。
2021年全国新高考II卷数学试题真题(Word版,含答案与解析)
7.已知 , , ,则下列判断正确的是()
A. B. C. D.
【答案】C
【解析】
【分析】对数函数的单调性可比较 、 与 的大小关系,由此可得出结论.
【详解】 ,即 .
故选:C.
8.已知函数 的定义域为 , 为偶函数, 为奇函数,则()
A. B. C. D.
【答案】B
【解析】
【分析】推导出函数 是以 为周期的周期函数,由已知条件得出 ,结合已知条件可得出结论.
9.下列统计量中,能度量样本 的离散程度的是()
A.样本 的标准差B.样本 的中位数
C.样本 的极差D.样本 的平均数
【答案】AC
【解析】
【分析】考查所给的选项哪些是考查数据的离散程度,哪些是考查数据的集中趋势即可确定正确选项.
【详解】由标准差的定义可知,标准差考查的是数据的离散程度;
由中位数的定义可知,中位数考查的是数据的集中趋势;
故选:ACD.
三、填空题:本题共4小题,每小题5分,共20分.
13.已知双曲线 的离心率为2,则该双曲线的渐近线方程为_______________
【答案】
【解析】
【分析】由双曲线离心率公式可得 ,再由渐近线方程即可得解.
【详解】因为双曲线 的离心率为2,
所以 ,所以 ,
所以该双曲线的渐近线方程为 .
A.若点A在圆C上,则直线l与圆C相切B.若点A在圆C内,则直线l与圆C相离
C.若点A在圆C外,则直线l与圆C相离D.若点A在直线l上,则直线l与圆C相切
【答案】ABD
【解析】
【分析】转化点与圆、点与直线的位置关系为 的大小关系,结合点到直线的距离及直线与圆的位置关系即可得解.
2021全国卷Ⅲ高考理科数学试卷与答案(word版)(Word最新版)
2021全国卷Ⅲ高考理科数学试卷与答案(word版)通过整理的2021全国卷Ⅲ高考理科数学试卷与答案(word版)相关文档,希望对大家有所帮助,谢谢观看!2021年普通高等学校招生全统一考试理科数学第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合,,则(A) [2,3] (B)(- ,2] [3,+)(C) [3,+)(D)(0,2] [3,+)(2)若,则(A)(B)(C)(D)(3)已知向量BA,BC,则(A)30° (B)45° (C)60° (D)120° (4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是(A)各月的平均最低气温都在0℃以上(B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同(D)平均最高气温高于20℃的月份有5个(5)若,则(A)(B)(C)(D)(6)已知,,,则(A)(B)(C)(D)(7)执行右面的程序框图,如果输入的,那么输出的(A)3 否是n=0,s=0 输入a,b 输出n 开始结束a=b-a b=b-a a=b+a s=s+a,n=n+1 s>16 (B)4 (C)5 (D)6 (8)中,,边上的高等于,则(A)(B)(C)(D)(9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A)(B)(C)(D)(10)在封闭的直三棱柱内有一个体积为的球.若,,,,则的最大值是(A)(B)(C)(D)(11)已知为坐标原点,是椭圆:的左焦点,分别为的左,右顶点.为上一点,且轴.过点的直线与线段交于点,与轴交于点.若直线经过的中点,则的离心率为(A)(B)(C)(D)(12)定义“规范01数列”如下:共有2m项,其中m项为0,m项为1,且对任意,中0的个数不少于1的个数 . 若m=4,则不同的“规范01数列”共有(A)18个(B)16个(C)14个(D)12个第Ⅱ卷本卷包括必考题和选考题两部分。
2021年普通高等学校招生全国统一考试数学试题(新高考Ⅰ)(附答案详解)
2021年普通高等学校招生全国统一考试数学试题(新高考Ⅰ)一、单选题(本大题共8小题,共40.0分)1.(2021·湖南省·历年真题)设集合A={x|−2<x<4},B={2,3,4,5},则A∩B=()A. {2}B. {2,3}C. {3,4}D. {2,3,4}2.(2021·广东省深圳市·期末考试)已知z=2−i,则z(z−+i)=()A. 6−2iB. 4−2iC. 6+2iD. 4+2i3.(2021·湖南省·历年真题)已知圆锥的底面半径为√2,其侧面展开图为一个半圆,则该圆锥的母线长为()A. 2B. 2√2C. 4D. 4√24.(2021·湖南省·历年真题)下列区间中,函数f(x)=7sin(x−π6)单调递增的区间是()A. (0,π2) B. (π2,π) C. (π,3π2) D. (3π2,2π)5.(2021·湖南省·历年真题)已知F1,F2是椭圆C:x29+y24=1的两个焦点,点M在C上,则|MF1|⋅|MF2|的最大值为()A. 13B. 12C. 9D. 66.(2021·湖南省·历年真题)若tanθ=−2,则sinθ(1+sin2θ)sinθ+cosθ=()A. −65B. −25C. 25D. 657.(2021·湖南省·历年真题)若过点(a,b)可以作曲线y=e x的两条切线,则()A. e b<aB. e a<bC. 0<a<e bD. 0<b<e a8.(2021·湖南省·历年真题)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A. 甲与丙相互独立B. 甲与丁相互独立C. 乙与丙相互独立D. 丙与丁相互独立二、多选题(本大题共4小题,共20.0分)9. (2021·湖南省·历年真题)有一组样本数据x 1,x 2,…,x n ,由这组数据得到新样本数据y 1,y 2,…,y n ,其中y i =x i +c(i =1,2,…,n),c 为非零常数,则( )A. 两组样本数据的样本平均数相同B. 两组样本数据的样本中位数相同C. 两组样本数据的样本标准差相同D. 两组样本数据的样本极差相同10. (2021·湖南省·历年真题)已知O 为坐标原点,点P 1(cosα,sinα),P 2(cosβ,−sinβ),P 3(cos(α+β),sin(α+β)),A(1,0),则( ) A. |OP 1⃗⃗⃗⃗⃗⃗⃗ |=|OP 2⃗⃗⃗⃗⃗⃗⃗ | B. |AP 1⃗⃗⃗⃗⃗⃗⃗ |=|AP 2⃗⃗⃗⃗⃗⃗⃗ | C. OA ⃗⃗⃗⃗⃗ ⋅OP 3⃗⃗⃗⃗⃗⃗⃗ =OP 1⃗⃗⃗⃗⃗⃗⃗ ⋅OP 2⃗⃗⃗⃗⃗⃗⃗D. OA ⃗⃗⃗⃗⃗ ⋅OP 1⃗⃗⃗⃗⃗⃗⃗ =OP 2⃗⃗⃗⃗⃗⃗⃗ ⋅OP 3⃗⃗⃗⃗⃗⃗⃗11. (2021·湖南省·历年真题)已知点P 在圆(x −5)2+(y −5)2=16上,点A(4,0),B(0,2),则( )A. 点P 到直线AB 的距离小于10B. 点P 到直线AB 的距离大于2C. 当∠PBA 最小时,|PB|=3√2D. 当∠PBA 最大时,|PB|=3√212. (2021·湖南省·历年真题)在正三棱柱ABC −A 1B 1C 1中,AB =AA 1=1,点P 满足BP ⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ +μBB 1⃗⃗⃗⃗⃗⃗⃗ ,其中λ∈[0,1],μ∈[0,1],则( )A. 当λ=1时,△AB 1P 的周长为定值B. 当μ=1时,三棱锥P −A 1BC 的体积为定值C. 当λ=12时,有且仅有一个点P ,使得A 1P ⊥BP D. 当μ=12时,有且仅有一个点P ,使得A 1B ⊥平面AB 1P三、单空题(本大题共4小题,共20.0分)13. (2021·湖南省·历年真题)已知函数f(x)=x 3(a ⋅2x −2−x )是偶函数,则a = ______ . 14. (2021·湖南省·历年真题)已知O 为坐标原点,抛物线C :y 2=2px(p >0)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ ⊥OP.若|FQ|=6,则C 的准线方程为______ .15. (2021·湖南省·历年真题)函数f(x)=|2x −1|−2lnx 的最小值为______ . 16. (2021·湖南省·历年真题)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20dm ×12dm 的长方形纸,对折1次共可以得到10dm ×12dm ,20dm ×6dm 两种规格的图形,它们的面积之和S 1=240dm 2,对折2次共可以得到5dm ×12dm ,10dm ×6dm ,20dm ×3dm 三种规格的图形,它们的面积之和S 2=180dm 2,以此类推.则对折4次共可以得到不同规格图形的种数为______ ;如果对折n 次,那么∑S k n k=1= ______ dm 2.四、解答题(本大题共6小题,共70.0分)17.(2021·湖南省·历年真题)已知数列{a n}满足a1=1,a n+1={a n+1,n为奇数, a n+2,n为偶数.(1)记b n=a2n,写出b1,b2,并求数列{b n}的通项公式;(2)求{a n}的前20项和.18.(2021·湖南省·历年真题)某学校组织“一带一路”知识竞赛,有A,B两类问题.每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分;B类问题中的每个问题回答正确得80分,否则得0分.已知小明能正确回答A类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A类问题,记X为小明的累计得分,求X的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.19.(2021·湖南省·历年真题)记△ABC的内角A,B,C的对边分别为a,b,c.已知b2=ac,点D在边AC上,BDsin∠ABC=asinC.(1)证明:BD=b;(2)若AD=2DC,求cos∠ABC.20.(2021·湖南省·历年真题)如图,在三棱锥A−BCD中,平面ABD⊥平面BCD,AB=AD,O为BD的中点.(1)证明:OA⊥CD;(2)若△OCD是边长为1的等边三角形,点E在棱AD上,DE=2EA,且二面角E−BC−D的大小为45°,求三棱锥A−BCD的体积.21.(2021·湖南省·历年真题)在平面直角坐标系xOy中,已知点F1(−√17,0),F2(√17,0),点M满足|MF1|−|MF2|=2.记M的轨迹为C.(1)求C的方程;(2)设点T在直线x=1上,过T的两条直线分别交C于A,B两点和P,Q两点,2且|TA|⋅|TB|=|TP|⋅|TQ|,求直线AB的斜率与直线PQ的斜率之和.22.(2021·湖南省·历年真题)已知函数f(x)=x(1−lnx).(1)讨论f(x)的单调性;(2)设a,b为两个不相等的正数,且blna−alnb=a−b,证明:2<1a +1b<e.答案和解析1.【答案】B【知识点】交集及其运算【解析】解:∵A={x|−2<x<4},B={2,3,4,5},∴A∩B={x|−2<x<4}∩{2,3,4,5}={2,3}.故选:B.直接利用交集运算得答案.本题考查交集及其运算,是基础题.2.【答案】C【知识点】复数的四则运算【解析】解:∵z=2−i,∴z(z−+i)=(2−i)(2+i+i)=(2−i)(2+2i)=4+4i−2i−2i2=6+2i.故选:C.把z=2−i代入z(z−+i),再由复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.【答案】B【知识点】旋转体(圆柱、圆锥、圆台、球)及其结构特征【解析】解:由题意,设母线长为l,因为圆锥底面周长即为侧面展开图半圆的弧长,圆锥的母线长即为侧面展开图半圆的半径,则有2π⋅√2=π⋅l,解得l=2√2,所以该圆锥的母线长为2√2.故选:B.设母线长为l,利用圆锥底面周长即为侧面展开图半圆的弧长,圆锥的母线长即为侧面展开图半圆的半径,列出方程,求解即可.本题考查了旋转体的理解和应用,解题的关键是掌握圆锥底面周长即为侧面展开图半圆的弧长,圆锥的母线长即为侧面展开图半圆的半径,考查了逻辑推理能力与运算能力,属于基础题.【知识点】正弦、余弦函数的图象与性质【解析】解:令−π2+2kπ≤x−π6≤π2+2kπ,k∈Z.则−π3+2kπ≤x≤2π3+2kπ,k∈Z.当k=0时,k∈[−π3,2π3],(0,π2)⊆[−π3,2π3],故选:A.本题需要借助正弦函数单调增区间的相关知识点求解.本题考查正弦函数单调性,是简单题.5.【答案】C【知识点】椭圆的性质及几何意义、基本不等式【解析】解:F1,F2是椭圆C:x29+y24=1的两个焦点,点M在C上,|MF1|+|MF2|=6,所以|MF1|⋅|MF2|≤(|MF1|+|MF2|2)2=9,当且仅当|MF1|=|MF2|=3时,取等号,所以|MF1|⋅|MF2|的最大值为9.故选:C.利用椭圆的定义,结合基本不等式,转化求解即可.本题考查椭圆的简单性质的应用,基本不等式的应用,是基础题.6.【答案】C【知识点】二倍角公式及其应用、三角恒等变换、同角三角函数的基本关系【解析】解:由题意可得:sinθ(1+sin2θ)sinθ+cosθ=sinθ(sin2θ+cos2θ+2sinθcosθ)sinθ+cosθ=sinθ(sinθ+cosθ)2sinθ+cosθ=sinθ(sinθ+cosθ)=sin2θ+sinθcosθsin2θ+cos2θ=tan2θ+tanθ1+tan2θ=4−21+4=25.故选:C.由题意化简所给的三角函数式,然后利用齐次式的特征即可求得三角函数式的值.本题主要考查同角三角函数基本关系,三角函数式的求值等知识,属于中等题.【知识点】函数与方程的综合应用、导数的几何意义 【解析】解:函数y =e x 是增函数,y′=e x >0恒成立,函数的图象如图,y >0,即取得坐标在x 轴上方,如果(a,b)在x 轴下方,连线的斜率小于0,不成立.点(a,b)在x 轴或下方时,只有一条切线. 如果(a,b)在曲线上,只有一条切线; (a,b)在曲线上侧,没有切线;由图象可知(a,b)在图象的下方,并且在x 轴上方时,有两条切线,可知0<b <e a . 故选:D .画出函数的图象,判断(a,b)与函数的图象的位置关系,即可得到选项.本题考查曲线与方程的应用,函数的单调性以及切线的关系,考查数形结合思想,是中档题.8.【答案】B【知识点】相互独立事件同时发生的概率【解析】解:由题意可知,两点数和为8的所有可能为:(2,6),(3,5),(4,4),(5,3),(6,2), 两点数和为7的所有可能为(1,6),(2,5),(3,4),(4,3),(5,2),(6,1), P(甲)=16,P(乙)=16,P(丙)=56×6=536,P(丁)=66×6=16, A :P(甲丙)=0≠P(甲)P(丙), B :P(甲丁)=136=P(甲)P(丁), C :P(乙丙)=136≠P(乙)P(丙),D :P(丙丁)=0≠P(丙)P(丁), 故选:B .分别列出甲、乙、丙、丁可能的情况,然后根据独立事件的定义判断即可.本题考查相互独立事件的应用,要求能够列举出所有事件和发生事件的个数,属于中档题.【知识点】众数、中位数、平均数、方差与标准差【解析】解:对于A ,两组数据的平均数的差为c ,故A 错误; 对于B ,两组样本数据的样本中位数的差是c ,故B 错误; 对于C ,∵标准差D(y i )=D(x i +c)=D(x i ), ∴两组样本数据的样本标准差相同,故C 正确; 对于D ,∵y i =x i +c(i =1,2,…,n),c 为非零常数,x 的极差为x max −x min ,y 的极差为(x max +c)−(x min +c)=x max −x min , ∴两组样本数据的样本极差相同,故D 正确. 故选:CD .利用平均数、中位数、标准差、极差的定义直接判断即可.本题考查命题真假的判断,考查平均数、中位数、标准差、极差的定义等基础知识,是基础题.10.【答案】AC【知识点】向量的数量积【解析】解:∵P 1(cosα,sinα),P 2(cosβ,−sinβ),P 3(cos(α+β),sin(α+β)),A(1,0), ∴OP 1⃗⃗⃗⃗⃗⃗⃗ =(cosα,sinα),OP 2⃗⃗⃗⃗⃗⃗⃗ =(cosβ,−sinβ), OP 3⃗⃗⃗⃗⃗⃗⃗ =(cos(α+β),sin(α+β)),OA⃗⃗⃗⃗⃗ =(1,0), AP 1⃗⃗⃗⃗⃗⃗⃗ =(cosα−1,sinα),AP 2⃗⃗⃗⃗⃗⃗⃗ =(cosβ−1,−sinβ),则|OP 1⃗⃗⃗⃗⃗⃗⃗ |=√cos 2α+sin 2α=1,|OP 2⃗⃗⃗⃗⃗⃗⃗ |=√cos 2β+(−sinβ)2=1,则|OP 1⃗⃗⃗⃗⃗⃗⃗ |=|OP 2⃗⃗⃗⃗⃗⃗⃗ |,故A 正确;|AP 1⃗⃗⃗⃗⃗⃗⃗ |=√(cosα−1)2+sin 2α=√cos 2α+sin 2α−2cosα+1=√2−2cosα, |AP 2⃗⃗⃗⃗⃗⃗⃗ |=√(cosβ−1)2+(−sinβ)2=√cos 2β+sin 2β−2cosβ+1=√2−2cosβ,|AP 1⃗⃗⃗⃗⃗⃗⃗ |≠|AP 2⃗⃗⃗⃗⃗⃗⃗ |,故B 错误;OA ⃗⃗⃗⃗⃗ ⋅OP 3⃗⃗⃗⃗⃗⃗⃗ =1×cos(α+β)+0×sin(α+β)=cos(α+β), OP 1−⋅OP 2⃗⃗⃗⃗⃗⃗⃗ =cosαcosβ−sinαsinβ=cos(α+β), ∴OA ⃗⃗⃗⃗⃗ ⋅OP 3⃗⃗⃗⃗⃗⃗⃗ =OP 1⃗⃗⃗⃗⃗⃗⃗ ⋅OP 2⃗⃗⃗⃗⃗⃗⃗ ,故C 正确; OA ⃗⃗⃗⃗⃗ ⋅OP 1⃗⃗⃗⃗⃗⃗⃗ =1×cosα+0×sinα=cosα,OP 2⃗⃗⃗⃗⃗⃗⃗ ⋅OP 3⃗⃗⃗⃗⃗⃗⃗ =cosβcos(α+β)−sinβsin(α+β)=cos[β+(α+β)]=cos(α+2β),∴OA ⃗⃗⃗⃗⃗ ⋅OP 1⃗⃗⃗⃗⃗⃗⃗ ≠OP 2⃗⃗⃗⃗⃗⃗⃗ ⋅OP 3⃗⃗⃗⃗⃗⃗⃗ ,故D 错误. 故选:AC .由已知点的坐标分别求得对应向量的坐标,然后逐一验证四个选项得答案.本题考查平面向量数量积的性质及运算,考查同角三角函数基本关系式及两角和的三角函数,考查运算求解能力,是中档题.11.【答案】ACD【知识点】直线与圆的位置关系及判定 【解析】解:∵A(4,0),B(0,2),∴过A 、B 的直线方程为x4+y2=1,即x +2y −4=0,圆(x −5)2+(y −5)2=16的圆心坐标为(5,5), 圆心到直线x +2y −4=0的距离d =|1×5+2×5−4|√12+22=11√5=11√55>4,∴点P 到直线AB 的距离的范围为[11√55−4,11√55+4],∵11√55<5,∴11√55−4<1,11√55+4<10,∴点P 到直线AB 的距离小于10,但不一定大于2,故A 正确,B 错误;如图,当过B 的直线与圆相切时,满足∠PBA 最小或最大(P 点位于P 1时∠PBA 最小,位于P 2时∠PBA 最大),此时|BC|=√(5−0)2+(5−2)2=√25+9=√34, ∴|PB|=√|BC|2−42=√18=3√2,故CD 正确. 故选:ACD .求出过AB 的直线方程,再求出圆心到直线AB 的距离,得到圆上的点P 到直线AB 的距离范围,判断A 与B ;画出图形,由图可知,当过B 的直线与圆相切时,满足∠PBA 最小或最大,求出圆心与B 点间的距离,再由勾股定理求得|PB|判断C 与D . 本题考查直线与圆的位置关系,考查转化思想与数形结合思想,是中档题.12.【答案】BD【知识点】圆柱、圆锥、圆台的侧面积、表面积和体积【解析】解:对于A ,当λ=1时,BP ⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +μBB 1⃗⃗⃗⃗⃗⃗⃗ ,即CP ⃗⃗⃗⃗⃗ =μBB 1⃗⃗⃗⃗⃗⃗⃗ ,所以CP ⃗⃗⃗⃗⃗ //BB 1⃗⃗⃗⃗⃗⃗⃗ , 故点P 在线段CC 1上,此时△AB 1P 的周长为AB 1+B 1P +AP ,当点P 为CC 1的中点时,△AB 1P 的周长为√5+√2, 当点P 在点C 1处时,△AB 1P 的周长为2√2+1, 故周长不为定值,故选项A 错误;对于B ,当μ=1时,BP ⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ +BB 1⃗⃗⃗⃗⃗⃗⃗ ,即B 1P ⃗⃗⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ ,所以B 1P ⃗⃗⃗⃗⃗⃗⃗ //BC ⃗⃗⃗⃗⃗ , 故点P 在线段B 1C 1上, 因为B 1C 1//平面A 1BC ,所以直线B 1C 1上的点到平面A 1BC 的距离相等, 又△A 1BC 的面积为定值,所以三棱锥P −A 1BC 的体积为定值,故选项B 正确;对于C ,当λ=12时,取线段BC ,B 1C 1的中点分别为M ,M 1,连结M 1M ,因为BP ⃗⃗⃗⃗⃗ =12BC ⃗⃗⃗⃗⃗ +μBB 1⃗⃗⃗⃗⃗⃗⃗ ,即MP ⃗⃗⃗⃗⃗⃗ =μBB 1⃗⃗⃗⃗⃗⃗⃗ ,所以MP ⃗⃗⃗⃗⃗⃗ //BB 1⃗⃗⃗⃗⃗⃗⃗ ,则点P 在线段M 1M 上,当点P 在M 1处时,A 1M 1⊥B 1C 1,A 1M 1⊥B 1B , 又B 1C 1∩B 1B =B 1,所以A 1M 1⊥平面BB 1C 1C ,又BM 1⊂平面BB 1C 1C ,所以A 1M 1⊥BM 1,即A 1P ⊥BP , 同理,当点P 在M 处,A 1P ⊥BP ,故选项C 错误;对于D ,当μ=12时,取CC 1的中点D 1,BB 1的中点D ,因为BP ⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ +12BB 1⃗⃗⃗⃗⃗⃗⃗ ,即DP ⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ ,所以DP ⃗⃗⃗⃗⃗ //BC ⃗⃗⃗⃗⃗ , 则点P 在线的DD 1上,当点P 在点D 1处时,取AC 的中点E ,连结A 1E ,BE ,因为BE ⊥平面ACC 1A 1,又AD 1⊂平面ACC 1A 1,所以AD 1⊥BE , 在正方形ACC 1A 1中,AD 1⊥A 1E , 又BE ∩A 1E =E ,BE ,A 1E ⊂平面A 1BE ,故AD 1⊥平面A 1BE ,又A 1B ⊂平面A 1BE ,所以A 1B ⊥AD 1, 在正方体形ABB 1A 1中,A 1B ⊥AB 1,又AD 1∩AB 1=A ,AD 1,AB 1⊂平面AB 1D 1,所以A 1B ⊥平面AB 1D 1, 因为过定点A 与定直线A 1B 垂直的平面有且只有一个, 故有且仅有一个点P ,使得A 1B ⊥平面AB 1P ,故选项D 正确.故选:BD .判断当λ=1时,点P 在线段CC 1上,分别计算点P 为两个特殊点时的周长,即可判断选项A ;当μ=1时,点P 在线段B 1C 1上,利用线面平行的性质以及锥体的体积公式,即可判断选项B ;当λ=12时,取线段BC ,B 1C 1的中点分别为M ,M 1,连结M 1M ,则点P在线段M 1M 上,分别取点P 在M 1,M 处,得到均满足A 1P ⊥BP ,即可判断选项C ;当μ=12时,取CC 1的中点D 1,BB 1的中点D ,则点P 在线的DD 1上,证明当点P 在点D 1处时,A 1B ⊥平面AB 1D 1,利用过定点A 与定直线A 1B 垂直的平面有且只有一个,即可判断选项D . 本题考查了动点轨迹,线面平行与线面垂直的判定,锥体的体积问题等,综合性强,考查了逻辑推理能力与空间想象能力,属于难题.13.【答案】1【知识点】函数的奇偶性【解析】解:函数f(x)=x 3(a ⋅2x −2−x )是偶函数, y =x 3为R 上的奇函数,故y =a ⋅2x −2−x 也为R 上的奇函数, 所以y|x=0=a ⋅20−20=a −1=0, 所以a =1. 故答案为:1.利用奇函数的定义即可求解a 的值.本题主要考查利用函数奇偶性的应用,考查计算能力,属于基础题.14.【答案】x =−32【知识点】抛物线的性质及几何意义【解析】解:由题意,不妨设P 在第一象限,则P(p2,p),k OP =2,PQ ⊥OP . 所以k PQ =−12,所以PQ 的方程为:y −p =−12(x −p 2), y =0时,x =5p 2,|FQ|=6,所以5p2−p2=6,解得p =3, 所以抛物线的准线方程为:x =−32. 故答案为:x =−32.求出点P 的坐标,推出PQ 方程,然后求解Q 的坐标,利用|FQ|=6,求解p ,然后求解准线方程.本题考查抛物线的简单性质的应用,考查转化思想以及计算能力,是中档题.15.【答案】1【知识点】利用导数研究闭区间上函数的最值【解析】解:函数f(x)=|2x −1|−2lnx 的定义域为(0,+∞). 当0<x ≤12时,f(x)=|2x −1|−2lnx =−2x +1−2lnx , 此时函数f(x)在(0,12]上为减函数,所以f(x)≥f(12)=−2×12+1−2ln 12=2ln2; 当x >12时,f(x)=|2x −1|−2lnx =2x −1−2lnx , 则f′(x)=2−2x =2(x−1)x,当x ∈(12,1)时,f′(x)<0,f(x)单调递减, 当x ∈(1,+∞)时,f′(x)>0,f(x)单调递增,∴当x =1时f(x)取得最小值为f(1)=2×1−1−2ln1=1. ∵2ln2=ln4>lne =1,∴函数f(x)=|2x −1|−2lnx 的最小值为1. 故答案为:1.求出函数定义域,对x 分段去绝对值,当0<x ≤12时,直接利用单调性求最值;当x >12时,利用导数求最值,进一步得到f(x)的最小值.本题考查利用导数求最值的应用,考查运算求解能力,是中档题.16.【答案】5 240(3−n+32n)【知识点】数列求和方法【解析】解:易知有20dm ×34dm,10dm ×32dm,5dm ×3dm,52dm ×6dm ,54dm ×12dm ,共5种规格;由题可知,对折k 次共有k +1种规格,且面积为2402k ,故S k =240(k+1)2k,则∑S k n k=1=240∑k+12knk=1,记T n =∑k+12kn k=1,则12T n =∑k+12k+1n k=1, ∴12T n =∑k+12k n k=1−∑k+12k+1n k=1=1+(∑k+22k+1n−1k=1−∑k+22k+1n k=1)−n+12n+1=1+14(1−12n−1)1−12−n+12n+1=32−n+32n+1,∴T n =3−n+32n,∴∑S k n k=1=240(3−n+32n). 故答案为:5;240(3−n+32n).依题意,对折k 次共有k +1种规格,且面积为2402k ,则S k =240(k+1)2k,∑S k n k=1=240∑k+12kn k=1,然后再转化求解即可.本题考查数列的求和,考查数学知识在生活中的具体运用,考查运算求解能力及应用意识,属于中档题.17.【答案】解:(1)因为a 1=1,a n+1={a n +1,n 为奇数a n +2,n 为偶数,所以a 2=a 1+1=2,a 3=a 2+2=4,a 4=a 3+1=5, 所以b 1=a 2=2,b 2=a 4=5,b n −b n−1=a 2n −a 2n−2=a 2n −a 2n−1+a 2n−1−a 2n−2=1+2=3, 所以数列{b n }是以b 1=2为首项,以3为公差的等差数列, 所以b n =2+3(n −1)=3n −1. (2)由(1)可得a 2n =3n −1,n ∈N ∗,则a 2n−1=a 2n−2+2=3(n −1)−1+2=3n −2,n ≥2, 当n =1时,a 1=1也适合上式, 所以a 2n−1=3n −2,n ∈N ∗,所以数列{a n }的奇数项和偶数项分别为等差数列,则{a n }的前20项和为a 1+a 2+...+a 20=(a 1+a 3+⋯+a 19)+(a 2+a 4+⋯+a 20)=10+10×92×3+10×2+10×92×3=300.【知识点】数列的递推关系、数列求和方法【解析】(1)由数列{a n }的通项公式可求得a 2,a 4,从而可得求得b 1,b 2,由b n −b n−1=3可得数列{b n }是等差数列,从而可求得数列{b n }的通项公式;(2)由数列{a n }的通项公式可得数列{a n }的奇数项和偶数项分别为等差数列,求解即可. 本题主要考查数列的递推式,数列的求和,考查运算求解能力,属于中档题.18.【答案】解:(1)由已知可得,X 的所有可能取值为0,20,100,则P(X =0)=1−0.8=0.2, P(X =20)=0.8×(1−0.6)=0.32P(X=100)=0.8×0.6=0.48,所以X的分布列为:(2)由(1)可知小明先回答A类问题累计得分的期望为E(X)=0×0.2+20×0.32+ 100×0.48=54.4,若小明先回答B类问题,记Y为小明的累计得分,则Y的所有可能取值为0,80,100,P(Y=0)=1−0.6=0.4,P(Y=80)=0.6×(1−0.8)=0.12,P(Y=100)=0.6×0.8=0.48,则Y的期望为E(Y)=0×0.4+80×0.12+100×0.48=57.6,因为E(Y)>E(X),所以为使累计得分的期望最大,小明应选择先回答B类问题.【知识点】离散型随机变量的期望与方差、离散型随机变量及其分布列【解析】(1)由已知可得,X的所有可能取值为0,20,100,分别求出对应的概率即可求解分布列;(2)由(1)可得E(X),若小明先回答B类问题,记Y为小明的累计得分,Y的所有可能取值为0,80,100,分别求出对应的概率,从而可得E(Y),比较E(X)与E(Y)的大小,即可得出结论.本题主要考查离散型随机变量分布列及数学期望,考查运算求解能力,属于中档题.19.【答案】解:(1)证明:由正弦定理知,bsin∠ABC =csin∠ACB=2R,∴b=2Rsin∠ABC,c=2Rsin∠ACB,∵b2=ac,∴b⋅2Rsin∠ABC=a⋅2Rsin∠ACB,即bsin∠ABC=asinC,∵BDsin∠ABC=asinC.∴BD=b;(2)由(1)知BD=b,∵AD=2DC,∴AD=23b,DC=13b,在△ABD中,由余弦定理知,cos∠BDA=BD 2+AD2−AB22BD⋅AD=b2+(23b)2−c22b⋅23b=13b2−9c212b2,在△CBD中,由余弦定理知,cos∠BDC=BD 2+CD2−BC22BD⋅CD=b2+(13b)2−a22b⋅13b=10b2−9a26b2,∵∠BDA+∠BDC=π,∴cos∠BDA+cos∠BDC=0,即13b2−9c212b2+10b2−9a26b2=0,得11b2=3c2+6a2,∵b2=ac,∴3c2−11ac+6a2=0,∴c=3a或c=23a,在△ABC中,由余弦定理知,cos∠ABC=a2+c2−b22ac =a2+c2−ac2ac,当c=3a时,cos∠ABC=76>1(舍);当c=23a时,cos∠ABC=712;综上所述,cos∠ABC=712.【知识点】余弦定理、正弦定理【解析】(1)利用正弦定理求解;(2)要能找到隐含条件:∠BDA和∠BDC互补,从而列出等式关系求解.本题考查正弦定理及余弦定理的内容,是一道好题.20.【答案】解:(1)证明:因为AB=AD,O为BD的中点,所以AO⊥BD,又平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AO⊂平面BCD,所以AO⊥平面BCD,又CD⊂平面BCD,所以AO⊥CD;(2)取OD的中点F,因为△OCD为正三角形,所以CF⊥OD,过O作OM//CF与BC交于点M,则OM⊥OD,所以OM,OD,OA两两垂直,以点O为坐标原点,分别以OM,OD,OA为x轴,y轴,z轴建立空间直角坐标系如图所示,则B(0,−1,0),C(√32,12,0),D(0,1,0),设A(0,0,t),则E(0,13,2t3),因为OA ⊥平面BCD ,故平面BCD 的一个法向量为OA ⃗⃗⃗⃗⃗ =(0,0,t), 设平面BCE 的法向量为n⃗ =(x,y,z), 又BC ⃗⃗⃗⃗⃗ =(√32,32,0),BE ⃗⃗⃗⃗⃗ =(0,43,2t 3),所以由{n ⃗ ⋅BC ⃗⃗⃗⃗⃗ =0n ⃗ ⋅BE ⃗⃗⃗⃗⃗ =0,得{√32x +32y =043y +2t 3z =0, 令x =√3,则y =−1,z =2t ,故n ⃗ =(√3,−1,2t ), 因为二面角E −BC −D 的大小为45°,所以|cos <n ⃗ ,OA ⃗⃗⃗⃗⃗ >|=|n ⃗⃗ ⋅OA⃗⃗⃗⃗⃗⃗ ||n ⃗⃗ ||OA⃗⃗⃗⃗⃗⃗ |=t√4+4t 2=√22,解得t =1,所以OA =1,又S △OCD =12×1×1×√32=√34,所以S △BCD =√32,故V A−BCD =13⋅S △BCD ⋅OA =13×√32×1=√36.【知识点】线面垂直的判定、圆柱、圆锥、圆台的侧面积、表面积和体积、利用空间向量求线线、线面和面面的夹角【解析】(1)利用等腰三角形中线就是高,得到AO ⊥BD ,然后利用面面垂直的性质,得到AO ⊥平面BCD ,再利用线面垂直的性质,即可证明AO ⊥CD ;(2)建立合适的空间直角坐标系,设A(0,0,t),利用待定系数法求出平面的法向量,由向量的夹角公式求出t 的值,然后利用锥体的体积公式求解即可.本题考查了面面垂直和线面垂直的性质,在求解有关空间角问题的时候,一般要建立合适的空间直角坐标系,将空间角问题转化为空间向量问题,属于中档题.21.【答案】解:(1)由双曲线的定义可知,M 的轨迹C 是双曲线的右支,设C 的方程为x 2a 2−y 2b 2=1(a >0,b >0),x >0, 根据题意{c =√172a =2c 2=a 2+b 2,解得{a =1b =4c =√17,∴C 的方程为x 2−y 216=1(x >0);(2)设T(12,m),直线AB 的参数方程为{x =12+tcosθy =m +tsinθ,将其代入C 的方程并整理可得,(16cos 2θ−sin 2θ)t 2+(16cosθ−2msinθ)t −(m 2+12)=0,由参数的几何意义可知,|TA|=t 1,|TB|=t 2,则t 1t 2=m 2+12sin 2θ−16cos 2θ=m 2+121−17cos 2θ, 设直线PQ 的参数方程为{x =12+λcosβy =m +λsinβ,|TP|=λ1,|TQ|=λ2,同理可得,λ1λ2=m 2+121−17cos 2β,依题意,m 2+121−17cos 2θ=m 2+121−17cos 2β,则cos 2θ=cos 2β,又θ≠β,故cosθ=−cosβ,则cosθ+cosβ=0,即直线AB 的斜率与直线PQ 的斜率之和为0.【知识点】直线与双曲线的位置关系【解析】(1)M 的轨迹C 是双曲线的右支,根据题意建立关于a ,b ,c 的方程组,解出即可求得C 的方程;(2)设出直线AB 的参数方程,与双曲线方程联立,由参数的几何意义可求得|TA|⋅|TB|,同理求得|TP|⋅|TQ|,再根据|TA|⋅|TB|=|TP|⋅|TQ|,即可得出答案.本题考查双曲线的定义及其标准方程,考查直线与双曲线的位置关系,考查直线参数方程的运用,考查运算求解能力,属于中档题.22.【答案】(1)解:由函数的解析式可得f′(x)=1−lnx −1=−lnx ,∴x ∈(0,1),f′(x)>0,f(x)单调递增, x ∈(1,+∞),f′(x)<0,f(x)单调递减, 则f(x)在(0,1)单调递增,在(1,+∞)单调递减.(2)证明:由blna −alnb =a −b ,得−1a ln 1a +1b ln 1b =1b −1a , 即1a (1−ln 1a )=1b (1−ln 1b ),由(1)f(x)在(0,1)单调递增,在(1,+∞)单调递减, 所以f(x)max =f(1)=1,且f(e)=0, 令x 1=1a ,x 2=1b ,则x 1,x 2为f(x)=k 的两根,其中k ∈(0,1). 不妨令x 1∈(0,1),x 2∈(1,e),则2−x 1>1,先证2<x 1+x 2,即证x 2>2−x 1,即证f(x 2)=f(x 1)<f(2−x 1),令ℎ(x)=f(x)−f(2−x),则ℎ′(x)=f′(x)+f′(2−x)=−lnx−ln(2−x)=−ln[x(2−x)]在(0,1)单调递减,所以ℎ′(x)>ℎ′(1)=0,故函数ℎ(x)在(0,1)单调递增,∴ℎ(x1)<ℎ(1)=0.∴f(x1)<f(2−x1),∴2<x1+x2,得证.同理,要证x1+x2<e,即证1<x2<e−x1,根据(1)中f(x)单调性,即证f(x2)=f(x1)>f(e−x1),令φ(x)=f(x)−f(e−x),x∈(0,1),则φ′(x)=−ln[x(e−x)],令φ′(x0)=0,x∈(0,x0),φ′(x)>0,φ(x)单调递增,x∈(x0,1),φ′(x)<0,φ(x)单调递减,又x>0,f(x)>0,且f(e)=0,故x→0,φ(0)>0,φ(1)=f(1)−f(e−1)>0,∴φ(x)>0恒成立,x1+x2<e得证,则2<1a +1b<e.【知识点】利用导数研究函数的单调性【解析】(1)首先求得导函数的解析式,然后结合导函数的符号即可确定函数的单调性,(2)利用同构关系将原问题转化为极值点偏移的问题,构造对称差函数分别证明左右两侧的不等式即可.本题主要考查利用导数研究函数的单调性,利用导数研究极值点偏移问题,等价转化的数学思想,同构的数学思想等知识,属于难题.。
2021年全国统一高考数学试卷(新高考Ⅰ卷)(含详细解析)
2021年全国统一高考数学试卷(新高考Ⅰ卷)(含详细解析)2021年全国统一高考数学试卷(新高考Ⅰ卷)注意事项:在答卷前,考生务必在答题卡上填写自己的姓名和准考证号。
回答选择题时,选出每小题的答案后,用铅笔在答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
1.(5分) 设集合A={x|-2<x<4},B={2,3,4,5},则A∩B=()A。
{2} B。
{2,3} C。
{3,4} D。
{2,3,4}2.(5分) 已知z=2-i,则|z-3i|=()A。
6-2i B。
4-2i C。
6+2i D。
4+2i3.(5分) 已知圆锥的底面半径为2,其侧面展开图为一个半圆,则该圆锥的母线长为()A。
2 B。
4 C。
4√2 D。
2√24.(5分) 下列区间中,函数f(x)=7sin(x)单调递增的区间是()A。
(0,π/2) B。
(π/2,π) C。
(π,3π/2) D。
(3π/2,2π)5.(5分) 已知F1,F2是椭圆C的两个焦点,点M在C上,则|MF1|·|MF2|的最大值为()A。
13 B。
12 C。
9 D。
66.(5分) 若tanθ=-2,则cos2θ=()A。
-3/5 B。
-4/5 C。
-24/25 D。
-7/257.(5分) 若过点(a,b)可以作曲线y=ex的两条切线,则()XXX<a B。
ea<b C。
0<a<eb D。
0<b<ea8.(5分) 有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回地随机取两次,每次取1个球,甲表示事件“两次取到的数字和为偶数”,乙表示事件“两次取到的数字都是奇数”,则P(甲∪乙)=()A。
2/3 B。
5/9 C。
7/9 D。
2021年高考真题——数学(新高考全国Ⅰ卷)+Word版含解析
2021年高考真题——数学(新高考全国Ⅰ卷)+Word版含解析2021年普通高等学校招生全国统一考试数学试卷,共22小题,满分150分,考试用时120分钟。
请考生注意以下事项:1.在答题卡上填写姓名、考生号、考场号和座位号,并用2B铅笔填涂试卷类型(A)。
2.选择题答案用2B铅笔在答题卡上涂黑,如需改动,用橡皮擦干净后再涂其他答案。
非选择题必须用黑色字迹的钢笔或签字笔作答,写在答题卡各题目指定区域内相应位置上,如需改动,先划掉原来的答案,然后再写上新答案,不准使用铅笔和涂改液。
3.考试结束后,请将试卷和答题卡一并交回。
一、选择题:共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合$A=x-2<x<4$,$B=\{2,3,4,5\}$,则$A$为()A。
$\{2\}$。
B。
$\{2,3\}$。
C。
$\varnothing$。
D。
$\{3,4\}$2.已知$z=2-i$,则$z(z+i)$为()A。
$6-2i$。
B。
$4-2i$。
C。
$6+2i$。
D。
$4+2i$3.已知圆锥的底面半径为2,其侧面展开图为一个半圆,则该圆锥的母线长为()A。
2.B。
2$\sqrt{2}$。
C。
4.D。
4$\sqrt{2}$4.下列区间中,函数$f(x)=7\sin\left(x-\dfrac{\pi}{6}\right)$单调递增的区间是()A。
$\left(0,\dfrac{\pi}{2}\right)$。
B。
$\left(\dfrac{\pi}{2},\pi\right)$。
C。
$\left(\dfrac{3\pi}{2},2\pi\right)$。
D。
$\left(\dfrac{\pi}{2},\dfrac{3\pi}{2}\right)$5.已知$F_1,F_2$是椭圆$C:x^2+y^2=1$的两个焦点,点$M$在$C$上,则$MF_1\cdot MF_2$的最大值为()A。
2021年全国统一新高考数学试卷(新高考1卷)含详解
2021年全国统一新高考数学试卷(新高考Ⅰ卷)一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{|24}A x x =-<<,{2B =,3,4,5},则(A B = )A.{2}B.{2,3}C.{3,4}D.{2,3,4}2.已知2z i =-,则()(z z i +=)A.62i-B.42i-C.62i +D.42i+,其侧面展开图为一个半圆,则该圆锥的母线长为()A.2B.C.4D.4.下列区间中,函数()7sin(6f x x π=-单调递增的区间是()A.(0,)2πB.(2π,)πC.3(,)2ππD.3(2π,2)π5.已知1F ,2F 是椭圆22:194x y C +=的两个焦点,点M 在C 上,则12||||MF MF ⋅的最大值为()A.13B.12C.9D.66.若tan 2θ=-,则sin (1sin 2)(sin cos θθθθ+=+)A.65-B.25-C.25D.657.若过点(,)a b 可以作曲线x y e =的两条切线,则()A.b e a<B.a e b<C.0b a e <<D.0ab e <<8.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立二、选择题:本题共4小题,每小题5分,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.有一组样本数据1x ,2x ,⋯,n x ,由这组数据得到新样本数据1y ,2y ,⋯,n y ,其中(1i i y x c i =+=,2,⋯,)n ,c 为非零常数,则()A.两组样本数据的样本平均数相同B.两组样本数据的样本中位数相同C.两组样本数据的样本标准差相同D.两组样本数据的样本极差相同10.已知O 为坐标原点,点1(cos ,sin )P αα,2(cos ,sin )P ββ-,3(cos()P αβ+,sin())αβ+,(1,0)A ,则()A.12||||OP OP =B.12||||AP AP =C.312OA OP OP OP ⋅=⋅D.123OA OP OP OP ⋅=⋅11.已知点P 在圆22(5)(5)16x y -+-=上,点(4,0)A ,(0,2)B ,则()A.点P 到直线AB 的距离小于10B.点P 到直线AB 的距离大于2C.当PBA ∠最小时,||PB =D.当PBA ∠最大时,||PB =12.在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[0λ∈,1],[0μ∈,1],则()A.当1λ=时,△1AB P 的周长为定值B.当1μ=时,三棱锥1P A BC -的体积为定值C.当12λ=时,有且仅有一个点P ,使得1A P BP ⊥D.当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 三、填空题:本题共4小题,每小题5分,共20分。
2021年(全国新高考1卷)高考数学试卷真题(Word版,含答案解析)
绝密★启用前2021年普通高等学校招生全国统一考试数 学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3. 考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{|24}A x x =-<<,{2,3,4,5}B =,则A B =A .{2}B .{2,3}C .{3,4}D .{2,3,4}2.已知2i z =-,则(i)z z += A .62i -B .42i -C .62i +D .42i +3A .2B .C .4D .4.下列区间中,函数π()7sin()6f x x =-单调递增的区间是A .π(0,)2B .π(,π)2C .3π(π,)2D .3π(,2π)25.已知1F ,2F 是椭圆22194x y C +=:的两个焦点,点M 在C 上,则12||||MF MF ⋅的最大值为 A .13B .12C .9D .66.若tan 2θ=-,则sin (1sin 2)sin cos θθθθ+=+A .65-B .25-C .25D .657.若过点(,)a b 可以作曲线e x y =的两条切线,则 A .e b a <B .e a b <C .0e b a <<D .0e a b <<8.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则 A .甲与丙相互独立 B .甲与丁相互独立 C .乙与丙相互独立 D .丙与丁相互独立二、选择题:本题共4小题,每小题5分,共20分。
2021年全国高考数学真题试卷全集(文理共10套)(学生版+解析版)
2021年全国统一高考数学试卷(理科)(甲卷)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设集合M ={x |0<x <4},N ={x |13≤x ≤5},则M ∩N =( )A .{x |0<x ≤13}B .{x |13≤x <4}C .{x |4≤x <5}D .{x |0<x ≤5}2.(5分)为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是( ) A .该地农户家庭年收入低于4.5万元的农户比率估计为6% B .该地农户家庭年收入不低于10.5万元的农户比率估计为10% C .估计该地农户家庭年收入的平均值不超过6.5万元D .估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间 3.(5分)已知(1﹣i )2z =3+2i ,则z =( ) A .﹣1−32iB .﹣1+32iC .−32+iD .−32−i4.(5分)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录法的数据V 满足L =5+lgV .已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为( )(√1010≈1.259) A .1.5B .1.2C .0.8D .0.65.(5分)已知F 1,F 2是双曲线C 的两个焦点,P 为C 上一点,且∠F 1PF 2=60°,|PF 1|=3|PF 2|,则C 的离心率为( )A .√72B .√132C .√7D .√136.(5分)在一个正方体中,过顶点A 的三条棱的中点分别为E ,F ,G .该正方体截去三棱锥A ﹣EFG 后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是( )A .B .C .D .7.(5分)等比数列{a n }的公比为q ,前n 项和为S n .设甲:q >0,乙:{S n }是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件8.(5分)2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m ),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A ,B ,C 三点,且A ,B ,C 在同一水平面上的投影A ',B ',C '满足∠A 'C 'B '=45°,∠A 'B 'C '=60°.由C 点测得B 点的仰角为15°,BB '与CC '的差为100;由B 点测得A 点的仰角为45°,则A ,C 两点到水平面A 'B 'C '的高度差AA '﹣CC '约为( )(√3≈1.732)A .346B .373C .446D .4739.(5分)若α∈(0,π2),tan2α=cosα2−sinα,则tan α=( )A .√1515B .√55C .√53D .√15310.(5分)将4个1和2个0随机排成一行,则2个0不相邻的概率为( ) A .13B .25C .23D .4511.(5分)已知A ,B ,C 是半径为1的球O 的球面上的三个点,且AC ⊥BC ,AC =BC =1,则三棱锥O ﹣ABC 的体积为( ) A .√212B .√312C .√24D .√3412.(5分)设函数f (x )的定义域为R ,f (x +1)为奇函数,f (x +2)为偶函数,当x ∈[1,2]时,f (x )=ax 2+b .若f (0)+f (3)=6,则f (92)=( )A .−94B .−32C .74D .52二、填空题:本题共4小题,每小题5分,共20分。
2021年全国高考数学真题试卷全集(文理共10套)(学生版+解析版)
2021年全国统一高考数学试卷(理科)(甲卷)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设集合M ={x |0<x <4},N ={x |13≤x ≤5},则M ∩N =( )A .{x |0<x ≤13}B .{x |13≤x <4}C .{x |4≤x <5}D .{x |0<x ≤5}2.(5分)为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是( ) A .该地农户家庭年收入低于4.5万元的农户比率估计为6% B .该地农户家庭年收入不低于10.5万元的农户比率估计为10% C .估计该地农户家庭年收入的平均值不超过6.5万元D .估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间 3.(5分)已知(1﹣i )2z =3+2i ,则z =( ) A .﹣1−32iB .﹣1+32iC .−32+iD .−32−i4.(5分)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录法的数据V 满足L =5+lgV .已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为( )(√1010≈1.259) A .1.5B .1.2C .0.8D .0.65.(5分)已知F 1,F 2是双曲线C 的两个焦点,P 为C 上一点,且∠F 1PF 2=60°,|PF 1|=3|PF 2|,则C 的离心率为( )A .√72B .√132C .√7D .√136.(5分)在一个正方体中,过顶点A 的三条棱的中点分别为E ,F ,G .该正方体截去三棱锥A ﹣EFG 后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是( )A .B .C .D .7.(5分)等比数列{a n }的公比为q ,前n 项和为S n .设甲:q >0,乙:{S n }是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件8.(5分)2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m ),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A ,B ,C 三点,且A ,B ,C 在同一水平面上的投影A ',B ',C '满足∠A 'C 'B '=45°,∠A 'B 'C '=60°.由C 点测得B 点的仰角为15°,BB '与CC '的差为100;由B 点测得A 点的仰角为45°,则A ,C 两点到水平面A 'B 'C '的高度差AA '﹣CC '约为( )(√3≈1.732)A .346B .373C .446D .4739.(5分)若α∈(0,π2),tan2α=cosα2−sinα,则tan α=( )A .√1515B .√55C .√53D .√15310.(5分)将4个1和2个0随机排成一行,则2个0不相邻的概率为( ) A .13B .25C .23D .4511.(5分)已知A ,B ,C 是半径为1的球O 的球面上的三个点,且AC ⊥BC ,AC =BC =1,则三棱锥O ﹣ABC 的体积为( ) A .√212B .√312C .√24D .√3412.(5分)设函数f (x )的定义域为R ,f (x +1)为奇函数,f (x +2)为偶函数,当x ∈[1,2]时,f (x )=ax 2+b .若f (0)+f (3)=6,则f (92)=( )A .−94B .−32C .74D .52二、填空题:本题共4小题,每小题5分,共20分。
2021年全国高考数学真题试卷全集(文理共10套)(学生版+解析版)
2021年全国统一高考数学试卷(理科)(甲卷)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设集合M ={x |0<x <4},N ={x |13≤x ≤5},则M ∩N =( )A .{x |0<x ≤13}B .{x |13≤x <4}C .{x |4≤x <5}D .{x |0<x ≤5}2.(5分)为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是( ) A .该地农户家庭年收入低于4.5万元的农户比率估计为6% B .该地农户家庭年收入不低于10.5万元的农户比率估计为10% C .估计该地农户家庭年收入的平均值不超过6.5万元D .估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间 3.(5分)已知(1﹣i )2z =3+2i ,则z =( ) A .﹣1−32iB .﹣1+32iC .−32+iD .−32−i4.(5分)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录法的数据V 满足L =5+lgV .已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为( )(√1010≈1.259) A .1.5B .1.2C .0.8D .0.65.(5分)已知F 1,F 2是双曲线C 的两个焦点,P 为C 上一点,且∠F 1PF 2=60°,|PF 1|=3|PF 2|,则C 的离心率为( )A .√72B .√132C .√7D .√136.(5分)在一个正方体中,过顶点A 的三条棱的中点分别为E ,F ,G .该正方体截去三棱锥A ﹣EFG 后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是( )A .B .C .D .7.(5分)等比数列{a n }的公比为q ,前n 项和为S n .设甲:q >0,乙:{S n }是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件8.(5分)2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m ),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A ,B ,C 三点,且A ,B ,C 在同一水平面上的投影A ',B ',C '满足∠A 'C 'B '=45°,∠A 'B 'C '=60°.由C 点测得B 点的仰角为15°,BB '与CC '的差为100;由B 点测得A 点的仰角为45°,则A ,C 两点到水平面A 'B 'C '的高度差AA '﹣CC '约为( )(√3≈1.732)A .346B .373C .446D .4739.(5分)若α∈(0,π2),tan2α=cosα2−sinα,则tan α=( )A .√1515B .√55C .√53D .√15310.(5分)将4个1和2个0随机排成一行,则2个0不相邻的概率为( ) A .13B .25C .23D .4511.(5分)已知A ,B ,C 是半径为1的球O 的球面上的三个点,且AC ⊥BC ,AC =BC =1,则三棱锥O ﹣ABC 的体积为( ) A .√212B .√312C .√24D .√3412.(5分)设函数f (x )的定义域为R ,f (x +1)为奇函数,f (x +2)为偶函数,当x ∈[1,2]时,f (x )=ax 2+b .若f (0)+f (3)=6,则f (92)=( )A .−94B .−32C .74D .52二、填空题:本题共4小题,每小题5分,共20分。
2021年高考数学真题试题(天津卷)(word版,含答案与解析)
2021年高考数学真题试卷(天津卷)一、选择题,在每小题给出的四个选项中,只有一项是符合题目要求的.(共9题;共45分)1.设集合A={−1,0,1},B={1,3,5},C={0,2,4},则(A∩B)∪C=()A. {0}B. {0,1,3,5}C. {0,1,2,4}D. {0,2,3,4}【答案】C【考点】并集及其运算,交集及其运算【解析】【解答】解:由题意得A∩B={1},则(A∩B)∪C={0,1,2,4}故答案为:C【分析】根据交集,并集的定义求解即可.2.已知a∈R,则“ a>6 ”是“ a2>36”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不允分也不必要条件【答案】A【考点】必要条件、充分条件与充要条件的判断【解析】【解答】解:当a>6时,a2>36,所以充分性成立;当a2>36时,a<-6或a>6,所以必要性不成立,故“a>6”是“a2>36”的充分不必要条件.故答案为:A【分析】根据充分必要条件的定义求解即可.3.函数y=ln|x|的图像大致为()x2+2A. B.C. D.【答案】B【考点】函数的值域,奇偶函数图象的对称性【解析】【解答】解:f(−x)=ln |−x|(−x)2+2=lnxx2+2=f(x),则函数f(x)=lnxx2+2是偶函数,排除A,C,当x∈(0,1)时,ln|x|<0,x2+2>0,则f(x)<0,排除D.故答案为:B【分析】由函数为偶函数可排除AC,再由x∈(0,1)时,f(x)<0,排除D,即可得解.4.从某网格平台推荐的影视作品中抽取400部,统计其评分分数据,将所得400个评分数据分为8组:[66,70),[70,74),⋯,[94,98],并整理得到如下的费率分布直方图,则评分在区间[82,86)内的影视作品数量是()A. 20B. 40C. 64D. 80【答案】 D【考点】频率分布直方图【解析】【解答】解:由频率分布直方图可知,评分在区间[82,86)内的影视作品数量是400×0.05×4=80.故答案为:D【分析】根据频率分布直方图的性质求解即可.5.设a=log20.3,b=log120.4,c=0.40.3,则a,b,c的大小关系为()A. a<b<cB. c<a<bC. b<c<aD. a<c<b【答案】 D【考点】指数函数的定义、解析式、定义域和值域,对数函数的值域与最值【解析】【解答】解:∵log20.3<log21=0,∴a<0∵log120.4=−log20.4=log252>log22=1,∴b>1∵0<0.403<0.40=1,∴0<c<1∴a<c<b故答案为:D【分析】根据指数函数和对数函数的性质求出a,c,b的范围即可求解.6.两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为32π3,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为()A. 3πB. 4πC. 9πD. 12π【答案】B【考点】旋转体(圆柱、圆锥、圆台),棱柱、棱锥、棱台的体积【解析】【解答】解:如下图所示,设两个圆锥的底面圆圆心为点D,设圆锥AD和圆锥BD的高之比为3:1,即AD=3BD,设球的半径为R,则4πR33=32π3,解得R=2,所以AB=AD+BD=4BD=4,所以BD=1,AD=3∵CD⊥AB,∴∠CAD+∠ACD=∠BCD+∠ACD=90°∴∠CAD=∠BCD又因为∠ADC=∠BDC所以△ACD∽△CBD所以ADCD =CDBD∴CD=√AD·BD=√3∴这两个圆锥的体积之和为13π×CD2×(AD+BD)=13π×3×4=4π故答案为:B【分析】作出图形,求得球的半径,进而求得两圆锥的高,利用三角形相似计算出圆锥的底面圆半径,再结合锥体的体积公式求解即可.7.若2a=5b=10,则1a +1b=()A. -1B. lg7C. 1D. log710【答案】 C【考点】指数式与对数式的互化,换底公式的应用【解析】【解答】解:由 2a =5b =10 得a=log 210,b=log 510, 则1a +1b =1log210+1log 510=lg2+lg5=lg10=1故答案为:C【分析】根据指数式与对数式的互化,结合换底公式求解即可. 8.已知双曲线x 2a 2−y 2b2=1(a >0,b >0) 的右焦点与抛物线 y 2=2px(p >0) 的焦点重合,抛物线的准线交双曲线于A , B 两点,交双曲钱的渐近线于C 、D 两点,若 |CD|=√2|AB| .则双曲线的离心率为( )A. √2B. √3C. 2D. 3 【答案】 A【考点】抛物线的简单性质,双曲线的简单性质 【解析】【解答】解:设双曲线x 2a 2−y 2b 2=1(a >0,b >0) 与抛物线 y 2=2px(p >0) 的公共焦点为(c,0), 则抛物线 y 2=2px(p >0) 的准线为x=-cy 2b 2=1 , 得c 2a 2−y 2b 2=1 , 解得y =±b 2a, 所以|AB |=2b 2a,又因为双曲线的渐近线为y =±bax , 所以|CD |=2bc a,所以2bc a=2√2b 2a, 则c =√2b所以a 2=c 2−b 2=12c 2所以双曲线的离心率为e =ca =√2 故答案为:A【分析】根据双曲线与抛物线的几何性质,结合离心率的定义求解即可.9.设 a ∈R ,函数 f(x)={cos(2πx −2πa).x <ax 2−2(a +1)x +a 2+5,x ≥a ,若 f(x) 在区间 (0,+∞) 内恰有6个专点,则a 的取值范围是( ) A. (2,94]∪(52,114] B. (74,2)∪(52,114)C. (2,94]∪[114,3)D. (74,2)∪[114,3) . 【答案】 A【考点】函数零点的判定定理【解析】【解答】解:∵x 2-2(a+1)x+a 2+5=0最多有2个根, ∴cos(2πx -2πa)=0至少有4个根,由2πx −2πa =π2+k π,k ∈Z , 得x =k2+14+a,k ∈Z由0<k 2+14+a <a 得−2a −12<k <−12(1)当x<a 时,当−5≤−2a −12<−4时,f(x)有4个零点,即74<a <94; 当−6≤−2a −12<−5时,f(x)有5个零点,即94<a <114;当−7≤−2a −12<−6时,f(x)有6个零点,即114<a <134;(2)当x≥a 时,f(x)=x 2-2(a+1)x+a 2+5 ∆=4(a+1)2-4(a 2+5)=8(a-2) 当a<2时,∆<0,f(x)无零点; 当a=2时,∆=0,f(x)有1个零点;当a>2时,令f(a)=a 2-2(a+1)a+a 2+5=-2a+5≥0,则2<a ≤52 , 此时f(x)有2个零点; 所以若a >52时,f(x)有1个零点;综上,要是f(x)在[0,+∞)上有6个零点,则应满足{74<a ≤942<a ≤52)或{94<a ≤114a =2或a >52)或{114<a ≤134a <2)则a 的取值范围是(2,94]∪(52,114]【分析】由x 2-2(a+1)x+a 2+5=0最多有2个根,可得cos(2πx -2πa)=0至少有4个根,再结合分类讨论思想,根据x<a 与x≥a 分类讨论两个函数零点个数情况,再综合考虑求解即可.二、填空题,本大题共6小题,每小题5分,共30分,试题中包含两个空的,答对1个的给3分,全部答对的给5分.(共6题;共30分)10.i 是虚数单位,复数 9+2i 2+i= ________.【答案】 4-i【考点】复数代数形式的混合运算 【解析】【解答】解:由题意得9+2i2+i =(9+2i )(2−i )(2+i )(2−i )=20−5i 5=4−i故答案为:4-i【分析】根据复数的运算法则求解即可.11.在 (2x 3+1x )6 的展开式中, x 6 的系数是________. 【答案】 160【考点】二项式定理,二项式定理的应用【解析】【解答】解: (2x 3+1x )6 的展开式的通项公式是Tr +1=C 6r (2x 3)6−r (1x )r=26−r ·C 6r ·x 18−4r令18-4r=6,得r=3所以 x 6 的系数是 23C 63=160【分析】根据二项式的展开式通项公式求解即可.12.若斜率为 √3 的直线与y 轴交于点A , 与圆 x 2+(y −1)2=1 相切于点B , 则 |AB|= ________. 【答案】 √3【考点】直线的斜截式方程,点到直线的距离公式,直线与圆的位置关系 【解析】【解答】解:设直线AB 的方程为y =√3x +b , 则点A(0,b) ∵直线AB 与圆 x 2+(y −1)2=1相切=1 , 解得b=-1或b=3所以|AC|=2 又∵|BC|=1∴|AB |=√|AC|2−|BC |2=√3 故答案为:√3【分析】根据直线的斜截式方程,结合直线与圆的位置关系以及点到直线的距离公式求解即可. 13.若 a >0 , b >0 ,则 1a +ab 2+b 的最小值为________. 【答案】 2√2【考点】基本不等式,基本不等式在最值问题中的应用 【解析】【解答】解:∵a>0,b>0 ∴1a+a b 2+b ≥2√1a·a b 2+b =2b+b ≥2√2b·b =2√2当且仅当1a =ab 2且2b =b , 即a =b =√2时等号成立 所以1a +ab 2+b 的最小值是2√2. 【分析】利用基本不等式求解即可.14.甲、乙两人在每次猜谜活动中各猜一个谜语,若一方猜对且另一方猜错,则猜对的一方获胜,否则本次平局,已知每次活动中,甲、乙猜对的概率分别为 56 和 15 ,且每次活动中甲、乙猜对与否互不影响,各次活动也互不影响,则一次活动中,甲获胜的概率为________,3次活动中,甲至少获胜2次的概率为________ . 【答案】 23;2027【考点】相互独立事件的概率乘法公式,n 次独立重复试验中恰好发生k 次的概率 【解析】【解答】解:由题意知在一次活动中,甲获胜的概率为56×45=23 ,则在3次活动中,甲至少获胜2次的概率为C 32×(23)2×13+(23)3=2027故答案为:23,2027【分析】根据甲猜对乙没猜对可求出一次活动中,甲获胜的概率,再根据n 次独立重复试验的概率求法求解即可.15.在边长为1的等边三角形ABC 中,D 为线段BC 上的动点, DE ⊥AB 且交AB 于点E . DF //AB 且交AC 于点F ,则 |2BE ⃗⃗⃗⃗⃗ +DF ⃗⃗⃗⃗⃗ | 的值为________; (DE ⃗⃗⃗⃗⃗ +DF ⃗⃗⃗⃗⃗ )⋅DA ⃗⃗⃗⃗⃗ 的最小值为________. 【答案】 1;1120【考点】二次函数在闭区间上的最值,向量的模,平面向量数量积的运算 【解析】【解答】解:设BE=x ,x ∈(0,12) ∵△ABC 为边长为1的等边三角形,DE ⊥AB ∴∠BDE=30°,BD=2x ,DE=√3x , DC=1-2x ∵DF//AB∴△DFC 为边长为1-2x 的等边三角形,DE ⊥DF∴(2BE →+DF →)2=4BE →2+4BE →·DF →+DF →2=4x 2+4x (1−2x )·cos0°+(1−2x )2=1 ∴|2BE →+DF →|=1∵(DE →+DF →)·DA →=(DE →+DF →)·(DE →+EA →)=DE →2+DF →·EA →=(√3x)2+(1−2x )×(1−x )=5x 2−3x +1=5(x −310)2+1120则当x =310时,(DE →+DF →)·DA →取得最小值为1120 故答案为:1,1120【分析】根据向量的数量积及向量的求模公式,再结合二次函数的最值问题求解即可.三、解答题,本大题共5小题,共75分,解答应写出文字说明,证明过程成演算步骤.(共5题;共75分)16.在 △ABC ,角 A,B,C 所对的边分别为 a,b,c ,已知 sinA:sinB:sinC =2:1:√2 , b =√2 . (1)求a 的值; (2)求 cosC 的值; (3)求 sin(2C −π6) 的值.【答案】 (1)因为 sinA:sinB:sinC =2:1:√2 ,由正弦定理可得 a:b:c =2:1:√2 , ∵b =√2 , ∴a =2√2,c =2 ;(2)由余弦定理可得 cosC =a 2+b 2−c 22ab=2×2√2×√2=34;(3)∵cosC =34 , ∴sinC =√1−cos 2C =√74,∴sin2C =2sinCcosC =2×√74×34=3√78, cos2C =2cos 2C −1=2×916−1=18 ,所以 sin(2C −π6)=sin2Ccos π6−cos2Csin π6 =3√78×√32−18×12=3√21−116.【考点】两角和与差的正弦公式,二倍角的正弦公式,同角三角函数基本关系的运用,正弦定理,余弦定理【解析】【分析】(1)根据正弦定理直接求解即可; (2)根据余弦定理直接求解即可;(3)根据同角三角函数的基本关系,二倍角公式以及两角差的正弦公式求解即可.17.如图,在棱长为2的正方体 ABCD −A 1B 1C 1D 1 中,E 为棱BC 的中点,F 为棱CD 的中点.(1)求证: D 1F// 平面 A 1EC 1 ;(2)求直线 AC 1 与平面 A 1EC 1 所成角的正正弦值. (3)求二面角 A −A 1C 1−E 的正弦值.【答案】 (1)以 A 为原点, AB,AD,AA 1 分别为 x,y,z 轴,建立如图空间直角坐标系,则 A(0,0,0) , A 1(0,0,2) , B(2,0,0) , C(2,2,0) , D(0,2,0) , C 1(2,2,2) , D 1(0,2,2) , 因为E 为棱BC 的中点,F 为棱CD 的中点,所以 E(2,1,0) , F(1,2,0) , 所以 D 1F ⃗⃗⃗⃗⃗⃗⃗ =(1,0,−2) , A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(2,2,0) , A 1E ⃗⃗⃗⃗⃗⃗⃗ =(2,1,−2) ,设平面 A 1EC 1 的一个法向量为 m⃗⃗ =(x 1,y 1,z 1) , 则 {m ⃗⃗ ⋅A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2x 1+2y 1=0m ⃗⃗ ⋅A 1E ⃗⃗⃗⃗⃗⃗⃗ =2x 1+y 1−2z 1=0 ,令 x 1=2 ,则 m ⃗⃗ =(2,−2,1) , 因为 D 1F ⃗⃗⃗⃗⃗⃗⃗ ⋅m ⃗⃗ =2−2=0 ,所以 D 1F ⃗⃗⃗⃗⃗⃗⃗ ⊥m ⃗⃗ , 因为 D 1F ⊄ 平面 A 1EC 1 ,所以 D 1F// 平面 A 1EC 1 ;(2)由(1)得, AC 1⃗⃗⃗⃗⃗⃗⃗ =(2,2,2) , 设直线 AC 1 与平面 A 1EC 1 所成角为 θ , 则 sinθ=|cos〈m ⃗⃗ ,AC 1⃗⃗⃗⃗⃗⃗⃗ 〉|=|m ⃗⃗⃗ ⋅AC 1⃗⃗⃗⃗⃗⃗⃗⃗ |m ⃗⃗⃗ |⋅|AC 1⃗⃗⃗⃗⃗⃗⃗⃗ ||=3×2√3=√39;(3)由正方体的特征可得,平面 AA 1C 1 的一个法向量为 DB⃗⃗⃗⃗⃗⃗ =(2,−2,0) , 则 cos〈DB ⃗⃗⃗⃗⃗⃗ ,m ⃗⃗ 〉=DB ⃗⃗⃗⃗⃗⃗⋅m ⃗⃗⃗ |DB ⃗⃗⃗⃗⃗⃗ |⋅|m ⃗⃗⃗ |=3×2√2=2√23,所以二面角 A −A 1C 1−E 的正弦值为 √1−cos 2〈DB ⃗⃗⃗⃗⃗⃗ ,m ⃗⃗ 〉=13.【考点】直线与平面平行的判定,用空间向量求直线与平面的夹角,二面角的平面角及求法 【解析】【分析】(1)根据向量垂直的充要条件求得 平面 A 1EC 1 的一个法向量m →, 再利用向量法直接求证即可;(2)先求出AC 1→ , 再由sinθ=|cos <m →,AC 1→>|求解即可; (3)先求出平面 AA 1C 1 的一个法向量 DB →, 再由cos <m →,DB →>=m →·DB→|m →|·|DB|→结合同角三角函数的平方关系求解即可.18.已知椭圆 x 2a 2+y 2b 2=1 (a >b >0) 的右焦点为F ,上顶点为B ,离心率为 2√55 ,且 |BF|=√5 .(1)求椭圆的方程;(2)直线l 与椭圆有唯一的公共点M , 与y 轴的正半轴交于点N , 过N 与BF 垂直的直线交x 轴于点P . 若 MP //BF ,求直线l 的方程.【答案】 (1)易知点 F(c,0) 、 B(0,b) ,故 |BF|=√c 2+b 2=a =√5 , 因为椭圆的离心率为 e =c a=2√55,故 c =2 , b =√a 2−c 2=1 ,因此,椭圆的方程为 x 25+y 2=1 ;(2)设点 M(x 0,y 0) 为椭圆 x 25+y 2=1 上一点,先证明直线 MN 的方程为x 0x5+y 0y =1 ,联立 {x 0x 5+y 0y =1x 25+y 2=1,消去 y 并整理得 x 2−2x 0x +x 02=0 , Δ=4x 02−4x 02=0 ,因此,椭圆x 25+y 2=1 在点 M(x 0,y 0) 处的切线方程为x 0x 5+y 0y =1 .在直线 MN 的方程中,令 x =0 ,可得 y =1y 0,由题意可知 y 0>0 ,即点 N(0,1y 0) ,直线 BF 的斜率为 k BF =−b c =−12 ,所以,直线 PN 的方程为 y =2x +1y 0,在直线 PN 的方程中,令 y =0 ,可得 x =−12y 0,即点 P(−12y 0,0) ,因为 MP //BF ,则 k MP =k BF ,即 y 0x 0+12y=2y 022x 0y 0+1=−12,整理可得 (x 0+5y 0)2=0 ,所以, x 0=−5y 0 ,因为x 025+y 02=6y 02=1 , ∴y 0>0 ,故 y 0=√66, x 0=−5√66,所以,直线 l 的方程为 −√66x +√66y =1 ,即 x −y +√6=0 . 【考点】椭圆的标准方程,直线与圆锥曲线的关系,直线与圆锥曲线的综合问题 【解析】【分析】(1)先求出a 值,结合a,b,c 的关系求得b ,从而求得椭圆的方程; (2)设M(x 0,y 0),可得直线l 的方程x 0x 5+y 0y =1 , 求出点P 的坐标,再根据MP//BF 得K MP =K BF , 求得x 0,y 0的值,即可得出直线l 的方程19.已知 {a n } 是公差为2的等差数列,其前8项和为64. {b n } 是公比大于0的等比数列, b 1=4,b 3−b 2=48 .(1)求 {a n } 和 {b n } 的通项公式; (2)记 c n =b 2n +1b n,n ∈N ∗ .(i )证明 {c n 2−c 2n } 是等比数列;(ii )证明 ∑√a k ak+1c k2−c 2k nk=1<2√2(n ∈N ∗) 【答案】 (1)因为 {a n } 是公差为2的等差数列,其前8项和为64. 所以 a 1+a 2+⋅⋅⋅+a 8=8a 1+8×72×2=64 ,所以 a 1=1 ,所以 a n =a 1+2(n −1)=2n −1,n ∈N ∗ ; 设等比数列 {b n } 的公比为 q,(q >0) ,所以 b 3−b 2=b 1q 2−b 1q =4(q 2−q)=48 ,解得 q =4 (负值舍去), 所以 b n =b 1q n−1=4n ,n ∈N ∗ ;(2)(i )由题意, c n =b 2n +1b n =42n +14n , 所以 c n2−c 2n =(42n +14n )2−(44n +142n )=2⋅4n , 所以 c n 2−c 2n ≠0 ,且 c n+12−c 2n+2c n 2−c 2n =2⋅4n+12⋅4n =4 ,所以数列 {c n 2−c 2n } 是等比数列;(ii )由题意知,a n a n+1c n 2−c 2n =(2n−1)(2n+1)2⋅4n =4n 2−12⋅22n <4n 22⋅22n , 所以 √a n a n+1c n 2−c 2n <√4n 22⋅22n =√2⋅2n =√2n 2n−1 , 所以 ∑√a k a k+1c k 2−c 2k n k=1<√2k 2k−1n k=1 , 设 T n =∑k 2k−1n k=1=120+221+322+⋅⋅⋅+n 2n−1 , 则 12T n =121+222+323+⋅⋅⋅+n 2n ,两式相减得 12T n =1+12+122+⋅⋅⋅+12n−1−n 2n =1⋅(1−12n )1−12−n 2n =2−n+22n ,所以 T n =4−n+22n−1 ,所以 ∑√a k a k+1c k 2−c 2k n k=1<√2k 2k−1n k=1=√2−n+22n−1)<2√2 . 【考点】等差数列的通项公式,等差数列的前n 项和,等比数列的通项公式,等比数列的前n 项和,数列的求和【解析】【分析】(1)根据等差数列、等比数列的通项公式及前n 项和公式求解即可;(2)(ⅰ)运算可得C n 2−C 2n =2·4n , 结合等比数列的定义即可得证;(ⅱ)利用放缩法得a n a n+1C n 2−C 2n <4n 22·22n , 进而可得∑n k=1√a k a k+1C k 2−C 2k <√2n k=1k 2k−1 , 结合错位相减法即可得证.20.已知 a >0 , 函数 f(x)=ax −xe x .(1)求曲线 y =f(x) 在点 (0,f(0)) 处的切线方程:(2)证明 f(x) 存在唯一的极值点(3)若存在a , 使得 f(x)≤a +b 对任意 x ∈R 成立,求实数b 的取值范围.【答案】 (1)f ′(x)=a −(x +1)e x ,则 f ′(0)=a −1 ,又 f(0)=0 ,则切线方程为 y =(a −1)x,(a >0) ;(2)令 f ′(x)=a −(x +1)e x =0 ,则 a =(x +1)e x ,令 g(x)=(x +1)e x ,则 g ′(x)=(x +2)e x ,当x∈(−∞,−2)时,g′(x)<0,g(x)单调递减;当x∈(−2,+∞)时,g′(x)>0,g(x)单调递增,当x→−∞时,g(x)<0,g(−1)=0,当x→+∞时,g(x)>0,画出g(x)大致图像如下:所以当a>0时,y=a与y=g(x)仅有一个交点,令g(m)=a,则m>−1,且f′(m)=a−g(m)=0,当x∈(−∞,m)时,a>g(x),则f′(x)>0,f(x)单调递增,当x∈(m,+∞)时,a<g(x),则f′(x)<0,f(x)单调递减,x=m为f(x)的极大值点,故f(x)存在唯一的极值点;(3)由(II)知f(x)max=f(m),此时a=(1+m)e m,m>−1,所以{f(x)−a}max=f(m)−a=(m2−m−1)e m,(m>−1),令ℎ(x)=(x2−x−1)e x,(x>−1),若存在a,使得f(x)≤a+b对任意x∈R成立,等价于存在x∈(−1,+∞),使得ℎ(x)≤b,即b≥ℎ(x)min,ℎ′(x)=(x2+x−2)e x=(x−1)(x+2)e x,x>−1,当x∈(−1,1)时,ℎ′(x)<0,ℎ(x)单调递减,当x∈(1,+∞)时,ℎ′(x)>0,ℎ(x)单调递增,所以ℎ(x)min=ℎ(1)=−e,故b≥−e,所以实数b的取值范围[−e,+∞).【考点】导数的几何意义,利用导数研究函数的单调性,利用导数研究函数的极值,利用导数求闭区间上函数的最值【解析】【分析】(1)根据导数的几何意义求解即可;(2)令f'(x)=0,可得a=(x+1)e x,则可化为证明y=a与y=g(x)仅有一个交点,利用导数研究y=g(x)的变化情况,数形结合求解即可;(3)令h(x)=(x2-x-1)e x,(x>-1),则将问题等价转化为存在x∈(-1,+∞),使得h(x)≤b,即b≥h(x)min,利用导数求出h(x)的最小值即可.。
2021年全国高考理数真题试卷(全国甲卷)(Word版+答案+解析)
2021年高考理数真题试卷(全国甲卷)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(共12题;共60分)1.设集合M={x|0<x <4},N={x| 13 ≤x≤5},则M∩N=( )A. {x|0<x≤ 13 } B. {x| 13 ≤x <4} C. {x|4≤x <5} D. {x|0<x≤5}2.为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是( ) A. 该地农户家庭年收入低于4.5万元的农户比率估计为6% B. 该地农户家庭年收入不低于10.5万元的农户比率估计为10% C. 估计该地农户家庭年收入的平均值不超过6.5万元D. 估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间 3.已知 (1−i )2z =3+2i,则z=( )A. -1- 32 i B. -1+ 32 i C. - 32 +i D. - 32 -i4.青少年视力是社会普遍关注的问题,视力情况可借助视力表测量,通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记数法的数据V 满足L=5+lgV 。
已知某同学视力的五分记录法的数据为4.9,则其视力的小数记数法的数据约为( )( √1010 ≈1.259) A. 1.5 B. 1.2 C. 0.8 D. 0.65.已知F 1 , F 2是双曲线C 的两个焦点,P 为C 上一点,且∠F 1PF 2=60°,|PF 1|=3|PF 2|,则C 的离心率为( )A. √72B. √132C. √7D. √136.在一个正方体中,过顶点A 的三条棱的中点分别为E,F,G.该正方体截去三棱锥A-EFG 后,所得多面体的三视图中,正试图如右图所示,则相应的侧视图是( )A. B. C. D.7.等比数列{a n }的公比为q ,前n 项和为S n , 设甲:q>0,乙:{S n }是递増数列,则( ) A. 甲是乙的充分条件但不是必要条件 B. 甲是乙的必要条件但不是充分条件 C. 甲是乙的充要条件D. 甲既不是乙的充分条件也不是乙的必要条件8.2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m ),三角高程测量法是珠峰高程测量方法之一.右图是三角高程测量法的一个示意图,现有以A ,B ,C 三点,且A ,B,C 在同一水平而上的投影A’,B’,C'满足 ∠A ′C ′B =45°,∠A ′B ′C ′=60° .由c 点测得B 点的仰角为15°,曲,B B ′ 与C C ′ 的差为100 :由B 点测得A 点的仰角为45°,则A,C 两点到水平面 A ′B ′C ′ 的高度差 A A ′−CC′ 约为( ) (√3≈1.732)A. 346B. 373C. 446D. 473 9.若 α∈(0,π2) , tan2α=cosα2−sinα ,则 tanα= ( )A. √1515B. √55C. √53D. √15310.将4个1和2个0随机排成一行,则2个0 不相邻的概率为( ) A. 13 B. 25 C. 23 D. 4511.已知A,B,C 是半径为1的求O 的球面上的三个点,且AC ⊥BC,AC=BC=1,则三棱锥O-ABC 的体积为( ) A. √212B. √312C. √24D. √3412.设函数f(x)的定义域为R , f(x+1)为奇函数,f(x+2)为偶函数,当 x ∈[1,2] 时, f (x )=a x 2+b .若 f (0)+f (3)=6 ,则 f (92)= ( )A. −94 B. −32 C. 74 D. 52二、填空题:本题共4小题,每小题5分,共20分。
2021年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)
2021年普通高等学校招生全国统一考试(全国乙卷)数学(理)一、选择题1.设2()3()46z z z z i ++-=+,则z =()A.12i -B.12i +C.1i +D.1i -答案:C 解析:设z a bi =+,则z a bi =-,2()3()4646z z z z a bi i ++-=+=+,所以1a =,1b =,所以1z i =+.2.已知集合{|21,}S s s n n Z ==+∈,{|41,}T t t n n Z ==+∈,则S T = ()A.∅B.SC.TD.Z 答案:C 解析:21s n =+,n Z ∈;当2n k =,k Z ∈时,{|41,}S s s k k Z ==+∈;当21n k =+,k Z ∈时,{|43,}S s s k k Z ==+∈.所以T S Ü,S T T = .故选C.3.已知命题:p x R ∃∈﹐sin 1x <;命题||:,1x q x R e∈∀≥,则下列命题中为真命题的是()A.p q∧B.p q ⌝∧C.p q∧⌝D.()p q ⌝∨答案:A 解析:根据正弦函数的值域sin [1,1]x ∈-,故x R ∃∈,sin 1x <,p 为真命题,而函数||x y y e ==为偶函数,且0x ≥时,||1x y e =≥,故x R ∀∈,||1x y e =≥恒成立.,则q 也为真命题,所以p q ∧为真,选A.4.设函数1()1xf x x-=+,则下列函数中为奇函数的是()A.1()1f x --B.1()1f x -+C.1()1f x +-D.1()1f x ++答案:B 解析:12()111x f x x x -==-+++,()f x 向右平移一个单位,向上平移一个单位得到2()g x x=为奇函数.5.在正方体1111ABCD ABC D -中,P 为11BD 的中点,则直线PB 与1A D 所成的角为()A.2πB.3πC.4πD.6π答案:D 解析:如图,1P B C ∠为直线PB 与1A D 所成角的平面角.易知11AB C ∆为正三角形,又P 为11AC 中点,所以16PBC π∠=.6.将5名北京冬奥会志愿者分配到花样滑冰,短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A.60种B.120种C.240种D.480种答案:C 解析:所求分配方案数为2454240C A =.7.把函数()y f x =图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移3π个单位长度,得到函数sin()4y x π=-的图像,则)(f x =()A.7sin()212x π-B.sin()212x π+C.7sin(212x π-D.sin(212x π+答案:B解析:逆向:231sin()sin(sin() 412212 y x y x y xππππ=-−−−→=+−−−−−−−→=+左移横坐标变为原来的倍.故选B.8.在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74的概率为()A.7 9B.23 32C.9 32D.2 9答案:B解析:由题意记(0,1)x∈,(1,2)y∈,题目即求74x y+>的概率,绘图如下所示.故113311123224411132 ABCDAM ANSPS==⨯-⋅-⨯⨯==⨯阴正.9.魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作.其中第一题是测量海岛的高.如图,点,,E H G在水平线AC上,DE和FG是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG称为“表距”,GC和EH都称为“表目距”.GC与EH的差称为“表目距的差”,则海岛的高AB =()A.⨯+表高表距表高表目距的差B.⨯-表高表距表高表目距的差C.⨯+表高表距表距表目距的差D.⨯-表高表距表距表目距的差答案:A 解析:连接DF 交AB 于M ,则AB AM BM =+.记BDM α∠=,BFM β∠=,则tan tan MB MBMF MD DF βα-=-=.而tan FG GC β=,tan EDEHα=.所以11(()tan tan tan tan MB MB GC EH GC EH MB MB MB FG ED ED βαβα--=-=⋅-=⋅.故ED DF MB GC EH ⋅⨯==-表高表距表目距的差,所以高AB ⨯=+表高表距表高表目距的差.10.设0a ≠,若x a =为函数2()()()f x a x a x b =--的极大值点,则A.a b <B.a b >C.2ab a <D.2ab a >答案:D 解析:若0a >,其图像如图(1),此时,0a b <<;若0a <,时图像如图(2),此时,0b a <<.综上,2ab a <.11.设B 是椭圆C :22221(0)x y a b a b +=>>的上顶点,若C 上的任意一点P 都满足,2PB b ≤,则C 的离心率的取值范围是()A.[)2B.1[,1)2C.2D.1(0,2答案:C 解析:由题意,点(0,)B b ,设00(,)P x y ,则2222200002221(1)x y y x a a b b +=⇒=-,故22222222222000000022()(122y c PB x y b a y by b y by a b b b =+-=-+-+=--++,0[,]y b b ∈-.由题意,当0y b =-时,2PB 最大,则32b b c -≤-,22b c ≥,222a c c -≥,2c c a =≤,2(0,2c ∈.12.设2ln1.01a =,ln1.02b =,1c -,则()A.a b c <<B.b c a <<C.b a c <<D.c a b <<答案:B 解析:设()ln(1)1f x x =+,则(0.02)b c f -=,易得1()1f x x '==+当0x ≥时,1x +=≥()0f x '≤.所以()f x 在[0,)+∞上单调递减,所以(0.02)(0)0f f <=,故b c <.再设()2ln(1)1g x x =++,则(0.01)a c g -=,易得2()21g x x '==+当02x ≤<时,1x ≥=+,所以()g x '在[0.2)上0≥.故()g x 在[0.2)上单调递增,所以(0.01)(0)0g g >=,故a c >.综上,a c b >>.二、填空题13.已知双曲线C :221(0)x y m m-=>的一条渐近线为0my +=,则C 的焦距为.答案:4解析:易知双曲线渐近线方程为by x a=±,由题意得2a m =,21b =,且一条渐近线方程为y x m=-,则有0m =(舍去),3m =,故焦距为24c =.14.已知向量(1,3)a = ,(3,4)b = ,若()a b b λ-⊥,则λ=.答案:35解析:由题意得()0a b b λ-⋅= ,即15250λ-=,解得35λ=.15.记ABC ∆的内角A ,B,C 的对边分别为a ,b ,c ,面积为,60B =︒,223a c ac +=,则b =.答案:解析:1sin24ABC S ac B ac ∆===4ac =,由余弦定理,222328b a c ac ac ac ac =+-=-==,所以b =.16.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为(写出符合要求的一组答案即可).答案:②⑤或③④解析:由高度可知,侧视图只能为②或③.侧视图为②,如图(1),平面PAC ⊥平面ABC ,PA PC ==,BA BC =,2AC =,俯视图为⑤.俯视图为③,如图(2),PA ⊥平面ABC ,1PA =,AC AB =,2BC =,俯视图为④.三、解答题17.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到产品该项指标数据如下:旧设备和新设备生产产品的该项指标的样本平均数分别记为x 和y,样本方差分别己为21s 和22S .(1)求x ,y,21s ,22s :(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果2212210s s y x +-≥,否则不认为有显著提高)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年新高考数学I卷真题解析56
2021年高考数学北京卷真题67
2021年高考数学北京卷真题解析71
2021年高考数学上海卷真题80
2021年高考数学上海卷真题解析83
2021年高考数学浙江卷真题91
2021年高考数学浙江卷真题解析96
2021年八省联考数学真题107
y= sin(x+
2
).故选B.
12
8. 在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于7的概率为( ).
4
A:7
9
答案:B.
B:23
32
C:9
32
D:2
9
解析:由题意记x∈(0,1), y∈(1,2),题目即求x+y >7的概率.绘图如下所示.
S阴1×1−1AM·AN1−1×3×323
23
位长度,得到函数y=sin(xπ)的图像,则f(x)=().
4
A:sin(x
7πxπ7ππ
−)B:sin(+)C:sin(2x−)D:sin(2x+)
212
答案:B.
212
π左移ππ
1212
1π
解析:逆向:y=sin(x−
)−−−−→3
y= sin(x+
12
横坐标变为原来的2倍
−−−−−−−−−−−−→
(1)当a=1时,求不等式f(x)⩾6的解集;
(2)若f(x)>−a,求a的取值范围.
2021 年普通高等学校招生全国统一考试
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.
(一)必考题:共5小题,每小题12分,共60分. 17. (12分)
某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新
设备各生产了10件产品,得到各件产品该项指标数据如下:
旧设备
9.8
10.3
10.0
10.2
9.9
9.8
10.0
10.1
10.2
9.7
新设备
中点,所以∠PBC1=6.
6.将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者.则不同的分配方案共有( ).
A:60种B:120种C:240种D:480种
答案:C.
解析:所求分配方案数为C2A4=240.
5 4
7.把函数y=f(x)图像上所有点的横坐标缩短到原来的1倍,纵坐标不变,再把所得曲线向右平移π个单
4.设函数f(x) =1−x,则下列函数中为奇函数的是( ).
1+x
A:f(x−1)−1B:f(x−1)+1C:f(x+1)−1D:f(x+1)+1
5.在正方体ABCD−A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为( ).
A:π
2
B:π
3
C:π
4
D:π
6
6.将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者.则不同的分配方案共有( ).
10.1
10.4
10.1
10.0
10.1
10.3
10.6
10.5
10.4
10.5
旧设备和新设备生产产品的该项指标的样本平均数分别记为x和y,样本方差分别记为s2和s2.
12
(1)求x, y, s2, s2;
1 2
s2+s2
(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y−x⩾2
2021年八省联考数学真题解析111
2021年1月中学生标准学术能力诊断性测试理科真题115
2021年1月中学生标准学术能力诊断性测试理科真题解析119
2021年1月中学生标准学术能力诊断性测试文科真题125
2021年1月中学生标准学术能力诊断性测试文科真题解析129
2021年3月中学生标准学术能力诊断性测试理科真题135
3.考试结束后,将本试卷和答题卡一并交回.
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求.1.设2(z+z)+3(z−z)=4+6i,则z=( ).
A:1−2iB:1+2iC:1+iD:1−i
答案:C.
解析:设z=a+bi,则z=a−bi, 2(z+z)+3(z−z)=4a+6bi=4+6i,所以a=1,b=1,所以z=1+i. 2.已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=( ).
22.【选修4−4:坐标系与参数方程】(10分)
在直角坐标系xOy中,⊙C的圆心为C(2,1),半径为1.
(1)写出⊙C的一个参数方程;
(2)过点F(4,1)作⊙C的两条切线.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.
23.【选修4−5:不等式选讲】(10分)已知函数f(x)=|x−a|+|x+3|.
A:表高×表距+表高B:表高×表距−表高
C:表高×表距+表距D:表高×表距−表距
表目距的差
表目距的差
B
AEHGC
(第9题图)
7
答案:A.
解析:连接DF交AB于M,则AB=AM+BM.
B
MDβF
β
AEHGC
记∠BDM=α,∠BFM=β,则MB−MB=MF−MD=DF.而tanβ=FG, tanα=ED.所以
设B是椭圆C:a2+b2=1(a> b >0)的上顶点若C上的任意一点P都满足|PB|2b则C的离
心率的取值范围是( ).
A:[
√2
,1)B:[
2
1,1)C:(0,
2
√21
]D:(0,]
22
12.设a= 2 ln 1.01, b= ln 1.02, c=√1.04−1,则( ).
A:a < b < cB:b < c < aC:b < a < cD:c < a < b
MB−MB=MB(1−1) =MB·(GC−EH) =MB·GC−EH.
故MB=ED·DF=表高×表距,所以高AB=表高×表距+表高.
GC−EH
表目距的差
表目距的差
A:p∧qB:¬p∧qC:p∧¬qD:¬(p∧q)
答案:A.
解析:p真,q真.故选A.
4.设函数f(x) =1−x,则下列函数中为奇函数的是( ).
1+x
A:f(x−1)−1B:f(x−1)+1C:f(x+1)−1D:f(x+1)+1
答案:B.
解析:f(x)=1+2关于(1,1)中心对称.
x+1
向右1个单位,向上1个单位后关于(0,0)中心对称.所以y=f(x−1)+1为奇函数.
A:∅B:SC:TD:Z
答案:C.
解析:s= 2n+ 1, n∈Z:
当n=2k, k∈Z时,S={s|s=4k+1, k∈Z};当n=2k+1, k∈Z时,S={s|s=4k+3, k∈Z}.
所以T⫋S,S∩T=T.故选C.
3.已知命题p:∃x∈R,sinx<1;命题q:∀x∈R,e|x|⩾1,则下列命题中为真命题的是( ).
2021年高考数学全国乙卷理科真题1
2021年高考数学全国乙卷理科真题解析5
2021年高考数学全国乙卷文科真题13
2021年高考数学全国乙卷文科真题解析17
2021年高考数学全国甲卷理科真题24
2021年高考数学全国甲卷理科真题解析29
2021年高考数学全国甲卷文科真题38
2021年高考数学全国甲卷文科真题解析43
5.在正方体ABCD−ABCD
中,P为BD
的中点,则直线PB与AD
D1C1
所成的角为( ).
A:π
2
1 1 1 1
111
A1
B:π
3C
C:π
4
答案:D.
D:π
6
AB
解析:如图,∠PBC1为直线PB与AD1所成角的平面角.
2021年高考数学全国乙卷理科真题解析6
易知△A1BC1
为正三角形,又P为A1C1
21
}的前n项积,已知+=2.
nnnn
Snbn
(1)证明:数列{bn}是等差数列;
(2)求{an}的通项公式.
2021年高考数学全国乙卷理科真题4
20. (12分)
设函数f(x)=ln(a−x),已知x=0是函数y=xf(x)的极值点.
(1)求a;
(2)设函数g(x) =x+f(x),证明:g(x)<1.
二、填空题:本题共4小题,每小题5分,共20分.
13.
x22
√,.
已知双曲线C:m−y
=1(m>0)的一条渐近线为
3x+my=0则C的焦距为
14.已知向量a=(1,3),b=(3,4),若(a−λb)⊥b,则λ=.
15.记△ABC的内角A,B,C的对边分别为a,b,c,面积为√3,B=60◦,a2+c2=3ac,则b=.