电路的暂态分析
第四章电路的暂态响应
uL(0+) i1(0+)
i2(0+)
Us
12V
R1 4Ω
R2 6Ω
i1(0 )R1 Us uL (0 ) 0
uL (0 ) 4.8V
2)求S闭合后的各稳态值
S闭合达到稳态时,电感相当 于短路,其等效电路图如图所 示
uL() 0V
i1()
US R1
3A
i2 ()
US R2
2A
iL() i1() i2() 5A
R2 6Ω
iL
i1
Us
12V
R1 4Ω
1)求S闭合后的各初始值 由换路定律可得: il (0 ) il (0 ) 3A
L iL
S
uL
i1
i2
Us
12V
R1 4Ω
R2 6Ω
等效一个电流源,等效电路图如下图
i1(0 )
R2 R1 R2
iL (0 )
6 4
6
3
1.8A
iL(0+)
i2 (0 ) 1.2A 由KVL,可知
+ uL – R
iC
+ R IS –
0+电路
uL(0+)= - RIS
iC ( 0
)
Is
RI S R
0
例4
S闭合前电路已处于稳态,试确定S
闭合后电压uL和电流iL、 i1 、 i2的初始值和稳态值。
【解】开关S闭合之前
il
(0
)
US R1
12V 4
3A
L iL
S
uL
i1
i2
Us
12V
R1 4Ω
电路的暂态分析
对未来研究的建议
1
进一步研究不同电路元件和结构对暂态过程的影 响,探索新的电路元件和结构,以提高电路的性 能和稳定性。
2
结合现代信息技术和人工智能技术,开发更加高 效、智能的电路暂态分析方法和工具,提高分析 的准确性和效率。
3
加强与相关领域的合作与交流,推动电路暂态分 析在其他领域的应用和发展,促进相关领域的科 技进步。
在电子系统中的应用
01
在电子系统中,电路的暂态分析 主要用于信号处理、高速数字电 路等领域。
02
通过暂态分析,可以研究信号的 传输、放大、滤波等过程中的暂 态行为,优化电路的性能,提高 信号的传输质量和稳定性。
在控制工程中的应用
在控制工程中,电路的暂态分析主要用于研究控制系统的 动态特性和稳定性。
电路的暂态分析
目 录
• 引言 • 电路的暂态过程 • 电路的暂态分析方法 • 电路暂态分析的应用 • 电路暂态分析的挑战与展望 • 结论
01 引言
什么是暂态分析
暂态分析是指对电路在某一特定时刻的电流和电压进行计算和分析的过程。在电 路中,由于开关的闭合或断开,或者由于电路中元件的参数变化,可能会引起电 流和电压的瞬态变化。这些瞬态变化通常只在一段时间内存在,因此被称为暂态 。
04 电路暂态分析的应用
在电力系统中的应用
暂态分析在电力系统中主要用于研究 电力系统中的短路故障、雷击、开关 操作等引起的暂态过程,以确保电力 系统的稳定性和可靠性。
通过暂态分析,可以预测和防止电力 系统中的暂态过电压、电流冲击等对 设备造成损坏的情况,同时也可以优 化保护装置的动作时间和性能。
暂态过程的特点
01
02
03
04
非线性
电路的暂态分析全篇
解:(1)
由t
=
0-电路求
uC(0–)、iL
t=
(0–)
0
-等效电路
换路前电路已处于稳态:电容元件视为开路;
由t = 0-电路可求得: 电感元件视为短路。
iL(0 )
R1 R1 R3 R
U R1 R3
4
4
4
2
U 4
4
1A
R1 R3
44
例2:
R
+ 2
U
_
8V
i1
t =0 ic
R1 4
uL(0 ) u1(0 ) U (uL(0 ) 0) u2(0 ) 0
例2:换路前电路处稳态。
试求图示电路中各个电压和电流的初始值。
R
R
+ 2
U
_
8V
i1
t =0 iC
R1 4
u+_C
R2 iL R3 + 2 i1
4
4
U
+ u_ L
_ 8V
iC
R2 iL R3
4 4
R41 u+_C C
+ u_ L L
换路: 电路状态的改变。如: 电路接通、切断、 短路、电压改变或参数改变
产生暂态过程的原因: 由于物体所具有的能量不能跃变而造成
在换路瞬间储能元件的能量也不能跃变
∵
C
储能:WC
1 2
CuC2
∵
L储能:WL
1 2
LiL2
\ uC 不能突变
\ i L不 能 突 变
4.产生过渡过程的电路
电阻电路
K
+ E
电感电路:iL (0 ) iL (0 )
电路的暂态分析
电路的暂态分析电路的暂态分析是对电路从一个稳定状态变化到另一个稳定状态时中间经受的过渡状态的分析。
电路中产生暂态过程的缘由是由于电路的接通、断开、短路、电路参数转变等——即换路时,储能元件的能量不能跃变而产生的。
(1)换路定则与电压、电流初始值的确定换路定则用来确定暂态过程中电压、电流的初始值,其理论依据是能量不能跃变。
在换路瞬间储能元件的能量不能跃变,即电感元件的储能不能跃变电容元件的储能不能跃变否则将使功率达到无穷大设t=0为换路瞬间,而以t=0–表示换路前的终了瞬间,t=0+表示换路后的初始瞬间。
则换路定则用公式表示为:电压与电流初始值的确定* 作出t=0–的等效电路,在此电路中,求出和。
* 由换路定则得到和。
* 作出t=0+的等效电路换路前,若储能元件没有储能,则在t=0+的等效电路中,可将电容短路,而将电感元件开路;若储能元件储有能量,则在t=0+的等效电路中,电容可用电压为的抱负电压源代替,电感元件则可用电流为的抱负电流源代替。
*在t=0+的等效电路中,求出待求电压和电流的初始值。
(2)RC电路的响应在t=0时将开关S合到1的位置依据KVL,t≥0 时电路的微分方程为设换路前电容元件已有储能,即,解上述微分方程,得t=RC单位是秒,所以称它为RC电路的时间常数。
这种由外加激励和初始储能共同作用引起的响应,称为RC 电路的全响应。
若换路前电容元件没有储能,即,则初始储能为零,由外加电源产生的响应,称为RC电路的零状态响应。
uC随时间变化曲线时间常数t=RC,当t=t时,uC= 63.2%UuC由初始值零按指数规律向稳态值增长,电路中其他各量要详细分析才能确定。
若在t=0 时将开关S由1合到2的位置,如下图。
这时电路中外加激励为零,电路的响应由电容的初始储能引起的,故常称为RC 电路的零输入响应。
电容两端的电压uC由初始值U0向稳态值零衰减,这是电容的放电过程,其随时间变化表达式为在零输入响应电路中各电量均由初始值按指数规律向稳态值零衰减。
《电工电子》第3章电路的暂态分析
预测直流电路中的故障
利用暂态分析可以预测直流电路中的短路、断路等故障,从而及时采取维修措施,避免故障扩大 。
优化直流电路的控制策略
通过暂态分析可以了解直流电路在不同控制策略下的响应特性,从而选择最优的控制策略,提高 电路的控制精度和稳定性。
在暂态过程中,电阻的电压和电流会发生变 化,但电阻本身不会储存能量,因此电阻的 暂态响应是被动的,取决于外部电路的变化 。
电阻的阻值决定了电路中电流的大小, 因此在暂态过程中,电阻的阻值会影 响电流的变化速率。
电容的暂态特性
电容的充电和放电过程
当电容两端的电压发生变化时,电容会进行充电或放电, 这个过程需要一定的时间,因此电容的暂态过程相对较长。
稳态过程
电路在稳定状态下的工作过程, 此时电路中各处的电压、电流等 物理量均保持恒定或呈周期性变 化。
暂态分析的重要性
01
02
03
理解电路行为
通过暂态分析,可以深入 了解电路在开关操作、电 源变化等条件下的行为特 性。
优化电路设计
暂态分析有助于优化电路 设计,提高电路的稳定性 和可靠性,减少不必要的 能量损失和电磁干扰。
分析仿真与实验结果之间存在的误差,探 讨误差产生的原因,如元件参数不准确、 测量误差等。
改进建议
总结与反思
根据误差分析结果,提出相应的改进建议 ,如优化仿真模型、提高测量精度等,以 提高暂态分析的准确性。
对整个暂态分析的仿真与实验验证过程进行 总结与反思,总结经验教训,为后续的电路 设计与分析提供参考。
阻尼比与振荡性质
阻尼比是描述振荡衰减快慢的参数。根据阻尼比的大小,二阶电路的振荡可分为过阻尼、 临界阻尼和欠阻尼三种情况。在欠阻尼情况下,电路将呈现持续的振荡现象。
电路的暂态分析
C
5μF
2
3
i1(t) i2 iC
e1.7105t 2.5e1.7105t
1.5 e1.7105 t A
第2章 电路的暂态分析
[例3]
R1
S
图示电路已稳定, E
R2
在 t = 0 时将开关 S 闭合,
且uC(0-)=0。 试求: 1. S 闭合瞬间( t = 0+ )各支 路的电流和各元件的电压;
uC / V iL / A
4
1
4
1
iC / A uL / V
00
1 11
3
3
换路瞬间,uC、iL 不能跃变,但 iC、uL可以跃变。
第2章 电路的暂态分析
2.5 一阶电路暂态分析的三要素法
一阶电路:凡是含有一个储能元件或经等效简化 后含有一个储能元件的线性电路,在进行暂态分析 时,所列出的微分方程都是一阶微分方程式。
R0为换路后的电路除去电源和储能元件后,在储能元 件两端所求得的无源二端网络的等效电阻。
t=0 S R1
R1
+
U
R2
R3
-
C
R2
R3
R0
R0 (R1 // R2 ) R3
第2章 电路的暂态分析
例1:电路如图,t=0时合上开关S,合S前电路已处于
稳态。试求电容电压 uc和电流 i2、iC。
t=0 S
第2章 电路的暂态分析
用三要素法求 iC
t=0 S
9mA
R 6k
uC+-
iC
C 2F
i2
3k 9mA 6k
iC (0 )
+- 54 V3k
iC iC () iC (0 ) iC () et
第4章 电路的暂态分析
注:换路定则仅用于换路瞬间来确定暂态过程中 uC、 iL初始值。
4.1.2 换路定则
2. 初始值的确定
暂态过程期间,电路中电压、电流的变化开 始于换路后瞬间的初始值,即t=0+时刻的值,终 止于达到新稳态时的稳定值。因此分析电压、电 流的初始值是必要的。确定电路中电压、电流的 初始值,换路定则是重要依据。电路中各处的电 压和电流的初始值记为 f (0+)。
4.1 暂态过程与换路定则
电路的暂态过程一般比较短暂,但它的作用和影响却十分 重要。
一方面,我们要充分利用电路的暂态过程来实现振荡信号 的产生、信号波形的改善和变换、电子继电器的延时动作等;
另一方面,又要防止电路在暂态过程中可能产生的比稳态 时大得多的电压或电流(即所谓的过电压或过电流)现象。
过电压可能会击穿电气设备的绝缘,从而影响到设备的安 全运行;过电流可能会产生过大的机械力或引起电气设备和器 件的局部过热,从而使其遭受机械损坏或热损坏,甚至产生人 身安全事故。
开关S断开,试求换路后电路中各电量的初始值 。
(b) t= 0-时的等效电路 (a)
解:因为t=0-时电路已处于稳态,则电感元 件已储满能量,即uL(0-)= 0 V,电容元件被 开关S短接而未储能,即uC(0-)= 0 V。作出t= 0-时的等效电路如图 (b)所示。
例: 电路如图(a)所示,换路前电路已处于稳态。在t=0时
4.1 暂态过程与换路定则
前面各章讨论的线性电路中,当电源电压(激 励)为恒定值或作周期性变化时,电路中各部分电 压或电流(响应)也是恒定或按周期性规律变化, 即电路中响应与激励的变化规律完全相同,称电路 所处的这种工作状态为稳定状态,简称稳态。
电路的暂态分析
电路的暂态分析电路的暂态分析指的是对电路在瞬间输入或变化时的瞬态响应进行分析。
在电路设计、故障诊断等领域都有着广泛的应用。
本文将从理论模型、暂态响应的特点以及常见的分析方法三个方面来介绍电路的暂态分析。
理论模型在进行电路的暂态分析前,需要先建立电路的理论模型。
这包括对电路的电学特性进行建模以及对电路元件的特性进行分析。
电学特性模型电路的电学特性主要包括电阻、电容、电感等基本元件的特性。
其中,电阻和电容的特性模型比较简单,可以用欧姆定律和电容充放电公式进行描述。
而对于电感元件,需要利用基尔霍夫电压定律以及利用长度为l的线圈的感性L和匝数n之间的关系公式来进行描述。
在建立电路理论模型时,还需要考虑电源特性以及信号源电压的特性。
其中,电源特性可以用理想电压源或者理想电流源进行模拟;而对于实际应用中的非理想电源,需要通过实验或者仿真获取其精确的电源特性。
元件特性分析在进行电路暂态分析时,还需要考虑不同元件的特性。
例如,对于电容元件,如果其充放电速度过快,可能会导致电容器击穿或者损坏。
而对于电感元件,由于其自身存在的电感作用,可能会对电路的瞬态响应产生影响。
因此,在电路模型建立时,需要充分考虑每个元件的特性,以便更准确地描述和分析电路。
暂态响应的特点对于电路来说,其暂态响应有着以下几个特点:瞬时响应在电路遭受瞬间输入或变化时,电路会出现瞬时响应。
在瞬间输入或变化后,电路各元件的电压和电流瞬间变化,并在一定时间内达到最终稳定状态。
频率响应与频率响应不同的是,瞬态响应表示电路在瞬间输入或变化后的响应。
在瞬间输入或变化后,电路会出现瞬变,一般在几个时间常数内达到最终稳态。
这个过程可以看做是一个低通滤波器,对于高频信号的衰减比较快。
强迫响应强迫响应是指电路的强制响应,是由于电路中有源元件的作用产生的响应。
强迫响应是由电路中的输入信号和有源元件共同确定的。
常见的分析方法在进行电路暂态响应的分析时,有多种方法可供选择。
第三章 电路的暂态分析
注意:这样一个高压将使 电压表损坏,所以直流电 压表不宜固定连接在电感 uV (0 ) RViL (0 ) 2500V 线圈两端。
3.3.2
RL电路接通直流电源
假设在开关合上前,线圈 中未储有能量;在t=0时, 将开关S合上,与直流电 源接通。因为电感中的电 流不能突变 i L (0 ) i L (0 ) 0
3.1电路暂态的基本概念及换路定则
3.1.1电路的稳态与暂态
1、稳态:
(对直流电路)电流和电压是恒定的, (对交流电路)随t按周期性变化的
2、换路:电路状态的变。
如电路接通、断开、改接及元件参数改 变等。
3、暂态:
旧稳态
换路
t(暂态)
新稳态
“稳态”与 “暂态”的概念示例:
S R R
+ _
U
uC
(t 0)
RC放电电路的特点:
uC、uR、i均按指数规律衰减,衰减的速度完
全由电路的参数τ决定
的物理意义: 决定电路过渡过程变化的快慢。
S + _U R C
关于时间常数的讨论
i
uC
uC (t ) U Ue U Ue
t t
RC
RC
uC
t
u C (t ) U Ue
解: ① 开关S在t=0时刻断开,这时电容C原来 所储存的电能通过电阻 R2 放电,因此
uC Ae
t RC
(t 0)
根据换路定则
R2 uC (0 ) uC (0 ) U R1 R2 100 120V=100V 20 100
所以得
A uC (0 ) 100
因电阻与电容串联,所以 t=0时,电阻两端的电压为
第3章 电路的暂态分析
+
S uR uC
duC RC uC U S dt
返回
2 . 解微分方程
RCduC(t)/dt+uC(t) = US ∵ uC(0) = 0 uC(∞) = US
- t / RC uC(t)=US(1-e )
令τ=RC uC(t)=US(1-e -t/τ) i(t)=CduC(t)/dt=(US/R) e-t/τ uR(t)= i(t) R =US e-t/τ
返回
二、求解一阶电路的三要素法 用f (t)表示电路中的某一元件的电压 或电流, f (∞)表示稳态值, f (0+)表示初 始值,τ为时间常数。
返回
例3、换路前电路已处于稳态, t=0时S断开, 求uC(0+ )、uL(0+)、uR2(0+)、iC(0+ )、iL(0+ )。 S 解: iL ∵ t = 0 ,电路稳态 - R1 iC L uL C 开路,L短路, uC + iL(0- ) =US/(R1+R2) C R2 US uC(0- )= iL(0- ) R2 -
返回
例、已知R1=R2 =10Ω,US=80V,C=10μF, t=0开关S1闭合,0.1ms后,再将S2断开,求 uC的变化规律。(C上初始能量为零) i S1 解: (2) t> (1) 0 < 0.1ms t < 0.1ms uR )=0 uu (t )= uu (C t (0- )=50.56V R C(0 +)=
习题
通往天堂的班车已到站, 恭喜你!
题解
习题
i1 R1 iC
S
解: ∵t =0-,电路稳态。 C 相当于开路, i1(0- )= i2(0- )=US/(R1+R2) = 2mA uC(0- )= i2(0- ) R2= 6V
《电工电子技术》全套课件第2章电路的暂态分析
04
电路暂态的实验研究
实验目的和实验原理
实验目的
通过实验研究电路暂态过程,加深对电路暂态分析的理解,掌握暂态分析的基本 方法。
实验原理
电路暂态分析是研究电路中非线性元件的动态特性和电路暂态过程的学科。通过 实验,可以观察电路中电压、电流的变化过程,了解暂态分析的基本原理和方法 。
实验步骤和实验结果分析
电机控制
在电机控制中,暂态分析可以帮助理 解电机的启动、停止和调速过程,从 而优化电机的控制策略。
在电机控制中的应用
伺服控制
伺服控制系统需要对电机的位置和速度进行精确控制,通过暂态分析可以更好 地理解和优化控制算法。
变频器
在变频器中,暂态分析可以帮助理解电机的频率变化过程,从而优化变频器的 控制效果。
《电工电子技术》全套课件第 2章电路的暂态分析
目
CONTENCT
录
• 电路暂态的基本概念 • 电路暂态的分析方法 • 电路暂态的应用 • 电路暂态的实验研究 • 电路暂态的工程实例
01
电路暂态的基本概念
电路暂态的定义
电路暂态
在电路中,当开关动作或输入信号发生变化时,电路从一个稳定 状态过渡到另一个稳定状态的过程,这个过程称为电路的暂态。
80%
5. 数据分析
对采集到的数据进行处理和分析 ,绘制图表,得出结论。
实验步骤和实验结果分析
1. 电压、电流波形分析
01
根据采集到的电压、电流波形,分析暂态过程中电压、电流的
变化规律。
2. 参数影响分析
02
改变元件参数,观察暂态过程的变化,分析元件参数对暂态过
程的影响。
3. 近似计算分析
03
利用近似计算方法,如三要素法等,对实验数据进行处理和分
《电路与电工技术》第4章 电路的暂态分析
4.1 电路稳态和暂态的基本概念 4.2 换路定律及初始值的确定 4.3 RC电路的暂态分析 4.4 RL电路的暂态分析 4.5 求解一阶电路的三要素法 4.6 LC振荡电路 4.7 应用举例
第4章 电路的暂态分析
本章内容提要:
本章主要介绍动态电路的基本概念,并介 绍了RC、RL的时域分析过程和方法,及求解一 阶电路的三要素法。
的变量,获得电路的电压、电流值。
电容C指的是在一定的电位差下储存的电荷量,根据电容特性可
知,在有限的电容电流下,电容电量不能跳变。
因此,在任意时间t,电荷与电流的关系为:
qt
qt0
t
t0
iC
d
电容电压则为:
uC
t
qt
C
qt0
C
1 C
t t0
iC
d
uC t0
1 C
t t0
iC
d
4.2 换路定律及初始值的确定
4.1 电路稳态和暂态的基本概念
在前几章的学习中,若电路中涉及到的元件都是电阻 特性时,电源一旦接通或断开,电压电流马上产生跳变, 电路在此瞬间直到下一次结构或参数变化,保持同一状 态不再改变,这种状态称为稳定状态,即稳态。
当电路中含有储能元件如电感、电容元件,且电路结 构或参数改变时,由于它们的记忆惯性,储能元件的能 量不能突变,也即电容电压和电感电流不能跃变,其值 与初值有关,电路需逐渐稳定,从旧的稳定状态达到新 的稳定状态需要持续一段时间,即存在一个暂态的过程, 这种过渡过程定义为动态过程。而电路结构或参数的突 然改变,如电闸的开、关,称为换路,一般默认在t=0时 刻发生。
4.1 电路稳态和暂态的基本概念
开关S在t=0时刻闭合,假设电容元件C原来没有能量储存,试分析下 图电路在换路前后的状态。
电工技术-电路的暂态分析
u'C (t) = uc(∞) = U
u"C (t) = AePt = [uC (0+ ) − uC (∞)]e− t RC
−t
= −Ue RC
37
uC (t) = u'C + u"C
−t
= uC (∞) + [uC (0+ ) − uC (∞)]e RC
−t
= U − Ue RC
= uC (∞)(1 − e−t /τ ) uC t
定义: τ = − 1 = RC
P
R: 欧姆
τ 称为时间常数
单位
C: 法拉
τ:秒38
5.2.3 RC电路的全响应
u ( 零状态响应 +零输入响应) i
U
ui
R C
t T
uC
u C在 i加入 前未充电
t
零状态 零输入 响应 响应
39
例 已知:开关 K 原处于闭合状态,t=0时打开。
求: u C (t )
2k
3k
E + R1 1µ
_ 10V C
R2
u C K t =0
uC (0− )
=
R2 R1 + R2
E
=
6
V
40
解: 全响应=零状态响应+零输入响应
2kΩ
3kΩ
E + R1 1µ
_ 10V C
R2
uC K
零状态 2kΩ
E
+ R1 _ 10V
1μ
C
u C′
+
零输入
2kΩ
R1 1μ uC′′
= 20 mA
电工学 第3章 电路的暂态分析
式中,A=-U 是方程的积分常数;
p
1 RC
是方程的特征根;
=RC 是电路的时间常数,
具有时间的量纲。
63.2%U
O
t 电容电压uC随时间的变化曲线。
3·3 RC电路的响应
3·3·1 RC电路的零状态响应
uC=U(1-e-t/ )
uC U 63.2%U
当 t= 时, uC=U(1-e-1)=0.632U,即从 t=0 经过一个 的时间,uC 增长到稳态值
程中电能转换为磁能,即电感元件从电源取用能量;当电流减小
时,磁场能量减小,磁能转换为电能,即电感元件向电源放还能
量。可见电感元件不消耗能量,是储能元件。
3·1 电阻元件、电感元件与电容元件
3·1·3 电容元件
i
图所示是电容元件,其参数 C=q/u,称为电容。
电容的单位: 法[拉](F),微法(F),皮法(pF)
U 的63.2%。
从理论上讲,电路只有经过 t= 的时间 才能达到稳态。但是由于指数曲线开始变
O
t
时间常数 愈大,
uC增长愈慢。 因此,改变电路
比化较快,而后逐渐缓慢,所以实际上经
过t=5 的时间,就可认为到达稳态值了。
t
2
3
4
5
uC 0.632U 0.865U 0.950U 0.982U 0.993U
从t=0- 到t=0+ 瞬间,电感元件中的电流和电容元件上的电压不 能跃变,这称为换路定则,如用公式表示,则为
iL(0-)=iL(0+) uC(0-)=uC(0+)
换路定则仅适用于换路瞬间,可根据它来确定t=0+ 时电路中电 压和电流之值,即暂态过程的初始值。
电路的暂态分析_电路分析基础
2021/4/4
返节目录
2
电路分析基础
8.1 换路定律
学习目标:了解暂态分析中的一些基本概念;理解
“换路”的含义;熟悉换路定律的内容及 理解其内涵,初步掌握其应用。
8.1.1 基本概念 1、状态变量:代表物体所处状态的可变化量称为状态
变量。如电感元件的iL及电容元件的uC。
2、换路:引起电路工作状态变化的各种因素。如:电
RC过渡过程中的响应规律曲线
iCuC
US
0.368US
uC
0τ
iC
iC(0+)
RC过渡过程响应的波 形图告诉我们:它们都是 按指数规律变化,其中电 压在横轴上方,电流在横 t 轴下方,说明二者方向上 非关联,电容放电电流 为:
iC
C
du C dt
t
C U Se RC dt
uC
(0)
e
t RC
R
2021/4/4
i R1
+
10k 40k
10V
S
R2
-
根据换路前电路求uC(0+)
+
-uC
uC
(0)
uC
(0)
uR2
(0)
10
40 10 40
8V
iC
画出t=0+等效电路图如下:
根据t=0+等效电路可 求得iC(0+)为:
iC
(0)
US
uC R1
(0)
10 10
8
0.2mA
R1
ic(0+)
+
10k 40k
10V
本定律确定其它电量的初始值。
2021/4/4
返节目录
电路的暂态分析_换路定则与电压、电流初始值的确定
iC(0 )
uC(0 ) 8 2mA
R2
4
3.1 换路定则与电压电流初始值的确定
S (t=0) R1 iC
+ Us−
R2
C
+ −uC
R1 iC(0+)
+ Us−
R2 C −+uC(0+)
t=0+时的等效电路
第三章 电路的暂态分析
第三章 电路的暂态分析
1. 稳态与暂态 稳态:电压、电流不随时间变化或周期性重复变化。
过渡过程:电路由一个稳态过渡到另一个稳态需要经历的 中间过程。
暂态:在电路中,过渡过程往往非常短暂,故也称为暂 态过程,简称暂态。
第三章 电路的暂态分析
3.1 换路定则与电压电流初始值的确定
2S R i
uC
Us−+
从t=0-到t=0+的瞬间,电容的电压和电感的电流不会发生
跃变,即:
uC (0 ) uC (0 )
iL (0 ) iL (0 )
第三章 电路的暂态分析
3.1 换路定则与电压电流初始值的确定
注意:
(1)只有uC 、 iL受换路定则的约束,电路中其他电 压、电流都可能发生跃变。
(2)换路定则仅适用于换路瞬间。
3.1 换路定则与电压电流初始值的确定
iC(0 ) 0 ) iC(0 ) ?
+
Us −
iC (0 ) 0 A
R1 R2
iC(0−)
+ uC(0−)
−
第三章 电路的暂态分析
3.1 换路定则与电压电流初始值的确定
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电路的暂态分析(总18页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第8章电路的暂态分析含有动态元件L和C的线性电路,当电路发生换路时,由于动态元件上的能量不能发生跃变,电路从原来的一种相对稳态过渡到另一种相对稳态需要一定的时间,在这段时间内电路中所发生的物理过程称为暂态,揭示暂态过程中响应的规律称为暂态分析。
本章的学习重点:暂态、稳态、换路等基本概念;换路定律及其一阶电路响应初始值的求解;零输入响应、零状态响应及全响应的分析过程;一阶电路的三要素法;阶跃响应。
换路定律1、学习指导(1)基本概念从一种稳定状态过渡到另一种稳定状态需要一定的时间,在这一定的时间内所发生的物理过程称为暂态;在含有动态元件的电路中,当电路参数发生变化或开关动作等能引起的电路响应发生变化的现象称为换路;代表物体所处状态的可变化量称为状态变量,如i L和u C就是状态变量,状态变量的大小显示了储能元件上能量储存的状态。
(2)基本定律换路定律是暂态分析中的一条重要基本规律,其内容为:在电路发生换路后的一瞬间,电感元件上通过的电流i L和电容元件的极间电压u C,都应保持换路前一瞬间的原有值不变。
此规律揭示了能量不能跃变的事实。
(3)换路定律及其响应初始值的求解一阶电路响应初始值的求解步骤一般如下。
①根据换路前一瞬间的电路及换路定律求出动态元件上响应的初始值。
②根据动态元件初始值的情况画出t=0+时刻的等效电路图:当i L(0+)=0时,电感元件在图中相当于开路;若i L(0+)≠0时,电感元件在图中相当于数值等于i L(0+)的恒流源;当u C(0+)=0时,电容元件在图中相当于短路;若u C(0+)≠0,则电容元件在图中相当于数值等于105106u C (0+)的恒压源。
根据t = 0+时的等效电路图,求出各待求响应的初始值。
2、学习检验结果解析(1)何谓暂态何谓稳态您能说出多少实际生活中存在的过渡过程现象解析:在含有动态元件电容的电路中,电容未充电,原始储能为零时是一种稳态,电容充电完毕,储能等于某一数值时也是一种稳态。
电容由原始储能为零开始充电,直至充电完毕,使得储存电场能量达到某一数值时所经历的物理过程称为暂态。
水是一种稳态,冰是一种稳态,水凝结成冰所经历的物理过程和冰溶化成水所经历的物理过程都是暂态;火车在站内静止时是一种稳态,火车加速至速度为v 时也是一种稳态,从静止加速到速度v 中间所经历的加速过程是暂态……。
(2)从能量的角度看,暂态分析研究问题的实质是什么解析:含有动态元件的电路在换路时才会出现暂态过程,这是由于L 和C 是储能元件,而储能就必然对应一个吸收与放出能量的过程,即储存和放出能量都是需要时间的。
在L 和C 是上能量的建立和消失是不能跃变的。
因此,暂态分析研究问题的实质实际上是为了寻求储能元件在能量发生变化时所遵循的规律。
掌握了这些规律,人们才可能在实际当中尽量缩短暂态过程经历的时间,最大限度地减少暂态过程中可能带来的危害。
(3)何谓换路换路定律阐述问题的实质是什么换路定律是否也适用于暂态电路中的电阻元件解析:在含有动态元件的电路中,当元件参数发生变化、电路或电路某处接通和断开或短路时,只要能引起电路响应发生变化的所有情况,统称为电路发生了换路。
换路定律阐述问题的实质是动态元件所储存的能量不能发生跃变,必须经历一定的时间,在这一定的时间(暂态过程)内,能量的变化必须遵循一定的规律,暂态分析就是研究和认识这些基本规律。
换路定律不适合暂态电路中的电阻元件,因为电阻元件不是储能元件。
(4)动态电路中,在什么情况下电感L 相当于短路电容C 相当于开路又在什么情况下,L 相当于一个恒流源C 相当于一个恒压源解析:当动态电路换路后重新达到稳态时,电感L 中通过的电流不再发生变化,由公式dtdiLu =L 可知,L 两端的自感电压此时为零,在这种情况下L 相当于短路;同理,电容C 两端的电压重新达到稳态后,由dtduC i C C =可知,电容支路中电流为零,这种情况下电容C 相当于开路。
求动态电路中响应的初始值时,如果107L 在t=0+时已有原始储能,即电流在换路瞬间不为零,根据换路定律)0()0(L L -+=i i 可知,此时电感L 相当于一个恒流源;同理,如果C 在t=0+时已有原始储能,即它两端的电压在换路瞬间不为零,根据换路定律)0()0(C C -+=u u 可知,此时电容C 相当于一个恒压源。
一阶电路的暂态分析1、学习指导(1)一阶电路的零输入响应外激励为零,仅在动态元件的原始储能下所引起的电路响应称为零输入响应。
(2)一阶电路的零状态响应动态元件上的原始储能为零,仅在外激励下所引起电路响应称为零状态响应。
(3)一阶电路的全响应电路既有外激励,动态元件上又有原始能量,这种情况下引起的电路响应称为全响应。
(4)电路响应求解中需要注意的问题在介绍了初始值求解方法的基础上,本章对一阶电路的零输入响应、零状态响应及全响应进行了经典分析,其中重点阐述了一阶电路时间常数的概念:一阶电路的时间常数τ,在数值上等于响应经历了总变化的%所需用的时间,讨论中一般认为,暂态过程经过3~5τ的时间就基本结束了,因此时间常数τ反映了暂态过程进行的快慢程度。
对零输入响应而言,不需求解响应的稳态值,只要求出响应的初始值和时间常数即可;对零状态响应而言,只需求出响应的稳态值和时间常数即可;若动态电路既有外激励,又有原始储能的情况下,这时的电路响应称为全响应。
全响应一般有两种分析方法:① 全响应=零状态响应+零输入响应 ② 全响应=稳态分量+暂态分量根据题目要求的不同及侧重点的不同,我们可以选择上述两种求解方法中合适的一种方法进行动态电路全响应的分析,在分析中应牢固掌握一阶电路响应的指数规律,并且注意理解响应i C 和u L 任何情况下都只有暂态分量而没有稳态分量的问题。
(5)一阶电路的三要素法108在学习一阶电路经典法的基础上,引入了一阶电路简化的分析计算方法——三要素法。
所谓的三要素法,就是对待求的电路响应求出其初始值、稳态值及时间常数τ,然后代入公式τtef f f t f -+∞-+∞=)]()0([)()(应用三要素法求解一阶电路的响应,关键在三要素(响应的初始值f (0+)、响应的稳态值f (∞)和一阶电路中的时间常数τ)的正确求解,注意动态元件状态变量的初始值求解应根据换路前一瞬间的电路进行;其它响应的初始值求解则要根据换路后一瞬间的等效电路进行;响应稳态值的求解要根据换路后重新达到稳态时的等效电路进行;时间常数的求解要在稳态时的电路基础上除源,然后将动态元件断开后求出其无源二端网络的入端电阻R ,代入时间常数的计算公式中即可。
在求解在三要素的过程中,注意各种情况下等效电路的正确性是解题的关键。
2、学习检验结果解析(1)一阶电路的时间常数τ由什么来决定其物理意义是什么解析:一阶电路中时间常数τ仅由一阶电路中的电路参数R 、L 、C 来决定,与状态变量和激励无关。
时常常数τ决定了状态变化的快慢程度,在暂态分析中起关键作用。
时间常数τ实际上反映了响应经历了过渡过程的%所需要的时间。
(2)一阶电路响应的规律是什么电容元件上通过的电流和电感元件两端的自感电压有无稳态值为什么解析:一阶电路响应的规律是指数规律。
电容元件上通过的电流不是充电电流就是放电电流,即只存在于充、放电的暂态过程中;电感元件两端的电压只有在通过电感元件的电流发生变化时才产生,即也只存在于暂态过程中,因此电容元件上通过的电流和电感元件两端的自感电压都没有稳态值。
(3)能否说一阶电路响应的暂态分量等于它的零输入响应稳态分量等于它的零状态响应为什么解析:这样的说法是不正确的。
因为零状态响应中一般均包括有暂态分量和稳态分量。
(4)一阶电路的零输入响应规律如何零状态响应规律又如何全响应的规律呢 解析:一阶电路无论是零输入响应还是零状态响应以及全响应,响应的规律均为指数规律。
(5)你能正确画出一阶电路t =0-和t =∞时的等效电路图吗图中动态元件如何处理109解析:一阶电路在t =0时的等效电路图中,动态元件L 如果没有原始储能,按开路处理,如果有原始储能,则用一个恒流源i L (0+)代替;动态元件C 如果没有原始储能,按短路处理,如果有原始储能,则用一个恒压源u C (0+)代替。
一阶电路在t =∞时的等效电路图中,动态元件L 按短路处理;C 按开路处理。
(6)何谓一阶电路的三要素试述其物理意义。
试述三要素法中的几个重要环节应如何掌握解析:一阶电路的三要素是指:响应的初始值f (0+)、响应的稳态值f (∞)和时间常数τ。
初始值反映了响应在换路前一瞬间的数值;稳态值反映了响应换路后重新达到稳态时响应的数值;时间常数τ则反映了响应经历了过渡过程的%所需要的时间。
在应用三要素法求解电路响应时应注意:求响应的初始值时:① 先由换路前的电路求出动态元件的u C (0-)或i L (0-),然后根据换路定律求出它们的初始值;② 根据动态元件的初始值对动态元件加以处理,画出其t=0+的等效电路图;③ 根据t=0+的等效电路图,用前面学过的电路分析方法求出其它各响应的初始值。
求响应的稳态值时:① 画出动态电路稳态时的等效电路。
在这个等效电路中,电容元件开路处理,电感元件短路处理;② 根据稳态时的等效电路应用前面所学过的电路分析方法求出各响应的稳态值。
求时间常数τ时:① RC 一阶电路的时间常数τ=RC ;RC 一阶电路的时间常数RL=τ;② 求解时间常数的公式中,其电阻R 应为断开动态元件后,由断开两端所呈现的戴维南等效电路的等效内阻。
(7)一阶电路中的0、0-、0+这三个时刻有何区别t =∞是个什么概念它们的实质各是什么在具体分析时如何取值解析:换路发生在0时刻; 0-是换路前一瞬间的时刻,和0的时间间隔无限趋近于0但不等于0,0+则是换路后一瞬间的时刻,和0的时间间隔也无限趋近于0且不等于0。
理论上讲过渡过程完成需要无限长时间,所以把过渡过程结束时的稳态值用f (∞)表示,t =∞的概念就是过渡过程结束。
110一阶电路的阶跃响应1、学习指导 (1)阶跃响应当电路中的激励是阶跃形式时,在电路中引起的响应称为阶跃响应。
(2)阶跃函数单位阶跃函数ε(t )属于奇异函数,在学习时必须辨明ε(t )和延时阶跃函数ε(t-t 0)的差别以及理解一个函数f (t )乘以一个阶跃函数ε(t )的意义。
在讨论阶跃函数在电路中引起响应的求解方法时,应对叠加定理在其中的作用加以理解和掌握。
2、学习检验结果解析(1)单位阶跃函数是如何定义的其实质是什么它在电路分析中有什么作用解析:单位阶跃函数属于一种奇异函数,定义为 ⎩⎨⎧≥≤=+-0 10 0)(t t t ε由定义式可看出,单位阶跃函数说明它在(0-,0+)时域内发生了单位阶跃。