气相色谱仪原理结构及操作
气相色谱仪操作及原理
气相色谱仪操作及原理气相色谱仪是一种以通过采集来分析物质的组成,并且精确的测量各种含量的分析仪器。
它的采集原理是将待测物质由低压容器进入柱子,柱子内装有各种不同柱层介质,以导致物质的分离和层析。
物质由低压容器进入柱子中,在柱子内各成分将依据其不同物理化学性质经柱层介质(静电及溶剂等)进行吸附、分馏,分离,层析。
当各分子在机器中柱内的移动距离不一样时,各成分将被分离、测定,从而反映出混合物中各组成成份的相对含量。
气相色谱仪的操作步骤主要有:1.准程序:校准要求确定零差及斜率,定标曲线选择及确定。
2.整:根据物体的特性,进行压力,温度,流速,延时等参数的调节,以最大限度的发挥仪器性能。
3.行:运行前,对色谱板和耦合仪器(如火焰检测器)进行检测,确保其可靠性,并进行真空泵的调试,真空泵的压力要稳定。
4.析:将待检样品以特定的加样器加入柱内,并经过恒温,恒定流速,恒定延时条件下开始分析,并监控检测器和记录仪的输出数据。
5.析完毕:分析完毕后,要做好数据处理工作,以便让结果反映准确的含量。
此外,气相色谱仪的可靠性也很重要,要完成准确的测量,仪器的调整和校准要达到最佳的状态;柱层的准备工作得当,另外,在分析的时候,待检样品的浓度要求也是一个重要的参数,要根据实际情况考虑。
气相色谱仪是一种多用途的仪器,它能够检测复杂混合物中各成分的含量和分布状况,为科学研究提供重要支持。
相比其他分析仪器,气相色谱仪在成分分析上具有更精确,快捷和低成本的优势,它被广泛应用于石油化学、精细化工、农业科学、食品、环境和生物技术等领域。
气相色谱仪的原理主要是利用柱层(静电力及溶剂的结合)的作用,对待检物质进行分离、层析,参考检测器的输出信号,判断各种成分的相对含量,实现物质的快速分析。
气相色谱仪的实际操作需要对相关仪器进行调整和校准,以最大限度的发挥仪器性能,待检样品的浓度也应合理调节,以得到精确可靠的测量结果。
显然,气相色谱仪是一种成熟可靠的仪器,它由于其高效,准确,低成本的优势,已经在各行各业得到了广泛的应用,极大的促进了我们对物质组成的认识和科学研究。
气相色谱仪的基本组成和操作
气路的检漏方法有两种。 一种是皂膜检漏法:用毛笔蘸上肥皂水 涂在各接头上检漏,若接口处有气泡溢出, 则说明该处漏气,应重新拧紧,直到不漏气 为止,检漏完毕应使用干布将皂液擦净;
另一种是堵气观察法:用橡皮塞堵住出 口处,同时关闭稳压阀,压力表压力不下降, 则说明不漏气;反之,压力表压力缓慢下降, 则表明该处漏气,应重新拧紧各接头以至不 漏气为止。
稳压阀、针形阀及稳流阀的调节需缓慢 进行。稳压阀不工作时,必须放松调节手柄 (顺时针转动);针形阀不工作时,应将阀
门处于“开”的状态(逆时针转动);对于稳 流阀,当气路通气时,必须先打开稳流阀的 阀针,流量调节应从大流量调到所需要的流 量;稳压阀、针形阀及稳流阀均不可作开关 使用;各种阀的进、出口不能接反。
的外气路输气管主要是φ3×0.5聚乙烯管或 φ3×0.5不锈钢导管,靠螺母、压环和“O”
形密封圈进行连接。连接管路时,要求既要 能保证气密性,又不会损坏接头。
(7)检漏 气相色谱仪的气路要认真仔细的进行检
漏,气路不密封将会使以后的实验出现异常 现象,造成数据的不准确。用氢气作载气时, 氢气若从柱接口漏进恒温箱,可能会发生爆 炸事故。
专题项目2: 气相色谱仪的基本组成和操作
载气 系统
进样 系统
色谱柱
Hale Waihona Puke 检测 系统温控 系统
数据处 理系统
一、气路系统 气相色谱仪的气路是一个载气连续运行 的密闭系统,常见的气路系统有单柱单气路 和双柱双气路。气路的气密性、载气流量的 稳定性和测量流量的准确性,对气相色谱的 测定结果起着重要的作用。
减压阀后,必须经净化管净 化处理,以除去水分和杂质。 常用的气体净化剂为子筛、 硅胶、活性炭等。
(3)稳压阀 稳压阀为后面的针形阀提供稳定的气压,
气相色谱质谱仪的结构和基本原理
一、气相色谱质谱仪的定义气相色谱质谱仪是一种高效、高灵敏度的分析仪器,结合了气相色谱和质谱两种分析技术,能够对样品中的化合物进行分离和鉴定。
它在环境监测、药物分析、食品安全等领域有着广泛的应用。
二、气相色谱质谱仪的结构1. 气相色谱部分气相色谱部分主要包括进样系统、色谱柱、色谱炉、检测器等组成。
进样系统用来引入样品,色谱柱用于分离混合物中的成分,色谱炉用来加热和蒸发样品,检测器用来检测色谱柱输出的化合物。
2. 质谱部分质谱部分主要包括离子源、质量分析器和检测器。
离子源用来将化合物转化为离子,质量分析器用来对这些离子进行分析,检测器则用来检测质谱输出的信号。
3. 数据处理系统数据处理系统用来接收、处理和输出色谱和质谱的数据,包括化合物的质谱图和色谱图等。
三、气相色谱质谱仪的基本原理1. 气相色谱原理气相色谱利用气体流动的作用将混合物中的成分分离开来。
当样品进入色谱柱后,不同成分会根据其在色谱柱固定相上的分配系数不同而在色谱柱中移动,最终被分离出来。
2. 质谱原理质谱是利用化合物在电场作用下产生碎片离子,并根据这些离子的质量比进行分析。
质谱仪会将化合物转化为带电离子,然后通过电场和磁场对这些离子进行分析,最终得到质谱图谱。
3. 联用原理气相色谱质谱联用仪将气相色谱和质谱联接在一起,样品首先经过气相色谱的分离,然后进入质谱进行离子化和分析,最终得到色谱和质谱的数据。
通过联用,可以更加准确地对化合物进行分析和鉴定。
四、气相色谱质谱仪的应用气相色谱质谱仪在环境监测、药物分析、食品安全等领域有着广泛的应用。
在环境监测中,可以用来分析空气中的挥发性有机物;在药物分析中,可以用来鉴定药物中的杂质和成分;在食品安全领域,可以用来检测食品中的农药残留和添加剂。
五、气相色谱质谱仪的发展趋势近年来,随着科学技术的不断进步,气相色谱质谱仪在分析性能、数据处理和操作便捷性方面都有了很大的提升。
未来,气相色谱质谱仪将更加智能化,分析速度将更快,分辨率将更高,对于微量成分的分析将更加准确。
气相色谱仪的原理
气相色谱仪的原理
首先,样品的进样是气相色谱仪进行分析的第一步。
样品通常是液态或气态的
混合物,通过进样口进入气相色谱仪系统。
在进样口处,样品会被注入到分离柱中,这是气相色谱仪进行分离的关键步骤。
接下来,分离柱是气相色谱仪的核心部件之一。
分离柱通常是一根长而细的管子,内壁涂有特殊的涂层,这种涂层可以与待分离的物质发生特异性相互作用。
当样品进入分离柱后,不同成分会在柱内发生分离,从而实现对混合物的分离。
此外,载气系统也是气相色谱仪的重要组成部分。
载气系统通常由气瓶、气路
系统和流量控制器等组成,它的作用是将气体从气瓶中输送到分离柱中,以帮助样品在分离柱内迅速分离。
常用的载气包括氢气、氮气和氦气等。
最后,检测器是气相色谱仪进行分析的最后一步。
检测器可以根据样品的性质,选择合适的检测方法,如荧光检测、紫外检测、火焰光度检测等。
通过检测器的检测,可以得到样品各组分的峰值信号,从而进行定性、定量分析。
综上所述,气相色谱仪的原理主要包括样品的进样、分离柱、载气系统和检测
器等几个方面。
这些部件共同作用,实现了对混合物的分离和分析。
在实际应用中,气相色谱仪具有分离效率高、分析速度快、分辨率高等优点,因此在化学、生物、环境等领域得到了广泛的应用。
气相色谱仪的基本原理与结构
气相色谱仪的基本原理与结构一、气相色谱仪的基本原理:色谱法,又称色谱法或色谱法,是一种利用物质的溶解性和吸附性的物理化学分离方法。
分离原理是基于流动相和固定相混合物中各组分功能的差异。
以气体作为流动相的色谱法称为气相色谱法(Gas Chromatography,简称GC),气相色谱是机械化程度很高的色谱方法,广泛应用于小分子量复杂组分物质的定量分析。
流动相:携带样品通过整个系统的流体,也称为载气。
固定相:色谱柱中的固定相、载体、固定液和填料。
二、气相色谱仪的组成:气相色谱仪主要由气路系统、采样系统、分离系统、检测及温控系统和记录系统组成。
图1. 气相色谱仪结构简图1. 气相色谱仪的气路系统气相色谱仪的气路系统包括气源、净化干燥管和载气流速控制装置,是一个载气连续运行的密闭管路系统,通过气相色谱仪的气路系统获得纯净、流速稳定的载气。
气相色谱仪的气路系统气密性、流量监测的准确性及载气流速的稳定性都是影响气相色谱仪性能的重要因素。
气相色谱仪中常用的载气有氢气、氮气和氩气,纯度要求99.999%以上,化学惰性好,不与待测组分反应。
载气的选择除了要求考虑待测组分的分离效果之外,还要考虑待测组分在不同载气条件下的检测器灵敏度。
2. 气相色谱仪的进样系统气相色谱仪的进样系统主要包括进样器和气化室两部分。
(1)注射器:根据待测组分的不同相态,采用不同的注射器。
通常,液体样品用平头微量进样器进样,如图2所示。
气体样品通常通过旋转六通阀或色谱仪提供的吸头微量进样器注入,如图2所示。
图2. 气体、液体进样器固体试样一般先溶解于适当试剂中,然后用微量注射器以液体方式进样。
(2)气化室:气化室一般由一根不锈钢管制成,管外绕有加热丝,作用是将液体试样瞬间完全气化为蒸气。
气化室热容量要足够大,且无催化效应,以确保样品在气化室中瞬间气化且不分解。
3. 气相色谱仪的分离系统气相色谱仪的分离系统是气相色谱仪的核心部分,作用是将待测样品中的各个组分进行分离。
气相色谱仪维修手册结构介绍
故障诊断与排除
针对可能出现的各种故障,提 供了诊断方法和解决方案。
配件与工具
列出了维修过程中需要的配件 和工具,以及其使用方法。
各部分之间的关系
维修流程是整个手册的核心,详细介绍了设备 维修的具体步骤和操作方法,是实际维修过程
中的指导手册。
配件与工具部分提供了维修过程中需要的配件和工具 信息,以及其使用方法,是维修工作得以顺利进行的
分析结果异常
检查进样是否正常,仪器参数是否设 置正确,如有需要重新进行分析。
基线漂移
检查仪器管路是否漏气或堵塞,进样 口和检测器是否清洁,如有需要重新 进行分析。
峰形异常
检查进样是否正常,色谱柱是否老化 或损坏,如有需要更换色谱柱或重新 进行分析。
THANKS
感谢观看
VS
详细描述
检测器系统故障可能由检测器电源故障、 检测器内部元件老化、检测器污染或检测 器与色谱柱连接不紧密等原因引起。排除 此类故障需要检查检测器电源是否正常、 检测器内部元件是否老化、检测器是否受 到污染以及检测器与色谱柱的连接是否紧 密,确保检测器正常工作且响应值准确。
06
维护与保养
日常维护
数据处理软件
概述
数据处理软件用于对气相色谱仪 采集的数据进行进一步处理,如 数据清洗、数据挖掘和可视化等。
功能
数据处理软件具有多种数据处理 工具,如数据滤波、数据归一化、 数据导出等。
更新与维护
数据处理软件需要定期更新以修 复漏洞和增加新功能,同时需要 进行定期维护以保证软件的稳定 运行。
05
常见故障及排除
气相色谱仪维修手册结构 介绍
• 引言 • 维修手册结构概述 • 硬件部分 • 软件部分 • 常见故障及排除 • 维护与保养
气相色谱仪原理(图文详解)
气相色谱仪原理(图文详解)什么是气相色谱本章介绍气相色谱的功能和用途,以及色谱仪的基本结构。
气相色谱(GC)是一种把混合物分离成单个组分的实验技术.它被用来对样品组分进行鉴定和定量测定:基子时间的差别进行分离和物理分离(比如蒸馏和类似的技术)不同,气相色谱(GC)是基于时间差别的分离技术。
将气化的混合物或气体通过含有某种物质的管,基于管中物质对不同化合物的保留性能不同而得到分离。
这样,就是基于时间的差别对化合物进行分离。
样品经过检测器以后,被记录的就是色谱图(图1),每一个峰代表最初混合样品中不同的组分.峰出现的时间称为保留时间,可以用来对每个组分进行定性,而峰的大小(峰高或峰面积)则是组分含量大小的度量。
图1典型色谱图系统一个气相色谱系统包括可控而纯净的载气源。
它能将样品带入GC系统进样口,它同时还作为液体样品的气化室色谱柱,实现随时间的分离检测器,当组分通过时,检测器电信号的输出值改变,从而对组分做出响应某种数据处理装置图2是对此作出的一个总结。
样品载气源一^ 进样口一^ 色谱柱一^ 检测器一_ 数据处理」图2色谱系统气源载气必须是纯净的.污染物可能与样品或色谱柱反应,产生假峰进入检测器使基线噪音增大等。
推荐使用配备有水分、烃类化合物和氧气捕集阱的高纯载气.见图钢瓶阀若使用气体发生器而不是气体钢瓶时,应对每一台GC都装配净化器,并且使气源尽可能靠近仪器的背面。
进样口进样口就是将挥发后的样品引入载气流。
最常用的进样装置是注射进样口和进样阀。
注射进样口用于气体和液体样品进样。
常用来加热使液体样品蒸发.用气体或液体注射器穿透隔垫将样品注入载气流。
其原理(非实际设计尺寸)如图4所示。
样品从机械控制的定量管被扫入载气流.因为进样量通常差别很大,所以对气体和液体样品采用不同的进样阀。
其原理(非实际设计尺寸)如图5所示。
进样阀通常与进样口连接,特别在分流进样模式时,进样阀连接到分流/不分流进样口。
色谱柱分离就在色谱柱中进行.因为用户可以选择不同的色谱柱.故使用一台仪器能够进行许多不同的分析。
气相色谱仪工作原理
系统由储液器、泵、进样器、色谱柱、检测器、记录仪等几部分组成。
储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相)内,由于样品溶液中的各组分在两相中具有不同的分配系数,在两相中作相对运动时,经过反复多次的吸附-解吸的分配过程,各组分在移动速度上产生较大的差别,被分离成单个组分依次从柱内流出,通过检测器时,样品浓度被转换成电信号传送到记录仪,数据以图谱形式打印出来高效液相色谱仪主要有进样系统、输液系统、.分离系统、检测系统和数据处理系统,下面将分别叙述其各自的组成与特点。
1.进样系统液相色谱仪一般采用隔膜注射进样器或高压进样间完成进样操作,进样量是恒定的。
这对提高分析样品的重复性是有益的。
2.输液系统该系统包括高压泵、流动相贮存器和梯度仪三部分。
高压泵的一般压强为l.47~4.4X107Pa,流速可调且稳定,当高压流动相通过层析柱时,可降低样品在柱中的扩散效应,可加快其在柱中的移动速度,这对提高分辨率、回收样品、保持样品的生物活性等都是有利的。
流动相贮存错和梯度仪,可使流动相随固定相和样品的性质而改变,包括改变洗脱液的极性、离子强度、PH值,或改用竞争性抑制剂或变性剂等。
这就可使各种物质(即使仅有一个基团的差别或是同分异构体)都能获得有效分离。
3.分离系统该系统包括色谱柱、连接管和恒温器等。
色谱柱一般长度为10~50cm (需要两根连用时,可在二者之间加一连接管),内径为2~5mm,由"优质不锈钢或厚壁玻璃管或钛合金等材料制成,住内装有直径为5~10μm粒度的固定相(由基质和固定液构成).固定相中的基质是由机械强度高的树脂或硅胶构成,它们都有惰性(如硅胶表面的硅酸基因基本已除去)、多孔性(孔径可达1000?)和比表面积大的特点,加之其表面经过机械涂渍(与气相色谱中固定相的制备一样),或者用化学法偶联各种基因(如磷酸基、季胺基、羟甲基、苯基、氨基或各种长度碳链的烷基等)或配体的有机化合物。
气相色谱仪原理(图文详细讲解)
气相色谱仪原理(图文详解)什么是气相色谱本章介绍气相色谱的功能和用途,以及色谱仪的基本结构。
气相色谱(GC)是一种把混合物分离成单个组分的实验技术。
它被用来对样品组分进行鉴定和定量测定:基子时间的差别进行分离和物理分离(比如蒸馏和类似的技术)不同,气相色谱(GC)是基于时间差别的分离技术。
将气化的混合物或气体通过含有某种物质的管,基于管中物质对不同化合物的保留性能不同而得到分离。
这样,就是基于时间的差别对化合物进行分离。
样品经过检测器以后,被记录的就是色谱图(图1),每一个峰代表最初混合样品中不同的组分。
峰出现的时间称为保留时间,可以用来对每个组分进行定性,而峰的大小(峰高或峰面积)则是组分含量大小的度量。
图1典型色谱图系统一个气相色谱系统包括可控而纯净的载气源.它能将样品带入GC系统进样口,它同时还作为液体样品的气化室色谱柱,实现随时间的分离检测器,当组分通过时,检测器电信号的输出值改变,从而对组分做出响应某种数据处理装置图2是对此作出的一个总结。
样品载气源一^ 进样口一^ 色谱柱一^ 检测器一_ 数据处理」图2色谱系统气源载气必须是纯净的。
污染物可能与样品或色谱柱反应,产生假峰进入检测器使基线噪音增大等。
推荐使用配备有水分、烃类化合物和氧气捕集阱的高纯载气。
见图钢瓶阀若使用气体发生器而不是气体钢瓶时,应对每一台GC都装配净化器,并且使气源尽可能靠近仪器的背面。
进样口进样口就是将挥发后的样品引入载气流。
最常用的进样装置是注射进样口和进样阀。
注射进样口用于气体和液体样品进样。
常用来加热使液体样品蒸发。
用气体或液体注射器穿透隔垫将样品注入载气流。
其原理(非实际设计尺寸)如图4所示。
样品从机械控制的定量管被扫入载气流。
因为进样量通常差别很大,所以对气体和液体样品采用不同的进样阀。
其原理(非实际设计尺寸)如图5所示。
进样阀通常与进样口连接,特别在分流进样模式时,进样阀连接到分流/不分流进样口。
色谱柱分离就在色谱柱中进行。
气相色谱仪图解
气相色谱仪原理(图文详解)什么是气相色谱本章介绍气相色谱的功能和用途,以及色谱仪的基本结构。
气相色谱(GC)是一种把混合物分离成单个组分的实验技术。
它被用来对样品组分进行鉴定和定量测定》:基子时间的差别进行分离和物理分离(比如蒸馏和类似的技术)不同,气相色谱(GC)是基于时间差别的分离技术。
将气化的混合物或气体通过含有某种物质的管,基于管中物质对不同化合物的保留性能不同而得到分离。
这样,就是基于时间的差别对化合物进行分离。
样品经过检测器以后,被记录的就是色谱图(图1),每一个峰代表最初混合样品中不同的组分。
峰出现的时间称为保留时间,可以用来对每个组分进行定性,而峰的大小(峰高或峰面积)则是组分含量大小的度量。
图1典型色谱图系统一个气相色谱系统包括可控而纯净的载气源.它能将样品带入GC系统进样口,它同时还作为液体样品的气化室色谱柱,实现随时间的分离检测器,当组分通过时,检测器电信号的输出值改变,从而对组分做出响应某种数据处理装置图2是对此作出的一个总结。
样品载气源一^ 进样口一^ 色谱柱一^ 检测器一_ 数据处理」图2色谱系统气源载气必须是纯净的。
污染物可能与样品或色谱柱反应,产生假峰进入检测器使基线噪音增大等。
推荐使用配备有水分、烃类化合物和氧气捕集阱的高纯载气。
见图钢瓶阀若使用气体发生器而不是气体钢瓶时,应对每一台GC都装配净化器,并且使气源尽可能靠近仪器的背面。
进样口进样口就是将挥发后的样品引入载气流。
最常用的进样装置是注射进样口和进样阀。
注射进样口用于气体和液体样品进样。
常用来加热使液体样品蒸发。
用气体或液体注射器穿透隔垫将样品注入载气流。
其原理(非实际设计尺寸)如图4所示。
样品从机械控制的定量管被扫入载气流。
因为进样量通常差别很大,所以对气体和液体样品采用不同的进样阀。
其原理(非实际设计尺寸)如图5所示。
进样阀通常与进样口连接,特别在分流进样模式时,进样阀连接到分流/不分流进样口。
色谱柱分离就在色谱柱中进行。
气相色谱仪的构造及操作要点
气相色谱仪的构造及操作要点气相色谱仪是一种常用的实验仪器,因为它它除用于定量和定性分析外,还能测定样品在固定相上的分配系数、活度系数、分子量和比表面积等物理化学常数。
可以对混合气体中各组成分进行分析检测的仪器。
一:气相色谱仪的构造气相色谱仪的基本构造有两部分,即分析单元和显示单元。
前者主要包括起源及控制计量装置﹑进样装置﹑恒温器和色谱柱。
后者主要包括检定器和自动记录仪。
色谱柱(包括固定相)和检定器是气相色谱仪的核心部件。
二:操作1)操作要点1. 参照所属仪器的说明书摆放好仪器,将有关插头对号入座,接地线要牢固接地。
2. 将层析柱接入气路,检查气路是否漏气,熟悉高压气瓶的用法;开总压阀->调节减压阀(使压力为2×10Pa)->调节稳压阀﹑针形阀,使载气流速达到所需要求。
3. 加热层析柱至所需温度(波动值< 0.5℃)。
加热进样器,使其温度稍高于样品组分的最高沸点。
加热检定器,使其温度与柱温相同或稍高,切勿低于柱温,以防样品蒸气冷凝污染鉴定器。
4. 打开检定器温压开关,开动记录仪放大部件(对氢火焰离子化检定器是启动直流放大器)。
调节检定器,使基线稳定,定好零点,即可开始进样分析。
5. 样品为液体时,可直接用微量注射器由进样口注入,若样品为气体时,即可用气体六通阀或直接用注射器进样。
2)条件的选择在选好色谱柱的前提下,还应注意下述各点:1. 载气流速。
用氢作载气时,一般填充柱之载气流速为5~10厘米/秒的线性速度。
适当的流速,有利于提高分辨率。
2. 柱温。
通常采用与样品平均沸点相等或高出10度的柱温为宜。
但是,在气液色谱中,流动相以恒温进入色谱柱时,将使相似化合物早馏出峰互相重叠,晚馏出峰宽度增加。
若改为单阶梯式或多阶梯式线性程序升温方式,则可大大提高其分辨率。
在选择初步(化合物中最低沸点)升温速率(0.5~6℃/分)和最终温度(化合物中最高沸点,但不高于固定相的沸点)的基础上,经过试验就可找出与理想分辨率有关的柱温。
气相色谱仪原理结构及操作
气相色谱仪原理结构及操作气相色谱(Gas Chromatography,GC)是一种常用的分离和分析技术,通过样品在气相载体中的分配和传递过程,实现对不同物质成分的分离、鉴定和定量分析。
气相色谱仪是实现气相色谱分析的主要设备,其基本原理、结构和操作步骤如下:一、气相色谱仪的原理:气相色谱仪的基本原理是通过气相载体(通常为气体或液体)将待分析物质从进样口注入色谱柱中,样品在色谱柱中沿着固定相或液相产生分配、传递和吸附等过程,不同成分在固定相中的速率不同,从而实现分离,然后再通过检测器检测到各个分离出的组分并进行定量分析。
二、气相色谱仪的结构:1.进样系统:包括进样口和进样装置,用于将样品引入到色谱柱中。
常用的进样方式有气体进样、液体进样、固体进样等。
2.色谱柱:色谱柱是气相色谱的核心组件,通常由玻璃管或不锈钢管制成。
内部涂有固定相(固态色谱柱)或固定液相(毛细管色谱柱)用于分离样品组分。
3.载气系统:用于将气相载体送入色谱柱中,常用的载气有惰性气体(如氦气、氮气)。
4.柱温控制系统:用于控制色谱柱的温度,以影响分离效果。
柱温的选择要根据样品的性质和分离效果进行调整。
5.检测器:用于检测样品中的组分并产生电信号。
常见的检测方法有热导检测器(TCD)、火焰光度检测器(FID)、质谱检测器(MS)等。
三、气相色谱仪的操作步骤:1.打开气相色谱仪电源,启动冷却系统,使柱温控制系统达到设定温度。
2.准备样品:根据实验需要,选择恰当的样品,将其制备成适当的溶液或气态样品。
3.进样准备:根据样品的性质和进样方式,选择适当的进样方式,如气体进样、液体进样等。
进样量要根据色谱柱和样品的性质进行调整。
4.样品进样:将样品引入进样装置中,通过控制进样阀门或推进准备好的样品进样器,使样品进入色谱柱中。
5.色谱分离:根据实验需要,设定合适的色谱柱温度、载气流速等条件,使样品在色谱柱中进行有效分离。
6.检测和记录:根据需要,选择合适的检测器进行检测,并将检测到的信号记录下来。
气相色谱仪原理结构及操作
气相色谱仪原理结构及操作1.原理:气相色谱仪的原理是将待测物质通过进样装置注入色谱柱,然后将载气(通常是惰性气体,如氮气或氦气)通过色谱柱,通过与固定相互作用,不同化学物质在固定相中的作用力不同,从而实现了分离。
通过在柱包中设置检测器,可以检测到不同组分在不同时间通过柱的强度差异,进而定性和定量分析物质。
2.结构:(1)进样系统:进样系统主要包括进样口、进样装置和进样回收器。
进样口将待测样品引入进样装置中,进样装置通常有液体进样口和气相进样口两种形式,用以将待测样品转化为气态混合物并注入色谱柱。
(2)分离柱:分离柱是气相色谱仪最重要的组成部分,它实现了样品中化学物质的分离。
分离柱一般采用玻璃制成,内壁经过特殊处理,如涂覆涂层、填充柱或开放管等形式,从而增加柱与样品之间的相互作用。
常用的分离柱有毛细管柱和填料柱两种。
(3)检测系统:检测系统用于检测化学物质的分离情况,常用的检测系统有热导检测器、火焰离子化检测器(FID)、化学离子化检测器(CID)等。
它们根据化学物质的性质和特点选择不同的检测器进行分析。
3.操作:(1)准备工作:保证仪器干净,检查色谱柱是否在正常工作状态下,检查气源气压是否正常,对色谱柱进行恒温,准备好待测样品溶液。
(2)进样:根据样品的性质选择适当的进样方式,液相进样通常采用注射器,气相进样则经过气相进样口将气态样品引入色谱柱。
(3)分离:开启气路,设定所需的气体流速和温度梯度。
载气通过色谱柱时,不同组分在固定相上的作用力不同,从而在色谱柱中发生分离。
(4)检测:将色谱柱后的气相混合物进一步检测,根据不同的检测器可以检测到不同化学物质的信号,一般会记录下峰高度或面积以及相对保留时间。
(5)数据分析:将检测到的信号通过数据处理软件进行分析,根据峰高度或面积以及相对保留时间可以进行定性和定量分析。
气相色谱仪结构及其原理
分流示意图
3.色谱柱
茨维特的经典实验:
茨维特的经典实验是使用一根填充白色菊粉的玻璃柱管来分离植物叶的石 油醚提取液,实现了不同色素的分离。操作时将植物叶的石油醚提取液倒入菊 粉柱中,提取液中色素被吸附在顶端,然后用纯净的石油醚不断冲洗,与此同 时可观察到柱管从上到下形成绿、黄、黄三个色带。再继续用石油醚冲洗,就 可分别得到各个色带的洗脱液。
点火时,FID检测器温度务必在120℃以上。点火困难时,适当增大氢气流速, 减小空气流速,点着后再调回原来的比例。检测器温度要高于柱温20~50℃, 防水冷凝。
进样隔垫定期更换,定期清洗衬管。
分析样品前需老化色谱柱,走平基线后分析样品。
ቤተ መጻሕፍቲ ባይዱ
工作过程:
来自色谱柱的有机物与 H2-Air混合并燃烧,产生 电子和离子碎片,这些 带电粒子在火焰和收集 极间的电场作用下(几 百伏)形成电流,经放 大后测量电流信号(1012 A)。
A区:预热区 B层:点燃火焰 C层:热裂解区:温度最高 D层:反应区
具体描述如下:
氢气由喷嘴加入,与空气混合点火燃烧,形成氢火焰。极化极和收集极
形成的微电流经高电阻,在其两端产生电压降,经微电流放大器放大后从输
出衰减器中取出信号,在记录仪中记录下来即为基流,或称本底电流、背景
电流。只要载气流速、柱温等条件不变,基流亦不变。无样品时两极间离子
很少,基流不变;当载气+组分进入火焰时,在氢火焰作用下电离生成许多正、
负离子和电子,使电路中形成的微电流显著增大。即组分的信号,离子流经
由茨维特的经典实验可以看到色谱分析是一种物理的分离方法,其原理是 将分离的组分在两相间进行分布,其中一相是具有大比表面积的固定相菊粉, 另一相是推动被分离组分流过固定相的惰性流体石油醚,叫流动相。当流动相 载带被分离的组分经过固定相时,利用固定相与被分离的各组分产生的吸附( 或)分配作用的差别,被分离的各组分在固定相中的滞留时间不同,使不同的 组分按一定的先后顺序从固定相中被流动相洗脱出来,从而实现不同组分的分 离。
气相色谱仪的原理及使用方法
气相色谱仪的原理及使用方法气相色谱仪(Gas Chromatograph,GC)是一种常用的分析仪器,主要用于分离和定量分析样品中的化合物。
它的原理基于化合物在固定相(填充物)和流动相(气体)之间的分配系数不同,从而实现样品分离的目的。
气相色谱仪的主要组成部分包括进样口、色谱柱、检测器和数据处理系统。
下面是气相色谱仪的工作原理和使用方法的详细介绍:1. 工作原理:- 进样:样品通过进样口进入色谱柱,可以采用自动进样或手动进样的方式。
- 色谱柱:色谱柱是气相色谱仪中最关键的组件,它通常由内衬固定相的管状结构构成。
常见的固定相包括聚硅氧烷(polydimethylsiloxane)、聚乙二醇(polyethylene glycol)等。
样品在色谱柱中被分离成不同的化合物组分。
- 流动相:气相色谱仪中的流动相一般为惰性气体,如氦气、氢气等。
流动相的主要作用是将样品推动通过色谱柱。
- 检测器:色谱柱后面连接着检测器,用于检测分离后的化合物。
常见的检测器包括火焰离子化检测器(Flame Ionization Detector,FID)、电子捕获检测器(Electron Capture Detector,ECD)等。
不同的检测器适用于不同类型的化合物分析。
- 数据处理系统:气相色谱仪通常配备有数据处理系统,用于记录和分析检测到的化合物信号。
2. 使用方法:- 样品准备:将待分析的样品制备成适合进样的形式,如液态样品可以直接进样,固态样品需进行萃取或溶解后再进样。
- 进样设置:确定进样方式,可以选择自动进样或手动进样。
根据样品的性质和分析要求,设置合适的进样量。
- 色谱条件设置:根据分析目的和样品性质,选择合适的色谱柱和固定相。
优化色谱条件,包括流量、温度程序等。
- 启动仪器:打开气源,确保色谱柱、进样口和检测器的正常工作。
预热色谱柱至稳定状态,等待系统温度平衡。
- 分析运行:进样后,启动气相色谱仪,开始分析运行。
气相色谱仪氢火焰离子化检测器结构原理
气相色谱仪(Gas Chromatography, GC)是一种在化学分析中广泛应用的技术,用于分离和识别化合物混合物中的成分。
气相色谱仪的检测器种类繁多,其中氢火焰离子化检测器(Hydrogen Flame Ionization Detector, FID)是最常用的一种。
本文将介绍氢火焰离子化检测器的结构和工作原理。
一、氢火焰离子化检测器的结构1. 检测器主体氢火焰离子化检测器的主体由一个金属盖和一个玻璃柱组成,金属盖上有进样口和进氢气管,玻璃柱内有一个喷嘴和一个射出电极。
2. 氢气和空气流动系统氢火焰离子化检测器需要氢气和空气作为燃烧气体,通过气流调节阀和混合器混合后送入喷嘴中。
3. 离子电子产生系统喷嘴将混合后的氢气和空气喷出,形成火焰,化合物在火焰中燃烧产生电子离子。
4. 电子丢失和电离电子在火焰中会发生丢失,这些电子会激发空气中的氧分子,产生离子。
5. 电流检测系统离子在电场作用下被加速向阳极移动,形成电流信号,该信号经过放大和转换后被记录和数据处理。
二、氢火焰离子化检测器的工作原理1. 样品分析待分析的混合物通过气相色谱柱分离后,进入氢火焰离子化检测器进行检测。
2. 燃烧混合物在氢气和空气的作用下在喷嘴中燃烧,产生大量的离子。
3. 电流信号离子在电场作用下向阳极移动,形成电流信号,信号经放大和转换后被记录。
4. 数据处理检测到的电流信号经数据处理后,通过计算机等设备输出相应的峰图和检测结果。
三、氢火焰离子化检测器的应用氢火焰离子化检测器由于其高灵敏度、广线性范围和低检出限,在环境监测、药物分析、化工行业等领域有着广泛的应用。
1. 环境监测氢火焰离子化检测器在大气污染物、水质分析等环境监测中起到了至关重要的作用。
2. 药物分析在药物研发和质量控制中,氢火焰离子化检测器能够对药物成分进行高效、准确的分析。
3. 化工行业在化工生产过程中,氢火焰离子化检测器可以用于监测反应物、产品和中间体的浓度。
气相色谱仪基本原理及结构
柱箱
❖ 柱箱:
❖ ◇色谱柱是气相色谱仪的心脏,样品中的各个组份在色谱柱 中经过反复多次分配后得到分离,从而达到分析的目的,柱 箱的作用就是安装色谱柱。
❖ ◇由于色谱柱的两端分别连接进样器和检测器,因此进样器 和检测器的下端(接头)均插入柱箱。
❖ ◇柱箱能够安装各种填充柱和毛细管柱,并且操作方便。
❖ ◇色谱柱(样品)需要在一定的温度条件下工作,因此采用 微机对柱箱进行温度控制。并且由于设计合理,柱箱内的梯 度很小。
气相色谱仪原理简述
❖ ▲原理概述:
❖ ◇色谱分析是一种多组份混合物的分离、分析工具。它主 要利用物质的物理性质对混合物进行分离,测定混合物的 各个组份。并对混合物中的各个组份进行定性、定量分析。 色谱法主要包括气相色谱法和液相色谱法。
❖ ◇气相色谱仪是以气体作为流动相(载气)。当样品被送 入进样器后由载气携带进入色谱柱,由于样品中各个组份 在色谱柱中的流动相(气相)和固定相(液体或固体)间 分配或吸附系数的差异,在载气的冲洗下,各个组份在两 相间作反复多次分配,使各组份在色谱柱中得到分离,然 后由接在柱后的检测器根据组份的物理化学特性,将各个 组份按顺序检测出来。
❖ 原理:
❖ 在FID中加入一个用碱金属盐制成的玻璃 珠当样品分子含有在燃烧时能与碱盐起反 应的元素时,则将使碱盐的挥发度增大, 这些碱盐蒸气在火焰中将被激发电离,而 产生新的离子流,从而输出信号。
❖ 特点:
空气入口
❖ 这是一种有选择性的检测器,对含有能增
氢气入口
加碱盐挥发性的化合物特别敏感。
❖ 适用范围:
载气输入
三通管
针形阀
隔垫清扫输出 0.5-5ml/分钟
稳流阀
二位三通电磁阀 由主机微机板控制
气相色谱仪原理及结构
气相色谱仪原理及结构嘿,朋友们!今天咱来聊聊气相色谱仪呀!这玩意儿就像是一个神奇的魔法盒子,能把复杂的混合物给分得清清楚楚。
你看啊,气相色谱仪就好比是一位超级厉害的分拣大师。
它的结构呢,有进样口,这就像是个入口大门,样品从这儿进去。
然后呢,有根长长的柱子,这柱子可不得了,就像是一条神奇的通道,不同的物质在里面跑得速度不一样,慢慢就被分开啦。
还有检测器呢,就像是一双敏锐的眼睛,能准确地识别出各种被分开的物质。
咱平时生活里不是也经常要分拣东西嘛。
比如说整理房间的时候,要把不同的东西放到不同的地方,这气相色谱仪也是这个道理呀。
它能把那些混合在一起的东西,一个一个地给挑出来,分得明明白白。
这柱子就像是个跑道,不同的选手在上面跑。
那些跑得快的物质,很快就冲过终点线,被检测器给抓住啦。
而跑得慢的呢,就慢悠悠地在后面晃荡,最后也会被检测出来。
这多有意思呀!而且哦,这气相色谱仪的作用可大了去了。
在化学分析、环境监测、食品检测等好多领域都大显身手呢。
想象一下,如果没有它,我们怎么能知道那些复杂的混合物里都有些啥呢?怎么能保证我们吃的食物是安全的,环境是没有污染的呢?它就像是一个默默工作的小卫士,虽然我们平时可能不太注意到它,但它却一直在为我们的生活保驾护航呢!再说这进样口,你可别小看它,它得把样品准确无误地送进柱子里。
这就好像是接力比赛中,第一棒选手要稳稳地把接力棒交给下一个人一样,要是交棒出了差错,那后面可就全乱套啦。
检测器呢,那更是关键呀!它得灵敏得很,稍有风吹草动就能察觉到。
不然那些好不容易分开的物质,不就白分啦?总之呢,气相色谱仪虽然看起来复杂,但其实理解起来也不难呀。
它就是这么一个神奇又实用的东西,为我们的生活和科学研究提供了巨大的帮助。
咱可得好好感谢这些科学家们发明了这么棒的仪器呢!你们说是不是呀?。
气相色谱仪操作及原理
气相色谱仪操作及原理
气相色谱仪是一种常用的分析仪器,广泛应用于化学、生物、环境等领域。
它通过气相色谱技术实现对样品中化合物的分离和定量分析。
下面将介绍气相色谱仪的操作及原理。
首先,气相色谱仪的操作步骤包括样品处理、进样、分离、检测和数据处理。
在进行气相色谱分析前,需要对样品进行处理,通常包括提取、浓缩和衍生化等步骤。
处理后的样品通过进样口输入气相色谱仪,经过色谱柱进行分离,不同化合物在色谱柱中的停留时间不同,从而实现分离。
分离后的化合物通过检测器进行检测,产生信号后经过数据处理得到分析结果。
其次,气相色谱仪的原理是基于化合物在固定相和流动相之间的分配行为实现的。
色谱柱是气相色谱仪的核心部件,它由固定相和流动相组成。
样品在进样后,首先与固定相发生相互作用,不同化合物在固定相上的停留时间不同,然后通过流动相的推动逐渐分离。
检测器接收分离后的化合物,产生相应的信号,再经过数据处理得到分析结果。
在实际操作中,需要注意气相色谱仪的一些操作技巧。
首先是
进样的准确性和稳定性,进样量的大小会影响分析结果的准确性,因此需要严格控制进样量。
其次是色谱柱的选择和使用,不同的样品需要选择不同类型的色谱柱,同时色谱柱的使用和保养也会影响分析结果。
另外,检测器的选择和参数设置也需要根据样品的性质进行调整,以获得最佳的分析效果。
总的来说,气相色谱仪的操作及原理是相互联系的,只有正确操作才能得到准确的分析结果。
通过对气相色谱仪的操作及原理的了解,可以更好地应用这一技术进行化合物的分离和分析,为科研和工程实践提供有力的支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气相色谱仪原理、结构及操作1、基本原理气相色谱GC是一种分离技术;实际工作中要分析的样品往往是复杂基体中的多组分混合物,对含有未知组分的样品,首先必须将其分离,然后才能对有关组分进行进一步的分析;混合物的分离是基于组分的物理化学性质的差异,GC主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离;待分析样品在汽化室汽化后被惰性气体即载气,一般是N2、He等带入色谱柱,柱内含有液体或固体固定相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡;但由于载气是流动的,这种平衡实际上很难建立起来,也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解附,结果在载气中分配浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出;当组分流出色谱柱后,立即进入检测器,检测器能够将样品组分的存在与否转变为电信号,而电信号的大小与被测组分的量或浓度成比例,当将这些信号放大并记录下来时,就是如图2所示的色谱图假设样品分离出三个组分,它包含了色谱的全部原始信息;在没有组分流出时,色谱图的记录是检测器的本底信号,即色谱图的基线;2、气相色谱结构及维护进样隔垫进样隔垫一般为硅橡胶材料制成,一般可分普通型、优质型和高温型三种,普通型为米黄色,不耐高温,一般在200℃以下使用;优质型可耐温到300℃;高温型为绿色,使用温度可高于350℃,至色谱柱最高使用温度的400℃;正因为进样隔垫多为硅橡胶材料制成,其中不可避免地含有一些残留溶剂和/或低分子齐聚物,另外由于汽化室高温的影响,硅橡胶会发生部分降解,这些残留的溶剂和降解产物如果进入色谱柱,就可能出现“鬼峰”即不是样品本身的峰,从而影响分析;解决的办法有:一是进行“隔垫吹扫”,二是更换进样隔垫;一般更换进样隔垫的周期以下面三个条件为准:1出现“鬼峰”;2保留时间和峰面积重现性差;3手动进样次数70次,或自动进样次数50次以后;玻璃衬管气相色谱的衬管多为玻璃或石英材料制成,主要分成分流衬管、不分流衬管、填充柱玻璃衬管三种类型;衬管能起到保护色谱柱的作用,在分流/不分流进样时,不挥发的样品组分会滞留在衬管中而不进入色谱柱;如果这些污染物在衬管内积存一定量后,就会对分析产生直接影响;比如,它会吸附极性样品组分而造成峰拖尾,甚至峰分裂,还会出现“鬼峰”,因此一定要保持衬管干净,注意及时清洗和更换;玻璃衬管清洗的原则和方法当以下现象:1出现“鬼峰”;2保留时间和峰面积重现性差出现时,应考虑对衬管进行清洗;清洗的方法和步骤如下:1拆下玻璃衬管;2取出石英玻璃棉;3用浸过溶剂比如丙酮的纱布清洗衬管内壁; 玻璃衬管更换时要注意玻璃棉的装填:装填量3~6mg,高度5~10mm;要求填充均匀、平整;气体过滤器变色硅胶可根据颜色变化来判断其性能,但分子筛等吸附有机物的过滤器就不能用肉眼判断了,所以必须定期更换,一般3个月更换或再生一次;由于分流气路中的分子筛过滤器饱和或受污严重,就会出现基线漂移大的现象,这个时候就必须更换或再生过滤器了;再生的方法是:1卸下过滤器,反方向连接于原色谱柱位置;2再生条件:载气流速40~50ml/min,温度340℃,时间5h;检测器如果说色谱柱是色谱分离的心脏,那么,检测器就是色谱仪的眼睛;无论色谱分离的效果多么好,若没有好的检测器就会“看”不出分离效果;因此,高灵敏度、高选择性的检测器一直是色谱仪发展的关键技术;目前,GC所使用的检测器有多种,其中常用的检测器主要有火焰离子化检测器FID、火焰热离子检测器FTD、火焰光度检测器FPD、热导检测器TCD、电子俘获检测器ECD等;下面对检测器的日常维护作简单讨论:2.4.1火焰离子化检测器FID1 FID虽然是准通用型检测器,但有些物质在检测器上的响应值很小或无响应,这些物质包括永久气体、卤代硅烷、H2O、NH3、CO、CO2、CS2、CCl4,等等;所以检测这些物质时不应使用FID;2FID的灵敏度与氢气、空气、氮气的比例有直接关系,因此要注意优化,一般三者的比例应接近或等于1∶10∶1;3FID是用氢气在空气燃烧所产生的火焰使被测物质离子化的,故应注意安全问题;在未接上色谱柱时,不要打开氢气阀门,以免氢气进入柱箱;测定流量时,一定不能让氢气和空气混合,即测氢气时,要关闭空气,反之亦然;无论什么原因导致火焰熄灭时,应尽量关闭氢气阀门,直到排除了故障重新点火时,再打开氢气阀门;4为防止检测器被污染,检测器温度设置不应低于色谱柱实际工作的最高温度;检测器被污染的影响轻则灵敏度明显下降或噪音增大,重则点不着火;消除污染的办法是对喷嘴和气路管道的清洗;具体方法是:断开色谱柱,拔出信号收集极;用一细钢丝插入喷嘴进行疏通,并用丙酮、乙醇等溶剂浸泡;2.4.2 火焰热离子检测器FTDFTD使用注意事项:1 铷珠:避免样品中带水,使用寿命大约600~700h;2 载气:N2或He,要求纯度%;一般He的灵敏度高;3 空气:最好是选钢瓶空气,无油;4 氢气:要求纯度%;另外需要注意的是使用FTD时,不能使用含氰基固定液的色谱柱,比如OV-1701;2.4.3火焰光度检测器FPDFPD使用注意事项:1 FPD也是使用氢火焰,故安全问题与FID相同;2 顶部温度开关常开250℃;3 FPD的氢气、空气和尾吹气流量与FID不同,一般氢气为60~80ml/min,空气为100~120ml/min,而尾吹气和柱流量之和为20~25ml/min;分析强吸附性样品如农药等,中部温度应高于底部温度约20℃;4 更换滤光片或点火时,应先关闭光电倍增管电源;5 火焰检测器,包括FID、FPD,必须在温度升高后再点火;关闭时,应先熄火再降温;2.4.4热导检测器TCDTCD使用注意事项:1确保热丝不被烧断;在检测器通电之前,一定要确保载气已经通过了检测器,否则,热丝就可能被烧断,致使检测器报废;关机时一定要先关检测器电源,然后关载气;任何时候进行有可能切断通过TCD的载气流量的操作,都要关闭检测器电源;2载气中含有氧气时,热丝寿命会缩短,所以载气中必须彻底除氧;3用氢气作载气时,气体排至室外;4基线漂移大时,要考虑以下几个问题:双柱是否相同,双柱气体流速是否相同;是否漏气;更换色谱柱至检测器的石墨垫圈; 池体污染;清洗措施:正己烷浸泡冲洗;2.4.5 电子俘获检测器ECDECD使用注意事项:1 气路安装气体过滤器和氧气捕集器;氧气捕集器再生:2 使用填充柱时也需供给尾吹气2~3ml/min;3 操作温度为250~350℃;无论色谱柱温度多么低,ECD的温度均不应低于250℃, 否则检测器很难平衡;4 关闭载气和尾吹气后,用堵头封住ECD出口,避免空气进入;3、基本操作加热由于气相色谱仪的生产厂家和质量的不同.测定温度的方式也不相同对于用微机设数法或拨轮选择法给定温度.一般是直接设数或选择合适给定温度值加以升温.而如果是采用旋钮定位法.则有技巧可言3.1.1过温定位法将温控旋钮调至低于操作温度约30℃处给气相色谱仪升温当过温至约为操作温度时.配台温度指示和加热指示灯.再逐渐将温控旋钮调至台适位置3.1.2 分步递进定位法将温控旋钮朝升温方向转动一个角度.升温开始.指示灯亮:当温度基本稳定时再同向转动温控旋钮.开始继续升温:如此递进调节、直至恒温在工作温度上. 调池平衡调池平衡实际是调热导电桥平衡.使之有较为台适的输出讲调节技巧.其实是对具有池平衡、调零和记录调零等第一步.用池平衡或调零旋钮将记录仪指针调至台适位置;第二步.自衰减至l6倍左右.观察记录仪指针移动情况;第三步.用记录谓零旋钮将记录仪指针调回原处;第四步.退回衰减.观察记录仪指针移动情况;第五步.用调零或池平衡旋钮将记录仪指针调回原处点火氢焰气相色谱仪开机时需要点火.有时因各种原因致使熄火后.也需要点火然而.我们经常会遇到点火不着的情况下面介绍两种点火技巧.供同行们相试3.3.1 加大氢气流量法先加大氢气流量.点着火后.再缓慢调回工作状况此法通用3.3.2 减少尾吹气流量法先减少尾吹气流量.点着火后.再调回工作状况此法适用于用氢气怍载气.用空气作助燃气和尾畋气情况气比的调节氢焰气相色谱仪三气的流量比.有关资料均建议为:氮气:氢气:空气:l:l:10 但由于转子流量计指示流量的不准确性.事实上谁会去苛求这个配比呢本人认为为各气旌以良好匹配.目的是既有高的检测器灵敏度又能有较好的分离效果.还不致于容易熄火;本着上述原则气比应按下法调节:1氮气流量的调节在色谱柱条件确定后、样品组分分离效果的好坏、氮气的流量大小是决定因素调节氮气流量时.要进样观察组分分离情况.直至氮气流量尽可能大且样品组分有较好分离为止2氢气和空气流量的调节氢气和空气流量的调节效果.可以用基流的大小来检验先调节氢气流量使之约等于氮气的流量.再调节空气流量在调节空气流量时.要观察基流的改变情况只要基流在增加.仍应相向调节.直至基流不再增加不止最后.再将氢气流量上调少许;进样技术在气相色谱分析中,一般是采用注射器或六通阀门进样在考虑进样技术的时候.主要是以注射器进样为对象3.5.1 进样量进样量与气化温度、柱容量和仪器的线性响应范围等因素有关,也即进样量应控制在能瞬间气化.达到规定分离要求和线性响应的允许范围之内填充柱冲洗法的瞬间进样量:液体样品或固体样品溶液一般为0.01~ 10微升.气体样品一般为0.1~ 10毫升在定量分析中.应注意进样量读数准确1排除注射器里所有的空气用微量注射器抽取液体样品时.只要重复地把液体抽凡注射器又迅速把其排回样品瓶.就可做到遗一点;还有一种更好的方法.可以排除注射器里所有的空气那就是用计划注射量的约2倍的样品置换注射器3~5次.每扶取到样品后,垂直拿起注射器.针尖朝上任何依然留在注射器里的空气都应当跑到针管顶部推进注射器塞子.空气就会被排掉;2保证进样量的准确用经畿换过的注射器取约计划进样量2倍左右的样品.垂直拿起注射器.针尖朝上.让针穿过一层纱布.这样可用纱布吸收从针尖排出的液体推进注射器塞子.直到读出所需要的数值用纱布擦干针尖至此准确的液体体积已经测得.需要再抽若干空气到注射器里.如果不慎推动柱塞.空气可以保护液体使之不被排走3.5.2 进样方法双手章注射器用一只手通常是左手把针插入垫片.洼射大体积样品即气体样品或输入压力极高时.要防止从气相色谱仪来的压力把柱塞弹出用右手的大拇指让针尖穿过垫片尽可能踩的进入进样口.压下柱塞停留1~ 2秒钟.然后尽可能快而稳地抽出针尖继续压住柱塞3.5.3 进样时间进样时间长短对柱效率影响很大,若进样时间过长.遇使色谱区域加宽而降低柱效率因此.对于冲洗法色谱而言.进样时间越短越好.一般必须小于1秒钟;。