组合及组合数公式
☆☆☆☆组合与组合数公式解读
组合
abc abd acd bcd
排列
abc bac cab acb bca cba
abd bad dab adb bda dba
acd cad dac adc cda dca
(2)平面内有 10 个点,以其中每 2 个点为端 点的有向线段共有多少条?
解:(1) (2)
C
2 10
45
A
2 10
90
例8.在 100 件产品中,有 98 件合格品,2 件 次品.从这 100 件产品中任意抽出 3 件 .
(1)有多少种不同的抽法?
(2)抽出的 3 件中恰好有 1 件是次品的抽法有 多少种?
(1)甲、乙、丙三人必须当选;
(2)甲、乙、丙三人不能当选;
(3)甲必须当选,乙、丙不能当选; (4)甲、乙、丙三人只有一人当选;
(5)甲、乙、丙三人至多2人当选; (6)甲、乙、丙三人至少1人当选;
组合数的两个性质
定理1:
Cmn
Cnm n
.
证明:
C
m n
m(! nn!m)!,
Cnm n
(n
n! m)![n (n
A C A m m m
n
n
m
组合数公式:
Cnm
Anm Amm
n(n 1)(n 2) m!
(n m 1)
Cnm
n! m!(n
m)!
C 例1计算:⑴
4 7
⑵ C170
C A (3) 已知 3 2 ,求 n .
n
n
例2求证:
高中数学 组合与组合数公式
(2)列出所有冠亚军的可能情况。
(1) 中国—美国 美国—古巴 中 美 中 古 中 俄 美 中 中国—古巴 美国—俄罗斯 美 古 美 俄 古 中 古 美 古 俄 中国—俄罗斯 古巴—俄罗斯 俄 中 俄 美 俄 古
(2) 冠 军 亚 军
组合数: 从n个不同元素中取出m(m≤n)个元素的所有组 合的个数,叫做从n个不同元素中取出m个元素的 m 组合数,用符号 C 表示
判断下列问题是组合问题还是排列问题?
(1)设集合A={a,b,c,d,e},则集合A的含有3个元素的 子集有多少个? 组合问题 (2)某铁路线上有5个车站,则这条铁路线上共需准备 多少种车票? 排列问题 有多少种不同的火车票价? 组合问题
(3)10名同学分成人数相同的数学和英语两个学习小组, 共有多少种分法? 组合问题 (4)10人聚会,见面后每两人之间要握手相互问候, 组合问题 共需握手多少次? (5)从4个风景点中选出2个安排游览,有多少种不同的方法? 组合问题 (6)从4个风景点中选出2个,并确定这2个风景点的游览 顺序,有多少种不同的方法? 排列问题
abc abd acd bcd
求A 可分两步考虑: 3 4 求 可分两步考虑:
P4
第一步, C 4 ( 4)个;
第二步, A3 ( 6)个;
根据分步计数原理, A4
3
3
3
3
CA
3 4
3 3
.
P A 从而C 4 C3 3 P3
3
3
A
3 4 4
3 4
3
从 n 个不同元中取出m个元素的排列数
如:从 a , b , c三个不同的元素中取出两个元素的 所有组合分别是: ab , ac , bc (3个) 如:已知4个元素a , b , c , d ,写出每次取出两个 元素的所有组合.
组合数常用公式
组合数常用公式
在组合数理论中,有几个常用的公式:
1. 组合数的定义公式:
组合数(Combination)表示从n个不同元素中选择r个元素,记作C(n,r),计算公式为:
C(n,r) = n! / (r!(n-r)!)
2. 二项式定理:
二项式定理表达了两个数的和的幂展开的公式,即:
(a + b)^n = C(n,0)*a^n*b^0 + C(n,1)*a^(n-1)*b^1 + C(n,2)*a^(n-2)*b^2 + ... + C(n,n-1)*a^1*b^(n-1) + C(n,n)*a^0*b^n
3. 杨辉三角形:
杨辉三角形是由组合数构成的一个数表,它具有以下特点:
- 每一行的两端元素都是1。
- 从第三行开始,每个元素的值等于它上方两个元素的和。
- 杨辉三角形可用于计算组合数。
这些是组合数理论中常用的公式,可用于计算组合数和展开二项式等问题。
1.2.2.1 组合及组合数公式
注意:
1.组合的特点 组合要求n个元素是不同的,被取出的m个 元素也是不同的,即从n个不同的元素中进行m
次不放回地取出.
2.组合的特性 元素的无序性,即取出的m个元素不讲究顺 序,亦即元素没有位置的要求. 3.相同的组合
根据组合的定义,只要两个组合中的元素完
全相同,不管顺序如何,就是相同的组合.
四、练习:
2 8
例2.从5个不同的元素a,b,c,d,e中取出2个, 写出所有不同的组合. 解:要想列出所有组合,就要先将元素按照一 定顺序排好,然后按顺序用图示的方法将各个 组合逐个标出来,如图所示:
由此可得所有的组合为 ab,ac,ad,ae,bc,bd,be,cd,ce,de.
2 3 例 3 计算 C3 和 C + C 7 6 6;
解答: (1)已知集合的元素具有无序性,因此含 3 个 元素的子集个数与元素的顺序无关, 是组合问题, 共有 C3 7个. (2)因为发件人与收件人有顺序区别,与顺序有关是排 列问题,共写了 A2 8个电子邮件. (3)同时通电话,无顺序,是组合问题,共通了 C 次电 话. (4)飞机票与起点站、终点站有关,故求飞机票的种数 是排列问题,有 A2 4种飞机票;票价只与两站的距离有关,故 票价的种数是组合问题,有 C2 4种票价.
【解析】
) C.8 D.9
B.7
2
xx-1 2 ∵Cx = =36,
∴x(x-1)=72,∴x=9.
【答案】
D
3.从3,5,7,11这四个数中任取两个相乘,可以得到不相等的 积的个数为________.
【解析】 【答案】 从四个数中任取两个数的取法为C2 4=6. 6
4、在一次数学竞赛中,某学校有12人通过了初
组合与组合数公式
步骤2
假设n=k时公式成立,推导n=k+1时的公式。
步骤3
由数学归纳法,得出结论对于所有正整数n, 组合数公式成立。
利用二项式定理的证明
步骤1
将组合数公式重写为与二项式定理形式相似的形式。
步骤2
利用二项式定理展开式中的系数与组合数公式中的系 数进行比较。
02
加密算法
组合数公式可以用于设计加密算法,通过计算不同字符或符号的组合数
量,增强信息的安全性。
03
信息传输
在无线通信和网络传输中,利用组合数公式可以优化信息的传输效率和
可靠性。通过对信号的不同组合方式进行编码和解码,可以提高通信系
统的性能。
感谢您的观看
THANKS
组合数表示从n个不同元素中取出m个 元素的组合的个数,记作C(n, m)或C(n, m),其中C(n, m) = n! / (m!(n-m)!)。
组合的特性
无序性
组合只考虑元素的排列顺序,不考虑元素的具体 位置。
可重复性
在组合中,可以重复选取同一个元素。
独立性
组合数不受元素数量的影响,只与选取的元素个 数有关。
01
概率分析
利用组合数公式,可以对彩票的概率进 行分析,帮助彩民更好地理解彩票的随 机性和公平性。
02
03
优化投注
通过计算不同组合下的中奖概率,彩 民可以优化自己的投注策略,提高中 奖的可能性。
在遗传学中的应用
基因组合
在遗传学中,基因的组合方式可以用组合数公式来表示。通过计算 基因组合的数量,可以了解生物体的遗传多样性。
组合数的上标和下标规则
上标和下标规则
数学组合数计算公式
数学组合数计算公式
组合数,也称为组合,是一个重要的数学概念,用来表示从n
个不同元素中取出m个元素的方式数目。
组合数通常用符号C(n, m)来表示,其计算公式为:
C(n, m) = n! / (m! (n m)!)。
其中,n! 表示n的阶乘,即n! = n (n-1) (n-2) (2)
1。
这个公式可以用来计算从n个不同元素中取出m个元素的所有可
能的组合数。
另外,组合数还有一些特性和性质,比如:
1. 对称性,C(n, m) = C(n, n-m),即从n个元素中取出m个
元素的组合数等于从n个元素中取出n-m个元素的组合数。
2. 递推关系,C(n, m) = C(n-1, m) + C(n-1, m-1),即组合
数满足递推关系,可以通过递推计算出组合数的值。
3. 组合数的性质还涉及到排列组合、二项式定理等方面的内容,
在实际问题中有着广泛的应用。
总之,组合数的计算公式是C(n, m) = n! / (m! (n m)!),并且具有一些特性和性质,这些知识对于数学和概率统计等领域都有着重要的意义。
组合数学中的组合数问题
组合数学中的组合数问题组合数学是数学的一个分支,研究的是选择、排列和组合的问题。
其中,组合数问题是其中一个重要的研究方向。
本文将围绕组合数问题展开讨论,讲述其基本概念、应用以及解决方法。
一、基本概念组合数是由元素个数有限的集合中取出若干元素(不考虑有序)的不同选择数,用C(n, k)来表示,公式为:C(n, k) = n! / (k!(n-k)!),其中,n表示集合中元素的个数,k表示选择的元素个数,!表示阶乘。
二、组合数的应用1. 应用于排列组合问题排列组合问题是组合数学中的一个重要问题,它研究的是从给定元素中选取若干个元素进行排列或组合的问题。
例如,在一组数字中选取三个数字排列成不同的序列,即是一个排列问题;而从一组数字中选取三个数字组合成不同的组合,即是一个组合问题。
组合数正是解决这类问题的数学工具。
2. 应用于概率论在概率论中,组合数被广泛应用于计算随机事件发生的可能性。
以抽奖为例,假设有5个奖品,现有10个人参与抽奖,其中3个人将获得奖品。
那么,我们可以通过组合数来计算不同情况下的中奖概率。
具体计算公式为:中奖概率 = C(10, 3) / C(5, 3)。
通过组合数的使用,我们可以准确地计算出各种随机事件的概率。
三、组合数问题的解决方法1. 公式计算法组合数问题的最直接解决方法就是使用组合数公式进行计算。
在计算C(n, k)时,我们可以先通过计算n的阶乘,然后分别计算k和(n-k)的阶乘,最后将结果相除即可得到组合数。
这种方法适用于n和k较小的情况,计算较为方便。
2. 递推法递推法是一种高效地计算组合数的方法。
通过观察组合数的性质,我们可以得到递推公式:C(n, k) = C(n-1, k-1) + C(n-1, k),通过计算已知组合数的值,不断利用递推公式进行计算,最终得到所需的组合数。
3. 组合数的性质组合数具有一些重要的性质,可以用于简化计算。
例如:C(n, k) = C(n, n-k),C(n, 0) = C(n, n) = 1等。
组合与组合数公式124
acd
acd cad dac adc cda dca
bcd
bcd cbd dbc bdc cdb dcb
A 求 3可分两步考虑: 求4P34 可分两步考虑:
C 第一步, 3 ( 4)个; 4
A 第二步, 3 ( 6)个; 3
A C A 根据分步计数原理, 3 4
3
4
3 3.
A 从而 3 C A 4
(2)某铁路线上有5个车站,则这条铁路线上 共需准备多少种车票? 排列问题 有多少种不同的火车票价? 组合问题
(3)10名同学分成人数相同的数学和 英语两个学习小组,共有多少种分法?组合问题 (握4)手10相人互聚问会候,,见共面需后握每手两多人少之次间?要组合问题 (5)从4个风景点中选出2个安排游览, 组合问题 (6有)从多4少个种风不景同点的中方选法出?2个,并确定这2个风景
问题
有5本不同的书: ( 1 ) 取 出 3 本 分 给 甲 、 乙 、 丙 三
人每人1本,有几种不同的分法? ( 2 ) 取 出 4 本 给 甲 , 有 几 种 不 同
的取法?
问题(1)中,书是互不相同的,人也 互不相同,所以是排列问题.
问题(2)中,书不相同,但甲所有 的书只有数量的要求而无“顺序”的要求, 因而问题(2)不是排列问题.
引例3
1. 北京、上海、广州三个民航站之 间的直达航线,需要准备多少种不同 的飞机票?
2. 北京、上海、广州三个民航站 之间的直达航线,有多少种不同的飞 机票价?
引例总结
以上两个引例所研究的问 题是不同的,但是它们有数量上 的共同点,即它们的实质都是:
从3个不同的元素里每 次取出2个元素,不管怎样 的顺序并成一组,一共有多 少不同的组?
1.3.1组合与组合数公式课件
[思路探索] 属于组合与排列的区分问题,看问题有无次序要求. 解 (1)集合中的元素具有无序性,顺序无关是组合问题. (2)两人握手与顺序无关是组合问题.
(3)学习小组的人与顺序无关是组合问题.
(4)将名额分给5个班,只与每班分得名额个数有关,属组合问题.
规律方法
区分排列还是组合问题的关键是看取出元素后是按顺
又∵0≤m-1≤8,且0≤m≤8,m∈N, 即7≤m≤8,∴m=7或8. (3)证明 n-1! n n m C-= · n-m n 1 n-m m!n-1-m!
n! = =C m n. m!n-m! 规律方法 求解与组合数有关的方程,不等式及证明问题时,要
应用组合数的公式,并注意其成立的条件.
序排列还是无序地组在一起,区分有无顺序的方法是把问题的一 个选择结果解出来,然后交换这个结果的任意两个元素的位置,
看是否会产生新的变化,若有新变化,即说明有顺序,是排列问
题;若无新变化,即说明无顺序,是组合问题.
【变式1】 有8盆不同的花, (1)从中选出2盆分别送给甲、乙两人每人一盆; (2)从中选出2盆放在教室里. 以上问题中,哪一个是组合问题?哪一个是排列问题? 解 (1)从8盆花中,选出2盆送给甲、乙两人每人一盆的送法 与顺序有关,故属排列问题. (2)从8盆花中,选出2盆放在教室的放法与顺序无关,故属组 合问题.
ห้องสมุดไป่ตู้
3.组合数公式
m nn-1n-2…n-m+1 n! A n m Cn =Am= = m! m!n-m! m
规定:C0 n=1. 试一试 找出从n个不同元素中取出m个元素的所有组合的个数 与从n个不同元素中取出m个元素的所有排列的个数的关系式.
m A n m m m 提示 Cm · A = A ,即: C = . m n m n n Am
组合与组合数公式
深化理解 想一想: 1.ab与ba是相同的排列,还是相同的组合?
2.两个相同的排列有什么特点?两个相同的 组合呢?
例题讲解 例1 判断下列问题是组合问题还是排列问题? 1)某铁路线上有5个车站,则这条铁路线上共 需准备多少种车票? 排列问题
问题一:从甲、乙、丙3名同学中选出2名去参 加某天的一项活动,其中1名同学参加上午的 活动,1名同学参加下午的活动,有多少种不
同的选法? P32 6 有顺序
选出来,并排序!得到是“有序列”-排列.元素有序.
问题二:从甲、乙、丙3名同学中选出2名去参
加某天一项活动,有多少种不同的选法?
甲、乙; 甲、丙; 乙、丙
有多少种不同的火车票价?组合问题
2)10名同学分成人数相同的数学和英语两个 学习小组,共有多少种分法? 组合问题
3)10人聚会,见面后每两人之间要握手相 互问候,共需握手多少次? 组合问题
4)从4个风景点中选出2同的方法?
排列问题
2、组合数定义:
从n个不同元素中取出m(m≤n)个元素的所有组
合合的数,个用数,符叫号做C从nmn个表不示同元素中取出m个元素的组
思考:如何计算: Cnm ?
Pm
从nn个求不同P的34 可元素分中两取步m个考元虑素的:所有排列个数。
第一步:从n个不同的元素中取m个元素。有Cnm种方法。
P C P 根第据二步分:步对计每数组原中理的,m.个元mn 素进行mn排 列。mm有Pmm种方法。
C 从而 m n
Pm n
Pm m
n! m!(n m)!
组合数计算方法
组合数计算方法
组合数的计算方法有以下几种:
1. 公式法:组合数的公式为C(m,n)=m!/((n!)*(m-n)!),其中m表示总的元素个数,n表示取出的元素个数。
利用这个公式可以直接计算组合数。
2. 递推法:Pascal三角形可以用来计算组合数。
首先,在三角形的两侧填充1。
然后,每个数等于它上方两个数之和。
这样形成的三角形就是Pascal三角形。
在Pascal三角形中,第n行第k个数就是组合数C(n,k)。
利用这个方法可以递推计算组合数。
3. 板子法:将取出的元素排成一排,然后在元素之间插入n-1个板子,将序列划分成n个部分。
这样做的组合数就是C(m+n-1,n-1)。
利用这个方法可以计算组合数。
4. 二项式定理法:二项式定理的公式为(a+b)n=ΣC(n,k)an-kbk,其中Σ是指从k=0到n的和,C(n,k)是组合数。
利用这个公式可以计算组合数。
组合与组合数公式
组合与组合数公式1.组合的定义一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.组合的概念中有两个要点:(1)取出元素,且要求n个元素是不同的;(2)“只取不排”,即取出的m个元素与顺序无关,无序性是组合的特征性质2.组合数的概念、公式、性质组合数定义从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数表示法C m n组合数公式乘积式C m n=A m nA m m=n(n-1)(n-2)…(n-m+1)m!阶乘式C m n=n!m!(n-m)!性质C m n=C n-mn,C mn+1=Cmn+Cm-1n备注①n,m∈N*且m≤n;②规定:C0n=1判断正误(正确的打“√”,错误的打“×”)(1)从a1,a2,a3三个不同元素中任取两个元素组成一个组合,所有组合的个数为C23.( )(2)从1,3,5,7中任取两个数相乘可得C24个积.( )(3)C35=5×4×3=60.( )(4)C2 0162 017=C 12 017=2 017.( )答案:(1)√(2)√(3)×(4)√若A3n=8C2n,则n的值为( )A.6 B.7 C.8 D.9 答案:A计算:(1)C37=________;(2)C1820=________.答案:(1)35 (2)190甲、乙、丙三地之间有直达的火车,相互之间的距离均不相等,则车票票价有________种.解析:车票的票价有C23=3种.答案:3探究点1 组合概念的理解判断下列问题是排列问题,还是组合问题.(1)从1,2,3,…,9九个数字中任取3个,组成一个三位数,这样的三位数共有多少个?(2)从1,2,3,…,9九个数字中任取3个,然后把这三个数字相加得到一个和,这样的和共有多少个?(3)5个人规定相互通话一次,共通了多少次电话?(4)5个人相互写一封信,共写了多少封信?【解】 (1)当取出3个数字后,如果改变3个数字的顺序,会得到不同的三位数,此问题不但与取出元素有关,而且与元素的安排顺序有关,是排列问题.(2)取出3个数字之后,无论怎样改变这3个数字的顺序,其和均不变,此问题只与取出元素有关,而与元素的安排顺序无关,是组合问题.(3)甲与乙通一次电话,也就是乙与甲通一次电话,无顺序区别,为组合问题.(4)发信人与收信人是有区别的,是排列问题.判断一个问题是否是组合问题的方法技巧区分某一问题是排列问题还是组合问题的关键是看取出元素后是按顺序排列还是无序地组合在一起.区分有无顺序的方法是把问题的一个选择结果写出来,然后交换这个结果中任意两个元素的位置,看是否会产生新的变化.若有新变化,即说明有顺序,是排列问题;若无新变化,即说明无顺序,是组合问题.判断下列问题是排列问题还是组合问题:(1)把当日动物园的4张门票分给5个人,每人至多分一张,而且票必须分完,有多少种分配方法?(2)从2,3,5,7,11这5个质数中,每次取2个数分别作为分子和分母构成一个分数,共能构成多少个不同的分数?(3)从9名学生中选出4名参加一个联欢会,有多少种不同的选法?解:(1)是组合问题.由于4张票是相同的(都是当日动物园的门票),不同的分配方法取决于从5人中选择哪4人,这和顺序无关.(2)是排列问题,选出的2个数作分子或分母,结果是不同的.(3)是组合问题,选出的4人无角色差异,不需要排列他们的顺序.探究点2 组合数公式、性质的应用计算下列各式的值.(1)3C 38-2C 25; (2)C 34+C 35+C 36+…+C 310; (3)C 5-nn +C 9-nn +1. 【解】 (1)3C 38-2C 25=3×8×7×63×2×1-2×5×42×1=148.(2)利用组合数的性质C mn +1=C mn +C m -1n , 则C 34+C 35+C 36+…+C 310 =C 44+C 34+C 35+…+C 310-C 44 =C 45+C 35+…+C 310-C 44= …=C 411-1=329.(3)⎩⎪⎨⎪⎧5-n ≤n ,5-n ≥0,9-n ≤n +1,9-n ≥0,解得4≤n ≤5.又因为n ∈N *,所以n =4或n =5. 当n =4时,原式=C 14+C 55=5. 当n =5时,原式=C 05+C 46=16.[变条件]若将本例(2)变为:C 55+C 56+C 57+C 58+C 59+C 510,如何求解? 解:原式=(C 66+C 56)+C 57+C 58+C 59+C 510 =(C 67+C 57)+C 58+C 59+C 510=… =C 610+C 510=C 611=C 511 =11×10×9×8×75×4×3×2×1=462.关于组合数公式的选取技巧(1)涉及具体数字的可以直接用n n -mC mn -1=nn -m ·(n -1)!m !(n -1-m )!=n !m !(n -m )!=C mn 进行计算.(2)涉及字母的可以用阶乘式C mn =n !m !(n -m )!计算.(3)计算时应注意利用组合数的性质C mn =C n -mn 简化运算.1.C 58+C 98100C 77=________.解析:C 58+C 98100C 77=C 38+C 2100×1=8×7×63×2×1+100×992×1=56+4 950=5 006. 答案:5 0062.若C 23+C 24+C 25+…+C 2n =363,则正整数n =________. 解析:由C 23+C 24+C 25+…+C 2n =363, 得1+C 23+C 24+C 25+…+C 2n =364, 即C 33+C 23+C 24+C 25+…+C 2n =364. 又C m n +C m -1n =C mn +1,则C 33+C 23+C 24+C 25+…+C 2n =C 34+C 24+C 25+…+C 2n =C 35+C 25+C 26+…+C 2n =…=C 3n +1,所以C 3n +1=364,化简可得(n +1)n (n -1)3×2×1=364,又n 是正整数,解得n =13. 答案:133.解方程:C 3n +618=C 4n -218.解:由原方程及组合数性质可知, 3n +6=4n -2,或3n +6=18-(4n -2), 所以n =2,或n =8,而当n =8时,3n +6=30>18,不符合组合数定义,故舍去. 因此n =2.探究点3 简单的组合问题现有10名教师,其中男教师6名,女教师4名. (1)现要从中选2名去参加会议有多少种不同的选法?(2)选出2名男教师或2名女教师参加会议,有多少种不同的选法? (3)现要从中选出男、女教师各2名去参加会议,有多少种不同的选法?【解】 (1)从10名教师中选2名去参加会议的选法种数,就是从10个不同元素中取出2个元素的组合数,即C 210=10×92×1=45种. (2)可把问题分两类情况:第1类,选出的2名是男教师有C 26种方法; 第2类,选出的2名是女教师有C 24种方法.根据分类加法计数原理,共有C 26+C 24=15+6=21种不同选法.(3)从6名男教师中选2名的选法有C 26种,从4名女教师中选2名的选法有C 24种,根据分步乘法计数原理,共有不同的选法C 26×C 24=6×52×1×4×32×1=90种.[变问法]本例其他条件不变,问题变为从中选2名教师参加会议,至少有1名男教师的选法是多少?最多有1名男教师的选法又是多少?解:至少有1名男教师可分两类:1男1女有C16C14种,2男0女有C26种.由分类加法计数原理知有C16C14+C26=39种.最多有1名男教师包括两类:1男1女有C16C14种,0男2女有C24种.由分类加法计数原理知有C16C14+C24=30种.解简单的组合应用题的策略(1)解简单的组合应用题时,首先要判断它是不是组合问题,组合问题与排列问题的根本区别在于排列问题与取出元素之间的顺序有关,而组合问题与取出元素的顺序无关.(2)要注意两个基本原理的运用,即分类与分步的灵活运用.[注意] 在分类和分步时,一定注意有无重复或遗漏.某次足球比赛共12支球队参加,分三个阶段进行.(1)小组赛:经抽签分成甲、乙两组,每组6队进行单循环比赛,以积分及净胜球数取前两名;(2)半决赛:甲组第一名与乙组第二名,乙组第一名与甲组第二名作主客场交叉淘汰赛(每两队主客场各赛一场)决出胜者;(3)决赛:两个胜队参加决赛一场,决出胜负.问全部赛程共需比赛多少场?解:小组赛中每组6队进行单循环比赛,就是每组6支球队的任两支球队都要比赛一次,所以小组赛共要比赛2C26=30(场).半决赛中甲组第一名与乙组第二名,乙组第一名与甲组第二名主客场各赛一场,所以半决赛共要比赛2A22=4(场).决赛只需比赛1场,即可决出胜负.所以全部赛程共需比赛30+4+1=35(场).1.下面几个问题属于组合的是( )①由1,2,3,4构成双元素集合;②5支球队进行单循环足球比赛的分组情况;③由1,2,3构成两位数的方法;④由1,2,3组成无重复数字的两位数的方法.A.①③B.②④C.①②D.①②④解析:选C.由集合元素的无序性可知①属于组合问题;因为每两个球队比赛一次,并不需要考虑谁先谁后,没有顺序的区别,故②是组合问题;③④中两位数顺序不同数字不同为排列问题.2.若C n 12=C 2n -312,则n 等于( )A .3B .5C . 3或5D .15解析:选C.由组合数的性质得n =2n -3或n +2n -3=12,解得n =3或n =5,故选C. 3.10个人分成甲、乙两组,甲组4人,乙组6人,则不同的分组种数为________.(用数字作答)解析:从10人中任选出4人作为甲组,则剩下的人即为乙组,这是组合问题,共有C 410=210种分法. 答案:2104.计算下列各式的值. (1)C 98100+C 199200; (2)C 37+C 47+C 58+C 69; (3)C 38-n3n +C 3n21+n .解:(1)C 98100+C 199200=C 2100+C 1200=100×992×1+200=5 150. (2)C 37+C 47+C 58+C 69=C 48+C 58+C 69=C 59+C 69=C 610=C 410=210.(3)因为⎩⎪⎨⎪⎧1≤38-n ≤3n ,1≤3n ≤21+n ,即⎩⎪⎨⎪⎧192≤n ≤37,13≤n ≤212,所以192≤n ≤212.因为n ∈N *,所以n =10,所以C 38-n3n +C 3n21+n =C 2830+C 3031=C 230+C 131=466.[A 基础达标]1.楼道里有12盏灯,为了节约用电,需关掉3盏不相邻的灯,则关灯方案有( ) A .72种 B .84种 C .120种D .168种解析:选C.需关掉3盏不相邻的灯,即将这3盏灯插入9盏亮着的灯的空当中,所以关灯方案共有C 310=120(种). 2.方程C x28=C 3x -828的解为( ) A .4或9 B .4 C .9D .5解析:选A.当x =3x -8时,解得x =4;当28-x =3x -8时,解得x =9.3.将2名女教师,4名男教师分成2个小组,分别安排到甲、乙两所学校轮岗支教,每个小组由1名女教师和2名男教师组成,则不同的安排方案共有( ) A .24种 B .12种 C .10种D .9种解析:选B.第一步,为甲地选1名女老师,有C 12=2种选法;第二步,为甲地选2名男教师,有C 24=6种选法;第三步,剩下的3名教师到乙地,故不同的安排方案共有2×6×1=12种.故选B.4.化简C 9798+2C 9698+C 9598等于( ) A .C 9799 B .C 97100 C .C 9899D .C 98100解析:选B.由组合数的性质知,C 9798+2C 9698+C 9598 =(C 9798+C 9698)+(C 9698+C 9598) =C 9799+C 9699=C 97100.5.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有( ) A .2人或3人 B .3人或4人 C .3人D .4人解析:选A.设男生有n 人,则女生有(8-n )人,由题意可得C 2n C 18-n =30,解得n =5或n =6,代入验证,可知女生为2人或3人.故选A. 6.若A 3n =6C 4n ,则n 的值为________. 解析:由题意知n (n -1)(n -2) =6·n (n -1)(n -2)(n -3)4×3×2×1,化简得n -34=1,所以n =7.答案:77.某单位需同时参加甲、乙、丙三个会议,甲需2人参加,乙、丙各需1人参加,从10人中选派4人参加这三个会议,不同的安排方法有________种.解析:从10人中选派4人有C 410种方法,对选出的4人具体安排会议有C 24C 12种方法,由分步乘法计数原理知,不同的选派方法有C 410C 24C 12=2 520种. 答案:2 5208.若C m -1n ∶C mn ∶C m +1n =3∶4∶5,则n -m =________.解析:由题意知:⎩⎪⎨⎪⎧C m -1n C m n =34,C mn C m +1n =45, 由组合数公式得⎩⎪⎨⎪⎧3n -7m +3=0,9m -4n +5=0,解得:n =62,m =27.n -m =62-27=35. 答案:359.判断下列问题是否为组合问题,若是组合则表示出相应结果.(1)10名同学分成人数相同的数学和英语两个学习小组,共有多少种分法?(2)从1,2,3,…,9九个数字中任取3个,由小到大排列,构成一个三位数,这样的三位数共有多少个?(3)10人聚会,见面后每两人之间要握手相互问候,共需握手多少次? 解:(1)与顺序无关是组合问题,共有C 510种不同分法. (2)大小顺序已确定,故是组合问题,构成三位数共有C 39个. (3)握手无先后顺序,故是组合问题,共需握手C 210次. 10.(1)解方程:C x -2x +2+C x -3x +2=110A 3x +3; (2)解不等式:1C 3x -1C 4x <2C 5x .解:(1)原方程可化为C x -2x +3=110A 3x +3,即C 5x +3=110A 3x +3, 所以(x +3)!5!(x -2)!=(x +3)!10·x !,所以1120(x -2)!=110·x (x -1)·(x -2)!,所以x 2-x -12=0,解得x =4或x =-3, 经检验知,x =4是原方程的解. (2)通过将原不等式化简可以得到6x (x -1)(x -2)-24x (x -1)(x -2)(x -3)<240x (x -1)(x -2)(x -3)(x -4).由x ≥5,得x 2-11x -12<0,解得5≤x <12. 因为x ∈N *,所以x ∈{5,6,7,8,9,10,11}.[B 能力提升]11.式子C m +210+C 17-m10(m ∈N *)的值的个数为( ) A .1B .2C .3D .4解析:选A.由⎩⎪⎨⎪⎧m +2≤10,17-m ≤10,得7≤m ≤8,所以m =7或8.当m =7时,原式=C 910+C 1010. 当m =8时,原式=C 1010+C 910, 故原式的值只有一个.12.某班级有一个7人小组,现任选其中3人相互调整座位,其余4人座位不变,则不同的调整方案有( ) A .35种 B .70种 C .30种D .65种解析:选B.先从7人中选出3人有C 37=35种情况,再对选出的3人相互调整座位,共有2种情况,故不同的调整方案种数为2C 37=70.13.一个口袋内装有大小相同的7个白球和1个黑球. (1)从口袋内取出3个球,共有多少种取法?(2)从口袋内取出3个球,使其中含有1个黑球,有多少种取法? (3)从口袋内取出3个球,使其中不含黑球,有多少种取法? 解:(1)从口袋内的8个球中取出3个球, 取法种数是C 38=8×7×63×2×1=56.(2)从口袋内取出3个球,有1个是黑球,于是还要从7个白球中再取出2个,取法种数是C 27=7×62×1=21.(3)由于所取出的3个球中不含黑球,也就是要从7个白球中取出3个球,取法种数是C 37=错误!=35.14.(选做题)某足球赛共32支球队有幸参加,它们先分成8个小组进行循环赛,决出16强(每队均与本组其他队赛一场,各组一、二名晋级16强),这16支球队再分成8个小组决出8强,8强再分成4个小组决出4强,4强再分成2个小组决出2强,最后决出冠、亚军,此外还要决出第三名、第四名,问这次足球赛共进行了多少场比赛? 解:可分为如下几类比赛:(1)小组循环赛:每组有C 24=6场,8个小组共有48场;(2)八分之一淘汰赛,8个小组的第一、二名组成16强,根据赛制规则,16强分成8组,每组两个队比赛一场,可以决出8强,共有8场;(3)四分之一淘汰赛,根据赛制规则,8强再分成4组,每组两个队比赛一次,可以决出4强,共有4场;(4)半决赛,4强再分成2组,每组两个队比赛一场,可以决出2强,共有2场;(5)决赛,2强比赛1场确定冠、亚军,4强中的另两支队比赛1场,决出第三、四名,共有2场.综上,共有48+8+4+2+2=64场比赛.。
组合数公式大全
组合数公式大全组合数公式是组合数学中重要的一部分,包括排列数、组合数、二项式定理等内容。
下面将详细介绍组合数公式的相关知识,包括概念、性质和常用公式等。
一、排列数的概念和性质排列数是组合数学中的一个重要概念,它指的是从n个不同元素中取出m(m≤n)个元素按照一定顺序排成一列的方法数。
排列数通常用P(n,m)表示,计算公式如下:P(n,m) = n! / (n-m)!n!表示n的阶乘,即n! = n×(n-1)×(n-2)×...×2×1。
排列数的性质包括以下几个方面:1. P(n,1) = n,即从n个元素中取出1个元素的排列数为n。
2. P(n,n) = n!,即从n个元素中取出n个元素的排列数为n的阶乘。
3. P(n,m) = n×P(n-1,m-1),即从n个元素中取出m个元素的排列数等于n乘以从n-1个元素中取出m-1个元素的排列数。
二、组合数的概念和性质组合数是组合数学中的另一个重要概念,它指的是从n个不同元素中取出m(m≤n)个元素,不考虑元素的排列顺序,共有多少种取法。
组合数通常用C(n,m)表示,计算公式如下:C(n,m) = n! / [m!(n-m)!]组合数的性质包括以下几个方面:1. C(n,0) = 1,即从n个元素中取出0个元素的组合数为1。
2. C(n,n) = 1,即从n个元素中取出n个元素的组合数为1。
3. C(n,1) = n,即从n个元素中取出1个元素的组合数为n。
4. C(n,m) = C(n,n-m),即从n个元素中取出m个元素的组合数等于从n个元素中取出n-m个元素的组合数。
三、二项式定理二项式定理是代数学中的一个重要定理,它给出了一个任意实数指数的二项式的展开式。
二项式定理表达式如下:(a+b)^n = C(n,0)*a^n*b^0 + C(n,1)*a^(n-1)*b^1 + C(n,2)*a^(n-2)*b^2 + ... + C(n,n-1)*a^1*b^(n-1) + C(n,n)*a^0*b^n在二项式定理中,C(n,m)表示从n个元素中取出m个元素的组合数,a和b是任意实数,n是任意非负整数。
高二数学选修课件时组合与组合数公式
适用范围
适用于组合元素个数较少,且 可以直观列举出所有可能结果 的情况。
优点
直观、易懂,能够直接得到问 题的答案。
缺点
当组合元素个数较多时,列举 过程可能变得繁琐,容易出错
。
插空法
01
定义
插空法是一种求解组合问题的 方法,它适用于某些特殊的组 合问题,如“不相邻”问题等 。该方法的基本思想是将需要 排列的元素先排好,然后将需 要插入的元素插入到已排好元 素的空隙中。
存在问题分析
在教学过程中,我发现部分学生在理解和运用组合数公式时存在一定困难。这可能是由于学生对阶乘运算和代数 运算掌握不够熟练所致。针对这些问题,我将加强相关知识点的讲解和练习,帮助学生更好地掌握所学知识。
XX
THANKS
感谢观看ቤተ መጻሕፍቲ ባይዱ
REPORTING
图论算法
图论算法是解决图论问题的有效方法 ,如最短路径算法、最小生成树算法 等。这些算法在组合优化问题中也有 广泛应用。
组合优化问题
组合优化是图论与组合数学的重要交 叉点,涉及如何在满足一定条件下寻 找最优的组合方案。例如,旅行商问 题、最小生成树问题等。
代数结构与组合设计
代数结构基础
代数结构是研究数学对象之间运算规律的数学分支,如群、环、域等。这些结构与组合数学中的计数、排列、组合等 问题密切相关。
,可以吸引玩家的兴趣并提高游戏的趣味性。例如,一些益智类游戏就
需要运用组合数学的知识来设计关卡和难度等级。
XX
PART 05
拓展:组合数学与其他学 科联系
REPORTING
图论与组合优化
图论基本概念
图论是研究图的结构、性质及其应用 的数学分支,与组合数学密切相关。 图由顶点和边组成,可用于表示对象 之间的关系。
组合与组合数公式(二)
组合数的定义公式为:C(n, m) = n! / (m!(n-m)!)
组合数的性质
组合数的性质一
C(n, m) = C(n, n-m),即从n个不同 元素中取出m个元素和取出n-m个元 素的组合数相等。
k)。
递推关系法
定义
递推关系法是通过组合数之间的递推关 系,逐步推导出所需的组合数值。
VS
举例
例如,已知C(n,k) = C(n-1,k-1) + C(n1,k),可以根据这个递推关系逐步计算出 C(n,k)的值。
PART 03
组合数公式的应用
REPORTING
WENKU DESIGN
在概率论中的应用
在统计学中的应用
样本组合统计
在统计学中,样本组合是一种常见的 统计方法,而组合数公式可以用于计
算样本组合的概率和期望值。
因子分解
在统计学中,因子分解是一种重要的 数据分析方法,而组合数公式可以用
于因子分解的计算。
多元分布计算
在多元统计分析中,组合数公式可以 用于计算多元分布的概率和期望值。
在计算机科学中的应用
PART 04
组合数公式的扩展
REPORTING
WENKU DESIGN
超几何分布
定义
超几何分布是描述从有限总体中抽取n个样本,其中k个 是成功样本的概率分布。
01
公式
$P(X=k) = frac{{C_{M}^{k} cdot C_{N-M}^{n-k}}}{{C_{N}^{n}}}$,其中 M是成功样本的数量,N是总体样本的 数量,n是抽取的样本数量。
组合与组合数公式课件
重复计算出错
【示例】 从4台甲型电视机和5台乙型电视机中任意取出3 台,其中至少有甲型和乙型电视机各1台,则不同的取法有多 少种?
错解:先保证各 1 台,再从剩下的电视机中任取 1 台,即 分三步.
第一步,从甲型电视机中取 1 台,有 C14种取法; 第二步,从乙型电视机中取 1 台,有 C15种取法; 第三步,从剩下的 7 台电视机中取 1 台,有 C17种取法.根 据分步乘法计数原理,共有 C14·C15·C17=140 种取法.
8
(1)注意排列问题与组合问题的区别,关键看是否与元素的 顺序有关;
(2)“含有”或“不含有”某些元素的组合题型:“含”, 则先将这些元素取出,再由另外元素补足;“不含”,则先将 这些元素剔除,再从剩下的元素中去选取;
(3)分析题目条件,避免选取时重复和遗漏,用直接法分类 复杂时,可用间接法处理.
排列、组合的概念辨析
【例1】 判断下列问题是排列问题,还是组合问题. (1)从1,2,3,…,9九个数字中任取3个,组成一个三位数, 这样的三位数共有多少个? (2)从1,2,3,…,9九个数字中任取3个,然后把这3个数字 组成一个集合,这样的集合共有多少个? (3)从a,b,c,d四名学生中选2名学生,去完成同一件工 作有多少种不AA_mmnm____=nn-1n-m2!…n-m+1=_m_!___nn_! -__m__!. 规定 Con=_C_0n_=__1___.
4.组合数的两个性质 (1)Cmn =_C__mn_=__C_nn_-_m___;(2)Cmn+1=__C_nm_+_1_=__C_mn_+__C_mn_-_1___.
(4)5个人相互通话一次,共通了多少次电话? (5)5个人相互各写一封信,共写了多少封信? 【解题探究】取出元素之后,在安排这些元素时,与顺序 有关则为排列问题,与顺序无关即为组合问题.
【数学课件】组合与组合数公式
排列与元素的顺序有关,而组合则与元素的顺序无关
想一想:ab与ba是相同的排列还是相同的组合?为什么?
两个相同的排列有什么特点?两个相同的组合呢?
判断下列问题是组合问题还是排列问题?
(1)设集合A={a,b,c,d,e},则集合A的含有3个元素的 子集有多少个? 组合问题
(2)某铁路线上有5个车站,则这条铁路线上共需准备 多少种车票? 排列问题 有多少种不同的火车票价? 组合问题
组合数,用符号 Cnm表示
如: C32 3
思考:如何计算:
C42 6
C43
写出从a,b,c,d 四个元素中任取三个元素的所有组合。