西安交大西工大 考研备考期末复习 概率论与数理统计 第一部分 随机事件及其概率(带答案)
概率论与数理统计复习要点
第一章 随机事件及其概率一、随机事件及其运算 1. 样本空间、随机事件①样本点:随机试验的每一个可能结果,用ω表示; ②样本空间:样本点的全集,用Ω表示; 注:样本空间不唯一.③随机事件:样本点的某个集合或样本空间的某个子集,用A,B,C,…表示; ④必然事件就等于样本空间;不可能事件()∅是不包含任何样本点的空集; ⑤基本事件就是仅包含单个样本点的子集。
2. 事件的四种关系①包含关系:A B ⊂,事件A 发生必有事件B 发生; ②等价关系:A B =, 事件A 发生必有事件B 发生,且事件B 发生必有事件A 发生;③互不相容(互斥): AB =∅ ,事件A 与事件B 一定不会同时发生。
④互逆关系(对立):A ,事件A 发生事件A 必不发生,反之也成立;互逆满足A A AA ⎧⋃=Ω⎨=∅⎩注:互不相容和对立的关系(对立事件一定是互不相容事件,但互不相容事件不一定是对立事件。
) 3. 事件的三大运算①事件的并:A B ⋃,事件A 与事件B 至少有一个发生。
若AB =∅,则A B A B ⋃=+;②事件的交:A B AB ⋂或,事件A 与事件B 都发生; ③事件的差:-A B ,事件A 发生且事件B 不发生。
4. 事件的运算规律①交换律:,A B B A AB BA ⋃=⋃=②结合律:()(),()()A B C A B C A B C A B C ⋃⋃=⋃⋃⋂⋂=⋂⋂③分配律:()()(),()()()A B C A B A C A B C A B A C ⋃⋂=⋃⋂⋃⋂⋃=⋂⋃⋂ ④德摩根(De Morgan )定律:,A B AB AB A B⋃==⋃对于n 个事件,有1111,n ni i i i nni ii i A A A A ======二、随机事件的概率定义和性质1.公理化定义:设试验的样本空间为Ω,对于任一随机事件),(Ω⊂A A 都有确定的实值P(A),满足下列性质: (1) 非负性:;0)(≥A P (2) 规范性:;1)(=ΩP(3)有限可加性(概率加法公式):对于k 个互不相容事件k A A A ,,21 ,有∑∑===ki i ki i A P A P 11)()(.则称P(A)为随机事件A 的概率. 2.概率的性质 ①()1,()0P P Ω=∅= ②()1()P A P A =-③若A B ⊂,则()(),()()()P A P B P B A P B P A ≤-=-且 ④()()()()P A B P A P B P AB ⋃=+-()()()()()()()()P A B C P A P B P C P AB P BC P AC P ABC ⋃⋃=++---+注:性质的逆命题不一定成立的. 如 若),()(B P A P ≤则B A ⊂。
西安交大西工大 考研备考期末复习 数理统计第一部分 基本概念(带答案)
第一部分 基本概念基础练习一. 填空题1若1210,,,X X X 相互独立,2~(,),1,2,,10i i iX N i μσ=,并且σ已知,则1210,,,X X X 的函数=2χ________服从于210χ()分布.答案:102211)ii i X μσ=-∑(2 ),(~),,(~222211σσμμN Y N X ,从总体X 、Y 中分别抽取容量为1n 、2n 的样本,样本均值分别为X 、Y X Y -则,= 。
答案: ),(22212121n n N σσμμ+-3设T 服从自由度为{}{}λλ<=>T P a T P t n 则若分布的,,= 。
答案:21a- 4设621,,,X X X 是取自总体)1,0(~N X 的样本,264231)()(∑∑==+=i i i i X X Y ,则当c = 时, cY 服从2χ分布,)(2χE = .。
答案:1/3,25设总体X 服从N(a,22)分布,12(,,,)n X X X 是来自此总体的样本,X 为样本均值,试问样本容量n>_________,才能使E(|X -a|2)≤0.1。
答案:n >406设12,,n X X X ,为总体X 的一个样本,若11ni i X X n ==∑且EX μ=,2DX σ=,则EX = _________,DX = __________。
答案:μ,2nσ7设总体()22X N σ服从正态分布,,1216,,X X X ,是来自总体X 的一个样本,且161116i i X X ==∑, 则48X σ-服从 ____ ______分布.答案:()01N ,8某地的食用水中以每cm3中含大肠杆菌个数 X 为特性指标,已知它服从均值为λ 的泊松分布,从水中抽一个容量为n 的样本 Z Z Z n 12,,, ,则样本的联合分布律为 。
答案:P Z x Z x x e n x i i nn i 111===-=∏,,!b gλλ12()12(!!!)n n ex x x n x x x λλ-+++=9某种元件的寿命服从均值为1λ的指数分布,用寿命作为元件的特性指标,任取n 个元件,其寿命构成一个容量为n 的样本,则样本分布的联合分布密度为 。
西安交大西工大 考研备考期末复习 线性代数习题大全试题与答案解析
3. 求实数a和b, 使向量组1 1,1,0,0,2 0,1,1,0 3 0,0,1,1与向量组1 1, a, b,1, 2 2,1,1,2, 3 0,1,2,1等价.
三、证明题 (每小题8分,共24分).
1.设A为m n矩阵, B为n m矩阵,且m n,试证明
det(AB) 0.
1 2
1 4 7 2
1 10 17 4
4
1
3 3
2.求解下列线性方程组
1
23xx112xx2263xx3345xx4423xx55
0 0
x1 5x2 6x3 8x4 6x5 0
x1 3 x2 3 x3 2 x4 x5 3
2
2 x1 6 x2 x1 3 x2 2 x3
有非零解?
四、证明(每小题8分,共24分).
a2 b2 1. c2 d2
a 12 b 12 c 12 d 12
0;
a 22 b 22 c 22 d 22
a 32 b 32 c 32 d 32
2 cos
1
2. Dn
1
2 cos
1
sinn 1 ;
sin
1 1
1 2cos
10100 11000
5. 已知A 0 1 1 0 0则秩RA
00110 01011
6. 方程组AX 0以1 1,0,2,2 0,1,1为其基
础解系, 则该方程的系数矩阵为
7. 设
1
2,
1,2,3,
A
,则秩RA
3
8.向量组1 1,2,3,4,2 2,3,4,5,3 3,4,5,6
其余情形, 方程组无解.
通解为x
2 2
概率复习
要计算 P( A0 | B)
由贝叶斯公式
P( A0 | B)
110 0.369 2 P ( Ak ) P ( B | Ak ) 298
P ( A0 ) P ( B | A0 )
k 0
西安交通大学
第二章 随机变量与概率分布
§1.一维随机变量
F ( x) ˆ P X x, x ,
P( A B) =
。
1 ,则A,B至少发生一个 2
的概率为_______; 4 已知 P( A B ) 0.4, P( B | A) 0.2, ,求 P( A) = 5 已知 A,B相互独立, A,C互斥,且
1 1 1 P ( A) , P ( B ) , P (C ) , 3 2 4
西安交通大学
往届考题(第二章)
A Be x / 2 , x 0, 1.设随机变量X的分布数为 F ( x) 0, x 0, (1)确定A,B的值,(2)求 P{2 X 4}, (3)求X的概率密度
2
2. 设随机变量X的率密度为 f ( x) ax2 (1 x 1) (1)确定a的值. (2)求X2的概率密度。 3.设随机变量X 和Y 相互独立, X ~ N (1,7), Y ~ N (3,1), X, Z 3 X Y , W e 求随机变量Z,W的概率密度. 4.设 X ~ U (0,2), Y的概率密度为 fY ( y) 1/[ (1 y 2 )]( y ) 且X,Y相互独立,求Z=X+Y 的概率密度。
f [h( y )] h( y ) , fY ( y ) 0, y g ( R) 其它
2o 一般情形,先求Y 的分布函数,再求其概率密度.
概率论与数理统计(经管类)复习要点 第1章 随机事件与概率
第一章随机事件与概率1. 从发生的必然性角度区分,现象分为确定性现象和随机现象。
随机现象:在一定条件下,可能出现这样的结果,也可能出现那样的结果,预先无法断言。
统计规律性:在大量重复试验或观察中所呈现的固有规律性。
概率论与数理统计就是研究和揭示随机现象统计规律的一门数学学科,随机现象是概率论与数理统计的主要对象。
(1)概率论:从数量上研究随机现象的统计规律性的科学。
(2)数理统计:从应用角度研究处理随机性数据,建立有效的统计方法,进行统计推理。
2. (1)试验的可重复性——可在相同条件下重复进行;(2)一次试验结果的随机性——一次试验之前无法确定具体是哪种结果出现,但能确定所有的可能结果;(3)全部试验结果的可知性——所有可能的结果是预先可知的。
在概率论中,将具有上述三个特点的试验成为随机试验,简称试验,记作E。
样本点:试验的每一个可能出现的结果称为一个样本点,记为ω。
样本空间:试验的所有可能结果所组成的集合称为试验E的样本空间,记为Ω。
3. 在一次试验中可能出现也可能不出现的事件,统称为随机事件,记作A,B,C或A1,A2,…随机事件:样本空间Ω的任意一个子集称, 简称“事件”,记作A、B、C等。
事件发生:在一次试验中,当这一子集中的一个样本点出现时。
基本事件:样本空间Ω仅包含一个样本点ω的单点子集{ω}。
两个特殊事件:必然事件Ω、不可能事件φ样本空间Ω包含所有的样本点,它是Ω自身的子集,在每次试验中它总是发生,称为必然事件。
空集φ不包含任何样本点,它也作为样本空间Ω的子集,在每次试验中都不发生,称为不可能事件。
4. 随机事件的关系与运算(1)事件的包含与相等设A,B为两个事件,若A发生必然导致B发生,则称事件B包含A,或称事件A包含在B中,记作B⊃A,A⊂B。
①φ⊂A⊂Ω②若A⊂B且B⊂A,则称A与B相等,记作A=B。
事实上,A和B在意义上表示同一事件,或者说A和B 是同一事件的不同表述。
(2)和事件称事件“A,B中至少有一个发生”为事件A与事件B的和事件,也称为A与B的并,记作A∪B或A+B。
概率论与数理统计期末复习提纲
推论: P( B A) P( B) P( AB ) 4) P( A) 1 5) P( A) 1 P( A ) 6) P( A B) P( A) P( B) P( AB)
第二章 一维随机变量及其分布
一维随机变量
离散型随机变量
随机变量的分布函数 连续性随机变量 随机变量函数的分布
pij P{X xi , Y y j }, i, j 1, 2,
满足规范性条件 pij 1 ,则称 ( X , Y ) 为二维离散型
i , j 1
随机变量。
定义
设 ( X ,Y ) 为二维离散型随机变量,其所有可 能取值为 ( xi , yi )(i, j 1, 2,) ,则称 pij (i, j 1, 2,) 为 ( X , Y )的联合分布律。
3 x p ( x ) dx 1 ke dx 1 , 解:(1) , 0
ke 3 x , p( x ) 0,
x0
x 0,
1 3x k e 3
0
1,
k 3,
即
3e 3 x , p( x ) 0,
0
0
数学期望的性质
1. 设C是常数,则E(C)=C; 请注意: 2. 若k是常数,则E(kX)=kE(X); 由E(XY)=E(X)E(Y) 不一定能推出X,Y 3. E(X+Y) = E(X)+E(Y); 独立 n n 推广 : E[ X i ] EX i
i 1 i 1
4. 设X、Y 相互独立,则 E(XY)=E(X)E(Y);
0 1
0 1
x
1 2 x 2x 1 2
概率论与数理统计期末复习
概率论与数理统计期末复习《概率论与数理统计》总复习提纲第⼀块随机事件及其概率内容提要基本内容:随机事件与样本空间,事件的关系与运算,概率的概念和基本性质,古典概率,⼏何概率,条件概率,与条件概率有关的三个公式,事件的独⽴性,贝努⾥试验.1、随机试验、样本空间与随机事件(1)随机试验:具有以下三个特点的试验称为随机试验,记为.1)试验可在相同的条件下重复进⾏;2)每次试验的结果具有多种可能性,但试验之前可确知试验的所有可能结果;3)每次试验前不能确定哪⼀个结果会出现.(2)样本空间:随机试验的所有可能结果组成的集合称为的样本空间记为Ω;试验的每⼀个可能结果,即Ω中的元素,称为样本点,记为.(3)随机事件:在⼀定条件下,可能出现也可能不出现的事件称为随机事件,简称事件;也可表述为事件就是样本空间的⼦集,必然事件(记为)和不可能事件(记为). 2、事件的关系与运算(1)包含关系与相等:“事件发⽣必导致发⽣”,记为或;且.(2)互不相容性:;互为对⽴事件且.(3)独⽴性:(1)设为事件,若有,则称事件与相互独⽴. 等价于:若().(2)多个事件的独⽴:设是n个事件,如果对任意的,任意的,具有等式,称个事件相互独⽴.3、事件的运算(1)和事件(并):“事件与⾄少有⼀个发⽣”,记为.(2)积事件(交):“事件与同时发⽣”,记为或.(3)差事件、对⽴事件(余事件):“事件发⽣⽽不发⽣”,记为称为与的差事件;称为的对⽴事件;易知:.4、事件的运算法则1) 交换律:,;2) 结合律:,;3) 分配律:,;4) 对偶(De Morgan)律:,,可推⼴5、概率的概念(1)概率的公理化定义:(2)频率的定义:事件在次重复试验中出现次,则⽐值称为事件在次重复试验中出现的频率,记为,即.(3)统计概率:称为事件的(统计)概率.在实际问题中,当很⼤时,取(4)古典概率:若试验的基本结果数为有限个,且每个事件发⽣的可能性相等,则(试验对应古典概型)事件发⽣的概率为:.(5)⼏何概率:若试验基本结果数⽆限,随机点落在某区域g的概率与区域g的测度(长度、⾯积、体积等)成正⽐,⽽与其位置及形状⽆关,则(试验对应⼏何概型),“在区域中随机地取⼀点落在区域中”这⼀事件发⽣的概率为:.(6)主观概率:⼈们根据经验对该事件发⽣的可能性所给出的个⼈信念.6、概率的基本性质(1)不可能事件概率零:=0.(2)有限可加性:设是n个两两互不相容的事件,即=,(),则有=+.(3)单调不减性:若事件,且.(4)互逆性:且.(5)加法公式:对任意两事件,有-;此性质可推⼴到任意个事件的情形.(6)可分性:对任意两事件,有,且7、条件概率与乘法公式(1)条件概率:设是两个事件,即,则称为事件发⽣的条件下事件发⽣的条件概率.(2)乘法公式:设且则称为事件的概率乘法公式.8、全概率公式与贝叶斯(Bayes)公式(1)全概率公式:设是的⼀个划分,且,,则对任何事件,有称为全概率公式.(2)贝叶斯(Bayes)公式:设是的⼀个划分,且,则对任何事件,有称为贝叶斯公式或逆概率公式.9、贝努⾥(Bernoulli)概型(1)只有两个可能结果的试验称为贝努⾥试验,常记为.也叫做“成功—失败”试验,“成功”的概率常⽤表⽰,其中=“成功”.(2)把重复独⽴地进⾏次,所得的试验称为重贝努⾥试验,记为.(3)把重复独⽴地进⾏可列多次,所得的试验称为可列重贝努⾥试验,记为.以上三种贝努⾥试验统称为贝努⾥概型.(4)中成功次的概率是:其中.疑难分析1、必然事件与不可能事件必然事件是在⼀定条件下必然发⽣的事件,不可能事件指的是在⼀定条件下必然不发⽣的事件.它们都不具有随机性,是确定性的现象,但为研究的⽅便,把它们看作特殊的随机事件.2、互逆事件与互斥(不相容)事件如果两个事件与必有⼀个事件发⽣,且⾄多有⼀个事件发⽣,则、为互逆事件;如果两个事件与不能同时发⽣,则、为互斥事件.因⽽,互逆必定互斥,互斥未必互逆.区别两者的关键是:当样本空间只有两个事件时,两事件才可能互逆,⽽互斥适⽤与多个事件的情形.作为互斥事件在⼀次试验中两者可以都不发⽣,⽽互逆事件必发⽣⼀个且只发⽣⼀个.3、两事件独⽴与两事件互斥两事件、独⽴,则与中任⼀个事件的发⽣与另⼀个事件的发⽣⽆关,这时;⽽两事件互斥,则其中任⼀个事件的发⽣必然导致另⼀个事件不发⽣,这两事件的发⽣是有影响的,这时.可以⽤图形作⼀直观解释.在图1.1左边的正⽅形中,图1.1,表⽰样本空间中两事件的独⽴关系,⽽在右边的正⽅形中,,表⽰样本空间中两事件的互斥关系.4、条件概率与积事件概率是在样本空间内,事件的概率,⽽是在试验增加了新条件发⽣后的缩减的样本空间中计算事件的概率.虽然、都发⽣,但两者是不同的,⼀般说来,当、同时发⽣时,常⽤,⽽在有包含关系或明确的主从关系时,⽤.如袋中有9个⽩球1个红球,作不放回抽样,每次任取⼀球,取2次,求:(1)第⼆次才取到⽩球的概率;(2)第⼀次取到的是⽩球的条件下,第⼆次取到⽩球的概率.问题(1)求的就是⼀个积事件概率的问题,⽽问题(2)求的就是⼀个条件概率的问题. 5、全概率公式与贝叶斯(Bayes)公式当所求的事件概率为许多因素引发的某种结果,⽽该结果⼜不能简单地看作这诸多事件之和时,可考虑⽤全概率公式,在对样本空间进⾏划分时,⼀定要注意它必须满⾜的两个条件.贝叶斯公式⽤于试验结果已知,追查是何种原因(情况、条件)下引发的概率.第⼆块随机变量及其分布内容提要基本内容:随机变量,随机变量的分布的概念及其性质,离散型随机变量的概率分布,连续型随机变量的概率分布,常见随机变量的分布,随机变量函数的分布.1、随机变量设是随机试验的样本空间,如果对于试验的每⼀个可能结果,都有唯⼀的实数与之对应,则称为定义在上的随机变量,简记为.随机变量通常⽤⼤写字母等表⽰.2、离散型随机变量及其分布列如果随机变量只能取有限个或可列个可能值,则称为离散型随机变量.如果的⼀切可能值为,并且取的概率为,则称为离散型随机变量的概率函数(概率分布或分布律).也称分布列,常记为其中.常见的离散型随机变量的分布有:(1)两点分布(0-1分布):记为,分布列为或(2)⼆项分布:记为,概率函数(3)泊松分布,记为,概率函数泊松定理设是⼀常数,是任意正整数,设,则对于任⼀固定的⾮负整数,有.当很⼤且很⼩时,⼆项分布可以⽤泊松分布近似代替,即,其中(4)超⼏何分布:记为,概率函数,其中为正整数,且.当很⼤,且较⼩时,有(5)⼏何分布:记为,概率函数.3、分布函数及其性质分布函数的定义:设为随机变量,为任意实数,函数称为随机变量的分布函数.分布函数完整地描述了随机变量取值的统计规律性,具有以下性质:(1)有界性;(2)单调性如果,则;(3)右连续,即;(4)极限性;(5)完美性.4、连续型随机变量及其分布分布如果对于随机变量的分布函数,存在⾮负函数,使对于任⼀实数,有,则称为连续型随机变量.函数称为的概率密度函数.概率密度函数具有以下性质:(1);(2);(3);(4);(5)如果在处连续,则.常⽤连续型随机变量的分布:(1)均匀分布:记为,概率密度为分布函数为(2)指数分布:记为,概率密度为分布函数为(3)正态分布:记为,概率密度为,相应的分布函数为当时,即时,称服从标准正态分布.这时分别⽤和表⽰的密度函数和分布函数,即具有性质:①.②⼀般正态分布的分布函数与标准正态分布的分布函数有关系:.5、随机变量函数的分布(1)离散型随机变量函数的分布设为离散型随机变量,其分布列为(表2-2):表2-2则任为离散型随机变量,其分布列为(表2-3):表2-3……有相同值时,要合并为⼀项,对应的概率相加.(2)连续型随机变量函数的分布设为离散型随机变量,概率密度为,则的概率密度有两种⽅法可求.1)定理法:若在的取值区间内有连续导数,且单调时,是连续型随机变量,其概率密度为.其中是的反函数.2)分布函数法:先求的分布函数然后求.疑难分析1、随机变量与普通函数随机变量是定义在随机试验的样本空间上,对试验的每⼀个可能结果,都有唯⼀的实数与之对应.从定义可知:普通函数的取值是按⼀定法则给定的,⽽随机变量的取值是由统计规律性给出的,具有随机性;⼜普通函数的定义域是⼀个区间,⽽随机变量的定义域是样本空间.2、分布函数的连续性定义左连续或右连续只是⼀种习惯.有的书籍定义分布函数左连续,但⼤多数书籍定义分布函数为右连续. 左连续与右连续的区别在于计算时,点的概率是否计算在内.对于连续型随机变量,由于,故定义左连续或右连续没有什么区别;对于离散型随机变量,由于,则定义左连续或右连续时值就不相同,这时,就要注意对定义左连续还是右连续.第三块多维随机变量及其分布内容提要基本内容:多维随机变量及其分布函数⼆维离散型随机变量的联合分布列,⼆维连续型随机变量的联合分布函数和联合密度函数,边际分布,随机变量的独⽴性和不相关性,常⽤多维随机变量,随机向量函数的分布.1、⼆维随机变量及其联合分布函数为n维(n元)随机变量或随机向量.联合分布函数的定义设随机变量,为随机向量的联合分布函数⼆维联合分布函数具有以下基本性质:(1)单调性是变量或的⾮减函数;(2)有界性;(3)极限性(3)连续性关于右连续,关于也右连续;(4)⾮负性对任意点,若,则.上式表⽰随机点落在区域内的概率为:.2、⼆维离散型随机变量及其联合分布列如果⼆维随机变量所有可能取值是有限对或可列对,则称为⼆维离散型随机变量.设为⼆维离散型随机变量,它的所有可能取值为将或表3.1称为的联合分布列.………………联合分布列具有下列性质:(1);(2).3、⼆维连续型随机变量及其概率密度函数如果存在⼀个⾮负函数,使得⼆维随机变量的分布函数对任意实数有,则称是⼆维连续型随机变量,称为的联合密度函数(或概率密度函数).联合密度函数具有下列性质:(1)⾮负性对⼀切实数,有;(2)规范性;(3)在任意平⾯域上,取值的概率;(4)如果在处连续,则.4、⼆维随机变量的边缘分布设为⼆维随机变量,则称分别为关于和关于的边缘(边际)分布函数.当为离散型随机变量,则称分别为关于和关于的边缘分布列.当为连续型随机变量,则称分别为关于和关于的边缘密度函数.5、⼆维随机变量的条件分布(了解)(1)离散型随机变量的条件分布设为⼆维离散型随机变量,其联合分布律和边缘分布列分别为,则当固定,且时,称为条件下随机变量的条件分布律.同理,有(2)连续型随机变量的条件分布设为⼆维连续型随机变量,其联合密度函数和边缘密度函数分别为:.则当时,在和的连续点处,在条件下,的条件概率密度函数为.同理,.6、随机变量的独⽴性设及分别是的联合分布函数及边缘分布函数.如果对任何实数有则称随机变量与相互独⽴.设为⼆维离散型随机变量,与相互独⽴的充要条件是.设为⼆维连续型随机变量,与相互独⽴的充要条件是对⼏乎⼀切实数,有.7、两个随机变量函数的分布设⼆维随机变量的联合概率密度函数为,是的函数,则的分布函数为.(1)的分布若为离散型随机变量,联合分布列为,则的概率函数为:或.若为连续型随机变量,概率密度函数为,则的概率函数为:.(2)的分布若为连续型随机变量,概率密度函数为,则的概率函数为:.8.最⼤值与最⼩值的分布则9.数理统计中常⽤的分布(1)正态分布:(2):(3):(4):疑难分析1、事件表⽰事件与的积事件,为什么不⼀定等于?如同仅当事件相互独⽴时,才有⼀样,这⾥依乘法原理.只有事件与相互独⽴时,才有,因为.2、⼆维随机变量的联合分布、边缘分布及条件分布之间存在什么样的关系?由边缘分布与条件分布的定义与公式知,联合分布唯⼀确定边缘分布,因⽽也唯⼀确定条件分布.反之,边缘分布与条件分布都不能唯⼀确定联合分布.但由知,⼀个条件分布和它对应的边缘分布,能唯⼀确定联合分布.但是,如果相互独⽴,则,即.说明当独⽴时,边缘分布也唯⼀确定联合分布,从⽽条件分布也唯⼀确定联合分布.3、两个随机变量相互独⽴的概念与两个事件相互独⽴是否相同?为什么?两个随机变量相互独⽴,是指组成⼆维随机变量的两个分量中⼀个分量的取值不受另⼀个分量取值的影响,满⾜.⽽两个事件的独⽴性,是指⼀个事件的发⽣不受另⼀个事件发⽣的影响,故有.两者可以说不是⼀个问题.但是,组成⼆维随机变量的两个分量是同⼀试验的样本空间上的两个⼀维随机变量,⽽也是⼀个试验的样本空间的两个事件.因此,若把“”、“”看作两个事件,那么两者的意义近乎⼀致,从⽽独⽴性的定义⼏乎是相同的.第四块随机变量的数字特征内容提要基本内容:随机变量的数学期望和⽅差、标准差及其性质,随机变量函数的数学期望,原点矩和中⼼矩,协⽅差和相关系数及其性质.1、随机变量的数学期望设离散型随机变量的分布列为,如果级数绝对收敛,则称级数的和为随机变量的数学期望.设连续型随机变量的密度函数为,如果⼴义积分绝对收敛,则称此积分值为随机变量的数学期望.数学期望有如下性质:(1)设是常数,则;(2)设是常数,则;(3)若是随机变量,则;对任意个随机变量,有;(4)若相互独⽴,则;对任意个相互独⽴的随机变量,有.2、随机变量函数的数学期望设离散型随机变量的分布律为,则的函数的数学期望为,式中级数绝对收敛.设连续型随机变量的密度函数为,则的函数的数学期望为,式中积分绝对收敛.3、随机变量的⽅差设是⼀个随机变量,则称为的⽅差.称为的标准差或均⽅差.。
西安交大西工大 考研备考期末复习 概率论与数理统计 两个随机变量的函数的分布
由
f
(x)
αeαx , 0,
x x
0, 0,
F
(x)
1 0,
eαx ,
x x
0, 0,
由
βe βy , y 0,
f
(
y)
0,
y 0;
1 βe βy , y 0,
F
(
y)
0,
y 0.
Fmin (z) 1 [1 FX (z)][1 FY (z)]
1 e(α β)z , z 0,
第五节 两个随机变量的函数的分布
一、问题的引入 二、离散型随机变量函数的分布 三、连续型随机变量函数的分布 四、小结
一、问题的引入
有 一 大 群 人, 令 和 分 别 表 示 一 个 人 的 年 龄 和 体 重, 表 示 该 人 的 血 压, 并 且 已 知 与 , 的 函 数 关 系 g( , ), 如 何 通 过 , 的 分 布 确 定 的 分 布.
求电阻 R R1 R2 的概率密度.
解 由题意知 R 的概率密度为
fR (z)
f (x) f (z x)d x.
x x 10
x z x z 10
O
10
20
z
当
0 0
x 10, z x
10,
即
0 x z 10
10, x
z,
时,
fR(z)
f ( x) f (z x)d x 中被积函数不为零.
分布密度为
0
f (z) yf ( yz, y)d y yf ( yz, y)d y
0
y f ( yz, y)d y.
当 ξ,η 独立时,
f (z) y fX ( yz) fY ( y)d y.
概率论与数理统计期末考试复习
j 1
此公式即为贝叶斯公式;
P(Bi ) ,i 1,2 ,…,n ,通常叫先验概率; P(Bi / A) ,i 1,2 ,…,n ,通常 称为后验概率;贝叶斯公式反映了“因果”的概率规律,并作出了“由
果朔因”的推断;
我们作了n 次试验,且满足
每次试验只有两种可能结果, A 发生或 A 不发生;
n 次试验是重复进行的,即 A 发生的概率每次均一样;
称事件 A 与事件 B 互不相容或者互斥;基本事件是互不相容的;
-A 称为事件A 的逆事件,或称A 的对立事件,记为 A ;它表示A 不发生 的事件;互斥未必对立;
②运算:
结合率:ABC=ABC A∪B∪C=A∪B∪C
分配率:AB∪C=A∪C∩B∪C A∪B∩C=AC∪BC
7 概率 的公 理化 定义
2° PΩ =1
3° 对于两两互不相容的事件 A1, A2 ,…有 常称为可列完全可加性;
则称 PA 为事件 A 的概率;
1° 1,2 n ,
2°
P(1 )
P( 2
)
P( n
)
1 n
;
设任一事件 A ,它是由1,2 m 组成的,则有
PA=(1) (2 ) (m ) = P(1) P(2 ) P(m )
则称 X 为连续型随机变量; f (x) 称为 X 的概率密度函数或密度函
数,简称概率密度;
密度函数具有下面 4 个性质:
1° f (x) 0 ;
2° f (x)dx 1;
3 离散与 积分元 f (x)dx 在连续型随机变量理论中所起的作用与
连续型 P(X xk) pk 在离散型随机变量理论中所起的作用相类似; 随机变
用;
Φ-x=1-Φx 且 Φ0= 1 ;
西安交大西工大 考研备考期末复习概率论与数理统计 区间估计
解 10, n 12,
计算得 x 502.92,
(1) 当 0.10时, 1 0.95,
2 查表得 u / 2 u0.05 1.645,
x
n u / 2
502.92
10 1.645 498.17, 12
E(ˆ ) 为估计量 ˆ 的偏差。
例1 设总体 X 的k 阶矩k E( X k ) (k 1)存在,
又设 X1, X2 ,, Xn 是 X 的一个样本,试证明不论
总体服从什么分布, k 阶样本矩
Ak
1 n
n i 1
X
k i
是
k 阶总体矩k的无偏估计.
证 因为 X1, X2 ,, Xn 与 X 同分布,
则 称 随 机 区 间[ˆ1,ˆ2 ]是 的 置 信 度 为1 的 置 信 区 间,ˆ1和ˆ2分 别 称 为 置 信 度 为1 的 双 侧 置 信 区 间 的置 信下 限和 置信 上限, 1 为置 信度.
关于定义的说明
被估计的参数虽然未知, 但它是一个常数, 没有随机性, 而区间[ˆ1,ˆ2 ]是随机的.
例5 若总体 X 的 E( X ) 和D( X ) 存在,则样
本均值 X 是总体均值的相合估计.
解:E( X ) E( X )
D( X )
lim D( X ) lim
0
n
n n
一般地,样本的 k 阶原点矩
Ak
1 n
n
X
k i
i 1
是总体 X
的 k 阶原点矩 E(X k ) 的相合估计.由此可见,矩
由 P(-1.75≤U≤2.33)=0.95
西安交大西工大 考研备考期末复习 概率论与数理统计 概率统计复习
另一方面,有些分布(如二项分布、泊松分布)的极 限分布是正态分布.所以,无论在实践中,还是在理 论上,正态分布是概率论中最重要的一种分布. 二项分布向正态分布的转换
二维随机变量及其分布
1. 二维随机变量的分布函数
F(x, y) P{X x,Y y}.
2. 二维离散型随机变量的分布律及分布函数
定理 如果在贝努里试验中,事件A出现的 概率为p (0<p<1), 则在n次试验中,A 恰好出现 k 次的概率为:
Pn (k) Cnk pk (1 p)nk Cnk pkqnk
(k 0,1,2,, n; q 1 p)
n
且
Pn(k ) 1.
k0
一维随机变量及其分布函数
1. 随机变量的概念 2. 随机变量的分类
3. X 和 Y 相互独立, 则 f ( X ) 和 g(Y )也相互独立.
一维随机变量的函数的分布•
1. 离散型随机变量函数的分布 如果 X 是离散型随机变量,其函数Y f (X )
也是离散型随机变量.若 X 的分布律为
X
x1x2xk源自pkp1p2
pk
则Y f (X )的分布律为
Y f(X)
2 若事件A与B相互独立, 则以下三对事件
① A与 B;
② A 与 B;
③ A 与 B.
18. 独立试验序列概型
设{Ei }(i=1,2,…)是一列随机试验,Ei的样本空 间为i ,设Ak 是Ek 中的任一事件,Ak k , 若Ak出
现的概率都不依赖于其它各次试验Ei (ik)的结果,
则称{Ei } 是相互独立的随机试验序列,简称独立试 验序列.
P( A) m( A)
m( )
(其中m( ) 是样本空间的度量, m(A) 是构成事件A 的子区域的度量) 这样借助于几何上的度量来合理 规 定 的 概 率 称 为几 何 概 率.
概率论与数理统计第一章期末复习
概率论与数理统计第一章期末复习(一)随机事件1.随机现象定义1在一定的条件下,并不总是出现相同结果的现象称为随机现象.定义2只有一个结果的现象称为确定性现象.2.样本空间定义3一个试验如果满足下述条件:(1)试验可以在相同的情形下重复进行;(2)试验的所有可能结果是明确可知的,并且不止一个;(3)每次试验总是恰好出现这些可能结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.就称这样的试验是一个随机试验,记作E.定义4随机试验E的所有可能结果组成的集合称为E的样本空间,记作Ω.样本空间的元素,即E的每个结果,称为样本点,记作ω.3.随机事件定义5随机试验的某些样本点的集合称为随机事件,简称事件,常用大写英文字母A,B,C,…表示.定义6由样本空间Ω中的单个元素组成的子集称为基本事件.而样本空间Ω的最大子集(即Ω本身)称为必然事件,样本空间Ω的最小子集(即空集∅)称为不可能事件.4.事件的关系与运算下面的讨论总是假设在同一个样本空间Ω中进行.1)包含关系⊂如果属于A的样本点必属于B,则称A包含于B或称B包含A,记作A B ⊃.用概率的语言说:事件A发生必然导致事件B发生.或B A对任一事件A,必有∅Ω⊂A.⊂2)相等关系如果属于A的样本点必属于B,且属于B的样本点必属于A,即BA⊂且=.AB⊂,则称事件A与B相等,记作A B3)互不相容(互斥)如果A 与B 没有相同的样本点,则称A 与B 互不相容(互斥).即事件A 与事件B 不可能同时发生.4)两事件的和事件“事件A 与B 中至少有一个发生”,这样的一个事件称作事件A 与B 的和(或并),记作B A .5)两事件的积事件“事件A 与B 同时发生”,这样的一个事件称作事件A 与B 的积(或交),记作B A (或AB ).6)两事件的差事件“事件A 发生而B 不发生”,这样的事件称为事件A 对B 的差,记作A B -.7)对立事件或逆事件若=AB ∅且Ω=B A ,则称A 与B 为对立事件或互为逆事件,事件A 的对立事件记作A .【例1】设A 、B 、C 是Ω中的随机事件,则(1)事件{A 发生且B 与C 至少有一个发生}可表示为:)(C B A ;(2)事件{A 与B 发生而C 不发生}可表示为:C AB ;(3)事件{A 、B 、C 中至少有两个发生}可表示为:BC AC AB ;(4)事件{A 、B 、C 中至多有两个发生}可表示为:ABC ;(5)事件{A 、B 、C 中不多于一个发生}可表示为:AB BC AC ;(6)事件{A 、B 、C 中恰有一个发生}可表示为:ABC ABC ABC .【例2】关系()成立,则事件A 与B 为对立事件.A .=AB ∅B .Ω=B AC .=AB ∅,Ω=B AD .=AB ∅,Ω≠B A 【解析】由对立事件的概念可知选项C 正确.【例3】甲、乙两人谈判,设事件A ,B 分别表示甲、乙无诚意,则B A 表示()A .两人都无诚意B .两人都有诚意C .两人至少有一人无诚意D .两人至少有一人有诚意【解析】由题可知A 与B 分别表示甲、乙有诚意,则B A 表示甲、乙两人至少有一人有诚意,故选项D 正确.5.事件的运算性质(1)交换律:A B B A =,BA AB =;(2)结合律:C B A C B A )()(=,)()(BC A C AB =;(3)分配律:()()()A B C AB AC = ,()()()A B C A C B C = ;(4)对偶律:B A B A = ,B A AB =.一些有用的等式:A A A = ,A Ω=Ω ,A A ∅= AA A =,A A Ω=,A ∅=∅A B A AB AB -=-=,A B A B A =【例4】化简下列各式:(1)))((B A B A ;(2)))((C B B A ;(3)))((B A B A B A .【解】(1) A B B A B A B A ==)())((ØA =;(2)AC B C A B C B B A ==)())((;(3)))(())((B A B B A B A B A B A =AB AB A A B A A === )(.(二)随机事件的概率1.概率的公理化定义定义1设E 是随机试验,Ω是它的样本空间.对于E 的每一事件A 赋予一个实数,记为)(A P ,称为事件A 的概率,如果集合函数)(⋅P 满足下列条件:(1)非负性0)(≥A P ,对Ω∈A ;(2)规范性()1P Ω=;(3)可列可加性若=j i A A ∅,j i ≠, ,2,1,=j i ,有∑+∞=+∞==11)()(i i i i A P A P .2.概率的性质性质1不可能事件的概率为0,即()0P ∅=.性质2概率具有有限可加性,即若=j i A A ∅(n j i ≤<≤1),则∑===ni i n i i A P A P 11)()( .性质3对任一随机事件A ,有()1()P A P A =-.性质4若A B ⊂,则)()()(B P A P B A P -=-.推论若A B ⊂,则)()(B P A P ≥.性质5对任意的两个事件A ,B ,有)()()(AB P A P B A P -=-.性质6对任意的两个事件A ,B ,有()()()()P A B P A P B P AB =+- .对任意三个事件A ,B ,C ,有)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++= .推论对任意的两个事件A ,B ,有)()()(B P A P B A P +≤ .【例1】设A 与B 互不相容,且0)(>A P ,0)(>B P ,则下列结论正确的是()A .A 与B 为对立事件B .A 与B 互不相容C .)()()(B P A P B A P -=-D .)()(A P B A P =-【解析】因为A 与B 互不相容,所以AB =∅,0)(=AB P ,故选项A :互不相容不一定对立,故选项A 错误;选项B :互不相容不一定对立,故B A 不一定等于Ω,所以B A B A =不一定等于∅,即A 与B 不一定互不相容,故选项B 错误;选项C :)()()()(A P AB P A P B A P =-=-,故选项C 错误,进而选项D 正确.【例2】已知B A ⊂,3.0)(=A P ,5.0)(=B P ,求(A P ,)(AB P ,)(B A P 和)(B A P .【解】(1)7.0)(1)(=-=A P A P ;(2)∵B A ⊂,∴A AB =,则3.0)()(==A P AB P ;(3)2.0)()()()(=-=-=AB P B P A B P B A P ;(4))(1()(B A P B A P B A P -==5.0)]()()([1=-+-=AB P B P A P .【注】事件的概率的计算常常需要结合对偶律,应用性质3.【例3】已知事件A ,B ,B A 的概率分别是0.4,0.3,0.6,求(B A P .【解】)()()()(AB P B P A P B A P -+= )(3.04.06.0AB P -+=所以1.0)(=AB P ,则3.0)()()((=-=-=AB P A P B A P B A P .【例4】已知41)()()(===C P B P A P ,0)(=AB P ,161)()(==BC P AC P .求:(1)A ,B ,C 中至少发生一个的概率;(2)A ,B ,C 都不发生的概率.【解】(1)因为0)(=AB P ,且AB ABC ⊂,所以由概率的单调性知0)(=ABC P ;再由加法公式,得A ,B ,C 中至少发生一个的概率为)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++= 8516243=-=.(2)因为{A ,B ,C 都不发生}的对立事件为{A ,B ,C 中至少发生一个},所以A ,B ,C 都不发生的概率为83851(=-=C B A P .3.古典概型定义2若随机试验E 具有下述特征:(1)样本空间的元素(即样本点)只有有限个,不妨设为n 个,并记它们为12,,,n ωωω .(2)每个样本点出现的可能性相等(等可能性),即有12()()()n P P P ωωω=== .则称这种等可能性的概率模型为古典概型.对任意一个随机事件Ω∈A ,有nk A A P =Ω=中所有样本点的个数所含有样本点的个数事件)(.【例5】袋中有大小相同的4个白球,3个黑球,从中任取3个至少有2个白球的概率为.【解析】袋中共有7个球,从中任取3个,共有37C 中取法,即样本空间Ω中共有37C 个样本点.取出的3个球中至少有2个白球,分为2个白球1个黑球和3个白球两种情况.当取出的3个球中有2个白球1个黑球时,共有1324C C 中取法;当取出的3个球中有3个白球时,共有0334C C 中取法.记=A {从中任取3个至少有2个白球},则事件A 中共有03341324C C C C +个样本点.因此3522)(3703341324=+=C C C C C A P .(三)条件概率1.条件概率定义1设A 与B 是样本空间Ω中的两个事件,若0)(>B P ,则称)()()(B P AB P B A P =为“在事件B 发生条件下事件A 发生的条件概率”,简称条件概率.【例1】已知31)()(==B P A P ,61)(=B A P ,求(B A P .【解】∵61)()()(==B P AB P B A P ,∴181)(=AB P ,)(1)()()()(B P B A P B P B A P B A P -== )(1)]()()([1B P AB P B P A P --+-=127=.【注】条件概率的计算通常与概率的性质结合使用.【技巧】在计算过程中,只要有概率的性质可以用,就一直用概率的性质计算,直到没有概率的性质可用时,对得到的式子进行化简整理,代入已知数据计算.2.乘法公式定理1(乘法公式)(1)若0)(>B P ,则)()()(B A P B P AB P =.(2)若0)(121>-n A A A P ,则)()()()()(12121312121-=n n n A A A A P A A A P A A P A P A A A P .【例2】一批零件共100个,次品率为10%,每次从其中任取一个零件,取出的零件不再放回,求第三次才取得合格品的概率.【解】设=i A {第i 次取得合格品},3,2,1=i .由题意知,所求概率为)(321A A A P ,易知10010)(1=A P ,999)(12=A A P ,9890)(213=A A A P .由此得)()()()(213121321A A A P A A P A P A A A P =0083.0989099910010≈⋅⋅=.3.全概率公式定义2设Ω为试验E 的样本空间,1B ,2B ,…,n B 为E 的一组事件.如果=j i B B ∅,j i ≠,n j i ,,2,1, =且Ω=n B B B 21,则称1B ,2B ,…,n B 为样本空间Ω的一个划分.定理2(全概率公式)设1B ,2B ,…,n B 为样本空间Ω的一个划分,若0)(>i B P ,n i ,,2,1 =,则对任一事件A 有)()()(1i ni i B A P B P A P ∑==.4.贝叶斯公式定理3(贝叶斯公式)设1B ,2B ,…,n B 为样本空间Ω的一个划分,若0)(>A P ,0)(>i B P ,n i ,,2,1 =,则∑==n i j j i i i B A P B P B A P B P A B P 1)()()()()(,n i ,,2,1 =.【例3】一批同型号的零件由编号为Ⅰ、Ⅱ、Ⅲ的三台机器共同生产,各台机器生产的零件占这批零件的比例分别为35%、40%和25%,各台机器生产的零件的次品率分别为3%、2%和1%.(1)求该批零件的次品率;(2)现从该批零件中抽到一颗次品,试问这颗零件由Ⅰ号机器生产的概率是多少?【解】设=A {零件是次品},=1B {零件由Ⅰ号机器生产},=2B {零件由Ⅱ号机器生产},=3B {零件由Ⅲ号机器生产},则由题设知35.0)(1=B P ,4.0)(2=B P ,25.0)(3=B P ,03.0)(1=B A P ,02.0)(2=B A P ,01.0)(3=B A P .(1)题目要求的是)(A P ,由全概率公式,得∑==31)()()(i i i B A P B P A P 021.0=.(2)题目要求的是)(1A B P ,由贝叶斯公式,得21)|()()|()()(31111==∑=i i i B A P B P B A P B P A B P .【例4】有甲、乙、丙三厂同时生产某种产品.甲、乙、丙三厂的产量之比为1:1:3,次品率分别为4%,3%,2%.(1)若从一批产品中随机抽出一件,求这件产品为次品的概率.(2)若产品的售后部门接到一名顾客投诉,说其购买的产品为次品,请问哪个厂最该为此事负责,为什么?【解】设=A {产品为次品},=1B {产品由甲厂生产},=2B {产品由乙厂生产},=3B {产品由丙厂生产},则由题设知,2.0)(1=B P ,2.0)(2=B P ,6.0)(3=B P ,04.0)(1=B A P ,03.0)(2=B A P ,02.0)(3=B A P .(1)题目要求的是)(A P ,由全概率公式,得∑==31)()()(i i i B A P B P A P 026.0=.(2)由贝叶斯公式,得134)|()()|()()(31111==∑=i i i B A P B P B A P B P A B P ,133)|()()|()()(31222==∑=i i i B A P B P B A P B P A B P ,136)|()()|()()(31333==∑=i i i B A P B P B A P B P A B P .所以在产品为次品的情况下,产品来自丙厂的可能性最大,丙厂最该负责.【注】全概率公式与贝叶斯公式通常一起考试.(四)独立性1.两个事件的独立性定义1若)()()(B P A P AB P =成立,则称事件A 与事件B 相互独立,简称A 与B 独立.否则称A 与B 不独立或相依.定理1若事件A 与B 独立,则A 与B 独立;A 与B 独立;A 与B 独立.【例1】甲、乙两人彼此独立的向同一个目标射击,甲击中目标的概率为0.9,乙击中目标的概率为0.8,求目标被击中的概率.【解】设=A {甲击中目标},=B {乙击中目标},则=B A {目标被击中}.则)()()()(AB P B P A P B A P -+= )()()()(B P A P B P A P -+=98.0=.【例2】若事件A 与B 相互独立,8.0)(=A P ,6.0)(=B P ,求:)(B A P 和)|(B A A P .【解】∵A 与B 相互独立,∴)()()()(AB P B P A P B A P -+= )()()()(B P A P B P A P -+=92.0=.)())(()|(B A P B A A P B A A P =)()()()()(B A P B P A P B A P B A P ==13.0=.【例3】设)()(B A P B A P =,证明:A 与B 相互独立.【证】因为)()(B A P B A P =,所以有)(1)()()(1)()()()()(B P AB P A P B P B A P B P B A P B P AB P --=--==,即有)]()()[()](1)[(AB P A P B P B P AB P -=-,整理得)()()(B P A P AB P =,所以A 与B 相互独立.2.多个事件的相互独立性定义2设A ,B ,C 是三个事件,若有⎪⎩⎪⎨⎧===)()()()()()()()()(C P B P BC P C P A P AC P B P A P AB P (1)第11页共11页则称A ,B ,C 两两独立.若还有)()()()(C P B P A P ABC P =,(2)则称A ,B ,C 相互独立.注意:只有(1)式与(2)式同时成立,事件A ,B ,C 才相互独立.(1)式成立不能保证(2)式成立;反过来,(2)式成立也不能保证(1)式成立.定义3设有n 个事件1A ,2A ,…,n A ,对任意的n k j i ≤<<<≤ 1,若以下等式均成立⎪⎪⎩⎪⎪⎨⎧===)()()()()()()()()()()(2121n n k j i k j i j i j i A P A P A P A A A P A P A P A P A A A P A P A P A A P 则称此n 个事件1A ,2A ,…,n A 相互独立.定理2如果n (2≥n )个事件1A ,2A ,…,n A 相互独立,则其中任何m (n m ≤≤1)个事件换成相应的对立事件,形成的n 个新的事件仍相互独立.【例4】三人独立地去破译一份密码,已知各人能译出的概率分别为51,31,41,问三人中至少有一人能将此密码译出的概率是多少?【解】设A ,B ,C 分别表示三人独立译出密码,则51)(=A P ,31)(=B P ,41)(=C P ,且A ,B ,C 相互独立,有方法1:)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++= )()()()()()()()()()()()(C P B P A P C P B P C P A P B P A P C P B P A P +---++=6.0=.方法2:)(1)(C B A P C B A P -=(1C B A P -=()()(1C P B P A P -=53411)(311)(511(1=----=.。
概率论与数理统计第1-3章复习资料
其中λ = n P 例2:在例1的试验中,求: (1)A=“点数和为奇数的概率”; (2)B=“点数不同的概率” 例3:某产品40件,其中有次品3件。现从其中任取3件, 求下列事件的概率: (1)A=“3件中恰有2件次品”;(111/9880) (2)B=“ 3件中至少有1件次品”(633/2964)
xi R , i 1 , , n , n 元函数
F ( x1 ,, xn ) P( X 1 x1 ,, X n xn ) ( 是 X 1 ,, X n ) 的分布函数。
(1)’
注:r, v 取值的规律称 r, v 的分布,分布函数是描 述 r, v 的概分布的主要方法之一。 (二)分布函数的性质: 一维:1、有界性:0 F ( X ) 1
m 4、由公式 P( A) 进行计算 n
(二)几何概型 所求概率为: P(A)=[A所包含的区域度量] / [样本空间的度量] (三)条件概率及其全概率公式 1、条件概率:若P(B) >0,则
P( A B) P( AB) P( B)
2、全概率公式 如果B1,…,Bn为一完备事件组,即满足: (1) B1,…,Bn两两不相容i=1, …,n;
例4:一盒装有10只晶体管,其中有4只次品,6只正品,随 机地抽取 1只测试,直到4只次品晶体管都找到。求最后 一只次品晶体管在下列情况发现的概率: (1)A=“在第 5 次测试发现”。(2/105) (2)B=“在第10次测试发现”。(2/5) 例5:将编号1,2,3的三本书任意地排列在书架上,求事件 A=“至少有一本书自左到右的排列顺序号与它的编号相同” 的概率。 例6:五个乒乓球,其中三个旧球,二个新球,每次取一个, 共取两次,以有放回和无放回两种方式求下列事件的概率: (1)A=“两次都取到新球”; (2)B=“第一次取到新球,第二次取到旧球”; (3)C=“至少有一次取到新球”。
西北工业大学《概率论与数理统计》1-3 随机事件的概率
请同学们思考?
医生在检查完病人的时候摇摇头“你的病很重 , 在十个得这种病的人中只有一个能救活.”当病人
被这个消息吓得够呛时, 医生继续说“但你是幸运的。 因为你找到了我, 我已经看过九个病人了, 他们都死 于此病.”
医生的说法对吗?
二、概率的统计定义
1.定义1.2 nA 在随机试验中,若事件A出现的频率 随 n 着试验次数n的增加,趋于某一常数p ,0 p 1, 则定义事件A的概率为p ,记作P(A)=p . 2. 性质1.1 (概率统计定义的性质) (1) 对任一事件A ,有 0 P ( A) 1;
在N(n≤N)间房中的每一间中,试求下列各事件
的概率: (1) 某指定n间房中各有一人; (2) 恰有n间房,其中各有一人; (3) 某指定房中恰有m (m ≤n)人.
解 1º 先求样本空间所含的样本点总数.
分析
把n个人随机地分到N个房间中去, 每一 种分法就对应着一个样本点(基本事件), 由于每个人都可以住进N间房中的任一 间,所以每一个人有N种分法, n个人共
从上述数据可得
(1) 频率有随机波动性,即对于同样的 n, 所得的
f 不一定相同;
(2) 抛硬币次数 n 较小时, 频率 f 的随机波动幅
度较大, 但随 n 的增大 , 频率 f 呈现出稳定性.
即当 n 逐渐增大时频率 f 总是在 0.5 附近摆动,
且逐渐稳定于 0.5.
实验者
n
2048 4040 12000 24000
成 f n ( A).
2. 性质 设 A 是随机试验 E 的任一事件, 则
(1) 0 f n ( A) 1;
(2) f (Ω) 1, f ( ) 0;
概率论与数理统计期末复习知识点
fZ(z)
f (z y, y)dy
f (x, z x)dx
当X 和Y 相互独立:卷积公式
fZ (z) f X ( x) fY (z x)dx
f X (z y) fY ( y)dy
(2) 当X 和Y 相互独立时:
M = max(X,Y ) 的分布函数
Fmax(z) P{M z} FX (z)FY (z)
E(Y ) E[g( X )] g( xk )pk k 1
(1-3)设( X,Y ) 离散型随机变量. 分布律为:
P{X xi , Y y j } pij i, j 1,2,
若 Z=g(X,Y)(g为二元连续函数)
则 E(Z ) E[g( X ,Y )]
g( xi , y j )pij
(2) 连续型随机变量的分布函数的定义
x
F ( x) f (t)dt
f(x)的性质
1. f (x) 0
2. f ( x)dx 1
3. P{x1 X x2}
x2 f ( x)dx
x1
4. F( x) f ( x),在f ( x)的连续点.
⁂ 三种重要的连续型随机变量
(一)均匀分布
pi1
p•1
pi2
p•2
pij pi•
p• j 1
性质:
1 0 pij 1
2
pij 1.
j 1 i1
2.边缘分布律
3. 独立性
pij pi• p• j , ( i, j 1,2, )
4.分布函数 ( x, y) R2
F ( x, y) pij xi x yjy
n
n
则
Ai Ai
Ai Ai
i 1
西安交大西工大 考研备考期末复习 概率论与数理统计 计算公式及事件相互独立性
(2) 由贝叶斯公式得
P ( B1
A)
P( A B1 )P(B1 ) P( A)
0.02 0.15 0.0125
0.24.
P ( B2
A)
P( A B2 )P(B2 ) P( A)
0.64,
P ( B3
A)
P( A B3 )P(B3 ) P( A)
0.12.
故这只次品来自第 2 家工厂的可能性最大.
P( A B) 0.98, P( A B) 0.55,
P(B) 0.95, P(B) 0.05, 由贝叶斯公式得所求概率为
P(B A)
P( A B)P(B)
P(AB)P(B) P(AB)P(B)
0.98 0.95
0.97.
0.98 0.95 0.55 0.05
即当生产出第一件产品是合格品时,此时机器调 整良好的概率为0.97.
同理可得
P( A B) P( AB) P(B)
为事件 B 发生的条件下事件 A 发生的条件概率.
3. 性质
(1) 非负性 : P(B A) 0;
(2) 规范性 : P(S B) 1, P( B) 0;
(3) P( A1 A2 B) P( A1 B) P( A2 B) P( A1A2 B);
概率;
(2) 在仓库中随机地取一只元件, 若已知取到的是 次品, 为分析此次品出自何厂, 需求出此次品由三 家工厂生产的概率分别是多少. 试求这些概率.
解 设 A 表示“取到的是一只次品”, Bi (i 1,2,3)
表示“所取到的产品是由第 i 家工厂提供的”.
则 B1, B2, B3 是样本空间 S 的一个划分,
图示
B2
A
B1
西工大概率论第1,2章复习
故当 y 0 时, 有
d d FY ( y ) [ dy dy
y
0
e x d x]
e
y
1 2 y
,
从而, Y 的概率密度为 1 y e ,y0 fY ( y ) 2 y 0, y 0.
例3
设( X ,Y )的联合分布密度为
2 1 x xy, 0 x 1, y 2 0 p( x , y ) 3 0, 其他
2 2 2 x x , x [0,1] 3 0, 其他
o
1
x
pY ( y)
p( x , y)dx
2
y
1 p( x , y )dx, y [0, 2] 0 0, 其他 1 2 1 ( x xy)dx, y [0, 2] 0 3 0, 其他
说明
一个事件往往有多个等价的表达方式.
例2 设随机事件 A, B , C 满足 C AB , C A B .
证明 : AC C B AB .
证明
由于 C A B , 故 C A B, 从而 C B ( A B ) B A B ,
CA B C B AB C B ,
(1)只有第一个零件是合格品 ( B1 ); ( 2)三个零件中只有一个零件是合格品( B2 );
( 3)第一个是合格品, 但后两个零件中至少有一 个次品 ( B3 );
(4)三个零件中最多只有两个合格品( B4 );
(5)三个零件都是次品( B5 ).
解
(1) B1 A1 A2 A3 ; ( 2) B2 A1 A2 A3 A1 A2 A3 A1 A2 A3 ; ( 3) B3 A1 ( A2 A3 ); (4) B4 A1 A2 A3 , 或 B4 A1 A2 A3 ; (5) B5 A1 A2 A3 , 或 B5 A1 A2 A3 .
西安交大西工大 考研备考期末复习 概率论与数理统计 极大似然估计
一、参数点估计问题
设总体 X 的分布函数形式已知, 但它的一个 或多个参数为未知, 借助于总体 X 的一个样本来 估计总体未知参数的值的问题称为点估计问题.
引例1 元件无故障的工件时间 X 具有负指数分
极大似然法的基本概念
得到样本值 x1, x2 ,, xn时,选取使似然函数L( )
取得最大值的ˆ 作为未知参数 的估计值,
即
L(
x1
,
x2
,,
xn
;ˆ
)
max
L(
x1
,
x2
,,
xn
;
).
(其中 是 可能的取值范围)
这样得到的ˆ 与样本值 x1, x2 ,, xn有关,记为 ˆ( x1, x2 ,, xn ), 参数 的最大似然估计值,
t
此时 L(N ) 关于 N 是单调递增的。于是在 N rs 时,
t
L(N ) 取最大值,故
^
N
rs
t
因为待估计量是整数,所以上式取最接近的整数.
模型评析
1、建模理论依据:超几何分布的概率计算,极 大似然估计。应用参数估计的思想和方法分 析、处理问题。
2、应用与推广:本例可推广到一定区域范围内 的生物总数估计等问题。例如,估计一个城 市的人口总数,也可以用同样的方法考虑。
模型2:参数点估计模型
设捕出的 s 条鱼中带有标记的个数为随机变量 ,则 服从超几何分布,取值0,1,2, l(l min{ s, r})
分布律
P(
i)
C Ci si r N r
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一部分 随机事件及其概率基础练习一. 填空1 设====)(,7.0)(,5.0)(,4.0)(B A P B A P B P A P 则若 答案:0.552 三次独立重复射击中,至少有一次击中的概率为则每次击,6437中的概率为 答案:1/43箱中盛有8个白球6个黑球,从其中任意地接连取出8个球,若每球被取出后不放还,则最后取出的球是白球的概率等于_________________。
答案:8144 任取两个正整数,则它们之和为偶数的概率是_______ 答案:1/25 设10件产品中有3件不合格品,从中任取两件,已知两件中有一件是不合格品,则另一件也是不合格品的概率为__________答案:2/96已知P (A )=0.8,P(A-B)=0.5,且A 与B 独立,则P (B )= 答案:3/87从1,2,…,10共十个数字中任取一个,然后放回,先后取出5个数字,则所得5个数字全不相同的事件的概率等于___________ 答案:9876104⨯⨯⨯=0.3024 8箱中盛有8个白球6个黑球,从其中任意地接连取出8个球,若每球被取出后不放还,则最后取出的球是白球的概率等于_________________ 答案:8149平面上有10个点,其中任何三点都不在一直线上,这些点可以确定_____个三角形。
答案:12010设样本空间U={1,2, 10},A={2,3,4,},B={3,4,5,},C={5,6,7},则()C B A 表示的集合=______________________。
答案:{1,2,5,6,7,8,9,10} 二. 计算题1 一打靶场备有5支某种型号的枪,其中3支已经校正,2支未经校正.某人使用已校正的枪击中目标的概率为1p ,使用未经校正的枪击中目标的概率为2p .他随机地取一支枪进行射击,已知他射击了5次,都未击中,求他使用的是已校正的枪的概率(设各次射击的结果相互独立).解 以M 表示事件“射击了5次均未击中”,以C 表示事件“取得的枪是已经校正的”,则,5/3)(=C P,5/2)(=C P 又,按题设,)1()|(51p C M P -=52)1()|(p C M P -=,由贝叶斯公式 ,)()()|(M P MC P M C P =)()|()()|()()|(C P C M P C P C M P C P C M P +=52)1(53)1(53)1(525151⨯-+⨯-⨯-=p p p.)1(2)1(3)1(3525151p p p -+--= 2 某人共买了11只水果,其中有3只是二级品,8只是一级品.随机地将水果分给C B A 、、三人,各人分别得到4只、6只、1只. (1)求C 未拿到二级品的概率.(2)已知C 未拿到二级品,求B A ,均拿到二级品的概率. (3)求B A ,均拿到二级品而C 未拿到二级品的概率.解 以,,,C B A 分别表示事件C B A ,,取到二级品,则C B A ,,表示事件C B A ,,未取到二级品.(1).11/8)(=C P(2)就是需要求).|(C AB P 已知C 未取到二级品,这时B A ,将7只一级品和3只二级品全部分掉.而B A 、均取到二级品,只需A取到1只至2只二级品,其它的为一级品.于是.5441027234103713)|(=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=C AB P(3).55/32)()|()(==C P C AB P C AB P3 一系统L 由两个只能传输字符0和1的独立工作的子系统1L 和2L 串联而成(如图13-1),每个子系统输入为0输出为0的概率为)10(<<p p ;而输入为1输出为1的概率也是p .今在图中a 端输入字符1,求系统L 的b 端输出字符0的概率.ab解 “系统L 的输入为1输出为0”这一事件(记)01(→L )是两个不相容事件之和,即),00()01()01()11()01(2121→→→→=→L L L L L 这里的记号“)11(1→L ”表示事件“子系统1L 的输入为1输出为1,其余3个记号的含义类似.于是由子系统工作的独立性得)}00()01({)}01()11({)}01({2121→→+→→=→L L P L L P L P)}00({)}01({)}01({)}11({2121→→+→→=L P L P L P L P).1(2)1()1(p p p p p p -=-+-=4 甲乙二人轮流掷一骰子,每轮掷一次,谁先掷得6点谁得胜,从甲开始掷,问甲、乙得胜的概率各为多少?解 以i A 表示事件“第i 次投掷时投掷者才得6点”.事件i A 发生,表示在前1-i 次甲或乙均未得6点,而在第i 次投掷甲或乙得6点.因各次投掷相互独立,故有.6165)(1-⎪⎭⎫⎝⎛=i i A P 因甲为首掷,故甲掷奇数轮次,从而甲胜的概率为}{}{531 A A A P P =甲胜+++=)()()(531A P A P A P ),(21两两不相容因 A A⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+= 426565161.116)6/5(11612=-=同样,乙胜的概率为}{}{642 A A A P P =乙胜+++=)()()(642A P A P A P.1156565656153=⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+=5 将一颗骰子掷两次,考虑事件=A “第一次掷得点数2或5”,=B “两次点数之和至少为7”,求),(),(B P A P 并问事件B A ,是否相互独立.解 将骰子掷一次共有6种等可能结果,故.3/16/2)(==A P 设以i X 表示第i 次掷出骰子的点数,则}).6({1})7({)(2121≤+-=≥+=X X P X X P B P因将骰子掷两次共有36个样本点,其中621≤+X X 有6,5,4,3,221=+X X 共5种情况,这5种情况分别含有1,2,3,4,5个样本点,故.12/712/5136/)54321(1)(=-=++++-=B P以),(21X X 记两次投掷的结果,则AB 共有(2,5),(2,6),(5,2),(5,3)(5,4),(5,5),(5,6)这7个样本点.故 .36/7)(=AB P今有).(36/7)12/7)(3/1()()(AB P B P A P === 按定义B A ,相互独立.6 B A ,两人轮流射击,每次各人射击一枪,射击的次序为A B A B A ,,,,,射击直至击中两枪为止.设各人击中的概率均为p ,且各次击中与否相互独立.求击中的两枪是由同一人射击的概率.解 A 总是在奇数轮射击,B 在偶数轮射击.先考虑A 击中两枪的情况.以12+n A 表示事件“A 在第12+n 轮),2,1( =n 射击时又一次击中,射击在此时结束”. 12+n A 发生表示“前n 2轮中A 共射击n 枪而其中击中一枪,且A 在第12+n 轮时击中第二枪”(这一事件记为C ),同时“B 在前n 2轮中共射击n 枪但一枪未中”(这一事件记为D ),因此)()()()(12D P C P CD P A P n ==+nn p p p p n )1()1(11-⎥⎦⎤⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛=- .)1(122--=n p np注意到 ,,,753A A A 两两互不相容,故由A 击中了两枪而结束射击(这一事件仍记为A )的概率为∑∑∞=-∞=++∞=-===1122112121)1()()()(n n n n n n p np A P A P A P1122])1[()1(-∞=∑--=n n p n p p.)2(1])1(1[1)1(2222p pP p p --=---(此处级数求和用到公式.1,)1(1112<=-∑∞=-x nx x n n 这一公式可自等比级数1,11<=-∑∞=x x x n n 两边求导而得到.) 若两枪均由B 击中,以)1(2+n B 表示事件 “B 在第)1(2+n 轮),2,1( =n 射击时又一次击中,射击在此时结束”. )1(2+n B 发生表示在前12+n 轮中B 射击n 枪其中击中一枪,且B 在第)1(2+n 轮时击中第2枪,同时A 在前12+n 轮中共射击1+n 枪,但一枪未中.注意到 ,,,864A A A 两两互不相容,故B 击中了两枪而结束射击(这一事件仍记为B )的概率为∑∞=+-+∞=--⎪⎪⎭⎫ ⎝⎛==111)1(21)1()1(1)()(n n n n n p p p p n B P B P 12112222])1[()1()1(-∞=∞=--=-=∑∑n n n np n p p p np.)2()1(])1(1[1)1(222222p p p p p --=---= 因此,由一人击中两枪的概率为222)2()1()2(1)()()(p p p p B P A P B A P --+--=+= .21pp --= 7 有3个独立工作的元件1,元件2,元件3,它们的可靠性分别为.,,321p p p 设由它们组成一个“3个元件取2个元件的表决系统”,记为2/3].[G 这一系统的运行方式是当且仅当3个元件中至少有2个正常工作时这一系统正常工作.求这一2/3][G 系统的可靠性. 解 以i A 表示事件“第i 个元件正常工作”,以G 表示事件“2/3][G 系统正常工作”,则G 可表示为下述两两互不相容的事件之和: 321321321321A A A A A A A A A A A A G = 因321,,A A A 相互独立,故有)()()()()(321321321321A A A P A A A P A A A P A A A P G P +++=)()()()()()()()()()()()(321321321321A P A P A P A P A P A P A P A P A P A P A P A P +++=.)1()1()1(321321321321p p p p p p p p p p p p +-+-+-= 8 甲、乙、丙三部机床独立工作由一名工人照看,某段时间内甲、乙、丙三部机床不需要照看的概率依次为3/4、2/3、1/2,求在这段时间内有机床需要工人照看的概率及恰有1台机床需要工人照看的概率。
解 设A 、B 、C 分别表示甲、乙、丙不需要照看,则A 、B 、C 相互独立(1))(1)()(ABC P ABC P C B A P -==++4/3)()()(1=-=C P B P A P(2)24/112/13/24/32/13/14/32/13/24/1)()()()(=⨯⨯+⨯⨯+⨯⨯=++=++C AB P C B A P BC A P C AB C B A BC A P9 从5双不同鞋号的鞋子中任取4只,4只鞋子中至少有二只鞋子配成一双的概率是多少?解 基本事件总数C410A 所包含的事件数2512122415C C C C C + P A ()=1321或用P(A)=1- 211378910468101=⨯⨯⨯⨯⨯⨯-=)(A P10 在区间[0,3]上随机地,等可能地任意取两数,记事件B 为两数之最小者小于1,求事件B 的概率。