高中数学_正弦定理教学设计学情分析教材分析课后反思

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课标分析

《新课程标准》要求通过本章学习,学生应当达到以下学习目标:

(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理,并能解决一些简单的三角形度量问题。

(2)能够熟练运用正弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题。

利用正弦定理解三角形,可以把边的关系转化为角的关系,也可以把角的关系转化为边的关系,避免了许多繁杂的运算,从而使许多复杂的问题得以解决。

教材分析

一、内容结构

(1)正弦定理是高中新教材人教B版必修⑤第一章第一节第一部分的内容。本节旨在基于高二已学的三角知识,通过对三角形边角关系的研究,发现并掌握三角形中的边长与角度之间数量关系,引出正弦定理。

(2)一个三角形,有六个元素:三个角三条边。知道其中的几个元素求其它元素的过程,即为解三角形。由于三角形内角和为180度,故而只需建立二边二角的关系,就能解决所有解三角形的问题。而其中二边二角的关系即为正弦定理。这个过程是对三角知识的应用;也是对初中解直角三角形内容的直接延伸。

(3)教材证明正弦定理时,应用了前面所学“正弦函数定义”的知识,很好的解决了“已知两角一边或两边一角求其他边角”的问题。教材的编排循序渐进,有效的把所学知识融会贯通,使学生更容易接收。

(4)正弦定理本身的应用十分广泛,同学们在下一节中即将学习领悟到。因此做好该节内容的教学,使学生通过对任意三角形中正余弦定理的探索、发现和证明,感受“类比--猜想--证明”的科学研究问题方法,体会由“定性研究到定量研究”这种数学思想,对于下一节内容的学习有极大的帮助。

二、教学目标

1.知识与技能目标:

(1)引导学生发现正弦定理的内容,探索证明正弦定理的方法;

(2)掌握简单运用正弦定理解三角形、初步解决与测量与几何计算有关的实际问题的方法。

2.过程与方法目标:

(1)通过对正弦定理的探究,培养学生发现数学规律的思维能力;

(2)通过对正弦定理的证明和应用,培养学生运用数形结合思想方法的能力;

(3)通过对实际问题的探索,培养学生从数学角度观察问题、提出问题、分析问题、解决问题的能力;

3.情感态度与价值观目标:

(1)通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的品质,增强学习的成功心理,激发学习数学的兴趣。

(2)通过本节学习和运用实践,体会数学的科学价值、应用价值,学习用数学的思维方式解决问题、认识世界,进而领会数学的人文价值、美学价值。

三、教学重点与难点

教学重点:正弦定理的证明及应用

教学难点:理解及掌握证明方法,感受在证明过程中蕴含的数学思想。

学情分析

正弦定理是学生在必修(4)已经系统学习了三角函数,明确了三角函数基本概念,而且已经知道直角三角形的边角关系基础上进行的。高二学生对生产生活问题比较感兴趣,本节课由实际问题出发探究三角形边角之间的关系,激起学生学习新知的兴趣和欲望,得出正弦定理。

必修5《1.1.1 正弦定理》教学设计

一.教材分析

本课是《普通高中新课程标准实验教科书﹒数学(5)》(人教B版)第一章第一节《正弦定理》。根据我所任教的学生情况,我将《正弦定理》划分为两个课时,这是第一课时。正弦定理的主要内容是用正弦定理解三角形,是典型的用代数方法解决几何问题的类型,在生活、测绘中有广泛的应用。提出一个实际问题,并指出解决问题的关键在于研究三角形中

的边、角关系,从而引导学生产生探索愿望,激发学生学习的兴趣,使学生在已有知识的基础上,通过对三角形边角关系的研究,发现并掌握三角形中的边长与角度之间的数量关系。。在教学过程中,引导学生自主探究三角形的边角关系,先由特殊情况发现结论,再对一般三角形进行推导证明,并引导学生分析正弦定理可以解决两类关于解三角形的问题:

(1)已知两角和一边,解三角形;

(2)已知两边和其中一边的对角,解三角形。

二.学情分析

正弦定理是学生在必修(4)已经系统学习了三角函数,明确了三角函数基本概念,而且已经知道直角三角形的边角关系基础上进行的。高二学生对生产生活问题比较感兴趣,本节课由实际问题出发探究三角形边角之间的关系,激起学生学习新知的兴趣和欲望,得出正弦定理。

三.设计思想

培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的角度来理解就是:知识不是通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。本节“正弦定理”的教学,将遵循这个原则而进行设计。在本节课的教学中,我努力做到以下两点:

(1)在课堂中通过同伴合作、自主探究培养学生积极主动、勇于探索的学习方式。

(2)在教学过程中努力做到生生对话、师生对话,并且在对话之后重视体会、总结、反思,力图在培养和发展学生数学素养的同时让学生掌握一些学习、研究数学的方法。

四.教学目标

(1)知识与技能:通过对任意三角形边角关系的探究,引导学生通过观察,猜想,证明,由特殊到一般归纳出正弦定理,掌握正弦定理的内容,能用其解三角形;同时能用其解决一些和测量有关的实际问题

(2)过程与方法:经历猜想、证明、发现正弦定理的过程,培养学生的创新意识和合作交流意能力,培养学生分析问题和解决问题的能力,学会由特殊到一般和分类讨论的思想方法。

(3)情感态度与价值观:通过学生之间、师生之间的探究、合作、交流,培养学生勇于探索,善于发现,不畏艰辛的创新品质,增强学生的成功心里,激发学生学习数学的兴趣。五.教学重点与难点

教学重点:正弦定理的证明及应用

教学难点:理解及掌握证明方法,感受在证明过程中蕴含的数学思想。

六.教法、学法分析

教学方法:教学过程中以学生为主体,创设和谐、愉悦的教学环境。根据本节课内容和学生认知水平,我采用探究式课堂教学模式,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。

学法指导:指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习、观察、类比、思考、探究、动手尝试相结合,增强学生由特殊到一般的数学思维能力和锲而不舍的求学精神。

教学手段:利用多媒体展示图片,极大的吸引学生的注意力,活跃课堂气氛,调动学生参与解决问题的积极性。利用探究学案,让学生小组合作探究,培养探索精神和构建民主平等和谐的课堂文化。

七.教学过程

1.创设情境,引入新知

济南园博园占地5176亩,主要有齐鲁园,国内园,国际园三个展区,为节省游园时间,可坐船往返于三个展区,游船以3m/s匀速行驶,从齐鲁园码头至国内园码头需沿着东偏北60o方向行驶,用时5分钟,从国内园码头至国际园码头需沿着东偏南45o方向行驶,需用时几分钟?

B(国内园)

A(齐鲁园)C(国际园)

相关文档
最新文档